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Abstract

In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A
robust decentralised sliding mode control based on static state feedback is developed. By local coordinate transformation and
feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a
function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analysed. A new
reachability condition is proposed and a robust decentralised sliding mode control is then designed to drive the system states to
the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to
be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have
more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness
of the proposed method.
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I. INTRODUCTION

Increasingly complex industrial requirements coupled with rapid technological developments are producing engineering
systems that are interconnected to form large-scale interconnected systems [1]. Such systems exist widely in multiple domains
including process networks, power grids, offshore platforms, urban traffic networks as well as ecosystems [2]. Large-scale
complex systems can require high on-line computing power to implement controllers. For example, in a centralized control
implementation, all of the system information may be used to control the interconnected system. Such a large computational
burden may not be attractive to industry as data transfer requirements are large and risks of cyber attack increase. Plant shut
down may result from corruption or blockage of data transfer and the system robustness may be compromised [3]. This has
motivated the development of decentralised control strategies in which only local subsystem information is needed for local
control design. A decentralized control approach has the potential to improve the computational efficiency and the overall
safety of the system. Hence the study of decentralized control is of significant importance for interconnected systems [4].

Decentralized control has been studied for many years and many results have been obtained relating to interconnected systems
[5], [6], [7]. It is well known that uncertainties or modeling errors can seriously affect the performance of controlled systems. The
uncertainties in subsystems will not only affect their own performance, but also affect the entire system’s performance through
the interactions among subsystems. In addition, the coupling between subsystems also brings difficulties to the stabilization
of interconnected large-scale systems. Robust control schemes and adaptive control schemes are often designed to reject or
reduce the effect of the uncertainties caused by the modeling errors within subsystems and the coupling among subsystems.
Adaptive control can only be applied to some special systems, i.e. parametric uncertainties satisfying linear growth conditions
[8], [9]. Alternative robust control methods, such as H∞ control [10], [11], have strong robustness in dealing with large-scale
operating regions even in the presence of disturbance scenarios, but the design process is complex and the synthesis can be
difficult and time-consuming [12], [13].

As one of the classical robust control methods, sliding mode control [14] is widely considered to be an effective method
to deal with uncertainties due to its excellent performance characteristics and relatively simple design process. Decentralized
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sliding mode control has been extensively studied in large-scale systems. Based on state information, a decentralized sliding
mode control is designed to deal with the matched uncertainties in [15]. A decentralised adaptive sliding mode control is
designed for large-scale systems with unmatched perturbations in [16]. A type of decentralised output feedback sliding mode
control is designed for a class of interconnected systems in [17], where only matched uncertainties and interconnections are
considered. A class of interconnected systems is stabilized by an output feedback sliding mode controller with a more general
structure for the interconnections and unmatched uncertainties in [18]. Note that these contributions require that the nominal
isolated systems are linear. In practice, almost all systems are nonlinear and have nonlinear behaviour [19]. Moreover, the
majority of control schemes for linear systems cannot be applied to nonlinear systems directly. This motivates the current
study of nonlinear interconnected systems with nonlinear nominal isolated systems and nonlinear interconnections.

Recently, the study of interconnected systems with nonlinear nominal isolated systems has received great attention and some
interesting results have been achieved. Based on static output feedback, decentralized stabilization of nonlinear interconnected
systems has been achieved in [20]. However, this output feedback method imposes higher requirements for the system model.
The decentralized tracking control problem is studied for a class of interconnected stochastic nonlinear systems in [21], where
the result obtained can only guarantee that the closed-loop system is practically stable. A smooth dynamic output feedback
control is proposed for the case of multiple time-delay systems with nonlinear uncertainties in [22]. However, it is based
on dynamic feedback, which increases the system dimension as well as the computational complexity. A decentralised state
feedback control scheme is proposed for a class of time delay interconnected systems with matched interconnections, and a
new term, called weak unmatched uncertainty, is introduced in [23]. It should be noted that high control gains are used in [23]
to reject the effect of weak unmatched uncertainties and the matched interconnections, which in turn may lead to control input
saturation. An adaptive dynamic programming technique is introduced for nonlinear large-scale systems in [24]. Although the
nominal isolated systems are nonlinear, only matched interconnections are considered. A multi-dimensional Taylor network
decentralised control is investigated for large-scale stochastic nonlinear systems in [25], but only the tracking of specific signals
has been considered. The knowledge that sliding mode control can accommodate unmatched uncertainties [26] provides further
motivation for considering decentralised sliding mode control for nonlinear interconnected systems.

There are few results which apply sliding mode control methods to interconnected systems with nonlinear nominal isolated
systems. A decentralised control strategy based on sliding mode techniques is proposed for a class of nonlinear interconnected
systems in regular form in [27]. Although this method does not require the nominal isolated subsystems to be linearized or
partially linearized, it is assumed that the system is in regular form, which requires transformation of the nonlinear systems;
a constructive method to obtain the transformation matrix is not generally available. Further, the proposed control does not
guarantee that the system states reach the sliding surface in finite time.

In this paper, a decentralised static sliding mode control strategy is proposed for a class of nonlinear interconnected systems.
It is not required that the nominal isolated systems are linear or linearizable. Under the conditions that all the nominal
isolated subsystems have uniform relative degree and the distribution is involutive, the class of nonlinear interconnected
systems considered can be transformed to a convenient regular form representation using a local coordinate transformation and
feedback linearization. In comparison with most of the existing control methods for interconnected systems [15], [16], [28],
the nominal isolated subsystems of the interconnected system considered in this paper are fully nonlinear, which extends both
the potential practical application value and theoretical significance. The proposed regular form greatly facilitates decentralised
control design. Given the regular form, a decentralized sliding mode control can be designed to accommodate both matched
and unmatched uncertainties. A set of sufficient conditions is developed to guarantee that the corresponding sliding motion is
asymptotically stable using a Lyapunov approach, where the conservativeness of the interconnection terms is reduced compared
with the results in [23], [27]. Meanwhile a new reachability condition is proposed for the nonlinear interconnected system
which forces the system states to reach the sliding surface in finite time; the existing reachability frameworks available in the
literature cannot guarantee this. The main theoretical contributions of this paper are: (i) a framework is proposed to transform
the nonlinear interconnected system into a new regular form; (ii) a set of sufficient conditions is given to guarantee the large-
scale interconnected system has an asymptotically stable sliding motion; (iii) a new reachability condition is proposed so that
the decentralised sliding mode control forces the system to reach the composite sliding surface in finite time.
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The remainder of the paper is organized as follows. Section 2 formulates the problem and gives some definitions that will be
used in the following sections. In Section 3, basic assumptions and stability analysis of the sliding mode are given. In Section
4, a decentralised sliding mode control is designed. In Section 5, a simulation example is presented to validate the proposed
approach. Conclusions are given in Section 6.

II. INTERCONNECTED SYSTEM ANALYSIS AND PROBLEM FORMULATION

Consider the nonlinear interconnected system described by:

ẋi = fi (xi) + gi (xi) (ui + ϕi (t, xi)) + ξi (t, xi) +

n∑
j=1

Hij (t, xj) , i = 1, 2, · · ·n (1)

where xi ∈ χi ∈ Rni , ui ∈ Rmi are the state and input of the i-th subsystem respectively, χi is a neighborhood of the origin and
x := col (x1, . . . , xn) ∈ χ := χ1 × · · · × χn, fi (xi) := [fi1 (xi) , . . . , fini (xi)]

T ∈ Rn
i , gi (xi) := [gi1 (xi) , . . . , gimi (xi)] ∈

Rn
i
×mi is the input distribution matrix, ϕi (t, xi) ∈ Rmi and ξi (t, xi) ∈ Rni represent the matched uncertainties and unmatched

uncertainties respectively,
∑n

j=1 Hij (t, xj) denotes the unknown interconnections.
The following definitions are provided for ease of exposition.
Definition 1: [20] The system

ẋi = fi (xi) + gi (xi) (ui + ϕi (t, xi)) + ξi (t, xi) , i = 1, 2, · · ·n (2)

is referred to as the i-th isolated subsystem of the interconnected system (1), and the system

ẋi = fi (xi) + gi (xi)ui, i = 1, 2, · · ·n (3)

is referred to as the i-th nominal isolated subsystem of the interconnected system (1).
Definition 2: [29] System (3) is said to have uniform relative degree (ri1, ri2, . . . , rimi) in domain χi if there exists a series

of functions hij (xi) ∈ Rmi such that for any xi ∈ χi:
i) LgijL

ki

fi
hil(xi) = 0 for all 1 6 j 6 mi, 1 6 l 6 mi, 0 6 k < ri − 1 and i = 1, 2, · · ·n.

ii) A series of functions Λi (xi) ∈ Rmi×mi are nonsingular for i = 1, 2, · · ·n.
where

Λi (xi) =


Lgi1L

ri1−1
fi

hi1(xi) · · · Lgimi
Lri1−1
fi

hi1(xi)

Lgi1L
ri2−1
fi

hi2(xi) · · · Lgimi
Lri2−1
fi

hi2(xi)

· · · · · · · · ·
Lgi1L

rimi
−1

fi
himi(xi) · · · Lgimi

Lrimi−1
fi

himi(xi)

 (4)

where Lfihil (xi) denotes the derivative of hil (xi) along fi defined by Lfihil (xi) : =
ni∑
s=1

∂hil

∂x fis (x) and Lk
fi
hil (xi) represents

a recursion defined by Lk
fi
hil (xi) :=

∂Lk−1
fi

hil(xi)

∂x fi (x) with L0
fi
hil (xi) := hil (xi).

Remark 1: Note that ri =
mi∑
l=1

ril 6 ni. When ri = ni, system (3) can be linearized completely for i = 1, 2, · · ·n, and in

this case, there is no zero dynamics. When ri < ni, system (3) can only be partially feedback linearized, and in this case,
there are nonlinear zero dynamics. It should be pointed out that it is not required that ri = ni in this paper and thus it does
not require that the nominal isolated subsystems are linearizable.

For simplicity, the distribution formed by the vector fields gi1 (xi) , gi2 (xi) , . . . , gimi (xi) is denoted by:

Gi (xi) := span {gi1 (xi) , gi2 (xi) , . . . , gimi (xi)} (5)

In this paper, it is assumed that the i-th nominal isolated subsystem of the interconnected system (1) has uniform relative
degree (ri1, ri2, . . . , rimi) and the distribution Gi (xi) is involutive in domain χi for i = 1, 2, · · ·n. For the convenience of
analysis and design, the feedback linearization technique is applied to the system (3).
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Let zil =
[

hil (xi) Lfihil (xi) · · · L
ril−1
fi

hil (xi)
]T

, l = 1, 2, . . . ,mi with zil ∈ Rril . From [29], there exist ni − ri

functions zi(ri+1), zi(ri+2), · · · , zini defined in χi such that the Jacobian matrix of the mapping

Ti : xi → zi := col
(
zai , z

b
i

)
(6)

is nonsingular, where zai := col (zi1, zi2, · · · , zimi) ∈ Rri and zbi := col
(
zi(ri+1), zi(ri+2), · · · , zini

)
∈ Rni−ri . Therefore, Ti

in (6) defines a diffeomorphism.
It follows from [29] that in the new coordinate system zi, system (3) can be described as:

żai = Āiz
a
i + B̄i (αi (zi) + Λi (zi)ui)

żbi = ωi

(
zai , z

b
i

) (7)

where Āi = diag
{
Āi1, · · · , Āil, · · · Āimi

}
∈ Rri×ri , B̄i = diag

{
B̄i1, · · · , B̄il, · · · , B̄imi

}
∈ Rri×mi ,

αi (zi) =


Lri1
fi

hi1 (zi)

Lri2
fi

hi2 (zi)
...

L
rimi

fi
himi (zi)

 Āil =



0 1 0
... 0 0

0 0 1
... 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


ril×r

il

B̄il =



0

0
...
0

1


ril×1

(8)

and Λi is defined in (4).
Design a state feedback

ui = −Λ−1
i (zi)αi (zi) + Λ−1

i (zi) νi (9)

where νi ∈ Rmi is the new input of the i-th subsystem for i = 1, 2, · · ·n.
By applying the feedback from (9) to system (7), the corresponding closed-loop system can be described as:

żai = Āiz
a
i + B̄iνi

żbi = ωi

(
zai , z

b
i

) (10)

Consider the interconnected system (1). According to the above analysis, it follows from (10) that in the new coordinates
z := col (z1, . . . , zn) ∈ Z := Z1 × · · · × Zn given in (6), system (1) can be described by:

żai1 = Aiz
a
i1 +Biz

a
i2 + Ξa

i1 (t, zi) + Ψa
i1 (t, z) (11a)

żbi = ωi

(
zai1, z

a
i2, z

b
i

)
+ Ξb

i (t, zi) + Ψb
i (t, z) (11b)

żai2 = νi + Ξa
i2 (t, zi) + Ψa

i2 (t, z) (11c)

where z := col (z1, . . . , zn), zi := col
(
zai1, z

b
i , z

a
i2

)
, zai1 := col

(
zi11, zi12, · · · zi1(ri1−1), · · · , zimi1, zimi2, · · · , zimi(rimi

−1)

)
∈

Rri−mi , zai2: =
(
zi1ri1 , zi2ri2 , · · · , zimirimi

)
∈ Rmi , Ψa

i1 (t, z), Ψ
b
i (t, z), Ψ

a
i2 (t, z) are the interconnections with appropriate

dimensions, Ξa
i1 (t, zi), Ξb

i (t, zi), Ξ
a
i2 (t, zi) are the uncertainties with appropriate dimensions. Taking into account the special

structure of (Āi, B̄i) in (10), form (11) can be obtained by matrix factorization to (Āi, B̄i), while (Ai, Bi) also has a similar
structure to (Āi, B̄i).

In particular, Ai = diag {Ai1, · · · , Ail, · · · , Aimi} ∈ R(ri−mi)×(ri−mi), Bi = diag {Bi1, · · · , Bil, · · · , Bimi} ∈ R(ri−mi)×mi

with

Ail =



0 1 0
... 0 0

0 0 1
... 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


(rl−1)×(rl−1)

, Bil =



0

0
...
0

1


(rl−1)×1

(12)
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Remark 2: Under the diffeomorphism Ti defined in (6) and Ti(0) = 0, the uncertainties and interconnections of the
interconnected system (11) have a similar structure to those of the interconnected system (1). For example, Ψa

i1 (t, z), Ψ
b
i (t, z)

and Ψa
i2 (t, z) are determined by

[
∂Ti

∂xi

]∣∣∣
xi=T−1

i (zi)

∑n
j=1 Hij

(
t, T−1

j (zj)
)
.

Remark 3: It is clear to see that the system (11) adopts a regular form as νi is the system input, which has been transformed
from the nonlinear interconnected system (1) by local coordinate transformation and feedback linearization. It should be noted
that form (10) is directly studied in [23] with the non-square matrix B̄i ∈ Rri×mi as the input distribution matrix. Based on a
high gain control approach, a decentralised state feedback control scheme is proposed for this form, which can only deal with
weak unmatched uncertainties and matched interconnections [23]. Furthermore, the decentralised sliding mode control cannot
be directly designed in the light of form (10). A new form (11) is developed in this study with nonsingular unit matrix as the
new input distribution matrix, which not only facilitates the design of the sliding mode control, but also can deal with stronger
unmatched uncertainties and interconnections. Note that form (11) can be obtained by a simple matrix factorization technique
from (10).

The objective of this paper is to design a composite sliding surface under a set of conditions such that the reduced sliding
mode is uniformly asymptotically stable. Then, for system (11), a decentralised sliding mode control

νi = νi(t, zi) (13)

will be designed such that the controlled interconnected system states can be driven to the pre-designed composite sliding
surface in finite time and a sliding motion maintained thereafter.

Remark 4: For system (1), a constructive method to obtain the required regular form is not available [27]. In comparison
with [27], the proposed controller design in this paper has more practical significance and application value in this regard.
It will be shown that in the developed regular form (11), the method proposed in this paper can accommodate the case of
unmatched uncertainties and interconnections.

III. BASIC ASSUMPTIONS AND STABILITY ANALYSIS OF THE SLIDING MODE

In this section, a composite sliding surface will be designed. Then the stability of the corresponding sliding motion will be
analysed. The following Assumption will be imposed on system (11).

Assumption 1: There exist known nonnegative continuous functions µi (·), ρi (·), αi1 (·), αi2 (·), βi1 (·), βi2 (·), γi1 (·), γi2 (·),
αij3 (·), αij4 (·), αij5 (·), βij3 (·), βij4 (·), βij5 (·), γij3 (·), γij4 (·), γij5 (·), such that

∥Ξa
i2 (t, zi)∥ 6 µi (zi) (14a)

∥Ξa
i1 (t, zi)∥ 6 ρi (zi) = αi1 (zi) ∥zai1∥+ βi1 (zi) ∥zai2∥+ γi1 (zi)

∥∥zbi∥∥ (14b)∥∥Ξb
i (t, zi)

∥∥ 6 αi2 (zi) ∥zai1∥+ βi2 (zi) ∥zai2∥+ γi2 (zi)
∥∥zbi∥∥ (14c)

∥Ψa
i1 (t, z)∥ 6

n∑
j=1

(
αij3 (zj)

∥∥zaj1∥∥+ βij3 (zj)
∥∥zaj2∥∥+ γij3 (zj)

∥∥zbj∥∥) (15a)

∥Ψa
i2 (t, z)∥ 6

n∑
j=1

(
αij4 (zj)

∥∥zaj1∥∥+ βij4 (zj)
∥∥zaj2∥∥+ γij4 (zj)

∥∥zbj∥∥) (15b)

∥∥Ψb
i (t, z)

∥∥ 6
n∑

j=1

(
αij5 (zj)

∥∥zaj1∥∥+ βij5 (zj)
∥∥zaj2∥∥+ γij5 (zj)

∥∥zbj∥∥) (15c)

Remark 5: Assumption 1 is made on the uncertainties and interconnections in the nonlinear interconnected system (11).
Meanwhile, Remark 2 shows that the bounds on the uncertainties and interconnections in the interconnected system (1) have a
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similar structure to those in the interconnected system (11). The terms Ξa
i1 (t, zi) and Ξb

i (t, zi) represent unmatched uncertain-
ties, while Ψa

i1 (t, z) and Ψb
i (t, z) represent unmatched interconnections. It should be noted that only matched uncertainties

and interconnections are discussed in [27] and [23] respectively, while unmatched uncertainties and interconnections are also
considered in this paper. Furthermore, the bounds on the uncertainties and interconnections are nonlinear and have more general
forms.

It is clear that (Ail, Bil) in (12) have the Brunovsky standard form [30], and according to the controllability criterion, (Ai, Bi)

are controllable. It follows that there exist Ki ∈ Rmi×(ri−mi) such that the matrices (Ai −BiKi) are stable. Therefore, there
exist positive definite symmetric matrices Qi, Pi such that

(Ai −BiKi)
T
Pi + Pi (Ai −BiKi) +Qi 6 0, i = 1, 2, . . . , n (16)

Remark 6: It should be noted that matrix inequalities (16) can be transformed into the following standard linear matrix
inequalities (LMI) (see e.g. [31], [32]). Given Qi > 0, find matrices Pi and Ki such that:[

Ai
TPi + PiAi − Fi

T − Fi Ii

Ii −Q−1
i

]
6 0 (17)

where Fi = PiBiKi and Ii are unit matrices for i = 1, 2, . . . , n.
Choose the composite sliding surface

σ (z) = col (σ1 (z1) , · · · , σn (zn)) = 0 (18)

where σi (zi) = zai2 +Kiz
a
i1 and Ki satisfies (16).

During sliding motion σi (zi) = 0 which implies

zai2 = −Kiz
a
i1 (19)

Based on the designed sliding surface (18) and (19), the corresponding sliding motion can be determined using (11). The
sliding mode dynamics are described by:

żai1 = (Ai −BiKi) z
a
i1 +Tas

i (·) + Υas
i (·)

żbi = Ωi (·) + Tbs
i (·) + Υbs

i (·)
(20)

where Tas
i

(
t, za11, z

b
1, · · · zan1, zbn

)
= Ψa

i1 (t, z)|za
i2=−Kiza

i1
, Υas

i

(
t, zai1, z

b
i

)
= Ξa

i1 (t, zi)|za
i2=−Kiza

i1
, Tbs

i

(
t, za11, z

b
1, · · · zan1, zbn

)
=

Ψb
i (t, z)

∣∣
za
i2=−Kiza

i1

, Υbs
i

(
t, zai1, z

b
i

)
= Ξb

i (t, zi)
∣∣
za
i2=−Kiza

i1

, Ωi

(
zai1, z

b
i

)
= ωi

(
zai1, z

a
i2, z

b
i

)∣∣
za
i2=−Kiza

i1

.
Assumption 2: There exist C1 functions V b

i

(
t, zai1, z

b
i

)
: R×Rri−mi ×Rni−ri 7→ R+ such that

ci1∥zai1∥
2
+ ci2

∥∥zbi∥∥2 6 V b
i

(
t, zai1, z

b
i

)
6 ci3∥zai1∥

2
+ ci4

∥∥zbi∥∥2
∂V b

i

∂t
+

(
∂V b

i

∂zai1

)T

(Ai −BiKi) z
a
i1 +

(
∂V b

i

∂zbi

)T

Ωi

(
zai1, z

b
i

)
6 −ci5∥zai1∥

2 − ci6
∥∥zbi∥∥2∥∥∥∥∥ ∂V b

i

∂
(
zai1, z

b
i

)∥∥∥∥∥ 6 ci7 ∥zai1∥+ ci8
∥∥zbi∥∥

(21)

where ci1, · · · , ci8 are positive constants, ∂V b
i

∂(za
i1,z

b
i )

=

[ (
∂V b

i

∂za
i1

)T (
∂V b

i

∂zb
i

)T
]

, Ki satisfies (16) and Ωi

(
zai1, z

b
i

)
is given in

(20).
Remark 7: Assumption 2 implies that the nominal isolated subsystems of (20) are asymptotically stable. Such conditions

are derived from the converse Lyapunov uniform asymptotic stability theorem (see e.g. [33]).
From Assumption 1, Tas

i (·) ,Υas
i (·) ,Tbs

i (·) and Υbs
i (·) in (20) satisfy

∥∥Tas
i

(
t, za11, z

b
1, · · · zan1, zbn

)∥∥ 6
n∑

j=1

(
εij1

(
zaj1, z

b
j

) ∥∥zaj1∥∥+ εij2
(
zaj1, z

b
j

) ∥∥zbj∥∥) (22a)
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∥∥Tbs
i

(
t, za11, z

b
1, · · · zan1, zbn

)∥∥ 6
n∑

j=1

(
εij5

(
zaj1, z

b
j

) ∥∥zaj1∥∥+ εij6
(
zaj1, z

b
j

) ∥∥zbj∥∥) (22b)

∥∥Υas
i

(
t, zai1, z

b
i

)∥∥ 6 εi3
(
zai1, z

b
i

)
∥zai1∥+ εi4

(
zai1, z

b
i

) ∥∥zbi∥∥ (23a)∥∥Υbs
i

(
t, zai1, z

b
i

)∥∥ 6 εi7
(
zai1, z

b
i

)
∥zai1∥+ εi8

(
zai1, z

b
i

) ∥∥zbi∥∥ (23b)

where

εij1
(
zaj1, z

b
j

)
= {αij3 (zj) + βij3 (zj) ∥Kj∥}|za

j2=−Kjza
j1

εij2
(
zaj1, z

b
j

)
= γij3 (zj)|za

j2=−Kjza
j1

εi3
(
zai1, z

b
i

)
= {αi1 (zj) + βi1 (zj) ∥Ki∥}|za

i2=−Kiza
i1

εi4
(
zai1, z

b
i

)
= γi1 (zi)|za

i2=−Kiza
i1

εij5
(
zaj1, z

b
j

)
= {αij5 (zj) + βij5 (zj) ∥Kj∥}|za

j2=−Kjza
j1

εij6
(
zaj1, z

b
j

)
= γij5 (zj)|za

j2=−Kjza
j1

εi7
(
zai1, z

b
i

)
= {αi2 (zi) + βi2 (zi) ∥Ki∥}|za

i2=−Kiza
i1

εi8
(
zai1, z

b
i

)
= γi2 (zi)|za

i2=−Kiza
i1

Theorem 1: Under Assumptions 1-2, the sliding mode dynamics (20) of system (11) are asymptotically stable if MT +M > 0
where the matrix M = [mij ]2n×2n is defined by

mij =



ci5 + λ(Qi)min − ci7εi3 − ci7εi7 − 2 ∥Pi∥ εi3 − 2εij1 ∥Pi∥ − ci7εij1 − ci7εij5 1 6 i = j 6 n

c(i−n)6 − c(i−n)8ε(i−n)8 − c(i−n)8ε(i−n)4 − c(i−n)8ε(i−n)(j−n)6 − c(i−n)8ε(i−n)(j−n)2 n+ 1 6 i = j 6 2n

−2εij1 ∥Pi∥ − ci7εij1 − ci7εij5 1 6 i, j 6 n, i ̸= j

−c(i−n)8ε(i−n)(j−n)6 − c(i−n)8ε(i−n)(j−n)2 n+ 1 6 i, j 6 2n, i ̸= j

−2ε(i−n)j2

∥∥P(i−n)

∥∥− c(i−n)7ε(i−n)j2 − c(i−n)7ε(i−n)j6 − c(i−n)8ε(i−n)j5 − c(i−n)8ε(i−n)j1 i > n, 1 6 j 6 n, i ̸= j + n

−2ε(i−n)j2

∥∥P(i−n)

∥∥− c(i−n)7ε(i−n)j2 − c(i−n)7ε(i−n)j6 − c(i−n)8ε(i−n)j5 − c(i−n)8ε(i−n)j1

−c(i−n)7ε(i−n)4 − c(i−n)8ε(i−n)7 − 2
∥∥P(i−n)

∥∥ ε(i−n)4 − c(i−n)7ε(i−n)8 − c(i−n)8ε(i−n)3

i > n, 1 6 j 6 n, i = j + n

−2εi(j−n)2 ∥Pi∥ − ci7εi(j−n)2 − ci7εi(j−n)6 − ci8εi(j−n)5

−ci8εi(j−n)1 − ci7εi4 − ci8εi7 − 2 ∥Pi∥ εi4 − ci7εi8 − ci8εi3
j > n, 1 6 i 6 n, j = i+ n

−2εi(j−n)2 ∥Pi∥ − ci7εi(j−n)2 − ci7εi(j−n)6 − ci8εi(j−n)5 − ci8εi(j−n)1 j > n, 1 6 i 6 n, j ̸= i+ n
(24)

where λ (·)min represents the minimum eigenvalue of (·).
Proof : For system (20), consider the Lyapunov function candidate

V (t, z) =
n∑

i=1

V b
i

(
t, zai1, z

b
i

)
+

n∑
i=1

(zai1)
T
Piz

a
i1 (25)

where V b
i

(
t, zai1, z

b
i

)
is given by Assumption 2, and Pi satisfies (16).
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Then, the time derivative of V (t, z) along the trajectories of system (20) is given by:

V̇ =

n∑
i=1

{
∂V b

i

∂t
+

∂V b
i

∂
(
zai1, z

b
i

) [
żai1
żbi

]}
+

n∑
i=1

{
−(zai1)

TQiz
a
i1 + 2(zai1)

TPi (T
as
i +Υas

i )
}

=

n∑
i=1

{
∂V b

i

∂t
+

[ (
∂V b

i
∂zai1

)T (
∂V b

i

∂zbi

)T
][

(Ai −BiKi) z
a
i1 +Tas

i +Υas
i

Ωi

(
zai1, z

b
i

)
+Tbs

i +Υbs
i

]}
+

n∑
i=1

{
−(zai1)

TQiz
a
i1 + 2(zai1)

TPi (T
as
i +Υas

i )
}

(26)

where Qi = −(Ai −BiKi)
T
Pi − Pi (Ai −BiKi) has been used for convenience.

Hence, (26) can be expressed as:

V̇ 6
n∑

i=1

{
∂V b

i

∂t
+

(
∂V b

i

∂zai1

)T

(Ai −BiKi) z
a
i1 +

(
∂V b

i

∂zbi

)T

Ωi

(
zai1, z

b
i

)
+

∥∥∥∥∥ ∂V b
i

∂
(
zai1, z

b
i

)∥∥∥∥∥
∥∥∥∥∥
[

Tas
i +Υas

i

Tbs
i +Υbs

i

]∥∥∥∥∥
}

+
n∑

i=1

{
−(zai1)

T
Qiz

a
i1 + 2(zai1)

T
Pi (T

as
i +Υas

i )
} (27)

Then, from Assumptions 2 and (27), the following inequalities can be obtained:

V̇ 6
n∑

i=1

{
−ci5∥zai1∥

2 − ci6
∥∥zbi∥∥2 + (

ci7 ∥zai1∥+ ci8
∥∥zbi∥∥) (∥Tas

i ∥+ ∥Υas
i ∥)

+
(
ci7 ∥zai1∥+ ci8

∥∥zbi∥∥) (∥∥Tbs
i

∥∥+
∥∥Υbs

i

∥∥)}
+

n∑
i=1

{
−λ(Qi)min∥z

a
i1∥

2
+ 2 ∥zai1∥ ∥Pi∥ ∥Tas

i ∥+ 2 ∥zai1∥ ∥Pi∥ ∥Υas
i ∥

} (28)

From the inequalities (22) and (23), it follows that

V̇ 6
n∑

i=1

{
{−ci5 − λ(Qi)min + ci7εi3 + ci7εi7 + 2 ∥Pi∥ εi3} ∥zai1∥

2
+ {−ci6 + ci8εi8 + ci8εi4}

∥∥zbi∥∥2
+ {ci7εi4 + ci8εi7 + 2 ∥Pi∥ εi4 + ci7εi8 + ci8εi3} ∥zai1∥

∥∥zbi∥∥}
+

n∑
i=1

n∑
j=1

{2εij1 ∥Pi∥+ ci7εij1 + ci7εij5} ∥zai1∥
∥∥zaj1∥∥+

n∑
i=1

n∑
j=1

{2εij2 ∥Pi∥+ ci7εij2 + ci7εij6} ∥zai1∥
∥∥zbj∥∥

+
n∑

i=1

n∑
j=1

{ci8εij6 + ci8εij2}
∥∥zbi∥∥ ∥∥zbj∥∥+

n∑
i=1

n∑
j=1

{ci8εij5 + ci8εij1}
∥∥zbi∥∥ ∥∥zaj1∥∥

= −1

2
Y
(
M +MT

)
Y T

(29)

where Y =
[
∥za11∥ , ∥za21∥ , · · · , ∥zan1∥ ,

∥∥zb1∥∥ , ∥∥zb2∥∥ , · · · ,∥∥zbn∥∥].
Hence, due to MT +M > 0, Theorem 1 follows.
Remark 8: It should be noted noted that for M ∈ R2n×2n, Theorem 1 has presented a set of sufficient conditions under

which the sliding mode (20) of the nonlinear interconnected system (11) is asymptotically stable even in the presence of
unmatched uncertainties and interconnections.

IV. DECENTRALISED SLIDING MODE CONTROL DESIGN

This section aims to design a decentralised sliding mode control such that system (11) can be driven to the sliding surface
(18) in finite time.

Lemma 1: For the nonlinear interconnected system (11) with the sliding surface given in (18), if
n∑

i=1

σT
i (zi) σ̇i (zi) 6 −η

n∑
i=1

∥σi (zi)∥ (30)

where η is a small positive constant, then the system (11) can reach the sliding surface (18) in finite time and maintain a
sliding motion thereafter.
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Proof : For the nonlinear interconnected system, composite switching function σ (z) = col (σ1 (z1) , · · · , σn (zn)), the
following equation holds:

σT (z) σ̇ (z) =
n∑

i=1

σT
i (zi) σ̇i (zi) (31)

Furthermore,
n∑

i=1

∥σi (zi)∥ = ∥σ1 (z1)∥+ · · ·+ ∥σn (zn)∥ > ∥σ (z)∥ =

√
∥σ1 (z1)∥2 + · · ·+ ∥σn (zn)∥2 (32)

From (31) and (32),

σT (z) σ̇ (z) =
n∑

i=1

σT
i (zi) σ̇i (zi) 6 −η

n∑
i=1

∥σi (zi)∥ 6 −η ∥σ (z)∥ (33)

Hence, Lemma 1 follows since a so-called η reachability condition is satisfied [34].
Remark 9: In the existing research concerning nonlinear interconnected systems, the corresponding reachability condition is

given by: (see, [35])
n∑

i=1

σT
i (zi) σ̇i (zi)

∥σi (zi)∥
< 0 (34)

Condition (34) cannot guarantee that the control drives the system states to the sliding surface in finite time. However, the
reachability condition proposed in (30) in this paper can guarantee that the system states can be driven to the sliding surface
in finite time and also maintain a sliding motion thereafter.

For the interconnected system (11), the following control law is proposed

νi = −KiAiz
a
i1 −KiBiz

a
i2 − µi (z

a
i ) sgn (σi (zi))− ρi

(
zai , z

a
i2, z

b
i

)
∥Ki∥ sgn (σi (zi))

− Φi sgn (σi (zi))− η sgn (σi (zi))
(35)

where Ki is given in (16) and

Φi =
n∑

j=1

{(αji4 (zi) + ∥Kj∥αji3 (zi)) ∥zai1∥+ (βji4 (zi) + ∥Kj∥βji3 (zi)) ∥zai2∥

+(γji4 (zi) + ∥Kj∥ γji3 (zi))
∥∥zbi∥∥}

(36)

Theorem 2: Under Assumptions 1-2, the control (35) is able to drive the system (11) to the sliding surface (18) in finite
time and maintain a sliding motion on it thereafter.

Proof : From (11) and (18), for i = 1, 2, · · ·n,

σ̇i (zi) = żai2 +Kiż
a
i1

= νi +Ψa
i2 (t, z) + Ξa

i2 (t, zi) +Ki (Aiz
a
i1 +Biz

a
i2 +Ψa

i1 (t, z) + Ξa
i1 (t, zi))

(37)

Substituting (35) into (37),
n∑

i=1

σT
i (zi) σ̇i (zi) =

n∑
i=1

σT
i (zi) {−µi (zi) sgn (σi (zi))− ρi (zi) ∥Ki∥ sgn (σi (zi))

− Φi sgn (σi (zi))− η sgn (σi (zi)) + Ψa
i2 (t, z) + Ξa

i2 (t, zi)

+KiΨ
a
i1 (t, z) +KiΞ

a
i1 (t, zi)}

(38)
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From Assumptions 1 and the definition of Φi in (36), the following inequality can be obtained:
n∑

i=1

σT
i (zi) σ̇i (zi) 6

n∑
i=1

{−µi (zi) ∥σi (zi)∥ − ρi (zi) ∥Ki∥ ∥σi (zi)∥+ µi (zi) ∥σi (zi)∥

+ρi (zi) ∥Ki∥ ∥σi (zi)∥ − η ∥σi (zi)∥}+
n∑

i=1

{−Φi ∥σi (zi)∥

+

n∑
j=1

{
(αij4 (zj) + ∥Ki∥αij3 (zj))

∥∥zaj1∥∥ + (βij4 (zj) + ∥Ki∥βij3 (zj))
∥∥zaj2∥∥

+(γij4 (zj) + ∥Ki∥ γij3 (zj))
∥∥zbj∥∥} ∥σi (zi)∥

}
= −η

n∑
i=1

∥σi (zi)∥

(39)

where
∑n

i=1

∑n
j=1 Φi =

∑n
i=1

∑n
j=1 Φj has been used to generate the result.

Hence, from Lemma 1, Theorem 2 follows.
Remark 10: Theorems 1 and 2 together guarantee the uniform asymptotic stability of the closed-loop system formed by applying the

control (35) to the system (11), irrespective of the uncertainties and the interconnections within the subsystems. Meanwhile, it should be
noted that from the relationship between systems (1) and (11), it is straightforward to rewrite the control (9) and (35) in terms of the x

coordinates to stabilize system (1) with xi = T−1
i (zi) and Ti defined in (6). It should be noted that the results of this paper are local. A

method to estimate the stability region has been studied in [33], [36], [37].
Remark 11: There are few results which apply sliding mode control methods to the nonlinear interconnected system described by (1). Since

the nominal isolated system in (1) is completely nonlinear and experiences unmatched uncertainties and interconnections, the control design
is particularly challenging. Based on local coordinate transformation and feedback linearization, the considered interconnected system (1) is
transformed to a new regular form (11). IA composite sliding surface (18) is then proposed and a set of sufficient conditions is developed to
guarantee that the corresponding sliding mode dynamics (20) is asymptotically stable even in the presence of unmatched uncertainties and
interconnections. A new reachability condition (30) is introduced and used to define a decentralised sliding mode control law (35) that can
drive the system (11) to the sliding surface (18) in finite time and maintain a sliding motion on it thereafter.

V. SIMULATION EXAMPLE

This section aims to demonstrate the validity of the proposed method by a simulation example using the MATLAB software.
Consider the nonlinear interconnected system formed of the two subsystems described by:

ẋ1 =


− sinx12

x11

x2
12 + x2

13

x13

2x11x12 − 4x15

+


1 0

0 0

0 2 + sinx15

0 0

0 0

 (u1 + ϕ1 (t, x1)) +


0

0

0

ξ14

ξ15


︸ ︷︷ ︸
ξ1(t,x1)

+


H111 (t, x1) +H121 (t, x2)

0

0

H114 (t, x1) +H124 (t, x2)

0


︸ ︷︷ ︸

2∑
j=1

H1j(t,xj)

(40)

ẋ2 =

 0.1 sinx23 − x21

−x2
21 − 3x22

x2
21x22

+

 0

0

1

 (u2 + ϕ2 (t, x2)) +

 0

ξ22 (t, x2)

0


︸ ︷︷ ︸

ξ2

+

 0

H212 (t, x1) +H222 (t, x2)

0


︸ ︷︷ ︸

2∑
j=1

H2j(t,xj)

(41)

where x := col (x1, x2) , x1 := col (x11, x12, x13, x14, x15) , x2 := col (x21, x22, x23) , u1 ∈ R2, u2 ∈ R in the domain x ∈
χ =

{
(x1, x2)|

∣∣x15 − x2
12

∣∣ 6 1
8 , |x22| 6 1

2 , |x23| 6 1
}

and the uncertainties and interconnections satisfy

∥ϕ1∥ 6 |sin (x11 + x12 + x14)|+ |x13| (42)

∥ξ14∥ 6 0.05
√
x2
12 + x2

14 + 0.05
√
x2
11 + x2

13 + 0.1
∥∥x15 − x2

12

∥∥ (43)
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∥ξ15∥ 6 0.1
√

x2
11 + x2

13 + 0.1
∥∥x15 − x2

12

∥∥ (44)

∥H111 (t, x1) +H121 (t, x2)∥ 6 |sin (x13)|
∥∥x15 − x2

12

∥∥+ 0.5 ∥x21∥ (45)

∥H114 (t, x1) +H124 (t, x2)∥ 6 0.49 |x12|
√

x2
11 + x2

13 + 0.1
∥∥x15 − x2

12

∥∥+ 0.1 ∥x21∥+ 0.1 ∥x22∥ (46)

∥ϕ2 (t, x2)∥ 6 |sin (x21)|+ |x22| (47)

∥ξ22 (t, x2)∥ 6 0.1 |x21|+ 0.1 |x22| (48)

∥H212 (t, x1) +H222 (t, x2)∥ 6 0.1
√
x2
11 + x2

13 + 0.1
∥∥x15 − x2

12

∥∥+ 0.1 |x21|+ 0.1 |x22| (49)

Let

h1 (x1) =

[
h11 (x1)

h12 (x1)

]
=

[
x12

x14

]
, h2 (x2) = x21

By direct computation, the nominal isolated subsystem of the first subsystem (40) has uniform relative degree r1 =

(r11, r12) = (2, 2), and the nominal isolated subsystem of the second subsystem (41) has relative degree r2 = 2.
The coordinate transformation zi = Ti (x) for i = 1, 2 is given by

T1 =


za1 =


z11

z12

z13

z14

 =


x12

x11

x14

x13


zb1 = z15 = x15 − x2

12

(50)

T2 =


za2 =

[
z21

z22

]
=

[
x21

−x21 + 0.1 sinx23

]
zb2 = z23 = x22

(51)

Then consider the state feedback

ui = −Λ−1
i (zi)αi (zi) + Λ−1

i (zi) νi i = 1, 2 (52)

where

Λ1 =

[
1 0

0 2 + sin
(
z15 + z211

) ]
, Λ2 = 0.1 cos {arcsin {10 (z21 + z22)}} (53)

α1 =

[
− sin z11

z211 + z214

]
, α2 = −z22 + 0.1z221z23 cos {arcsin {10 (z21 + z22)}} (54)

In the new coordinates z given in (50)-(51), by applying (52) to the nonlinear interconnected system (40)-(41), the closed-loop
system is described by:

ża11 = A1z
a
11 +B1z

a
12 + Ξa

11 (t, z1) + Ψa
11 (t, z)

ża12 = ν1 + Ξa
12 (t, z1) + Ψa

12 (t, z)

żb1 = −4
(
z15 + z211

)
+ Ξb

1 (t, z1)

(55)

ża21 = A2z
a
21 +B2z

a
22

ża22 = ν2 + Ξa
22 (t, z2)

żb2 = −3z23 − z221 + Ξb
2 (t, z2) + Ψb

2 (t, z)

(56)

where z := col (z1, z2) ∈ Z =
{
(z1, z2)| |z15| 6 1

8 , |arcsin {10 (z21 + z22)}| 6 1, |z23| 6 1
2

}
, z1 := col

(
za11, z

b
1, z

a
12

)
, za11 :=
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col (z11, z13), za12 := col (z12, z14), zb1 := z15, z2 := col
(
za21, z

b
2, z

a
22

)
, za21 := z21, za22 := z22, zb2 := z23, A1 =

[
0 0

0 0

]
,

B1 =

[
1 0

0 1

]
, A2 = 0 and B2 = 1. Meanwhile, the uncertainties and interconnections satisfy

∥Ξa
11 (t, z1)∥ 6 ρ1

(
za11, z

a
12, z

b
1

)
= 0.05︸︷︷︸

χ11

∥za11∥+ 0.05︸︷︷︸
β11

∥za12∥+ 0.1︸︷︷︸
γ11

∥∥zb1∥∥ (57)

∥Ψa
11 (t, z)∥ 6 0.49 |z11|︸ ︷︷ ︸

β113

∥za12∥+ 0.1︸︷︷︸
γ113

∥∥zb1∥∥+ 0.1︸︷︷︸
χ123

∥za21∥+ 0.1︸︷︷︸
γ123

∥∥zb2∥∥ (58)

∥Ξa
12 (t, z1)∥ 6 µ1 = |sin (z11 + z12 + z13)|+ |z14| (59)

∥Ψa
12 (t, z)∥ 6 |sin (z14)|︸ ︷︷ ︸

γ114

∥∥zb1∥∥+ 0.5︸︷︷︸
α124

∥za21∥ (60)

∥∥Ξb
1 (t, z1)

∥∥ 6 0.1︸︷︷︸
β12

∥za12∥+ 0.1︸︷︷︸
γ12

∥∥zb1∥∥ (61)

∥Ξa
22 (t, z2)∥ 6 µ2 = |sin (z21)|+ |z23| (62)∥∥Ξb
2 (t, z2)

∥∥ 6 0.1︸︷︷︸
α22

∥za21∥+ 0.1︸︷︷︸
γ22

∥∥zb2∥∥ (63)

∥∥Ψb
2 (t, z)

∥∥ 6 0.1︸︷︷︸
β215

∥za12∥+ 0.1︸︷︷︸
γ215

∥∥zb1∥∥+ 0.1︸︷︷︸
α225

∥za21∥+ 0.1︸︷︷︸
γ225

∥∥zb2∥∥ (64)

Choose K1 = I2, K2 = I1, Q1 = 4I2, Q2 = 4I1 and

P1 =

[
2 0

0 2

]
, P2 = 2 (65)

Then choose V b
1 = z211 + z213 + z215 and V b

2 = z221 + z223. By calculation, it follows that in the considered domain in z ∈ Z,
Assumption 2 is satisfied with

c11 = 1, c12 = 1, c13 = 1, c14 = 1, c15 = 1, c16 = 8, c17 = 2, c18 = 2

c21 = 1, c22 = 1, c23 = 1, c24 = 1, c25 = 1, c26 = 6, c27 = 2, c28 = 2
(66)

Then, when the sliding motion takes place, inequalities (22)-(23) are satisfied with ε111 = 0.49 |z11|, ε112 = ε121 = ε122 =

ε13 = ε14 = ε17 = ε18 = ε27 = ε28 = ε215 = ε216 = ε225 = ε226 = 0.1, ε115 = ε116 = ε125 = ε126 = ε23 = ε24 = ε211 =

ε212 = ε221 = ε222 = 0.
By direct computation,

M +MT =


8.4− 5.88 |z11| −0.8 −3.6− 1.96 |z11| −1.2

−0.8 9.2 −1.2 −1.6

−3.6− 1.96 |z11| −1.2 14.8 −0.4

−1.2 −1.6 −0.4 11.2

 (67)

which is symmetric positive definite in z ∈ Z.
Hence the conditions of Theorem 1 hold.
Based on the parameter selections above, the control (35) is well defined with η1 = 0.01, η2 = 0.01 and Φ1, Φ2 given by:

Φ1 = 0.49 |z11| ∥za12∥+ (|sin (z14)|+ 0.1)
∥∥zb1∥∥ (68)

Φ2 = 0.6 ∥za21∥+ 0.1
∥∥zb2∥∥ (69)

For simulation purposes, σi/ (∥σi∥+ βi) is used to replace sgn (σi) in order to reduce the chattering with β1 = β2 = 0.001.
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The time response of the system states is shown in Fig.1. The time response of the system control signals is shown in Fig.2.
The time response of the sliding functions is shown in Fig.3. It can be seen that the subsystems are stabilized despite the
presence of unmatched uncertainties ξi and interconnections

∑n
j=1 Hij (t, xj). The nonlinear interconnected system is driven

to the sliding surface (18) in finite time. The simulation results show that the proposed decentralised sliding mode control is
effective. The obtained results validate the approach of transforming system (40)-(41) into system (55)-(56) by local coordinate
transformation and feedback linearization.

Remark 12: All the simulation parameters have been given. The hi(xi) are chosen to impose a uniform relative degree ri

based on [29]. The ηi are small positive constants to guarantee the reachability condition (35) is satisfied. For convenience,
Qi = αiIni with the αi positive constants. Then the Pi are positive definite symmetric matrices to guarantee MT +M > 0

as defined in (24). Finally, Ki can be obtained by solving the LMI (17) since Pi and Qi have been chosen.
Remark 13: It should be noted that the above example has the following characteristics: (i) the nominal isolated systems

are fully nonlinear; (ii) the uncertainties ξi are nonlinear and cannot be bounded by a linear function of xi; (iii) the intercon-
nections

∑n
j=1 Hij (t, xj) are also nonlinear and cannot be bounded by a linear function of xj ; (iv) the uncertainties ξi and

interconnections
∑n

j=1 Hij (t, xj) are both unmatched. Therefore, existing decentralised state feedback schemes ([38], [39],
[40], [41]) cannot be applied to the nonlinear interconnected system (40)-(41). Furthermore, the schemes of [27] cannot be
applied unless the system (40)-(41) is in the required regular form. This shows the value of the proposed results.

0 1 2 3 4 5 6 7 8 9 10

time(s)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

x 1

x
11

x
12

x
13

x
14

x
15

(a) The states of the first subsystem

0 1 2 3 4 5 6 7 8 9 10

time(s)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
x 2

x
21

x
22

x
23

(b) The states of the second subsystem

Fig. 1: The time response of the system states
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Fig. 2: The time response of the system control signals
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Fig. 3: The time response of the sliding functions

To further test the proposed decentralised sliding mode control, the results obtained using the decentralised state feedback
control (DSFC) scheme proposed in [23] will be compared with the proposed method. The main control parameters in [23]
are given:

K̃1 =

[
10 20 −5 −3

2 10 2 3

]
, P̃1 =


2.27 0.02 0.10 0.14

0.02 0.05 −0.04 −0.06

0.10 −0.04 1.14 0.14

0.14 −0.06 0.14 0.16


K̃2 =

[
1 1

]
, P̃2 =

[
1.50 0.50

0.50 1.00

] (70)
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Fig. 4: The time response of the system states by using DSFC proposed in [23]
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Fig. 5: The time response of the system control signals by using DSFC proposed in [23]

The time response of the system states using the DSFC proposed in [23] is shown in Fig.4. The corresponding time response
of the system control signals is shown in Fig.5. It should be noted that the unmatched interconnections Ψa

11 (t, z) have not
been considered in [23], but the method proposed in this paper can accommodate the unmatched interconnections. Meanwhile,
the unmatched uncertainties Ξa

11 (t, z1) are required to satisfy a weakly unmatched condition in [23]; stronger unmatched
uncertainties can be dealt with in this paper. Comparing Fig.1 with Fig.4, the proposed approach has a faster response speed
due to its direct consideration of the unmatched uncertainties and the unmatched interconnections.

In order to further test the robustness of the proposed decentralised sliding mode control, unmatched uncertainties ξ14 and
interconnections H114 (t, x1) +H124 (t, x2) of the system (40)-(41) are introduced, while the other terms remain unchanged.
Specifically, the conditions (43) and (46) become:

∥ξ14∥ 6 0.2
√
x2
12 + x2

14 + 0.2
√
x2
11 + x2

13 + 0.4
∥∥x15 − x2

12

∥∥ (71)

∥H114 (t, x1) +H124 (t, x2)∥ 6 1.96 |x12|
√

x2
11 + x2

13 + 0.4
∥∥x15 − x2

12

∥∥+ 0.4 ∥x21∥+ 0.4 ∥x22∥ (72)
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Fig. 6: The time response of the system states by using the method proposed in this paper under the new conditions (71)-(72)
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Fig. 7: The time response of the system states by using DSFC proposed in [23] under the new conditions (71)-(72)

The time response of the system states under the new conditions (71)-(72) using the method proposed in this paper are shown
in Fig.6. The corresponding time response of the system states using the DSFC proposed in [23] is shown in Fig.7. Comparing
Fig.6 with Fig.7, it can be seen that although the unmatched interconnections and uncertainties increase, the proposed method
achieves better performance.

VI. CONCLUSION

A robust decentralized control design method has been proposed for a class of interconnected large-scale systems with
nonlinear nominal isolated systems. The uncertainties and interconnections of the systems are all nonlinear with nonlinear
bounds. The bounds on the uncertainties and interconnections are assumed to be known functions. These have been employed
to reject the effects of the uncertainty and interconnections on the system to enhance robustness. A sliding mode control has
been designed to ensure that the system states reach the designed sliding surface in finite time. The obtained results can be
applied to a class of interconnected systems with uniform relative degree and involutive distribution. A numerical example is
given to show the effectiveness of the proposed decentralised control scheme. Future work will focus on experimental testing
and the practical application of the proposed method. From the theoretical point of view, the problem of decentralized output
feedback sliding mode control will be considered within the same design framework.
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