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Abstract

In this paper, fault estimation for high-speed railway traction devices with sen-

sor fault and disturbances is investigated based on the interval observer and

unknown input observer (IO-UIO). Firstly, the mathematical model of the in-

duction motor d-q coordinate system is introduced. Secondly, the proposed

method, which can completely eliminate the external disturbance, is studied

based on the disturbance isolation characteristic of the unknown input observ-

er. Then, an interval observer is introduced to deal with the nonlinear part,

which sandwiched the actual system between the upper and lower bounds. The

Metzler matrix is constructed using an equivalent transformation and through

the unified design based on the concept of the augmented state to form a global

fault augmented model. Finally, simulation results are presented to illustrate

the effectiveness and advantages of the proposed IO-UIO.
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1. Introduction

The development of high-speed railways and the progress in science and tech-

nology over the past decade have resulted in the increased requirements for the

safety and stability of high-speed trains. These necessities are closely related

to the safety of people’s life and property. High-speed railway has developed

rapidly in many countries worldwide [1]. At present, the world’s most repre-

sentative high-speed railways include the German ice train, Japan Shinkansen,

French TGV trains and Chinese CRH trains. Compared with air transport,

the high-speed railway has several advantages, such as low cost, large operat-

ing area, environmental protection and all-weather operation. The development

of high-speed railway has not only a stimulating effect on equipment technolo-

gy and modern manufacturing but also presents great impacts on information

communication and construction modernisation.

Modern control systems becoming complex. Therefore, fault detection, fault

diagnosis and fault-tolerant techniques have received more attention [2–17].

Fault detection is the first step of fault diagnosis, which determines the oc-

currence of a system fault. The fault should be detected before it becomes

serious. Fault isolation is to determine the specific location of the fault. Final-

ly, fault estimation is performed to identify the form and size of the fault and

is an important prerequisite for fault tolerance control. However, the quality

of actuators and sensors in a control system has been deteriorating with time.

Moreover, the system sensors are used to measure system output, and these

sensors indirectly affect the performance of the control system. the fault detec-

tion and diagnosis (FDD) and fault tolerance of the actuator faults are easier

to determine than sensor faults (i.e. [18–20]). Only a few studies have reported

on the FDD of sensor faults.

Traction motor is the core equipment of high-speed trains, and this part is

closely related to the safe operation of the train. Safety of the traction motor

becomes very important as the high-speed train accelerates. Therefore, investi-

gating the fault diagnosis of a traction motor is of great practical significance.
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Induction motors play an important role in the industry. A motor fault may not

only cause economic loss but also casualties. Furthermore, during the past few

decades, the focus of fault diagnosis research on induction motor was to explore

how to efficiently monitor the induction motor to avoid motor failure.

Many methods have been put forward for fault diagnosis. An adaptive ob-

server has been proposed in [21] to detect system faults. A fast adaptive fault

estimation algorithm was proposed in ([22–24]) to enhance the accuracy of fault

estimation. In this process, the estimators consist of proportional and integral

items. Vector augmentation was performed using the robust observer to esti-

mate the fault [25]. A sliding mode observer was applied to a high-speed train in

[26], where linear matrix inequalities (LMIs) are used to ensure the robustness

with respect to the interference. An unknown input observer (UIO) was pro-

posed in [27], which eliminated the unknown input item. Methods for nonlinear

system observers have been proposed, such as Lyapunov method, coordinate

transformation method[28], extended Kalman filter, interval observer (IO) and

feedback linearisation technology.

Recently, the interval observer approach has been extensively investigated,

and some important achievements have been obtained. In [29], a class of interval

observer was successfully designed for nonlinear systems, and the state of the

error system could be guaranteed to be non-negative when the condition of

the Metzler matrix was satisfied. In [30] and [31], the designed method of

interval observer was studied for continuous and discrete linear time-invariant

systems with bounded disturbances, based on the Jordan canonical form, and

the appropriate of linear time-varying transformation. In [32], the designed

method of interval observer was studied based on the Sylvester equation and

the linear time-invariant transformation. In [29], the system control strategy

based on an interval observer was studied.

In this paper, a fault estimation observer is proposed for high-speed railway

traction devices with sensor fault and disturbances. The main contributions

of this study are as follows. Firstly, an interval observer is designed based on

the unknown input observer (UIO), which eliminates the effects of the external
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disturbance on the fault diagnosis, and only uses partial information of the

measurement output interval to ensure the real-time tracking of the original

system. This process is different from the classical observer design, because

the error system is asymptotically convergent to zero in the proposed design.

Secondly, the observer is designed for the augmented system composed of a

state vector and a fault. Then, a method for constructing the Metzler matrix

for systems which do not satisfy the condition of the Metzler matrix is proposed.

This technique is successfully applied to high-speed train motor system based

on the observable standard form. Thirdly, the system parameter are found to

enhance fault estimation performance.

The remainder of this paper is organised as follows: Preliminaries and prob-

lem formulation are presented in Section 2. Section 3 contains the design of

interval observer and unknown input observer (IO-UIO)-based FD for the high-

speed train and the coordinate transformation. Simulation results are provided

to illustrate the effectiveness of the proposed methods in Section 4. Finally, a

conclusion is made in Section 5.

2. Preliminaries and Problem Formulation

2.1. Preliminaries

R denotes a set of real numbers. R ≥ 0 denotes a set of non-negative real

numbers, i.e., R ≥ 0 := [0,∞). I denotes the identity matrix in Rn×n. For

vectors xa = [xa,1, ..., xa,n]
T ∈ Rn and xb = [xb,1, ..., xb,n]

T ∈ Rn, the inequality

xa ≤ xb, if and only if xa,i ≤ xb,i, for all i = 1, ..., n. For matrices A =

(ai,j)m×n ∈ Rm×n and B = (bi,j)m×n ∈ Rm×n, the inequality A > B(A > B)

denotes that ai,j > bi,j(ai,j > bi,j), i = 1, ..., n, j = 1, ..., m. For a square

matrix Q ∈ Rn×n, let the matrix Q+ ∈ Rn×n denote Q+ = max{qi,j , 0})n,ni,j=1,1

and Q− = Q+ − Q. The superscripts + and − are defined appropriately for

other cases when they appear in the following sections.

The following definitions are given: a matrix A ∈ Rn×n is called Hurwitz

if all its eigenvalues have a negative real part, and it is called Metzler if all its
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off-diagonal elements are non-negative.

The following lemmas will be used in the sequel.

Lemma 1[34]. The eigenvalues of a given matrix A ∈ Rn×n belong to the disk

region D(α, τ) with centre α+j0 and radius τ if and only if a symmetric positive

definite matrix P ∈ Rn×n exists such that the following condition holds: −P P(A− αIn)

∗ −τ2P

 < 0 (1)

Lemma 2[30]. Consider a vector variable x ∈ Rn satisfying x 6 x 6 x with

x, x ∈ Rn, and a constant matrix A ∈ Rm×n, the following condition holds:

A+x−A−x 6 Ax 6 A+x−A−x (2)

2.2. Problem Formulation

Consider the ideal mathematical model of the traction motor in the d − q

axis synchronous rotating reference frame [33] as follows:

 ẋ (t) = Ax (t) +Bu (t) + fa (x (t))

y (t) = Cx (t)
(3)

where

x (t) =
[
x1 x2 x3 x4 x5

]T
=

[
iqs ids λqr λdr ωm

]T
∈ R5,

is the state variable, u(t) ∈ R2 is the input variable and y(t) ∈ R3 is the output

variable. A is the matrix of asynchronous motor system, whilst B is the input
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distribution matrix of the system which are as follows:

A =



−γ −ωs αβ 0 0

ωs −γ 0 αβ 0

αLm 0 −α −ωs 0

0 αLm ωs α 0

0 0 0 0 0


, B =



1
δLs

0

0 1
δLs

0 0

0 0

0 0


,

C is the output distribution matrix, and fa (x (t)) is the nonlinear part of the

system given as follows:

C =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 , fa (x (t)) =



−npβx5x4
npβx5x3

npβx5x4

−npβx5x3
µ (x4x1 − x3x2)− 1

J TL


,

where

δ = 1− L2
m

LsLr
, α =

Rr

Lr
, β =

Lm

δLsLr
,

µ =
3

2
np

Lm

JLr
, γ =

L2
mRr

δLsL2
r

+
Rs

δLs
,

iqs and ids denote the stator currents in the d − q frame; λqr and λdr denote

the rotor flues in the dq-frame; ωm is the mechanical angular speed; ωs is the

synchronous rotating speed; Ls, Lr and Lm denote stator self inductance, rotor

self inductance and state-rotor mutual inductance, respectively; TL is the load

torque; np is the pole pair number; and J is the moment inertia.

The CRH5 a adopts three-phase squirrel-cage asynchronous motor named

6FJA3257A, the parameters of which are shown in Table 1. The actual mathe-

matical model of the traction motor can be represented as follows:

 ẋ (t) = Ax (t) +Bu (t) + fa (x (t)) + Edd (t)

y (t) = Cx (t) + Eff (t)
(4)
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where d(t) ∈ R1 is the disturbance vector, and f(t) ∈ R1 represents the sensor

fault. Ed and Ef are the disturbance distribution matrix, and fault distribution

matrix, respectively. A, B, Ef , C and Ed are constant real matrices of appro-

priate dimensions. In addition, matrices Ef and Ed are of full column rank

given as follows:

Ef =


1

0

0

 , Ed =
[
0 0 0 0 − 1

J

]T
, d (t) = ∆TL.

The following table records the relevant parameters of the asynchronous mo-

tor:

Table 1: Asynchronous motor 6FJA3257A

no parameter value

1 Stator resistance Rs 105.1 mΩ
2 Stator inductance Ls 31.7 mH
3 Rotor resistance Rr 91.9 mΩ
4 Rotor inductance Lr 31.7 mH
5 Mutual inductance Lm 29.9 mH
6 The moment inertia J 15 kg ·m2

7 The load torque TL 4500 N ·m
8 The pole pairs number np 3
9 The Motor rotation speed ws 2 ∗ pi ∗ 60 rad/s

Remark 1. Available results of the interval observer for the induction motor

are very few. This paper mainly focuses on how to estimate the fault of a

system with the nonlinear part of CRH5 and how to improve the performance

of fault estimation. An IO-UIO is designed to eliminate the effect of load torque

disturbance on the fault estimation.

3. Main Results

3.1. IO-UIO Based Fault Estimation Design

In this subsection, an observer is designed to estimate the incipient sensor

faults. Interval information is applied to deal with the nonlinear part of the
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system. The augmented fault estimator is introduced, and the sensor fault

vector is considered as the auxiliary state vector.

The original system (4) can be rewritten in the following form:



 ẋ(t)

ḟ(t)

 =

 A 0

0 0

 x(t)

f(t)

 +

 B

0

u(t) +
 Ed

0

 d(t)
+

 fa (x (t))

0

+

 0

Ir

 ḟ(t)
y(t) =

[
C Ef

] x(t)

f(t)


(5)

For convenience, the following parameters are defined: augmented state vec-

tor x(t) =

 x(t)

f(t)

 , augmented state distribution matrix Ā =

 A 0

0 0

, aug-
mented input distribution matrix B̄ =

 B

0

, augmented output distribution

matrix C̄ =
[
C Ef

]
, augmented nonlinear vector f̄a (x (t)) =

 fa (x (t))

0

,
augmented disturbance distribution matrix Ēd =

 Ed

0

, and augmented Fault

distribution matrix Īr =

 0

Ir

.
Then, system(5) can be rewritten as follows:

 ˙̄x(t) = Āx̄(t) + B̄u(t) + Ēdd(t) + f̄a (x (t)) + Īrḟ(t)

y(t) = C̄ x̄(t)
(6)

where ḟ(t) is the derivative of the fault f(t), and Ir is an r× r-dimensional unit

matrix.

Combining with T̄+H̄C̄ = I, an equivalent augmented system state space
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description form can be obtained as follows:

˙̄x(t) = Āx̄(t) + B̄u(t) + Ēdd(t) + Īrḟ(t) + f̄a (x (t)) + H̄ẏ(t)− H̄C̄ ˙̄x(t)

= Āx̄(t) + B̄u(t) + Ēdd(t) + Īrḟ(t) + H̄ẏ(t)− H̄C̄(Āx̄(t) + B̄u(t)

+ Ēdd(t) + Īrḟ(t) + f̄a (x (t)))

= T̄ Āx̄(t) + T̄ B̄u(t) + T̄ Ēdd(t) + T̄ f̄a (x (t)) + T̄ Īrḟ(t) + H̄ẏ(t)

y(t) = C̄ x̄(t)

(7)

whereH̄ and T̄ are the design parameters with appropriate dimensions.

Assumption 1. The pair (T̄ Ā, C̄) is observable and rank(C̄Ēd) = rank(Ēd).

Lemma 3[36]. Under Assumption 1, the expression described by (8) is a UIO

for system (7).

For system (9), the problem of fault estimation is converted to IO-UIO

design to reconstruct the fault vector. An observer is proposed to achieve fault

estimation as follows:

˙̄z(t) = T̄ Āˆ̄x(t) + T̄ B̄u(t) + T̄ f̄a (x (t))− L̄ (ŷ(t)− y(t))

ˆ̄x(t) = z̄(t) + H̄y(t)

f̂(t) = ĪTr ˆ̄x(t)

ŷ(t) = C̄ ˆ̄x(t)

(8)

where T̄ + H̄C̄ = I. z̄(t) is an unknown input augmented variable, whilst ˆ̄x(t)

and ˆ̄y(t) denote the augmented state vector and output vector. f̂(t) is the sensor

fault estimate value, whilst matrices H̄ , T̄ and L̄ are the gain matrices of the

unknown input observer.

Assumption 2. Given that the arbitrary x̄− (t) 6 x̄ (t) 6 x̄+ (t), vector func-

tions f̄−a (x+ (t) , x− (t)) and f̄+a (x+ (t) , x− (t)) exist and satisfy the following:

f̄−a
(
x+ (t) , x− (t)

)
6 f̄a (x (t)) 6 f̄+a

(
x+ (t) , x− (t)

)
where x̄− (t) and x̄+ (t) denote the lower and upper bounds of the augmented
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state vector, respectively.

Assumption 3. Matrix L̄ exists such that the matrix (T̄ Ā− L̄C̄) is Metzler.

The interval observer is designed based on an unknown input observer. Un-

der Assumption 2, the IO-UIO is described as follows:

The upper bound observer is as follows:



˙̄z+(t) = T̄ Āˆ̄x+(t) + T̄ B̄u(t) + T̄ f̄+a (x (t))− L̄
(
ŷ+(t)− y(t)

)
ˆ̄x+(t) = z̄+(t) + H̄y+(t)

f̂+(t) = ĪTr ˆ̄x+(t)

ŷ+(t) = C̄ ˆ̄x+(t)

(9)

The lower bound observer is as follows:

˙̄z−(t) = T̄ Āˆ̄x−(t) + T̄ B̄u(t) + T̄ f̄−a (x (t))− L̄
(
ŷ−(t)− y(t)

)
ˆ̄x−(t) = z̄−(t) + H̄y−(t)

f̂−(t) = ĪTr ˆ̄x−(t)

ŷ−(t) = C̄ ˆ̄x−(t)

(10)

where z̄+(t) and z̄−(t) represent the state of the upper and lower bounds of the

observers, respectively, and T̄ + H̄C̄ = I.

Theorem 1. Under Assumptions 2 and 3, if the initial conditions are satisfied,

and the constraint x−(0) 6 x(0) 6 x+(0) , then the solutions of systems (7),

(9) and (10) satisfy the following:

ˆ̄x−(t) 6 x̄(t) 6 ˆ̄x+(t), ∀t > 0.

Proof : The augmented system error dynamic equation is considered. For the

upper bound observer, let ē+x (t) = ˆ̄x+(t)− x̄(t), ey+(t) = ŷ+(t)−y(t) = C̄ē+x (t),

and ef
+(t) = f̂+(t)− f(t).

Then, from (6) and (7), the system’s error state equation is expressed as
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follows:

˙̄e+x (t) =
˙̄̂x+(t)− ˙̄x(t) = T̄ Āˆ̄x+(t) + T̄ B̄u(t)− L̄

(
ŷ+(t)− y(t)

)
+ T̄ f̄+a (x (t)) + H̄ẏ(t)− T̄ Āx̄+(t)− T̄ B̄u(t)− T̄ Ēdd(t)

− T̄ Īrḟ(t)− T̄ f̄a (x (t))− H̄ẏ(t)

= T̄ Āē+x (t)− L̄
(
ŷ+(t)− y(t)

)
− T̄ Ēdd(t)− T̄ Īrḟ(t)

+ T̄
(
f̄+a (x (t))− f̄a (x (t))

)
=

(
T̄ Ā− L̄C̄

)
ē+x (t)− T̄ Ēdd(t)− T̄ Īrḟ(t)

+ T̄ f̄+a (x (t))− T̄ f̄a (x (t))

(11)

When the following conditions are satisfied, the disturbance can be com-

pletely eliminated,

T̄ Ēd = 0

where Ēd and C̄ are known. Thus, the unknown matrix H̄ can be obtained

according to T̄ Ēd = 0 and T̄ + H̄C̄ = I.

The simplified error dynamic system can be obtained from (11) as follows:

 ˙̄e+x (t) =
(
T̄ Ā− L̄C̄

)
ē+x (t) + T̄

(
f̄+a (x (t))− f̄a (x (t))

)
− T̄ Īrḟ(t).

ef
+(t) = ĪTr ē

+
x (t)

(12)

Similarly, for the lower bound observer, by denoting system the augmented

state error ē−x (t) = x̄(t) − ˆ̄x−(t), augmented output estimation error ey
−(t) =

y(t) − ŷ−(t) = C̄ē−x (t), and the error of lower bound of fault and true value is

ef
−(t) = f(t) − f̂−(t). Then, the system’s error state equation is expressed as

follows: ˙̄e−x (t) =
(
T̄ Ā− L̄C̄

)
ē−x (t) + T̄

(
f̄a (x (t))− f̄−a (x (t))

)
+ T̄ Īrḟ(t).

ef
−(t) = ĪTr ē

−
x (t)

(13)

By assumption 2, we have ē+x (0) > 0, ē−x (0) > 0. From assumption 3, the dy-

namics of the estimation errors are cooperative. Therefore, ē+x (t) > 0, ē−x (t) > 0
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for all t > 0. 2

Remark 2. Compared with the Luenberger Observer, the observer we studied

can eliminate the impact of external disturbances on fault estimation when the

hypothetical condition T̄ Ēd = 0 is satisfied. Consequently, this method effec-

tively simplifies the algorithm and improves the performance of fault estimation.

In dealing with the nonlinear part of the system, the method proposed in this

paper involves the designing of an interval observer using part of the measure-

ment information to replace a single point of measurement with a reasonable

interval.

Theorem 2. The observer gain matrix L̄ of the fault estimation for high-speed

train can be obtained by solving the following linear matrix inequality (LMI),

and the H∞ performance level γ and a circular region D(α, τ) are provided. If a

symmetric positive definite matrix Q̄ ∈ R(n+r)×(n+r) and matrix L̄ ∈ R(n+r)×p,

Ȳ ∈ R(n+r)×p satisfies the following: −Q̄ Q̄T̄ Ā− Ȳ C̄ − αQ̄

∗ −τ2Q̄

 < 0 (14)


φ −Q̄T̄ Īr Īr

∗ −γI 0

∗ ∗ −γI

 < 0 (15)

where φ = Q̄T̄ Ā+
(
T̄ Ā

)T
Q̄− Ȳ C̄ −

(
Ȳ C̄

)T
, and the eigenvalues of (T̄ Ā− L̄C̄)

belong to D(α, τ).

Proof : Constraint (14): Substituting (T̄ Ā−L̄C̄) into A and P̄ into P in Lemma

1, we can obtain (14).

Constraint (15): Consider the following Lyapunov function:

V (t) = ēx(t)P̄ ēx(t) (16)

12



Its derivative with respect to time is

V̇ (t) = ēTx(t)(Q̄(T̄ Ā− L̄C̄) + (T̄ Ā− L̄C̄)TQ̄)ēx − 2ēTx(t)Q̄T̄ Īrḟ(t) (17)

Let us define:

J1 =

∫ ∞

tf

1

γ
eTf (t)ef (t)− γḟT(t)ḟ(t)d(t) (18)

one can obtain:

J1 6
∫ ∞

tf

V̇ (t) +
1

γ
eTf (t)ef (t)− γḟT(t)ḟ(t)d(t)

=

∫ ∞

tf

V̇ (t) +
1

γ
ēTx(t)Īr Ī

T
r ēx(t)− γḟT(t)ḟ(t)d(t)

(19)

From (17), it follows that:

V̇ (t) +
1

γ
ēTx(t)Īr Ī

T
r ēx(t)− γḟT(t)ḟ(t)

= ēTx(t)(Q̄(T̄ Ā− L̄C̄) + (T̄ Ā− L̄C̄)TQ̄)ēx(t)

− 2ēTx(t)Q̄T̄ Īrḟ(t) +
1

γ
ēTx(t)Īr Ī

T
r ēx(t) − γḟT (t)ḟ(t)

= ζT (t)Ξζ(t)

(20)

where

ζ(t) =

 ēx(t)

ḟ(t)

 ,

Ξ =

 Q̄(T̄ Ā− L̄C̄) + (T̄ Ā− L̄C̄)TQ̄+ 1
γ Īr Ī

T
r *

−Q̄T̄ Īr −γI

T

Through the Schuur complement, Ξ < 0 becomes
Q̄(T̄ Ā− L̄C̄) + (T̄ Ā− L̄C̄)TQ̄ −Q̄T̄ Īr Īr

∗ −γI 0

∗ ∗ −γI

 < 0 (21)

which is equal to (15). Thus, (12) and (13) are stable and satisfy the H∞

13



performance ||ef (t)||2 < γ||ḟ(t)||2 if condition (15) holds. 2

Remark 3. The observer gain matrix is given by L̄ = Q̄−1Ȳ . The algorithm

which satisfies the robust H∞ performance index can effectively restrain the

influence of fault derivative ḟ(t) on fault estimation error ef (t).

3.2. Transformation of Coordinates

However, the corresponding observer gain matrix L̄ cannot be determined.

This value can make (T̄ Ā− L̄C̄) be a Metzler matrix from the nonlinear system

of the investigated traction motor for high-speed trains. A non-singular constant

transformation matrix is given to solve the problem, and a new system equation

is obtained by equivalent transformation ξ̄ (t) = Px̄ (t).


˙̄ξ(t) = PĀP−1ξ̄(t) + PB̄u(t) + PĒdd(t) + P f̄a (x (t)) + P Īrḟ(t)

y(t) = C̄P−1ξ̄(t)
(22)

An equivalent augmented system state space description form can be obtained

as follows:
˙̄ξ(t) = PT̄ ĀP−1ξ̄(t) + PT̄ B̄u(t) + PT̄ Ēdd(t) + PT̄ f̄a (x (t))

+ PT̄ Īrḟ(t) + PH̄ẏ(t)

y(t) = C̄P−1ξ̄(t)

(23)

When T̄ Ēd = 0 is considered, the simplified form can be obtained from (23)

as follows:
˙̄ξ(t) = PT̄ ĀP−1ξ̄(t) + PT̄ B̄u(t) + PT̄ f̄a (x (t)) + PT̄ Īrḟ(t) + PH̄ẏ(t)

y(t) = C̄P−1ξ̄(t)
(24)
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The interval observer is constructed as follows:

˙̄̂
ξ+(t) = PT̄ ĀP−1 ˆ̄ξ+(t) + PT̄ B̄u(t)− PL̄(C̄P−1 ˆ̄ξ

+
(t)− y(t)

+ PT̄ f̄+a (x (t)) + PH̄ẏ(t)

= R ˆ̄ξ+(t) + PT̄ B̄u(t) + PT̄ f̄+a (x (t)) + PH̄ẏ(t) + PL̄y(t)

˙̄̂
ξ−(t) = PT̄ ĀP−1 ˆ̄ξ−(t) + PT̄ B̄u(t)− PL̄(C̄ P−1 ˆ̄ξ

−
(t)− y(t)

+ PT̄ f̄−a (x (t)) + PH̄ẏ(t)

= R ˆ̄ξ−(t) + PT̄ B̄u(t) + PT̄ f̄−a (x (t)) + PH̄ẏ(t) + PL̄y(t)

(25)

where R is equal to P (T̄ Ā − L̄C̄)P−1 and ˆ̄ξ+(t), ˆ̄ξ−(t) denote the upper and

lower bounds of the augmented observer vector after the transformation of co-

ordinates. Moreover, f̄ ξ̄a (x (t)) denotes the nonlinear part after the coordinates

have been transformed.

The following variables are defined:

φ̄+
(
ξ̄− (t) , ξ̄+ (t)

)
= f̄+a

(
P̄iξ̄

− (t)− Piξ̄
+ (t) , P̄iξ̄

+ (t)− Piξ̄
− (t)

)
φ̄− (

ξ̄− (t) , ξ̄+ (t)
)
= f̄−a

(
P̄iξ̄

− (t)− Piξ̄
+ (t) , P̄iξ̄

+ (t)− Piξ̄
− (t)

)
where ξ̄+and ξ̄− represent the upper and lower bounds of the augmented state

vector after the coordinates have been transformed.

Under Assumption 2, the following can be obtained:

f̄ ξ̄−a
(
ξ̄− (t) , ξ̄+ (t)

)
= P̄ φ̄− (

ξ̄− (t) , ξ̄+ (t)
)
− Pφ̄+

(
ξ̄− (t) , ξ̄+ (t)

)
6 P f̄a

(
P−1ξ̄ (t)

)
6 P̄ φ̄+

(
ξ̄− (t) , ξ̄+ (t)

)
− Pφ̄− (

ξ̄− (t) , ξ̄+ (t)
)

= f̄ ξ̄+a
(
ξ̄− (t) , ξ̄+ (t)

)
.

(26)

where P̄ = max {0, P}, P = P̄ − P , P̄i = max
{
0, P−1

}
and Pi = P̄i − P−1.

The upper bound error ēξ̄+ (t) and lower bound error ēξ̄− (t) are defined as

15



follows:

ēξ̄+ (t) = ˆ̄ξ
+
(t)− ξ̄ (t)

ēξ̄− (t) = ξ̄ (t)− ˆ̄ξ
−
(t)

Then, the error dynamic equation can be obtained as follows:

 ˙̄eξ̄+ (t) = Rēξ̄+ (t) + P
[
f̄+a (x (t))− f̄a (x (t))

]
− PT̄ Īrḟ(t)

˙̄eξ̄− (t) = Rēξ̄− (t) + P
[
f̄a (x (t))− f̄−a (x (t))

]
− PT̄ Īrḟ(t)

(27)

Theorem 3. Let the matrix (T̄ Ā − L̄C̄) and a Metzler matrix R have the

same eigenvalues for some L̄. If two vectors ē1 and ē2 exist such that the pairs

(T̄ Ā− L̄C̄, ē1) and (R, ē2) are observable, then

P = O−1
2 O1.

satisfies Sylvester equation: PT̄ Ā−RP = NC̄, N = PL̄.

where

O1 =


ē1
...

ē1
(
T̄ Ā− L̄C̄

)n−1

 , O2 =


ē2
...

ē2R
n−1

 .
Proof : Since the pairs (T̄ Ā− L̄C̄, ē1) and (R, ē2) are observable, matrices O1

and O2 are nonsingular. The following equation can be obtained through the

transformation:

O1(T̄ Ā− L̄C̄)O−1
1 = O2RO

−1
2

where O1(T̄ Ā − L̄C̄)O−1
1 and O2RO

−1
2 are canonical observability forms. The

vectors ē1 and ē2 can be found if the pair (T̄ Ā, C̄) is observable. 2

Remark 4. The Metzler matrices are constructed as follows: Let R be the lower

triangular matrix, with the main diagonal elements as the eigenvalues of (T̄ Ā−

L̄C̄), and the elements below the main diagonal are positive. Moreover, the

matrix R after transformation satisfies the property of Hurwitz and is a matrix

Metzler at the same time. Combined with the above process, ˆ̄ξ−(t) 6 ξ̄(t) 6
ˆ̄ξ+(t), t > 0. Then, the fault estimate is obtained by f̂+(t) = ĪTr ˆ̄x+(t), f̂−(t) =

16



ĪTr ˆ̄x−(t).

3.3. Enhancement of the Accuracy of IO-UIO

When the interval observer is used to estimate the fault, the response time

and the accuracy of the interval, that is, the difference between the upper and

lower bounds of the interval observer, are considered. This subsection focuses

on finding a performance index related to the interval accuracy based on the

CRH5 motor system, which makes the interval size adjustable.

Since the equivalent transformation does not affect the experimental results,

the system can be conveniently investigated based on the previous transforma-

tion before. The dynamic error equation can be derived from (12) and (13).

x(t) =
[
x1 x2 x3 x4 x5 x6

]T
=

[
iqs ids λqr λdr ωm f

]T
Then, the following can be obtained:

ψ ˙̄ex = ψ(T̄ Ā− L̄C̄)ēx + ψT̄ (f̄+a − f̄−a ) (28)

where ψ =
[
0 0 0 0 0 1

]
.

Equation (22) can be simplified as follows:

ėf = −l61ex1 + l62ex2 − l61ef (29)

where l61 represents the first column of the sixth row of the observer gain ma-

trix L̄, and l62 represents the second column of the sixth row of this matrix.

Moreover, the interval size of the fault estimate is related to the values of ex1,

ex2 and ef . Moreover, the interval size can be regulated by l61 and l62.

Remark 5. Equation (29) is not generic and is extracted from the charac-

teristics of CRH5. Hence, this equation will no longer be applied in changing

other systems or system parameters. However, the method is general, and a

performance index can be found according to.
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4. Simulation Results

In this section, numerical and simulation results are used to verify the feasi-

bility of the proposed method for CRH5 (6FJA3257A). First part of this section

discusses the fault estimation with regional pole placement. In the second part,

we changed the numerical value of the performance index. Then, we compare

the influence of the performance parameters on the fault estimation precision

from the residual of the upper and lower bounds of the fault estimation curve

in the simulation diagram.

According to the high-speed train traction motor system, the state vectors

under stable operation can be obtained as follows:

x(t) =
[
−150.3 −222 0.3958 −6.3345 124.9053

]T
Set the upper and lower bounds of the state vectors:

 x+(t) =
[
−150.0 −221 0.40 −6.32 125.5

]T
x−(t) =

[
−150.6 −223 0.39 −6.34 124.5

]T
it is obviously satisfying to assumption 2.

We illustrate the simulation results with the fault of q-axis stator current

sensor.

The fault model is as follows:

f(t) =

 0 , 0s 6 t < 20s

10, t > 20s

Part 1. Fault estimation with regional pole placement.

We can solve (14) and (15) to obtain the observer gain matrix by choosing

the region pole D(−20, 50).

Remark 6. When constraints (14) and (15) using the LMI toolbox of Matlab

(2014b) are satisfied, the eigenvalues of (T̄ Ā − L̄C̄) are located in the left half

plane of the coordinate virtual axis and within the pole configuration circle.
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The LMI region is as follows:

D = { z ∈ C: Re(z) < 0}, fD(z) = z + z̄ < 0.

where fD(z) is the characteristic function of D. We chooseD(−20, 50) to improve

the performance of the system.

Parameters Q̄, Ȳ and L̄ can be calculated as follows:

Q̄ =



0.5649 0.0193 −0.0810 −1.4510 0 −0.2635

0.0193 0.0855 0.2357 −0.0766 0 0.3055

−0.0810 0.2357 0.7229 0.1294 0 0.8062

−1.4510 −0.0766 0.1294 3.7438 0 0.6428

0 0 0 0 2.0965 0

−0.2635 0.3055 0.8062 0.6428 0 3.4594


.

Ȳ =



- 11.7195 - 212.4609 0

28.1386 - 9.4913 0

75.9143 23.3952 0

21.5699 545.5703 0

0 0 87.8535

129.4668 83.6815 0


, L̄ =



21.6346 - 669.2785 0

757.2506 23.6974 0

−145.1688 −28.8060 0

34.7317 −111.9553 0

0 0 41.9045

−0.4252 −1.3582 0


Through T̄ + H̄C̄ = I, H can be obtained when T̄ and C̄ are known.

H̄ =



0 0 0

0 0 0

- 0.0031 0 0

0 - 0.0031 0

0 0 1

0 0 0


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From subsection A, matrix T̄ can be calculated through T̄ Ēd = 0, because

Ēd =
[
0 0 0 0 −1/15 0

]T
then,

T̄ =



1 0 0 0 0 0

0 1 0 0 0 0

0.0031 0 1 0 0 0.0031

0 0.0031 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1


When the numerical values of the motor in Table I are substituted into

the system, the following can be obtained:

Ā =



−64.5606 −376.9911 965.3409 0 0 0

376.9911 −64.5606 0 965.3409 0 0

0.0884 0 −2.9556 −376.9911 0 0

0 0.0884 376.9911 −2.9556 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

T̄ Ā =



−64.5606 −376.9911 965.3409 0 0 0

376.9911 −64.5606 0 965.3409 0 0

−0.1093 −1.1543 0 −376.9911 0 0

1.1543 −0.1093 376.9911 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

A lower triangular matrix R with the same eigenvalues as (T̄ Ā − L̄C̄) is

considered, and the matrices ē1, ē2 satisfy Theorem 2. The eigenvalues of (T̄ Ā−
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L̄C̄) are -50.6767, -25.0914 ± 34.6127i, -36.5993 ± 27.4065i and -41.9045.

ē1 =
[
1 8 −2 1 −2 −1

]
ē2 =

[
1 0 0 1 0 −1

]

R =



−50.6767 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

1.0000 + 0.0000i −25.0914 + 34.6127i 0.0000 + 0.0000i

1.0000 + 0.0000i 1.0000 + 0.0000i −25.0914− 34.6127i

1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i

1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i

1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

−36.5993 + 27.4065i 0.0000 + 0.0000i 0.0000 + 0.0000i

1.0000 + 0.0000i −36.5993 + 27.4065i 0.0000 + 0.0000i

1.0000 + 0.0000i 1.0000 + 0.0000i −41.9045


.
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Then, the transformation matrix can be obtained by Theorem 2,

P =



−50.6767− 0.0000i 0.0000− 0.0000i 0.0000− 0.0000i

0.9999− 0.0001i −25.0914 + 34.6127i 0.0000− 0.0000i

1.0000− 0.0006i 1.0000 + 0.0001i −25.0914− 34.6127i

1.0000− 0.0000i 1.0000 + 0.0000i 1.0000− 0.0000i

0.9999 + 0.0005i 1.0001− 0.0001i 1.0000 + 0.0000i

1.0001− 0.0000i 1.0000− 0.0000i 1.0000− 0.0000i

0.0001 + 0.0001i 0.0000− 0.0000i 0.0000 + 0.0000i

0.0001− 0.0004i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0011− 0.0011i 0.0000 + 0.0000i 0.0000 + 0.0001i

−36.5993 + 27.4065i 0.0000− 0.0000i 0.0000 + 0.0000i

0.9989 + 0.0006i −36.5993− 27.4065i 0.0000− 0.001i

1.0001 + 0.0001i 1.0000− 0.0000i −41.9045 + 0.0000i


.

Matrix P is proved to be nonsingular, and the simulation results are displayed

as follows. Figure 1 illustrates the fault estimation response with the region pole

placement. The simulation results show that the fault estimate curve finally

tracks the actual failure, and the real fault is between the upper bound fault

observation value and the lower bound observation value.

Figure 2 shows the fault estimation response without region pole placement.

The fault tracking speed in Figure 1 is faster than in Figure 2. Thus, the

performance of the fault estimation can be improved after considering a circular

domain constraint to the solution.

Part 2. The method mentioned in subsection 3.3 will be validated in this

subsection. Firstly, we study the influence of the numerical value of the pa-

rameter l61 on the interval size when other parameters remain unchanged. The

simulation results are as follows. The small figure inside Figure 3 is the locally

enlarged figure. Figure 3 shows that the interval size decreases with the decrease

of the parameter l61. Hence, the smaller the parameter l61, the better the effect

of fault estimation will be. Next, we study the influence of the numerical value
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Figure 1: Simulation results with region pole placement.
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Figure 2: Simulation results without region pole placement.
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Figure 3: Simulation results with different parameter L61.

of the parameter l62 on the interval size when the other parameters remain un-
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Figure 4: Simulation results with different parameter L62.

the figure 4 is error of the upper and lower bounds. Figure 4illustrates that the

interval size decreases with increase in parameter l61. Therefore, the bigger the

parameter l62, the better the effect of fault estimation will be.
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5. Conclusion

In this paper, an IO-UIO based fault estimation scheme for high-speed rail-

way traction devices with sensor fault and disturbances is investigated. For

the nonlinear part of the system, an interval observer is introduced to solve

efficiently only a part of the information in the interval. Therefore the design

of unknown input observer is proposed, and this parameter can completely e-

liminate the external disturbance. Moreover, an FD algorithm is proposed to

estimate the faults accompanied by disturbance. We constructed a Metzler

matrix to match the properties of the interval observers by transforming the

coordinates. In addition, we found a performance index that can adjust the size

of the interval observer. Finally, the effectiveness and advantages of the pro-

posed IO-UIO method for high-speed railway traction devices is shown through

simulation results.
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