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Abstract

The fault detection and estimation problems for the physical layer network in the cyber-physical systems with unknown external
disturbances are investigated in this study. Both bias fault and loss of efficiency scenarios are considered for the actuators. Based
on the adaptive threshold method and sliding mode observer approach, a distributed fault detection observer (DFDO) is constructed
for each physical layer node to detect the occurrence of actuator faults. Then a relative global estimation error system is defined
for the distributed fault estimation observer (DFEO). Compared with the existing results, the proposed DFEO can provide the
estimation for not only the actuator bias faults but also the actuators’ efficiency factors under the impact of exogenous disturbance
with two gain dynamic update processes. Finally, the feasibility and effectiveness of the given DFDO and the DFEO are examined
by Lyapunov stability method and the simulation results.
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1. Introduction

During the past few years, there have been considerable improvements of information technology, embedded
systems and the distributed actuator/sensor networks. All these advances have been attracting the attentions on the
development of the cyber-physical systems (CPSs) which are now utilized to power generation [1, 2], water distri-
bution systems [3] and other advanced complex systems. According to [4, 5], the integration of the CPSs usually
involves: 1) physical or engineered systems which are often in large-scales, and 2) a cyber part that is based on com-
munication networks and computational resources. The cyber part of the CPSs is available to monitor, coordinate and
the corresponding part in the CPSs. The core of the CPS, which is different from the conventional complex system,
is the emphasis on the physical systems’ intelligence that is represented by the self-awareness, adaptiveness to the
environment, and the automation of the physical systems [6].

The key challenges in the development of the CPSs are the reliability and the safety demands. Faults in the CPSs
may lead to the malfunction of the whole system and some catastrophic consequences. In order to meet the safety and
reliability demands, the CPSs should possess the ability of fault diagnosis and fault tolerance. During the past decades,
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many methods have been developed to deal with the increasing demands on the fault diagnosis with respect to actuator
or sensor faults. According to the distributed fault detection method proposed in [6], the occurrence of the sensor fault
can be monitored effectively in the sensor set for the physical part of the cyber superstratum. Based on a unified
modeling framework, Pasqualetti et al. [7] proposed centralized and distributed fault detection and identification
monitors for the CSPs with respect to the fundamental monitoring limitations. In [8], on the basis of local model
and measurements, Teixeria et al. proposed a distributed fault isolation strategy for a large networked systems under
model uncertainties which are caused by the edges between subsystems. According to the status information provided
by the neighbor agents, a distributed adversarial observer is constructed in [9] for each agent to detect the faults
which are caused by exogenous incipient adversaries with respect to time delays. For offsetting the actuator faults,
Zhao et al. proposed a high-gain-observer based fault tolerant controller in [10] while the end-to-end communication
rates approach is also taken into consideration. As is wildly implemented in traditional FDI methods, the Kalman
filter is utilized in [11] to monitor the occurrence of sensor faults in real CPS mechanistic model with the limitation
of the CUSUM test. In [12], by integrating the adaptive threshold technique, Zhang et al. developed an adaptive
fault detection observer for a nonlinear systems while the fault isolation problem is also solved. By considering the
distributed filter technique, Jiang et al. [13] proposed a fault detection approach for a nonlinear multi-agent system
under the impact caused by network time delay.

However, most of the existing researches are focused on the detection and the isolation demands for actuator or
sensor fault, and few of these methods could provide the estimated amplitude for the actuator or sensor fault[14].
Estimating the value of actuator/sensor faults instead of giving an alarm under the circumstance of actuator/sensor
faults is an important part during the design process of an active fault tolerant controller. According to the dynamics
of an individual node of a network, a centralized sliding mode observer is constructed in [15] at supervisory mon-
itoring level and the fault is reconstructed from the equivalent output error injection signal. In [17], a distributed
fault estimation approach integrating with the sliding mode observer technique is proposed by the implement of the
equivalent output error injection with respect to the available measured information. However, in the aforementioned
two methods, the upper bound of the faults should be given in advance and this limits the application of these two
methods in actual industrial process. By creating a meaningful observable subsystem in [19], Menon et al. designed
a robust fault estimation observer for the multi-agent systems. Based onH∞ theory and the directed graph technique,
the fault estimation problem is addressed with the design of a class of distributed fault estimation observer in [20]
with adjustable parameter methods. In [18], by designing an intermediate estimator for each agent, the actuator fault
is then reconstructed while the external disturbances is considered. Although the limitation about the pre-knowledge
of the faults is relaxed in Zhang [20] and Zhu’s [18] research, the Lyapunov stability proof processes indicate that
both of the two fault estimation methods can only obtain a uniformly ultimately bounded result and the accuracy of
the fault estimation is based on tuning the correlated parameters.

Motivated by the aforementioned reasons and researches, a novel robust distributed fault diagnosis approach is
proposed for the physical layer network of the cyber-physical systems in this paper. Specifically, on the basis of the
states from neighbor agents, local output measurements and cyber layer nodes, a DFDO is then constructed for each
node in physical layer network of the CPSs under the influence of the exogenous disturbances. Then a novel adaptive
DFEO is developed to estimate the actuator bias fault or the efficiency factors of the actuators. Compared with the
existing researches about the fault diagnosis approaches of the CPSs, the main contributions of this study are as:

• According to the adaptive threshold approach, the robust DFDO can provide a more accurate fault alarm and the
false alarm rate can be reduced. In addition, the sliding mode observer technique in this fault detection observer
also increases the accuracy of fault detection with respect to external disturbance.

• Comparing to the existing research, such as [18], the robust DFEO in this paper for each physical layer node
can guarantee an accurate fault estimation which means the estimation error can converge to the small region
near the origin when time t goes to infinity. Besides, this fault estimation observer can estimate not only the
actuator bias fault but also the efficiency factors of the actuators simultaneously.

This paper is organized as: Section 2 presents some necessary preliminaries. The cyber layer network and the
physical layer network of the CPSs with individual nodes are modeled in Section 3 while the problem formation is
also presented in Section 3. Both the DFDO and the DFEO designs are given in Section 4, respectively. A numerical
simulation example is demonstrated in Section 5 which is followed by a conclusion in Section 6.
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2. Preliminaries

An undirected graph G is a pair G = (V,E) with a nonempty finite collection of N nodes, namelyV = (1, . . . ,N),
and a set of edges E ⊆ V × V. For a certain edge (vi, v j), vi is a neighbor of v j, therefore, v j is in the ith node’s
neighbor set which can be denoted as Ni = { j : ( j, i) ∈ E}. In a undirected graph G, the adjacency matrix A = [αi j]
holds that αi j = 1 if (i, j) ∈ E and αi j = 0 otherwise while the Laplacian matrix L ∈ RN×N is defined as Li j = −ai j

where i , j and Lii = Σi, jαi j.
Through out the paper, the following notations are defined; λmin(max)(·) is the minimum (maximum) value of the

matrix eigenvalue, diag{. . .} represents a diagonal matrix and ⊗ is denoted as the Kronecker product of two matrices.

3. Problem formation

3.1. Cyber-physical system dynamics

From the control engineering aspect, the CPSs are the integration of physical processes and embedded computers
with network communication [5, 6, 21, 22]. Therefore, an actual CPSs can be modeled as the integration of physical
layer network and cyber layer network where both of networks are interdependent.

Inspired by [6, 22, 23], the CPSs is described as follows

ẋi(t) = Ω(xi(t)) +
N∑

j=1

ai jΓ1x j(t) +
N∑

j=1

ci jΓ3y j(t − τ1) (1)

ẏi(t) = g(yi(t)) +Gui(t) +
N∑

j=1

bi jΓ2y j(t) +
N∑

j=1

di jΓ4x j(t − τ2) + Tωi(t) (2)

where xi(t) ∈ Rn is the ith (1 ≤ i ≤ N) node’s state of the cyber layer network, yi(t) ∈ Rn is the ith (1 ≤ i ≤ N)
node’s state of the physical layer network. ui(t) ∈ Rm is the control input which is utilized to generate proper control
signal for the ith physical layer network’s node to synchronize with the ith cyber layer network’s node. A = [ai j]N×N

is the topology structure of cyber layer network and C = [ci j]N×N indicates the topology structure between cyber
layer network nodes and physical layer network nodes. Similarly, B = [bi j]N×N and D = [di j]N×N . Ω(·) and g(·) are
continuous nonlinear functions. Γ1 ∈ Rn×n and Γ2 ∈ Rn×n are the inner coupling matrix of the cyber layer network
and the physical layer network respectively, Γ3 ∈ Rn×n is the outer coupling matrix of the cyber layer network,
Γ4 ∈ Rn×n is the outer coupling matrix of the physical layer network, τ1 and τ2 denote fixed time-delays in the
transmission of information between cyber layer network and physical layer network respectively, ωi(t) ∈ Rn is the
external disturbance in the actual environment. G and T are matrices with proper dimensions. In addition, the cyber-
physical systems’ structure is demonstrated in Fig. 1.

Figure 1: The structure of interconnected cyber-physical systems
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3.2. Fault models
Recently, there have been considerable interests in the fault diagnosis schemes for cyber-physical systems with

respect to actuator faults and sensor faults [11, 22]. Faults in the CPSs can lead to the performance degradation, and
even disturb the physical property of the system as well as result in the malfunction of actual components. In this
paper, only actuator faults, which take place on the physical layer nodes, are taken into consideration. Therefore, the
faulty control input uF

i (t) can be modeled as

uF
i (t) = Φiui(t) + fi(t) (3)

where Φi = diag{ϕi1, . . . , ϕik, . . . , ϕim} (k = 1, 2, . . . ,m) with ϕik ∈ (0, 1] is the effectiveness matrix with time invariant
terms and ϕi is the so-called efficiency factor which is defined as a positive constant, fi(t) = [ fi1, . . . , fik, . . . , fim]T (k =
1, 2, . . . ,m) is the bias fault input vector which is injected in the actuators in an additive form. The relations between
actuator faults and the corresponding parameters are shown in Tab. 1

Fault Type ϕik fik
Bias fault 1 fik , 0
Loss of effectiveness(LOE) 0 < ϕik < 1 0

Table 1: Parameters for different types of actuator faults.

Hence, the physical layer node in cyber physical system with actuator faults is given as

ẏi(t) = g(yi(t)) +GΦiui(t) +G fi(t) +
N∑

j=1

bi jΓ2y j(t) +
N∑

j=1

di jΓ4x j(t − τ2) + Tωi(t) (4)
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Figure 2: Description of the ith CPS affected by actuator faults

3.3. Problem formulation
In this study, a novel actuator fault diagnose approach is investigated with respect to the CPSs in the following

aspects:
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• For each physical layer node, designing a sliding mode DFDO on the basis of the local output and the state
estimations from neighbors so as to detect actuator faults automatically and timely;

• An adaptive DFEO is constructed for each physical layer node so as to acquire the accurate actuator fault
estimation and the states of the corresponding physical layer node.

For the development of the fault diagnosis scheme, the following assumptions are required:

Assumption 1. The cyber layer node’s state xi(t) and the physical layer node’s state yi(t) are observable.

Assumption 2. [15] It is assumed that for all x, y ∈ Rn, the function g(x) is bounded with a Lipschitz constant ε and
holds that

∥g(x) − g(y)∥ ≤ ε∥x − y∥ (5)

Assumption 3. [28, 29] For each physical layer node, the external disturbance ωi is bounded and satisfying ∥ωi∥ ≤ ω̄i,
where ω̄i is a pre-known positive scalar.

Assumption 4. [18, 25] For each bias fault fi, it holds that ∥ fi∥ ≤ f̄i and ∥ ḟi(t)∥ < βi with βi ≥ 0. In addition, the bias
fault considered here is slowly time-varying and βi is a rather small value.

Remark 1. As the actuator faults may take place in the operation of physical layer nodes, many existing researches,
such as [15, 18], have dealt with this issue by investigating the bias fault only. In this paper, the detection and
estimation for both LOE fault and bias fault are considered.

Remark 2. Assumption 4 indicates that the actuator faults have unknown boundaries whereas the sliding mode
observers proposed in [15] and [17] require that the fault is bounded by a known function. In addition, the derivative
of bias fault fi, which will be investigated in the design of fault estimation observer, is bounded by a positive constant.

Remark 3. In this paper, the main concern is to develop an accurate actuator fault detection scheme and a corre-
sponding actuator fault estimation strategy with respect to the cyber-physical systems. Therefore, based on the signal
transmit structure proposed in [16], the states of the physical layer and the cyber layer are known to each other for
simplicity.

4. Main result

In this section, the DFDO and the DFEO are proposed with sliding mode observer technique for physical layer
nodes in cyber-physical systems. The DFDO with adaptive detection threshold is initially presented. Then, the
adaptive sliding mode DFEO is utilized to estimate the effectiveness factors in the effective matrix and bias fault.

4.1. Distributed fault detection observer design

The DFDO for the ith physical layer node is formulated as

˙̂yi(t) = g(ŷi(t)) +Gui(t) + T ω̄isign(yi(t) − ŷi(t)) + Hi(yi(t) − ŷi(t))

+

N∑
j=1

bi jΓ2y j(t) +
N∑

j=1

di jΓ4x j(t − τ2) (6)

where ŷi is the estimated state of the ith physical layer node, Hi = diag{hi1, . . . , hin} with hik > 0 (k = 1, . . . , n) is the
gain matrix for the observer. Subtracting (6) from (4), the ith node’s error dynamic equation is further obtained like

˙̃yi = g(yi(t)) − g(ŷi(t)) +G(Φi − Im)ui(t) +G fi(t) + T (ωi(t) − ω̄isign(ỹi(t))) − Hiỹi(t) (7)

According to the proposed DFDO (6), one of the main results is firstly presented as,

5
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Theorem 1. For the faulty physical layer nodes (4) with actuator faults in cyber-physical systems, suppose that
Assumptions 1-3 hold, if there exists a positive definite matrix Qi and a symmetric matrix Pi = PT

i > 0, such that

Qi = Pi(Hi − εIn) + (Hi − εIn)T Pi − 2PiPi > 0

then the adaptive threshold for the ith fault detection observer is given as

χi =
λmax(Pi)
λmin(Pi)

e−(λmin(Qi)/λmax(Pi))(t−t0)∥ỹi(t0)∥2 (8)

If the 2-norm of error ỹi exceeds the adaptive threshold
√
χi, then it can be determined that at least one of the actuators

in the ith physical layer node is faulty.

Proof. Considering the following Lyapunov candidate for the ith physical layer node

Vdi = ỹT
i Piỹi (9)

In actuator healthy case: In this case, there is no fault taking place on the ith physical layer node’s actuators, which
means that Φi = Im and fi = 0. The time derivative of Vdi is as

V̇di = 2ỹT
i Pi(g(yi(t)) − g(ŷi(t)) − Hiỹi(t)))

+2ỹT
i PiT (ωi(t) − ω̄isign(ỹi(t))) (10)

According to Assumption 2, it can be obtained that

V̇di ≤ −2ỹT
i Pi(Hi − εIn)ỹi(t)

It should be found that

Pi(Hi − εIn) + (Hi − εIn)T Pi > Pi(Hi − εIn) + (Hi − εIn)T Pi − 2PiPi = Q > 0

Therefore, the derivation of Vdi satisfies
Vdi ≤ −ỹT

i Qỹi < 0 (11)

In addition, it can be noted from (9) that

λmin(Pi)∥ỹi∥2 ≤ Vdi ≤ λmax(Pi)∥ỹi∥2 (12)

Therefore, the following inequality can be obtained further

V̇di ≤ −
λmin(Qi)
λmax(Pi)

Vdi (13)

According to (13), the error signal ∥ỹi∥2 satisfies the following formula when there is no actuator fault

∥ỹi∥2 ≤
λmax(Pi)
λmin(Pi)

e−(λmin(Qi)/λmax(Pi))(t−t0)∥ỹi(t0)∥2 ≜ χi (14)

In actuator faulty case: In this case, the fault takes place on the ith physical layer node’s actuators, which means that
Φi , Im or fi , 0. we have

V̇di ≤ −2ỹT
i Pi(Hi − εIn)ỹi(t) + 2ỹT

i PiG(Φi − Im)ui(t) + 2ỹT
i PiG fi(t)

≤ −ỹT
i Qiỹi + [G(Φi − Im)ui(t)]T [G(Φi − Im)ui(t)] + [G fi(t)]T [G fi(t)] (15)

Noticing the inequality in (12), it follows that

∥ỹi∥2 ≤
λmax(Pi)
λmin(Pi)

e−(λmin(Qi)/λmax(Pi))(t−t0)∥ỹi(t0)∥2

6
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+
1

λmin(Pi)

∫ t

t0
e−(λmin(Qi)/λmax(Pi))(t−τ)

×
{
[G(Φi − Im)ui(τ)]T [G(Φi − Im)ui(τ)] + [G fi(τ)]T [G fi(τ)]

}
dτ (16)

The above inequality indicates that ∥ỹi∥ will exceed the adaptive threshold χi once there exist bias faults or loss of
effectiveness faults in actuators. As a result, the actuator faults can be detected timely and accurately.

Remark 4. Different from the fault detection method proposed in [8, 26], the DFDO proposed in this paper provides
a more accurate way to detect the actuator faults by utilizing the proposed adaptive threshold, whereas fault detection
observers developed in [8, 26] are based on fixed thresholds which are derived from experience in advance. This
merit is owing to the decreasing factor e−(λmin(Qi)/λmax(Pi))(t−t0) which can provide an exponentially decrease for the time
response in the adaptive fault detection threshold. Therefore, the proposed DFDO possess a lower false missing rate
compared to the ones in [8, 26].

Remark 5. With the implementation of sliding mode observer technique, the fault detection observer in this paper
shows a better robustness performance to the external disturbance in actual environment when compared to [8, 26].

Remark 6. To suppress the chattering phenomenon caused by the sign function, the discontinuous function sign(ỹi)
can be replaced by sat(ỹi/ϵi) where ϵi is the boundary thickness parameter of the saturation function.

4.2. Distributed fault estimation observer design

Recall the problem of distributed fault estimation presented in 3.3. The distributed fault estimation observer
proposed here for the ith physical layer node is utilized to estimated the efficiency factors and the bias faults on-line.
Before giving the formulation of the distributed fault estimation observer, there are two new variables that need to be
defined here

ϕi = [ϕi1, . . . , ϕim]T

Ui = diag{ui1, . . . , uim}
Consequently, the faulty dynamic of the physical layer nodes with actuator fault can be rewritten as follows

ẏi(t) = g(yi(t)) +GUi(t)ϕi +G fi(t) +
N∑

j=1

bi jΓ2y j(t) +
N∑

j=1

di jΓ4x j(t − τ2) + Tωi(t) (17)

By noting (17), the DFEO for the ith node with actuator fault is presented as follows

˙̂yi(t) = g(ŷi(t)) +
N∑

j=1

bi jΓ2ŷ j(t) +
N∑

j=1

di jΓ4x j(t − τ2) +GUi(t)ϕ̂i +G f̂i(t)

+Hei(yi(t) − ŷi(t)) + T ω̄isign(yi(t) − ŷi(t)) (18)

The adaptive updating algorithms for ϕ̂i and f̂ are given as

˙̂ϕi = −µi1ϕ̂i +
1
li1

UT
i GT ỹi (19)

µ̇i1 = −νi1µi1, µi1(0) > 0 (20)

˙̂fi = −µi2 f̂i +
1
li2

GT ỹi (21)

µ̇i2 = −νi2µi2, µi2(0) > 0 (22)

where lik > 0 and νik > 0(k = 1, 2). Therefore, the overall dynamics of the proposed distributed fault estimation
observer can be formulated by

˙̂y = g(ŷ(t)) + (B ⊗ Γ2)ŷ + (D ⊗ Γ4)x(t − τ2) + (IN ⊗G)U(t)ϕ̂ + (IN ⊗G) f̂ (t)
7
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+He(y(t) − ŷ(t)) + (IN ⊗ T )


ω̄1sign(ỹ1)

...
ω̄N sign(ỹN)

 (23)

where ŷ(t) = [ŷT
1 (t), . . . , ŷT

N(t)]T , x(t − τ2) = [xT
1 (t − τ2), . . . , xT

N(t − τ2)]T , g(ŷ(t)) = [g(ŷ1(t))T , . . . , g(ŷN(t))T ]T , U(t) =
diag{U1(t), . . . ,UN(t)}, ϕ̂ = [ϕ̂T

1 , . . . , ϕ̂
T
N]T , f̂ = [ f̂ T

1 (t), . . . , f̂ T
N (t)]T and He = diag{He1, . . . ,HeN}. In addition, based

on (4), the overall dynamics of the physical layer nodes can be represented by

ẏ(t) = g(y(t)) + (B ⊗ Γ2)y(t) + (D ⊗ Γ4)x(t − τ2) + (IN ⊗G)U(t)ϕ + (IN ⊗G) f (t) + (IN ⊗ T )


ω1(t)
...
ωN(t)

 (24)

where y(t) = [y1(t), . . . , yN(t)]T , ϕ = [ϕ1, . . . , ϕN]T , and f (t) = [ f T
1 (t), . . . , f T

N (t)]T . Denoting ỹ(t) = y(t) − ŷ(t),
ϕ̃ = ϕ − ϕ̂, f̃ = f − f̂ . The error dynamic equation between (23) and (24) can be represented as follows

˙̃y = g(y(t)) − g(ŷ(t)) + (B ⊗ Γ2)ỹ + (IN ⊗G)U(t)ϕ̃ + (IN ⊗G) f̃ − Heỹ + (IN ⊗ T )



ω1(t)
...
ωN(t)

 −

ω̄1sign(ỹ1)

...
ω̄N sign(ỹN)


 (25)

Based on (23), (24) and (25), the second main result of this paper is ready to be presented below.

Theorem 2. If Assumptions 1-5 hold, then the DFEO (18) is designed for each physical layer node with actuator bias
fault or LOE fault. The error dynamic equation (25) is asymptotically stable by selecting proper Hei, such that the
inequality λmin(He)− λmax(B⊗ Γ2)− ε > 0 holds, then the adaptive DFEO can offer an accurate estimation of actuator
faults.

Proof. Here, the Lyapunov function is as

V =
1
2

ỹT ỹ +
N∑

i=1

li1
2νi1
ϕT

i ϕiµi1 +

N∑
i=1

li2
2νi2

f T
i fiµi2

+
1
2
ϕ̃T


l11Im

. . .

lN1Im

 ϕ̃ + 1
2

f̃ T


l12Im

. . .

lN2Im

 f̃ (26)

As for V̇ , it holds

V̇ = ỹT
(
g(y(t)) − g(ŷ(t)) + (B ⊗ Γ2)ỹ + (IN ⊗G) f̃ + (IN ⊗G)U(t)ϕ̃ − Heỹ

)

+ỹT (IN ⊗ T )


ω1(t) − ω̄1sign(ỹ1)

...
ωN(t) − ω̄N sign(ỹN)

 +
N∑

i=1

li1
2νi1
ϕT

i ϕiµ̇i1 +

N∑
i=1

li2
2νi2

f T
i fiµ̇i2

+ f̃ T


l12Im

. . .

lN2Im

 ḟ +
[
f̃ T
1 , . . . , f̃ T

N

] 
l12Im

. . .

lN2Im



µ12 f̂1 − 1

l12
GT ỹ1

...

µN2 f̂N − 1
lN2

GT ỹN


+
[
ϕ̃T

1 , . . . , ϕ̃
T
N

] 
l11Im

. . .

lN1Im



µ11ϕ̂1 − 1

l11
UT

1 (t)GT ỹ1
...

µN1ϕ̂N − 1
lN1

UT
N(t)GT ỹN

 (27)

8
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According to Assumptions 2-3, it follows that

V̇ ≤ ε∥ỹ∥2 + ỹT (B ⊗ Γ2)ỹ + ỹT (IN ⊗G) f̃ + ỹT (IN ⊗G)U(t)ϕ̃ − ỹT Heỹ

+ f̃ T


l12Im

. . .

lN2Im

 ḟ − f̃ T


l12Im

. . .

lN2Im




1
l12

GT ỹ1
...

1
lN2

GT ỹN

 + f̃ T


l12µ12Im

. . .

lN2µN2Im

 f̂

+ϕ̃T


l11µ11Im

. . .

lN1µN1Im



ϕ̂1
...
ϕ̂N

 − ϕ̃T


l11Im

. . .

lN1Im




1
l11

UT
1 (t)GT ỹ1
...

1
lN1

UT
N(t)GT ỹN


+

N∑
i=1

li1
2νi1
ϕT

i ϕiµ̇i1 +

N∑
i=1

li2
2νi2

f T
i fiµ̇i2 (28)

V̇ ≤ (−λmin(He) + λmax(B ⊗ Γ2) + ε)∥ỹ∥2 +
N∑

i=1

li1
2νi1
ϕT

i ϕi(−νi1µi1) +
N∑

i=1

li2
2νi2

f T
i fi(−νi2µi2)

+ f̃ T


l12Im

. . .

lN2Im

 ḟ + f̃ T


l12µ12Im

. . .

lN2µN2Im

 f̂ + ϕ̃T


l11µ11Im

. . .

lN1µN1Im

 ϕ̂ (29)

≤ (−λmin(He) + λmax(B ⊗ Γ2) + ε)∥ỹ∥2 +
N∑

i=1

li2 f̃i ḟi +
N∑

i=1

li2µi2 f̃ T
i f̂i +

N∑
i=1

li1µi1ϕ̃
T
i ϕ̂i

−
N∑

i=1

li1
2
ϕT

i ϕiµi1 −
N∑

i=1

li2
2

f T
i fiµi2 (30)

Noting that

li1µi1ϕ̃
T
i ϕ̂i ≤ −

1
2

li1µi1ϕ̃
T
i ϕ̃i +

1
2

li1µi1ϕ
T
i ϕi (31)

li2µi2 f̃ T
i f̂i ≤ −

1
2

li2µi2 f̃ T
i f̃i +

1
2

li2µi2 f T
i fi (32)

Therefore, it can be obtained that

V̇ ≤ (−λmin(He) + λmax(B ⊗ Γ2) + ε)∥ỹ∥2 −
N∑

i=1

1
2

li1µi1ϕ̃
T
i ϕ̃i −

N∑
i=1

1
2

li2µi2 f̃ T
i f̃i +

N∑
i=1

li2 f̃ T
i ḟi (33)

According to [25, 30] and Assumption 4, the above inequality indicates that the estimation error satisfy the ultimately
uniformly bounded property by selecting the appropriate values of Hei, li1, li2, µi1 and µi2. In addition, the estimation
error can be eliminated when the actuator is confronted with constant bias faults or a slowly time-changing bias fault
where ḟi = 0 under this circumstance.

Remark 7. Compared with the DFEO in [18], the proposed adaptive DFEO can guarantee the asymptotical stability
of the error dynamic system (25) when the actuator is suffering from a constant bias fault or a slowly time-changing
bias fault, whereas the error dynamic system in [18] is only proved to be uniformly ultimately bounded no matter the
bias fault is a constant or not. Therefore, the DFEO in this paper provides a better and more accurate estimation value
of the actuator faults.

9
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Remark 8. It should be noted that in [24] only LOE fault is taken into consideration. In addition, the implementation
of the DFEO in [18] is limited to the actuator bias fault case. However, the DFEO in this paper can tackle the
estimation for both actuator bias fault and LOE fault simultaneously. Besides that, the fault estimation observers in
[18, 24] focus on the linear systems whereas the DFEO in (18) not only can be used to linear system, but also can be
implemented to nonlinear system.

Remark 9. There are two significant modifications in the adaptive algorithms of the DFEO, namely, two new dynamic
processes of µi1 and µi2 in (20) and (22), which can result in two merits: i) It improves the accuracy and rapidity of the
actuator fault estimation effectively; ii) The asymptotical stability of the error system (25) can be proved with respect
to the existence of (20) and (22) when the constant bias fault or a slowly time-changing bias fault occurs.

Remark 10. The proposed Lyapunov function in (26) which is inherited from the traditional adaptive sliding mode
observer actually can reflect the stability criteria of the presented DFEO. The time-varying terms

∑N
i=1

li1
2νi1
ϕT

i ϕiµi1 and∑N
i=1

li2
2νi2

f T
i fiµi2 can converges to 0 due to the dynamic processes of µi1 and µi2 no matter the the actuator is faulty or

not. Therefore, once the actuators are free from actuator faults, the estimation error will converge to zero while the
stability of the fault free case is guaranteed by the deduction of the derivation for V which is similar to the actuator
faulty case.

5. Simulation

In this section, two different cases with two types of actuator faults have been taken into consideration. The
effectiveness of the proposed DFDO and DFEO is to be demonstrated in this section. The cyber layer nodes and
the physical layer nodes are represented by the Lorenz system. In addition, there are three nodes in the cyber layer
network and the physical layer network respectively and the topology of the CPSs for each layer is shown in Fig.3.

The dynamic equations of the CPSs are given as follows

ẋi(t) = Ω(xi(t)) +
N∑

j=1

ai jΓ1x j(t) +
N∑

j=1

ci jΓ3y j(t − τ1) (34)

ẏi(t) = g(yi(t)) +Gui(t) +
N∑

j=1

bi jΓ2y j(t) +
N∑

j=1

di jΓ4x j(t − τ2) + Tωi(t) (35)

where Γ1 = Γ2 = Γ3 = Γ4 = diag{1, 1, 1}, T = I3, the time fixed delay are τ1 = τ2 = 0.5s, A = B = C = D =−2 1 1
1 −2 1
1 1 −2

, the distribution matrix G =

1 0 0 1/2 1/3
0 1 0 1/2 1/3
0 0 1 1/2 1/3

 and the nonlinear functions Ω(·) and y(·) in cyber

layer nodes and physical layer nodes are given as

Ω(xi(t)) = [10xi2 − 10xi1, 28xi1 − xi1xi3 − xi2, xi1xi2 − 8/3xi3]T , i = 1, 2, 3

g(yi(t)) =
[
10yi2 − 10yi1, 28yi1 − yi1yi3 − yi2, yi1yi2 − 8/3yi3

]T , i = 1, 2, 3

ωi(t) =

 1.5 × 10−2(3cos(t) + 1)
2 × 10−2(1.5cos(t) + 2sin(t))

1.25 × 10−2(cos(t) + 2)

 , i = 1, 2, 3

The initial states of the physical layer nodes and the cyber layer nodes are selected as x1(0) = [0.1, 0.3,−0.1]T ,
x2(0) = [0.9,−0.7, 0.3]T , x3(0) = [−0.2, 0.5, 0.1]T , y1(0) = [−0.3, 0.5, 0.3]T , y2(0) = [0.5,−0.3, 0.5]T and y3(0) =
[0.2, 0.1,−0.3]T . Denoting ei(t) = yi(t) − xi(t) as the error between the corresponding cyber layer nodes and the
physical layer nodes, the time response of the error in actuator fault free case is demonstrated in Fig. 4. It can be
found that the error between the cyber layer nodes and the corresponding physical layer nodes can converge to 0 with
the implementation of the basic control law proposed in [27] by integrating time delay control methods. In addition,
from Figs. 4, 5 and 6, it can be noticed that all the states of the cyber layer nodes and the physical layer nodes are
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Figure 3: The topology structure of the CPSs in simulation
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Figure 4: The time responses of state errors between the cyber layer nodes and the physical layer nodes(no fault)
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Figure 5: Time responses of the cyber layer nodes’ states (no fault)
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Figure 6: Time responses of the physical layer nodes’ states (no fault)
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synchronized with the utilization of the aforementioned control law under the influence of the external disturbances
acting on the physical layer nodes.

In order to verify the effectiveness of the proposed DFDO and the DFEO, two different actuator faulty cases are
taken into consideration in the following subsections.

5.1. Actuators with single type of fault
In this subsection, the actuators in physical layer nodes are assumed to be affected by only one type of fault,

namely, actuator bias fault. It is assumed that y1 in the physical layer network is suffering from actuator bias fault and
the bias fault vector is selected as

f1 =

[0, 0, 0, 0, 0]T , if 0 ≤ t < 1s
[20, 0, 0, 0, 0]T , else

Noting that the bias fault takes place on the first actuator in y1 at the first second. Here, the parameters of the DFDO
and the DFEO are selected as Pi = diag{1.2, 1, 1.3}, Hi = diag{20, 20, 20}, the initial states of the fault detection
observer are ŷdi(0) = [−0.3, 0.5, 0.3]T . As for the fault estimation observer, the related parameters are given as
Hei = diag{90, 90, 90}, µi1(0) = 1, µi2(0) = 1.5, νi1 = νi2 = 100, and the initial state of the fault estimation observer
satisfies ŷei(0) = [0.3, 1, 1.3]T . When there exists actuator fault, the synchronization of the cyber layer nodes and the
physical layer nodes will be broken, and the error ei which is presented in Fig. 7 is biased from zero when compared
to the fault free case.
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Figure 7: Time responses of ei in actuator single fault case

According to the proposed DFDO, the actuator fault can be detected timely and the related detection curves
are depicted in Fig. 8. Once the actuator fault takes place, the corresponding fault detection residual will exceed the
adaptive threshold, then the actuator fault can be detected in time. In addition, a fixed threshold fault detection observer
proposed in [25] is also implemented in order to make a comparison between the adaptive threshold method and the
fixed threshold method. From Fig. 9, it can be noticed that the fixed threshold method indeed can provide a timely
fault alarm with respect to the actuator bias fault. However, by referring the time-axises, the bias fault alarm sent by
the fixed threshold fault detection observer is triggered a slightly later than the adaptive threshold method in this paper.
This merit is owing to the decreasing factor e−(λmin(Qi)/λmax(Pi))(t−t0) which can provide an exponentially decrease for the
time response in the adaptive fault detection threshold. Therefore, the proposed adaptive fault detection observer can
provide a faster fault detection and a timely fault alarm when compared to the fixed threshold detection method for
the actuator bias fault case.
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Figure 8: Time responses of the fault detection curves with actuator bias fault
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Figure 9: Time responses of the fault detection curves with fixed threshold
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According to the DFEO, the value of actuator bias fault can be reconstructed in Fig. 10. Similarly, a robust
fault estimator is also provided in [18]. The estimation provided by the DFEO shows a better estimation process
and accuracy with respect to the fault reconstruction method in [18]. In addition, the dynamic estimation process
of the bias fault can be modified by µi1. It should be noted that the dynamic process of the parameter µi1 not only
stimulate the fault estimation procedure but also guarantee the estimation error with an asymptotically convergence
time response for the actuator constant bias fault while the result from [18] shows an uniformly ultimately bounded
performance.
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Figure 10: The estimation of actuator bias fault

5.2. Actuators with multiple types of fault

In this subsection, it is assumed that the actuators in the physical layer nodes are suffering from two different types
of faults, namely, actuator bias fault and LOE fault. Similar to the aforementioned subsection, actuator faults only
take place in y1. The actuator bias fault and the efficiency factors here are chosen as follows

f1 =

[0, 0, 0, 0, 0]T , if 0 ≤ t < 0.5s
[15, 0, 0, 0, 0]T , else

ϕ1 =

[1, 1, 1, 1, 1]T , if 0 ≤ t < 0.5s
[1, 0.5, 1, 1, 1]T , else

It can be noticed that the first actuator in the physical layer node y1 is suffering from actuator bias fault at 0.5s
and the second actuator loses 50% of its control power when the time is 0.5s. The parameters of the proposed
DFDO and DFEO are selected as Pi = diag{1.3, 1, 1.2}, Hi = diag{21, 22, 21}, the initial states of the fault detection
observer are ŷdi(0) = [−0.3, 0.5, 0.3]T . As for the fault estimation observer, the related parameters are given as
Hei = diag{95, 92, 93}, µi1(0) = 1, µi2(0) = 1.6, νi1 = νi2 = 120, and the initial state of the fault estimation observer
satisfies ŷei(0) = [0.3, 1, 1.3]T . The time responses of the error ei is demonstrated in Fig. 11. The error ei is deviated
from the desired trajectory curves which is shown in Fig. 4 with respect to the occurrence of the bias fault and LOE
fault.

Once the faults take place on the corresponding actuators, the proposed DFDO can detect the occurrence of the
actuator faults timely, which is depicted in Fig.12. From Fig.12, it can be noticed that the residual curve crosses
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Figure 11: Time responses of ei in actuator multiple fault case

the adaptive threshold determined by the proposed fault detection observer after the occurrence of the actuator faults
within a short time. While the fixed threshold method in [25] takes more time to identify the occurrence of the actuator
faults. Besides, the fixed threshold based fault detection observer in [25] also demonstrates a slightly insensitivity to
the actuator loss of effectiveness scenario in the simulation process when compared to the adaptive threshold method
in this paper. This problem which the insensitivity to the actuator LOE fault is alleviated in the proposed adaptive
threshold based fault detection scheme and the corresponding theoretical proof is given in Section 4.1.

The estimation of actuator bias fault and the efficiency factor, which are estimated by the proposed DFEO, are
shown in Figs 14 and 15. Compared with [24], the estimation of the corresponding efficiency factor has a lower
overshoot and a rather smoother estimation process which is very important for the construction of an active fault
tolerant controller. This lower overshoot and the rather smoother estimation process is resulted from the adaptive
process of the parameter µi1. Due to the existence of the −µi1ϕ̂i in the adaptive law of ϕ̂i, the fault estimation procedure
is faster than the result presented by the classical adaptive fault estimation observer. Besides, the dynamic tuning µi1
changes the time response of ϕ̂i when compared to a fixed parameter µi1 that can lead to a lower overshoot with respect
to the fault estimation result in [24].

Different from [18, 24], the proposed DFEO can provide not only the estimation of actuator bias fault, but also
the efficiency factor simultaneously. This advantage may expend the potential application of the proposed adaptive
DFEO.

6. Conclusion

The robust DFDO and the DFEO for the CPSs’ physical layer nodes are proposed in this paper with respect to the
existence of the external disturbance. Both actuator bias fault and LOE fault can be detected in time by implementing
the widely-used adaptive threshold method. In addition, the proposed DFEO can offer an accurate estimation of the
actuator faults by introducing a dynamic process to the corresponding adaptive parameters. The simulation with two
different actuator faulty cases demonstrates the effectiveness of the proposed DFDO and the DFEO. However, the fault
detection and estimation method in this paper can not deal with the actuator saturation situation, and the solution of
fault detection and estimation in actuator saturation case will be our future research work. In addition, the relaxation
on the pre-knowledge of the external disturbance in the fault detection observer and fault estimation observer for the
cyber-physical systems is another promising direction for the researchers’ future work.
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Figure 12: Time responses of the fault detection curves in actuator multiple fault case
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Figure 13: Time responses of the fault detection curves in actuator multiple fault case
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Figure 14: The estimation of actuator bias fault in actuator multiple fault case
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