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IV Abstract 

Viral proteins have a multitude of roles during pathogenesis and replication, in order 

to maximise likelihood of virus survival during infection. However, in many cases 

viral proteins are cytotoxic, resulting in the decimation of immune cells, imbalanced 

antiviral responses and, in the case of deadly haemorrhagic viruses, organ failure, 

often leading to death of the host. This is largely the effect of ebolaviruses during 

infections in humans, as the increased understanding of this virus has allowed us to 

recognize how its proteins are involved in pathogenesis. However, there is still a 

substantial amount of knowledge to be discovered about this deadly virus. Here, we 

attempt to increase our knowledge on cytotoxicity of several Ebola virus proteins, 

namely VP24 and delta-peptide. Our journey in the past three years has uncovered 

a novel effect of VP24 in mammalian cells. Largely known for its interferon 

antagonism, prolonged incubation of VP24 appears to upregulate markers of cell 

cycle arrest, such as p21. Furthermore, we report increased expression of γH2AX, 

a marker for DNA damage. In the case of delta-peptide, we attempted several 

techniques for gathering structure-function data, such as nuclear magnetic 

resonance imaging to lipidic cubic phase crystallography. We have managed to 

generate peptide crystals in a lipid environment, with the intention of carrying out x-

ray scatter to generate a structure. By increasing our knowledge on viral proteins, 

every small piece of research forms a chain of information with the hopes to 

generating a successful form of treatment against this deadly disease. 
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1 Introduction 

1.1 Overview of Ebolavirus 

1.1.1 History of Ebolavirus 

On the 26th of August 1976, a 44 year-old teacher visited the mission hospital of his 

local village called Yambuku, Zaire (now known as Democratic Republic of Congo). 

With the intent of seeking medical attention for an illness he acquired resembling 

malaria, he was given an injection of chloroquine. However, syringe needles were 

often reused on several patients at the hospital, and without knowing that the index 

case was infected with a very deadly unknown pathogen, the disease swiftly spread 

to other patients. The destruction that ensued was rapid; within a little more than a 

month, 280 out of the 318 people that were infected succumbed to the virus 

(Commission, 1978). Blood samples from one of the Belgian nurses present at the 

Mission Hospital were sent in a Thermos flask to Antwerp for further analysis, as no 

one knew what virus was responsible for this outbreak. At the time, researchers were 

aware of a deadly filovirus circulating in Africa called Marburg virus, which also 

causes haemorrhagic fever. All the more coincidentally, another deadly 

haemorrhagic virus was causing an outbreak in Sudan with similar mortality as seen 

in Yambuku (Team, 1978). The research team in Antwerp collaborated with several 

other established research centres including Porton Down in the UK and the CDC 

Atlanta, Georgia, where cultures of the virus were observed under electron 

microscopy. It was at this point where the newly discovered virus was given its name: 

Ebola virus, after the Ebola river near Yambuku (Pattyn et al., 1977). Interestingly, 

the pathogen responsible for the 1976 outbreak in Sudan was revealed to be Sudan 

virus, one of the 5 members of the Ebolavirus genus. 
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1.1.2 Phylogeny and Genome 

Ebolaviruses are single-sense negative-strand RNA viruses. They belong to the 

family of filoviridae, which is comprised of three genera: Ebolavirus, Cuevavirus and 

Marburgvirus. There are currently five members pertaining to the Ebolavirus genus; 

Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) Bundibugyo virus 

(BDBV) and Reston virus (RESTV) (Maes et al., 2019). A new filovirus has been 

recently discovered in Africa named Bombali virus (BOMV), retaining 55-59% 

similarity at nucleotide level and 64-72% similarity at amino acid level [Figure 1] 

(Goldstein et al., 2018). There is no evidence of BOMV infecting humans to date. 

Due to its discovery in August 2018, it has yet to be assigned taxonomically by the 

International Committee on Taxonomy of Viruses.  

 

Figure 1. Phylogenetic Analysis of filoviruses based on full genome 

sequences.  

This phylogenetic tree represents how closely related the different members of the 
filoviridae are. BOMV has also been included. Adapted from The discovery of 
Bombali virus adds further support for bats as hosts of Ebolaviruses. Goldstein et al., 
2018. 
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The genome length across Ebolaviruses is approximately 19 kilobases in length, 

comprising of 7 genes; nucleoprotein (NP), viral protein (VP)35, VP40, glycoprotein 

(GP), VP30, VP24 and the L polymerase protein (L), separated by intergenic regions 

and overlaps [Figure 2] (Emanuel, Marzi and Feldmann, 2018). However, the 

genome organisation differs between EBOV and RESTV. EBOV contains several 

Figure 2. Filovirus genome organisation.  

The schematics depict how the genes are arranged, highlighting the intergenic 
regions and gene overlaps between the species. The schematic representing 
EBOV may also represent BDBV, TAFV and SUDV as they are arranged in similar 
fashion. Figure adapted from Filoviruses: Ecology, Molecular Biology, and 
Evolution. Emanuel, Marzi, Feldmann, 2018 
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gene overlaps between VP35 and VP40, GP and VP30, and VP24 and L (Ikegami 

et al., 2001). RESTV however does not retain an overlap between GP and VP30.  

Each gene of Ebolaviruses contains a single open reading frame (ORF), with the 

exception of GP, containing 3 overlapping ORFs, each leading to production of 

different variants of GP products [Figure 3] (Volchkov et al., 1995; Sanchez et al., 

1996). This is due to site-specific transcriptional editing by L polymerase, resulting 

in secreted (s)GP being produced from undedited RNA, whereas the full length GP 

is produced when an additional adenosine is inserted into the transcript. Lastly, when 

two aditional adenosine residues are added, a third GP gene product is produced 

called small soluble (ss)GP (Mehedi et al., 2011). 

 

1.1.3 Ecology and Epidemiology 

Almost all Ebolaviruses, with the exception of Reston virus, are found in Africa. The 

reservoir for this deadly virus has yet to be conclusively determined, though it is 

highly suspected that fruit bats are the reservoir, as experimental inoculation of the 

virus did not result in illness despite viral replication (Swanepoel et al., 1996). A 

survey conducted in Gabon during Ebola virus outbreaks between 2001 and 2003 

also found viral RNA in liver and spleen samples of 3 different species of fruit bats 

(Leroy et al., 2005). The hypothesis of fruit bats being the reservoir also stems from 

Figure 3. Open Reading Frames in the GP gene. 

The first 295 amino acids of all GP gene products are the same but differ towards the 
C-terminal end. The most expressed product from the GP gene is sGP, followed by GP 
and lastly ssGP. Figure taken from Mehedi et al., 2011. 
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the fact that every outbreak appears to have resulted from environments shared by 

humans or susceptible hosts, and fruit bats (Groseth, Feldmann and Strong, 2007). 

Interestingly, fruit bats outside of Africa have been reported to host filoviruses such 

as Lloviu Cuevavirus in Spain, Hungary and China, strongly suggesting that bats are 

reservoirs of filoviruses and that these viruses are globally distributed, despite not 

being pathogenic in humans compared to the filoviruses found in Africa (Hayman, 

2016). Another question that is often pondered is whether seasonal changes affect 

transmission as this may affect the distribution of bats, for example; food scarcity, 

weather patterns or pregnancy, as these factors may affect bat migrations resulting 

in closer contact between humans or other hosts, making the spillovers of virus 

between bats and humans much more likely (Leroy et al., 2005). Risk factors have 

been identified for potential outbreaks, as many index patients have lifestyles that 

brings them into close proximity with bats such as hunters or workers entering 

forests, caves or abandoned mines (Groseth, Feldmann and Strong, 2007). Human 

to human transmission of the virus is very efficient for a virus only transmitted through 

infected fluids. This was seen during the 2014-2016 Ebola virus outbreak as the 

index patient was an 18 month old boy from a village in Guinea’s Guéckédou 

prefecture called Meliandou in December 2013 (Baize et al., 2014; Timothy et al., 

2019). By February-March 2014 patients were tested positive for Ebola virus 

infection in Macenta and Kissidougu.  By the end of March the virus has reached the 

capital city of Conakry, due to an infected individual related to the index case’s 

extended family, which initiated multiple chains of transmission (Kaner and Schaack, 

2016). This is testament to how rapid Ebola virus can be transmitted by human to 

human contact especially in areas where humans live in close contact and often 

travel. 
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Table 1. Chronology of previous Ebola Virus disease outbreaks 
This table was adapted from the World Health Organisation fact sheet on Ebola Virus 
Disease page. Accessed on 15th of April, 2019. * Includes suspect, probable and 
confirmed EVD cases. DRC: Democratic Republic of Congo 
https://www.who.int/en/news-room/fact-sheets/detail/ebola-virus-disease 

Year Country 
Ebolavirus 

species Cases Deaths Case fatality 

2018-2019 DRC EBOV Ongoing   

2018 DRC EBOV 54 33 61% 

2017 DRC EBOV 8 4 50% 

2015 Italy EBOV 1 0 0% 

2014 DRC EBOV 66 49 74% 

2014 Spain EBOV 1 0 0% 

2014 UK EBOV 1 0 0% 

2014 USA EBOV 4 1 25% 

2014 Senegal EBOV 1 0 0% 

2014 Mali EBOV 8 6 75% 

2014 Nigeria EBOV 20 8 40% 

2014-2016 Sierra Leone EBOV 14124* 3956* 28% 

2014-2016 Liberia EBOV 10675* 4809* 45% 

2014-2016 Guinea EBOV 3811* 2543* 67% 

2012 DRC BDBV 57 29 51% 

2012 Uganda SUDV 7 4 57% 

2012 Uganda SUDV 24 17 71% 

2011 Uganda SUDV 1 1 100% 

2008 DRC EBOV 32 14 44% 

2007 Uganda BDBV 149 37 25% 

2007 DRC EBOV 264 187 71% 

2005 Congo EBOV 12 10 83% 

2004 Sudan SUDV 17 7 41% 

2003 Congo EBOV 35 29 83% 

2003 Congo EBOV 143 128 90% 

2001-2002 Congo EBOV 59 44 75% 

2001-2002 Gabon EBOV 65 53 82% 

2000 Uganda SUDV 425 224 53% 

1996 
South Africa (ex-
Gabon) 

EBOV 
1 1 100% 

1996 Gabon EBOV 60 45 75% 

1996 Gabon EBOV 31 21 68% 

1995 DRC EBOV 315 254 81% 

1994 Côte d'Ivoire TAFV 1 0 0% 

1994 Gabon EBOV 52 31 60% 

1979 Sudan SUDV 34 22 65% 

1977 DRC EBOV 1 1 100% 

1976 Sudan SUDV 284 151 53% 

1976 DRC EBOV 318 280 88% 

https://www.who.int/en/news-room/fact-sheets/detail/ebola-virus-disease
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1.1.4 Ebola Virus Disease 

Ebola virus enters the human body through mucosal surfaces and sites of skin injury. 

At early stages of infection, an asymptomatic incubation period exists whereby an 

individual would continue with their daily routine. However, as viral load increases 

during incubation, initial non-specific symptoms of Ebola virus disease (EVD) 

become apparent such as fatigue, muscle weakness and malaise, followed by onset 

of fever (Bwaka et al., 1999). At around 1 week of illness, further symptoms include 

vomiting, watery diarrhoea and nausea, at which this point the infected individual is 

considered to be most infectious (Baseler et al., 2017). A diffuse maculopapular rash 

becomes visible. Week 2 is when EVD peaks as organ damage occurs such as renal 

failure and hepatic injury [Figure 4]. It is at this point where haemorrhaging occurs. 

Figure 4. Timeline of the typical case of Ebola Virus Disease in humans.  
The timeline of EVD shows that peak illness is associated with peak viremia, as 
detected by qRT-PCR, a measurement used to detect viral RNA in the blood of 
patients. 
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Furthermore, EVD causes central nervous system dysfunction resulting in 

neuromuscular impairment and  meningoencephalitis befalls the infected individual 

at this stage of infection (Chertow et al., 2016). Other organs affected include eyes, 

as ocular disturbances resulting in blurred vision and onset of uveitis occur in late 

stages of infection, and the heart, as myocardial disfunction has been detected in 

infected individual. During week 2 and week 3 of infection viral load begins to 

decrease. Week 4 is considered to be the recovery phase for survivors of EVD as 

tissue damage repair occurs. However, sites of immunological privilege allow for 

persistence of the virus such as eyes, central nervous system and testis (Baseler et 

al., 2017). Symptoms often reported by survivors include uveitis, blurred vision, 

muscular pain and fatigue. 

 

 Current literature has suggested that factors present in acute phase of EVD may 

determine chances of survival. Factors present in the early stages of infection 

include viral load and activation of various host pathways in response to the infection. 

With regards to viral load, ct (cycle threshold) values by quantitative real-time PCR 

have been fairly useful to determine outcome. CT values are defined as the number 

of cycles during PCR that are required for florescent signal to exceed background 

fluorescence, thus giving you a positive result. Therefore, a low ct value indicates 

high amounts of viral load.  During infection, low ct values ~12 suggest fatal outcome 

whereas ~30 suggest survival (Fitzpatrick et al., 2015). However, the issue lies when 

ct values fall in the middle of these two extremes, by which point it may be considered 

that an individual would have an equal chance of fatal or survival chance. By looking 

at gene pathways one could further predict the severity of EVD and tailor the 

treatment required for the patient. Some of the biggest differences between fatal and 

survivor outcome was the activation of interferon signalling pathways, as a high 

amount of activation was correlated with fatal outcome (X. Liu et al., 2017). 

Furthermore, differences in types of immune cell abundance was also associated 

with patient outcome, as fatal cases often had less circulating CD14+ monocytes 

and lower NK cells in peripheral blood (X. Liu et al., 2017). These indicators suggest 

that a robust immune response to the virus may be a key factor in fatal outcomes. 
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Therefore, understanding determinants for outcome of EVD may be of great use for 

diagnostic and treatment approaches. 

 

1.2 Ebolavirus Proteins 

*The following sections on Ebolavirus proteins and their roles were taken from our 

published review: Ebolaviruses: New roles for old proteins (Cantoni and Rossman, 

2018). The figure legends have been renumbered for the purpose of this thesis. 

 

1.2.1 VP24* 

 

VP24 is one of the most studied filovirus proteins, with the majority of studies 

focusing on its primary role in inhibiting the host IFN response. VP24 is known to 

inhibit IFN-α/β and IFN-γ activation by binding to key host proteins from the 

karyopherin α family: karyopherin α1, α5 and α6, preventing their binding to and the 

subsequent nuclear import of signal transducer and activator of transcription 1 

(STAT1) (Reid et al., 2006). In addition, VP24 blocks IFN signalling by directly 

binding to STAT1, preventing its phosphorylation, nuclear import and transcription 

of interferon stimulated genes (ISG) (Reid et al., 2006; Zhang, Bornholdt, et al., 

2012; Xu et al., 2014). Recent data suggests VP24 is also able to block IFN induction 

by supressing nuclear factor-kappa B (NF-kB) activation following tumour necrosis 

factor alpha (TNF- α) stimulation  (Guito et al., 2017) and by supressing retinoic acid-

inducible gene I (RIG-I) dependent activation of IFN-γ1 gene expression (F. He et 

al., 2017). Furthermore, the innate response antagonist domains (IRAD) in EBOV 

VP24 and VP35 have been implicated in preventing the maturation of EBOV-infected 

dendritic cells by modulating global gene expression (Lubaki et al., 2013; Ilinykh et 

al., 2015). This effect required both VP24 and VP35 IRAD domains, though the VP24 

IRAD domain alone was sufficient to down-regulate cytokine signalling pathways 

(Ilinykh et al., 2015). These results highlight the importance of cooperative action of 

multiple viral proteins for evasion of the host immune response.  
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VP24 has also recently been seen to function in capsid assembly (Huang et al., 

2002). NP and VP35 are known to be the major components of the viral 

nucleocapsid, though VP24 is weakly associated and may act as a catalyst for 

particle formation (Huang et al., 2002). Further evidence for a structural role of VP24 

comes from the observation that N- or C-terminal deletions in VP24 inhibited the 

formation of nucleocapsid-like structures mediated by VP24, VP35 and NP co-

expression (Han et al., 2003). It was suggested that the N-terminal domain of VP24 

facilitates capsid formation by mediating protein-protein interactions. This is 

supported by the observation that mutation of the VP24 N-terminal domain results in 

protein aggregation (Han et al., 2003). A recent study confirmed the interaction 

between VP24 and NP, showing that VP24 residues V170 and N171 are located on 

a highly-conserved exposed loop that interacts with NP during nucleocapsid 

assembly (Banadyga et al., 2017). Co-expression of VP24 and VP40 results in a 

greater production of virus-like particles (VLPs) than when VP40 is expressed alone 

(Licata et al., 2004). Similarly, in live EBOV infection, VP24 small interfering RNA 

(siRNA) knockdown decreases viral budding and increases the retention of viral 

proteins within the cell (Mateo et al., 2011). Further evidence suggests that VP24 

binds to VP35 on the outer surface of the nucleocapsid where it organizes the 

adjacent NP layer, promoting nucleocapsid stability and explaining the observed 

interactions between NP, VP24 and VP35 during nucleocapsid formation (Beniac et 

al., 2012).  

In addition to its role in nucleocapsid stability, VP24 may be necessary for 

incorporation of the viral RNA genome into the nucleocapsid. Several studies have 

shown that VP24, together with VP35, induce conformational changes in NP that are 

necessary for vRNA encapsidation (Huang et al., 2002; Noda et al., 2005; 

Watanabe, Noda and Kawaoka, 2006). It was shown that VP24 may be directly 

involved in length-dependent RNA interactions and packaging (Watt et al., 2014). In 

the study, transcription and replication-competent virus-like particles (trVLPs) were 

analysed for RNA content and a significant reduction of packaged RNA was 

observed when VP24 was knocked-down with an interfering micro-RNAs (miRNA). 

The trVLPs that were produced showed a twofold reduction in RNA content and a 

tenfold reduction of infectivity, suggesting that VP24 may play an essential role in 
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RNA packaging. Furthermore, disruption of the VP24-NP interaction reduced RNA 

packaging and resulted in a significant reduction in reporter activity, highlighting the 

importance of VP24 in RNA packaging (Banadyga et al., 2017). In addition, trVLP 

reporter gene activity was significantly affected by the presence of VP24 in a 

genome-length dependent manner. Using the trVLP tetra-cistronic genome system, 

the presence of VP24 during VLP production resulted in a 25-fold increase in 

reporter gene activity upon subsequent infection, whereas the presence of VP24 had 

no effect when mono-cistronic mini-genome systems were used in the trVLP, 

suggesting a genome length-dependent role for VP24 in RNA packaging and 

VLP/virion infectivity. Surprisingly, VP24 may also have a length-dependent role in 

transcriptional regulation. It was observed that VP24 moderately inhibited the 

expression of reported genes from mono-cistronic mini-genome plasmids 

(Watanabe et al., 2007). However, VP24 expression had no effect on protein 

expression from the trVLP tetra-cistronic genomes (Watt et al., 2014). Whilst the 

impact of VP24 on protein expression is not clear, VP24 itself may be subject to 

length-dependent transcriptional regulation. Recent work has implicated the length 

of the intergenic region (IR) between VP30-VP24 as having a significant impact on 

VP24 expression by regulating transcription initiation frequency (Neumann, 

Watanabe and Kawaoka, 2009; Brauburger et al., 2014). The importance of the 

broad range of VP24 functions during virus replication are highlighted by the fact that 

it has not been possible to create a VP24-deficient recombinant EBOV, even when 

VP24 is supplied in trans (Mateo et al., 2011). 

1.2.2 VP35* 

As with VP24, VP35 is primarily known for its multifaceted ability to suppress the 

host cell immune response. VP35 is a type-I interferon antagonist, inhibiting the 

activation of interferon regulatory factor (IRF)-3 via double-stranded RNA binding 

and reducing IFN-α/β production by inhibiting RIG-I signalling (Basler et al., 2000; 

Cárdenas et al., 2006; Luthra et al., 2013). VP35 also blocks IFN production by 

increasing protein inhibitor of activated STAT 1 (PIAS1)-mediated SUMOylation of 

IRF-7, thus inhibiting IFN production following toll-like receptor (TLR) and RIG-I 

activation (Chang et al., 2009). Lastly, VP35 is a suppressor of RNA silencing, 
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functionally equivalent to the human immunodeficiency virus (HIV-1) trans-activator 

of transcription (Tat) protein and important for viral evasion of the innate immune 

response (Haasnoot et al., 2007). Together, there is significant evidence 

demonstrating VP35’s intricate ability to inhibit innate immune signalling and the host 

antiviral response [Figure 5].  

Recent work suggests that VP35 may have more diverse functions during virus 

replication, as VP35 was shown to interact with L and facilitate genome transcription 

through the formation of the RdRp complex and genome packaging through 

association with NP (Groseth et al., 2009; Prins et al., 2010; Kirchdoerfer et al., 

2016). The first 450 residues of VP35 appear to be essential for binding to L and 

thus RdRp function, whereas the C-terminus associates with NP, thus linking NP-L 

during nucleocapsid assembly (Prins et al., 2010; Trunschke et al., 2013). N-terminal 

deletions in VP35 block these interactions and were sufficient to inhibit the replication 

and transcription of a EBOV mini-genome system (Trunschke et al., 2013). The role 

of the VP35 C-terminus in capsid assembly is perhaps surprising, as this region 

contains the interferon inhibitory domain responsible for its main role in immune 
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evasion. However, this domain contains several conserved stretches of basic 

residues, the central region is involved in dsRNA binding and IFN inhibition whereas 

a preceding stretch mediates interaction with NP (Prins et al., 2010). Further 

research found the VP35-NP interaction controls the switch between RNA-bound NP 

and free NP, thus switching between genome replication and genome packaging in 

the nucleocapsid (Leung et al., 2015). A N-terminal peptide derived from the VP35 

NP-binding protein region (NPBP) binds NP with high affinity causing the release of 

Figure 5. Multiple roles of VP35 during virus replication 
VP35 inhibits the type-I IFN response through several different mechanisms. VP35 
can bind to dsRNA, preventing the activation of RIG-I signalling. In addition, VP35 
blockade of IRF3 and IRF7 phosphorylation inhibits the production of IFN-β. 
Recent studies have also highlighted the importance of VP35 in regulating NP–
RNA association. During viral genome replication, the VP35 N-terminal peptide 
binds to NP, enabling the vRNA to associate with the RdRp complex for replication. 
During virus assembly, VP35 disassociates, enabling NP to oligomerise, bind RNA, 
and form the nucleocapsid. 5’PPP, 5’ triphosphate; dsRNA, double-stranded RNA; 
IFN, interferon; IKK, inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF, 
interferon regulatory factor; MAVS, mitochondrial antiviral-signalling protein; MDA5, 
melanoma differentiation-associated protein 5; NP, nucleoprotein; PACT, protein 
activator of the interferon-induced protein kinase; RdRp, RNA-dependent RNA 
polymerase; RIG-I, retinoic acid-inducible gene I; TANK, tumour necrosis factor–
receptor-associated factor family member–associated nuclear factor kappa B 
activator; TBK1, tumour necrosis factor–receptor-associated factor family member–
associated nuclear factor kappa B activator binding kinase 1; TRAF3, tumour 
necrosis factor–receptor-associated factor 3; VP, viral protein; vRNA, viral RNA. 
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RNA from NP and resulting in the activation of genome transcription and the 

inhibition of NP oligomerization [Figure 5] (Leung et al., 2015). Additional 

investigation of VP35-NP binding showed two further interaction sites. Hydrophobic 

VP35-NP binding at these sites inhibited NP oligomerisation and prevented NP-RNA 

binding by blocking access to the RNA binding domain (Kirchdoerfer et al., 2015). 

Work by Leung et al. suggest that during nucleocapsid formation the NPBP peptide 

first disassociates from NP, then RNA binds to NP followed by NP oligomerization. 

In contrast, Kirchdoerfer et al. show that monomeric NP has no significant affinity for 

RNA, suggesting that the NPBP peptide would be displaced by an additional NP 

molecule, causing NP oligomerization which would then allow for RNA binding. 

However, in either process, VP35-NP interactions are crucial for virus replication and 

are being explored as targets for future therapeutics (Ren et al., 2016; G. Liu et al., 

2017).  

VP35 also undergoes further protein-protein interactions that may affect viral 

genome transcription through the interaction with the cytoplasmic dynein light chain 

(LC8) (Kubota et al., 2009). LC8 is a highly conserved 8kDa subunit of the 

cytoplasmic dynein motor complex but can also exist as a dimer in soluble form, 

where it can affect viral transcription and assembly (Tan et al., 2007; Kirkham et al., 

2016). LC8 was seen to stabilize VP35 N-terminal oligomerisation in a dose-

dependent manner and enhance viral genome synthesis (Luthra et al., 2015). It was 

noted that LC8 functions mostly in the early stages of infection, enhancing early viral 

gene expression before the host cells are able to establish the antiviral state. Thus, 

VP35 modulation of viral RNA transcription can facilitate virus replication while 

simultaneously enhancing immune evasion.  

 

1.2.3 VP30* 

The minor nucleoprotein VP30 has the primary role of initiating EBOV transcription 

(Weik et al., 2002). It is dynamically phosphorylated, whereby upon phosphorylation, 

transcription is negatively regulated, enabling binding to NP (Modrof et al., 2002; 

Biedenkopf, Lier and Becker, 2016). In turn this permits interactions that regulate 

viral RNA synthesis (Kirchdoerfer et al., 2016). VP30 binds zinc ions due to the 



 

 

1-15 

presence of an unconventional zinc-binding motif, facilitating RNA binding and 

increasing viral genome transcription (Modrof, Becker and Mühlberger, 2003; John 

et al., 2007; Biedenkopf et al., 2016; Schlereth et al., 2016).  

In addition to its RNA binding role in transcription, VP30 also interferes with cellular 

RNA silencing (Fabozzi et al., 2011). In the presence of siRNA, VP30 was seen to 

interact with the essential RNA interference (RNAi) protein Dicer, though the VP35 

N-terminus RNA binding domain was not required for the interaction or for the 

suppression of RNAi [Figure 6]. As with the RNA silencing suppressor activity of 

VP35, the exact role of RNAi in antiviral immunity is not clear, nor is the consequence 

on EBOV replication of blocking miRNA/siRNA processing as mediated by VP30 (Li 

et al., 2013). However, despite the fact that RNA binding is not required for RNA 

silencing suppression, VP30 was seen to bind to a variety of non-viral RNAs. VP30-

RNA binding required specific base composition and structure of the target RNA 

molecule (Schlereth et al., 2016), though it is not clear if there is a function of VP30 

binding to non-viral RNA or if this is a consequence of its necessary binding to viral 

RNA during transcription.  

 

Figure 6. Ebolavirus proteins VP30, VP35, and VP40 are suppressors of RNA 
silencing  
Cellular RNA interference requires the assembly of the Dicer:TRBP:PACT 
complex. VP30 inhibits RNAi by interacting with Dicer, preventing TRBP binding 
and complex activity. VP35 also inhibits complex assembly by binding TRBP and 
PACT, preventing their association with Dicer. VP40 suppresses RNAi during 
infection or when transferred to bystander immune cells through exosomes, though 
the mechanism by which VP40 inhibits the Dicer machinery is currently unknown. 
PACT, protein activator of the interferon-induced protein kinase; RNAi, RNA 
interference; TRBP, Trans-activation response RNA binding protein; VP, viral 
protein. 
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1.2.4 VP40* 

The matrix protein VP40 has roles predominantly in virus assembly and budding 

(Ruigrok et al., 2000; Pleet et al., 2017). VP40 can assemble either as a hexamer, 

which appears to be involved in budding, or as an octamer that functions in genome 

replication and RNA binding (Timmins, Schoehn, Kohlhaas, et al., 2003; Bornholdt 

et al., 2013). Most research has focused on the role of VP40 in assembly and 

budding, however, recent studies have begun to elucidate novel roles. 

VP40 is known to be sufficient to mediate the formation and budding of VLPs; 

however, recent results have demonstrated that VP40 induces the formation for 

exosomes that are capable of inducing bystander cell death (Harty et al., 2000; Pleet 

et al., 2016). Exosome release has been seen in virally-infected cells and VP40 

expression was seen to increase the expression of several endosomal sorting 

complex required for trafficking (ESCRT) proteins involved in exosome biogenesis, 

including: tumor susceptibility gene 101 (TSG101), vacuolar protein-sorting-

associated protein 25 (VPS25), and VPS36 (Wauquier et al., 2010; Pleet et al., 

2016). This is consistent with previous reports showing VP40 utilizing ESCRT 

proteins to aid viral budding, though how VP40 switches between budding and 

exosome release is not clear (Licata et al., 2003; Timmins, Schoehn, Ricard-Blum, 

et al., 2003; Han et al., 2015).  

Transfer of VP40-induced exosomes to naïve T-lymphocytes and monocytes 

induced apoptosis and significantly reduced cell viability similarly to that seen when 

exosomes from virally infected cells were used (Wauquier et al., 2010; Pleet et al., 

2016). However, Pleet et al. noted that the presence of VP40 in the exosomes 

caused a downregulation of miRNA machinery in both the donor and recipient cells, 

including a reduction in the expression of Dicer, argonaute-1, and Drosha [Figure 6]. 

It was previously noted that VP35, VP30 and VP40 are capable of interacting with 

the miRNA/RNAi pathway (Fabozzi et al., 2011), however, this was the first 

demonstration that the suppression of RNA silencing can be transferred to naïve 

cells in the absence of virus. Currently, the precise mechanism in which VP40 

interacts with miRNA machinery has yet to be characterised and it is not yet known 

if the action of VP40 on the miRNA machinery directly causes apoptosis or if the 

exosomes contain other proteins or RNA’s that may be responsible for causing the 
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induction of apoptosis. However, the repression of key proteins in the miRNA 

pathway has been previously linked to the induction of apoptosis, thus the 

suppression of RNA silencing may serve both to directly counteract the innate 

cellular immune response and to induce apoptosis of bystander immune cells, 

blocking the activation of adaptive immunity (Han et al., 2013; Pleet et al., 2016, 

2017). 

Due to the essential role of VP40 in viral assembly and budding, several studies 

have looked at inhibiting VP40 for the creation of new antiviral therapeutics (R. V 

Stahelin, 2014; Biedenkopf et al., 2017). As VP40 also plays a role in immune 

evasion (via RNAi suppression and exosome-bystander cell death), there is 

increased motivation for developing therapeutics that target one or multiple of the 

functions of VP40. It is known that viral replication requires VP40 phosphorylation at 

tyrosine 13 by the cellular tyrosine kinase Abelson murine leukemia viral oncogene 

homolog 1 (c-Abl1) (García et al., 2012). In addition, recent results showed that 

cyclin-dependent kinase 2 (Cdk2) in complex with Cyclin A or Cyclin E 

phosphorylated exosomal VP40 at serine-233 (Pleet et al., 2016). Thus, the 

inhibition or modulation of VP40 phosphorylation may be a target for new 

therapeutics. Lastly, Pleet et al. showed that treatment with the FDA-approved drug 

Oxytetracycline reduced VP40-exosome release and significantly increased donor 

cell viability upon treatment with VP40-exosomes, further suggesting that targeting 

the secondary functions of VP40 may be a new approach for developing antivirals 

for EVD.  

 

1.2.5 Glycoprotein* 

The GP gene has been shown to encode for three different products due to 

transcriptional editing by L polymerase: full length GP which consist of GP1 (receptor 

binding) and GP2 (viral fusion) subunits, soluble GP (sGP) which lacks the 

transmembrane domain, and small soluble GP (ssGP) (Volchkova et al., 1998; 

Mehedi et al., 2011). Due to furin cleavage of sGP, a smaller cleaved fragment is 

also produced, called Δ-peptide (V.A., H.-D. and V.E., 1999). GP is the only viral 

protein located on the surface of the virion and has a critical role in attachment and 
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fusion (Shimojima et al., 2006; Lee and Saphire, 2009; Moller-Tank et al., 2015). 

Ebolaviruses are thought to predominantly enter cells via GP-dependent 

macropinocytosis though other mechanisms have been reported, depending on 

factors such as host cell type (Nanbo et al., 2010; Aleksandrowicz et al., 2011). After 

entry, GP directs fusion between the viral membrane and endo-lysosomes that 

contain the viral receptor Niemann-Pick C1 (NPC1) and two pore segment channel 

2 (TPC2), enabling release of the viral genome (Mingo et al., 2015; Simmons et al., 

2016). During the 2014-2016 outbreak, a mutation in GP at A82V was detected with 

high frequency (Diehl et al., 2016; Urbanowicz et al., 2016; Dietzel et al., 2017). It is 

worth mentioning that Urbanowicz et al reported an increase in infectivity using 

pseudotyped virus as opposed to live virus, however, this mutation increased GP 

membrane fusion activity and increased infectivity in a variety of cell types, including: 

Chimpanzee fibroblasts (S008842), Rhesus epithelial (FRhK4), African green 

monkey epithelial (Vero) and human dendritic cells. The authors propose that this 

mutation is likely a result of EBOV adaptation to the human host, as several viral 

variants have been seen to increase human cell infectivity while decreasing virus 

entry in nonhuman primates (Hoffmann et al., 2017; Ruedas et al., 2017; Wang et 

al., 2017). Thus, the specific nature of protein function needs to be considered in the 

context of the given host.  

GP has been shown to have a multitude of secondary roles beyond attachment and 

fusion that affect both virus replication and pathogenicity. Several studies have 

shown that GP contributes to EBOV virulence; however, it is not sufficient on its own 

to be defined as a virulence marker, despite having marked effects beyond entry and 

fusion (Groseth et al., 2012). EBOV GP expression has been well established as 

having a cytotoxic effect on host cells (Yang et al., 2000; Ray et al., 2004; Sullivan 

et al., 2005). GP cytotoxicity is mediated through the mucin-like domain and its effect 

on the extracellular signal–regulated kinase (ERK) mitogen-activated protein kinase 

(MAPK) pathway (Zampieri et al., 2007). EBOV GP reduces the phosphorylation and 

catalytic activity of ERK2 resulting in the loss of cell adherence, cell rounding and 

the induction of non-apoptotic cell death. The decrease in ERK2 activity was also 

necessary for GP-induced downregulation of αV integrin expression; further 

impairing cell adherence and tight junction formation. In addition, the sGP cleavage 
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product, Δ-peptide, may play a role in EBOV pathogenicity by acting as a viroporin 

(Gallaher and Garry, 2015). Δ-peptide is able to form pores in the plasma membrane 

of mammalian cells, increasing ion permeability and causing cytotoxicity (J. He et 

al., 2017). However, it is not known if the Δ-peptide can be released from cells or if 

its induction of cytoxicity is limited to within the infected cell. In order to regulate the 

toxicity caused by GP and its cleavage products at early stages of infection, GP 

expression is dynamically regulated (Alazard-Dany et al., 2006). The balance and 

timing of EBOV GP/sGP/ssGP/shed-GP/ Δ-peptide expression has been found to 

be pivotal in virus replication, affecting not only cell death but viral assembly and 

budding (Mohan et al., 2015).  

Whilst VP40 expression is sufficient to produce VLPs, GP expression enhances VLP 

generation, suggesting a possible secondary role for GP in viral egress (Licata et al., 

2004). Recent work suggests that GP does not directly affect viral assembly or 

budding, but rather counteracts the cellular budding restriction factor tetherin 

(Kaletsky et al., 2009). In the absence of GP, VLPs assemble and bud but are 

retained on the cell surface through the anti-viral tethering actions of the tetherin 

protein. GP expression enabled VLP release but did not affect tetherin cell-surface 

localization nor was a specific GP-tetherin interaction found (Lopez et al., 2010). It 

was shown that the GP glycosylation and its receptor-binding domain (RBD) were 

critical for anti-tetherin activity, though mutation of the RBD did not affect interactions 

with tetherin and inhibition of GP-NPC1 binding did not affect the anti-tetherin activity 

(Brinkmann et al., 2016). Instead, it is thought that GP is specifically able to block 

the association between VP40 and tetherin, though the nature of tetherin-VP40 

interaction and the mechanism of GP inhibition is not known (Gustin et al., 2015). 

EBOV infection causes significant impairment of the endothelial barrier function. GP 

repression of ERK2 activity reduces integrin expression and cell adherence; 

however, GP also induces endothelial cell activation, further decreasing endothelial 

barrier functions (Wahl-Jensen et al., 2005). During EBOV infection of endothelial 

cells, cell adhesion molecules (CAM) ICAM-1 and VCAM-1 were found to be 

transcriptionally upregulated, with increased cell surface expression of CAMs. The 

activity occurs with cellular GP expression as well as following the transfer of GP-

containing VLPs, viral replication does not appear to be required. Endothelial 
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activation was not observed in the absence of GP, nor with the GP transcriptional 

variant sGP or the GP cleavage product Δ-peptide (Wahl-Jensen et al., 2005). GP-

induced endothelial cell activation may facilitate decreased barrier function whilst the 

upregulation of CAMs may facilitate adhesion and subsequent infection of immune 

cells, such as macrophages. A model was proposed whereby activated endothelial 

cells results in increased leukocyte recruitment, resulting in thrombomodulin release 

resulting in an activated, leukocyte rich endothelium in a procoagulant state (McElroy 

et al., 2014). Whether this is an unintended consequence of GP or has a role in 

increased viral spread and infectivity is yet to be investigated.  

EBOV GP has also been implicated in modulation of the host immune system. GP 

on the cell plasma membrane has been shown to be cleaved by tumour necrosis 

factor α-converting enzyme (TACE), resulting in the release of a soluble cleaved 

product called shed GP that is missing the transmembrane domain (Dolnik et al., 

2004). Shed GP was seen to activate uninfected macrophages and dendritic cells, 

resulting in the production of multiple pro- and anti-inflammatory cytokines, including  

TNF-α with subsequent effects on vascular permeability (Escudero-Pérez et al., 

2014). It is thought that shed GP activates macrophages by binding to and activating 

TLR4 in a manner requiring GP glycosylation. Recently it was also shown that full-

length GP on VLPs can also trigger the activation of TLR4 in macrophages, resulting 

in a similar activation phenotype (Olejnik et al., 2017). In contrast, GP binding to 

TLR4 on T lymphocytes directly triggers cell death through an upregulation of 

caspase 9, even in the absence of infection (Iampietro et al., 2017). In dendritic cells, 

GP was found to interact with the liver and lymph node sinusoidal endothelial cell C-

type lectin (LSECtin), a C-type lectin, which contains two amino acids residues 

Asn256 and Asn274 that bind GP in a Ca2+ dependant manner, triggering the 

activation of spleen tyrosine kinase (Syk) signalling and the production of 

inflammatory cytokines TNF-α and Interleukin-6 (IL-6) (Zhao et al., 2016). As shed 

GP retains most of the structure of full-length GP, this soluble molecule is capable 

of binding to and neutralizing circulating anti-GP antibodies, facilitating viral immune 

evasion (Dolnik et al., 2004). 

Similarly, sGP has been implicated in evading the immune system via antigenic 

subversion (Mohan et al., 2012). It was found that boosting GP-immunised mice with 
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sGP biased B-cell response toward epitopes that were shared between sGP and 

GP, reducing GP-specific antibody production and possibly impeding the immune-

mediated clearance of EBOV infection. The structure of sGP in complex with 

antibodies was recently solved and highlights differences in antibody reactivity 

between GP and sGP (Pallesen et al., 2016). Whilst GP is trimeric, sGP oligomerises 

into a parallel homodimer. Cross-reactive c13C6 antibody epitopes are presented 

similarly on GP and sGP, though the authors report that one c13C6 antibody binds 

to one GP trimer whereas multiple different immune-complexes were formed with 

sGP, ranging from rectangular complexes with a 2:2 ratio of c13C6 antibody to sGP 

dimer up to pentagonal 5:5 antibody:sGP complexes (Pallesen et al., 2016). This 

further supports the hypothesis that sGP enhances viral immune evasion by biasing 

the antibody response toward sGP binding.  

Whilst the multitude of GP secondary effects have a significant impact on EBOV 

infection, pathogenesis and immune evasion, GP remains the immunodominant 

protein on the EBOV virion and vaccination with the GP protein on pseudotyped 

viruses, rVSV-ZEBOV, has been highly effective in preventing EVD (Henao-

Restrepo et al., 2016). 

 

1.2.6 Nucleoprotein and L-polymerase* 

NP has a distinct function in the replication cycle in such that it is a key component 

of the viral ribonucleoprotein complex and has critical roles in protecting viral RNA 

from degradation and in mediating genome encapsidation during virus assembly 

(Baseler et al., 2017). At present, all research has focused on these primary activities 

of NP and any secondary roles remain to be determined (Huang et al., 2002; 

Watanabe, Noda and Kawaoka, 2006; Kirchdoerfer et al., 2015). Similarly, the RNA 

dependent L-polymerase is an essential component of the (RdRp) complex and 

required for viral genome transcription and replication (Baseler et al., 2017). It has 

been observed that L can also edit mRNA, as seen with the GP gene, where L-

editing results in the production of the GP transcript instead of sGP (Volchkov et al., 

1995). L-editing may also regulate the different expression levels of GP, sGP and 

ssGP. During serial passage in tissue culture cells, L was found to add a single 
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uridine (U) residue to a site consisting of 7 U’s in the GP gene, changing the 

expression ratio of GP:sGP to 80:20. A single passage in guinea pigs caused 

reversion of the genome back to 7 U’s and changed the GP:sGP expression ratio 

back to 20:80, which may facilitate immune evasion during in vivo replication 

(Volchkova et al., 2011). In contrast, during viral replication in the human 

hepatocarcinoma cell line (Huh7) a 9U variant was seen that retained the high level 

expression of sGP but had enhanced expression of ssGP (Mehedi et al., 2011). It is 

speculated that these rapid alterations in the GP gene may act as a regulatory 

mechanism, enabling efficient virus replication in different host environments. At 

present, no other roles for the L protein have been postulated. 

 

1.3 Viral Entry, Replication and Egress 

1.3.1 Attachment and Entry 

Attachment to cellular membranes largely revolves around interactions with EBOV 

GP, exposed on the virion membrane, and virion lipid binding to phosphatidylserine 

receptors. GP contains O- and N-linked glycans which allows binding to several 

carbohydrate-binding receptors on the cell surface such as C-type lectins DC-SIGN, 

L-SIGN, LSECTin, and hMGL (Alvarez et al., 2002; Takada et al., 2004; Gramberg 

et al., 2005). These C-type lectin receptors are present on various cells, resulting in 

broad cell tropism for the virus. Furthermore, GP has been shown to bind to 

glycosaminoglycans exposed on the cell membrane surface, further facilitating virion 

attachment to the cell membrane (O’Hearn et al., 2015). The presence of these 

receptors interacting with GP are known for viral attachment, however cells lacking 

expression of glycan receptors are still susceptible to viral infection, therefore 

implicating that other receptors are crucial for viral attachment and internalisation 

(Davey et al., 2017). The virion leaflet contains phosphatidylserine residues which 

interact with TIM receptors as they possess an immunoglobulin variable-like domain 

that contains a phosphatidylserine binding pocket (Moller-Tank et al., 2013). In 

addition, TAM receptors complexed with Gas6 and Protein S allow binding to 

phosphatidylserine residues, enhancing EBOV attachment. 
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 The mechanism regarding EBOV internalisation has been heavily researched. 

Current data has implicated macropinocytosis as the main mechanism for virion 

entry in a GP dependent manner. Upon GP binding to receptors, activation of cellular 

actin modulators such as PI3K, small GTPase, PKC and Pak1 occur, resulting in 

actin rearrangement, a positive marker for macropinocytosis (Nanbo et al., 2010). 

This leads to cellular membrane ruffling on the periphery of where the virion is bound, 

which ultimately results in a wave-like mechanism engulfing the particle in a 

macropinosome [Figure 7]. EBOV virions were found to co-localise with SNX5, a 

family of membrane proteins associated with macropinosomes (Nanbo et al., 2010). 

Further evidence to support macropinocytosis mediated entry is that inhibitors of 

PI3K and Akt significantly reduced infection of EBOV (Saeed et al., 2008).  
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Upon internalisation, EBOV is trafficked via the endosomal pathway, leading to 

acidified Rab7+ compartments (Saeed et al., 2010). A drop in pH activates proteolytic 

activity of cathepsin B and cathepsin L, resulting in cleavage of the GP1,2 protein, 

yielding a cleaved GP (GPcl) containing a 18kD subunit of GP1 with exposed 

residues increasing receptor binding capability and ultimately enhancing infectivity  

Figure 7. Schematic representation of EBOV entry and trafficking.  

EBOV GP binds to various C-type lectins and glycosaminoglycans whereas 
phosphatidylserine exposed on the virion membrane binds to TIM receptors, 
anchoring it to the membrane. Activation of actin modulators result in 
macropinocytosis. As pH drops, cysteine proteases cleave GP, exposing binding 
pockets to NPC1. It is hypothesised that further modification of GP exposes a 
membrane fusion loop in GP2, resulting in fusion to the endosomal membrane and 
spillage of viral contents into the cytoplasm. 
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(Chandran et al., 2005) (Kaletsky, Simmons and Bates, 2007). The GP1 subunit then 

binds to NPC-1 receptors which is required for viral membrane fusion in endosomes 

(Carette et al., 2011; Spence et al., 2016). How membrane fusion occurs remains 

poorly understood. It is hypothesised that cleavage of the GP1 from GPcl induces 

further conformational changes that may expose an internal fusion loop in GP2 

required for membrane fusion (Davey et al., 2017). Furthermore, it appears that the 

fusion event is independent of low pH (Markosyan et al., 2016).The mechanisms by 

which GP2 interacts with the lipid membrane of the endosomes revolves around 

rearrangement of three N-terminal heptad repeats, allowing protrusion of a 

hydrophobic coiled-coil that fuses to the membrane (Gregory et al., 2011). After 

fusion, the virus delivers its contents through the pore in the endosome. 

 

1.3.2 Replication and Assembly 

Replication and transcription occurs at the ribonucleoprotein (RNP) complex, which 

is believed to comprise of NP, VP30, VP35 and L (Groseth et al., 2009). The RNP is 

released from the virion and acts as a template for the synthesis of its 

complementary positive-sense RNA, called the antigenome. The antigenome then 

acts as a template in order to generate new viral genomes. The minimal EBOV 

proteins in the RNP required for this are NP, the polymerase cofactor VP35 and L 

(Mühlberger, 2007). Viral replication occurs inside inclusion bodies and as infection 

progresses, these structures move from perinuclear regions towards the cell 

membrane, diminishing in size, suggesting nucleocapsids are on route to sites of 

viral budding (Hoenen et al., 2012).  

Transcription of the EBOV genome starts from the ‘3 end and is terminated and 

reinitiated at each transcription stop and start signals between the genes 

(Mühlberger, 2007). Transcription is regulated by VP30 at a very early stage and is 

regulated by a RNA stem loop structure in the first gene (Weik et al., 2002). The L 

polymerase binds to the polymerase binding site at the ‘3 end of the genome, reads 

the sequence, stops and reinitiates at each gene junction (Whelan, Barr and Wertz, 

2004). Due to disassociation of the polymerase complex from the RNA strand 
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between reads, upstream genes are highly expressed (NP) whereas downstream 

genes are lowly expressed. 

It is hypothesised that regulation between replication and transcription is owed to 

dynamic phosphorylation of VP30. Since VP30 is known to stabilise the VP35-L RNA 

binding, phosphorylation states modulate the conformation of the RNP, resulting in 

either a transcriptase or replicase complex (Biedenkopf et al., 2013).  

 

Assembly occurs after the production of viral proteins from monocistronic mRNA by 

host ribosomes. As the viral proteins are generated in the cytosol they get trafficked 

to the cell membrane to assemble into virions. This trafficking occurs by VP40 

hijacking the ESCRT pathway,  For full length GP synthesis, the correct mRNA 

transcripts have to be generated by by transcriptional editing into the 8A transcript 

(Sanchez et al., 1996). GP is synthesised and undergoes heavy modifications 

beginning in the endoplasmic reticulum. The precursor GP (GP0) is cleaved in the 

Figure 8. Replication, Assembly and Egress 
As the viral contents are delivered into the cytoplasm, transcription of viral mRNA 
by the ribonucleoprotein complex occurs inside inclusion bodies. The glycoprotein 
undergoes a series of post translational modifications as it travels through the 
endoplasmic reticulum and golgi body, culminating in its’ transport to the plasma 
membrane, where VP40 is also present. When the nucleocapsids are transported 
to the membrane containing GP and VP40, egress occurs into the extracellular 
environment. 
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endoplasmic reticulum and heavily glycosylated. At the trans golgi GP is cleaved by 

protease furin yielding a GP1 and GP2 subunit (Volchkov et al., 1998). Post cleavage 

the fragments are then connected together by a disulphide bridge yielding the GP1,2 

protein (Malashkevich et al., 1999). This then undergoes trimerization, through the 

coiled coil repeats in GP2, yielding the classical spiked GP trimer that is then 

trafficked to the cell membrane alongside membrane bound VP40. The 

nucleocapsids formed in inclusion bodies comprising of NP repeats with viral RNA, 

facilitated in their formation by VP35 and VP24, meet near membrane bound GP 

and VP40 (Noda et al., 2005). VP24 also regulates RNA synthesis by binding to the 

RNP, altering conformation of the RNP, resulting in a switch between replication 

competent complex to a rigid form ready for packaging into virions (Banadyga et al., 

2017). 

1.3.3 Budding and Egress 

EBOV filaments have been shown to bud in two distinct modes. Many reports have 

shown budding to occur vertically, driven by VP40. However, another mode of 

budding results in horizontal egress and it appears that only one mode of budding 

occurs per cell, never both (Noda et al., 2006). This mode of horizontal budding 

appears to occur for mature virions containing nucleocapsids, whereas VLPs without 

the nucleocapsid bud vertically. Its postulated that this occurs because the 

nucleocapsid structures interact with VP40 that is already present on the cell 

membrane, thus being anchored under the membrane horizontally (Noda et al., 

2006). The alteration of membrane dynamics for budding and egress are caused by 

VP40, resulting in a negative membrane curvature (R. V. Stahelin, 2014). Eventually, 

this leads to viral particles being pushed out of the membrane and into the 

extracellular environment [Figure 8]. 

 

1.4 Pathogenesis 

1.4.1 Dysregulation of the Immune Response 

Ebola virus can enter a host via mucosal surfaces as well as breaks and abrasions 

in the skin. The early targets are dendritic cells, macrophages and Kupffer cells 
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whereby infection remains sustained (Geisbert et al., 2003). Macrophages and 

monocytes possess fusion factors that allow GP-mediated attachment and entry of 

EBOV such as cathepsins, NPC1 receptors, ICAMs and phosphatidylserine 

residues. Viral spreading in the host is highly contributed by monocytes, 

macrophages and dendritic cells as these cells migrate via the lymphatic systems, 

reaching several organs such as the liver and spleen. Interestingly, infection of 

dendritic cells resulted in little cell death over 6 days of infection, which may 

contribute to its dissemination (Mahanty et al., 2003). It is believed that the early 

targeting of the innate immune system cells contributes to immunosuppression, a 

characteristic of EBOV infection (Bray and Geisbert, 2005). However, macrophage 

targeting unleashes a robust cytokine and chemokine response which is considered 

to be a lethal aspect of EVD. High levels of TNF-α, IL-6β, reactive oxygen species 

and nitrogen radicals have been associated with fatal cases. Furthermore, the 

cytokine and chemokine response also contributes to viral dissemination as their 

activation recruits myeloid cells to multiple sites of inflammation, allowing the virus 

to sustain its infection (Zampieri, Sullivan and Nabel, 2007). Infection of dendritic 

cells also prevents their maturation, resulting in impaired T-cell proliferation (Jin et 

al., 2010). A massive decrease in lymphocytes during infection is likely due to 

triggering of apoptosis, of which several mechanisms may be responsible, such as 

EBOV GP interacting with TLR4, and exosomes containing VP40 (Pleet et al., 2016; 

Iampietro et al., 2017). A variant of GP that is cleaved by cellular metalloprotease 

TACE enzyme referred to as cleaved GP activates dendritic cells and macrophages  

that are not infected with the virus via TLR4 receptor stimulation, resulting in 

activation of pro and anti-inflammatory cytokines (Escudero-Pérez et al., 2014). This 

contributes to the dysregulation of the inflammatory response, which ultimately 

contributes to pathogenicity. 

 

1.4.2 Inhibition of the Interferon Response 

 

Upon infection, VP35 blocks interferon production by binding to dsRNA that would 

have otherwise culminated in activation of the IRF-3 pathway (Basler et al., 2003). It 
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can also block interferon responses by disrupting the RIG-I signalling pathway by 

directly binding to kinases IKKε and TBK-1, involved in the activation of IFN-β 

signalling pathway. VP35 binding to these kinases prevents phosphorylation of IRF-

3 and IRF-7 (Prins, Cárdenas and Basler, 2009). Whilst VP35 is preventing 

endogenous antiviral signalling, VP24 interacts with several proteins that render the 

cell to be silent upon stimulation by interferons. VP24 binds to importins such as 

KPNA1, 5 and, 6, which during normal interferon receptor stimulation, would import 

STAT1 to the nucleus to activate interferon stimulating genes. However, by binding 

to importins, nuclear import of phosphorylated STAT1 is now blocked, and evidence 

has also shown that VP24 may directly bind to STAT1, preventing phosphorylation 

altogether (Reid et al., 2006; Zhang, Bornholdt, et al., 2012). This results in 

inactivation of the interferon-α/β and interferon-γ signalling. Consequently, the virus 

is able to disseminate with little hindrance from antiviral defences as the immune 

response is unable to activate in a sufficient manner to combat the virus.  

 

1.4.3  Pathogenesis in non-immune system cells 

Several proteins of Ebola virus have been implicated in pathogenesis on endothelial 

and epithelial cells. GP contributes to cellular detachment of endothelial cells by 

downregulation of adhesion molecules such as integrins, leading to cell rounding 

and ultimately death by anoikis, a form of apoptosis characterised by loss of 

adhesion (Simmons et al., 2002; Ray et al., 2004). In addition, GP present on virus-

like particles have been shown to decrease the endothelial barrier function, due to 

reduced intercellular adhesions, which results in increased extravasation of water 

and macromolecules. (Wahl-Jensen et al., 2005). This manifests as the 

haemorrhagic symptom of EVD and facilitates spread of the virus within the 

organism and transmission between organisms. Remarkably, Reston virus infection 

in humans has not be associated with any symptoms of disease compared to its 

deadly counterpart. 
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1.5 Reston, The Forgotten Ebolavirus 

 

This section contains our published review in unedited form (Cantoni et al., 2016). 

The figure legends have been renumbered for the purpose of this thesis 

 

1.5.1 Abstract 

Out of the five members of the Ebolavirus family, four cause life-threatening disease 

whereas the fifth, Reston virus (RESTV), is non-pathogenic in humans. The reasons 

for this discrepancy remain unclear. In this review, we analyse the currently available 

information to provide a state-of-the-art summary of the factors that determine the 

human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in 

cynomolgus monkeys and is found in domestic pigs throughout the Philippines and 

China. Phylogenetic analyses revealed that RESTV is most related to the Sudan 

virus (SUDV), which causes high mortality in humans. Amino acid differences 

between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, 

though no one residue appears sufficient to confer pathogenicity. Changes in the 

glycoprotein (GP) contribute to differences in Ebolavirus pathogenicity but are not 

sufficient to confer pathogenicity on its own. Similarly, differences in VP24 and VP35 

affect viral immune evasion and are associated with changes in human 

pathogenicity. A recent in silico analysis systematically determined the functional 

consequences of sequence variations between RESTV and human-pathogenic 

Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV 

and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the 

factors that determine the pathogenicity of Ebolaviruses in humans remain 

insufficiently understood. An improved understanding of these pathogenicity-

determining factors is of crucial importance for disease prevention and for the early 

detection of emergent and potentially human-pathogenic Reston viruses. 
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1.5.2 Introduction 

The recent Ebola virus (EBOV) outbreak in West Africa changed our perception of 

the global threat posed by the Ebolaviruses. The outbreak was of unprecedented 

size, resulting in 28,657 confirmed cases and 11,325 deaths (as of 8/5/2016 - 

www.who.int), with several reported deaths on other continents (CDC, 2016). 

Previous Ebolavirus outbreaks ranged from a very few infected individuals to a few 

hundred cases (Georges et al., 1999). During this outbreak, evidence has emerged 

that Ebola viruses were able to persist and remain infective in immune-privileged 

sites in the body (including the eye, semen, vaginal fluid and breast milk), for over 6 

months after disease resolution and clearance of the virus from the bloodstream, 

significantly complicating disease containment and control (Deen et al., 2015; 

Varkey et al., 2015). The combination of these factors (outbreak size and virus 

persistence) raises significant concern for the danger posed by future outbreaks. 

Advancing our understanding of Ebolaviruses is extremely important in order to 

ensure adequate surveillance and outbreak containment; however, much remains 

unknown about the mechanisms by which these viruses cause disease. 

Ebolaviruses are filo (filamentous) -viruses with a single-stranded negative-sense 

RNA genome. The Ebolavirus family consists of five species:  Zaire ebolavirus (type 

virus: Ebola virus, EBOV), Sudan ebolavirus (type virus: Sudan virus, SUDV), Tai 

Forest ebolavirus (type virus: Tai Forest virus, TAFV) and Bundibugyo ebolavirus 

(type virus: Bundibugyo virus, BDBV), and Reston ebolavirus (type virus: Reston 

virus, RESTV). EBOV, SUDV, TAFV, and BDBV cause severe haemorrhagic 

disease in humans with mortality rates ranging from 50% to 90% (Geisbert and 

Hensley, 2004; Kuhn et al., 2010). RESTV is mildly virulent in pigs, avirulent in 

humans, but lethal in several but not all non-human primates, for example, African 

green monkeys (Chlorocebus aethiops) and baboons (Papio hamadryas) are 

resistant to RESTV, the latter showing resistance to EBOV as well (Rollin et al., 

1999; Barrette et al., 2009; Bente et al., 2009; Marsh et al., 2011). In addition, 

RESTV is less virulent when directly compared to EBOV infections in non-human 

primates as RESTV was observed to have a slower onset of disease and viraemia 

(Fisher-Hoch et al., 1992). Furthermore, coinfection may have a role in increasing 
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severity of disease, as a simian haemorrhagic fever virus coinfection with RESTV 

was detected in at least one of the non-human primates in RESTV outbreaks, which 

resulted in death (Dalgard et al., 1992). Since current knowledge cannot elucidate 

the reason for RESTV being avirulent in humans means that it remains classified as 

a BSL-4 pathogen, as it may have pathogenic potential if ideal conditions are met, 

such as viral load, route of infection or other factors. The Ebolavirus genome is 

approximately 19 kb in length and encodes nine proteins: nucleoprotein (NP), 

glycoprotein (GP), soluble GP (sGP), small soluble GP (ssGP), RNA-dependant 

RNA polymerase (L), and structural proteins VP24, VP30, VP35, and VP40, many 

of which are associated with viral pathogenicity (Ikegami et al., 2001; Feldmann and 

Geisbert, 2011; de La Vega et al., 2015). Whilst the four human-pathogenic 

Ebolavirus species are all found in Africa, RESTV is known to be endemic in the 

Philippines and China. This makes RESTV the only Ebolavirus known to exist 

outside of Africa to date. RESTV was discovered by electron microscopic 

examination of infected cells during the 1989 epizootic outbreak in cynomolgus 

monkeys that had been imported from the Philippines into the United States and 

housed at a research facility in Reston, Virginia (Geisbert and Jahrling, 1990). The 

monkeys displayed the hallmark symptoms of Ebolavirus disease, including 

subcutaneous haemorrhaging, bloody diarrhoea, and sudden onset of anorexia 

(Dalgard et al., 1992). In contrast, four handlers in the United States who became 

infected with RESTV did not show any signs or symptoms of illness, nor did the 

seropositive handlers at the Laguna export facility in the Philippines (CDC, 1990). 

Since then, several known minor outbreaks of RESTV have occurred in monkeys 

[Figure 9]: a subsequent outbreak in 1990 in Reston, Virginia, whereby four handlers 

developed antibodies to RESTV; a 1992 outbreak in Sienna, Italy in monkeys 
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imported from the same facility in the Philippines that caused the 1989 outbreak; a 

1996 outbreak in Alice, Texas, at the Texas Primate Centre; and two outbreaks in 

1996 and 2015 in the Philippines (Geisbert and Jahrling, 1990; Dalgard et al., 1992). 

In 2008, RESTV was found in farmed pigs in Manila, the Philippines (Barrette et al., 

2009)[Table 2]. Six handling personnel were found to be seropositive for RESTV, 

suggesting RESTV transmission from pigs to humans. Interestingly, RESTV was 

Figure 9. Detection of Reston Ebolavirus and Seropositive Evidence 
This map shows that the virus, or seropositive evidence suggestive of virus 
infection, is more widely distributed that was previously thought (Rollin et al., 1999; 
Yuan et al., 2012; Olival et al., 2013; Pan et al., 2014). The distribution of RESTV 
appears to be in close proximity to the equator, similar to the other Ebolaviruses in 
Africa, though RESTV has never been detected in Africa 
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only found in sick pigs that were also infected with porcine reproductive and 

respiratory syndrome virus (PRRSV), although histological analysis did not reveal 

colocalization of the two viruses in any body site. Whether RESTV contributed to the 

manifested symptoms remains to be determined (Marsh et al., 2011). The viral 

genome sequences isolated from pigs in 2008 exhibited a 2.5% mean difference in 

nucleotide identity from the 1989 Reston monkey isolate. Three RESTV samples 

recently taken from infected pigs at different geographical locations in the Philippines 

 

 

LOCATION YEAR ORGANISM NO. OF SEROPOSITIVE 

HUMANS 

PHILIPPINES 1989-90 Cynomolgus monkeys 3 

USA, VA AND PA 1989-90 Cynomolgus monkeys 0 

USA, TX 1989-90 Cynomolgus monkeys 4 

ITALY 1992-93 Cynomolgus monkeys 0 

USA, TX 1996 Cynomolgus monkeys 0 

PHILIPPINES 1996 Cynomolgus monkeys 1 

PHILIPPINES 2008 Pigs 6 

CHINA 2011 Pigs 0 

PHILIPPINES 2015 Cynomolgus monkeys 0 

 

 
   

 
 

PHILIPPINES 2008-2009 Fruit Bats  - 

CHINA 2006-2009 Fruit Bats  - 

BANGLADESH 2010-2011 Fruit Bats  - 

 

Locations with seropositive evidence only 

Reston outbreaks 

Table 2. Outbreaks of Reston ebolavirus 
(Jahrling et al., 1990; Hayes et al., 1992; Rollin et al., 1999; Barrette et al., 2009; 
Yuan et al., 2012). The 1989 paper reports high mortality rates in the cynomolgus 
monkeys, whereas the infected pigs were found to be co-infected with PRRSV. The 
fact that there is additional seroevidence from countries further away from the 
Philippines strongly suggests migration of RESTV. No human handlers were 
reported to show any symptoms of disease (CDC, 1990). 
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(Panganisan and Bulacan) showed even greater divergence from each other, with a 

3.93% mean difference in nucleotide identity (Barrette et al., 2009). It was suggested 

that the reason for this genetic diversity could result from both monkeys and pigs 

being infected from different unidentified reservoirs (Barrette et al., 2009). In 2012, 

RESTV was again detected in pigs with PRRSV, this time in China, with 96.1%-

98.9% sequence similarity to previous pig and monkey isolates from the Philippines 

(Pan et al., 2014). 

Despite the fact that the first known RESTV outbreak occurred almost 30 years ago, 

there is still relatively little known about this virus. This includes the natural reservoir 

for RESTV, the route of transmission from this reservoir to pigs and monkeys, and 

the reasons underlying its lack of pathogenicity in humans. Due to its similarity to the 

other four Ebolaviruses, there is a concern that RESTV could mutate to become 

pathogenic in humans, and that this Ebolavirus could then spread easily around the 

world through imported livestock or other animal hosts. In this review, we will discuss 

potential reservoirs for RESTV, its genetic relationship to other Ebolaviruses, and 

the molecular basis for its lack of pathogenicity in humans. We will also speculate 

on the potential risk of RESTV to human health and how this can be addressed. 

1.5.3 RESTV Hosts and Reservoirs  

Circulation of RESTV in reservoir species and other hosts may increase the 

probability that human-pathogenic RESTV variants emerge, in particular if selective 

pressures exerted by different hosts causes viral mutation or if the host range results 

in more frequent contact with humans. To date, it is known that RESTV can infect 

humans, monkeys, and pigs. However, it is often suggested that there are reservoirs 

for this virus that have not yet been identified (Barrette et al., 2009; Yuan et al., 

2012). Bats are the most commonly implicated reservoir for filoviruses (Leroy et al., 

2005; Towner et al., 2007; Negredo et al., 2011). In 2008-2009 Rousettus 

amplexicaudatus fruit bats possessing RESTV-specific IgG antibodies were 

captured from the Philippine forests of Diliman and Cuezon, located within 60km 

from the Bulacan farm where RESTV-infected monkeys were identified in 2008 

(Taniguchi et al., 2011). R. amplexicaudatus are genetically similar to R. aegyptiacus 

bats, which are through to be the reservoir for Ebolaviruses in Africa (Taniguchi S, 
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Watanabe S, Masangkay JS, Omatsu T, Ikegami T, Alviola P, no date). In addition, 

RESTV as well as EBOV antibodies have been found in Bangladesh and in China in 

the related R. leschenaultia species of bats, suggesting that the Ebolaviruses may 

more widespread that previously believed. 

1.5.4 RESTV genome evolution.  

RESTV is thought to have originated in Africa and to have diverged from SUDV 

about 1400-1600 years ago before it migrated towards Asia [Figure 10.] (Sanchez, 

2001; Geisbert and Hensley, 2004; Carroll et al., 2013). The hypothesis that 

filoviruses have spread beyond the African continent was recently reinforced by the 

discovery of a new filovirus in bats in the Lloviu caves of Spain, as well as the 

Phylogenetic analysis of the Filoviridae family. 

Figure 10. Phylogenetic analysis of the Filoviridae family 
RESTV is most closely related to SUDV (Carroll et al., 2013). Bayesian coalescent 
analysis of viruses from the Filoviridae family. 
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presence of RESTV in bats, pigs and monkeys in Asia (Negredo et al., 2011; Olival 

et al., 2013; Pan et al., 2014).  

A recent phylogenetic study, analysed seven RESTV genomes, including four that 

were obtained from infected pigs (Carroll et al., 2013). Whilst in one year on the 

same farm the virus showed genetic changes of 0.079%, in different farms there was 

a divergence of up to 4.5% (Carroll et al., 2013). This study also showed that RESTV 

evolves at a rate of 8.21 × 10-4 nucleotide substitutions/site/year, similar to EBOV 

and much faster than the rate of nucleotide substitutions of SUDV, which could make 

the virus more susceptible to adaptation in humans. 

The overall selection pressures between EBOV and RESTV show that amino acids 

on the main viral antigenic determinant, GP, were under increased selective 

pressure. EBOV selection pressure was found to be 0.299 whereas RESTV showed 

0.329, whereby a ratio number >1 indicated increased selection, and <1 indicates 

decreased selection (Hurst, 2002). The EBOV GP showed selective pressure at 

mucin-domain residues 377 and 443, whereas RESTV GP was only under selective 

pressure at one glycosylated residue in the GP1 glycan cap, N229, though this 

residue was under stronger selection that any in EBOV GP (Li and Chen, 2014). 

These changes in GP may result in a different host tropism or may affect immune 

evasion, which may be a cause for concern for RESTV, though this has not been 

experimentally demonstrated. 

1.5.5 Differences that may contribute to pathogenicity 

A number of studies compared human pathogenic Ebolaviruses to RESTV in order 

to identify the underlying reasons for the observed differences in human 

pathogenicity (Reid et al., 2007; Zhang, Abelson, et al., 2012; Sandeep Chakraborty, 

Basuthkar J. Rao, Bjarni Asgeirsson, 2014). One of the proteins implicated in 

pathogenesis, VP24, acts by antagonising the host innate immune response. VP24 

binds to the karyopherins (KPNA) 1, 5, and 6, inhibiting the nuclear import of 

phosphorylated (active) STAT1 and restricting the expression of interferon-

stimulated genes (ISG) (Reid et al., 2006). VP24 was also found to reduce binding 

of the heterogeneous nuclear ribonuclear protein complex C1/C2 (hnRNP C1/C2) to 

KPNA1, further restricting phosphorylated-STAT1 nuclear import as well as 
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relocating hnRNP C1/C2 from the nucleus into the cytoplasm (Shabman et al., 

2011). In viruses such as poliovirus and human papilloma virus, this relocation 

facilitates viral RNA replication and the translation of viral proteins (Gontarek et al., 

1999; Brunner et al., 2005; Shabman et al., 2011). In addition to blocking the STAT1 

pathway, VP24 may also directly bind to STAT1 to prevent its nuclear import (Zhang, 

Bornholdt, et al., 2012). EBOV VP24 may be more effective at suppressing the host 

interferon response than RESTV VP24 as EBOV-infected cells express lower levels 

of many ISGs than do RESTV-infected cells (Kash et al., 2006).  

Several amino acid differences between EBOV and RESTV VP24 may affect the 

virus’s ability to inhibit STAT1 signalling, thus affecting pathogenicity (Groseth et al., 

2002). These variant residues appear to cluster at key sites involved in VP24 binding 

to KPNAs, such as the VP24 142-146 loop. In this region RESTV displays conserved 

amino acid changes (M136L, Q139R, R140S) compared to other Ebolavirus species 

(Zhang, Abelson, et al., 2012). Changing the RESTV S140 residue to R140 modifies 

the hydrophobic moment of the protein and appears to be sufficient to enable KPNA 

binding (Sandeep Chakraborty, Basuthkar J. Rao, Bjarni Asgeirsson, 2014). These 

findings suggest that specific changes in RESTV VP24 may affect interactions with 

KPNAs, resulting in a reduced ability to inhibit interferon signalling. In 6-8-weeks old 

STAT1 knockout BALB/c mice, both EBOV and RESTV infections resulted in 

disease manifestation, causing lethargy, weight loss, and decreased survival rates 

after 6 days post infection. However, wild type BALB/c mice (6-8 weeks old) showed 

no manifestation of disease upon infection with either EBOV or RESTV (de Wit et 

al., 2011; Raymond, Bradfute and Bray, 2011). EBOV was found to be lethal only in 

new-born mice or following several rounds of adaptation, however, the comparable 

experiments have not been performed with RESTV and thus the ability of RESTV to 

adapt and cause disease in mice remains unknown (de Wit et al., 2011; Raymond, 

Bradfute and Bray, 2011). Moreover, when RESTV pathogenicity was tested in 

IFNAR-/- mice, only transient weight loss was observed between days 4-8, whereas 

EBOV showed to be uniformly lethal, with more severe symptoms, including weight 

loss, ruffled fur and hunched posture (Groseth et al., 2012). Interestingly,  IFNAR-/- 

mice challenged with RESTV became partially or completely protected from later 

mouse-adapted EBOV infections (Brannan et al., 2015). This shows that RESTV 
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infections in different knockout mouse models are dissimilar, highlighting the 

complexity of testing RESTV pathogenicity in mice. 

Bioinformatic investigation determined amino acid residues that are differently 

conserved (Specificity-Determining Positions, SDPs) between RESTV and the four 

human-pathogenic Ebolavirus species (Casari, Sander and Valencia, 1995; Rausell 

et al., 2010). Several of these SDPs were located on protein surfaces, suggesting 

their possible involvement in molecular interactions (Pappalardo et al., 2016). Whilst 

VP24 sequence identity between EBOV and RESTV is 80%, only 9 of 251 residues 

were identified as SDPs, possibly contributing to RESTV’s lack of pathogenicity in 

humans (Ikegami et al., 2001). Of the 9 SDPs found in VP24, three (T131S, M136L 

and Q139R) are located in the KPNA5 binding site. This supports the hypothesis 

that RESTV VP24 may be less effective at karyopherin binding and suppressing the 

interferon response. In addition, another SDP in RESTV VP24 results in the loss of 

hydrogen bonding between T226 and D48, potentially impacting protein stability and 

function (Pappalardo et al., 2016). However, the SDPs were not restricted to VP24 

and many SDPs were found in other protein interfaces that may affect interactions 

and stability [Table 3]. 

VP35 is an interferon antagonist that inhibits the activation of Interferon Regulatory 

Factor 3 (IRF3) following the sensing of viral RNA by the pattern recognition receptor 

RIG-I. RESTV VP35 has a 65% sequence identity with EBOV VP35 and shows 19 

SDPs (Basler et al., 2000; Cárdenas et al., 2006; Prins, Cárdenas and Basler, 2009; 

Pappalardo et al., 2016). Although, it was found that both RESTV and EBOV VP35 

molecules were able to inhibit IRF-3 activation, blocking the IRF3-dependent 

transcription of the interferon sensitive genes (ISG) 54 and 56. In addition, neither 

RESTV nor EBOV VP35 could block signalling from the IFN-α/β receptor (Basler et 

al., 2003). This implies that not all SDPs have an effect on pathogenicity; therefore, 

the consequences of these differences are not clear. 

In addition to VP24, differences in the GP protein may also affect viral pathogenesis 

(Richman, DD. Cleveland, PH. McCormick, PB. Johnson, 1983; Feldmann, H. Kiley, 

1999). EBOV GP contains a mucin-like domain that increases blood vesicle 

permeability by downregulating the expression of integrin β1 and other cell adhesion 

molecules (Chan, Ma and Goldsmith, 2000; Yang et al., 2000; Simmons et al., 2002). 
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RESTV GP has several conserved SDPs (R325G, H354L, Q403P, S418E, T448P) 

and was found to have a significantly weaker influence in downregulating integrin β1 

expression, compared to EBOV GP (Simmons et al., 2002; Pappalardo et al., 2016). 

When examined in vivo it was seen that the presence of the RESTV GP attenuated 

EBOV pathogenicity, whereas the reverse genetics conversion of RESTV GP to 

EBOV GP was not sufficient to confer a pathogenic phenotype on RESTV, indicating 

that other proteins are involved in regulating Ebolavirus pathogenicity (Simmons et 

al., 2002; Kash et al., 2006; Groseth et al., 2012). 
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Protein Function % SDPs 

Nucleoprotein 
Protects and packages the viral genome by 
encapsidation.  

3.87 

Glycoprotein 

Class I viral fusion protein, responsible for 
binding and entry into host cells. Activated by 

proteolysis, creating GP1 and GP2. GP1,2 
has extensive roles in modulating the immune 
response and altering the expression of cell 
surface adhesion molecules. Cleavage of 

GP1,2 from the plasma membrane creates a 
soluble variant. 

4.3 

sGP 
Possible roles in immune evasion and 
alteration of endothelial permeability. 

2.43 

ssGP Unknown role. ND 

VP24 
Secondary matrix protein, minor component of 
virions. Key player in pathogenicity, inhibits 
components of immune response. 

3.59 

VP30 
Viral nucelocapsid component. Key role in 
transcription depending on its state of 
phosphorylation 

5.86 

VP35 

Polymerase cofactor in transcription and 
replication. Prevents antiviral response in cells 
by blocking IRF-3 and protein kinase 
EIF2AK2/PKR. 

5.57 

VP40 
Regulates viral transcription, morphogenesis, 
packaging and budding.  

2.72 

Polymerase 

Acts as a replicase and a transcriptase, 
whereby transcriptase is involved in 
subgenomic RNA capping and 
polyadenylation and the replicase function 
replicates the entire viral genome. 

2.95 

 

Table 3. Protein components of Ebolavirus and their roles 
(Sanchez et al., 1996; Han et al., 2003; Watanabe, Noda and Kawaoka, 2006; Li et al., 
2008; Lee and Saphire, 2009; Prins, Cárdenas and Basler, 2009; Silva et al., 2012). The 
percentage of SDP sites in RESTV, as compared to EBOV, may offer clues as to the lack 
of RESTV pathogenicity in humans, though higher levels of specificity determining 
positions (SDP) do not necessarily indicate a change in protein function or activity. 
Furthermore, the percentage difference is likely to fluctuate regularly due to the viral 
mutation and evolution. 
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The functions of the two soluble and secreted Ebolavirus proteins sGP and ssGP 

remain the most elusive, with the structure of EBOV sGP only recently being solved 

(Pallesen et al., 2016). sGP shares 295 N-terminal residues with GP, thus sGP is 

thought to contribute to evasion of the humoral system by absorbing GP antibodies 

(Sanchez et al., 1996; Falzarano et al., 2006). In addition, sGP seems to play an 

anti-inflammatory role by promoting recovery of the endothelial barrier during 

Ebolavirus infection (Wahl-Jensen et al., 2005). RESTV appears to secrete more 

sGP than EBOV, suggesting that the anti-inflammatory role of sGP may have a more 

significant role on pathogenicity, considering its role on restoring the endothelial 

barrier (Wahl-Jensen et al., 2005). The size of RESTV small soluble GP (ssGP), at 

37kDa is significantly larger than that of the other Ebolaviruses (33kDa). However, 

the potential involvement of ssGP in pathogenicity remains unclear and thus the 

effect of the RESTV ssGP extension is unknown (Mahale and Patole, 2015). 

It may also be that lack of RESTV virulence in humans is due to a delay in viral 

transcription and genome replication, as RESTV was found to have slower growth 

kinetics, suggesting a growth impairment that was not observed with EBOV 

(Boehmann et al., 2005). The organisation of the RESTV genome differs from that 

of the other Ebolaviruses. Ebolaviruses contain gene overlaps between GP and 

VP30. In contrast, these two genes are separated by an intergenic region in RESTV 

(Sanchez, 2001). This change in genomic organization may affect the transcription 

of GP and VP30 or alter the efficiency of genome replication. Though, the 

relationship between EBOV gene overlap and genomic replication has not been 

tested, it is possible that the reduced efficiency of RESTV replication, combined with 

functional protein differences, could enable RESTV to infect humans without causing 

any detectable pathogenicity. 

1.5.6 Conclusions 

RESTV is unique among the Ebolaviruses in that it does not cause disease in 

humans. However, RESTV is infectious in several animal species that exist in close 

contact with humans, and humans can be asymptomatically infected with the virus, 

raising the question of whether humans can be carriers for Ebolaviruses and 



 

 

1-43 

suggesting that further adaptation of RESTV could cause a significant risk to human 

health. 

An observed significant factor for the outbreak in West Africa was that infected bush 

meat provided a route of transmission of virus to humans (Alexander et al., 2015). 

Humans and R. leschenaultia bats in Bangladesh share a common food source; date 

palm sap, which may be a potential route for viral transmission in humans. In 

addition, the ability of pigs to become hosts to RESTV means that the virus can be 

established in the human food chain, which is a cause for concern, as prolonged 

human contact may play a role for the virus to adapt to humans. 

Furthermore, it may be the case that single amino acid substitutions in SDP sites 

can affect pathogenicity. This is concerning as many RESTV proteins had only a few 

SDPs that differed from EBOV, suggesting that a minimal number of mutations may 

be required to restore RESTV pathogenicity in humans. Thus, the investigation of 

the effects of individual SDPs is of great importance for understanding Ebola virus 

pathogenicity. 

Whilst the likelihood that RESTV will become pathogenic in humans is not clear, 

given that it can establish itself in the human food chain in densely populated areas, 

the potential risk that the virus poses to human health worldwide is significant. This 

risk is even greater when considering that because RESTV is non-pathogenic in 

humans, the only people that have been screened for RESTV infection have worked 

at monkey and pig farms undergoing RESTV outbreaks, thus, the actual prevalence 

of RESTV in human and animal populations maybe significantly greater than 

anticipated. However, in response to the recent outbreak of EBOV in West Africa, 

research in treatments have shown promising advances, in particular vaccines and 

an antibody for pan-ebolavirus therapy, which has shown to be successful in vitro 

and in vivo in mice (Holtsberg et al., 2015; Furuyama et al., 2016).  
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1.6 Project outline 

During this PhD course, we sought to explore the unknown reasons regarding 

differences in pathogenicity between EBOV and RESTV. Our experiments 

compared proteins from both species with the intent to elucidate the determinants of 

human Ebolavirus pathogenicity. This thesis will present the following projects:  

 

1. Investigating cytotoxic properties of VP24 

 

This project was based on a statement made in Mateo et al. 2011 regarding 

VP24: “Our attempts to establish a cell line constitutively expressing VP24 

also failed, probably as a result of as yet undefined cytotoxic properties of this 

protein (data not shown)”. Preliminary data in the laboratory showed that 

expression of VP24 in human cells caused cytotoxicity that was different with 

EBOV and RESTV VP24 proteins. We used multiple techniques in order to 

pinpoint the cellular pathways targeted by EBOV and RESTV VP24 proteins 

and uncover the mechanisms of VP24-induced cytotoxicity. 

 

2. Solve the structure of delta-peptide. 

 

The delta peptide is a cleaved product of sGP. Current literature has shown 

that it is likely to act as a viroporin. However, no structures have yet been 

published. Given that this peptide retains an amphipathic helix, which binds 

to membranes either by full insertion or superficial interactions, we sought to 

solve the structure of the amphipathic helix and identify which residues are 

responsible for membrane interactions using NMR. Both EBOV and RESTV 

delta peptides will be compared to assess whether differences in sequence 

and structure contribute towards human pathogenicity. 
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2 Materials and methods 

2.1 Materials 

2.1.1 General Buffer Materials and Compositions 

Deionized water and MiliQ grade water provided in house 

General Buffer 

Materials 

Company  Product 

Code 

Acetic Acid Sigma-Aldrich A6283 

Acetonitrile Fisher Scientific A/0627/17 

Agar Technical Oxoid LP0012 

Agarose Sigma-Aldrich A9539 

Alpha-cyano-4-hydroxycinnamic Acid, 97% Sigma-Aldrich 145505 

Ampicillin Sodium Salt Melford A0104 

Bacto Tryptone BD Biosciences 211705 

Bacto Yeast Extract BD Biosciences 212750 

Bovine Serum Albumin Sigma-Aldrich A2153 

Bromophenol Blue Sigma-Aldrich 114405 

cOmplete mini Protease Inhibitor Roche 04693116001 

Deuterated Acetic Acid Sigma-Aldrich 416886 

DTT Melford MB1095 

EDTA Fisher Scientific D/0700/53 

Ethanol Fisher Scientific E/06500F/17 

Formalin Sigma-Aldrich HT501128 

Glucose Fisher Scientific 10373242 

Glycerol Fisher Scientific G/0650/17 

HEPES Sigma-Aldrich H3375 

Imidazole Fisher Scientific I/0010/53 

IPTG Melford I56000 
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Kanamycin Sulfate Sigma-Aldrich K4000 

L-Mimosine from Koa hoale seeds Sigma-Aldrich M0253 

Phosphate Buffered Saline Tablets Oxoid BR0014G 

phosSTOP phosphatase inhibitors Roche 04906837001 

Skimmed Milk Powder Oxoid LP0031 

Sodium Chloride Fisher Scientific S/3160/60 

Sodium Dodecyl Sulfate Fisher Scientific S/P530/53 

Staurosporine Abcam Ab120056 

Sucrose Fisher Scientific 10638403 

Tergitol (NP-40) Sigma-Aldrich NP40S 

Trifluoro Acetic Acid Sigma-Aldrich 302031 

Tris Base Fisher Scientific T/P630/60 

Tris HCL Fisher Scientific 10060390 

Triton X-100 Sigma-Aldrich T8787 

Tween-20 Sigma-Aldrich P1379 

   

General Buffers Composition  

Phosphate Buffered 

Saline 

1 tablet per 100mL dH2O  

Tris Buffered Saline 

(20x) 

pH7.4 

48g Tris Base 

11.2g Tris HCL 

176g NaCl 

dH2O 

 

TBS-T TBS 1X 

0.1% Tween-20 

 

NP-40 Lysis Buffer 1% NP-40 in TBS 1X 

1 tablet cOmplete protease Inhibitors 

1 tablet phosSTOP phosphatase 

Inhibitor 
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5% Milk Blocking Buffer 5% (w/v) Skimmed Milk Powder, 

Laboratory Grade 

TBS-T 

 

2% BSA Blocking Buffer 2% (w/v) Bovine Serum Albumin 

TBS-T 

 

Laemmli Sample Buffer 

(4x) 

40% Glycerol 

240mM Tris HCL pH6.8 

8% SDS 

0.04% Bromophenol Blue 

 

Miller LB Broth NaCl 

Tryptone 

Yeast Extract 

dH2O 

 

   

2.1.2 Mammalian Tissue Culture Materials  

Cell lines Name Source 

HEK293T Human Embryonic Kidney  ATCC 

HeLa Human Cervical Adenocarcinoma ATCC 

MEF Mouse Embryonic Fibroblast ATCC 

   

Consumables and Reagents Source Product Code 

T-75 Culture Flasks Sarstedt 83.3911.002 

T-175 Culture Flasks Sarstedt 83.3912.002 

6 Well Plate Greiner 657160 

12 Well Plate Greiner 665180 

24 Well Plate Greiner 662102 

96 Well F Bottom Plate Greiner 655161 

Dulbecco’s Modified Eagle Medium PanBiotech P04-04510 
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Foetal Bovine Serum Good PanBiotech P40-37500 

Trypsin PanBiotech P10-0235SP 

Penicillin/Streptomycin PanBiotech P06-07100 

Opti-MEM™ Gibco 31985070 

 

2.1.3 Plasmids 

 

Plasmids Vector Resistance Source Product 

Code 

EBOV HA-

VP24 

pCAGGS Ampicillin BEI NR-49207 

RESTV HA-

VP24 

pCAGGS  Ampicillin BEI NR-49206 

DsRed-

MLKL 

pDsRed-

Monomer-

C1 

Kanamycin Dr Zheng-Gang Liu, 

National Institute of 

Health USA 

 

RIP3-YFP pEYFP-N1 Kanamycin Dr Zheng-Gang Liu, 

National Institute of 

Health USA 

 

mCherry-

Mito-7 

mCherry Kanamycin Addgene #55102 

RESTV GP pcDNA3.1 Ampicillin Dr Elke Mulhberger, 

National Emerging 

Infectious Diseases 

Laboratories 

 

EBOV Delta 

Peptide 

pUC19 Ampicillin Synthesised 

Commercially  

 

RESTV 

Delta 

Peptide 

pUC19 Ampicillin Synthesised 

Commercially 
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EBOV GFP-

Delta 

Peptide 

pCold Ampicillin Gibson Assembly   

 

 

 

2.1.4 qPCR Primers 

All primers were gifted from Tim Fenton at University of Kent. 

Primer Sequence 

Cyclin A2-F CCAGAACCTGAGCCTGTTAAA 

Cyclin A2-R CTCGACATCAACCTCTCCAATC 

Cyclin B1-F ACTTTCGCCTGAGCCTATTT 

Cyclin B1-R CTGTGGTAGAGTGCTGATCTTAG 

Cyclin D1-F CCACTCCTACGATACGCTACTA 

Cyclin D1-R CCAATCAGATGACTCTGGGAAA 

Cyclin E1-F TTTGCAGGATCCAGATGAAGAA 

Cyclin E1-R GTCTCTGTGGGTCTGTATGTTG 

TBP-F CCCATGACTCCCATGACC 

TBP-R TTTACAACCAAGATTCACTGTGG 

 

 

2.1.5 Antibodies 

 

Primary Antibody Supplier Species Product Code 

HA Santa Cruz Biotech Mouse Sc-7392 

Bacterial Cells for Plasmid 

Generation 

Source Product Code 

Escherichia Coli DH5 α New England 

Biolabs 

C2987I 
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HA (HRP) Santa Cruz Biotech Mouse SC-7392 HRP 

PARP Cell Signalling Rabbit 9532 

Cleaved Caspase 3 Cell Signalling Rabbit 9661 

Caspase 7 Cell Signalling Rabbit 9492 

p21 Cell-Signalling Rabbit 2947 

β-Actin-(HRP) Sigma-Aldrich Mouse A3854 

γH2AX EMD Millipore Mouse 05-636 

    

Secondary 

Antibody 

Supplier Species Product Code 

Donkey Anti-Rabbit IgG 

(H+L) Cross-Absorbed 

Secondary Antibody, 

HRP 

Invitrogen Rabbit A16023 

Donkey Anti-Mouse IgG 

(H+L) Cross-Absorbed 

Secondary Antibody, 

HRP 

Invitrogen Mouse A16011 

Donkey Anti-Mouse IgG 

(H+L) Cross-Absorbed 

Secondary Antibody 

Alexa-488 

Invitrogen Mouse A21202 

Donkey Anti-Mouse IgG 

(H+L) Cross-Absorbed 

Secondary Antibody 

Alexa-594 

Invitrogen Mouse A21207 

Donkey Anti-Mouse IgG 

(H+L) Cross-Absorbed 

Secondary Antibody 

Alexa-647 

Invitrogen Mouse A31571 
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2.1.6 Hardware and Software 

 

Hardware Application Supplier 

Accuspin Micro 17R 

Tabletop Centrifuge 

Centrifugation Fisher Scientific 

Agilent 1100 HPLC Peptide Purification Agilent 

Bruker 600Mhz NMR Peptide Analysis Bruker 

CLARIOstar Plate 

Reader 

BCA 

Fluo4 Assays 

Caspase Glo 3/7 Assays 

MTS assay 

BMG Labtech 

Function Generator Giant unilamellar vesicle 

preparation 

 

G:BOX Western Blot Imaging 

Coomassie Imaging 

Syngene 

Incucyte® Live Cell Imaging Sartorius 

LSM-880 Confocal with 

AiryScan 

Fluorescent Microscopy Zeiss 

Lumascope 600 Fluorescent Microscopy Etaluma 

Megafuge 40R 

centrifuge 

Centrifugation ThermoFisher 

Nanodrop OneC DNA/Protein Quantification ThermoFisher 

Scientific 

Optima™ LE-80K 

Ultracentrifuge 

Ultra centrifugation Beckman-Coulter 

QuantStudio® 3 Real-

Time PCR System 

qPCR ThermoFisher 

Scientific 

UltrafleXtreme MALDI-

TOF 

Peptide Analysis Bruker 
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2.1.7  Kits and Assays 

Software Application Suppler 

Agilent 1100 Method & 

Run 

HPLC control Agilent 

Flex Analysis MALDI-TOF analysis of peaks Bruker 

Flex Control MALDI-TOF control Bruker 

GeneSys Western Blot image 

acquisition 

Syngene 

ImageJ Image Analysis NIH (Schindelin et 

al., 2015) 

Microsoft Excel  Statistical Analysis Microscoft 

QuantStudio™ Design & 

Analysis v1.4.3 

qPCR experiment design and 

analysis 

ThermoFisher 

Zen Black Confocal Imaging Zeiss 

Zen Blue Processing raw confocal data Zeiss 

Kit/Assay Supplier Product 

Code 

Pierce™ BCA Protein Assay Kit ThermoFisher 

Scientific 

23225 

Clarity™ Western ECL Blotting Bio-Rad 1705060 

Trans-Blot® Turbo™ 5x Transfer Buffer Bio-Rad 10026938 

MTS Assay Kit Abcam Ab197010 

Fluo-4 Direct™ Thermofisher F10471 

Caspase-Glo® 3/7 Promega G8090 

Caspase-Glo® 8 Promega G8200 

Plasmid Midi Kit Qiagen 12143 

TransIT-LT1 Mirrus-Bio E7-0002 
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Buffers Composition  

Lysis Buffer 50mM Tris 

300mM NaCl 

dH2O 

 

Nickel Column Wash 

Buffer 

50mM Tris 

300mM NaCl 

5mM Imidazole 

dH2O 

 

Nickel Column Elution 

Buffer 

50mM Tris 

300mM NaCl 

400mM Imidazole 

dH2O 

 

Strep-Tactin Wash Buffer 

(Buffer W) 

50mM Tris 

300mM NaCl 

dH2O 

 

Strep-Tactin Elution 

Buffer (Buffer E) 

50mM Tris 

300mM NaCl 

2.5mM Desthibiotin 

dH2O 

 

Polyethylenimine, Linear, MW25000 Polysciences, Inc. 23966-2 

Protein Ladder 10-245 Abcam Ab116028 

ProLong Gold Antifade Mountant with 
DAPI 

ThermoFisher 

Scientific 

P36935 

RNAeasy Mini Qiagen 74106 

Criterion™ TGX™ Precast Gel Biorad 5761124 

GoScript™ Reverse Transcriptase Promega A5003 

PowerUp™ SYBR Green 2X MasterMix ThermoFisher A25742 

Peptide Calibration Standard II Bruker 222570 

2.1.8 Peptide Purification Materials 
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M9 Salt Solution (10x) 

pH7.2 

66g Na2HPO4(2.H2O) 

33g KH2PO4 

5.5 NaCl 

 

M9 Media 100mL M9 Salt 

800mL ddH2O 

1mL 1M MgSO4 

1mL 0.1M CaCl2 

1mL 1M Thiamine 

10mL (100x) Trace Metal 

4g/L D-Glucose 

1g/L (15N) NH4Cl 

1mL Ampicillin stock 

 

HPLC Buffer A 0.1% TFA 

ddH2O 

 

HPLC Buffer B 0.09% TFA 

80% Acetonitrile 

 

 ddH2O  

TEV Cleavage Buffer 

pH8 

50mM Tris 

1mM EDTA 

 

 

Materials Supplier Product Code 

cOmplete™ His-Tag 

Purification Resin 

Roche 05893682001 

Strep-Tactin® Superflow® IBA Lifesciences 2-1206-002 

Econo-Pac® Gravity 

Column 

Bio-Rad 7321010 

Synthetic Peptide BioMatik  
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2.1.9 EBOV Delta Peptide Constructs 

 

 

2.1.10 EBOV Delta Peptide Primers for PCR 

 

2.1.11 Electroformation Consumables 

Materials Supplier Product Code 

Copper Foil Sigma-Aldrich GF28915421 

Indium tin oxide coated 

glass slide 

Sigma-Aldrich 703176-10PAK 

Vector Sequence Supplier 

pUC57-Amp TGGCTGCAAAAAATCCCGCTG

CAGTGGTTCAAATGCACCGTC

AAAGAGGGCAAACTGCAGTGC

CGTATCTAG 

Synbio Technologies 

Primer Sequence Tm (°C) Supplier 

zDelta Peptide 

Vector Reverse 

AGCGGGATTTTTTGCAGCCAG

CCTGCACCCTGGAAGT 

60 Thermofisher 

zDelta Peptide 

Vector Forward 

AACTGCAGTGCCGTATCTAGT

AAGGATCCGAATTCAAGCTTG

TCGACC 

60 Thermofisher 

zDelta Peptide 

Fragment Reverse 

AGCTTGAATTCGGATCCTTACT

AGATACGGCACTGCAGTTTGC 

60 Thermofisher 

zDelta Peptide 

Fragment Forward 

TGTACTTCCAGGGTGCAGGCT

GGCTGCAAAAAATCCCGCTG 

58 Thermofisher 
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FastWells™ reagent 

barriers 

Sigma-Aldrich GBL 664112-50EA 

 

2.1.12 Lipidic Cubic Phase Crystallography Consumables 

Materials Supplier Product Code 

Laminex™ UV Plastic 

200-micron Film Cover 

Molecular Dimensions MD11-53-200 

Laminex™ UV Plastic 

Base 100 micron 

Molecular Dimensions MD11-51-100 

MemGold2™ HT-96 Molecular Dimensions MD1-64 

MemGoldMeso™ HT-96 Molecular Dimensions MD1-114 

Monoolein (1-Oleoyl-rac-

glycerol) 

Sigma-Aldrich M7765 

 

2.2 Methods 

2.2.1 Plasmid Preparation 

To generate plasmid stocks, 100ng of plasmid were mixed with DH5-alpha E. Coli  

on ice for 20 minutes. Mixtures were then heat shocked at 42°C for 45 seconds then 

quickly returned to ice for 2 minutes. For plasmids containing a kanamycin resistance 

gene, an outgrowth was performed whereby cells were mixed with 1000μL of SOC 

media for 1 hour at 37°C with shaking at 200rpm to allow generation of antibiotic 

resistance. Lastly, cells were streaked on agar plates containing the appropriate 

antibiotic and plates were placed in an incubator at 37°C overnight for colony 

formation. The next day, single colonies were picked with a sterile pipette tip and 

dropped in 50mL Falcon tubes containing LB broth with the appropriate antibiotic 

resistance and incubated overnight in a shaking incubator at 200rpm, 37°C. The 

following day, the falcon tubes were centrifuged for 20 minutes at 4000G to pellet 

the bacteria, the supernatant was then removed. The pellets were then subjected a 

midiprep vacuum protocol supplied by the manufacturer (Qiagen) to recover plasmid 
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DNA. After elution, quantity and purity of DNA was measured using a nanodrop 

spectrophotometer.   

2.2.2 Tissue Culture 

2.2.2.1 Passaging Cells 

HeLa, HEK 293t and, Huh-7s cell were grown in DMEM supplemented with 10% 

FBS, and1% P/S. Cells were maintained at 37°C and 5% CO2. At 80% confluency 

all cells were split for passaging. For passaging, media from the flask was removed, 

cells were washed once with 5mL of warm PBS, followed by addition of 3mL of warm 

trypsin for 2-4 minutes until cells have detached. After detachment, 7mL of warm full 

DMEM was added to quench trypsin activity, and the cell suspension was placed in 

15mL Falcon tubes for centrifugation at 300G for 5 minutes. Supernatant was 

discarded and fresh DMEM was added to resuspend the cells which were then 

added in appropriate tissue culture flasks in 1:10 ratio, then returned to the incubator. 

Cells were maintained up to a maximum of 50 passages. HEK293T cells were tested 

annually for mycoplasma contamination using the MycoAlert detection kit from 

Lonza. 2mL of cells were pelleted, 100 μL of supernatant was removed and placed 

in a new tube, 100 μL of MycoAlert reagent was added to the sample and incubated 

for 5 minutes, then luminescence was measured using a plate reading luminometer. 

Then 100 μL of MycoAlert substrate was added to sample and incubated for 10 

minutes prior to taking another luminescence reading. Samples were run alongside 

a positive control supplied by the kit. The results confirmed the cells were 

mycoplasma free. HeLa and Huh-7 cells were sent for mycoplasma testing to 

Eurofins. Samples were certified mycoplasma free. 

2.2.2.2 Freezing Cells 

To generate frozen stocks of cells being used, a solution containing the media used 

for the cells with 10% DMSO was made. Stocks were made when required and 

carried out in tandem with passaging, usually during cell passage numbers 3 to 5. 

Half of the cell suspension in the falcon tube during passaging were removed and 

pipetted into a new falcon tube and counted using a haemocytometer under a light 
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microscope. The cells were then pelleted at 300G in a centrifuge for 5 minutes. The 

media was removed and cells were resuspended in DMEM with 10% DMSO and 

pippeted into cryovials at a density of 1,000,000 cells per ml. Cryovials were then 

frozen at -80°C and after 48 hours transferred to liquid nitrogen vats used to store 

cells for long term periods. 

 

2.2.2.3 Thawing Cells 

Cryovials were removed from the liquid nitrogen vats and placed in a box containing 

dry ice to prevent thawing as they were brought to the laboratory. The cryovials were 

thawed rapidly in a 37°C waterbath and visually inspected every minutes to ensure 

the cells were fully thawed. Afterwards, cells in the cryovial were pipetted into a 

falcon tube containing 4mL of prewarmed media and centrifuged at 300 x G for 5 

minutes. The media was removed after centrifugation to remove DMSO and cells 

were resuspended in 5mL of fresh warm media. All of the cell suspension was 

transferred into a T-25 flask and left in the incubator at 37 °C and 5% CO2. After 24 

hours the media was replaced with fresh prewarmed media. Cells were passaged 3 

times prior to use for experiments. 

2.2.3 Transfection 

Cells were grown to 80% confluency before splitting. Upon resuspension after 

trypsinisation, cells were counted using a haemocytometer and seeded in the 

appropriate plates for next day transfection (~75% confluency). The following 

description applies to transfections in 6-well plates. The table below summarises the 

values of cell number and reagents used in smaller plates. Transfection method 

using Polyethylenimine (PEI): 2000ng of plasmid DNA and 6µL of PEI were added 

in separate Eppendorf tubes containing 125µL filter sterilised 300mM NaCl solution 

and then mixed together into one tube and incubated for 15 minutes to allow the 

DNA complexes to form using a 1:3 DNA:PEI ratio. Full DMEM (10% FBS, 1% P/S) 

was removed from the cells which were then washed in warm sterile PBS media 

prior to adding 2mL of warm DMEM containing FBS only. 250µL of DNA:PEI 

complexes were added in a dropwise fashion to the cells, plates were gently rocked 
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to ensure even distribution and returned to the incubator. After 4 hours of incubation, 

media was replaced, cells were washed with warm sterile PBS to remove remaining 

PEI, and pre-warmed full DMEM was added to cells to incubate for indicated time 

periods.  

Transfection method using Mirrus TransIT LT1: 2000ng of plasmid DNA was added 

to tubes containing 250µL of Opti-MEM, followed by addition of TransIT-LT1 at a 1:3 

DNA:LT1 ratio and incubated for 15 minutes to allow DNA complexes to form. The 

250µL solutions containing the DNA:LT1 complexes were then added in a dropwise 

fashion to the wells, plates were gently rocked to ensure even distribution and 

incubated for indicated time periods. 

 

 

2.2.4  Cell lysis and Protein Quantification 

6-well plates with transfected HeLa cells were removed from the incubator and 

media was aspirated, cells were washed once with 2mL of ice cold PBS and then 

lysed in 75µL of ice cold NP-40 lysis buffer (150mM NaCl, 50mM Tris pH8.0) 

containing protease and phosphatase inhibitors for 15 minutes on ice. For smaller 

plates, lysis buffer volume was scaled down appropriately. The lysate from the plates 

were pipetted into appropriately labelled Eppendorf tubes. Samples were clarified 

using a tabletop centrifuge at 4°C and 17,000 x G for 20 minutes. Supernatants were 

removed and placed into new Eppendorf tubes for downstream applications. All 

samples were subjected to BCA assay according to manufacturer’s instructions for 

protein quantification. Briefly; 10μL of lysate samples were diluted in a 1:4 ratio with 

Plate Cell 

Number 

(HeLa) 

DNA 

Concentration 

Transfection 

Buffer PEI (150mM 

NaCl) 

Transfection 

Buffer LT-1 

(Opti-MEM) 

12 Well 125,000 1000ng 75µL for DNA 

75µL for PEI 

125µL 

24 Well 75,000 500ng Not Used 100µL 

96 Well 10,000 100ng Not Used 50µL 



 

 

2-60 

lysis buffer, then added in wells of a 96-well plate in triplicate fashion. Protein 

standards supplied in the kit were added to separate wells of the 96-well plate. All 

samples were then treated using 200μL of Pierce™ BCA Protein Assay Reagent A/B 

and incubated for 30 minutes at 37°C. Afterwards, plates were removed from the 

incubator and absorbance of samples were measured using the Clariostar plate 

reader. Absorbances were then corrected against the blank wells and protein 

concentration was determined by comparing the resultant absorbance value against 

the standard curve. After the BCA assay, lysates were aliquoted and stored at -20°C. 

 

2.2.5 RNA Extraction 

Plates containing treated cells were removed from the incubator and media was 

aspirated. Cells were washed once with cold PBS and RNA was extracted using 

the RNAeasy Mini kit from Qiagen according to manufacturer’s protocol. The 

optional step for DNA digestion was carried out to remove all DNA from the column 

prior to washing and eluting RNA. The concentration of RNA was determined using 

a nanodrop spectrophotometer.  

2.2.6 Gel Electrophoresis and Western Blots 

Cell lysates with known protein concentrations were mixed at a 4:1 ratio with 4x 

Laemmli buffer containing 200mM 2-mercaptoethanol and boiled at 95°C for 10 

minutes. Samples containing 25μg of protein were loaded on Criterion™ TGX™ gels 

and subjected to gel electrophoresis at 200W in the presence of tris-glycine running 

buffer. When then blue dye front reached the bottom of the gel cassette, the gel was 

removed from the cassette and proteins were transferred from the gel onto 

polyvinylidene difluoride (PVDF) membranes using a Biorad Trans-Blot Turbo 

machine according to manufacturer’s instructions. The membranes were blocked in 

5% milk and 0.1% tween in TBS (TBS-T), or 5% bovine serum albumin in TBS-T for 

phospho-specific antibodies for 1 hour at room temperature. Primary antibody 

incubations were done overnight at 4C. Secondary HRP-conjugated antibody 

incubations were carried out for 1 hour at room temperature at 1:10,000 dilution in 

the same buffer used for primary antibody incubation. Western blots were developed 
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by incubating membranes in Clarity™ ECL reagent (BioRad) according to 

manufacturer’s protocol; mixing the ECL reagents A and B in a 1:1 ratio, incubate 

PVDF membrane for 60 seconds in the dark and visualised using smart capture 

settings in the Gel Doc. Membranes were probed with anti-Caspase 3, anti-PARP1, 

anti-pMLKL. HRP-conjugated β-actin and anti-HA tag antibodies were used to verify 

equal gel loading and transfected protein expression. 

Primary Antibody Dilution Dilution Buffer Incubation 

Cleaved Caspase 3 1:1000 5% Milk TBS-T 4°C Overnight 

PARP-1 1:1000 5% Milk TBS-T 4°C Overnight 

Cyclin E1 1:1000 5% Milk TBS-T 4°C Overnight 

p21 1:1000 5% Milk TBS-T 4°C Overnight 

RIP3 1:1000 5% Milk TBS-T 4°C Overnight 

pMLKL 1:1000 5% BSA TBS-T 4°C Overnight 

γH2AX 1:1000 5% BSA TBS-T 4°C Overnight 

HA-Tag (HRP) 1:10,000 5% Milk TBS-T 1 Hour Room Temperature 

β-Actin (HRP) 1:10,000 5% Milk TBS-T 1 Hour Room Temperature 

 

2.2.7 Immunofluorescence Microscopy 

Glass coverslips were autoclaved and subjected to UV sterilisation for 2 hours inside 

the tissue culture hood. Cells were counted and seeded on sterilised glass coverslips 

for next day transfection at the same densities described in Transfections section. 

After indicated incubation period post transfection, cell media was aspirated and the 

coverslips were washed in ice cold PBS prior to fixation using 4% formalin. After 

fixation coverslips were incubated in PBS containing 0.1% Triton X-100 for 15 

minutes to permeabilise the cells unless otherwise stated. The coverslips were 

blocked using a buffer containing 5% BSA in TBS-T for 1 hour at room temperature. 

Primary antibodies were diluted in blocking solution and added at indicated ratios for 

either 1 hour at room temperature or overnight at 4°C. Coverslips were washed using 

TBS-T 4 times for 5 minutes on a rocker to remove non-bound antibodies. Secondary 

antibody staining was carried out using Alexa fluorophore-conjugated secondary 

antibodies in blocking solution at 1:1000 dilution for 1 hour at room temperature, 



 

 

2-62 

followed by four washes in TBS-T at 5 minutes each, in the dark. Coverslips were 

then mounted on glass slides using ProLong™ Gold Antifade mounting media 

containing DAPI (Invitrogen). All mounted coverslips were cured overnight at room 

temperature prior to imaging using either Etaluma Lumascope-600 or Zeiss LSM-

880 confocal microscope. Images were analysed using Zen Blue software. 

Primary Antibody Dilution Dilution Buffer Incubation 

HA-tag 1:500 5% BSA TBS-T 1 Hour Room Temperature 

VDAC1 1:500 5% BSA TBS-T 1 Hour Room Temperature 

    

Dye/Fluorophore Excitation 

Max (nm) 

Emission 

Max (nm) 

Laser Filter 

DAPI 350 470 405 MBS-405 

Alexa488 490 525 488 MBS-488 

Alexa594 590 617 594 MBS-458/561 

Alexa647 650 665 647 MBS-488/561/633 

mCherry 587 610 594 MBS-458/561 

eGFP 488 509 488 MBS-488 

 

 

2.2.8 MTS Assay 

HeLa cells were seeded at a density of 10,000 cells per well in a clear F bottom 96-

well plate for next day transfection using TransIT and 100ng of DNA per well and 

incubated at 37°C. After 24 and 48 hours post transfection, 20μL of MTS ((3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) reagent (Abcam 197010) was added to each well and returned to the 

incubator for 4 hours at 37°C. After incubation, absorbance was measured with a 

plate-reader at OD490. Blank wells were used to subtract background signal. Positive 

control wells were treated with 5μM staurosporine solution for 4 hours before 

performing the assay. 
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2.2.9 Quantitative PCR 

RNA samples extracted from treated cells were converted to cDNA using the 

GoScript Reverse Transcription System (Promega) according to manufacturer’s 

protocol. Where the option in the protocol was given, we opted to use both Random 

Primer and Primer [Oligo(dT)]15. Also, we chose to add Recombinant RNAsin® 

Ribonuclease Inhibitor, another optional step in the protocol, as this would protect 

RNA from RNAase activity. 

To perform the qPCR assays, we used SYBR Green PowerUp mastermix and 

followed the manufacturer’s protocol. We carried out 10μL reactions, whereby 2 μL 

of cDNA (5ng/μL) was used. Primers for genes of interest were designed and 

purchased from Integrated DNA Technologies. Plate setup and raw data was set up 

using QuantStudio Design & Analysis software. Raw data was post processed in 

excel, where standard curves for each gene, kindly provided by members of the 

Fenton Research Group at University of Kent, were used to quantify the copy 

number of transcripts for each gene that was assayed. 

 

2.2.10 Fluo4 Direct™ Calcium Assay 

Intracellular calcium was measured using the Fluo4 Direct™ calcium assay 

according to manufacturer’s protocol. Briefly, 24 well plates were seeded with HeLa 

cells at a density of 75,000 cells and transfected with either HA-zVP24, HA-rVP24 

or empty vector control. Cells were incubated for 48 hours prior to assaying for 

intracellular calcium. After 48 hours, a 2x Fluo4 Direct™ calcium reagent was added 

directly to the well containing culture media at a 1:1 ratio. Plates were returned to 

the incubator for 30 minutes. After incubation, green intensity was monitored using 

a Lumascope-600 with a x10 lens Gain and exposure settings were kept identical 

for all conditions. Images were exported as TIFF and converted to 250bit greyscale 

to quantify signal intensity using ImageJ software. 
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2.2.11 Caspase Activity Assays 

Caspase activity was monitored using the Caspase-Glo 3/7 Assay Systems kit ® 

and Caspase-8 Glo (Promega). HeLa cells were seeded at a density of 12,000 cells 

in a black F-bottom 96-well plate for next day transfection. 48 hours post transfection, 

100μL of Caspase-Glo ® 3/7 was added to all the wells and the plate was gently 

shaken manually to ensure proper mixing. Plates were then incubated at room 

temperature for 2 hours prior to taking luminescent readings, Positive control wells 

were subjected to 2μM staurosporine for 4 hours before performing the assay. 

 

2.2.12 Autophagy Bioinformatics 

To find any LC3-interacting regions, the web resource iLIR 

(https://ilir.warwick.ac.uk/index.php) (Kalvari et al., 2014) was used using the 

following Uniprot entries in FASTA format: EBOV VP24 (Q05322), RESTV VP24 

(Q77DB4), and Influenza M2 protein (P0DOF8). The latter was used as a reference 

since M2 has been verified in-vitro in recruiting autophagy machinery (Beale et al., 

2014). Position Specific Scoring Matrices (PSSM) for each entry was tabled using 

Microsoft Excel. 

 

2.2.13 STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) Bioinformatics 

To find binding partners of proteins that interact with EBOV VP24, STRING database 

(https://string-db.org/) was used with settings allowing results to appear that have 

been verified experimentally and with high confidence score (≥0.700). Searches 

were carried out for KPNA1 and KPNA5 genes in Homo sapiens. Results were 

exported as .png files. 

 

https://ilir.warwick.ac.uk/index.php
https://string-db.org/
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2.2.14 Giant Unilamellar Vesicle Formation 

GUVs were prepared by electroformation method. 26mg of Asolectin lipid pellets 

were dissolved with 1mL of chloroform in a glass tube. Chloroform was then 

evaporated in a nitrogen gas stream whilst rotating the glass tube at an angle to form 

a thin film. When the chloroform was fully evaporated lipids were resuspended in 

50mM HEPES pH 7.4 buffer containing 1mM Nile red dye to a final concentration of 

50mg/ml. 10μL of lipid mixture was placed on the conductive sides of two indium-tin 

oxide coated coverslips and evaporated in a vacuum chamber overnight. After 

complete evaporation, rubber O-rings were placed on the ITO coverslips and 70µL 

of 0.1M sucrose, 1mM HEPES buffer was added in the well, and coverslips were 

attached by bull clips to form a sealed chamber. The leads of the function generator 

were clipped onto the copper coated edges of the coverslip and the function 

generator was switched on with settings of 10Hz sine wave function, at 1.5V for 2 

hours and 30 minutes to form GUVs. Voltage was monitored using a multimeter set 

to alternating current voltage. After electroformation, the GUVs were removed using 

a wide-bore pipette and diluted 1:100 in buffer containing 0.1M glucose, 1mM 

HEPES buffer. Successful formation of GUVs was confirmed by seeding 200μL of 

GUV solution in chamber slides and visualised using confocal microscopy using a 

594nm laser with a x63 objective lens. 

 

2.2.15 Oxidation of Delta Peptides 

 

Method adapted from (J. He et al., 2017). All peptides were purchased from Biomatik 

at 95% purity. To form the disulphide bonds between the c-terminus cysteine 

residues of the delta peptides, 1mg of peptide was dissolved in 15% acetic acid and 

made up to 300µL in ddH2O. Then DMSO was added at 20% final concentration and 

tubes were incubated at room temperature overnight. To remove DMSO, samples 

were snap frozen in liquid nitrogen and lyophilised by placing the Eppendorf tubes 

inside the glass chamber that attaches to the vacuum lyophiliser. The air in the 
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chamber was vented out and samples were left overnight. The following day, the 

glass chamber was vented with air and Eppendorf tubes were removed. 

 

2.2.16 Membrane insertion of Delta-peptide in GUVs 

 

FITC tagged E23∆red, E23∆ox, R25∆red, and R25∆ox  peptides were dissolved in 

ddH2O with 20% acetic acid to 1mM at pH6.5. A multichamber slide was coated 

using 100μL of PBS containing 1% BSA for 1 hour prior. After successful coating the 

BSA solution was removed and FITC tagged z23∆red, z23∆ox, r25∆red, and r25∆ox 

peptide was mixed with GUVs in the chambers to a final concentration of 30µM and 

viewed after 15 minutes of incubation using a Zeiss LSM-880 confocal microscope 

using a Zeiss apochromat 63x objective with 488 laser, MBS-488 filter set for FITC 

excitation and 594 laser, MBS-594 filter set for Nile red excitation. Images were post-

processed to normalise brightness across the samples using Zen blue software. 

 

2.2.17 MALDI-TOF Mass Spectrometry 

Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry was 

carried out by spotting peptide samples diluted in TA30 solution (30:70 [v/v] 

acetonitrile:0.1% trifluoroacetic acid) at 1:100 on the AnchorChip target plate. The 

plate was calibrated by adding 0.5µL of Peptide Calibration Standard II solution on 

a grid spot adjacent to our experimental sample. When the spots dried on the 

AnchorChip plate, 1µL of working matrix solution (alpha-cyano-4-hydroxycinnamic 

acid in TA30) was added to both experimental peptide samples and calibration 

samples. After drying, the AnchorChip plate was inserted into the Bruker Flextreme 

MALDI-TOF. Data collection was carried out after calibrating against the Peptide 

Calibration Standard II spot and was acquired using a preset program (RP700-3500) 

on Flex Control software by the in-house technician to detect peptides up to 3500kD 

in size. FlexAnalysis software was used to label peaks and extract the results into 

TIFF format. 

 



 

 

2-67 

2.2.18 Gibson Assembly 

To clone the EBOV 23 amino acid C-terminus DNA fragment from the pUC57 vector 

into a pCold vector expressing 6x His tag, twin strep tag and GFP, Gibson assembly 

was carried out according to manufacturer’s protocol. Thermocycler settings for 

amplifying pCold vector were as follows: 2 minutes 95°C, followed by 30 cycles of 

45 seconds at 95°C, 30 seconds at 55°C, 11 minutes at 73°C. Final elongation step 

was 5 minutes at 73°C. For amplification of the EBOV delta peptide fragment, the 

thermocycler settings were as follows: 2 minutes 95°C, followed by 30 cycles of 45 

seconds at 95°C, 30 seconds at 55°C, 1 minutes at 73°C. Final elongation step was 

5 minutes at 73°C. The pCold amplified product was subjected to a PCR cleanup 

step, using a PCR CleanUp Kit, whereas the amplified EBOV delta peptide fragment 

was not subjected to the PCR cleanup step. Gibson Assembly was carried out by 

mixing amplified products in a 1:4 ratio between amplified vector and amplified 

fragment, to a total 0.25pmols of DNA, followed by mixing with 2X Gibson Assembly 

Mastermix and volumes were raised to 20µL per PCR tube using ddH2O. The 

thermocycler settings were set to 50°C for 15 minutes as per manufacturer’s 

protocol. After the reaction, the resulting DNA solution was transformed using 

competent cells to generate plasmid DNA to ship for sequencing. Sequence data 

returned by Eurofins confirmed successful generation of the pCold-EBOV delta 

peptide plasmid. 

2.2.19 Peptide Expression and Extraction 

BL21 competent E. coli were transformed with pCold EBOV Delta-peptide plasmid 

by mixing 100ng of plasmid DNA with 100µL of BL21 cells on ice, followed by heat 

shocking the mixture at 42°C for 45 seconds in a water bath, followed by returning 

samples on ice for 10 minutes. Samples were then streaked onto ampicillin 

(100µg/ml) treated agar plates for colony formation. The following day, a colony was 

transferred by stabbing with a sterile pipette tip to grow overnight in 50mL of LB broth 

containing 100µg/mL ampicillin in a shaking incubator at 37°C. The next day 15mL 

of the overnight growth sample was then added to 1L of LB broth and returned to 

the shaking incubator at 37°C, periodically checking the OD of the culture. When the 
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OD600 was recorded to have an absorbance of 0.7, the 1L culture was quickly cooled 

to 15°C in ice water for 30 minutes. Then 1mL of IPTG was added to the 1L culture, 

yielding a final concentration of 1mM to induce peptide production. The 1L culture 

was returned to a shaking incubator set to 15°C and incubated overnight to allow 

peptide expression. 

 

The day after peptide expression the 1L culture was removed from the flask and 

cells were pelleted by centrifugation at 5000G. The supernatant was removed and 

cell pellets were resuspended in 50mL of lysis buffer. Cells were lysed by sonication 

on ice for 10 minutes, and debris was removed from the lysate by ultracentrifugation 

at 117734G using a Type 70i rotor for 1 hour at 4°C. The supernatant was transferred 

into appropriately labelled falcon tubes and the pellet fraction was discarded. 

 

2.2.20 Nickel Column Purification 

cOmplete™ His-Tag purification resin was loaded onto a gravity chromatography 

column to a final bed volume of 2.5ml. The column was washed by adding 4 column 

volumes (CV) of ddH2O (80ml) to remove the storage buffer containing 20% ethanol. 

Then, the column was equilibrated using 4 CV of lysis buffer. After equilibration, 4 

CV of lysate were then added to the column, and flowthroughs were collected in 

15mL falcon tubes. The resin was washed by adding 4 CV of Wash buffer containing 

5mM imidazole two times and collected in 15mL falcon tubes. To elute bound 

sample, 4CV of Elution buffer containing 400mM imidazole was added to the column 

twice and all samples were collected in 15mL falcon tubes. To check purity of 

samples, 10µL fractions from each falcon tube was subjected to gel electrophoresis 

using a Criterion™ TGX™ gel. The gel was removed from the cassette then stained 

with Coomassie blue for 4 hours at room temperature on a shaker plate and 

incubated in destain overnight to detect protein bands on the gel. 

2.2.21 Strep-tactin column Purification 

Strep-Tactin® Superflow® resin was added to a 20mL gravity chromatography 

column to a final column bed volume of 5ml. The column was then equilibrated with 
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2 column volumes (CV) of Buffer W. Lysates were then added and flowthrough was 

collected in 15mL falcon tubes. After running the lysate, the column was washed 

with Buffer W 4 times at 1 CV (20ml) per wash, with all flowthroughs collected in 

15mL falcon tubes. After washing the column to remove non-specific bound 

contaminants, the bound strep-tagged peptide was eluted using 0.5 CV of Buffer E 

4 times and collected in 15mL falcon tubes. All collections throughout the purification 

were kept on ice. To check purity of the samples, 10µL fractions from each falcon 

tube was subjected to gel electrophoresis using a Criterion™ TGX™ gel. The gel 

was removed from the gel cassette and then stained with Coomassie blue for 4 hours 

at room temperature on a shaker plate and incubated in destain overnight to detect 

protein bands on the gel. 

2.2.22 HPLC Purification 

Reverse phase HPLC was carried out on an Agilent 1100 HPLC machine. Peptide 

sample was injected into a Vydac™ Protein and Peptide C18 column and eluted 

based on a gradient increase of buffer B (1% TFA in acetonitrile) against buffer A 

(10% TFA in ddH2O). Sample elution was monitored by fluorescence at 280nm 

wavelength. Peak intensity was recorded at 35 minutes, therefore elutions at 35-38 

minutes were collected. 

2.2.23 Nuclear Magnetic Resonance 

Reduced 23 amino acid EBOV delta-peptide was dissolved in ddH2O containing 

20% deuterated acetic acid to a final concentration of 650μM and loaded into a 

Bruker Advance3 spectrometer operating at a 1H frequency of 600MHz equipped 

with a TCI-P cryo- probe. 1H -1H TOCSY experiment with excitation sculpting for 

water suppression was used with a mixing time of 60 ms, with 4096 points in the 

direct dimension and 1020 in the indirect dimension. 1H -1H NOESY experiment 

with excitation sculpting for water suppression was used with a mixing time of 

120mS, with 4096 points in the direct dimension and 864 in the indirect dimension. 
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2.2.24 Lipid Cubic Phase Crystallography 

Technique performed in collaboration with Dr Jose Ortega-Roldan. Monoolein lipid 

was warmed up to 40°C and transferred into a gas-tight Hamilton syringe. Special 

care was taken to prevent formation of air bubbles. Synthetic RESTV 25aa delta 

peptide dissolved in 15% acetic acid to 20mg/mL at pH 5 was pipetted into the 

Hamilton syringe containing the prewarmed monoolein lipid to final mixture volume 

of 40μL, 40% weight:volume between lipid and peptide. The final mixture was moved 

to the very tip of the Hamilton syringe to remove residual air prior to coupling with 

another Hamilton syringe for mixing. Once the two opposing Hamilton syringes were 

successfully coupled without presence or air, the plungers were pressed to move the 

mixture into the opposite Hamilton syringe and vice-versa repeatedly to mix the 

solution until the mixture becomes transparent. Once completed, the syringe was 

attached to a Mosquito® High Throughput Screening robot. The Mosquito® robot 

was programmed to pipette 800nL volume from 96 well plates containing the 

precipitant screens for crystallisation; MemGold2™, MemGoldMeso™, onto a 96 

well plastic bases. The Mosquito® robot was also calibrated to dispense 50nL of 

lipid:peptide mixture onto the 96 well plastic bases containing the precipitants. The 

plastic bases were then covered with a plastic film cover and incubated at 18°C. 

Plates were checked every week under a light microscope for crystal formation. 
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3 Cytotoxicity of VP24 - Metabolism and Proliferation. 

3.1 Abstract 

 

Ebola virus VP24 is a protein that is involved in suppression of the interferon 

signalling pathway. However, a group has reported that failure to establish a stable 

cell line expressing VP24 was likely due to unreported cytotoxic effects. In order to 

verify whether there are cytotoxic effects displayed by VP24, we carried out simple 

assays that would give us insight into how cells are affected in response to VP24 

transfection. Using live cell imaging we detected a decrease in cell proliferation after 

24 hours post transfection. Furthermore, analysis of metabolism by MTS assay 

revealed a decrease in metabolic activity of cells transfected with VP24 between 24 

and 48 hours post transfection. Analysis by immunofluorescent microscopy showed 

a morphological change in mitochondrial architecture with cells transfected by VP24. 

Therefore, our data in this chapter confirms that VP24 does negatively affect cells, 

and further work would be needed to assess which pathways would be responsible. 
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3.2 Introduction 

 

Due to the ambiguity of the term cytotoxicity with regards to specific pathways and 

mechanisms, we sought to verify what events were displayed by cells that express 

zVP24 protein and where possible rVP24 protein as we would need to initially 

confirm whether VP24 is cytotoxic to cells. We hope that these experiments may 

elucidate whether these cytotoxic effects are species specific, due to multiple 

potentially pathogenic-adapting amino acid mutations between EBOV and RESTV. 

After the information given to us from running these broad screens we hope to 

pinpoint the pathway by which VP24 is interfering with normal cellular function. The 

literature we gave particular attention to is a protein-protein interaction study that 

reported numerous binding partners to zVP24 by mass spectrometry (García-Dorival 

et al., 2014). Despite lack of published evidence of VP24 cytotoxicity, many binding 

targets of VP24 that were identified in the study are involved in key pathways that 

ensure cell viability and proliferation, some of which are highlighted [Table 4]. A more 

recent study (Batra et al., 2018) has also mapped the interactome of VP24, of which 

the authors stated their results matched 9 targets out of 50 found by García-Dorival 

et al., 2014. However, the majority of these binding targets have only been verified 

in high throughput mass-spectrometry with little to no follow up in the context of VP24 

interfering with pathways of the binding proteins in question. We aim to identify the 

VP24 interacting pathways and explore potential impact on cell function. 

In this chapter we describe our experiments investigating the impact of VP24 on 

overall cell metabolism, proliferation and viability, as these characteristics are very 

informative for assessing cytotoxicity. If VP24 displays a cytotoxic phenotype, it 

would be detected in these assays. This would then allow us to navigate our 

experimental design towards identifying the key mechanisms responsible for 

cytotoxicity. 
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Protein Name Role Implication in 

cell death 

ATP1A1* ATPase Na+/K+ 

transporting 

subunit alpha 1 

Membrane protein, maintains 

electrochemical gradient across 

plasma membrane 

- 

VDAC1 Voltage 

Dependent 

Anion Channel 

1 

Facilitates exchange of ions 

and metabolites across outer 

mitochondrial membrane. Also 

found on plasma membrane 

Involved in 

apoptosis. 

VDAC2 Voltage 

Dependent 

Anion Channel 

2 

Facilitates exchange of ions 

and metabolites across outer 

mitochondrial membrane. 

Involved in 

apoptosis 

COX5B Cytochrome C 

Oxidase 

Subunit 5B 

Terminal enzyme of 

mitochondrial respiratory chain. 

Loss or 

suppression may 

cause cell 

senescence 

ANP32A* Acidic Nuclear 

Phosphoprotein 

32 Family 

Member A 

Involved in cellular proliferation 

and differentiation. 

Involved in 

apoptosis 

 

Table 4. Mass Spectrometry Pull Down Data 
A selection of proteins we deemed of interest are presented in this table, based from García-
Dorival et al., 2014. Given that these proteins have functions related to cell metabolism and 
have been implicated in cell death functions (except ATP1A1), we hypothesised that VP24 
interacting with any of these proteins inside host cells may display detrimental effects. * 
indicates hits also verified in Batra et al, 2018.  
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3.3 Results 

 

3.3.1 VP24 decreases cell metabolism and proliferation 

In order to ascertain if VP24 has any effect on cell proliferation and viability, we 

monitored cell cultures in real-time using the Incucyte® live-imaging system.  HEK 

293T cells were transfected with either HA-tagged zVP24, rVP24 or empty vector. 

Plates were returned to the incubator containing the Incucyte® live imaging system 

in order to monitor cell proliferation over a 72-hour period at 37°C and 5% CO2. The 

images captured every 24 hours using a x10 lens during incubation appear to show 

reduced proliferation in both zVP24 and rVP24 cells after the 24-hour period 

whereas the mock cells showed ordinary growth day after day [Figure 11]. These 

results suggest VP24 of both EBOV and RESTV are likely to be interfering with 

cellular mechanisms resulting in a decrease of cell numbers after the 24-hour period, 

though it could not be determined from this experimental setup if this was due to 

decreased cellular proliferation or viability. 
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Following the live-cell imaging results, we decided to investigate cell viability by MTS 

assay as this would give us insight into any changes of cellular metabolism via 

colorimetric changes of the reagent. Cells were transfected with either HA-tagged 

zVP24 and rVP24 for 24 and 48 hours. At indicated timepoints the plates were 

subjected absorbance readings at optical density of 490nm in a plate reader to 

quantify the levels of formazan dye, as only metabolically active cells are able to 

Figure 11. Live cell monitoring from 24 to 72 hours post transfection.  
 

Cell confluency was monitored using Incucyte® Live cell imaging system with a x10 
in 12 well plates for 24, 48, and 72 hours post transfection using 1000ng DNA of 
zVP24, rVP24 and empty vector. Stunted cell growth and loss of typical HEK293t 
morphology was observed at from 48 hours onwards with zVP24. By comparison, 
rVP24 shows a similar, yet less pronounced, sequence of events. Empty vector 
transfection of pCAGGS shows normal and consistent rate of growth by which the 
cells also retain a healthy-looking morphology. Experiment was repeated 3 times. 
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convert the MTS tetrazolium salts into the purple formazan dye by dehydrogenase 

enzymes.  

The positive control was made by treatment of cells with 8μM staurosporine, a strong 

kinase inhibitor that induces apoptosis 4 hours prior to subjecting the plates to the 

MTS reagent. At the 24-hour incubation period there appears to be no significant 

change between zVP24, rVP24 and the empty vector transfected cells, indicating 

that VP24 has no adverse effects on cell metabolism within this incubation period 

[Figure 12]. However, at 48 hours incubation there was a statistically significant 

decrease in absorbance signal for both zVP24 and rVP24 transfected cells of 20-

25% in comparison to the mock cells. These results suggest that both zVP24 and 

rVP24 cause a decrease in metabolic activity of cells, which starts to occur only after 

24 hours post-transfection. In comparison to the results of Figure 11, the MTS assay 

showed that RESTV and EBOV have comparable impacts on cellular metabolic 

activity.  To confirm that zVP24 and rVP24 have similar expression levels, the MTS 

samples were lysed and subjected to Western blotting for the VP24 HA epitope tag 

and a β-actin loading control. Results show equal transfected protein expression 

[Figure 12].  
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Figure 12. Analysis of cell viability in VP24 transfected Hela cells.  

(A)Hela cells transfected with either HA-tagged zVP24 or rVP24 were subjected to MTS 
assay after 24 and 48 hours post transfection. Mock samples were transfected with 
empty vector. Positive controls were transfected with empty vector and treated with 
8μM staurosporine for 3 hours to induce apoptosis. Results are shown as OD from the 
plate reader. (B) Fold changes show decrease in OD at 48 hour time point. 
(C)Experiments were done in triplicate and transfections were verified by western blot 
analysis. N=3. Values were subjected to one way ANOVA statistical method. **=p value 
<0.01. T-test statistical analysis was carried out between zVP24 and rVP2 only. 
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3.3.2 VP24 alters mitochondrial morphology 

Due to MTS assay results showing differences in cellular metabolism, we chose to 

observe the mitochondrial architecture to see whether VP24 is affecting metabolism 

at the mitochondria. Seeing as mitochondrial architecture has been implicated in 

indicating cellular stress, therefore the mitochondria of HeLa cells transfected with 

HA-tagged zVP24, rVP24 or empty vector was examined by confocal microscopy. 

The mitochondrial architecture was examined by co-transfecting all samples with 

mito7-mcherry plasmid, whereby a mCherry tag is expressed on mitochondrial 

marker protein cytochrome c oxidase subunit 8A. VP24 was detected by 

immunofluorescence staining of the HA epitope tag. Cells with either zVP24 and 

rVP24 appear to show altered mitochondrial morphology [Figure 13]. The 

mitochondria seem to be punctate in structure whereas in the negative control we 

can see the characteristic tubular morphology typically associated with healthy cells. 

Due to the reported data showing VP24 binding to VDAC1 (García-Dorival et al., 

2014), we assessed whether we could see colocalization between VP24 and 

VDAC1, as this could suggest a pathway by which VP24 might be adversely affecting 

the cells. HeLa cells were transfected with HA-tagged zVP24, rVP24 or empty vector 

for 48 hours before immunofluorescent staining for HA and endogenous VDAC1 

protein. Confocal imaging of the samples suggest that both zVP24 and rVP24 co-

localise with VDAC1 in parts of the cell, predominantly the perinuclear regions 

[Figure 14].  
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Figure 13. Analysis of Mitochondrial architecture in VP24 transfected Hela cells.  

Hela cells were co-transfected with Mito7-mCherry and either zVP24-HA, rVP24-HA or 
empty pCAGGS vector and incubated for 48 hours. Coverslips were then stained with anti-
HA and counterstained with DAPI prior to mounting on glass slides. (A) Cells positive for 
either zVP24 and rVP24 show punctate mitochondrial morphology whereas the negative 
control shows typical tubular morphology. These findings appear more pronounced in the 
zoomed in region of interests (B). Scale bars represent 10μM. N=3 
 

A 
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3.3.3 VP24 does not affect intracellular calcium levels 

Due to the extensive roles calcium has in cells regarding proliferation, metabolism 

and cell death, we decided to investigate whether VP24 has any effect on 

intracellular calcium we subjected transfected HeLa cells to the Fluo4 Direct™ assay 

kit which measures intracellular calcium and monitored fluorescence. HeLa cells 

were transfected with either HA-tagged zVP24, rVP24 or empty vector and incubated 

for 48 hours prior to running the assay. Both zVP24 and rVP24 do not appear to 

have any influence on intracellular calcium levels as Fluo4 intensity was comparable 

zVP24-HA 

Mock 

rVP24-HA 

Anti-VDAC1 Anti-HA DAPI Merge 

Figure 14. VP24 immunostaining with VDAC1 
 

HeLa cells transfected with either zVP24 and rVP24 were grown for 48 hours prior to 
fixation. Cells were probed for VDAC1 and HA tag. The images appear to show similar 
localisation of VDAC1 and VP24, suggesting that there may be some interaction, 
however, further experiments would need to be done to fully verify these interactions. 
Scale bars denote 10μM. Images captured by confocal microscopy. N=3 
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to the negative control [Figure 15]. By comparison, the positive control that has cells 

treated with ionomycin, a powerful calcium inducer, showed increased fluorescent 

intensity. The western blot analysis confirmed successful transfection of both zVP24 

and rVP24 during the assay. As a result, we believe that VP24 does not induce 

cytotoxicity by increasing intracellular calcium at 48 hours post transfection. 
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Figure 15. Fluo-4 Calcium Assay. 
Cells transfected with either zVP24-HA, rVP24-HA or empty vector pCAGGS for 48 
hours prior to assaying with Fluo-4 Direct™. (A) After 48 hours Fluo4 intensity was 
measured using ImageJ. The intensities were subjected to ANOVA statistical 
analysis. N=3. There is no significant increase in levels of intracellular calcium 
between the zVP24, rVP24 and the negative control. The positive control using 5μM 
ionomycin shows high levels of intracellular calcium. (B) Live cell imaging shows 
Fluo4 fluorescence of the cells in each sample. (C) Western blots verified that the 
transfection had successfully resulted in comparable protein expression. N=3 
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3.4 Discussion 

 

3.4.1 Cell Proliferation and Viability 

 

Due to the previous inability to create a stable cell line expressing VP24 (Mateo et 

al. 2011), we decided to monitor in real time what happens to VP24 transfected cells 

incubated over a 72-hour period using the Incucyte®TM live imaging system. 

Monitoring of cellular proliferation revealed a gradual decline in cell density in both 

zVP24 and rVP24 cultures predominantly after the 48 hour time point [Figure 11]. 

The larger contrast in cell proliferation displayed at 72 hours between VP24 (z and 

r) and mock suggests that VP24 may have cytotoxic properties. Whilst live imaging 

provided us with observational evidence of changes in proliferation, we cannot 

deduce what pathways are involved.  

In order to further investigate VP24 cytotoxicity we examined cell viability by MTS 

assay as this experiment would indicate if VP24 causes cytotoxicity through 

alterations in cellular metabolic activity. The colourimetric MTS assay was derived 

from the MTT assay with a variation of the tetrazolium salts of which are soluble in 

cell culture medium, yet retains the initial principle of measuring mitochondrial 

enzymatic activity of only viable cells (Mosmann, 1983; Cory et al., 1991). Despite 

the predominant use of MTS assays to screen cells against drug compounds, 

particularly in realms of cancer research, this technique has been used to investigate 

effects of viral proteins, therefore making this assay a suitable choice to use despite 

the slightly cytotoxic effects of transfection reagents (Honda et al., 2000). In order to 

minimise any background cytotoxicity caused by transfection reagents, we used 

TransIT-LT1, known for its low toxicity. We observed significant changes of cellular 

metabolism in samples transfected with both HA-tagged zVP24 and rVP24 at 48 

hours, yet at 24 hours there appears to be no difference, highlighting temporal or 

protein level-dependent effects of VP24 [Figure 12]. Despite a stronger band 

intensity for rVP24-HA, likely due to unequal DNA concentration, it does not appear 

to have any difference with regards to metabolism compared to zVP24. Previous 
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transcriptomic experiments have shown that VP24 differently affects immune 

response gene expression in human dendritic cells depending on the time point in 

which the analysis was carried out (Ilinykh et al., 2015). Whilst we are not specifically 

investigating the immune response of cells, we consider the underlying principle to 

be of value in that different subset of genes may be affected depending on length of 

incubation periods. Furthermore, based on the fact that the MTS compound changes 

colour in relation to mitochondrial viability, we find it interesting that we observe a 

decrease in signal upon VP24 transfection, as previous studies investigating the 

VP24 interactome by immunoprecipitation and mass spectrometry have identified 

several mitochondrial proteins (García-Dorival et al., 2014). The authors reported 

VP24 binding to proteins VDAC1 and VDAC2, both involved in metabolite regulation 

across the mitochondrial membrane. These reported interactions may offer insight 

as to where and why VP24 is causing a decrease in cell viability, especially given 

that the MTS assay is based on mitochondrial activity. However, another research 

group more recently investigated VP24 binding partners also by 

coimmunoprecipitation and mass spectrometry did not report VDAC1 nor VDAC2 as 

binding partners, though differences may be due to the experimental procedures as 

the two groups used different tags on VP24 , the former group used both N and C 

terminal GFP tags in separate experiments (27kDa) whereas the latter used 2x strep 

tag (2kDa) (Batra et al., 2018). Nonetheless the latter group identified ATP1A1 and 

ATP2A2 as VP24 binding partners, also confirmed by García-Dorival et al. 2014. 

There is some evidence whereby ATP1A1 was implicated in cytotoxicity (Takase et 

al., 2017; Zhang et al., 2018), though to assume that the MTS assay result was due 

to the VDACs or ATP1A1 interactions would be speculation.  Whilst the actual 

mechanisms in question for our reported reduction in cell viability remain to be 

elucidated, we can state that prolonged expression of VP24 in HeLa cells results in 

a decrease in cellular metabolism and viability. 

 

3.4.2 Mitochondrial Architecture 
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Using immunofluorescent microscopy techniques we observed mitochondrial 

morphology as a marker for cellular stress, given their canonical role in generating 

ATP and many other metabolites, as well as acting as calcium stores in the cell 

(Brookes et al., 2004). Morphological changes of mitochondria often occur when the 

cellular environment has been altered due to stress factors (Youle and van der Bliek, 

2012). Regulated by GTPases in the dynamin family, mitochondrial fusion or fission 

occurs as a form of quality control, where fusion rescues damaged mitochondria and 

fission is needed to create new mitochondria and under stressed conditions lead to 

apoptosis (Bleazard et al., 1999; Meeusen et al., 2006; Youle and van der Bliek, 

2012). By using Mito7-mCherry, we were able to observe the mitochondria using 

confocal microscopy in order to deduce whether there was a change in morphology 

attributed to the presence of VP24. Our data show a disturbed mitochondrial 

morphology in comparison to the mock transfected cells, which we believe supports 

our hypothesis that VP24, both EBOV and RESTV, has cytotoxic properties. 

Interestingly, we do not see any colocalization between VP24 and mitochondria, 

despite the reported presence of VDAC1 and VDAC2 on the outer mitochondrial 

membrane and the known association between VP24 and VDAC1. An explanation 

for this could be that the interactions between VDAC1, VDAC2 and, VP24 did not 

occur, as reported by Batra et al. 2018. We noticed red signal arising from the 

nucleus for Mito7-mCherry. This was due to incompatible filter sets used at the time 

of the experiments, due to a logistical issue at the time with the confocal microscope 

kit. 

We also immunostained transfected cells for endogenous VDAC1 [Figure 14]. There 

appears to be colocalization in some parts of the cell but the microscopy data is not 

sufficient to prove that VP24 is indeed interacting with VDAC1. Furthermore, VDAC1 

has also been found to localise in the plasma membrane, therefore we cannot 

differentiate whether the previously reported interactions are occurring on the 

mitochondria or in the plasma membrane.  

One of the drawbacks of assessing morphology of organelles such as mitochondria 

is that it becomes difficult to distinguish between morphologies during apoptosis and 

cell cycle regulation, as mitochondria undergo fission during the M and S phase of 

the cell cycle (Antico Arciuch et al., 2012). Therefore, our conclusions cannot point 



 

 

3-86 

towards a singular cause for this altered morphology. Nevertheless, our results 

strongly suggest that VP24 has cytotoxic effects. 

 

3.5 Conclusion 

From the data generated in this chapter we see that VP24 has cytotoxic properties 

and may affect cellular death signalling pathways. Whilst we do see some 

colocalization with VDAC1 in the cells, this does not appear to occur at the 

mitochondrial membrane and so did not focus on this interaction with regards to 

cytotoxicity. We next sought to investigate the impact of VP24-induced cytotoxicity, 

such as cellular death activation. Therefore, we assessed VP24 activation of three 

key signalling pathways; apoptosis, necroptosis and autophagy, as they culminate 

in cell death. 

3.6 Future Work 

Due to the decrease in proliferation and metabolism as seen by the live imaging and 

MTS assays, it would be interesting to carry out further follow-up experiments. Many 

assay kits are now commercially available that would be informative to carry out, in 

this instance, an ATP assay kit could indicate whether VP24 causes decrease in 

ATP levels in cells compared to the mock. This may explain the reduced proliferation 

of cells. Furthermore, another experiment that would be interesting to carry out 

despite being more time consuming would be a metabolomics experiment by nuclear 

magnetic resonance imaging, as this would allow us to see changes in specific 

metabolites in cells transfected with VP24. Having this data can give us more insight 

how VP24 reduces cell proliferation and metabolism.  
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4 Cytotoxicity of VP24 – Cell Death Signalling Pathways 

4.1 Abstract 

 

Observations of VP24 causing a decrease in metabolic activity and proliferation in 

the previous chapter has led us to verify whether there is any activation of cell death. 

Many cell death signalling pathways have been uncovered, such as apoptosis, one 

of the most understood forms of cell death, necroptosis, a form of violent death 

involving swelling and lysis, and, autophagic death, a new form of cell death involved 

during cellular starvation. Our immunoblots reveal an activation in caspase 8, an 

initiator of the apoptosis cascade, however no activation of key apoptotic markers; 

PARP and caspase 3. We detected by immunofluorescence localisation of MLKL 

differed in cells transfected with VP24 compared to the mock, however this did not 

lead to necrotic death. From our results collected in this chapter, we believe that 

VP24 cytotoxicity does not lead to cell death, and that other pathways are 

responsible for the decrease in metabolic activity and cellular proliferation. 
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4.2 Introduction 

Programmed cell is a terminal event undertaken by cells for several biological 

processes, one of which is to eliminate cells that pose a threat, be it by pathogen 

infection or disruption of cellular processes. Currently, three main types of 

programmed cell death are known; apoptosis, necroptosis and autophagic death. 

Each mode has unique morphological characteristics and often occur in different 

situations. 

Apoptosis is one of the most understood modes of cell death. It has characteristic 

morphological features such as cell shrinkage, plasma membrane blebbing and 

fragmentation of chromosomal DNA (Kerr, Wyllie and Currie, 1972) [Figure 16]. The 

two main pathways are intrinsic apoptosis and extrinsic (receptor mediated) 

pathways, of which either pathway initiates a series of cascades between caspases, 

with the final cleavage of executioner molecules caspase 3 and caspase 7 indicating 

manifestation of apoptosis (Strasser, O’Connor and Dixit, 2002). The intrinsic 

pathway can be triggered by several factors such as oxidative stress, DNA damage 

or presence of pathogens. Markers to detect initiation of apoptosis include the 

caspases 2, 8, 9, and 10. Their activation results in cleavage of downstream 

executioner caspases 3, 6 and, 7. Other markers for apoptosis include cleavage of 

poly-ADP-ribose polymerase (PARP) by caspases, resulting in inhibition of its DNA 

repair properties.  

Necroptosis was once considered to be an accidental form of death, though 

nowadays it is widely accepted to be a programmed form of cell death. The key 

markers for activation of the pathway is phosphorylation of receptor-interacting 

serine/threonine-protein kinase 3 (RIP3) by RIP1, which both interact with mixed 

lineage kinase domain-like protein (MLKL) to form the necrosome. Following this, 

the executioner molecule MLKL becomes phosphorylated by RIP3. This leads to 

MLKL oligomerisation and subsequent transport to the membrane, acting as a pore. 

The cell cytoplasm then swells, leading to rupture of the cell [Figure 16]. This is a 

violent event that spills large amount of signalling molecules called damage-

associated molecular patterns (DAMPs) (Dhuriya and Sharma, 2018) that recruit 
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immune system cells to the site of damage. This results in high inflammation and 

affects nearby tissues. Necroptosis can be activated by extrinsic factors such as 

TNF-α binding to its receptor, oxidative stress and DNA damage.   

Autophagic death or autosis has been subject to intense debate as this pathway was 

primarily known to be activated for cell survival (Debnath, Baehrecke and Kroemer, 

2005). This occurs by degradation of macromolecules in the cell, taking place in 

autophagosomes that fuse into lysosomes which ultimately undergo lysosomal 

degradation, releasing oxidizable substrates to be used if nutrients are sparse 

(Codogno and Meijer, 2005). In regard to cell death, most of the evidence is 

correlative with other modes of cell death as these pathways are energy intensive, 

ergo, starving the cell of metabolites which would increase autophagy. So far, it 

appears that two forms of death have been attributed to autophagy: Autosis, and 

type II autophagic cell death. Morphological features are often used to distinguish 

the two such as moderate chromatin condensation (late autosis/ not present in type 

II) and ER disappearance (autosis). However, many of these morphologies are also 

seen in apoptotic and necrotic cells thus adding fuel to the debate (Liu and Levine, 

2015). Lastly, autophagy has been shown to have both pro-viral and anti-viral 

properties for influenza and dengue viruses (Kudchodkar and Levine, 2009). 

Currently, autophagic death is morphologically defined, and conclusive evidence for 

the actual mechanism responsible for cell death by autophagy remains elusive 

(Debnath, Baehrecke and Kroemer, 2005). It is for these reasons that this mode of 

death is subject to debate. Ultimately, the principle for this form of cell death is based 

on a prolonged activation of autophagy machinery due to starvation or exposure to 

cytotoxic agents. Once exposed to these factors, phagophores form which engulfs 

material in the cell, leading to the formation of an autophagosome, of which the 

marker LC3-b is exposed on the inner membrane (Tanida, Ueno and Kominami, 

2008). Protein interactions with LC3-b occur through a LC3-interacting region (LIR) 

on the protein and are crucial for recruitment of LC3 and autophagosome maturation. 

Following this, the autophagosome fuses with lysosomes, forming the 

autolysosome, where the contained cargo is degraded by acid hydrolases. The 

degraded contents can then be used by the cell as a source of nutrients. Activation 
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of autophagy can be detected by seeing increased number of LC3 foci by 

microscopy.  

In this chapter we will explore various cell death markers in order to identify whether 

prolonged expression of VP24 leads to cell death and if so, by which pathway.   

A 

B 

Figure 16. Morphological differences between Apoptosis and 
Necroptosis 
 

This figure highlights the distinct morphological features observed from 
cell dying by apoptosis (A) or necroptosis (B). One of the key differences 
is that apoptosis leads to cell shrinkage and fragmentation, whereas 
necroptosis leads to cell swelling and rupture. (Taken from Novus 
Biologicals Poster) 
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4.3 Results 

4.3.1 VP24 does not activate intrinsic apoptosis 

To investigate whether VP24 activates cellular death pathways, we opted to assay 

for apoptosis. We initially used fluorescent assay techniques that detect several 

different apoptotic factors: caspase 3, 7 and 8 cleavage. Using a 96 well plate, HeLa 

cells were transfected with either HA-tagged zVP24, rVP24 or empty vector and 

incubated for 48 hours. The cells were then assayed using fluorescence detection 

kits Caspase-Glo 3/7 and Caspase-Glo 8. We report that Caspase-Glo 3/7 does not 

show activation of apoptotic pathway in either zVP24 and rVP24, comparable to the 

empty vector control [Figure 17 A]. However, the Caspase-Glo 8 assay revealed 

increased caspase-8 activity when compared to the empty vector control, suggesting 

that VP24 from both species cause activation of caspase 8 [Figure 17 B]. This would 

appear to tell us that the initiation of apoptosis is active, but we do not report 

execution of apoptosis. 

 

We decided to confirm the Caspase-Glo results by western blot, using antibodies 

that specifically detect cleaved forms of apoptotic execution proteins (PARP-1, 

CASP3 and CASP7). Our blots show no cleavage of any of the aforementioned 

proteins, confirming the results of fluorescent assays [Figure 18]. Furthermore, lack 

of PARP-1 cleavage confirms that apoptosis is not activated since its cleavage is 

dependent on caspases. Lastly, our confocal imaging shows no morphological 

changes of the cell nucleus, therefore it appears that VP24 does not induce 

apoptosis after 48 hours post transfection [Figure 18 B].   
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25 kDa - 

40 kDa - 

C 

A 

B 

Figure 17. Caspase Glo Assays  
To detect activation of key apoptotic markers, cells transfected with HA-
taggedzVP24 and rVP24 and incubated for 48 hours prior to assaying with 
fluorescent assay kits Caspase-Glo 3/7 and Caspase-Glo 8. (A) Caspase Glo-3/7 
assay shows no activation of the apoptotic executioner markers caspase 3 and 7, 
therefore apoptosis does not appear to be taking place. Caspase-Glo 8 assay 
however reveals activation of caspase 8 (B), a protein known to be involved in 
regulating several pathways involving cell viability, depending on its interacting 
partners. Western blots were carried out in tandem to confirm successful 
transfection (C). Results were subjected to ANOVA statistical method. N=3, 
p=<0.01 
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Figure 18. Western Blot Analysis of Key Apoptosis Markers 
Cells were transfected with either HA-tagged zVP24, rVP24 and, empty vector pCAGGS 
and incubated for 24 and 48 hours prior to lysis or fixation. A western blot was carried out 
to detect any markers for apoptosis (A). Due to the lack of bands in the zVP24 and rVP24 
samples for cleaved caspase 3 and cleaved PARP, we can confirm that there is no 
activation of apoptic pathways. The nuclei of cells positive for VP24 do not show 
morphological features associated with apoptotic cells ass seen in the positive control 
(B). Cells were treated with 8μM of staurosporine to generate positive controls. N=3 
 

A 

B 
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4.3.2 VP24 does not activate the autophagy pathway 

As LIR domains are a well-defined mechanism for virus-manipulation of autophagy, 

we first screened for potential LIR domains in VP24 using the iLIR online database, 

which also return a position-specific scoring matrix (PSSM). The PSSM score is 

useful to ascertain the validity of a possible LIR domain, as the higher the PSSM 

score, the more genuine the LIR domains are from the screen. Results showed W-

x-x-L motif hits for both zVP24 and rVP24, suggesting that there may be LC3 

interaction sites between LC3 and VP24, despite lower position-specific scoring 

matrix (PSSM) scores compared to the canonical viral LC3-interacting protein, 

influenza M2 [Figure 19 A]. To verify the bioinformatic screening, we used 

immunofluorescent microscopy to detect whether autophagosome formation is 

occurring using an LC3 plasmid fused with GFP. Autophagic activity is monitored by 

the formation of autophagosomes, seen as green puncta in the cell cytoplasm. HeLa 

cells were co-transfected with LC3-GFP and either HA-tagged zVP24 or empty 

vector, and incubated for 48 hours prior to fixation. Cells were stained for anti-HA to 

probe for HA-tagged VP24. The positive control was generated removing full culture 

media of the LC3-GFP transfected cells and replaced with 2mL Earl’s Balanced Salt 

solution (EBSS) for 4 hours as to starve the cells and induce autophagy. Our 

confocal imaging results suggest zVP24 causes minor activation of the autophagic 

pathway as LC3-GFP retains a predominantly diffuse cytosolic localisation with only 

small occasional foci seen, in contrast to the induction of autophagy in starved cells 

incubated in EBSS. [Figure 19B].  
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Figure 19. Identification of LC3 Interacting Domains 
Screening for potential LIR domains returned several motifs in both zVP24 and rVP24, 
though the PSSM score is not as high as the Influenza M2 protein (A). HeLa cells were 
transfected withHA-tagged zVP24 and LC3-GFP for 48 hours prior to fixation for 
microscopy. zVP24 transfected cells do not show increased levels of autophagy 
compared to the mock, which represent basal autophagy levels. Cells treated with 
EBSS have numerous LC3-GFP puncta, showing strong activation of autophagy (B). 
These results show that VP24 is not causing any changes with regards to autophagy 
activity within the cells. N=3 

A 

B 

M2 zVP24 rVP24 
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4.3.3 VP24 rearranges localisation of necroptosis markers 

Another form of programmed cell death is necroptosis whereby the cells swell and 

lyse. Phosphorylation of mixed lineage kinase domain like pseudokinase (MLKL) 

allows for oligomerisation and formation of pores in the cell membrane. Using 

western blot techniques, we sought to detect any phosphorylation of MLKL in the 

presence of either zVP24 or rVP24. HeLa Cells were co-transfected with HA-tagged 

zVP24, RIP3-YFP to reconstitute the necroptotic pathway as HeLa cells do not 

express RIP3, and dsRED-MLKL for 48 hours prior to lysis and immunoblotting. The 

Western blot reveals phosphorylation of MLKL within the zVP24 cell lysate, whereas 

rVP24 and mock reveal dim signal intensity by comparison [Figure 20]. This 

suggests that zVP24 may be cytotoxic because it triggers activation of necroptotic 

programmed cell death. 

 

To confirm MLKL phosphorylation by western blot, we used fluorescent microscopy 

for assessing localisation of MLKL in zVP24 transfected cells, as MLKL localises to 

the plasma membrane upon phosphorylation and activation. Based on the MLKL 

Western blot data, only zVP24 induction of MLKL relocalisation was investigated. 

Our imaging does not show membrane localisation of MLKL in either zVP24 or mock 

treated cells [Figure 21]. However, there seems to be an increase in MLKL 

fluorescent intensity near the plasma membranes as well as the formation of MLKL 

puncta in the cytoplasm in zVP24 transfected cells whereas mock cells retain a 

diffuse level of cytoplasmic MLKL expression [Figure 21]. This suggests zVP24 in 

cells may lead to activation of MLKL, though in a slow or non-canonical process.   
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Figure 20. Western blot analysis of pMLKL 
HeLa cells were co-transfected using PEI with either zVP24 or rVP24, as well 
as RIPK3-YFP and dsRED-MLKL for 48 hours prior to lysis for western blot 
analysis. Membranes were probed with antibodies for pMLKL, RIP3, HA-tag 
and β-actin. The pMLKL band intensity is highest in zVP24 treated cells which 
suggests that presence of zVP24 leads to activation of the necroptosis 
pathway. The molecular weight for pMLKL is 50 kDa, though since this protein 
was overexpressed for detection, it also contains a dsRED tag (28 kDa), 
therefore the band appeared at around 78 kDa. Similarly, RIP3 (57 kDa) is not 
endogenously expressed, therefore a YFP-RIP3 expression plasmid was used,  
so the antibody band appeared at around 84 kDa. 
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Figure 21. Immunofluorescent analysis of MLKL localisation 
Assessing localisation of MLKL can give insight as to whether the cells are 
undergoing necroptosis, due to its localisation in the plasma membrane. (A) HeLa cell 
were co-transfected with HA-tagged zVP24 and dsRED-MLKL and incubated for 48 
hours prior to fixation and immunofluorescence staining for HA. The negative control 
shows a diffuse cytoplasmic localisation of MLKL. Cells positive for zVP24 show 
rearrangement of MLKL but don’t appear to have full membrane localisation around 
the cell. (B) 2.5D representation of MLKL (red) and DAPI (blue) channels taken from 
images in A highlight the increased fluorescent intensity and localisation of dsRED-
MLKL in zVP24 positive cells compared to the diffuse uniform cytoplasmic localisation 
in the mock sample. N=3 
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4.4 Discussion 

 

4.4.1 Autophagy 

 

Given that we saw a change in metabolism as seen by MTS assay [Figure 12], 

coupled with the roles of pathogen induced autophagy, we wanted to verify whether 

the autophagy pathway was responsible for VP24-mediated cytotoxicity. An initial 

screen by the online database iLIR generated predictions that would suggest the 

multiple presences of motifs that may bind to proteins of the ATG8/LC3 family. 

Noticeably, rVP24 returned 8 hits compared to the 5 from zVP24. Both zVP24 and 

rVP24 domain hits retain the W-x-x-L motif, though the scores do not appear to be 

of high confidence compared to M2, of which the LIR domain has been verified in 

vitro (Beale et al., 2014). In addition, our immunofluorescent results revealed only 

minimal increase in autophagosome formation for zVP24 as the GFP-LC3 marker 

retains a predominantly diffuse cytoplasmic localisation like the negative control, 

whereas the positive control displays the typical punctate distribution. Therefore, it 

appears likely that the VP24’s cytotoxicity is not induced by autophagic stress, 

despite possessing a minimal capacity to active autophagy. 

4.4.2 Apoptosis Pathway 

Several EBOV proteins induce host cell death, such as exosomal secreted VP40 

inducing death in bystander lymphocytes (Pleet et al., 2016). Furthermore, GP has 

been shown to induce anoikis, a form of apoptosis, resulting in downregulation of 

adherence molecules such as integrins (Ray et al., 2004). Our caspase-glo 3/7 kit 

shows no activation of apoptosis in the presence of either zVP24 or rVP24. However, 

there are many different mechanisms of apoptosis that are independent of caspase 

3 and/or caspase 7. For example, extensive DNA damage that is beyond repair can 

activate apoptosis. This can be detected by blotting for cleaved fragments of PARP-

1, a protein involved in DNA repair by adding poly (ADP ribose) polymers. If the DNA 

damage is extensive and beyond repair, full length PARP-1 (113kDa) is broken down 
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into smaller fragments, with each fragment being unique depending on necrotic or 

apoptotic death (Chaitanya, Alexander and Babu, 2010). During apoptosis, PARP-1 

is cleaved into a 89-kDa catalytic fragment, and a smaller 24-kDa containing a DNA-

binding domain. Our results show that PARP-1 is not being cleaved when the cells 

are incubated with VP24, whereas the positive controls show the characteristic 

fragments of PARP-1 during apoptosis. Lastly, our confocal imaging on nuclear 

morphology shows no nuclear fragmentation, therefore our data strongly suggest 

that VP24 does not induce apoptosis within a 48 hour incubation period.  

Interestingly, we see activation of Caspase-8 despite lack of caspase 3/7 cleavage. 

Caspase-8 is only considered active when present in the cleaved form. This would 

indicate that the apoptosis pathway is being initiated. However, we do not see any 

execution of apoptosis upon the cells. There are reports of active caspase 8 during 

inhibition of autophagy (Hou et al., 2010) which is interesting because we show VP24 

does not induce autophagy but unsure as to whether it inhibits autophagy. Therefore, 

if we had more time, we would need to carry out further experiments such as inducing 

autophagy in cells transfected with VP24 to see whether VP24 actually inhibits this 

pathway. We would also attempt to induce apoptosis in cell transfected with VP24 

to see if there is inhibition of apoptosis. However, we did not pursue this route at this 

moment as we felt it didn’t fit the context of the current story. 

 

4.4.3 Necroptosis Pathway 

Necroptosis is another mode of programmed cell death that is distinct from 

apoptosis. Characterised by osmotic imbalances leading to cellular swelling and 

lysis, necroptotic cell death is often considered to be a ‘violent’ type of cell death 

affecting neighbouring cells and leading to high inflammatory response. EBOV 

infection in cells have shown typical signs of necrotic cell death, such as cell swelling 

and membrane rupture (Olejnik et al., 2013), however this has yet to be 

experimentally verified by investigating the activity of key mediators involved in this 

pathway. The downstream executioner protein of this pathway is MLKL, whereby its 

phosphorylation results in oligomerisation, leading to pore formation in the 

membrane. Our results show that MLKL is being phosphorylated in cells positive for 
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zVP24 compared to rVP24 and the negative control. However, we also detected faint 

bands for pMLKL in rVP24 and the negative control though we believe this is due to 

cytotoxic effects likely exerted by the PEI transfection method, as reports have 

shown activation of cell death pathways in A431 cells (Kafil and Omidi, 2011). At the 

time of these experiments we were limited in our choice of reagent, as this 

experiment would have been carried out with TransIT-LT1, which is considered to 

be more gentle to the cells during transfection. Recent data also suggests that MLKL 

is involved in the ESCRT-III pathway and that limited phosphorylation of MLKL 

resulted in generation of vesicles from the ESCRT-III pathway to counteract the cell 

death pathway and sustain survival of the cells (Gong et al., 2017). Our 

immunofluorescence results appear to show a rearrangement of MLKL near the 

plasma membrane in zVP24 expressing cells. However, we did not detect full plasma 

membrane localisation as has been reported previously for MLKL activation (Cai et 

al., 2014). Therefore, it is not possible to state if the presence of zVP24 is cytotoxic 

because of the activation of necroptosis but it is possible that a longer incubation 

period may have resulted in full membrane insertion. Using a longer incubation 

period with transfected cells however may cause more noise in the results, due to 

the harshness of transfection, therefore we did not attempt to assay for results past 

48 hours. Unfortunately, most cancer cell lines do not express RIP3 due to silencing 

by genomic methylation at its transcriptional start site (Koo et al., 2015), and our 

attempts to establish a fully reconstituted necroptosis pathway by transfecting cells 

with RIP3-YFP led to high amounts of cell death in the negative control despite many 

attempts at optimisation, making this option impractical to pursue. It is possible that 

the presence of RIP3 would allow for full membrane localisation of MLKL upon 

zVP24 expression. Increased levels of intracellular calcium  have been reported to 

occur during necroptotic death (Cai et al., 2014), however, given that we do not see 

increase in calcium levels in the cells [Figure 15], we believe that zVP24 may not be 

directly inducing necrotic cell death but could potentially sensitize the cells to this 

mode of death. This could happen if VP24 is either blocking apoptotic signalling 

pathways, eventually forcing the cell to enter necroptosis, or due to increase in 

reactive oxygen species (Christofferson and Yuan, 2010). However, we did not 

assay for apoptosis inhibition by VP24 as at the time it did not fit within the scope of 
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the project, though we did see caspase-8 activation, which is known to interact with 

RIP1 to mediate both apoptosis and necroptosis. Ultimately, it remains difficult to 

determine the intensity of VP24-induced MLKL phosphorylation without comparison 

to a known positive control necroptosis inducer. Therefore, we attempted to repeat 

the experiment with an extra sample of cells that have been treated with a cocktail 

of Z-VAD, an apoptosis inhibitor, SMAC mimetic BV6, an apoptosis inducer, and 

TNF-α, which together are known to activate the necroptosis pathway, however, we 

did not see MLKL phosphorylation and due to time constraints were unable to 

optimise the experiment. 

 

4.5 Conclusion 

Our observations from the previous chapter led us to hypothesise that cell death 

signalling pathways were being stimulated by expression of VP24. However, we can 

see with the current results that this hypothesis is not correct. Whilst zVP24 induces 

the activation of components of multiple cell death pathways (Caspase 8 cleavage, 

minor LC3 foci and MLKL phosphorylation), no cell death pathways were fully 

induced to the execution phase. There is the possibility VP24 may prime cells for 

cell death upon additional exposures or upon longer duration exposure to VP24. 

However, the initial live cell imaging results presented in Figure 11 highlight that the 

reduced cell densities may be either from increase cell death or decreased cell 

proliferation, which brings into question whether the cell cycle is being impaired by 

VP24 expression. Therefore, in order to reconcile the data found in chapter 3, our 

new hypothesis of VP24 cytotoxicity is that the protein negatively affects cell cycle. 

 

4.6 Future Work 

Despite not observing any activation of executioner caspases, it would be interesting 

to see if VP24 may have anti-apoptotic properties. Experiments whereby activation 

of the extrinsic apoptosis pathway by adding inducers into the cell culture medium 

such as Fas ligand or TNF-receptor apoptosis inducing ligand (TRAIL) in the 

presence of VP24 transfected cells, followed by western blotting the same 

executioner proteins of the apoptosis pathway as done in this chapter. This could be 
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informative since we observed activation of caspase 8 only. In addition, a follow up 

experiment regarding necroptosis would be warranted since we saw by western blot 

and increase in phospho-MLKL compared to rVP24. This would be repeated, 

possibly in a cell line that expresses endogenous RIP3 so that we could minimise 

the harshness of cell transfection, especially when restoring a cell death pathway. 

However, as the current data shows, we believe that its very unlikely VP24 induces 

cell death. As a result, moving onwards to cell cycle dysregulation would make more 

sense to follow up. 
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5 Cytotoxicity of VP24 – Cell Cycle 

5.1 Abstract 

 

Many viral proteins have been found to interfere with the cell cycle in order to 

dedicate host machinery towards viral replication, resulting in efficient generation of 

viral progeny. With regards to Ebola virus, nothing is known about whether there is 

a cell cycle arrest during infection. With the knowledge generated so far, we decided 

to assess for markers involved in cell cycle arrest in cells transfected with VP24 such 

as p21, a protein that is overexpressed to induce cell cycle arrest. We found that 

VP24 from both Zaire and Reston increases expression of p21 at 48 hours post 

transfection. This strongly suggests that a cell cycle arrest is taking place. We also 

detected an increase in γH2AX, a marker for DNA damage. This data suggests that 

the unreported cytotoxic effects of VP24 and the inability to generate a stable cell 

line is due to VP24 causing cell cycle arrest, which we consider to be a novel finding. 

We hope these observations would result in follow up research using live virus to 

verify cell cycle arrest and how that would be to the benefit of the virus upon infection. 
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5.2 Introduction 

In the first chapter of this investigation we had identified a decrease in metabolic 

activity by MTS assay and a decrease in cell density by live imaging. However, in 

the second chapter we did not observe activation of apoptosis, minimal activation of 

autophagy and inconclusive data regarding necroptosis activation. This leaves us to 

explore the last area we suspect that VP24 may be interfering with, the cell cycle. 

The cell cycle is split into four stages; G1 phase, S phase, G2 phase and M phase 

[Figure 22]. Within each of these phases, cyclins form complexes with cyclin-

dependant kinases (CDKs). The complexing of these proteins can be used to identify 

stages of cell cycle (Reddy, 2014). Many different proteins can promote or block cell 

cycle progression, depending on certain factors, such as DNA damage or pathogen-

host interactions. 

Many viruses have been known to modulate the cell cycle, such as HIV, which 

arrests cells in G2 phase, resulting in increased virus production (He et al., 1995). 

Thus, we decided to look for any evidence to suggest whether VP24 may affect cell 

cycle. Both mass spectrometry results from García-Dorival et al., 2014 and Batra et 

al., 2018 identified ANP32a as a binding partner of VP24. ANP32a protein has been 

shown to be involved in cell proliferation, through interactions with the retinoblastoma 

complex (Adegbola and Pasternack, 2005). Furthermore, we wondered whether the 

most well-known interactive partners of VP24; KPNA1 and KPNA5 were responsible 

for shuttling proteins into the nucleus that have important roles for cell cycle 

regulation. We then hypothesised that if VP24-KPNA1 or VP24-KPNA5 interactions 

prevents KPNA mediated nuclear import of STAT1, could there be another binding 

partner of both KPNAs involved in the cell cycle that are blocked from nuclear 

import?  
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To verify changes in cell cycle we will use qPCR to check expression levels for 

cyclins. Cyclins are a family of proteins that have a regulatory role in cell cycle 

progression. Each cyclin is known to have distinct expression levels at various 

checkpoints of the cell cycle [Figure 22] as they form complexes with cyclin-

dependant kinases (CDK) to drive progression into the next stage. 

 

 

Cyclin Cell Cycle Stage 

Cyclin D1 G1 Phase 

Cyclin E Late G1/S phase transition 

Cyclin A S phase, G2/M phase transition 

Cyclin B Mitosis 

Figure 22 Cyclins during Cell cycle stages 
 

Expression levels of cyclins differ during the various stages of the cell cycle due 
to their regulatory role in progression from one stage to the next (A)(adapted 
from Vermeulen et al., 2003. Assaying expression levels of cyclins may offer 
insight as to what stage of the cell cycle the population is currently in. Our 
hypothesis lies on a possible G1 arrest by VP24. 

A 

B 
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5.3 Results 

5.3.1 KPNA1 and KPNA5 Binding Partners using STRING database 

STRING is a database that shows reported protein-protein interactions based on the 

protein query that a user would be interested in. By using STRING database for 

interactive partners of KPNA1 and KPNA5, we screened for any protein that may 

have potential roles in cell cycle regulation [Figure 23]. We chose to use stringent 

filters for the listing of binding partners; so that we could collect datasets derived 

from experiments only, combined with high confidence threshold (≥0.700). The 

results identified ANP32B protein, from the same family as ANP32A, to interact with 

KPNA5. Current literature shows that ANP32A knockdown and ANP32B deficiency 

results in G1 arrest (Wang et al., 2013; Yang et al., 2016). 
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Figure 23. Binding Partners for KPNA1 and KPNA5 
By using STRING we screened for binding partners to KPNA1 (A) and KPNA5 (B) with 
the intention of identifying any protein by which impeding its nuclear import may result 
in adverse effects to the cells. By using datasets derived from experiments only, 
combined with high confidence threshold (≥0.700) we found the ANP32B protein that 
interacts with KPNA5 to be of interest due to its role in cell cycle and cell survival. 
 

A B 

C 
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5.3.2 Analysis of cyclin mRNA expression levels 

To verify whether there is any change in cell cycle regulation, we opted to carry out 

a qPCR experiment to assess expression levels of cyclins using primers specific for 

Cyclins; A2, B1, D1, and E1. HeLa cells were transfected with either HA-tagged 

zVP24 or empty vector and incubated for 48 hours prior to lysis for RNA extraction. 

The CT values were analysed using excel and plotted on a graph to show fold 

changes against the mock samples that were transfected with empty vector plasmid. 

The results show that zVP24 expression causes an observable increased mRNA 

levels of Cyclin E1 comparable to the positive control generated by treating the cells 

with 500µM mimosine which arrests the cells at late G1 phase [Figure 25]. However 

statistical analysis did not reveal any significance as the p-value from an unpaired t-

test was 0.3346. As a result, it is suggestive but not conclusive that VP24 interferes 

with Cyclin E1 expression at the mRNA level and causes G1 phase arrest. 
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Figure 24. Quantitative PCR analysis of Cyclin mRNA expression levels. 
Cells transfected with either HA-tagged zVP24, rVP24 or empty vector were lysed 
for RNA extraction at 48 hours post transfection. A positive control was generated 
by incubating mock transfected cells with 500µM mimosine for 24 hours to 
synchronise cells in G1 arrest. Melt curves for the water only samples tested 
negative for contamination during preparation for qPCR (A). Melt curves for primers 
specific to their target show similar Tm’s, which means they are amplifying one 
specific target (B). Fold changes of cyclin mRNA expression levels show increased 
Cyclin E1 in VP24 positive samples (C), suggesting that VP24 may be blocking 
cells in late G1 stage of the cell cycle. N=3 
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5.3.3 VP24 expression leads to increase p21 expression 

As the qPCR experiments on cyclin mRNA levels were not able to conclusively prove 

VP24 alterations of cell cycle progression, we opted to carry out a western blot on 

p21, a cyclin-dependent kinase inhibitor that inhibits activity of cyclin-CDK 

complexes, resulting in cell cycle arrest. Our results show an increased expression 

level of p21 in both zVP24 and rVP24 samples compared to the mock, though zVP24 

appeared to induce p21 to slightly greater levels than rVP24 [Figure 25]. The strong 

induction of p21 also appears in the positive control where cells were arrested by 

500µM mimosine, a compound known to arrest cells in late G1 phase. Therefore, 

our results show that presence of VP24 increases intracellular levels of p21, likely 

leading to a cell cycle arrest at late G1. In addition, VP24 does not affect expression 

of cyclin E1 at the protein level, which was confirmed in figure 25.  

Figure 25. Western Blot for p21 expression levels 
To investigate dysregulation of cell cycle, Hela cells were transfected with either 
HA-tagged zVP24, rVP24 or empty pCAGGS vector for 48 hours prior to lysis. To 
block cells in G1 arrest 500μM mimosine was added to cells to generate a positive 
control sample. Cells transfected with zVP24 and rVP24 show increased 
expression of p21, suggesting that VP24 is blocking the cell cycle at G1 phase 
whereas the mock represents p21 expression levels in an asynchronous cell 
population. N=3 
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5.3.4 VP24 expression leads to DNA Damage 

In order to detect whether VP24 induces DNA damage that would then result in cell 

cycle arrest, we attempted to immunoblot against γH2AX, a biomarker for double-

strand DNA breaks. HeLa cells were transfected with either HA-tagged zVP24, 

rVP24 or empty vector and incubated for 48 hours prior to lysis for western blot. We 

detected increased signal intensity for γH2AX in both zVP24 and rVP24, whereas 

the negative control showed a weaker signal, therefore showing us that VP24 is 

inducing double strand breaks in host cells, leading to overexpression of γH2AX 

[Figure 26]. 

HA-tag 

γH2AX 

Actin 

17 kD 

25 kD 

40 kD 

Figure 26. Western Blot for DNA double strand breaks biomarker 
γH2AX. 
 
Double strand breaks of DNA damage lead to increased levels of γH2AX, a 
phosphorylated form of H2AX. To verify whether VP24 causes DNA 
damage, we transfected Hela cells for 48 hours prior to lysis with either 
zVP24, rVP24 and empty vector plasmid. Our immunoblot shows increased 
intensity of the γH2AX band compared to the mock control, suggesting that 
expression of zVP24 and rVP24 in cells lead to DNA damage. 
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5.4 Discussion 

 

5.4.1 Cell Cycle Markers 

We had initially thought that by screening the mRNA levels of the different cyclins 

would give us insight into what stage of the cell cycle that cells would be in after 

transfection with VP24. However, literature has shown that in certain circumstances 

their expression levels are not directly correlated with cell cycle phase; for example, 

rapamycin induced G1 arrest in B-CLL cells was associated with decreased 

expression of cyclin E1, whereas histone deacetylase inhibitor FR901228 induced 

G1 arrest with increased expression of cyclin E1 (Sandor et al., 2000; Decker et al., 

2003). By taking this information into account, we still believe that qPCR of the 

different cyclins is important to examine in conjunction with Western blot analysis of 

protein expression [Figure 25]. In our experiments we can see that there is a non-

statistically significant increase in Cyclin E1 mRNA but not protein expression in the 

presence of VP24. Based on our initial screening of interacting partners presented 

in the introduction section of this chapter, we decided to probe for markers for G1 

arrest. p21, also known as WAF1/CIP1, is known to promote cell cycle arrest at G1 

and G2/M stage by inhibiting the cyclin-CDK complexes from forming (Karimian, 

Ahmadi and Yousefi, 2016). Multiple viruses have been reported to induce cell cycle 

arrest associated with p21 overexpression, such as HIV-1 Vpr protein, arresting cells 

at G2/M stag (Chowdhury et al., 2003). Furthermore, p21 has been shown to be 

overexpressed during activation of the DNA damage response, which then leads to 

cell cycle arrest (Karimian, Ahmadi and Yousefi, 2016). For these reasons we 

proceeded to blot for p21. The fact that p21 was overexpressed in both zVP24, 

rVP24 and the positive control suggests that VP24 may cause cell cycle arrest 

through modulation of p21 expression, further experiments need to be done to 

validate cell cycle arrest. The ideal experiment that should be carried out to ascertain 

the stage of cell cycle would be propidium iodide assay by flow cytometry. However, 
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during the time of this PhD project, we were unable to use the flow cytometer in the 

department. Whilst other chemicals and compounds can be used to induce G1 arrest 

such as thymidine by double blocking, we chose mimosine for its simplicity as it relies 

on a single treatment on cells and that it is G1 arrest specifically by p21 induction, 

which was detected by western blot in Figure 25.  

 

5.4.2 Detecting DNA Damage 

The overexpression of p21 had made us question the possibility of VP24 causing 

DNA damage in the cell. The localisation of VP24 in cells has predominantly been 

reported to be cytoplasmic, though a small minority of groups have reported nuclear 

localisation by immunofluorescence (F. He et al., 2017). In our experience, we do 

not detect any nuclear localisation of VP24, therefore we believe that the DNA 

damage caused by the protein is independent of its subcellular localisation. The 

biomarker for double strand breaks of DNA is phosphorylation of histone H2AX. Its 

phosphorylation by several kinases such as ataxia telangiesctasia mutated (ATM) 

and ATM-Rad3 related (ATR) result in recruiting DNA repair proteins into the nucleus 

(Kuo and Yang, 2008). Many viruses have been reported to interfere with the DNA 

damage response of the host cell, including negative sense single strand RNA 

viruses such as Influenza A virus, Rift Valley fever virus and La Crosse virus (Ryan 

et al., 2016). In the case of Rift Valley Fever virus, infection causes DNA damage 

via ATM kinase pathway. It was found that the subsequent cell cycle arrest stemming 

from the DNA damage was beneficial for viral replication (Baer et al., 2012). Whether 

VP24 is inducing DNA damage for the benefit of viral replication is yet to be 

determined, however our data appears to be promising for future follow up work. 
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5.5 Conclusion 

 

The results presented in this chapter, in tandem with the live cell imaging and MTS 

in chapter 3, would suggest that VP24 is interfering with the cell cycle by causing 

DNA damage, leading to detection of γH2AX and overexpression p21. Whether the 

cell cycle is being blocked at a specific checkpoint is impossible to say at this stage 

and due to time constraints, we were not able to investigate further. Nonetheless, 

here we find the first pieces of evidence that VP24 is negatively affecting the cells, 

which is displayed via components of the DNA damage response pathway and likely 

resulting in a block of the cell cycle at the G1 phase.  
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5.6 Future Work 

 

The data gathered in the VP24 cytotoxicity chapter has given us a glimpse into how 

the protein is affecting the cell cycle and DNA damage response pathway. We find 

this very encouraging because to our knowledge, there is no literature focusing on 

Ebolaviruses and the DNA damage response pathway. Despite our data being 

preliminary with regards to the conclusion presented in Chapter 5, this thesis 

presents many experiments that returned negative results. We deem these results 

to be also of high value because it helps to remove possible biases and increase the 

validity of the positive results. For example, our MTS assay has shown a decrease 

in signal that was deemed to be statistically significant. Coupling the aforementioned 

results alongside the cell death pathways such as autophagic and apoptotic death 

which returned negative results gave us the impetus us to explore different avenues. 

This ultimately led us down the path of investigating cell cycle regulation and DNA 

damage, which we did not initially consider during this project. Ultimately, presenting 

scientific data that encompasses a mixture of negative and positive results helps to 

communicate a much broader overview of the project in question.  

 

In terms of future work, we would primarily centre the focus around p21, as its 

overexpression can indicate cell cycle arrest, DNA damage response and 

suppression of apoptosis. Therefore, the first experiment would be to carry out flow 

cytometry experiments with propidium iodide to ascertain if and where the cell cycle 

arrest occurs and in which stage. Following this, further data to support the evidence 

of the flow cytometry result, such as immunoprecipitating the CDK-cyclin complexes, 

as p21 can inhibit their formation. This would yield strong evidence with regards to 

cell cycle arrest. Subsequent experiments would include western blotting for 

expression levels of p53, as this would verify whether VP24 is overexpressing p21 

via p53 dependant or independent pathway, using suitable positive controls such as 

bleomycin, a drug that induces double strand breaks. We would also like to verify 

whether VP24 may localise in the nucleus to cause DNA damage, therefore carrying 

out a nuclear extraction treatment on VP24-transfected cells could give us more 

insight as to its localisation. It would greatly increase our understanding of VP24 if a 
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mutation in a particular residue or domain of the protein could be identified that would 

then abrogate the findings in this thesis. In this case we would attempt the same 

experiments using VP24 with mutations within the KPNA interacting domain, as this 

would tell us whether the phenotype we observed is dependent on these protein-

protein interactions. Lastly and most importantly, experiments using either the 

transcription and replication-competent viral-like-particle (trVLP) system or engaging 

with collaborators that have access to category 4 biocontainment labs for live virus 

experiments would have to be carried out in order to complete the full story because 

ultimately, why would the virus block the cell cycle or engage the DNA damage 

response pathways? Is it to modify the host cell for optimal viral replication or is it a 

self-defence mechanism of the infection by the host? These questions would help 

us understand pathogenic mechanisms during EBOV infection, and by comparing 

between non-human and human pathogenic strains we could hopefully understand 

key differences that determine pathogenicity. 
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6 Structure Function of the Ebola Virus Delta Peptide 

The Ebola virus delta-peptide is a viroporin, derived from proteolytic cleavage of 

sGP. Little is known about delta-peptide with regards to structure and function. Here, 

we decided to employ several different techniques to allow us to analyse the 

structure of delta peptide. We attempted to generate delta-peptide by recombinant 

methods using bacteria, which failed to generate the quantities required for suitable 

NMR methods. However, by purchasing synthetic delta-peptide in reduced form 

allowed us to attempt a unique type of crystallography called lipidic-cubic phase 

crystallography. This technique differs from traditional crystallography as it revolved 

around crystallisation in a lipid environment, a valuable technique for membrane 

bound proteins and peptides. We were successful in generating several crystals with 

different screening conditions, for both reduced and oxidised forms of the peptide. 

We hope to carry out X-ray scattering to derive a structure of the 23 amino acid c-

terminus Zaire delta-peptide and 25 amino acid c-terminus of Reston delta-peptide. 

This would allow us to investigate how their structures might result in pore formation 

in membranes and whether there is a difference in cytotoxicity between the two 

species.  
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6.1 Introduction 

The delta peptide of Ebolavirus is a small peptide produced during protein 

processing of sGP [Figure 28]. This occurs in the final stages of processing as the 

enzyme furin recognises a motif for cleavage on the C-terminus of sGP that results 

in mature sGP and delta peptide, both of which are secreted extracellularly 

(Volchkova, Klenk and Volchkov, 1999). The role of the delta-peptide is currently 

unknown, however bioinformatic analysis would suggest that it acts as a viroporin 

(J. He et al., 2017). Viroporins are peptides or proteins that are involved in 

pathogenesis and viral replication, of which their characteristic feature is forming 

pores in lipid bilayers. These pores can have ion-channel activity, as seen with 

Influenza Virus M2, forming a tetrameric channel that conducts protons, and 

rotavirus NSP4, which increases intracellular calcium (Nieva, Madan and Carrasco, 

2012). Viroporins are known to possess amphipathic helices, which are important 

for promoting insertion into membranes and forming pores when oligomerisation of 

multiple viroporins occurs.  In terms of viral replication, viroporins can alter 

membrane properties, allowing for morphogenesis and budding, as seen with 

Influenza Virus M2 (Rossman and Lamb, 2011). Current literature on the delta-

peptide is sparse. Since its discovery in 1999, only three studies have been 

completed. Whilst none have solved the structure of the delta-peptide, other 

properties have been investigated. Gallaher and Garry, 2015 conducted a 

bioinformatic analysis that modelled the structure of delta peptide from EBOV and 

RESTV. From their investigation, they identified a potential lytic activity of the 

peptide. He et al., 2017 used a synthetic peptide to determine its pore forming 

capability and lytic properties. They showed that the delta-peptide is active in an 

oxidised state, suggesting that formation of the disulphide bond between the 

cysteines is important for pore formation and insertion. Pokhrel et al., 2019 used 

molecular dynamics simulation to explore how oligomerisation states affect pore 

formation and activity. Their data suggests that hexameric pores can be formed that 

have high selectivity to chloride ions.  
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It is our intention to solve the structure of the 23-25 amino acid delta peptide fragment 

containing the suspected amphipathic structure of delta-peptide from both EBOV 

and RESTV, in oxidised and reduced states. We hope this structural determination 

would help shed more light on the function of the delta-peptide, its potential role in 

viral pathogenesis and show how the structure and function is affected by the 

disulphide bond formation [Figure 27]. 
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A 

B 

Figure 27. Ebolavirus Delta-Peptide is a product of sGP processing. 
 

During expression of 7U GP gene, 80% of protein produced is sGP. This results in 
a furin-like cleavage site at position 324. Furin then cleaves the C-terminal end of 
sGP to yield a mature sGP protein and a ~40 amino acid Delta-Peptide (A). Delta-
peptide from both EBOV and RESTV contain a region in their C-termini believed 
to form an amphipathic structure (B). It is hypothesized that this structure could 
occur by the formation of a disulphide hairpin loop between the cysteines. (Panel 
B adapted from He et al., 2017. 
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6.2 Results 

6.2.1 TOCSY and NOESY NMR Imaging 

We first obtained chemically synthesised peptides corresponding to the last 23 C-

terminal amino acid residues for EBOV and last 25 C-terminal amino acid residues 

for RESTV in their reduced form. Then, before starting to collect spectrums on all of 

the delta-peptides from EBOV and RESTV in their reduced and oxidised states, we 

decided to carry out a total correlation spectroscopy (TOCSY) and nuclear 

overhauser effect spectroscopy (NOESY) experiment on the reduced EBOV delta 

peptide as a proof of concept. Therefore, we resuspended EBOV delta-peptide in 

ddH2O containing 20% acetic acid to a final concentration of 650μM and ran the 

experiments on the NMR machine. The spectra generated from the experiments 

show the peaks corresponding to the delta peptide, suggesting that this experiment 

is possible [Figure 28]. However, we would need to confirm whether the delta-

peptide interacts only superficially with the membrane, which would allow for non-

labelled NMR experiments, otherwise, in a situation whereby the peptide fully inserts 

into a membrane these NMR experiments will not detect the peptide. 
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Figure 28. TOCSY and NOESY NMR Spectra of reduced EBOV Delta-
Peptide 
To confirm whether in-solution NMR experiments could be carried out, we 
attempted to generate TOCSY (A) and NOESY (B) spectra of the EBOV delta-
peptide. Our spectra detected the delta-peptide, therefore these experiments 
can be carried out once we verify whether the peptide interacts superficially with 
membranes or whether it fully inserts. 

A 

B 
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6.2.2 Delta Peptide Membrane insertion 

To assess whether the structure of the delta peptide C-termini can be observed by 

NMR we first screened for membrane interactions using Nile Red stained giant 

unilamellar vesicles. The principle of unlabelled NMR based structure studies is that 

if the interactions remain superficial rather than full membrane insertion then it would 

be possible to generate the required spectra as the signal from the peptide would 

not be blocked by the lipid environment. However, full membrane insertion would not 

permit proton-proton experiments by NMR due to the signal generated by the lipids 

which would mask the signal generated from the peptide. Therefore, by using 

confocal microscopy we can understand the type of interaction with greater detail. 

Current research suggest full membrane insertion which would then require the 

generation of recombinant peptide with 13C and/or 15N labelling. We opted to 

generate GUVs using asolectin lipids as they contain a mixture of phospholipids. The 

results show insertion into the membrane as the FITC-delta peptide signal was 

present throughout the entire membrane, overlapping the red signal from the lipid 

bound dye [Figure 29]. This confirms previous results suggesting full membrane 

insertion and suggests why channel formation may be why the delta peptide has lytic 

properties (J. He et al., 2017). Due to this result, unlabelled NMR experiments would 

not be possible and so we endeavoured to generate recombinant labelled peptide 

for our NMR structural studies by using BL21 strain of Escherichia coli. For practical 

reasons, we opted to attempt this procedure using the EBOV delta peptide and, if 

successful, to follow up with RESTV delta peptide. 
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Control 

E23ox 

E23red 

R25ox 

R25red 

Nile Red FITC Merge 

Figure 29. Peptide Membrane interactions using Asolectin Lipid GUVs. 
20µM oxidised and reduced forms of FITC-labelled EBOV (E23) and RESTV (R25) 
delta peptides were incubated in the presence of Nile Red stained asolectin GUVs 
for 15 minutes prior to viewing on the confocal microscope. All forms of peptide 
colocalise with the GUV membranes which shows membrane insertion. This is 
consistent with previously published literature. Scale bars represent 5µm. 
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6.3 Recombinant Production of 23 amino acid C-terminus Delta 

Peptide 

6.3.1 Gibson Assembly 

We opted to use a pCold bacterial expression vector from Ortega-Roldan research 

group for recombinant peptide production, due to the cold expression properties that 

reduces protease activity after induction to produce peptide in bacteria. To remove 

the delta-peptide gene insert from the pUC57 vector into a pCold vector expressing 

6x His tag, twin strep tag and GFP, Gibson assembly was carried out using the 

correct primers with overhangs. Two PCR reactions for amplifying our vector and 

construct were carried out, one for the pCold vector and one for the EBOV delta-

peptide. The thermocycler settings used are presented in Figure 31. We 

subsequently used a PCR cleanup kit to remove contaminants. However, we found 

that after PCR cleanup we did not see any of the 72bp fragment encoding the delta 

peptide. This is likely due to a minimum bp retention size of the membrane present 

in the PCR cleanup centrifugation tubes. Therefore, we attempted the experiment 

again, omitting the PCR clean up step and ran the product on a 3% TAE agarose 

gel treated with treated with SYBR Green to visualise DNA bands on the UV 

transilluminator [Figure 30].  

We detected a band around the 100bp marker for the sample that was not subjected 

to the PCR cleanup kit, therefore we decided to carry on the final steps of the Gibson 

assembly using that sample.  
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This involved mixing our amplified products in a 1:4 ratio between amplified vector 

and amplified fragment, to a total 0.25pmols of DNA, followed by mixing with 2X 

Gibson Assembly Mastermix and volumes were raised to 20µL per PCR tube using 

ddH2O. The thermocycler settings were set to 50°C for 15 minutes as per 

manufacturer’s protocol. After the reaction, the resulting DNA solution in the tube 

was used to transform competent cells to generate plasmid DNA that was sent off 

for sequence to Eurofins to confirm successful generation of the plasmid to be used 

for recombinant production [Figure 31C]. 

 

100bp 

500bp 

400bp 

300bp 

200bp 

1000bp 

Figure 30. DNA Agarose Gel of delta-peptide PCR products 
Delta-peptide PCR products were mixed with 6X loading dye and 5µL were run 
on a 3% TAE Agarose gel stained with SYBR Safe Green DNA stain. *denotes no 
PCR cleanup sample. Control sample was water mixed with 6X loading dye. We 
detected a band around the 100bp marker for our construct that was not 
subjected to the PCR cleanup kit.  
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Figure 31. Thermocycler Settings for Gibson Assembly 
Construct Map of pCold vector expressing 6His-, twin-strep, GFP tagged EBOV Delta 
peptide (A).Conditions used to generate products for downstream Gibson assembly 
(B). The final product was sent for sequencing by Eurofins to verify successful 
assembly using custom primers from Jose Ortega-Roldan laboratory group (C). 
Sequences were aligned using SerialCloner software. Seq_1 denotes final product 
sequence. Seq_2 denotes the 72bp sequence for the 23aa C-terminus of EBOV Delta-
Peptide.  

B 

C 
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6.3.2 Purification by Nickel Column 

 

In order to produce pure GFP fused delta peptide, we first transformed BL21 

competent E. coli with pCold zDelta-peptide plasmid. Protein expression was 

induced with IPTG at 15°C overnight followed by lysis through sonication and debris 

removal by ultracentrifugation. In order to purify the GFP fused delta peptide, a 

series of column purification techniques were used; starting with a nickel column. 

The lysates were added to the column and all follow-throughs during purification 

were collected as the capture of the desired protein is never 100% efficient, and 

therefore allowing us to re-run any flowthroughs that were visibly green in order to 

maximise efficiency of peptide production, as the green colour indicated presence of 

GFP tagged delta peptide. After ultra-centrifugation was carried out to remove any 

cell debris, the lysate was initially purified through a nickel column due to the 

presence of a histidine tag. Two washes were carried out using wash buffer 

containing 5mM imidazole to remove any non-specific bound proteins. After the 2 

washes using 5 column volumes (CV) of wash buffer, the remaining bound proteins 

were eluted using 1CV of wash buffer containing 400mM imidazole, three times. 

Prior to starting the second step of purification by strep-tactin column to increase the 

purity of our sample for downstream application, we ran 10μL of lysates from each 

step on a tris-glycine gel and Coomassie stained to determine the purity of the 

samples [Figure 32]. We noticed that the elution portion of the purification still had 

many protein bands, suggesting that the purification has worked compared to the 

flowthrough sample, but not to optimum levels, as usually you would want to see a 

single band of your expressed protein. Following the result of the Coomassie stained 

gel, the elutions were subjected to a dialysis using a 7.5kD cutoff dialysis tubing. 

Dialysis was performed against 5 litres of lysis buffer overnight at 4°C using a 30kD 

cutoff dialysis tube in order to remove the imidazole present in the elution as this 

would interfere with the strep-tactin purification beads.  
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~24 kD 

~31 kD 

Figure 32. Nickel Column Purification of Delta Peptide 
BL21 cells were transformed with pCold GFP delta peptide and induced with IPTG 
overnight prior to lysis and purification by nickel column. 10µL of samples collected 
at each stage of the purification were subjected to gel electrophoresis using SDS-
PAGE Criterion™ TGX™ gels rated at AnyKD by the supplier (Biorad). Coomassie 
staining was carried out on the denaturing gel for four hours followed by overnight 
destaining at room temperature to assess purity. Most of the tagged peptide 
appeared in elution 2 and 3 but samples need further purification from background 
protein content due to the presence of multiple bands at different molecular 
weights in the elution lanes. 
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6.3.3 Strep-Tactin purification  

To further purify the GFP-fused delta peptide we used a strep-tactin column as the 

construct expresses a twin strep tag. The column contained 5mL of packed beads, 

and was primed using the strep-tactin wash buffer prior to loading the lysate. 

Following the priming, the lysate eluted from the nickel column (elutions 2 and 3) 

was added to the column and washed using 10CV of wash buffer to remove any 

non-specific bound proteins. All flowthroughs were collected for analysis by 

Coomassie staining. To elute the bound GFP-fused peptide, 2.5mM of desthibiotin 

was added to the wash buffer and elution was carried out at 1CV in steps. Then, 

10μL of elutions were subjected to gel electrophoresis using a tris-glycine gel and 

~24 kD 

~31 kD 

Figure 33. Strep-Tactin Purification of Delta Peptide 
10µL samples were taken from each stage of strep-tactin purification and 
subjected to Coomassie staining on a denaturing gel to assess purity. Due 
to the purity of samples during elution 2 and 3 were used for TEV cleavage 
of peptide from the His-Strep-GFP tag. Red arrow points to the band 
containing the tagged delta peptide. 



 

 

6-132 

Coomassie stained to determine the purity [Figure 33]. We saw two bands in the 

elutions. We suspect that the lower band is likely due to autocleavage of the TEV 

site, possibly due to presence of proteases still in the sample. 

 

6.3.4 TEV Cleavage 

 

 

In order to purify untagged delta peptide, the GFP tag needed to be removed, this 

could be performed though TEV cleavage at a site separating the GFP tag from the 

delta peptide. Therefore, we placed the elution in a 1kDa cutoff dialysis tubing 

containing lysis buffer containing 1mM EDTA, TEV enzyme and 1M DTT, at pH8. 

~24 kD 

~31 kD 

Figure 34. Confirming Cleavage from GFP tag using TEV enzyme 
Purified lysate containing the GFP-tagged delta peptide was subjected to TEV 
cleavage overnight at 4°C. After incubating the sample in the presence of TEV 
enzyme, aliquots were subjected to Coomassie staining on a denaturing gel to 
assess a difference in the height of the bands. We also attempted to detect the 
delta-peptide however no signal was seen on the gel at 3kD. 
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Dialysis was performed at 4°C overnight. The pH was chosen to be specifically high 

because when resuspending the synthetic delta-peptide we noticed that it was 

insoluble in water, and by adding 30% acetic acid, we successfully solubilised the 

peptide. We noticed that post dialysis there was a substantial amount of precipitate. 

We removed the green lysate solution, spun down the samples at 17,000G on a 

tabletop centrifuge for 15 minutes and resuspended the precipitate in 30% acetic 

acid at pH5 which caused the pellet to solubilise. In order to detected whether the 

delta-peptide was present at this point we subjected 0.5μL of resuspension to 

MALDI-TOF mass spectrometry analysis, against the solution remaining the dialysis 

tubing. We found that the peptide was indeed present in the solubilised pellet, and 

that none was present in the solution that was remaining in the dialysis tubing. As 

we have now confirmed the presence of the GFP cleaved delta peptide, the 

solubilised sample was run through a HPLC column.  

6.3.5 HPLC purification 

 

The last step to purify the peptide to a high purity, reverse phase HPLC using a was 

used whereby a gradient of solvent A (10% TFA in ddH2O) and B (1% TFA in 

acetonitrile) was subjected to the column containing the sample at a flow rate of 

4.5mL per second. Elutions were collected when the UV graph recorded a peak 

signal intensity, at 35 minutes. Elutions were also collected at minutes 36, 37 and 

38, as according to the elution profile, there was still presence of peptide [Figure 35]. 

Elutions were mixed into one tube and were lyophilised and resuspended in 30% 

acetic acid. The next step would be to verify that the fully cleaved 23aa peptide was 

present. This was done by MALDI-TOF mass spectrometry. 
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6.3.6 MALDI-TOF 

 

After HPLC purification we verified that the peptide was present. The HPLC purified 

peptide sample was diluted 100x by using 1μL sample in 99μL TA solution, and 

0.5μL spotted onto the sample grid. Once the sample has dried on the anchorplate 

we added 0.5μL of matrix solution onto the dried spot containing the peptide. Then 

a calibration mix was added to an adjacent spot to calibrate the MALDI-TOF 

experiments for peptide detection around 300-3500MW. Using a 10% laser power, 

the MALDI-TOF was calibrated to detect peptides by firing the laser at the calibration 

spot, followed by firing the laser at our peptide samples that were eluted from the 

HPLC and in the supernatant after TEV cleavage [Figure 36]. The spectra obtained 

Figure 35. HPLC Elution graph of EBOV Delta Peptide 
Reverse phase HPLC was carried out to purify EBOV delta peptide. The elution 
profile taken at 280nm wavelength reveals peak elution of peptide at 35 minutes. 
The wavelength of 280nm detects aromatic compounds. The 23aa Zaire EBOV 
Peptide contains 3 amino acids with aromatic rings; 1 phenylalanine, 2 tryptophans 
and 1 histidine. 
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from the supernatant after TEV cleavage showed no peptide was present, whereas 

the pellet from TEV cleavage that was resolubilised in 30% acetic acid and HPLC 

purified showed a small peak at molecular weight 3030.610, which corresponds to 

our peptide. The peptide peak was small, which could indicate that not much peptide 

was generated using our current experimental methods for recombinant peptide 

expression. 
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Figure 36. MALDI-TOF analysis of peptide expression. 
The final step to verify production of the EBOV delta peptide was by using MALDI-TOF 
mass spectrometry. Post-TEV cleavage supernatant does not show the peak 
corresponding to the delta-peptide (A). However, the pellet that was resuspended in 
acetic acid and purified by HPLC showed a peak at molecular mass 3030.214 Daltons. 
This mass corresponds to the delta-peptide including 3 amino acids in the N-terminus 
that linked the peptide to the TEV cleavage site (B). 
 

A 

B 
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6.4 Discussion 

We had initially planned to carry out in-solution NMR to determine the structure of 

the delta-peptide. The type of experiments for this would have been proton-proton 

experiments such as total correlation spectroscopy (TOCSY) and nuclear 

overhauser effect spectroscopy (NOESY). These experiments are based on the 

principle of determining signal from protons that are in close proximity to each other. 

However, proton signals stemming from the lipid membranes would mask signals 

generated from the protons in the synthetic peptide.  prior to NMR 

structural studies we deemed it was important to determine whether the peptide 

interacts with the surface or fully inserts into the lipid bilayer. It was for this reason 

that we initially screened for insertion using GUVs and FITC-tagged delta-peptide. 

Due to the results of the GUV peptide assay, it was clear that to be able to carry out 

structural studies of the delta peptide, it would have to be made recombinantly. We 

chose to use the pCold vector expressing a GFP fusion tag because having the 

peptide alone, which was proposed to be lytic, may become toxic to the BL21 cells 

when protein expression was induced, as this had been observed before with other 

lytic peptides during recombinant peptide production (Li, 2011). It is also of benefit 

to have used a GFP tag as during cell lysis by sonication, we could see a strong 

green coloured lysate, indicating successful protein expression. Furthermore, the 

pCold vector was chosen as induction of protein production occurs at low 

temperatures of 15°C, where host protease activity remains low, therefore greatly 

reducing the likelihood of proteolytic degradation. The version of the pCold vector 

obtained for these experiments also contained a x6 histidine tag and twin-strep tag. 

This allows for two rounds of different affinity chromatography techniques. Using a 

nickel bead purification column, we were able to greatly reduce the amount of 

background protein content in our lysates as nickel has affinity towards polyhistidine 

tags, reported to enrich samples up to100 fold in a single step (Bornhorst and Falke, 

2000). Subsequently, using a strep-tactin immobilisation column that binds with high 

affinity to strep tags, we were able to purify our sample to only contain our GFP fused 

peptide to high purity. The reason for two rounds of purification was largely due to 



 

 

6-138 

the next step in peptide production which was using the TEV enzyme to cleave the 

GFP-fusion tag off the peptide. It was at this stage where we encountered difficulty. 

We had noticed that after cleavage, a substantial insoluble precipitate was present 

in the solution. We had originally thought this was due to trace impurities precipitating 

after cleavage. Our initial rounds of purification did not yield any peptide that was 

detectable by MALDI-TOF. However, after repeating the experiment, we subjected 

the TEV cleaved sample to centrifugation at >17,000 G to pellet all the precipitate, 

which was resolubilised by using 30% acetic acid at pH 5. It was this step that 

ultimately led to detectable levels of peptide by MALDI-TOF. We believe the 

precipitation occurred due to the basic pH of the buffer at which TEV cleavage was 

carried out, as we had noticed during resuspension of the synthetic peptide for our 

GUV experiments that without maintaining a pH lower that 6, the peptide would not 

dissolve in solution. This highlighted the importance of buffer composition for peptide 

production, as the conditions can greatly affect solubility. However, after we purified 

the resuspended pellet by HPLC, the samples were analysed by tris-glycine SDS-

PAGE to verify the presence of delta-peptide at roughly 3kD. Unfortunately we were 

not able to detect a band by Coomassie staining. Therefore, we quantified the 

concentration of peptide by spectophotometry, which was reported to be 65µM in a 

volume of 500µL. This meant that the production of this peptide requires large 

amounts of optimisation, such as pH ranges of buffers, different strains of bacterial 

cells, to produce 1mg/mL of peptide required for NMR studies, which was not 

possible due to time constraints of the PhD program. If there was more time to 

complete this project, we would start by optimising buffer pH’s, in particular during 

the TEV cleavage as the peptide crashed out when the pH was high. Otherwise, 

using a different expression vector containing fusion tags that enhance solubility 

such as glutathione-S-transferase (GST) or maltose-binding protein (MBP). 
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6.5 Lipidic Cubic Phase Crystallography 

6.5.1 Introduction 

Lipidic cubic phase (LCP) crystallography is a technique that was developed to 

generate crystal structures of membrane proteins. Since membrane bound proteins 

possess both hydrophobic transmembrane domains and hydrophilic surfaces 

protruding from membranes, crystallisation in aqueous solutions has found to be 

very challenging since the hydrophobic domains rapidly aggregate to amorphous 

structures (Rummel et al., 1998). Whereas LCP provides a microenvironment that 

membrane bound proteins are more accustomed to, due to the presence of 

detergents, aqueous solutions and lipids. There are several lipid polymorphisms, as 

they may aggregate into membranes, liposomes, micelles for example (Luzzati and 

Tardieu, 1974). These different structures are referred to as phases, and the phase 

used for this particular type of crystallography is the cubic phase. This is because 

this phase possess properties that are favourable for protein crystallisation; they are 

macroscopically stable, solid and fully transparent materials (Landau et al., 1996). 

Owing to these properties, membrane proteins can be incorporated to these 

matrices. We decided that due to these properties, we could attempt to crystallise 

our delta-peptides using LCP crystallography. 

6.5.2  Results 

Due to reagent limitations, we decided to initially screen for the 25 amino acid 

RESTV delta-peptide in reduced form. Using commercially bought screens with 96 

different conditions, we screen two 96-well plates by mixing 30μL monoolein lipid 

with 10μL of peptide dissolved in 15% acetic acid to 20mg/ml. A Mosquito® Robot 

was used to pipette the lipid:peptide mixtures onto plates containing the 

commercially bought screens. After two weeks of incubation at 18°C, we detected 

four conditions that favoured crystal formation on one plate (MemGoldMeso™) 

[Figure 37] and three conditions on the other plate (MemGold2™)[Figure 38]. 



 

 

6-140 

 

 

 

  

0.2M Lithitum sulfate 

0.1M Phosphate/Citrate pH4.2 

10% w/v PEG 1000 

0.1M Sodium acetate Trihydrate 

0.1M Ammonium Fluoride 

0.1M MES Monohydrate pH 6 

30% v/v PEG 500 DME 

Figure continues on next page 
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0.3M Lithium Sulfate 
0.1M HEPES pH 7 
35% v/v PEG 400 

0.35M Magnesium Chloride Hexahydrate 
0.15M Sodium Malonate Dibasic Monohydrate 

0.1M HEPES pH 7.5 
33% v/v PEG 400 

Figure 37. LCP crystallisation for R25red Delta Peptide with MemGoldMeso™ 
Screen 
30μl monoolein lipid was mixed with 10μL of peptide dissolved in 15% acetic acid and  
mixed with 96 different conditions from a MemGoldMeso™ screen plate for peptide 
crystallisation. Plates were monitored once a week for crystal formation under a light 
microscope. We found four conditions that favoured crystal formation from the 
MemGoldMeso™ screen. Crystals formed inside the bolus, increasing the likelihood that 
crystals are not salt precipitates 
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0.1M Sodium Chloride 

0.1M BICINE pH 9 

45% v/v PEG 500 MME  

0.4M Potassium Chloride 

0.05M HEPES pH 7.5 

12% v/v PEG 400  

0.1M BICINE pH 9 

30% v/v PEG 400  

Figure 38. LCP crystallisation for R25red Delta Peptide with MemGold2™ 
Screen 
30μL monoolein lipid was mixed with 10μL of peptide dissolved in 15% acetic acid 
and mixed with 96 different conditions from a MemGold2™ screen plate for peptide 
crystallisation. Plates were monitored once a week for crystal formation under a 
light microscope. We found four conditions that favoured crystal formation from the 
MemGoldMeso™ screen. Crystals formed inside the bolus, increasing the 
likelihood that crystals are not salt precipitates. 
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6.5.3 Discussion 

Due to success of crystal formation, the next stage would be to extract a structure of 

the peptide using X-ray diffraction. However, during crystallography, formation of salt 

crystals may occur. To differentiate the crystals between peptide or salts, we could 

employ several techniques. For example, polarisation lenses on microscopes can 

be used to check the birefringent properties of the crystals. Salts exhibit more 

birefringence than that of macromolecular crystals. However, our microscope does 

not possess a set of polarising planes. Therefore, our current plan would be to carry 

out X-ray diffraction on all of the crystals at Diamond Light Source, located at Harwell 

Science and Innovation Campus in Oxfordshire. Hopefully, these crystals will lead 

to the successful LCP crystallisation of the delta-peptide. 

 

6.6 Future Work 

Within the final 6 months of the project, our attempt to produce the 23aa C-terminal 

domain of the EBOV delta peptide was not completely successful. This is because 

recombinant peptide production has been reported to be fairly challenging. Despite 

this, we have attempted to crystallise our synthetic peptide using LCP 

crystallography. Due to detection of crystals, we hope to carry out x-ray diffraction 

experiments within a few months of submitting this thesis. If the crystals are indeed 

the delta-peptide, we will be able to generate a structure. Having the structure of the 

EBOV delta-peptide would allow us to understand how it inserts into membranes, 

which residues make contact to allow anchorage through the transmembrane, 

whether the shape of the peptide allows for ion channel activity. Furthermore, 

repeating the experiment with RESTV oxidised delta peptide as well as EBOV delta 

peptide, both in reduced and oxidised form, would allow us to compare between the 

non-human pathogenic species of Ebolavirus against the highly pathogenic Zaire 

Ebola virus species, which may give us insight towards the pathogenic determinants 

between the two species. 
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7 Concluding Remarks 

Ebolaviruses in Africa have repeatedly demonstrated their lethality through multiple 

recorded outbreaks, in contrast to the species found out of Africa which have never 

shown human pathogenicity. The race to understand the mechanisms behind 

infection, replication and pathogenicity has yielded a promising vaccine candidate. 

However, a vast expanse of knowledge is yet to be uncovered, as more filoviruses 

are being discovered around the world, ever increasing the members of the 

filoviridae, of which several members such as Reston virus and the newly discovered 

Bombali virus are non-pathogenic in humans. The thought that there are non-human 

pathogenic filoviruses, that often come into contact with humans due to the proximity 

of wildlife and local populations, is of increased interest. To date, nobody knows 

whether there is a simple mechanism that underpins the non-human pathogenic 

phenotype or whether it is due to a multitude of small differences between the strains 

that would make it so. Furthermore, the thought of non-pathogenic members of 

Ebolavirus genus becoming pathogenic due to mutations is terrifying, as the 

countries that they have been isolated in such as Philippines, has a very high density 

of human population. Throughout the course of this PhD we often compared and 

contrasted VP24 and delta-peptide between the human pathogenic Ebola virus and 

Reston virus, with the hopes to identify any difference within their interactions with 

the host cells or at a structural level. It would appear that for now, we can conclude 

that our experiments so far have not revealed any differences. To conclude, we are 

pleased to have revealed signs of a new mechanism of VP24 within host cells; 

modulation of cell cycle components. We also hope to solve the structures of all 

forms of the catalytically active C-termini of the delta-peptides, to shed light on 

structure function properties of these viroporins. 
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