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1. Introduction

The objective Bayesian analysis has essentially started once the principle of insufficient

reason was advocated by Laplace during the early 19th century. This principle states that if

there is not enough knowledge to subjectively build a prior distribution, one should consider

all possible cases as equally likely, thus encouraging an uniform prior. Since the second

half of the 20th century there has been an increase in the number of methodologies which

consider priors suitable for scenarios of no information or of insufficient prior information.

Amongst such priors, we would like to mention the Jeffreys’s prior (Jeffreys, 1961), the

probability matching prior (Welch and Peers, 1963), the reference prior (Bernardo, 1979), the

fractional prior (O’Hagan, 1995, 1997) and the loss-based prior (Villa and Walker, 2015b).

According to Kass and Wasserman (1996) and Ghosh (2011), the Jeffreys’s prior is part of

the priors invariant under the action of a group, whilst the reference prior is included in the

more general class of divergence priors. The probability matching prior is a prior designed

to conform to some frequentist properties, whereas the fractional prior deals with a certain

fraction of the data called training sample and is used to tackle the problems created by

improper priors for the Bayes Factors. The loss-based prior is based on decision-theoretic

arguments. More details about these priors are provided in the following chapter.

The need for objective procedures may stem from the lack of sufficient prior information

or from the impracticability of using it. For example, if a model has a large number

of parameters, then prior elicitation is not feasible. As such, there have been developed

1



Introduction 2

automated procedures to obtain prior distributions. The collection of all these procedures

falls under the name of Objective Bayes.

Before embarking in more detail on the objective prior method we have considered

together with our contribution to the objective Bayesian literature, we would like to do a

short introduction of the Bayesian principles in the context of model selection. Let M =

{ f (x|θ),π(θ)} represent a Bayesian model comprised of the data generating distribution

f (x|θ) and the prior π on the model parameter (possibly a vector of parameters) θ . The

prior can be specified both subjectively and objectively. As it is not the focus of this work,

we would like to avoid reviewing subjective priors. More information about them can be

found in the works of Ramsey (1926), de Finetti (1937), Lindley (1972), Goldstein (2006),

amongst others. In regards to the objective prior, we have used the loss-based prior of Villa

and Walker (2015b), which has also been applied in a model selection context by Villa and

Walker (2015a). The main idea of the above prior is the link between the misspecification of

a model in terms of the limiting behaviour of the posterior distribution as shown by Berk

(1966) and the idea of self-information loss. In the Bayesian context, we are interested in the

posterior distribution which has the form

π(θ |x) ∝ f (x|θ) ·π(θ). (1.1)

From equation (1.1), we utilise the loss-based prior or the principle behind it to compute the

posterior through the Bayesian updating process and address various issues in the area of

change point analysis, as well as Gaussian Graphical Models (GGMs) and proper binary

trees. These represent our contribution to the objective Bayesian literature.



2. Preliminaries

This chapter focusses on introducing the literature about objective methods for continuous

and discrete parameters. We also present the loss-based prior of Villa and Walker (2015b).

The last sections of the chapter comprise some of the literature about change point problems,

Gaussian graphical models and proper binary trees.

2.1 Objective Methods for Continuous Parameters

In this section, we are going to discuss some objective Bayesian procedures for continuous

parameters.

Jeffreys’s prior

Jeffreys’s prior (Jeffreys, 1961) exhibits invariance in regards to bijective transformations

of its arguments and is related to the Fisher information. For the unidimensional case, the

Fisher information is

I(θ) = Eθ

[(
∂ log f (x|θ)

∂θ

)2
]
. (2.1)

Equation (2.1) represents the information that the model under the data generation pro-

cess f (x|θ) contains about the parameter θ . Under some regularity conditions, the Fisher

3



Preliminaries 4

information can be defined as

I(θ) =−Eθ

[(
∂ 2 log f (x|θ)

∂θ 2

)]
.

In the unidimensional setting, the Jeffreys’s prior has the form:

πJ(θ) ∝ I(θ)1/2.

The choice of the prior related to the Fisher information has the property of being invariant

under one-to-one (bijective) transformations. For a bijective transformation h of θ , we get

through the change-of-variables formula

π(θ) = π(h(θ))
∂h(θ)

∂θ

and this translates to the following result

I(θ) = I(h(θ))
(

∂h(θ)
∂θ

)2

,

which is the change-of-variables rule applied to the Fisher information. A characteristic of

the Jeffreys’s prior is to put relatively more mass on those regions of the parameter space

where the Fisher information is highly concentrated.

For the multidimensional parameter θθθ = (θ1,θ2, . . . ,θk), the Jeffreys’s prior has the form:

πJ(θθθ) ∝ det(III(θθθ))))1/2, (2.2)
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where III(θθθ) is the k× k Fisher information matrix, which must be positive-definite, with the

(i, j)th element given by

III(i, j)(θθθ))) = Eθθθ

[(
∂ log f (x|θθθ)

∂θi

)(
∂ log f (x|θθθ)

∂θ j

)]
.

Clearly for the univariate case, the determinant from equation (2.2) simplifies to the Fisher

information under the single parameter θ .

In the multidimensional case, the Jeffreys’s prior may lead to incoherent results, as

outlined by Robert (2007). To address the issue, Jeffreys recommends to assume the pa-

rameters as a priori independent. As such, the Jeffreys’s prior πJ(θθθ) simply becomes

πJ(θθθ) = ∏
k
i=1 πJ(θi) and is called Jeffreys’s independence prior. For more details and

examples, refer to Kass and Wasserman (1996).

Reference prior

Reference priors have been introduced by Bernardo (1979) and the general idea is to maximise

in expectation the difference in information between the prior and the posterior, where the

difference is measured via the Kullback–Leibler (KL) divergence (Kullback and Leibler,

1951) defined as:

DKL(p||q) =



∑
xi∈X

p(xi) · log
[

p(xi)

q(xi)

]
, if X is discrete

∫
X

p(x) · log
[

p(x)
q(x)

]
dx, if X is continous,
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where p,q : X → (0,+∞) are two probability distributions. The expected information

(Shannon (1948) and Lindley (1956)), is the expectation with respect to the marginal density

f (xxx) of the KL divergence between the posterior distribution π(θ |xxx) and the prior distribution

π(θ), that is

I(π|M) =
∫
X

DKL(π(θ |xxx)||π(θ)) f (xxx)dxxx,

where M = { f (xxx|θ),xxx ∈X ,θ ∈ Θ} is the statistical model from which the data is generated,

under a certain configuration for parameter θ , and xxx is the observable data vector. To

provide a formal definition of the reference prior we need to specify the meaning behind

two characteristics which it needs to obey, namely maximising missing information and

prior permissibility. Consider Θ ⊂ R. Let us denote with Mk the number of independent k

realizations xxx1,xxx2, . . . ,xxxk obtained under the previously defined model M with a continuous

parameter space. Denote by P the set of priors of θ such that
∫

Θ
f (xxx|θ)π(θ)dxxx < ∞. If

∀Θ0 ⊂ Θ and ∀π̃ ∈ P , with Θ0 compact, we have

lim
k→∞

{
I(π0|Mk)− I(π̃0|Mk)

}
≥ 0,

where π0 and π̃0 are the renormalized restrictions of the priors π(θ) and π̃(θ) to Θ0, then the

prior π has the maximising missing information property for model M given P . Intuitively,

as we repeatedly run model M a very large k number of times, the expected information

related to any prior should exist and provide a measure of the missing information about

parameter of interest θ associated to the specific prior, because the sequence of observations

xxx1,xxx2, . . . ,xxxk should give more information about the parameter of interest as k increases. In

other words, when k → ∞, I(π|Mk) represents the missing information about θ related to the

prior π(θ). Furthermore, we would like that the missing information corresponding to prior

π(θ) to be larger compared to the missing information associated with any alternative prior

π̃(θ). A prior π(θ) is permissible for model M if it satisfies the following two conditions.
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Firstly, ∀xxx ∈ X , the posterior π(θ |xxx) is proper. Secondly, for an increasing sequence

of compact subsets of Θ, {Θi}∞
i=1, converging to Θ, the posteriors corresponding to the

parameters located in those subsets are expected logarithmically convergent to the posterior

π(θ |xxx). For a sequence of posterior distributions {πi(θ |xxx)}∞
i=1 to be expected logarithmically

convergent to the posterior π(θ |xxx), it means that lim
i→∞

∫
X

DKL(πi(θ |xxx)||π(θ |xxx)) fi(xxx)dxxx = 0,

where fi(xxx) =
∫

Θi
f (xxx|θ)πi(θ)dθ is the prior predictive distribution of xxx marginalised over

the compact parameter subset Θi. So a permissible prior π(θ) in this context simply means

that its posterior needs to obey the expected logarithmically convergent condition. This

condition is necessary to guarantee that in the case of improper priors we obtain proper

posteriors which arise as suitable limits of posteriors derived under proper priors. Specifically,

the prior obeying the aforementioned condition simply leads to a posterior which marginalised

over xxx is approximately equivalent to a proper posterior obtained when we restrict the

parameter space to a large compact subset of it. Therefore, the formal definition of a

reference prior π(θ) for a parametric model M given a P class of prior functions is a prior

which is both permissible and maximizes the missing information.

Berger et al. (2009) provide a specific way to build the reference prior numerically

under some mild conditions. First, we need to define the idea of standard parametric

model and standard class of priors. A standard class of priors, Ps, is the collection of

strictly positive and continuous priors π(θ) on Θ such that f (xxx) =
∫

Θ
f (xxx|θ)π(θ)< ∞. A

parametric model M where the parameters are continuous is considered standard if ∀π ∈ Ps

and ∀Θ0, we have I(π0|Mk)< ∞, where π0 is the standard prior π(θ) restricted to Θ0 and

I(π0|Mk) is the expected information for k independent realizations xxx1,xxx2, . . . ,xxxk under M.

Due to the k independent realizations and a specific property of the reference prior, we may

consider computationally convenient to work with sufficient statistics for the construction

of the reference prior. According to Bernardo (2005), the sufficient statistics are actually

asymptotically sufficient statistics, that is a function of the data tttk = tttk(xxx1,xxx2, . . . ,xxxk), such
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that ∀θ ∈ Θ ⊂ R and ∀xxx1, . . . ,xxxk ∈ X , we have lim
k→+∞

f (θ |xxx1,xxx2, . . . ,xxxk)

f (θ |tttk)
= 1. Therefore,

when we define the reference prior in terms of sufficient statistics, there would be no loss

of generality compared with using the entire sample. Furthermore, as Bernardo (2005) and

Berger et al. (2009) outline, the reference prior under the entire data is the same with the

reference prior under the relevant sufficient statistics, due to the invariance of the expected

information to the transformations involved in creating those sufficient statistics.

Let tttk = tttk(xxx1,xxx2, . . . ,xxxk) ∈ Fk be a sufficient statistic for the k replications under model

M. Under certain mild conditions discussed by Berger et al. (2009), the reference prior for a

standard model M given a standard class of priors Ps is

π(θ) = lim
k→∞

gk(θ)/gk(θ0),

with

gk(θ) = exp

{∫
Fk

f (tttk|θ) log
[

f (tttk|θ)π∗(θ)∫
Θ

f (tttk|θ)π∗(θ)dθ

]
dtttk

}
,

where π∗(θ) is an arbitrary fixed prior and θ0 is an interior point of Θ.

Across all previous definitions and conditions from this section, we have considered

θ as an one-dimensional parameter. The general multivariate case has been treated by

Berger and Bernardo (1992a). According to the original authors, this general case of the

reference method is notationally quite complex and very hard to implement. As such, for

the multidimensional case we restrict our attention to the case of two parameters, that is

θθθ = (ω,λ ), a case also described by Kass and Wasserman (1996). Here, we consider ω

as the parameter of interest and λ as a nuisance parameter. Then, the analysis proceeds

as following: keeping ω fixed, we first use the standard reference method to derive the

reference prior for λ , that is πR(λ |ω). We then use the reference prior for λ to compute

f (xxx|ω) =
∫

f (xxx|ω,λ )πR(λ |ω)dλ . Next, we employ again the standard reference method to

obtain πR(ω) by using the previously computed f (xxx|ω). Now, the reference prior for θθθ is
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simply πR(θθθ) = πR(ω)πR(λ |ω). As outlined by Kass and Wasserman (1996), when some

regularity conditions are obeyed, the reference prior for this particular case θθθ = (ω,λ ) has a

clear form:

π
R(ω,λ ) ∝ πJ(λω)exp

{∫
πJ(λω) log[S(ω,λ )]dλ

}
, (2.3)

where πJ(λω) is the standard Jeffreys’s prior for λ when ω is fixed and S =

√
det(III(θθθ))

det(III(2,2)(θθθ))
with III(θθθ) being the multidimensional Fisher information matrix and III(2,2)(θθθ) representing

the (2,2)nd element of III(θθθ) that corresponds to the nuisance parameter. Clearly, if we swap

the importance of the two parameters around we get a different result for the πR(θθθ). As

such, in the multidimensional case, we have that different orderings of importance for the

parameters lead to different reference priors. More details about how to order the parameters

for the multidimensional reference analysis is provided by Berger and Bernardo (1992b).

For an overview on how to tackle the multidimensional case when more than one nuisance

parameter is present we would like to refer to Bernardo (2005). The basic principle outlined

by Bernardo (2005) is represented by a simple application of the chain rule of probability and

then working backwards in identifying the reference priors for the least significant nuisance

parameter to the parameter of interest akin to the way we have identified the reference prior

in equation (2.3).

Probability matching prior

This type of prior was developed with the idea of the corresponding Bayesian credible interval

matching its frequentist analogue in terms of coverage probabilities. It was introduced by

Welch and Peers (1963) and further advanced by Datta and Mukerjee (2004) and Ghosh

(2011). We are interested in prior π(θ1) for real one-dimensional parameter θ1 such that

Pr(θ1 ≤ θ
1−α

1 (π,XXX)) = 1−α +o(n−r/2),∀r ∈ {1,2,3, . . .},∀α ∈ (0,1), where XXX is a vector

of n i.i.d. (independent and identically distributed) random variables sampled from distri-
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bution f (xxx|θθθ), θθθ = (θ1,θ2, . . . ,θd)
T , d = 1; α is the confidence level and θ

1−α

1 (π,XXX) is the

1−α posterior quantile of θ1 under the prior π(θ1). When r = 1 this prior is called the first

order probability matching prior for posterior quantile, whereas when r = 2 it is referred

as second order probability matching prior for posterior quantile. As Scricciolo (1999)

remarks, Welch and Peers (1963) have shown that Jeffrey’s prior is a second order probability

matching prior for posterior quantile, which was also noticed by Datta and Mukerjee (2004)

in terms of it satisfying certain partial differential equations. When nuisance parameters

are present, therefore we consider a multivariate setting for our model parameters, the first

order probability matching is not unique. Furthermore, Datta and Sweeting (2005) remark

that in the case of multivariate parameters, the first order probability matching holds as

there is an equivalence between the normal approximations in both Bayesian and frequentist

contexts. Under certain partial differential equations, a second order probability matching

can be obtained when we consider a single parameter of interest, let us say θ1, and the rest of

the d-dimensional model parameter vector θθθ as nuisance parameters. Then, by denoting with

z1−α

θ1
(π,XXX) the 1−α marginal posterior quantile of θ1 under the prior π(θ1), we consider

π a second order matching probability if Pr(θ1 ≤ z1−α

θ1
(π,XXX)) = 1−α +o(n−1) holds. In

this multivariate framework, it is necessary to distinguish two approaches regarding the

probability matching priors. The first is concerned with finding for each parameter of interest

a particular second order prior; the resulting priors are called simultaneous marginal second

order probability matching priors. The second method consists in obtaining priors by match-

ing the corresponding frequentist and posterior joint cumulative distribution functions. Both

approaches originated with the work of Datta (1996). Besides the quantile and distribution

matching, other types of matching priors are possible such as when we consider highest

posterior density regions, other credible regions like the inversion of likelihood ratio statistics

and others. The highest posterior density regions have the smallest volume for a given

credible level. As this type of priors do not constitute the subject of this thesis, a more
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in-depth discussion is provided by Datta and Mukerjee (2004) and Datta and Sweeting (2005)

and the references therein.

Fractional prior

This type of prior was introduced by O’Hagan (1997) as a way to solve the problems created

by improper priors for Bayes Factors (BFs). As explained by Berger and Pericchi (1996),

when improper priors are involved, the BF is defined up to a ratio of arbitrary constants.

According to de Santis and Spezzaferri (1999), the BFs can be expressed as the ratio of

posterior odds to the prior ones, thus suggesting the change in the odds favoured by the

data. Before formally introducing the fractional prior, we have to establish the notion of

partial Bayes Factors (PBFs) (de Santis and Spezzaferri, 1999). The idea that stands at the

framework of PBFs is to split the sample of data y(n) in a training set, denoted by y(l), with

the remaining y(n− l) data being used to make the model comparisons, where n represents

the sample size and 0 < l < n describes the size of the training data. The purpose of this split

is to use the training data to compute proper posteriors π(·|y(l)) starting from the improper

prior πN(·) and then use those proper posteriors as the priors when defining the PBFs. Thus,

the partial Bayes Factor for a model M j against a model Mk where the training sample has

size l, that is B jk(l), is simply represented as

B jk(l) =

∫
Θ j

f j(y(n− l)|θ j)π j(θ j|y(l))dθ j∫
Θk

fk(y(n− l)|θk)πk(θk|y(l))dθk
=

BN
jk(y)

BN
jk(y(l))

, (2.4)

where BN
jk(y) and BN

jk(y(l)) are the BFs under the improper priors πN
j (θ j) and πN

k (θk) when

the full sample data and the training data are considered, respectively. The idea of O’Hagan

(1995) bypasses the arbitrary choice of the training data y(l) for the PBFs, by using a

certain subunitary fractional power b = l/n of the likelihood to solve the problems caused by

improper priors to BFs. As such, the correction BN
jk(y(l)) from equation (2.4) is replaced by
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Bb
jk(y), thus obtaining the fractional Bayes Factor (FBF) which is

BFBF
jk (y) =

BN
jk(y)

Bb
jk(y)

,

where

Bb
jk(y) =

∫
Θ j

f b
j (y|θ j)π

N
j (θ j)dθ j∫

Θk
f b
k (y|θk)π

N
k (θk)dθk

.

The choice of b can be either b = l0/n, where l0 is the minimal training sample size, that

is the size for which 0 <
∫

Θi
fi(y(l0)|θi)π

N
i (θi)dθi < ∞ and no other subset of it can be

found where the integrated likelihood is finite, or, as discussed in O’Hagan (1995), can be

b = max{l0,
√

n}/n or b = max{l0, log(n)}/n.

The fractional prior (O’Hagan, 1997) represents the proper prior for which the Bayes

Factor is asymptomatically equivalent for a sequence {bn} of fractional powers to the FBF

under the improper prior.

An alternative to the fractional prior is represented by the intrinsic prior introduced by

Berger and Pericchi (1996). Before providing an interpretation of this prior, we need to

briefly describe the intrinsic Bayes Factors (IBFs). The IBFs are obtained from PBFs by

averaging in a certain way across all possible L minimal training samples zh, h = 1,2, . . .L.

Amongst the averaging, some well-known examples are represented by the arithmetic (AIBF)

and the geometric means (GIBF), characterised as:

BA
jk(y) = BN

jk(y) ·
∑

L
h=1 BN

k j(zh)

L
,

BG
jk(y) = BN

jk(y) ·

[
L

∏
h=1

BN
k j(zh)

]1
L
.

As outlined by de Santis and Spezzaferri (1999) and Consonni et al. (2018), the intrinsic

prior is that proper prior for which the computed BFs are asymptotically equivalent to the

IBFs.
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2.2 Objective Methods for Discrete Parameters

In this section, we are reviewing some of the objective priors used for discrete parameters.

The literature on the subject is geared more towards outlining context-specific fixes as

summarised by Villa and Walker (2015b). Recently, a general framework to address setting

priors for discrete parameter spaces was introduced by Villa and Walker (2015b). This

framework is discussed in more detail in Section 2.3.

Jeffreys (1961) has proposed the following prior on the space of positive integers π(n) ∝

n−1, where n ∈ {1,2,3, . . .}. Another prior on the positive integers based on information

theoretical reasons, which we will cover next, was proposed by Rissanen (1983). Following

Rissanen (1983) and Kass and Wasserman (1996), we start by assigning a binary string,

called code word, to every positive integer as a bijective map. Another important assumption

is that the resulting code is a prefix code, that is a code made from code words such

that there are no code words which are the initial segments of other code words in the

respective code. This assumption allows one to easily discriminate between the code words.

Now, let us consider the initial knowledge about the positive integers expressed through the

distribution P= (P(1),P(2), . . .) satisfying certain constraints. According to Rissanen (1983),

P is called the "test" distribution and quantifies the initial knowledge about our positive

integers. Furthermore, we have P(i) < 1,∀i and P(i) ≥ P(i+ 1), i > M, for some M. The

first condition ensures that the distribution P is non-singular in the interval [1,M], whereas

the second condition can be intuitively described as saying that the bigger the integer is the

less probable it is. There is also a third technical condition related to the information entropy,

namely H(P) =−∑
N
i=1 P(i) log(P(i)) = ∞. This third condition is needed to get a solution.

We must note that even though the entropy is infinite, this does not lead to paradoxes, as

every integer still has a finite code length. In correspondence with the distribution P, let us

denote by L = (L(1),L(2), . . .) the sequence of the lengths for the code words. Then, the

idea is to search for the code where the code lengths are the shortest. Formally, this means to
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solve the following optimization problem:

min
L

sup
P

lim
N→∞

∑
N
i=1 P(i)L(i)

−∑
N
i=1 P(i) log(P(i))

. (2.5)

Under certain regularity conditions, the solution to the optimization from (2.5) is L0(n) =

log2(c)+ log2(n)+ log2(log2(n))+ . . ., where c = 2.865064. Following certain coding the-

ory constraints, namely the Kraft–McMillan inequality for prefix codes, Rissanen (1983) has

proposed the prior π(n) ∝ 2−L0(n), which is proper subject to the aforementioned constraints.

The prior can be expressed as:

π(n) ∝
1
c
· 1

n
· 1

log2(n)
· 1

log2(log2(n))
· . . . · 1

log2(log2(. . . log2(n) . . .))
. (2.6)

Note that the product from equation (2.6) has a finite number of terms as it contains just

those factors for which the iterated logarithm is defined, that is for the positive arguments.

Another approach regarding objective priors for discrete parameters was introduced by

Berger et al. (2012). It is known that for a finite discrete space, the standard reference theory

will generate the discrete uniform prior on that space, whilst on a countably infinite space, it

leads to the appearance of a non-constant normalisation factor which is to be avoided. As

suggested by Berger et al. (2012) regarding finite discrete spaces, this would not constitute a

problem when the parameter space does not contain any structure. When there is structure,

the uniform prior is not desirable as it will become apparent from Example 1 which was

originally provided by the authors. As such, Berger et al. (2012) recommend enclosing

the discrete parameter problem into a continuous one and use procedures motivated by

asymptotics. Among those procedures, we recall considering a consistent estimator for the

required parameter or applying formal limiting operations on the data. These approaches

lead to a continuity assumption for the parameter in cause. Another possible solution to deal
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with structured discrete parameter spaces is the introduction of a continuous hierarchical

hyperparameter as in the following example.

Example 1. Consider a random variable X distributed according to the Hypergeometric(K,N,n)

where the finite population has size N ∈ {0,1,2, . . .} with exactly K ∈ {0,1, . . . ,N} successes.

Let k be the observed number of successes in n ∈ {0,1, . . . ,N} draws without replacement.

Then the probability of k successes from n draws without replacement is:

Pr(X = k|K,N,n) =

(N
k

)
·
(N−K

n−k

)(N
n

) .

Let us suppose that K is unknown, whereas N is known. Clearly, K has values in a finite

discrete space, but embeds a certain structure through the hypergeometric distribution.

It is known, that for large N compared to n, the random variable X is approximately

distributed as Binomial(n,K/N) random variable. The objective prior for K should therefore

be related in a certain way to the objective prior for the probability of success in the binomial,

probability denoted by p, usually taken in the literature as the Jeffreys’s prior, namely

π(p)∼ Beta(0.5,0.5). Berger et al. (2012) propose an objective prior that is compatible with

the objective prior for p through a certain embedding strategy that involves the introduction

of a continuous hyperparameter and then proceeding with the standard reference analysis.

In the hypergeometric example from above, we may assume that K ∼ Binomial(N,p) with

unknown p. Integrating out K, we have:

Pr(X = k|N,n, p) =
N

∑
K=0

Pr(X = k|K,N,n) ·Pr(K|N, p)

=

(
n
k

)
pk(1− p)n−k. (2.7)

The algebraic expression from equation (2.7) designates a Binomial(n,p). As Berger et al.

(2012) remind us, the reference analysis for the unknown p parameter of a binomial simply
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yields the Jeffreys’s prior, namely πR(p) ∼ Beta(0.5,0.5). As such, integrating out this

probability of success p using the previously mentioned reference prior, gives us the following

reference prior for K:

π
R(K|N) =

1
π

Γ

(
K +

1
2

)
Γ

(
N −K +

1
2

)
Γ(K +1)Γ(N −K +1)

.

Basically, in the aforementioned example we have considered the following hierarchical

model:

K|p ∼ Binomial(N,p)

p ∼ Beta(α,β )

The choice of the Beta(α,β ) is a natural one, since this distribution is a conjugate to the

binomial distribution. This means that if we marginalise over p, we simply obtain the

Beta−Binomial distribution (Griffiths, 1973). That is K ∼ Beta−Binomial(N,α,β ) with

the probability mass given as

Pr(K|N,α,β ) =

(N
K

)
B(K +α,N −K +β )

B(α,β )
,

where B(α,β ) =
Γ(α)Γ(β )

Γ(α +β )
is the Beta function with parameters α and β . Note that

(
N
K

)
=

Γ(N +1)
Γ(K +1)Γ(N −K +1)

,

where Γ is the Gamma function. As in our designation of the hierarchical model, K depends

on p, then an objective prior on K would definitely necessitate an objective prior on p. We

know that Jeffreys’s prior for p represents an objective choice. As such, if we substitute
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α = β = 1/2 which represents that objective prior for p, we obtain the reference prior

mentioned in Example 1.

2.3 Objective Prior for Discrete Parameters

In this section, we are presenting the concepts that stand at the basis of our proposed

methodologies from the next chapters, respectively the objective priors introduced by Villa

and Walker (2015b) for discrete parameters, as well as their extension to model prior

probabilities (Villa and Walker, 2015a). We will heavily utilise the latter methodology in our

approach to change point analysis and GGMs.

To illustrate the idea, consider a probability distribution f (x|m), where m ∈ M is a

discrete parameter. Then, the prior π(m) is obtained by objectively measuring what is lost

if the value m is removed from the parameter space, and it is the true value. According to

Berk (1966), if a model is misspecified, the posterior distribution asymptotically accumulates

on the model which is the most similar to the true one, where the similarity is measured

in terms of the KL divergence. Therefore, DKL( f (·|m)∥ f (·|m′)), where m′ is the parameter

characterising the nearest model to f (x|m), represents the utility of keeping m. The objective

prior is then obtained by linking the aforementioned utility, or more precisely the loss, via

the self-information loss:

π(m) ∝ exp
{

min
m′ ̸=m

DKL( f (·|m)∥ f (·|m′))

}
−1.

This self-information loss was outlined by Merhav and Feder (1998) in the universal

prediction context. Consider the problem of making a prediction on an outcome, say

xt ∈ X , after observing xxxt−1 = (x1,x2, . . . ,xt−1) ∈ X . Consider the conditional probability

Prt(xt |xxxt−1). Once xt is known, the previously mentioned conditional probability assignment

is evaluated through a certain loss function l, which should be monotonically decreasing
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regarding the respective probability statement. Such a loss is the self-information loss, which

states that for a certain event x, the loss incurred by a probability statement P = {Pr(x),x ∈

X } associated to x is given by:

l(P,x) =− log(Pr(x)).

The self-information loss satisfies certain properties, besides the monotonicity one. Due to its

logarithmic form, it is advantageous to work with it, as products of conditional probabilities

are transformed to cumulative sums. This means that the self-information loss corresponding

to the joint distribution of two independent probability statements is simply the aggregate of

the self-information losses corresponding to each of the two individual statements. Another

property is represented by the equivalence between the choice of the probability statement

that minimises the self-information and the choice of the maximum likelihood estimator

(MLE). Intuitively, self-information loss can be described as the measure of uncertainty we

have about the occurrence of an event. As such, if an event occurs almost surely, then the

uncertainty around it will be zero, therefore leading us to ascribe a value of zero to the self-

information loss associated to the respective event. Clearly, as we are more unsure about the

realisation of an event, this will lead to a higher surprise when it actually happens, thus ending

with a higher self-information loss. In some contexts the self-information loss appears under

the moniker of ’surprisal’. As another measure of uncertainty for the occurrence of an event

is represented by the probability of its realisation, the link between the self-information loss

and the respective probability statement is given by the aforementioned negative logarithmic

form. We must also note that in the area of data compression, the self-information loss

− log(Pr(x)) represents the ideal code length of x with respect to a probability statement Pr(),

as outlined by Merhav and Feder (1998).

Villa and Walker (2015a) have extended the concept behind the objective prior on discrete

parameters as to allow them to define a prior on the space of models. All our subsequent
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analysis in the later chapters is based upon this latter extension. To illustrate, let us consider

k Bayesian models:

M j = { f j(x|θ j),π j(θ j)}, j ∈ {1,2, . . . ,k},

where f j(x|θ j) is the sampling density characterised by θ j and π j(θ j) represents the prior on

the model parameter.

Assuming the prior on the model parameter, π j(θ j), is proper, the model prior proba-

bility Pr(M j) is proportional to the expected minimum KL divergence from M j, where the

expectation is considered with respect to π j(θ j). That is:

Pr(M j) ∝exp
{
Eπ j

[
inf

θi,i ̸= j
DKL( f j(x|θ j)∥ fi(x|θi))

]}
, j = 1, . . . ,k. (2.8)

Note that according to Villa and Walker (2015a), the quantities shown in the exponential

from equation (2.8) represent the worth of model M j weighted by the prior on the model

parameters associated with M j. By worth, the original authors simply mean what is lost if

the model is removed from the list of models and it turns out to be the true model. This loss

is simply the KL divergence between the model and the nearest one to it across the available

options. The use of the prior distribution on the model parameters is due to the fact that these

parameters are unknown so they need to be integrated out.

The model prior probabilities defined in equation (2.8) can be employed to derive the

model posterior probabilities through:

Pr(Mi|x) =

[
k

∑
j=1

Pr(M j)

Pr(Mi)
B ji

]−1

, (2.9)
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where B ji is the Bayes factor between model M j and model Mi, defined as

B ji =

∫
f j(x|θ j)π j(θ j)dθ j∫
fi(x|θi)πi(θi)dθi

,

with i ̸= j ∈ {1,2, . . . ,k}.

2.4 Bayesian Analysis of Change Point Problems

There are several practical scenarios where it is inappropriate to assume that the distribution

of the observations does not change. For example, financial datasets can exhibit alternate

behaviours due to crisis periods. In this case it is sensible to assume changes in the underlying

distribution. The change in the distribution can be either in the value of one or more of

the parameters or, more in general, on the family of the distribution. In the latter case, for

example, one may deem appropriate to consider a normal density for the stagnation periods,

while a Student t, with relatively heavy tails, may be more suitable to represent observations

in the more turbulent stages of a crisis. The task of identifying if, and when, one or more

changes have occurred is not trivial and requires appropriate methods to avoid detection

of a large number of changes or, at the opposite extreme, seeing no changes at all. The

change point problem has been deeply studied from a Bayesian point of view. Chernoff

and Zacks (1964) focused on the change in the means of normally distributed variables.

Smith (1975) looked into the single change point problem when different knowledge of the

parameters of the underlying distributions is available: all known, some of them known

or none of them known. Smith (1975) focuses on the binomial and normal distributions.

In Muliere and Scarsini (1985) the problem is tackled from a Bayesian nonparametric

perspective. The authors consider Dirichlet processes with independent base measures as

underlying distributions. In this framework, Petrone and Raftery (1997) have showed that

the Dirichlet process prior could have a strong effect on the inference and may lead to wrong
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conclusions in the case of a single change point. Raftery and Akman (1986) have approached

the single change point problem in the context of a Poisson likelihood under both proper

and improper priors for the model parameters. Carlin et al. (1992) build on the work of

Raftery and Akman (1986) by considering a two level hierarchical model. Both papers

illustrate the respective approaches by studying the well-known British coal-mining disaster

dataset. In the context of multiple change points detection, Loschi and Cruz (2005) have

provided a fully Bayesian treatment for the product partitions model of Barry and Hartigan

(1992). Their application focused on stock exchange data. Stephens (1994) has extended

the Gibbs sampler introduced by Carlin et al. (1992) in the change point literature to handle

multiple change points. Hannart and Naveau (2009) have used Bayesian decision theory,

in particular 0-1 cost functions, to estimate multiple changes in homoskedastic normally

distributed observations. Schwaller and Robin (2017) extend the product partition model

of Barry and Hartigan (1992) by adding a graphical structure which could capture the

dependencies between multivariate observations. Fearnhead and Liu (2007) proposed a

filtering algorithm for the sequential multiple change points detection problem in the case of

piecewise regression models. Henderson and Matthews (1993) introduced a partial Bayesian

approach which involves the use of a profile likelihood, where the aim is to detect multiple

changes in the mean of Poisson distributions with an application to haemolytic uraemic

syndrome (HUS) data. The same dataset was studied by Tian et al. (2009), who proposed a

method which treats the change points as latent variables. Ko et al. (2015) have proposed an

extension to the hidden Markov model of Chib (1998) by using a Dirichlet process prior on

each row of the regime matrix. Their model is semiparametric, as the number of states is not

specified in advance, but it grows according to the data size. Heard and Turcotte (2017) have

proposed a new sequential Monte Carlo algorithm to infer multiple change points. Other

contributions to the Bayesian change point literature are Harlé et al. (2016), Lai and Xing

(2011), Martínez and Mena (2014) and Mira and Petrone (1996).
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Whilst the literature covering change point analysis from a Bayesian perspective is vast

when prior distributions are elicited, the documentation referring to analysis under minimal

prior information is limited, see Moreno et al. (2005) and Girón et al. (2007). The former

paper discusses the single change point problem in a model selection setting, whilst the latter

paper, which is an extension of the former, tackles the multivariate change point problem in

the context of linear regression models. Our work from Chapter 3 aims to contribute to the

methodology for change point analysis under the assumption that the information about the

number of change points and their location is minimal. First, we discuss the definition of

an objective prior for change point location, both for single and multiple changes, assuming

the number of changes is known a priori. Then, we define a prior on the number of change

points via a model selection approach. Here, we assume that the change point coincides with

one of the observations. As such, given X1,X2, . . . ,Xn data points, the change point location

is discrete.

2.5 Bayesian Analysis of Gaussian Graphical Models

New technologies allow the collection of large amounts of data up to a significant level of

detail. To fully exploit the information in the data it is important that the possibly complex

relationships among them are effectively captured and described. A statistical tool that

allows one to exploit the power of graphs to represent such relationships among a, possibly

large, number of variables, is a graphical model. Indeed, a graphical model can provide a

geometrical representation of the dependencies among the variables with the immediacy that

graphs exhibit. The use of this particular type of models is widespread within disciplines,

including finance and economics (Giudici and Spelta (2016)), social sciences (McNally et al.

(2015), Williams (2018)), speech recognition (Bilmes (2004), Bell and King (2007)) and

biology (Wang et al. (2016)).
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A sensible way of describing a graph is as a collection of two sets of objects: vertices

and edges (Roverato, 2017). Vertices represent a finite set of elements, whereas the edges

signify the existence of a link or interplay between pairs of those elements. In a diagram,

the vertices are drawn as numerically labelled circles, while the edges can be represented by

either a simple line or an arrow, symbolising the distinction between undirected and directed

graphs, respectively. Formally, an edge is said to be undirected if the order in the pair of the

connected vertices is not relevant; conversely, the edge is said to be directed and the order is

represented by the direction of an arrow. Examples of both types of graphs can be seen in

Figures 2.1 and 2.2.

1 2

34

Fig. 2.1 A undirected graph with 4 vertices and 4 edges.

1

2

3

Fig. 2.2 A directed graph with 3 vertices and 3 arrows (edges).

An attractive feature of undirected graphs is decomposability, since it allows to divide

a graph into subgraphs (graphs which are part of a larger graph). Decomposability can

help with the computations and in the implementation of efficient inferential methods as

subgraphs can be treated separately. To elaborate, a decomposable graph can be divided into

smaller parts, called cliques and separators. A clique is a subgraph where all its vertices

are connected to each other. When all the pairs between different vertices in a graph are

joined together, we call the respective graph a complete graph. Clearly, a clique represents a
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complete subgraph of a graph. When we refer to cliques across this work, we mean maximal

cliques. A clique is maximal if it is not the subgraph of another clique in the graph. A

separator has a more technical definition, but it can be intuitively illustrated as follows. Let

us assume that a graph is formed by three subgraphs: A, B and C. Then B is a separator if the

only way to move from a vertex in A to a vertex in C is through B. So a separator represents a

subgraph in the graph, not necessarily complete which divides the graph in several subgraphs

disconnected from each other. Note that in a decomposable graph, the separator must be

complete. In contrast with cliques, when we specify a separator we actually mean a minimal

separator, that is a separator which does not contain any other separator. In the Bayesian

framework, the decomposability in cliques and separators allows to define priors which

encode the statistical dependencies of a model. A more in-depth treatment of the graph

notions described above is given in Chapter 4. An example of an undirected decomposable

graph can be seen in Figure 2.3 with its decomposition in terms of cliques and separators

seen in Figure 2.4.

1 2

34

Fig. 2.3 A undirected decomposable graph with 4 vertices and 5 edges.

1

34

1

3

1 2

3

Fig. 2.4 The decomposition of the undirected graph from Figure 2.3 in two cliques (blue)

and one separator (red).
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A widely used statistical model for graphs is the Gaussian Graphical Model (GGM).

Here, Gaussian means the multivariate distribution the data should follow. Furthermore, there

is a direct equivalence between the zeros in the inverse of the covariance matrix associated

with the aforementioned Gaussian distribution and the missing edges of the corresponding

elements in the underlying graph structure. There are many useful reasons for assuming

Normality. A remarkable one is that, among all distributions with same mean and same

variance, the Normal assumption maximizes the entropy (Cover and Thomas, 2006). As a

consequence, it imposes the least number of structural constraints beyond the first and second

moments.

The literature around GGMs is vast, and it spans from frequentist to Bayesian approaches.

Meinshausen and Bühlmann (2006) estimate the neighbourhood of vertices through the

LASSO procedure (Tibshirani, 1996) and then put together those estimates to build the

underlying graph. Of the same flavour as LASSO, Yuan and Lin (2007) have introduced a

penalized likelihood method to estimate the concentration matrix, which for GGMs encodes

the conditional independence. Friedman et al. (2008) have developed the graphical LASSO

algorithm which is quite fast compared to other frequentist based algorithms. The above

methods look at the regularization penalty being imposed on the concentration matrix. A

method where the penalty is imposed to the inverse of the concentration matrix, the covariance

matrix, is presented by Bien and Tibshirani (2011). Giudici and Green (1999) have applied

the trans-dimensional reversible jump Markov chain Monte Carlo (RJMCMC) algorithm of

Green (1995) to estimate the decomposable graphs that underlie the relationships in the data.

This RJMCMC method was extended to estimate the structure in a case of multivariate lattice

data by Dobra et al. (2011). Another trans-dimensional algorithm, this time based upon

birth-death processes, was described by Mohammadi and Wit (2015). Jones et al. (2005)

have reviewed the traditional MCMC (Markov chain Monte Carlo) methods used for graph

search for both decomposable and non-decomposable cases when high-dimensional data is
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considered and have proposed an alternative method to find high probability regions of the

graph space. An MCMC method to estimate the normalising constant of the distribution

which has its structure characterised by a non-decomposable graph has been proposed by

Atay-Kayis and Massam (2005). Their idea was also used by Jones et al. (2005) when

non-decomposable graphs were involved. For decomposable graphs, Carvalho and Scott

(2009) have introduced a prior for the covariance matrix which helps to improve the accuracy

in the graph search. In addition, they have also presented a graph prior which automatically

guards against multiplicity.

The estimation methods in GGMs have been extensively studied in the literature for both

directed (Friedman et al. (2000), Spirtes et al. (2000), Geiger and Heckerman (2002), Shojaie

and Michailidis (2010), Stingo et al. (2010), Yajima et al. (2015), Consonni et al. (2017))

and undirected graphs (Dobra et al. (2004), Meinshausen and Bühlmann (2006), Yuan and

Lin (2007), Banerjee et al. (2008), Friedman et al. (2008), Carvalho and Scott (2009), Kundu

et al. (2019), Stingo and Marchetti (2015)).

We are tackling the GGM problem from the Bayesian perspective. In this approach there

are two sources of randomness as discussed by Giudici and Green (1999). One is related to

the multivariate distribution and the quantities that may parametrise it, the other has to do

with the underlying graph G, equivalent to describing the conditional independence structure

of the model under consideration. As such two kinds of priors are necessary: one related

to the model parameters, ΣG in our case, the other associated with the graph G. In Chapter

4, we propose a graph prior based on the loss-based method reviewed in Section 2.3. First,

we revisit some of the graph priors encountered in the GGM literature. Then, we define our

proposal and compare it with some of the aforementioned graph priors in simulated and real

data studies.
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2.6 Bayesian Analysis of Proper Binary Trees

This section outlines the idea of a tree in the context of Bayesian data analysis. We start

by showing how trees arise as a structure which is extremely useful, especially in empirical

studies (Linero, 2017). We then summarily review some of the literature around trees in this

Bayesian framework.

Following the ideas from Chipman et al. (1998), Wu et al. (2007), Chipman et al. (2013),

Linero (2017) and Chipman et al. (2010), let us consider n observations (yi,xxxi) where

xxxi = (x1,x2, . . . ,xp) is the p-dimensional vector of predictors and the response yi depends

on xxxi. In the case of the BART (Bayesian Additive Regression Trees) methodology, the

responses depend on the predictors in a linear fashion. The idea behind using a tree T , is that

at each node of the tree the predictor space is split into non-overlapping regions according

to one of the predictors and a threshold value. At each of the terminal nodes of the tree,

called leaves, there is a parameter θl such that the responses corresponding to the predictors

from that path through the tree are distributed according to f (y|θl), where l = 1, . . . ,LT are

the leaves of the tree T . Clearly, the response values at each terminal node l are i.i.d. with

distribution f (y|θl) and between terminal nodes of the same tree T , the response values are

independent. Now let us denote with Θ the vector of parameters θl affiliated with the leaves

of tree T . Obviously, for a different tree structure, the predictors and the corresponding

responses will be split differently. As such, we may think of a particular tree Tk in the space

of trees T as akin to a model in a model space. Therefore, we may apply the methodology

of Villa and Walker (2015a). An example of a proper binary tree can be seen in Figure 2.5.
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7 8 

Fig. 2.5 A binary tree with 4 internal nodes (blue) and 5 terminal nodes (red). Note that this

binary tree is proper as all internal nodes have exactly two children.

Now let us consider the following data generating process for a tree Tk to which

we attribute the vector of parameters according to which the data is split, that is Θk =

(θ1,θ2 . . . ,θLTk
), where LTk are the leaves of Tk:

yl j
i.i.d.∼ f (yl j|θl), ∀l = 1,2, . . . ,LTk and ∀ j = 1,2, . . . ,nl.

Let h be the likelihood function of all n responses yi denoted by yyy = (y1,y2, . . . ,yn), that is:

h(yyy|Tk,Θk,XXX) =

LTk

∏
l=1

nl

∏
j=1

f (yl j|θl),

where XXX is the n× p design matrix. Note that f designates a parametric family of distributions

indexed by θl . These notations would be used again in Chapter 5, especially when defining

the loss-based prior on trees.

The Bayesian approach to trees, in particular proper binary trees, starts with the works of

Chipman et al. (1998) and Denison et al. (1998). The differences between the two papers

consist in the tree priors they use, as well as the stochastic approaches utilised to explore

the tree space. Chipman et al. (1998) consider a tree-generating process which also controls

the shape of the tree through two hyperparameters for the prior, whereas Denison et al.
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(1998) simply use a truncated Poisson distribution for the number of leaves. Regarding the

stochastic algorithms employed, the former authors adopt a Metropolis-Hastings algorithm

with a transition kernel which allows four possible moves (grow, prune, change, swap), while

the latter apply the reversible jump Markov chain Monte Carlo algorithm of Green (1995).

An extension to the model introduced by Chipman et al. (1998) was provided by Chipman

et al. (2002) in the context of linear regression, which they called Bayesian treed models. Wu

et al. (2007) have proposed a tree prior which takes into account both the tree size and the

tree shape, while also adding a restructure step to the four aforementioned moves allowed in

the previous tree searching algorithms. The aim of this additional step is to provide large

changes in the tree structure whilst maintaining the number of leaves and the allocation

of the observations to the subsequent leaves unchanged. Gramacy and Lee (2008) have

developed a way to deal with nonstationary modelling by coupling a stationary Gaussian

process with the partition provided by the tree structure. Chipman et al. (2010) have extended

the single tree model of Chipman et al. (1998) and Chipman et al. (2002) in the case of linear

regression to an ensemble of trees introducing the BART model which exhibits very good

empirical performance. An addition to the tree and BART literatures was provided by Linero

(2018) who advocated the use of a sparsity-inducing Dirichlet hyperprior when choosing

the predictors that the split will be constructed around instead of the usual discrete uniform

hyperprior. A review of trees in the Bayesian context is provided by Linero (2017). Some

loss-based binary tree priors are introduced in Chapter 5, together with their justification,

theoretical attributes and a potential application.

2.7 Outline of the Thesis

The outline of this thesis is as follows. In Chapter 3, we present our methodology for tackling

change point problems, together with its application to simulated and real data. In particular,

we define the loss-based prior on the change point locations. Then, we show how we can use



Preliminaries 30

Bayesian model selection to determine the number of change points in a dataset. Chapter 4

is about describing and exploring our loss-based prior in the context of Gaussian graphical

models. Notably, we test our method against other graph priors defined across the relevant

literature when synthetic and real data scenarios are considered. In Chapter 5, we showcase

some of the loss-based proposals for a tree prior. For each of the proposals we indicate the

theoretical behaviours according to the choices of the tuning parameters. The chapter ends

by outlining the plan for encapsulating one of the loss-based priors in a BART approach to a

bike-sharing system. The last chapter (Chapter 6) summarises and concludes the main results

of the thesis, as well as sketches a plan for future work.



3. Loss-based Prior applied to Change

Point Problems

This chapter contains the methods we use to address change point problems. The first section

introduces the loss-based prior on the positions of the change points, whilst the second section

looks into finding the number of change points in a dataset as a model selection exercise.

The third section is dedicated to validating our theoretical work through simulated and real

datasets. The last section’s purpose is to discuss our main contributions corresponding to this

chapter. The body of this chapter has been taken from Hinoveanu et al. (2019).

3.1 Loss-based Prior on the Change Point Locations

This section is devoted to the derivation of the loss-based prior when the number of change

points is known a priori. Specifically, let k be the number of change points and m1 < m2 <

.. . < mk their locations. We introduce the idea in the simple case where we assume that there

is only one change point in the dataset (see Section 3.1.1). Then, we extend the results to the

more general case where multiple change points are considered (see Section 3.1.2). Note that

we assume that the change in the dataset occurs after the identified point. For instance, in the

case of one change point, m implies that the actual change occurs from the Xm+1 observation

onwards.

31
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A well-known objective prior for finite parameter spaces, in cases where there is no

structure, is the uniform prior. As such, a natural choice for the prior on the change points

location is the uniform, as discussed in Koop and Potter (2009). The corresponding loss-based

prior is indeed the uniform, as shown below, which is a reassuring result as the objective

prior for a specific parameter space, if it exists, should be unique.

3.1.1 Single Change Point

Let X(n) = (X1, . . . ,Xn) denote an n-dimensional vector of random variables, representing

the random sample, and m be our single change point location, that is m ∈ {1,2, . . . ,n−1},

such that

X1, . . . ,Xm|θ̃1
i.i.d.∼ f1(·|θ̃1)

Xm+1, . . . ,Xn|θ̃2
i.i.d.∼ f2(·|θ̃2).

Note that we assume that there is a change point in the series, as such the space of m does not

include the case m = n. In addition, we assume that θ̃1 ̸= θ̃2 when f1 = f2. The sampling

density for the vector of observations x(n) = (x1, . . . ,xn) is:

f (x(n)|m, θ̃1, θ̃2) =
m

∏
i=1

f1(xi|θ̃1)
n

∏
i=m+1

f2(xi|θ̃2).

Let m′ ̸= m. Then, the KL divergence between the model parametrised by m and the one

parametrised by m′ is:

DKL( f (x(n)|m, θ̃1, θ̃2)∥ f (x(n)|m′, θ̃1, θ̃2)) =
∫

f (x(n)|m, θ̃1, θ̃2)

log

(
f (x(n)|m, θ̃1, θ̃2)

f (x(n)|m′, θ̃1, θ̃2)

)
dx(n).
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Without loss of generality, consider m < m′. In this case, note that

f (x(n)|m, θ̃1, θ̃2)

f (x(n)|m′, θ̃1, θ̃2)
=

m

∏
i=1

f1(xi|θ̃1)
m′

∏
i=m+1

f2(xi|θ̃2)
n

∏
i=m′+1

f2(xi|θ̃2)

m

∏
i=1

f1(xi|θ̃1)
m′

∏
i=m+1

f1(xi|θ̃1)
n

∏
i=m′+1

f2(xi|θ̃2)

=
m′

∏
i=m+1

f2(xi|θ̃2)

f1(xi|θ̃1)
.

This leads to

DKL( f (x(n)|m, θ̃1, θ̃2)∥ f (x(n)|m′, θ̃1, θ̃2)) =
∫

f (x(n)|m, θ̃1, θ̃2)

[
log

(
m′

∏
i=m+1

f2(xi|θ̃2)

f1(xi|θ̃1)

)]
dx(n)

=
∫

f (x(n)|m, θ̃1, θ̃2)

[
m′

∑
i=m+1

log
(

f2(xi|θ̃2)

f1(xi|θ̃1)

)]
dx(n)

=

m′

∑
i=m+1

∫
f (x(n)|m, θ̃1, θ̃2)

[
log
(

f2(xi|θ̃2)

f1(xi|θ̃1)

)]
dx(n)

=

m′

∑
i=m+1

{
1n−1 ·

∫
f2(xi|θ̃2)

[
log
(

f2(xi|θ̃2)

f1(xi|θ̃1)

)]
dxi

}
. (3.1)

The 1n−1 factor from equation (3.1) is due to integrating with respect to all variables which

are not indexed by i. Then, we obtain

DKL( f (x(n)|m, θ̃1, θ̃2)∥ f (x(n)|m′, θ̃1, θ̃2)) =

m′

∑
i=m+1

∫
f2(xi|θ̃2) log

(
f2(xi|θ̃2)

f1(xi|θ̃1)

)
dxi. (3.2)

On the right hand side of equation (3.2), we can recognise the KL divergence from density

f2 to density f1, thus getting:

DKL( f (x(n)|m, θ̃1, θ̃2)|| f (x(n)|m′, θ̃1, θ̃2)) =

(m′−m)DKL( f2(·|θ̃2)∥ f1(·|θ̃1)). (3.3)
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In a similar fashion, when m > m′, we have that:

DKL( f (x(n)|m, θ̃1, θ̃2)∥ f (x(n)|m′, θ̃1, θ̃2)) =

(m−m′)DKL( f1(·|θ̃1)∥ f2(·|θ̃2)). (3.4)

In this single change point scenario, we can consider m′ as a perturbation of the change

point location m, that is m′ = m± l where l ∈ N∗, such that 1 ≤ m′ < n. Then, taking into

account equations (3.3) and (3.4), the KL divergence becomes:

DKL( f (x(n)|m, θ̃1, θ̃2)∥ f (x(n)|m′, θ̃1, θ̃2)) =
l ·DKL( f2(·|θ̃2)∥ f1(·|θ̃1)), if m < m′

l ·DKL( f1(·|θ̃1)∥ f2(·|θ̃2)), if m > m′,

and

min
m′ ̸=m

[
DKL( f (x(n)|m, θ̃1, θ̃2)∥ f (x(n)|m′, θ̃1, θ̃2))

]
=

= min
m′ ̸=m

{l ·DKL( f2(·|θ̃2)∥ f1(·|θ̃1)), l ·DKL( f1(·|θ̃1)∥ f2(·|θ̃2))}

= min
m′ ̸=m

{DKL( f2(·|θ̃2)∥ f1(·|θ̃1)),DKL( f1(·|θ̃1)∥ f2(·|θ̃2))} · min
m′ ̸=m

{l}︸ ︷︷ ︸
1

. (3.5)
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We observe that equation (3.5) is only a function of θ̃1 and θ̃2 and does not depend on m.

Thus, π(m) ∝ 1 and, therefore,

π(m) =
1

n−1
, m ∈ {1, . . . ,n−1}.

This prior was used, for instance, in an econometric context by Koop and Potter (2009) with

the rationale of giving equal weight to every possible change point location.

3.1.2 Multivariate Change Point Problem

In this section, we address the change point problem in its generality by assuming that there

are 1 ≤ k < n change points. In particular, for the data x(n) = (x1, . . . ,xn), we consider the

following sampling distribution

f (x(n)|mmm, θ̃θθ) =
m1

∏
i=1

f1(xi|θ̃1)
k−1

∏
j=1

m j+1

∏
i=m j+1

f j+1(xi|θ̃ j+1)
n

∏
i=mk+1

fk+1(xi|θ̃k+1), (3.6)

where mmm = (m1, . . . ,mk), 1 ≤ m1 < m2 < .. . < mk < n, is the vector of the change point loca-

tions and θ̃θθ = (θ̃1, . . . , θ̃k, θ̃k+1) is the vector of the parameters of the underlying probability

distributions. Schematically:

X1 , . . . , Xm1|θ̃1
i.i.d.∼ f1(·|θ̃1)

Xm1+1 , . . . , Xm2|θ̃2
i.i.d.∼ f2(·|θ̃2)

... , . . . ,
...

... . . .
...

Xmk−1+1 , . . . , Xmk |θ̃k
i.i.d.∼ fk(·|θ̃k)

Xmk+1 , . . . , Xn|θ̃k+1
i.i.d.∼ fk+1(·|θ̃k+1).

If f1 = f2 = · · · = fk+1, then it is reasonable to assume that some of the θ ’s are different.

Without loss of generality, we assume that θ̃1 ̸= θ̃2 ̸= · · · ̸= θ̃k ̸= θ̃k+1. In a similar fashion to
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the single change point case, we cannot assume mk = n since we require exactly k change

points.

In this case, due to the multivariate nature of the vector mmm = (m1, . . . ,mk), the derivation

of the loss-based prior is not as straightforward as in the one dimensional case. In fact, the

derivation of the prior is based on heuristic considerations supported by Theorem 1 from

below. In particular, we are able to prove an analogous of equations (3.3) and (3.4) when

only one component is arbitrarily perturbed. Let us define the following functions:

d+1
j (θ̃θθ) = DKL( f j+1(·|θ̃ j+1)∥ f j(·|θ̃ j))

d−1
j (θ̃θθ) = DKL( f j(·|θ̃ j)∥ f j+1(·|θ̃ j+1)),

where j ∈ {1,2, . . . ,k}. The following Theorem (the proof of which is in Appendix A) is

useful to understand the behaviour of the loss-based prior in the general case.

Theorem 1. Let f (x(n)|mmm, θ̃θθ) be the sampling distribution defined in equation (3.6) and

consider j ∈ {1, . . . ,k}. Let mmm′ be such that m′
i = mi for i ̸= j, and let the component m′

j be

such that m′
j ̸= m j and m j−1 < m′

j < m j+1. Therefore,

DKL( f (x(n)|mmm, θ̃θθ)∥ f (x(n)|mmm′, θ̃θθ) = |m′
j −m j|dS

j (θ̃θθ),

where S = sgn(m′
j −m j).

Note that, Theorem 1 states that the minimum KL divergence is achieved when m′
j =

m j + 1 or m′
j = m j − 1. This result is not surprising since the KL divergence measures

the degree of similarity between two distributions. The smaller the perturbation caused

by changes in one of the parameters is, the smaller the KL divergence between the two

distributions is. Although Theorem 1 makes a partial statement about the multiple change

points scenario, it provides a strong argument for supporting the uniform prior. Indeed, if
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now we consider the general case of having k change points, it is straightforward to see

that the KL divergence is minimised when only one of the components of the vector mmm is

perturbed by (plus or minus) one unit. As such, the loss-based prior depends on the vector of

parameters θ̃θθ only, as in the one-dimensional case, yielding the uniform prior for mmm.

Therefore, the loss-based prior on the multivariate change point location is

π(mmm) =

{(
n−1

k

)}−1

, (3.7)

where mmm = (m1, . . . ,mk),1 ≤ m1 < m2 < .. . < mk < n. The denominator in equation (3.7)

has the above form because, for every number of k change points, we are interested in the

number of k-subsets from a set of n−1 elements, which is
(n−1

k

)
. The same prior was also

derived in a different way by Girón et al. (2007).

Note that across this chapter, the π(mmm) prior implicitly assumes that we know the number

of change points k a priori. As such, in this context, π(mmm) actually represents the π(mmm|k)

distribution.

3.2 Loss-based Prior on the Number of Change Points

Here, we approach the change point analysis as a model selection problem. In particular,

we define a prior on the space of models, where each model represents a certain number of

change points (including the case of no change points). The method adopted to define the

prior on the space of models is the one introduced in Villa and Walker (2015a).
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Fig. 3.1 Diagram showing the way we specify our models. The arrows indicate that the

respective change point locations remain fixed from the previous model to the current one.

We proceed as follows. Assume we have to select from k + 1 possible models. Let

M0 be the model with no change points, M1 the model with one change point and so on.

Generalising, model Mk corresponds to the model with k change points. The idea is that the

current model encompasses the change point locations of the previous model. As an example,

in model M3 the first two change point locations will be the same as in the case of model

M2. To illustrate the way we envision our models, we have provided Figure 3.1. It has to be

noted that the construction of the possible models from M0 to Mk can be done in a different

way to the one described here. Through this, we simply mean that of course the change point

locations in a subsequent model can be uncoupled from the previous model like in Figure

3.2. As we can see in that figure, the single change point location from model M1 is situated

between the two change points from model M2 in green. The only difference compared to

the models defined in Figure 3.1 is the additional term DKL( f1(·|θ̃1)∥ f2(·|θ̃2)) being present

when computing the quantity DKL(M1∥M2). Other extra terms would also appear when both

change points from model M2 would be placed before or after the location of the change

point from M1. Obviously, the approach to define the model priors stays unchanged. As

we require a minimization of the quantity DKL(M1∥M2) when computing the model prior

probabilities and because the KL divergence is non-negative, we prefer to construct models

akin to the one shown in Figure 3.1 for the sake of notational and computational simplicity.
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Fig. 3.2 Diagram showing a different way to specify the locations of the change points. The

single change point location from model M1 is situated between the two change points from

model M2 in green. The crossed parameters show the sections that do not contribute to the

computation of DKL(M1∥M2).

Consistently with the notation used in Sections 2.3 and 3.1,

θk =

 θ̃1, . . . , θ̃k+1,m1, . . . ,mk if k = 1, . . . ,n−1

θ̃1 if k = 0,

represents the vector of parameters of model Mk, where θ̃1, . . . , θ̃k+1 are the model specific

parameters and m1, . . . ,mk are the change point locations, as in Figure 3.1.

Based on the way we have specified our models, which are in direct correspondence with

the number of change points and their locations, we state Theorem 2 (the proof of which is

in Appendix A).

Theorem 2. Let

DKL(Mi∥M j) = DKL( f (x(n)|θi)∥ f (x(n)|θ j)).

For any 0 ≤ i < j ≤ k integers, with k < n, and the convention m j+1 = n, we have the

following:

DKL(Mi∥M j) =
j

∑
q=i+1

[
(mq+1 −mq) ·DKL( fi+1(·|θ̃i+1)∥ fq+1(·|θ̃q+1))

]
,
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and

DKL(M j∥Mi) =
j

∑
q=i+1

[
(mq+1 −mq) ·DKL( fq+1(·|θ̃q+1)∥ fi+1(·|θ̃i+1))

]
.

The result in Theorem 2 is useful when the model selection exercise is implemented. In-

deed, the Villa and Walker (2015a) approach requires the computation of the KL divergences

in Theorem 2. To recall their idea, let us consider k Bayesian models:

M j = { f j(x|θ j),π j(θ j)}, j ∈ {1,2, . . . ,k},

where f j(x|θ j) is the sampling distribution parametrised by θ j and π j(θ j) represents the

prior on the model parameter (possibly vector of parameters) θ j. Assuming the priors π j(θ j)

are proper, the model prior probability P(M j) is proportional to the expected minimum KL

divergence from M j to Mi, with i = 1, . . . ,k and i ̸= j, where the expectation is considered

with respect to π j(θ j). That is:

P(M j) ∝exp
{
Eπ j

[
inf

θi,i ̸= j
DKL( f j(x|θ j)∥ fi(x|θi))

]}
, j = 1, . . . ,k. (3.8)

In other words, we assign a prior mass to model M j which is proportional to the distance to

the most similar model Mi (i ̸= j), in expectation. To illustrate, let us start by considering

what is lost if model M j is removed from the set of all the possible models and it is the true

model. This loss is quantified by the KL divergence to the nearest model. The loss is then

linked to the model prior probability via the self-information loss function (Merhav and

Feder, 1998). The prior in (3.8) is then obtained by equating the two aforementioned losses.
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Recalling equation (3.8), the objective model prior probabilities are then given by:

Pr(M j) ∝exp
{
Eπ j

[
inf

θi,i ̸= j
DKL(M j∥Mi)

]}
, j = 0,1, . . . ,k. (3.9)

For illustrative purposes, in Appendix A we derive the model prior probabilities to per-

form model selection among M0, M1 and M2. Recall that the θ ’s represent notationally the

change point locations and the parameters for the underlying distributions corresponding to

the models which are indexed according to the number of change points. As such, taking

into account the non-negativity of the KL divergence, in Appendix A we see that the overall

minimum comes down to simply minimising over the individual segments in which the

overall KL divergence between two models splits into according to Theorem 2. Afterwards,

we simply compute the overall KL divergences between the required model and all other

available models different than it and select the smallest one. This represents our loss in

information associated to the respective model and it contributes to computing the corre-

sponding model prior probability from equation (3.9).

It is easy to infer from equation (3.9) that model priors depend on the prior distribution

assigned to the model parameters, that is on the level of uncertainty that we have about their

true values. For the change point location, a sensible choice is the uniform prior which, as

shown in Section 3.1, corresponds to the loss-based prior. For the model specific parameters,

we have several options. If one wishes to pursue an objective analysis, intrinsic priors (Berger

and Pericchi, 1996) may represent a viable solution since they are proper. Nonetheless, the

method introduce by Villa and Walker (2015a) does not require, in principle, an objective

choice as long as the priors are proper. Given that we use the latter approach, here we

consider subjective priors for the model specific parameters.

Remark 1. In the case where the changes in the underlying sampling distribution are

limited to the parameter values, the model prior probabilities defined in (3.9) follow the
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uniform distribution. That is, Pr(M j) ∝ 1. In the real data example illustrated in Section

3.3.2, we indeed consider a problem where the above case occurs.

Remark 2. As we assign a prior which depends on the number of change points, a

legitimate question is how the dilution problem may affect our method, see George (2010).

We would like to point out that the prior introduced in this chapter implicitly takes into

account the numerosity of models with the same number of change points. Indeed, the

methodology used in this work builds on Villa and Walker (2015a). In particular, the

approach requires to assume a prior on the change point locations and, as highlighted above,

the default choice in our methodology is the uniform, which takes into account for the

dilution. Generally, the dilution property of a prior is concerned with not putting excessive

mass on irrelevant models. A practical intuition of the dilution property can be seen from the

following example taken from George (2010). Assume we are concerned with the problem of

variable selection in linear models and the number of covariates is d. Let a single predictor

be completely different from all others. Now, let us presume those d − 1 predictors are

approximately identical. Then, a prior which takes into account the dilution will put half

of its mass on models that include the relevant predictor and half on models comprised of

any subset of the other d −1 predictors. Clearly, the mass put on those d −1 explanatory

variables needs to be diluted or spread uniformly within. We note that the methodology of

Villa and Walker (2015a) has an inbuilt dilution property, as we are reducing the prior mass

when identical models are compared, whilst putting more mass on models that are completely

different. An effect of this property can be seen in Scenario 4 from Section 3.3 in regards to

our loss-based prior.

Note that across this chapter, an important assumption which we have considered in

regards to our methodology corresponds to the independence of the observations. In the

case of time series which are dependent on past values, we would look at the works of

Sandberg et al. (2001) who computed the KL divergence when Gaussian autoregressive
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moving average (ARMA) processes were involved and Liu et al. (2013) who based their

change point detection method for time series data on the Pearson divergence. For a Bayesian

treatment of the change points when segmented ARMA models are concerned, we would

like to mention the paper of Sadia et al. (2018).

3.2.1 A special case: selection between M0 and M1

Let us consider the case where we have to estimate whether there is or not a change point in

a set of observations. This implies that we have to choose between model M0 (i.e. no change

point) and M1 (i.e. one change point). Following our approach, we have:

Pr(M0) ∝ exp
{
Eπ0

[
inf
θ̃2

DKL( f1(·|θ̃1)∥ f2(·|θ̃2))

]}
,

and

Pr(M1) ∝ exp
{
Eπ1

[
(n−m1) · inf

θ̃1

DKL( f2(·|θ̃2)∥ f1(·|θ̃1))

]}
. (3.10)

Now, let us assume independence between the prior on the change point location and

the prior on the parameters of the underlying sampling distributions, that is π1(m1, θ̃1, θ̃2) =

π1(m1)π1(θ̃1, θ̃2). Let us further recall that, as per equation (3.7), π1(m1) = 1/(n−1). As

such, we observe that the model prior probability on M1 becomes:

Pr(M1) ∝ exp
{(n

2

)
E

π1(θ̃1,θ̃2)

[
inf
θ̃1

DKL( f2(·|θ̃2)∥ f1(·|θ̃1))

]}
. (3.11)

We notice that the model prior probability for model M1 is increasing when the sample

size increases. This behaviour occurs whether there is or not a change point in the data. We

propose to address the above problem by using a non-uniform prior for m1. A reasonable
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alternative, which works quite well in practice, would be the following shifted binomial as

prior:

π1(m1) =

(
n−2

m1 −1

)(
n−1

n

)m1−1(1
n

)n−m1−1

,1 ≤ m1 ≤ n−1. (3.12)

To argument the choice of (3.12), we note that, as n increases, the probability mass will be

more and more concentrated towards the upper end of the support. Therefore, from equations

(3.10) and (3.12) follows:

Pr(M1) ∝ exp
{(

2n−2
n

)
E

π1(θ̃1,θ̃2)

[
inf
θ̃1

DKL( f2(·|θ̃2)∥ f1(·|θ̃1))

]}
.

For the more general case where we consider more than two models, the problem highlighted

in equation (3.11) vanishes. As we observe in Appendix A, when we compute the KL

divergence between any model different than the largest one and all the other models, there

will be quantities that do not depend on the sample size. Because we minimise the divergence,

it is often the case that those quantities will be chosen. In regards to the largest model,

note that we actually compute the KL divergences between all the pairs of the underlying

distributions. Since we require the minimal overall KL divergence, there will be elements

where the individual divergences will be very small, but positive, thus suppressing the effect

of the sample size.

3.3 Simulated and Real Data Analysis

This section outlines the behaviour of the prior in both simulated and real data studies. The

first subsection is dedicated to analysing our methodology across four scenarios involving

simulated data, as well as comparing the results we obtain with our prior against the method of

Barry and Hartigan (1993). The second subsection concentrates on presenting the behaviour
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for several real datasets, namely the number of disasters in the British coal mines between

1851-1962 and the absolute value of the daily logarithmic returns of the S&P500 index

observed from the 14/01/2008 to the 31/12/2011.

3.3.1 Change Point Analysis on Simulated Data

In this section, we present the results of several simulation studies based on the methodologies

discussed in Sections 3.1 and 3.2. We start with a scenario involving discrete distributions

in the context of the one change point problem. We then show the results obtained when

we consider continuous distributions for the case of two change points. The choice of the

underlying sampling distributions is in line with Villa and Walker (2015a).

Single sample

Scenario 1. The first scenario concerns the choice between models M0 and M1. Specifically,

for M0 we have:

X1,X2, . . . ,Xn|p
i.i.d.∼ Geometric(p),

and for M1 we have:

X1,X2, . . . ,Xm1|p
i.i.d.∼ Geometric(p)

Xm1+1,Xm1+2, . . . ,Xn|λ
i.i.d.∼ Poisson(λ ).

Let us denote with f1(·|p) and f2(·|λ ) the probability mass functions of the Geometric

and the Poisson distributions, respectively. The priors for the parameters of f1 and f2 are

p ∼ Beta(a,b) and λ ∼ Gamma(c,d).

In the first simulation, we sample n = 100 observations from model M0 with p = 0.8.

To perform the change point analysis, we have chosen the following parameters for the

priors on p and λ : a = 2, b = 2, c = 3 and d = 1. Applying the approach introduced in
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Section 3.2, we obtain Pr(M0)∝ 1.59 and Pr(M1)∝ 1.81. These model priors yield the model

posterior probabilities (refer to equation (2.9)) Pr(M0|x(n)) = 0.92 and Pr(M1|x(n)) = 0.08.

As expected, the selection process strongly indicates the true model as M0. Table 3.1 reports

the above probabilities including other information, such as the appropriate Bayes factors.

The second simulation looked at the opposite setup, that is we sample n = 100 observa-

tions from M1, with p = 0.8 and λ = 3. We have sampled 50 data points from the Geometric

distribution and the remaining 50 data points from the Poisson distribution. In Figure 3.3, we

have plotted the simulated sample, where it is legitimate to assume a change in the underlying

distribution. Using the same prior parameters as above, we obtain Pr(M0|x(n)) = 0.06 and

Pr(M1|x(n)) = 0.94. Again, the model selection process is assigning heavy posterior mass

to the true model M1. These results are further detailed in Table 3.1. Note that if we swap

around the two distributions, the model prior probabilities will change, due to the asymmetry

of the KL divergence (Cover and Thomas, 2006). As such, the ordering of the distributions

definitely matters in terms of the nominal values, but the subsequent analysis leads to the

same result as in the previous setup, namely the correct identification of the models given the

two possible scenarios of a no change or a single change present in the data.

In the context of model misspecification, we keep the same modelling choices as above,

namely the Geometric and Poisson distributions with the hyperparameters fixed at the values

selected previously, but we consider the 100 sampled observations as following: for the M0

case, all observations come from a Binomial(10,0.15) distribution, whilst when one change

is present, we have the first 50 observations being sampled from Binomial(10,0.15) with

the remaining 50 observations following a Binomial(10,0.25) distribution. As seen in Table

3.2, we are still able to correctly identify the true models, but with lower model posterior

probabilities due to misspecification.
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Fig. 3.3 Scatter plot of the data simulated from model M1 in Scenario 1.

True model
M0 M1

Pr(M0) 0.47 0.47
Pr(M1) 0.53 0.53

B01 12.39 0.08
B10 0.08 12.80

Pr(M0|x(n)) 0.92 0.06
Pr(M1|x(n)) 0.08 0.94

Table 3.1 Model priors, Bayes factors and model posterior probabilities for the change point

analysis in Scenario 1. We considered samples from, respectively, model M0 and model M1.

Scenario 2. In this scenario we consider the case where we have to select among three

models, that is model M0:

X1,X2, . . . ,Xn|λ ,κ
i.i.d.∼ Weibull(λ ,κ),
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model M1:

X1,X2, . . . ,Xm1|λ ,κ
i.i.d.∼ Weibull(λ ,κ)

Xm1+1,Xm1+2, . . . ,Xn|µ,τ
i.i.d.∼ Log-normal(µ,τ),

with 1 ≤ m1 ≤ n−1 being the location of the single change point, and model M2:

X1,X2, . . . ,Xm1|λ ,κ
i.i.d.∼ Weibull(λ ,κ)

Xm1+1,Xm1+2, . . . ,Xm2|µ,τ
i.i.d.∼ Log-normal(µ,τ)

Xm2+1,Xm2+2, . . . ,Xn|α,β
i.i.d.∼ Gamma(α,β ),

with 1 ≤ m1 < m2 ≤ n−1 representing the locations of the two change points, such that m1

corresponds exactly to the same location as in model M1. These distributions were chosen

for computational reasons, as the KL divergences between each pair of them was already

derived by Villa and Walker (2015a). Analogously to the previous scenario, we sample from

each model in turn and perform the selection to detect the number of change points.

True model
M0 M1

Pr(M0) 0.47 0.47
Pr(M1) 0.53 0.53

B01 1.36 0.55
B10 0.74 1.82

Pr(M0|x(n)) 0.55 0.33
Pr(M1|x(n)) 0.45 0.67

Table 3.2 Model priors, Bayes factors and model posterior probabilities for the change point

analysis in Scenario 1 when model misspecification is explored. We considered samples

from, respectively, model M0 and model M1.

Let f1(·|λ ,κ), f2(·|µ,τ) and f3(·|α,β ) represent the Weibull, Log-normal and Gamma

densities, respectively, with θ̃1 = (λ ,κ), θ̃2 = (µ,τ) and θ̃3 = (α,β ). We assume a Normal
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prior on µ and Gamma priors on all the other parameters as follows:

λ ∼ Gamma(1.5,1) κ ∼ Gamma(5,1) µ ∼ Normal(0.05,1),

τ ∼ Gamma(16,1) α ∼ Gamma(10,1) β ∼ Gamma(0.2,0.1).

In the first exercise, we have simulated n = 100 observations from model M0, where we

have set λ = 1.5 and κ = 5. We obtain the following model priors: Pr(M0) ∝ 1.09, Pr(M1) ∝

1.60 and Pr(M2) ∝ 1.37, yielding the posteriors Pr(M0|x(n)) = 0.96, Pr(M1|x(n)) = 0.04 and

Pr(M2|x(n)) = 0.00. We then see that the approach assigns high mass to the true model M0.

Table 3.3 reports the above probabilities and the corresponding Bayes factors. The second

True model
M0 M1 M2

Pr(M0) 0.27 0.27 0.27
Pr(M1) 0.39 0.39 0.39
Pr(M2) 0.34 0.34 0.34

B01 36.55 3.24×10−4 4.65×10−40

B02 1.84×103 0.02 1.27×10−45

B12 50.44 55 2.72×10−6

Pr(M0|x(n)) 0.96 0.00 0.00
Pr(M1|x(n)) 0.04 0.98 0.00
Pr(M2|x(n)) 0.00 0.02 1.00

Table 3.3 Model priors, Bayes factors and model posterior probabilities for the change point

analysis in Scenario 2. We considered samples from, respectively, model M0, model M1 and

model M2.

simulation was performed by sampling 50 observations from a Weibull with parameter values

as in the previous exercise, and the remaining 50 observations from a Log-normal density

with location parameter µ = 0.05 and scale parameter τ = 16. The data is displayed in Figure

3.4.
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Fig. 3.4 Scatter plot of the observations simulated from model M1 in Scenario 2.

The model posterior probabilities are Pr(M0|x(n))= 0.00, Pr(M1|x(n))= 0.98 and Pr(M2|x(n))=

0.02, which are reported in Table 3.3. In this case as well, we see that the model selection

procedure indicates M1 as the true model, as expected.
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Fig. 3.5 Scatter plot of the observations simulated from model M2 in Scenario 2.
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Finally, for the third simulation exercise we sample 50 and 20 data points from, respec-

tively, a Weibull and a Log-normal with parameter values as defined above. The last 30

observations are sampled from a Gamma distribution with parameters α = 10 and β = 2.

The sampled data is displayed in Figure 3.5. From Table 3.3, we note that the posterior

distribution on the model space accumulates on the true model M2.

Frequentist Analysis

In this section, we perform a frequentist analysis of the performance of the proposed prior by

drawing repeated samples from different scenarios. In particular, we look at a two change

points problem where the sampling distributions are Student-t with different degrees of

freedom. In this scenario, we perform the analysis with 60 repeated samples generated by

different densities with the same mean values.

Then, we repeat the analysis of Scenario 2 by selecting 100 samples for n = 500 and

n = 1500. We consider different sampling distributions with the same mean and variance. In

this scenario, where we added the further constraint of the equal variance, it is interesting to

note that the change in distribution is captured when we increase the sample size, meaning

that we learn more about the true sampling distributions.

We also compare the performances of the loss-based prior with the uniform prior

when we analyse the scenario with different sampling distributions, namely Weibull/Log-

normal/Gamma. It is interesting to note that the uniform prior is unable to capture the change

in distribution even for a large sample size. On the contrary, the loss-based prior is able to

detect the number of change points when n = 1500. Furthermore, for n = 500, even though

both priors are not able to detect the change points most of the times, the loss-based prior has

a higher frequency of success when compared to the uniform prior.

Scenario 3. In this scenario, we consider the case where the sampling distributions belong

to the same family, that is Student-t, where the true model has two change points. In particular,
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let f1(·|ν1), f2(·|ν2) and f3(·|ν3) represent the densities of three standard t distributions,

respectively. We assume that ν1,ν2 and ν3 are positive integers strictly greater than one so as

to have defined mean for each density. Note that this allows us to compare distributions of

the same family with equal mean. The priors assigned to the number of degrees of freedom

assume a parameter space of positive integers strictly larger than 1. As such, we define them

as follows:

ν1 ∼ 2+Poisson(30) ν2 ∼ 2+Poisson(3) ν3 ∼ 2+Poisson(8).

In this experiment, we consider 60 repeated samples, each of size n = 300 and with the

following structure:

• X1, . . . ,X100 from a Student-t distribution with ν1 = 30,

• X101, . . . ,X200 from a Student-t distribution with ν2 = 3,

• X201, . . . ,X300 from a Student-t distribution with ν3 = 8.

Table 3.4 reports the frequentist results of the simulation study. First, note that P(M1) =

P(M2) = P(M3) = 1/3 as per Remark 1 in Section 3.2. For all the simulated samples, the

loss-based prior yields a posterior with the highest probability assigned to the true model M2.

We also note that the above posterior is on average 0.75 with a variance 0.02, making the

inferential procedure extremely accurate.

Mean posterior Variance posterior Freq. true model
Pr(M0|x(n)) 0.01 3.84×10−4 0/60
Pr(M1|x(n)) 0.24 0.0160 0/60
Pr(M2|x(n)) 0.75 0.0190 60/60

Table 3.4 Average model posterior probabilities, variance and frequency of true model for

the Scenario 3 simulation exercise.
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Scenario 4. In this scenario, we perform repeated sampling from the setup described in

Scenario 2 above, where the true model has two change points. In particular, we draw

100 samples with n = 500 and n = 1500. For n = 500, the loss-based prior probabilities

are P(M0) = 0.18, P(M1) = 0.16 and P(M2) = 0.66. For n = 1500, the loss-based prior

probabilities are P(M0) = 0.015, P(M1) = 0.014 and P(M2) = 0.971. The simulation results

are reported, respectively, in Table 3.5 and in Table 3.6. The two change point locations

for n = 500 are at the 171st and 341st observations. For n = 1500, the first change point is

the 501st observation, while the second is at the 1001st observation. We note that there is

a sensible improvement in detecting the true model, using the loss-based prior, when the

sample size increases. In particular, we move from 30% to 96%.

To compare the loss-based prior with the uniform prior we have run the simulation on

the same data samples used above. The results for n = 500 and n = 1500 are in Table 3.7

and in Table 3.8, respectively. Although we can observe an improvement when the sample

size increases, the uniform prior does not lead to a clear detection of the true model for both

sample sizes.

Mean posterior Variance posterior Freq. true model
Pr(M0|x(n)) 9.88×10−4 2.60×10−5 0/100
Pr(M1|x(n)) 0.63 0.0749 70/100
Pr(M2|x(n)) 0.37 0.0745 30/100

Table 3.5 Average model posterior probabilities, variance and frequency of true model for

the Scenario 4 simulation exercise with n = 500 and the loss-based prior.
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Mean posterior Variance posterior Freq. true model
Pr(M0|x(n)) 1.33×10−13 1.76×10−24 0/100
Pr(M1|x(n)) 0.08 0.0200 4/100
Pr(M2|x(n)) 0.92 0.0200 96/100

Table 3.6 Average model posterior probabilities, variance and frequency of true model for

the Scenario 4 simulation exercise with n = 1500 and the loss-based prior.

Mean posterior Variance posterior Freq. true model
Pr(M0|x(n)) 16×10−4 7.15×10−5 0/100
Pr(M1|x(n)) 0.82 0.0447 91/100
Pr(M2|x(n)) 0.18 0.0443 9/100

Table 3.7 Average model posterior probabilities, variance and frequency of true model for

the Scenario 4 simulation exercise with n = 500 and the uniform prior.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
df

s

0

0.05

0.1

0.15

0.2

0.25

0.3

Weibull
Log-normal
Gamma

Fig. 3.6 The densities of Weibull(λ ,κ), Log-normal(µ,τ) and Gamma(α,β ) with the same

mean (equal to 5) and the same variance (equal to 2.5).
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Mean posterior Variance posterior Freq. true model
Pr(M0|x(n)) 8.64×10−12 7.45×10−21 0/100
Pr(M1|x(n)) 0.501 0.1356 49/100
Pr(M2|x(n)) 0.499 0.1356 51/100

Table 3.8 Average model posterior probabilities, variance and frequency of true model for

the Scenario 4 simulation exercise with n = 1500 and the uniform prior.

Finally, we conclude this section with a remark. One may wonder why the change point

detection requires an increase in the sample size, and the reply can be inferred from Figure

3.6, which displays the density functions of the distributions employed in this scenario.

As it can be observed, the densities are quite similar, which is not surprising since these

distributions have the same means and the same variances. The above similarity can also be

appreciated in terms of Hellinger distance, see Table 3.9. In other words, from Figure 3.6

we can see that the main differences in the underlying distributions are in the tail areas. It

is therefore necessary to have a relatively large number of observations in order to be able

to discern differences in the densities, because in this case only we would have a sufficient

representation of the whole distribution.

Hellinger distances
Weibull(λ ,κ) Log-normal(µ,τ) Gamma(α,β )

Weibull(λ ,κ) 0.1411996 0.09718282
Log-normal(µ,τ) 0.04899711

Table 3.9 Hellinger distances between all the pairs formed from a Weibull(λ ,κ), Log-

normal(µ,τ) and Gamma(α,β ). The six hyperparameters are such that the distributions have

the same mean=5 and same variance=2.5.

Comparison to Barry and Hartigan’s method

In this section we perform a comparison of the proposed change point method to the one

described in Barry and Hartigan (1993). The simulation study is performed by considering
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three different scenarios: we simulate data, assumed to be normally distributed, and which

exhibits, respectively, one, two and three change points.

The proposal of Barry and Hartigan (1993) is based on a product partition approach. In

particular, product models on partitions represent a framework for Bayesian inference on

change points. The authors highlight that, even if the initial probability model for partitions

and parameters is not a product model, under specific conditions it represents a suitable

approximation for the analysis. The product partition method is based upon splitting the

data into contiguous blocks where the parametric model is the same. This splitting is called

a partition. Furthermore, the respective partition is treated as a random variable and its

distribution is based upon the cohesions within the constituent blocks. According to Müller

et al. (2011), a cohesion for a block is a non-negative function which measures how close

together the elements of that block are. Essentially in the method of Barry and Hartigan

(1993) regarding normal data, we are interested in the differences between the means of

those blocks. Let us assume that a n sized normally distributed sample is split into b blocks.

Then, let us have a partition ρ = (i0, i1, . . . , ib), where 0 = i0 < i1 < .. . < ib = n, such that the

observations in the block i0 +1, i0 +2, . . . , i1 denoted by i0i1 come from the same parametric

model, the observations from block i1i2 come from a different parametric model and so on.

The distribution of ρ is f (ρ) = Kci0i1ci1i2 · . . . · cib−1ib , where ci j is the prior cohesion in the

block i j and K is the normalising constant. Following Yao (1984), these prior cohesions

are ci j = (1− ι) j−i−1ι for j < n and ci j = (1− ι) j−i−1 for j = n, where ι ∈ [0,1] is the

probability for the existence of a change at each individual element from block i j. Note that

the respective prior cohesions suggest a discrete renewal process for the change points with

independent and geometrically distributed inter-arrival times. This observation stands at the

basis of the subsequent analysis provided by Barry and Hartigan (1993).

To make the results comparable, we assume normality as the Barry and Hartigan (1993)

method is particularly showcased based on this assumption. As described in detail below,
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we consider for each scenario normal distributions with variance 1 (assumed as known) and

differences in the mean (at each change point) of, respectively, 1, 2.5 and 3. In addition,

in each scenario we consider as a possible model the no-change point model. The prior

distribution for the means is a normal with zero mean and large variance (i.e. 106).

To perform the simulations, for the Barry and Hartigan (1993) method, we employ the R

package bcp, developed by Erdman and Emerson (2007), and assume a change point when

the posterior probability is at least 0.5. All simulations have a burnin of 10000, with a total

number of iterations of 100000.

One change point. We consider the following model for the case with one change point:

X1,X2, . . . ,Xm1|µ11
i.i.d.∼ Normal(µ11,1)

Xm1+1,Xm1+2, . . . ,Xn|µ21
i.i.d.∼ Normal(µ21,1)

Model M0 corresponds to no changes in the mean of the data. We set µ21 = µ11 +∆1

with ∆1 ∈ {0,1,2.5,3} and µ11 = 0. In Table 3.10, we see the frequency of identifying the

true model amongst 100 repeated samples for different sampling scenarios.

n

Frequency of identifying the true model

∆1 = 0 (M0) ∆1 = 1 (M1) ∆1 = 2.5 (M1) ∆1 = 3 (M1)

Our method bcp Our method bcp Our method bcp Our method bcp

100 100/100 95/100 43/100 17/100 100/100 86/100 100/100 94/100

250 100/100 99/100 100/100 7/100 100/100 86/100 100/100 99/100

500 100/100 100/100 100/100 7/100 100/100 91/100 100/100 98/100

Table 3.10 Frequency of identifying the true model (the one within the nearby parentheses to

the ∆1 values) amongst 100 repeated samples for different sampling scenarios. The change

point location is in m1 = 70,175,350 for, respectively, n = 100,250,500.
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Two change points We consider the following model for the case with two change points:

X1,X2, . . . ,Xm1|µ12
i.i.d.∼ Normal(µ12,1)

Xm1+1,Xm1+2, . . . ,Xm2|µ22
i.i.d.∼ Normal(µ22,1)

Xm2+1,Xm2+2, . . . ,Xn|µ32
i.i.d.∼ Normal(µ32,1)

As before, model M0 corresponds to no changes in the mean. In the simulations we set

µ22 = µ12+∆2 and µ32 = µ12 with ∆2 ∈ {0,1,2.5,3} and µ12 = 0. In Table 3.11, we see the

frequency of identifying the true model amongst 100 repeated samples for different sampling

scenarios.

n

Frequency of identifying the true model

∆2 = 0 (M0) ∆2 = 1 (M2) ∆2 = 2.5 (M2) ∆2 = 3 (M2)

Our method bcp Our method bcp Our method bcp Our method bcp

100 100/100 96/100 3/100 9/100 100/100 67/100 100/100 89/100

250 100/100 100/100 86/100 5/100 100/100 78/100 100/100 90/100

500 100/100 98/100 100/100 1/100 100/100 76/100 100/100 90/100

Table 3.11 Frequency of identifying the true model (the one within the nearby parentheses to

the ∆2 values) amongst 100 repeated samples for different sampling scenarios. The location

of the first change point is m1 = 30,75,150, respectively, for n = 100,250,500, and for the

second change point is m2 = 70,175,350.
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Three change points Finally, we consider the following model for the case with three

change points:

X1,X2, . . . ,Xm1|µ13
i.i.d.∼ Normal(µ13,1)

Xm1+1,Xm1+2, . . . ,Xm2|µ23
i.i.d.∼ Normal(µ23,1)

Xm2+1,Xm2+2, . . . ,Xm3|µ33
i.i.d.∼ Normal(µ33,1)

Xm3+1,Xm3+2, . . . ,Xn|µ43
i.i.d.∼ Normal(µ43,1)

We set µ23 = µ13 +∆3, µ33 = µ13 + 2∆3 and µ43 = µ13 + 3∆3 with ∆3 ∈ {0,1,2.5,3}

and µ13 = 0. In Table 3.12, we see the frequency of identifying the true model amongst 100

repeated samples for different sampling scenarios.

n

Frequency of identifying the true model

∆3 = 0 (M0) ∆3 = 1 (M3) ∆3 = 2.5 (M3) ∆3 = 3 (M3)

Our method bcp Our method bcp Our method bcp Our method bcp

100 100/100 97/100 0/100 1/100 100/100 65/100 100/100 88/100

250 100/100 98/100 30/100 0/100 100/100 69/100 100/100 88/100

500 100/100 100/100 100/100 0/100 100/100 73/100 100/100 80/100

Table 3.12 Frequency of identifying the true model (the one within the nearby parentheses to

the ∆3 values) amongst 100 repeated samples for different sampling scenarios. The location

of the first change point is m1 = 25,62,125 for, respectively, n = 100,250,500; the location

of the second change point is m2 = 50,125,250 and the location of the third change point is

m3 = 75,188,375.

By looking at the above tables, we note the following. In general, both methods improve

the detection of the change points as n increases, which is an expected result as the information

about change points in the sample increases. For the cases where ∆ = 2.5,3, our method
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appears to have a better performance than the one in Barry and Hartigan (1993). This is more

obvious for the smaller ∆. Furthermore, the proposed approach seems to select the model

with the true number of change points when this number increases. A noteworthy aspect is

that the Barry and Hartigan (1993) method diminishes its performance as n increases when

the difference between the means is relatively small (i.e. ∆ = 1). A possible explanation is

due to a degenerate behaviour of the product partition model; however, we did not investigate

further as it does not impact the performance of our method.

3.3.2 Change Point Analysis on Real Data

In this section, we illustrate the proposed approach applied to real data. We first consider a

well known dataset which has been extensively studied in the literature of the change point

analysis, that is the British coal-mining disaster data (Carlin et al., 1992). The second set of

data we consider refers to the daily returns of the S&P 500 index observed over a period of

four years.

British Coal-Mining Disaster Data

The British coal-mining disaster data consists of the yearly number of disasters for the British

coal miners over the period 1851-1962. Here, a disaster represents an event where at least

10 persons died. It is believed that the change in the working conditions, and in particular,

the enhancement of the security measures, led to a decrease in the number of disasters. This

calls for a model which can take into account a change in the underlying distribution around

a certain observed year. With the proposed methodology we wish to detect if the assumption

is appropriate. In particular, if a model with one change point is more suitable to represent

the data than a model where no changes in the sampling distribution are assumed. Figure

3.7 shows the number of disasters per year in the British coal-mining industry from 1851 to

1962. As in Chib (1998), we assume a Poisson sampling distribution with a possible change
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Fig. 3.7 Scatter plot of the British coal-mining disaster data.

in the parameter value. That is

X1,X2, . . . ,Xm|φ1
i.i.d.∼ Poisson(φ1)

Xm+1,Xm+2, . . . ,Xn|φ2
i.i.d.∼ Poisson(φ2),

where m is the unknown location of the single change point, such that 1 ≤ m ≤ n, and a

Gamma(2,1) is assumed for φ1 and φ2. The case m = n corresponds to the scenario with no

change point, that is model M0. The case m < n assumes one change point, that is model M1.

Let f1(·|φ1) and f2(·|φ2) be the Poisson distributions with parameters φ1 and φ2, respec-

tively. Then, the analysis is performed by selecting between model M0, that is when the

sampling distribution is f1, and model M1, where the sampling distribution is f1 up to a

certain m < n and f2 from m+1 to n.

As highlighted in Remark 1 from Section 3.2, the prior on the model space is the discrete

uniform distribution, that is Pr(M0) = Pr(M1) = 0.5. The proposed model selection approach
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leads to the Bayes factors B01 = 1.61× 10−13 and B10 = 6.20× 1012, where it is obvious

that the odds are strongly in favour of model M1. Indeed, we have Pr(M1|x(n))≈ 1.

Daily S&P 500 Absolute Log-Return Data

The second real data analysis aims to detect the number of change points in the absolute

value of the daily logarithmic returns of the S&P 500 index observed from the 14/01/2008 to

the 31/12/2011 (see Figure 3.8). Note that in this analysis we do not provide information on

the locations where the changes occur. As underlying sampling distributions we consider the

Weibull and the Log-normal (Yu, 2001), and the models among which we select are as follows.

M0 is a Weibull(λ ,κ), M1 is formed by a Weibull(λ ,κ) and a Log-normal(µ1,τ1) and,

finally, M2 is formed by a Weibull(λ ,κ), a Log-normal(µ1,τ1) and a Log-normal(µ2,τ2).

An interesting particularity of this problem is that we will consider a scenario where the

changes are in the underlying distribution as well as in the parameter values of the same

distribution. As suggested in Section 4.1.3 of Kass and Raftery (1995), due to the large

sample size of the dataset, we could approximate the Bayes factor by using the Schwartz

criterion. Therefore, in this case the specification of the priors for the parameters of the

underlying distributions is not necessary. From the results in Table 3.13, we see that the model

indicated by the proposed approach is M2. In other words, there is very strong indication

that there are two change points in the dataset. From Table 3.13, we note that the priors on

models M1 and M2 assigned by the proposed method are the same. This is not surprising as

the only difference between the two models is an additional Log-normal distribution with

different parameter values. Note that applying the methodology for the case with maximum

two changes as outlined in Appendix A and taking into account Remark 1 provides the

reasoning behind the fact that the model prior probabilities for M1 and M2 are the same.

Recall that Remark 1 points out that when the changes are related just to the parameter values
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Fig. 3.8 Absolute daily log-returns of the S&P 500 index from 14/01/08 to 30/12/11.

of the underlying distributions and not to the nature of those distributions themselves, the KL

divergence between the corresponding distributions is actually 0.

3.4 Discussion

Bayesian inference in change point problems under the assumption of insufficient prior

information has not been deeply explored in the past, as the limited literature on the matter

shows.

We contribute to the area by deriving an objective prior distribution to detect change

point locations, when the number of change points is known a priori. As a change point

location can be interpreted as a discrete parameter, we apply recent results in the literature

(Villa and Walker, 2015b) to make inference. The resulting prior distribution, which is the

discrete uniform distribution, is not new in the literature (Girón et al., 2007), and therefore

can be considered as a validation of the proposed approach.
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Pr(M0) 0.36
Pr(M1) 0.32
Pr(M2) 0.32

B01 7.72×1018

B02 3.30×10−3

B12 4.28×10−22

Pr(M0|x(n)) 0.00
Pr(M1|x(n)) 0.00
Pr(M2|x(n)) 1.00

Table 3.13 Model prior, Bayes factor and model posterior probabilities for the S&P 500

change point analysis.

A second major contribution is in defining an objective prior on the number of change

points, which has been approached by considering the problem as a model selection exercise.

The results of the proposed method on both simulated and real data, show the strength of the

approach in estimating the number of change points in a series of observations. A point to

note is the generality of the scenarios considered. Indeed, we consider situations where the

change is in the value of the parameter(s) of the underlying sampling distribution, or in the

distribution itself. For the simulation study we have compared the proposed method with an

existing Bayesian approach for the detection of change points (Barry and Hartigan, 1993).

Of particular interest is the last real data analysis (S&P 500 index), where we consider a

scenario where we have both types of changes, that is the distribution for the first change

point and on the parameters of the distribution for the second.

The aim of this work was to set up a novel approach to address change point problems.

In particular, we have selected prior densities for the parameters of the models to reflect a

scenario of equal knowledge, in the sense that model priors are close to represent a uniform

distribution. Two remarks are necessary here. First, in the case prior information about the

true value of the parameters is available, and one wishes to exploit it, the prior densities will

need to reflect it and, obviously, the model prior will be impacted by the choice. Second, in
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applications it is recommended that some sensitivity analysis is performed, so as to investigate

if and how the choice of the parameter densities affects the selection process.



4. Loss-based Prior applied to Gaussian

Graphical Models

This chapter describes the methodology we use in the context of Gaussian graphical models

(GGMs). The first section outlines some of the graph priors found across the specific

literature, out of which three will be used as a comparison for our graph prior introduced

in the subsequent section. The second section contains the description of our graph prior.

Simulated and real data analyses are performed in the third section, whilst the last section

concludes this chapter with a discussion concerning our main contributions to the GGM

literature. The contents of this chapter have been taken from Hinoveanu et al. (2018).

4.1 Graph Priors for Gaussian Graphical Models

We mentioned that graphical models help when modelling complex data. As the name sug-

gests for GGMs, the data is assumed to be sampled from a multivariate Gaussian distribution.

Let X = (X1,X2, . . . ,Xp)
T be a p-dimensional random vector which follows a multivariate

Gaussian distribution, that is

X ∼ Np(000,ΣG),

where 000 ∈Rp is a p-dimensional column vector of zero means and ΣG ∈Rp×p is the positive-

definite covariance matrix. Let x = (x1,x2, . . . ,xn)
T be the n× p matrix of observations,

66
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where xi, for i = 1, . . . ,n, is a p-dimensional realisation from the multivariate Gaussian

distribution. The link between the assumed sampling distribution and the graph is specified

by completing a positive-definite matrix with respect to an undirected graph (Atay-Kayis and

Massam, 2005; Giudici and Green, 1999; Roverato and Whittaker, 1998). For an arbitrary

positive-definite matrix Γ and an undirected graph G, ΣG is the unique positive-definite

matrix completion of Γ with respect to G. This means that for the pairs of vertices which

share an edge, the corresponding entries of ΣG are the same as Γ. The entries for the missing

edges are set to be 0 in the concentration (precision) matrix, that is Σ
−1
G . Therefore, we have

a link between the multivariate sampling distribution and the graph structure represented by

the zeros of the concentration matrix Σ
−1
G . In the GGMs framework, the dimension p of the

multivariate Gaussian distribution also represents the number of vertices in the undirected

graph G. As our sampling distribution is Gaussian, the concentration matrix has a clear

interpretation. The entries of the concentration matrix encode the conditional independence

structure of the distribution (Lauritzen, 1996). As such, if and only if the (i, j)th element of

the concentration matrix is 0, the random variables Xi and X j are conditionally independent

given all other variables in the matrix (pairwise Markov property); or, equivalently, given

their neighbours (local Markov property). The previous statement is based upon the idea that

in a GGM the global, local and pairwise Markov properties are equivalent. For more details

about these properties, we refer the reader to Lauritzen (1996).

Following Lauritzen (1996), a graph G is represented by the pair G = (V,E) with V a

finite set of vertices and E a subset of V ×V of ordered pairs of distinct edges. Throughout

the present chapter we will consider V = {1,2, . . . , p}, where p is a strictly positive integer.

In the GGMs setting, p represents the dimension of the multivariate Normal distribution. In

this chapter we consider undirected graphs with no loops and without multiple edges between

pairs of distinct vertices.

Now, let us provide the following descriptions:
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• vertices connected by an edge are called neighbours or adjacent

• a sequence of distinct vertices i0 = i, . . . , in = j, where the pair (il−1, il) ∈ E,∀ l =

1,2, . . . ,n, is called a path of length n from vertex i to vertex j (in Figure 2.3, for

example, 4,1,2 represents one path of length 2 from vertex 4 to vertex 2, whereas

4,1,3,2 is an alternative path of length 3 between the same vertices)

• a subset of V is an (i, j)−separator when all the paths from i to j go through the

respective subset. Subset C ⊆ V separates A from B if C is a (i, j)−separator ∀ i ∈

A, j ∈ B (in Figure 2.3, {1,3} is a separator and it splits the graph in two subgraphs as

seen in Figure 2.4)

• a graph where (i, j) ∈ E,∀ i, j ∈V is called a complete graph

• a subgraph represents a subset of V such that the edge set is restricted to those edges

that have both endpoints in the respective subset. We call a maximal complete subgraph

a clique (in Figure 2.4 we can see the two cliques that the undirected graph from Figure

2.3 is separated into, that is the subgraphs {1,3,4} and {1,2,3})

• the decomposition of an undirected graph is a triple (A,C,B) where V = A∪C∪B for

disjoint sets A,C and B such that C separates A from B and C is complete. Therefore,

the graph is decomposed in the subgraphs GA∪C and GB∪C

• a decomposable graph can be broken up into cliques and separators

• for a non-decomposable graph there will be subgraphs which cannot be decomposed

further and are not complete

An example of a non-decomposable graph is in Figure 2.1, while if we swap the arrows for

lines in Figure 2.2, thus transforming the directed graph into an undirected one, we observe a

decomposable graph. A decomposition can be seen in Figure 2.4.
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Note that through prior on a graph we simply mean the prior distribution on the number

of edges of that graph where the support of the distribution is just the number of possible

edges in a graph with a fixed p number of vertices.

Assuming G decomposable, Giudici and Green (1999) discuss the following prior on G:

π(G) = d−1,

where d is the number of decomposable graphs on a specific vertex set V . If we consider

unrestricted graphs, the above prior is the uniform prior on the graph space and has the form:

π
UP(G) =

1

2(
|V |
2 )

.

where |V | is the number of vertices in the graph. A criticism in using a uniform prior is that

it assigns more mass to medium size graphs compared to, for example, the empty graph or

the full graph.

To address the problem, Jones et al. (2005) set independent Bernoulli trials on the edge

inclusions, such that the prior probability is φ = 2/(|V |−1) leading to the expected number

of edges equal to |V |. Thus, the prior on G is:

π(G) ∝ φ
k · (1−φ)m−k, (4.1)

where 0≤ k ≤m is the number of edges in the graph G and m=
(|V |

2

)
represents the maximum

number of edges possible in that respective graph. Clearly, a φ close to zero would encourage

sparser graphs, while for φ → 1, more mass will be put on complex graphs.
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Carvalho and Scott (2009) recommend a fully Bayesian approach, where φ should be

inferred from the data. As such, they assume that φ ∼ Beta(a,b), leading to:

π(G) ∝
β (a+ k,b+m− k)

β (a,b)
. (4.2)

By setting a = b = 1 (equivalent to setting a uniform prior on φ ) in equation (4.2), they

obtain the prior on G as:

π
CS(G) ∝

1
(m+1)

(
m
k

)−1

. (4.3)

A property of the prior in equation (4.3) is that it corrects for multiplicity. That is, as more

noise vertices are added to the true graph, the number of false positives (edges which are

erroneously included in the graph) remains constant. Furthermore, this prior was used in

the context of Bayesian variable selection as outlined by Scott and Berger (2010). We note

that its presence in that context had the same effect as in the graph framework, namely the

multiplicity adjustment argument.

A somewhat similar form of the prior in equation (4.3) was derived by Armstrong et al.

(2009). Their prior, called the sized based prior, uses the Ap,k parameter representing the

number of decomposable graphs instead of the combinatorial coefficient in the formula from

above. The value of Ap,k is estimated using an MCMC scheme and a recurrence relationship

with graphs that have up to 5 vertices. The recurrence as codified by the Lemmas 1 and

2 provided by the original authors is Ap,k =
(m

k

)
−Fp,k where Fp,k describes the number of

non-decomposable graphs satisfying the following conditions:

(a) for p ≥ 0 then Fp,0 = Fp,1 = Fp,m = 0

(b) for p ≥ 2 then Fp,2 = Fp,m−1 = 0

(c) for p ≥ 3 then Fp,3 = 0

(d) for p ≥ 4 then Fp,4 = Fp,m−2 = 3 ·
(p

4

)
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(e) for p ≥ 5 then Fp,5 = 12 ·
(p

5

)
+3 · (m−6) ·

(p
4

)
(f) for p ≥ 6 then Ap,k is based upon an initial estimate and a MCMC sampling scheme

The enumerating of the non-decomposable graphs present amongst all graphs with 5 vertices

(conditions (a)-(e)) is based upon identifying all possible chordless 4-cycles and 5-cycles.

As outlined by Lauritzen (1996), a n-cycle is simply a path of length n where the starting

and the end points are the same vertex. When describing a path, a chord represents an edge

between non-consecutive vertices. Figure 2.3 depicts a 4-cycle which has the chord (1,3),

whereas the 4-cycle from Figure 2.1 is chordless.

4.2 A Loss-based Prior for Gaussian Graphical Models

In this section, we present a prior based on a methodology that involves loss functions (Villa

and Walker, 2015a).

We follow the insight provided by Villa and Lee (2019), where the method has been

applied to variable selection in linear regression models, by adding an additional loss compo-

nent to account for model complexity. We designed the penalty term to penalize complex

graphs, meaning graphs with a relatively large number of edges. For instance, this is in

line with the approach suggested by Cowell et al. (2007). Therefore, for a given number of

vertices p with a maximum number of edges m, our prior has the form:

π(G) ∝ exp

Eπ

[
inf
ΣG′ ,

DKL( f (x|000,ΣG)|| f (x|000,ΣG′))

]
︸ ︷︷ ︸

loss due to information

−h
[
(1− c)|G|+ c log

(
m
|G|

)]
︸ ︷︷ ︸

loss due to graph complexity

 , (4.4)
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with h ∈ [0,+∞) and c ∈ [0,1]. The component of the prior that penalizes for complexity

takes into account the number of the edges of the graph, |G|, as well as the number of

graphs with the same number of edges,
( m
|G|
)
. The former can be interpreted as an absolute

complexity of the graph, whilst the latter is weighing the complexity of the graph relatively to

all the graphs with the same number of edges (i.e. relative complexity). Note that the last one

is considered in the log-scale to mitigate the exponential behaviour of the binomial coefficient

for large m. This makes the two terms approximately on the same order of magnitude. The

two components are mixed by means of c, while h represents the constant up to which a loss

function is defined. Noting that the KL divergence in (4.4) is minimized for ΣG = ΣG′ , as

such is zero, the prior will have the form:

π(G) ∝ exp
{
−h
[
(1− c)|G|+ c log

(
m
|G|

)]}
. (4.5)

The tuning parameter h allows to set the prior in order to control the sparsity of the graph.

In particular, for h → ∞, the prior in equation (4.5) will decrease quickly to zero, assigning

most of the mass to simple graphs. On the other hand, small values of h result in a prior

where its mass is more evenly distributed over the whole space of graphs. In fact, if we

set h = 0 the prior in (4.5) will become π(G) ∝ 1, that is the uniform prior. An interesting

feature of the prior in (4.5) is that it has, as particular cases, other well-known priors, besides

the uniform prior. By setting, c = 1 and h = 1 we recover the prior in equation (4.3) proposed

by Carvalho and Scott (2009).

If we set c = 0 we obtain

π(G) ∝ exp{−h|G|} ,

which resembles the prior of Villa and Lee (2019), introduced in the context of linear

regression.
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Let M(G) represent the set of symmetric positive-definite matrices constrained by G,

which means there is an equivalence between the zeroes of the concentration matrix Σ
−1
G and

the missing edges from graph G. The function f (x|ΣG,G) denotes the multivariate Gaussian

sampling distribution with covariance matrix ΣG. Then, the graph posterior probability is:

π(G|x) ∝ π(G)
∫

ΣG∈M(G)
f (x|ΣG,G)π(ΣG|G)dΣG.

Although our prior is suitable for both decomposable and non-decomposable graphs, here

we focus on the former class of graphs so that we can compare the performance of our prior

to other priors available in the literature.

Regarding the marginal likelihood, we are using the hyper-inverse Wishart g-prior of

Carvalho and Scott (2009) as the prior for the constrained covariance matrix ΣG. This

prior arises as the implied fractional prior of the covariance matrix (O’Hagan, 1997) for the

following noninformative prior (see Geisser and Cornfield (1963), Sun and Berger (2007)),

whose form was purposely selected to maintain conjugacy:

πN(Σ|G) ∝
∏C∈C det(ΣC)

−|C|

∏S∈S det(ΣS)−|S| .

Here, C and S represent the clique and separator sets for graph G, respectively. Furthermore,

the hyper-inverse Wishart g-prior is a conjugate prior for the multivariate Gaussian distribu-

tion. As such, the marginal likelihood can be expressed in closed form as (see Carvalho and

Scott (2009)):

f (x|G) = (2π)−np/2 HG(gn,gxT x)
HG(n,xT x)

,

with HG(b,D) denoting the normalising constant of the hyper-inverse Wishart distribution

with degrees of freedom parameter b ∈ IR+ and scale matrix D ∈ M(G). For a decomposable

graph, HG(b,D) can be expressed as a ratio of products over the cliques and separators (see

Dawid and Lauritzen (1993), Atay-Kayis and Massam (2005), Carvalho and Scott (2009)),
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that is

HG(b,D) =

∏C∈C det
(

1
2

DC

)b+ |C|−1
2

Γ|C|

(
b+ |C|−1

2

)−1

∏S∈S det
(

1
2

DS

)b+ |S|−1
2

Γ|S|

(
b+ |S|−1

2

)−1

,

where

Γa(x) = π

a(a−1)
4

a

∏
j=1

Γ(x+(1− j)/2)

represents the multivariate gamma function.

As recommended by Carvalho and Scott (2009), in all our further analyses we set g = 1/n.

To explore the graph space we have used the feature-inclusion stochastic search (FINCS)

algorithm of Scott and Carvalho (2008). FINCS is a serial procedure which utilises three

types of moves: local, resampling and global. The local moves depend on updated estimates

of the posterior edge inclusion probabilities. Resampling of one of the previously visited

models is done in proportion to the their posterior probabilities. The global moves allow us

to explore those regions that would not be accessible in a finite number of local steps and

with the help of the local moves, they try to address the multimodality of the problem at

hand. Clearly, FINCS is not an MCMC scheme, but a hybrid algorithm designed to explore a

collection of likely graphs.

As suggested by Scott and Carvalho (2008), for small-to-moderate-sized graphs like the

graph with 25 vertices used by them in their simulation study from Section 4, the convergence

of FINCS is quite fast irrespective of the starting graph. The necessity of the global move

becomes apparent when the true graph has a lot of vertices. Then, a version of FINCS with

only local moves and resampling steps would get trapped in the local hills, a behaviour

which was also observed with the standard Metropolis-Hastings. Moreover, taking into

account the enormity of the graph space to be explored, even a global variant of FINCS

would depend on the starting graph. Here, the original authors have used an initial estimated
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graph based on conditional regressions which is the default setting in the FINCS algorithm.

Furthermore, Scott and Carvalho (2008) recommend a mixture of 80% to 90% local moves

with the remainder used for global moves. Out of those local moves, 10% to 15% should

be dedicated to the resampling step. This is why in all our considered simulated and real

data analyses, we have used the default setting of the original authors from Section 4 of

their paper, namely a global version of the FINCS algorithm with a resampling step every

10 iterations and a global move used every 50 iterations. A more detailed outline of the

algorithm is provided in Appendix B.

4.3 Simulated and Real Data Analysis

In this section, we are showing the behaviour of the prior in equation (4.5) in both simu-

lated and real data scenarios. When we focus on decomposable graphs, the inference is

made by implementing the FINCS algorithm, whilst when we utilise the main algorithm of

Mohammadi and Wit (2019), we look at unrestricted graphs.

For the analyses, on simulated and real data, we compare four priors on G. Namely, the

Carvalho and Scott prior (CS prior), the uniform prior (UP prior) and the proposed prior with

two different settings: in the first we have h = 1 and c = 0 (VL prior) and for the second we

have h = 1 and c = 0.5 (MP prior). Thus:

π
VL(G) ∝ exp{−|G|} and π

MP(G) ∝ exp
{
−
[

1
2
|G|+ 1

2
log
(

m
|G|

)]}
.

The above choices of the two priors have been dictated by the following reasons. The VL

prior allows to highlight the choice of a prior that penalises for the absolute graph complexity

without including any prior information on the rate of penalisation (controllable by setting h).

The choice of the MP prior is driven by the motivation of understanding how equal weights

for the two types of the considered penalties, i.e. absolute versus relative, interplay.
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4.3.1 Simulated Data Example

The first simulation study has been taken from Carvalho and Scott (2009). We start from

a graph with 10 vertices and 20 edges, which is represented in Figure 4.1. We have then

added 5 and 40 noise vertices for, respectively, the first and the second simulation. These

noise vertices represent vertices unconnected to each other or with the 10 vertices graph.

The data has been simulated from a zero mean multivariate normal distribution with the

covariance matrix designed to represent the dependencies of the above graphs. In both cases

the sample size was of n = 50 observations. That is, we have sampled 50 realisations for a

p = 15 vertices graph and a p = 50 vertices graph, where each graph contains just the edges

shown in Figure 4.1, through the R package BDgraph of Mohammadi and Wit (2019).

For the simulated data, we are using a single covariance matrix for each of the two cases.

More precisely, to simulate the data we have used the bdgraph.sim() function with the

following arguments: the adjacency matrix was given respectively by one of the two graph

structures described previously and the G-Wishart prior was the default one. We have run

FINCS for 5 million iterations and set a global move every 50 iterations; the resampling step

was considered at every 10 iterations. During the FINCS search, we have saved the best 1000

graphs. That is, we have used the default setting of FINCS which outputs in descending order

the first 1000 most likely graphs according to the associated posterior probabilities (Carvalho

and Scott, 2009). The estimated edge posterior inclusion probabilities were computed as

q̂i j =
∑

t
r=11(i, j)∈Gr f (x|Gr)π(Gr)

∑
t
r=1 f (x|Gr)π(Gr)

,

with t being the number of uniquely discovered graphs in terms of the log-score amongst all

our iterations, and reported in Table 4.1, for the case p = 15, and in Table 4.2, for the case

p = 50.
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Fig. 4.1 The 10 vertices graph we have used in our simulation study.

Edge
Noise Vertices: 5 (p=15)

CS prior VL prior (c = 0) MP prior (c = 0.5) UP prior

(1,6) 0.167 0.234 0.216 0.158

(1,7) 0.916 0.981 0.960 0.997

(2,4) 0.079 0.173 0.126 0.184

(3,4) 0.014 0.017 0.018 0.321

(3,6) 0.961 0.994 0.987 0.999

(3,7) 0.198 0.355 0.282 0.311

(3,8) 0.997 1.000 0.999 1.000

(3,9) 0.013 0.012 0.013 0.025

(4,6) 0.023 0.025 0.027 0.366

(4,8) 0.005 0.003 0.005 0.006

(4,9) 0.493 0.877 0.721 0.984

(5,6) 0.007 0.003 0.005 0.007

(5,9) 0.698 0.958 0.878 0.994

(6,7) 0.014 0.014 0.015 0.013

(6,8) 0.005 0.009 0.007 0.018
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(6,9) 0.011 0.013 0.011 0.297

(7,9) 0.213 0.153 0.179 0.097

(7,10) 1.000 1.000 1.000 1.000

(8,9) 0.006 0.007 0.007 0.015

(9,10) 0.785 0.874 0.834 0.962

FPs: 0 1 0 2

Table 4.1 The estimated edge posterior inclusion probabilities together with the remaining

false positive flags (FPs) when the number of noise vertices is 5.

Edge
Noise Vertices: 40 (p=50)

CS prior VL prior (c = 0) MP prior (c = 0.5) UP prior

(1,6) 1.000 1.000 1.000 1.000

(1,7) 1.000 1.000 1.000 1.000

(2,4) 0.454 0.996 0.753 1.000

(3,4) 0.002 0.003 0.003 0.120

(3,6) 0.000 0.000 0.000 0.000

(3,7) 0.000 0.000 0.000 0.000

(3,8) 0.999 1.000 1.000 1.000

(3,9) 0.001 0.001 0.001 0.006

(4,6) 0.000 0.000 0.000 0.000

(4,8) 1.000 1.000 1.000 1.000

(4,9) 0.089 0.001 0.016 0.002

(5,6) 0.000 0.000 0.000 0.001

(5,9) 1.000 1.000 1.000 1.000

(6,7) 1.000 1.000 1.000 1.000

(6,8) 0.000 0.000 0.000 0.001
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(6,9) 0.991 1.000 1.000 1.000

(7,9) 0.992 1.000 1.000 1.000

(7,10) 0.000 0.000 0.000 0.001

(8,9) 0.912 1.000 0.985 1.000

(9,10) 1.000 1.000 1.000 1.000

FPs: 0 11 2 41

Table 4.2 The estimated edge posterior inclusion probabilities together with the remaining

false positive flags (FPs) when the number of noise vertices is 40.

In Table B.1 from Appendix B, we can see the computed Pearson correlation matrix

corresponding to the sample used in Table 4.1, whereas in Table B.2 we have that correlation

matrix for the sample we have dealt with in the case of Table 4.2. Note that the estimated

edge posterior inclusion probabilities for (8,9) in Table 4.1 are very low in comparison to the

ones from Table 4.2. A possible explanation is that due to the fact that we randomly sample

the data necessary for our simulation study through the aforementioned bdgraph.sim(), the

initial information in the generated random sample considered in Table 4.1 about a possible

connection between variables 8 and 9 is very faint in contrast to the sample used in Table 4.2.

Taking into account Tables B.1 and B.2, we indeed see that this is the case, as the correlation

coefficients for (8,9) are 0.14 and 0.98, respectively. Furthermore, the sample size is quite

small at 50.

In terms of false positive flags (FPs), we see an increase for the VL and UP priors when

moving from 5 to 40 noise vertices; although of different sizes. In fact, the VL prior moves

from 1 to 11 false positives, while the UP prior moves from 2 to 41. For the MP prior, that is

when we mix the VL and the CS prior with equal weights, the increase in FPs is marginal.

To compare the inferential results of the priors we consider the median probability graphs,

that is the graphs composed by all the edges with a posterior inclusion probability of at
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least 0.5 (Carvalho and Scott, 2009). In both cases the priors yield to similar graphs, with

the exception of edge (4, 9) for the experiment with p = 15 and (2, 4) for the experiment

with p = 50. The above edges are not included in the graph derived by using the CS prior,

although the posterior inclusion probability is close to 0.5 (0.49 and 0.45, respectively). The

estimated median graphs under the CS, VL, MP and UP priors can be seen in Figure 4.2,

where the left column represents the case where 5 noise vertices were added, whereas the

right column designates the case for the insertion of 40 noise vertices.
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(a) CS with 6 edges for 5 noise vertices
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(b) CS with 10 edges for 40 noise vertices
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(c) VL with 8 edges for 5 noise vertices
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(d) VL with 22 edges for 40 noise vertices
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(e) MP with 7 edges for 5 noise vertices
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(f) MP with 13 edges for 40 noise vertices
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(g) UP with 9 edges for 5 noise vertices
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(h) UP with 52 edges for 40 noise vertices

Fig. 4.2 The corresponding posterior graphs and their sizes where the estimated edge posterior

inclusion probability is greater than 0.5 obtained under the four priors (CS, VL, MP and UP)

in the case of inserting 5 noise vertices (left column) or 40 noise vertices (right column).

In the second simulation exercise, we study the performance of the proposed prior when

initial information about the number of edges is available (and one wishes to reflect this

in the prior). The results are compared to the ones obtained by using the Bernoulli prior

(see equation (4.1)) implemented in the BDgraph package. We consider both the case of

accurate prior information as well as the case where the prior information about the true

number of edges is not accurate. We have considered the scenarios with n = 50 and n = 100,

and we have repeated the analysis for 250 randomly generated samples. Computational

details are that we have employed the BDgraph package appropriately modified to allow the

implementation of our prior, and we have run 200000 iterations with a burn-in of 100000.
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First, we have simulated from a graph with 6 vertices and 3 edges, and assumed that the prior

information about the expected number of edges was correct. To have prior distributions with

mean of 3, we have set h = 0.28 and c = 0.11 for the MP prior and chose a probability of

success of 0.2 for the Bernoulli prior. We have compared the two priors by considering the

average size of the posterior graphs over the 250 samples. Table 4.3 shows the statistics of

the simulation study, including the 99% bootstrap confidence interval based on one million

replicates. We note that the MP prior outperforms the Bernoulli prior as the confidence

intervals contain the true graph size for both n = 50 and n = 100. For the second case, we

have sampled from a graph with 6 vertices and 5 edges assuming that the prior information

about the true graph size is as before (i.e. 3 edges). If we keep the MP prior with the

same setting as above, the 99% confidence intervals are (4.04,4.56) and (4.25,4.76) for,

respectively, n = 50 and n = 100. However, the MP prior allows to set h and c to have

the same prior mean as above and a larger variance. In Table 4.4 we report the frequentist

summaries for MP prior with a variance of 35.5 and the Bernoulli prior. The MP’s variance of

35.5 is attained for h = 1.36 and c = 0.93. This variance is larger than in the case of accurate

prior information (that variance was 11) as we would like to include more uncertainty about

the prior number of edges, because now we are unsure about the respective prior knowledge.

The variance of the Bernoulli prior is 2.4 which is simply the formula for the variance of the

Bernoulli distribution where the number of trials was set to the number of vertices and the

probability of success was 0.2. These parameters in the Bernoulli prior lead to a prior mean

of 3. We note, in the case of inaccurate prior information, that the confidence intervals for

the MP prior contain the true number of edges. Although there is a discrepancy in terms of

variance between the MP prior and the Bernoulli prior, this shows a higher versatility of the

MP prior as it allows to control two pieces of prior information (mean and variance) by the

choice of the parameters h and c.



Loss-based Prior applied to Gaussian Graphical Models 83

Prior
n = 50 n = 100

Average Size 99% Confidence Interval Average Size 99% Confidence Interval

MP 2.81 (2.61, 3.02) 2.96 (2.78, 3.14)

Bernoulli 1.88 (1.74, 2.04) 2.22 (2.08, 2.36)

Table 4.3 Frequentist summaries for the MP prior and the Bernoulli prior when prior infor-

mation is accurate.

Prior
n = 50 n = 100

Average Size 99% Confidence Interval Average Size 99% Confidence Interval

MP 5.47 (4.64, 6.34) 4.50 (3.98, 5.08)

Bernoulli 3.36 (3.13, 3.60) 3.82 (3.61, 4.03)

Table 4.4 Frequentist summaries for the MP prior and the Bernoulli prior when prior infor-

mation is not accurate.

4.3.2 Real Data Examples

In this section we illustrate our prior in real data scenarios. We compare the performance of

our prior with the other priors considered in the previous section. We have selected three

datasets, encompassing different sizes, both in terms of variables and in terms of number

of observations. The results, obtained with the same settings for the FINCS algorithm as

implemented for simulation studies during Section 4.3.1, are presented in the next subsections.

For comparison purposes, edges have been selected as part of the estimated graph if their

posterior inclusion probability was at least 0.5 (median probability graph).

Let us recall that the estimated edge posterior inclusion probabilities are computed using

model averaging over the uniquely discovered graphs in terms of the log-score. Unfortunately,

due to the exponential nature of the graph space for a fixed p (there are 2(
p
2) graphs), these

posterior inclusion probabilities are just a search heuristic as Scott and Carvalho (2008) also
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outlined. They converge to the true edge posterior probabilities, when we could talk about

finding an exact graph, in very particular cases, namely when the true graph is very sparse

(its number of edges is 5 or 6), the number of vertices is very small (p is 4 or 5) or when we

would be able to visit all the graphs in a graph space in the provided number of iterations.

The Multivariate Flow Cytometry Dataset

Sachs et al. (2005) consider flow cytometry measurements for 11 phosphorylated proteins

and phospholipids across a total number of 7466 observations. The 11 proteins considered

have the following nomenclature: Raf, Mek, Plcg, PIP2, PIP3, Erk, Akt, PKA, PKC, P38, Jnk.

The purpose of their study was to infer a Bayesian network to reveal possible connections

between enzymes. We have centred the data and the key results are reported in Table 4.5 and

Table 4.6.

The most sparse graph was produced using the VL prior, and the included edges are

listed in Table 4.5. In Table 4.6 , we can see the edges that were omitted for the VL prior, but

included for the others. The most complex graph is selected under the CS prior, where 5 extra

edges are added, while the MP and the UP priors include, respectively, 1 and 2 edges more

than the VL prior. To note, edge (1,8), which is included by all the priors except the VL prior,

has a posterior inclusion probability for the latter prior relatively close to 0.5, suggesting that

it is likely to be the sole relevant difference among the priors. For the remaining edges in

Table 4.6, a more conservative threshold (e.g. set at 0.7) would have excluded them from all

the graphs. For the included edges (Table 4.5), there is strong agreement among the priors, as

the posterior inclusion probabilities are all quite close to one. The estimated graphs identified

by FINCS under the four aforementioned priors can be seen in Figure 4.3.

Index Edge CS prior VL prior MP prior UP prior

1 (1,2) 1.000 1.000 1.000 1.000
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2 (1,3) 1.000 1.000 1.000 1.000

3 (1,6) 1.000 1.000 1.000 1.000

4 (1,7) 1.000 1.000 1.000 1.000

5 (1,11) 0.999 0.999 0.999 0.999

6 (2,3) 1.000 1.000 1.000 1.000

7 (2,6) 1.000 1.000 1.000 1.000

8 (2,7) 1.000 1.000 1.000 1.000

9 (2,8) 0.999 0.997 0.998 0.999

10 (2,10) 0.892 0.932 0.907 0.904

11 (2,11) 0.999 1.000 0.999 0.999

12 (3,4) 1.000 1.000 1.000 1.000

13 (3,5) 1.000 1.000 1.000 1.000

14 (3,6) 1.000 1.000 1.000 1.000

15 (3,7) 1.000 1.000 1.000 1.000

16 (3,8) 1.000 1.000 1.000 1.000

17 (3,9) 0.978 0.910 0.952 0.957

18 (3,10) 0.999 0.983 0.996 0.997

19 (3,11) 1.000 1.000 1.000 1.000

20 (4,5) 1.000 1.000 1.000 1.000

21 (5,7) 1.000 1.000 1.000 1.000

22 (5,11) 0.947 0.938 0.924 0.923

23 (6,7) 1.000 1.000 1.000 1.000

24 (6,8) 1.000 1.000 1.000 1.000

25 (6,11) 1.000 1.000 1.000 1.000

26 (7,8) 1.000 1.000 1.000 1.000

27 (7,9) 1.000 1.000 1.000 1.000
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28 (7,10) 1.000 1.000 1.000 1.000

29 (7,11) 1.000 1.000 1.000 1.000

30 (8,9) 1.000 1.000 1.000 1.000

31 (8,10) 1.000 1.000 1.000 1.000

32 (8,11) 1.000 1.000 1.000 1.000

33 (9,10) 1.000 1.000 1.000 1.000

34 (9,11) 1.000 1.000 1.000 1.000

35 (10,11) 1.000 0.999 1.000 1.000

Table 4.5 Edges with a posterior inclusion probability of at least 0.5 for all four priors

considered.

Index Edge CS prior VL prior MP prior UP prior

1 (1,5) 0.550 0.043 0.182 0.216

2 (1,8) 0.832 0.436 0.644 0.677

3 (2,5) 0.561 0.046 0.190 0.224

4 (2,9) 0.656 0.322 0.480 0.507

5 (4,11) 0.528 0.197 0.338 0.363

Table 4.6 Edges with a posterior inclusion probability smaller than 0.5 under the VL prior,

but with a value larger than 0.5 under at least one of the other three priors.
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(d) UP with 37 edges

Fig. 4.3 The corresponding posterior graphs and their sizes where the estimated edge posterior

inclusion probability is greater than 0.5 obtained under the four priors (CS, VL, MP and UP)

through the FINCS algorithm for the flow cytometry dataset.

The PTSD Symptoms for Earthquake Survivors in Wenchuan, China Dataset

This dataset (McNally et al., 2015) represents the measurement of 17 symptoms associated

with PTSD (Post-traumatic stress disorder) reported by 362 survivors of an earthquake from

the Wenchuan county in the Sichuan province, China. Each of the participants indicated

through a ordinal scale from 1 to 5 how affected they were by every single one of the 17

PTSD symptoms, where 1 signifies not being bothered by the symptom at hand, whereas

5 corresponds to an extreme response to the same symptom. All participants have lost at
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least one child in the respective earthquake. The data is available with the R package APR

(Mair, 2015). Amongst those 362 answers, in 18 cases, there was missing information

associated with one or several symptoms. These cases were discarded, leaving a final sample

of 344 participants, and the data was centred. In Table 4.7, we provide the mapping between

the numeric identifiers for the variables and the corresponding PTSD symptoms and their

meaning as given by McNally et al. (2015). These numeric identifiers will be used in the

subsequent tables and figures shown in this subsection.

Numeric

Identifier
PTSD symptom

1 "intrusion = intrusive memories, thoughts, or images of the trauma"

2 "dreams = traumatic dreams"

3 "flash = flashbacks"

4 "upset = feeling upset in response to reminders of trauma"

5 "physior = physiological reactivity to reminders of the trauma"

6 "avoidth = avoidance of thoughts or feelings about the trauma"

7 "avoidact = avoidance of activities or situations reminiscent of the trauma"

8 "amnesia = having trouble remembering parts of the traumatic experience"

9 "lossint = loss of interest in previously enjoyed activities"

10 "distant = feeling distant or cut off from people"

11 "numb = feeling emotionally numb"

12 "future = feeling that your future will be cut short"

13 "sleep = difficulty falling or staying asleep"

14 "anger = feeling irritable or having angry outbursts"

15 "concen = difficulty concentrating"
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16 "hyper =hyper-vigilant or watchfull or super alert"

17 "startle = feeling easily startled or jumpy"

Table 4.7 The mapping between the numeric identifiers for the variables and the corresponding

PTSD symptoms and their meaning as provided by McNally et al. (2015).

The sparser graph is identified under the MP prior and it contains 44 edges. With

exception of edge (13,16), the remaining 43 edges were also included in the other three

priors. Table 4.8 reports the 8 edges not included under all four priors. The estimated graphs

identified by FINCS under the four aforementioned priors can be seen in Figure 4.4.

Index Edge CS prior VL prior MP prior UP prior

1 (1,14) 0.608 0.492 0.413 0.763

2 (1,17) 1.000 1.000 0.456 1.000

3 (2,4) 0.513 0.512 0.385 0.463

4 (3,17) 0.528 0.531 0.246 0.634

5 (4,17) 0.994 0.969 0.442 0.998

6 (7,17) 0.908 0.895 0.414 0.999

7 (9,11) 0.495 0.405 0.431 0.663

8 (13,16) 0.027 0.019 0.562 0.045

Table 4.8 Edges with a posterior inclusion probability larger than 0.5 for one to three of the

four considered priors.
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(d) UP with 49 edges

Fig. 4.4 The corresponding posterior graphs and their sizes where the estimated edge posterior

inclusion probability is greater than 0.5 obtained under the four priors (CS, VL, MP and UP)

through the FINCS algorithm for the PTSD symptoms dataset.

In addition, we have modified the Gaussian copula part (Mohammadi et al., 2017) of

the BDgraph package so that our prior can be utilised. The modifications simply consist of

adding the parameters h and c to the bdgraph() function in R and modifying the C++ code

which deals with the prior computations to accommodate for our prior. No alterations were

done to the Gaussian copula part of the main algorithm. Amongst the computations we had

to rework, an important part is represented by the ratios between the priors on the proposed

new graph and the current one, as seen in the work of Mohammadi and Wit (2015). In our



Loss-based Prior applied to Gaussian Graphical Models 91

case, when the proposed graph includes a new edge, the ratio is

exp
{

h
[

c
(

log
(

m−|Gproposed|+1
|Gproposed|

)
−1
)
+1
]}

,

whereas when the proposed graph contains one less edge than the current one, the ratio

becomes

exp
{

h
[

c
(

log
(
|Gproposed|+1
m−|Gproposed|

)
+1
)
−1
]}

,

with |Gproposed| representing the number of edges in the proposed graph.

We have compared the maximum posterior graphs which were found under the CS, VL,

UP and a specific case of the mixture prior where the parameters were set to h = 1 and c = 0.5

when 2000000 iterations were used with the first 1000000 discarded. We have also included

the Bernoulli prior (denoted with BD) where the probability of edge inclusion was set to

0.004 so that a priori it had the same mean as the VL prior, namely 0.582. The maximum

posterior probability graph found under the Bernoulli prior has a size of 59 and can be seen

in Figure 4.5. Furthermore, as we can observe in Figure 4.5, under the CS prior, the posterior

graph had a size of 59, whilst for the VL prior, the posterior had a size of 58. When we

use the mixture prior, the size of the maximum posterior probability graph is 68. The most

dense graph is obtained under the UP which had a size of 71. The number of common edges

between the BD and various graphs is as following: 20 edges with the CS, 29 edges with

the VL, 27 with the MP and 26 with the UP. Clearly, under this particular running of the

bdmcmc (birth death Markov chain Monte Carlo) algorithm, the sparser graph is found under

the VL prior, but the other maximum posterior probability graphs corresponding to the BD

and CS priors are close to its size. The only exception is given by the uniform prior which

leads to a denser graph.
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(e) UP with 71 edges

Fig. 4.5 The corresponding maximum posterior probability graph sizes under the four priors

(CS, VL, MP and UP) together with the Bernoulli prior (BD) for the PTSD symptoms data.
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Note that in all the graphs from Figures 4.4 and 4.5, besides the graphs from Figures

4.5b and 4.5e , the edge (6,7) is present. This edge signifies a strong interaction between the

avoidth and avoidact PTSD symptoms. This link was also noticed by McNally et al. (2015).

Its possible omission in the two graphs could be due to the fact that in Figure 4.5 we simply

show the maximum posterior graphs and not estimated graphs based on model averaging.

The Breast Cancer Dataset

Hess et al. (2006) have collected gene expression data for 133 patients which had breast

cancer. This dataset was also analysed by Ambroise et al. (2009) and made available through

the R package SIMONE (Statistical Inference for MOdular NEtworks) developed by one of

the authors. There are 26 genes considered in the study. The dataset is split in two groups,

one pertaining to the pathological complete response (pCR) to the chemotherapy treatment

started after surgery, whereas the other corresponds to the disease still being present in the

patients (not-pCR). First, we have looked at the not-pCR cases which was recorded for 99

patients. The remaining 34 patients had a positive response to the treatment (the pCR case).

The data has been centred.

The estimated graphs are reported in Figure 4.6, where we have shown the results under

each prior, that is CS, VL, MP and UP; furthermore, the analysis has been performed on each

group separately. Comparing the performance of the priors, we note that the CS prior and the

MP prior give relatively sparse graphs for both groups, 21 and 23 edges for the pCR, and

25 and 26 for the not-pCR, respectively. The VL prior yields to slightly larger graphs (28

and 39) while the UP is the prior resulting in the most complex graphs (42 and 46). If we

compare, within each prior, the obtained graphs for the two groups, we consistently notice

that the graphs for the pCR group are sparser than the graphs for the not-pCR group. As the

sample size for the not-pCR group is larger than the size for the pCR group, it may be that
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the more complex posterior graphs are a result of the higher amount of information from the

observations.

Index Edge CS prior VL prior MP prior UP prior

1 (1,14) 0.098 0.100 0.138 0.824

2 (1,15) 0.759 0.819 0.742 0.143

3 (2,8) 0.056 0.314 0.127 0.870

4 (4,6) 0.109 0.129 0.099 0.622

5 (4,7) 0.461 0.343 0.475 0.970

6 (4,8) 0.176 0.889 0.165 0.313

7 (4,11) 0.019 0.879 0.012 0.000

8 (4,13) 0.003 0.643 0.003 0.000

9 (4,15) 0.320 0.200 0.344 0.850

10 (4,17) 0.000 0.887 0.001 0.005

11 (4,19) 0.002 0.661 0.003 0.000

12 (6,9) 0.160 0.568 0.162 0.998

13 (6,15) 0.365 0.705 0.372 1.000

14 (6,26) 0.003 0.480 0.004 0.999

15 (7,8) 0.000 0.001 0.000 0.965

16 (7,11) 0.001 0.801 0.001 0.000

17 (7,15) 0.000 0.000 0.000 0.912

18 (7,16) 0.024 0.092 0.046 0.521

19 (7,17) 0.000 1.000 0.001 1.000

20 (7,23) 0.002 0.005 0.004 0.956

21 (8,12) 0.000 0.000 0.000 0.606

22 (8,23) 0.058 0.005 0.024 0.865

23 (9,15) 0.878 0.479 0.894 0.034
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24 (9,26) 0.213 0.770 0.296 1.000

25 (11,13) 0.145 0.041 0.201 0.551

26 (11,14) 0.560 0.041 0.636 0.931

27 (11,17) 0.364 0.968 0.408 0.472

28 (11,19) 0.000 0.849 0.000 0.000

29 (12,17) 0.000 0.741 0.000 0.951

30 (12,24) 0.002 0.872 0.001 0.985

31 (13,14) 0.291 0.237 0.604 0.979

32 (14,20) 0.003 0.013 0.009 0.752

33 (17,19) 0.003 0.998 0.001 0.006

34 (17,23) 0.018 0.065 0.007 0.583

35 (17,25) 0.036 0.980 0.075 0.999

Table 4.9 Posterior inclusion probabilities not included under all the four compared priors for

the not-pCR case.

Index Edge CS prior VL prior MP prior UP prior

1 (2,9) 0.001 0.008 0.004 0.538

2 (2,10) 0.001 0.001 0.001 0.985

3 (5,16) 0.190 0.522 0.333 0.994

4 (5,17) 0.309 0.750 0.510 0.996

5 (6,16) 0.011 0.016 0.011 0.759

6 (6,17) 0.111 0.775 0.464 0.983

7 (8,10) 0.000 0.000 0.000 1.000

8 (8,15) 0.621 0.028 0.561 1.000

9 (8,16) 0.001 0.995 0.017 1.000
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10 (8,20) 0.001 0.011 0.001 0.720

11 (8,25) 0.953 0.969 0.972 0.251

12 (8,26) 0.241 0.998 0.389 1.000

13 (9,26) 0.004 0.021 0.010 0.601

14 (10,15) 0.000 0.000 0.000 0.999

15 (10,16) 0.001 0.641 0.001 1.000

16 (10,18) 0.000 0.010 0.000 0.996

17 (10,21) 0.009 0.003 0.007 0.987

18 (10,26) 0.001 0.005 0.002 1.000

19 (11,16) 0.000 0.984 0.002 0.010

20 (11,18) 0.056 0.980 0.045 0.001

21 (14,20) 0.652 0.008 0.660 0.972

22 (15,16) 0.000 0.004 0.000 0.999

23 (15,26) 0.991 0.993 0.994 0.013

24 (16,17) 0.000 0.055 0.000 0.963

25 (16,25) 0.012 0.037 0.007 0.785

26 (16,26) 0.000 0.995 0.007 1.000

27 (17,22) 0.000 0.000 0.000 0.741

28 (17,25) 0.000 0.000 0.000 0.751

29 (18,26) 0.362 0.021 0.508 0.062

30 (20,24) 0.001 0.000 0.003 0.972

Table 4.10 Posterior inclusion probabilities not included under all the four compared priors

for the pCR case.
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(e) MP with 23 edges (pCR)

1
2

3
4

5
6789

10
11

12
13
14
15
16

17
18

19 20 21 22
23

24
25
26

(f) MP with 26 edges (not-pCR)

1
2

3
4

5
6789

10
11

12
13
14
15
16

17
18

19 20 21 22
23

24
25
26

(g) UP with 42 edges (pCR)
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(h) UP with 46 edges (not-pCR)

Fig. 4.6 The corresponding posterior graphs and their sizes where the estimated edge posterior

inclusion probability is greater than 0.5 obtained under the four priors (CS, VL, MP and UP)

for the two groups.The first column corresponds to the pCR group, whilst the second column

contains the identified posterior graphs for the not-pCR group.
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4.4 Discussion

In the present work, we have illustrated a novel prior on the space of graphs in the context of

GGMs. The prior is derived using a loss with two components: one relative to the informa-

tional content of the graph and one related to its complexity. The results were obtained by

implementing the FINCS algorithm and comparisons were made with two alternative weakly

informative priors: the uniform prior and the prior advocated by Carvalho and Scott (2009),

both of which can be seen as a particular case of the proposed prior.

We would like to provide some general remarks about setting the parameters h and c for

the proposed prior. There are several ways to approach the issue:

• one could set h and c to reflect subjective prior information. See the example where

we compare the proposed prior to the Bernoulli prior in Section 4.3.1.

• an alternative choice is to set c = 0 so that the prior will reduce to the global loss

component only. Here, the parameter h can be either set according to some prior

information or in a default manner (see Villa and Lee (2019)).

• the third choice is to set c = 1 and h = 1 and obtain the prior of Carvalho and Scott

(2009). This would be the choice if one is interested in multiplicity correction.

• finally, one could fix h = 1 and then set c so to have a desired balance between the

global and the local losses due to complexity. We have suggested that a default choice

is for c = 0.5. In this scenario as well, given that the prior will depend on the total

number of edges, there is correction for multiplicity.

Simulation studies, performed under a non-informative assumption, show that the best

configuration of the proposed prior is when equal weight is given to absolute and relative

complexity. In fact, the results are similar to the CS prior. In another simulation study we
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have analysed the performance of the prior when prior information is available and it is

reflected in the construction of the prior distribution. We have noticed favourable evidence,

in particular when compared to the Bernoulli prior used by Mohammadi and Wit (2019).

Here, we show that the dependence of our prior on the two tuning parameters allows to better

include initial information when it is not limited to one piece only (i.e. expected number of

edges).

Finally, we have illustrated the prior for three real datasets of different dimensionality

and size. The proposed prior, in terms of sparsity, yields results in line with the CS prior,

with the clear better performance for the first dataset (Flow Cytometry dataset).



5. An Extension of the Loss-based

Methodology to Proper Binary Trees

This chapter shows how to extend the prior introduced in Chapter 4 to a different discrete

structure, namely the binary tree. We start by re-establishing how do we use a tree in the

context of data analysis. We then formally define our loss-based prior in the case of proper

binary trees.

Let us recall that for a tree Tk with LTk leaves, the joint probability is simply:

h(yyy|Tk,Θk,XXX) =

LTk

∏
l=1

nl

∏
j=1

f (yl j|θl), ∀l = 1,2, . . . ,LTk and ∀ j = 1,2, . . . ,nl, (5.1)

where XXX is the n× p design matrix and Θk is simply the collection of parameters associated

with tree Tk.

Now if we consider a tree as a model and apply the methodology of Villa and Walker

(2015a), we have:

π(Tk) ∝ exp
{
Eπk

[
inf

Θk′ ,k′ ̸=k
DKL(h(yyy|Tk,Θk,XXX)||h(yyy|Tk′,Θk′,XXX))

]}
, (5.2)

where πk denotes the priors on the tree parameters Θk. We know that the yi responses are

independent between terminal nodes and the joint distribution of them can be written as in

equation (5.1). For this particular form of the prior, let us consider the next toy example. Let
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us assume that the data generating process follows a Bernoulli distribution, that is

yl j
i.i.d.∼ Bernoulli(θl), ∀l = 1,2, . . . ,LTk and ∀ j = 1,2, . . . ,nl.

Based on the additive property of the KL divergence when independent distributions are

considered, the joint divergence from equation (5.2) is simply the sum of individual KL

divergences between Bernoulli distributed variables. As each individual divergence is non-

negative, the infinimum for the joint divergence is attained when each individual KL is

minimised. The minimal KL divergence between two Bernoulli distributions is reached when

the parameters of the two distributions are the same and this minimum is then 0. As such,

we obtain π(Tk) ∝ 1. Note that Tk ∈ T , where T is a countably infinite discrete structure,

which usually has an upper bound in practice (see Denison et al. (1998)). Therefore, it is

necessary to consider model complexity when defining the prior on Tk.

5.1 Loss-based Prior on Binary Tree Structures

As seen in the Bayesian literature built around trees from Section 2.6, the types of trees we are

interested are proper binary trees. These are the trees where the internal nodes always have

two children. We know that the number of proper binary trees that have LT leaves is simply

CLT−1 (Shaun et al., 2016), where Cn =
1

n+1

(
2n
n

)
is the nth Catalan number. Through an

analogy with the prior defined in Chapter 4, the loss-based tree prior has two components,

namely a loss due to information and another related to the tree structure complexity, that is:

π(Tk) ∝ exp{LossI +LossC},

where LossI is the loss due to information (seen in equation (5.2) for tree structures) and

LossC is the loss due to complexity.
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As we can embed a given tree into another more complex tree, the loss due to information

will be 0. Recall from Chapters 2, 3 and 4, that the loss in information is represented by the

minimal KL divergence between the required model and all other available models. This

minimization is realised with respect to the model parameters corresponding to those other

models. So, it is clear that we may find a more complex tree that through a certain fixing of

its parameters (they are approximately the same to the ones of the required model) simply

reduces to the tree structure we would like to put a prior on. In essence, for every tree we may

find another more developed tree which contains the respective tree and can be reduced to it

through a specific way of choosing its tree parameters. This leads to the loss of information

being 0. For a similar argument, we can refer to the work of Grazian et al. (2018) in the

context of finite mixture models. As such, we can focus on the loss due to the tree structure

complexity. Here, there are several choices depending on the parameters that a modeller

wants to focus on. If we define the tree complexity as simply the number of leaves in the

particular tree, a tree prior could essentially be akin to the prior utilised by Villa and Lee

(2019) in the case of linear regression models, that is:

π
VL(Tk) ∝ exp{−ξ |LTk |} ,

where |LTk | represents the number of leaves corresponding to tree Tk and ξ ∈ [0,+∞). This

prior, which we denote with VL, puts more mass on simpler trees according to the ξ parameter.

A large value of ξ strongly emphasizes a priori trees with a small number of leaves, which

could be useful in the BART (Bayesian Additive Regression Trees) methodology. A ξ close

to zero is equivalent to a flat tree prior.

An alternative choice to the prior of Villa and Lee (2019) would be one that also penalizes

the depth of the trees. Letting DTk represent the depth of tree Tk, we could define a tree prior
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(designated by the VLD moniker) as:

π
VLD(Tk) ∝ exp{− [ξ |LTk |+ω|DTk |]} ,

where ξ and |LTk | were defined previously, whilst |DTk | is the depth of the tree and ω ∈

[0,+∞). By introducing the depth element and through the ω parameter we would be able to

control how much mass is put on balanced shallow trees. Clearly a large ω would imply that

this kind of trees would be favoured, whereas with ω close zero this prior’s behaviour would

be reduced to the case of the VL one. For a ξ close to zero, the penalty term would depend

just on the depth element. As outlined previously, with a larger ω , we will heavily hinder the

development of deep trees which could be especially useful in a BART setting.

Another choice for the penalty corresponding to the tree complexity could be a form

similar to the one used for GGMs. Let us recall that the number of proper binary trees is

related to the number of leaves of the tree through the Catalan numbers. Similarly to the

argument presented in Chapter 4, the complexity of a tree could be split into absolute and

relative parts. The absolute complexity essentially corresponds to just the number of leaves

for the tree. The relative complexity is related to the number of trees with a particular number

of leaves, essentially emphasizing the weight of a tree in a particular tree class. By a tree

class we simply mean all the trees that have the same number of leaves. As such, we define

the following prior which we denote with HLV:

π
HLV(Tk) ∝ exp

{
−ξ

[
(1−δ )|LTk |+δ logCLTk−1

]}
,

with ξ ∈ [0,+∞) and δ ∈ [0,1]. The δ parameter interpolates between the absolute and

relative complexities. Clearly a δ close to 0, reduces the behaviour of the HLV prior to

the VL one, whilst a δ close to 1 indicates that the relative complexity element is the most

dominant in the prior’s behaviour.
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5.2 Discussion and Future Work

In this chapter, we have outlined what is the likelihood when discrete structures called binary

trees are involved and also introduced the loss-based prior on those respective structures.

We gave a reasoning for one element of the loss-based prior being 0, whilst also proposing

various forms for the term which corresponds to the binary tree complexity.

An avenue for future work in this chapter is represented by the behaviour of one of the

proposed loss-based priors under simulated and real data, together with a comparison with

other tree priors mentioned in the literature. In particular, we would like to use our prior,

possibly the one that is based on absolute and relative tree complexity, under the BART

methodology for the classification of the existence or not of bikes in a city’s docking stations

at a certain time interval. This knowledge could allow a better redistribution of the bikes

across the stations. Classical decision trees and random forests have been used to aid in

modelling of the bike distributions across various stations in a bike-sharing system (BSS)

by Yang et al. (2016). There are several cities for which BSS data is readily available from

online sources. The benefit of the study will be twofold. On one side is the proposal of a new

tree prior, followed by a Bayesian application of binary trees to predict the number of bikes

that leave a station in a specific period. As our analysis will be based on BART, we could

include various covariates like weather, season or other factors into the discussion.



6. Conclusion and Future Work

This thesis introduces priors based on the works of Villa and Walker (2015a) and Villa and

Walker (2015b) in the context of heterogeneous data, namely change points and Gaussian

graphical models (GGMs).

Chapter 2 contains the literature review part of the thesis. The first two sections review

some of the objective priors utilised across the respective literature. The third section

outlines the main ideas of Villa and Walker (2015b) together with their extension to model

prior probabilities (Villa and Walker, 2015a). The next three sections are dedicated to

discussing some of the influential papers related to the change point, GGMs and binary trees

frameworks, respectively. Furthermore, these three sections also help identifying what are

the methodologies that we would like our proposed techniques be compared with into the

subsequent chapters.

Our first contribution is provided in Chapter 3. As a change point location can be

interpreted as a discrete parameter, we may apply the methodology of Villa and Walker

(2015b). This leads us to the discrete uniform prior on the change point locations which was

also derived in a different way by Girón et al. (2007). Then, we may envision a Bayesian

model selection exercise to detect the number of change points in various datasets by utilising

the prior on the change point locations in the model prior probability context of Villa and

Walker (2015a). We would like to emphasize that the simulated and real data we looked

at during this chapter contained changes that could concern either the parameters of a

distribution or the distributional family altogether.
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Chapter 4 contains our second contribution, namely the proposal of a graph prior inspired

by the approach undertaken by Villa and Lee (2019) in the case of linear regression models.

In that chapter, we provide a reasoning for the existence of our proposed graph prior in the

respective form in terms of absolute and relative model complexity penalties. We then show

its behaviour relative to other graph priors from the GGM literature in terms of the estimated

posterior edge inclusion probabilities when the FINCS algorithm is utilised or the maximum

a posteriori estimated graph when the main algorithm from the BDgraph package is used.

As the behaviour of our proposed prior is controlled through two parameters, in simulation

studies we may observe that our prior performs best regarding the control of false positives

when equal importance is given to both the absolute and relative complexity penalty parts of

the prior.

The last contribution is showcased in Chapter 5. Motivated by the graph prior, we have

looked at another discrete structure represented by proper binary trees and proposed several

tree priors. Their justification follows somehow the arguments presented during Chapter 4,

that is we argue that the loss due to information is 0. As such, the loss due to tree complexity

impacts our proposed loss-based tree prior the most. This loss due to tree complexity may

have different forms, thus encouraging different behaviours. A possible line for future work

is represented by taking one of the proposed tree priors and comparing its behaviour with

alternatives from the literature in terms of simulated and real data analysis. This future line

of development could prove especially fruitful in the case of the BART methodology, as there

is a need of tree priors which yield sparser trees as outlined by Chipman et al. (2010). In

particular, we would like to use one of the proposed loss-based tree priors in a BART setting

to model the bike distributions in a bike-sharing system.



References

Ambroise, C., Chiquet, J., and Matias, C. (2009). Inferring Sparse Gaussian Graphical
Models with Latent Structure. Electronic Journal of Statistics, 3:205–238.

Armstrong, H., Carter, C. K., Wong, K. F. K., and Kohn, R. (2009). Bayesian Covariance
Matrix Estimation using a Mixture of Decomposable Graphical Models. Statistics and
Computing, 19(3):303–316.

Atay-Kayis, A. and Massam, H. (2005). A Monte Carlo Method for Computing the Marginal
Likelihood in Nondecomposable Gaussian Graphical Models. Biometrika, 92(2):317–335.

Banerjee, O., El Ghaoui, L., and d’Aspremont, A. (2008). Model Selection Through Sparse
Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. The Journal
of Machine Learning Research, 9:485–516.

Barry, D. and Hartigan, J. A. (1992). Product Partition Models for Change Point Problems.
The Annals of Statistics, 20(1):260–279.

Barry, D. and Hartigan, J. A. (1993). A Bayesian Analysis for Change Point Problems.
Journal of the American Statistical Association, 88(421):309–319.

Bell, P. and King, S. (2007). Sparse Gaussian Graphical Models for Speech Recognition. In
INTERSPEECH 2007, 8th Annual Conference of the International Speech Communication
Association, Antwerp, Belgium, August 27-31, 2007, pages 2113–2116.

Berger, J. and Bernardo, J. (1992a). On the Development of Reference Priors. In Bernardo,
J.M.., Berger, J.O.., Dawid, A.P.., and Smith, A.F.M.., editors, Bayesian Statistics 4, pages
35–60. Oxford University Press, London.

Berger, J. O. and Bernardo, J. M. (1992b). Ordered Group Reference Priors with Application
to the Multinomial Problem. Biometrika, 79(1):25–37.

Berger, J. O., Bernardo, J. M., and Sun, D. (2009). The Formal Definition of Reference
Priors. The Annals of Statistics, 37(2):905–938.

Berger, J. O., Bernardo, J. M., and Sun, D. (2012). Objective Priors for Discrete Parameter
Spaces. Journal of the American Statistical Association, 107(498):636–648.

Berger, J. O. and Pericchi, L. R. (1996). The Intrinsic Bayes Factor for Model Selection and
Prediction. Journal of the American Statistical Association, 91(433):109–122.

Berk, R. H. (1966). Limiting Behavior of Posterior Distributions when the Model is Incorrect.
The Annals of Mathematical Statistics, 37(1):51–58.

107



References 108

Bernardo, J. M. (1979). Reference Posterior Distributions for Bayesian Inference. Journal of
the Royal Statistical Society. Series B (Methodological), 41(2):113–147.

Bernardo, J. M. (2005). Reference analysis. In Dey, D. and Rao, C., editors, Bayesian
Thinking, volume 25 of Handbook of Statistics, pages 17 – 90. Elsevier.

Bien, J. and Tibshirani, R. J. (2011). Sparse Estimation of a Covariance Matrix. Biometrika,
98(4):807–820.

Bilmes, J. A. (2004). Graphical Models and Automatic Speech Recognition. In Johnson, M.,
Khudanpur, S. P., Ostendorf, M., and Rosenfeld, R., editors, Mathematical Foundations of
Speech and Language Processing, pages 191–245, New York, NY. Springer New York.

Carlin, B. P., Gelfand, A. E., and Smith, A. F. M. (1992). Hierarchical Bayesian Analysis
of Changepoint Problems. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 41(2):389–405.

Carvalho, C. M. and Scott, J. G. (2009). Objective Bayesian Model Selection in Gaussian
Graphical Models. Biometrika, 96(3):497–512.

Chernoff, H. and Zacks, S. (1964). Estimating the Current Mean of a Normal Distribution
which is Subjected to Changes in Time. The Annals of Mathematical Statistics, 35(3):999–
1018.

Chib, S. (1998). Estimation and Comparison of Multiple Change-point Models. Journal of
Econometrics, 86(2):221–241.

Chipman, H., George, E. I., Gramacy, R. B., and McCulloch, R. (2013). Bayesian Treed
Response Surface Models. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 3(4):298–305.

Chipman, H. A., George, E. I., and McCulloch, R. E. (1998). Bayesian CART Model Search.
Journal of the American Statistical Association, 93(443):935–948.

Chipman, H. A., George, E. I., and McCulloch, R. E. (2002). Bayesian Treed Models.
Machine Learning, 48(1):299–320.

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). BART: BAYESIAN ADDITIVE
REGRESSION TREES. The Annals of Applied Statistics, 4(1):266–298.

Consonni, G., Fouskakis, D., Liseo, B., and Ntzoufras, I. (2018). Prior Distributions for
Objective Bayesian Analysis. Bayesian Analysis, 13(2):627–679.

Consonni, G., La Rocca, L., and Peluso, S. (2017). Objective Bayes Covariate-Adjusted
Sparse Graphical Model Selection. Scandinavian Journal of Statistics, 44(3):741–764.

Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (2007). Probabilistic
Networks and Expert Systems: Exact Computational Methods for Bayesian Networks.
Springer Publishing Company, Incorporated, 1st edition.



References 109

Datta, G. S. (1996). On Priors Providing Frequentist Validity of Bayesian Inference for
Multiple Parametric Functions. Biometrika, 83(2):287–298.

Datta, G. S. and Mukerjee, R. (2004). Probability Matching Priors: Higher Order Asymp-
totics, volume 178. Springer-Verlag New York.

Datta, G. S. and Sweeting, T. J. (2005). Probability Matching Priors. In Dey, D. K. and
Rao, C., editors, Handbook of Statistics:Bayesian Thinking, Modeling and Computation,
volume 25, pages 91–114. Elsevier B.V.

Dawid, A. P. and Lauritzen, S. L. (1993). Hyper Markov Laws in the Statistical Analysis of
Decomposable Graphical Models. The Annals of Statistics, 21(3):1272–1317.

de Finetti, B. (1937). La Prévision: Ses Lois Logiques, Ses Sources Subjectives. Annales de
l’Institut Henri Poincaré, 17:1–68.

de Santis, F. and Spezzaferri, F. (1999). Methods for Default and Robust Bayesian Model
Comparison: The Fractional Bayes Factor Approach. International Statistical Review /
Revue Internationale de Statistique, 67(3):267–286.

Denison, D. G. T., Mallick, B. K., and Smith, A. F. M. (1998). A Bayesian CART Algorithm.
Biometrika, 85(2):363–377.

Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao, G., and West, M. (2004). Sparse
Graphical Models for Exploring Gene Expression Data. Journal of Multivariate Analysis,
90(1):196–212. Special Issue on Multivariate Methods in Genomic Data Analysis.

Dobra, A., Lenkoski, A., and Rodriguez, A. (2011). Bayesian Inference for General Gaussian
Graphical Models With Application to Multivariate Lattice Data. Journal of the American
Statistical Association, 106(496):1418–1433.

Erdman, C. and Emerson, J. (2007). bcp: An R Package for Performing a Bayesian Analysis
of Change Point Problems. Journal of Statistical Software, 23(3):1–13.

Fearnhead, P. and Liu, Z. (2007). On-line Inference for Multiple Changepoint Problems.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):589–605.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse Inverse Covariance Estimation
with the Graphical Lasso. Biostatistics, 9(3):432–441.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using Bayesian Networks to
Analyze Expression Data. Journal of Computational Biology, 7(3-4):601–620. PMID:
11108481.

Geiger, D. and Heckerman, D. (2002). Parameter Priors for Directed Acyclic Graphical
Models and the Characterization of Several Probability Distributions. The Annals of
Statistics, 30(5):1412–1440.

Geisser, S. and Cornfield, J. (1963). Posterior Distributions for Multivariate Normal Parame-
ters. Journal of the Royal Statistical Society. Series B (Methodological), 25(2):368–376.



References 110

George, E. I. (2010). Dilution Priors: Compensating for Model Space Redundancy. In Berger,
J. O., Cai, T. T., and Johnstone, I. M., editors, Borrowing Strength: Theory Powering
Applications – A Festschrift for Lawrence D. Brown, volume 6 of Collections, pages
158–165. Institute of Mathematical Statistics, Beachwood, Ohio, USA.

Ghosh, M. (2011). Objective Priors: An Introduction for Frequentists. Statistical Science,
26(2):187–202.

Girón, F. J., Moreno, E., and Casella, G. (2007). Objective Bayesian Analysis of Multiple
Changepoints for Linear Models (with discussion). In Bernardo, J.M., Bayarri, M.J.,
Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., and West, M., editors, Bayesian
Statistics 8, pages 227–252. Oxford University Press, London.

Giudici, P. and Green, P. (1999). Decomposable Graphical Gaussian Model Determination.
Biometrika, 86(4):785–801.

Giudici, P. and Spelta, A. (2016). Graphical Network Models for International Financial
Flows. Journal of Business & Economic Statistics, 34(1):128–138.

Goldstein, M. (2006). Subjective Bayesian Analysis: Principles and Practice. Bayesian
Analysis, 1(3):403–420.

Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian Treed Gaussian Process Models With
an Application to Computer Modeling. Journal of the American Statistical Association,
103(483):1119–1130.

Grazian, C., Villa, C., and Liseo, B. (2018). On a Loss-based Prior for the Number of
Components in Mixture Models. ArXiv e-prints.

Green, P. J. (1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination. Biometrika, 82(4):711–732.

Griffiths, D. A. (1973). Maximum Likelihood Estimation for the Beta-Binomial Distribution
and an Application to the Household Distribution of the Total Number of Cases of a
Disease. Biometrics, 29(4):637–648.

Hannart, A. and Naveau, P. (2009). Bayesian Multiple Change Points and Segmenta-
tion: Application to Homogenization of Climatic Series. Water Resources Research,
45(10):W10444.

Harlé, F., Chatelain, F., Gouy-Pailler, C., and Achard, S. (2016). Bayesian Model for
Multiple Change-Points Detection in Multivariate Time Series. IEEE Transactions on
Signal Processing, 64(16):4351–4362.

Heard, N. A. and Turcotte, M. J. M. (2017). Adaptive Sequential Monte Carlo for Multiple
Changepoint Analysis. Journal of Computational and Graphical Statistics, 26(2):414–423.

Henderson, R. and Matthews, J. N. S. (1993). An Investigation of Changepoints in the Annual
Number of Cases of Haemolytic Uraemic Syndrome. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 42(3):461–471.



References 111

Hess, K. R., Anderson, K., Symmans, W. F., Valero, V., Ibrahim, N., Mejia, J. A., Booser,
D., Theriault, R. L., Buzdar, A. U., Dempsey, P. J., Rouzier, R., Sneige, N., Ross, J. S.,
Vidaurre, T., Gómez, H. L., Hortobagyi, G. N., and Pusztai, L. (2006). Pharmacogenomic
Predictor of Sensitivity to Preoperative Chemotherapy With Paclitaxel and Fluorouracil,
Doxorubicin, and Cyclophosphamide in Breast Cancer. Journal of Clinical Oncology,
24(26):4236–4244.

Hinoveanu, L. C., Leisen, F., and Villa, C. (2018). A Loss-based Prior for Gaussian Graphical
Models. ArXiv e-prints.

Hinoveanu, L. C., Leisen, F., and Villa, C. (2019). Bayesian Loss-based Approach to Change
Point Analysis. Computational Statistics & Data Analysis, 129:61–78.

Jeffreys, H. (1961). Theory of Probability. Clarendon Press Oxford, 3rd edition.

Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., and West, M. (2005). Experiments
in Stochastic Computation for High-Dimensional Graphical Models. Statistical Science,
20(4):388–400.

Kass, R. E. and Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical
Association, 90(430):773–795.

Kass, R. E. and Wasserman, L. (1996). The Selection of Prior Distributions by Formal Rules.
Journal of the American Statistical Association, 91(435):1343–1370.

Ko, S. I. M., Chong, T. T. L., and Ghosh, P. (2015). Dirichlet Process Hidden Markov
Multiple Change-point Model. Bayesian Analysis, 10(2):275–296.

Koop, G. and Potter, S. M. (2009). Prior Elicitation in Multiple Change-point Models.
International Economic Review, 50(3):751–772.

Kullback, S. and Leibler, R. A. (1951). On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86.

Kundu, S., Mallick, B. K., and Baladandayuthapani, V. (2019). Efficient Bayesian Regular-
ization for Graphical Model Selection. Bayesian Analysis, 14(2):449–476.

Lai, T. L. and Xing, H. (2011). A Simple Bayesian Approach to Multiple Change-Points.
Statistica Sinica, 21(2):539–569.

Lauritzen, S. L. (1996). Graphical Models. Clarendon Press, Oxford.

Lindley, D. (1972). Bayesian Statistics: A Review. Society for Industrial and Applied
Mathematics.

Lindley, D. V. (1956). On a Measure of the Information Provided by an Experiment. The
Annals of Mathematical Statistics, 27(4):986–1005.

Linero, A. R. (2017). A Review of Tree-based Bayesian Methods. Communications for
Statistical Applications and Methods, 24(6):543–559.

Linero, A. R. (2018). Bayesian Regression Trees for High-Dimensional Prediction and
Variable Selection. Journal of the American Statistical Association, 113(522):626–636.



References 112

Liu, S., Yamada, M., Collier, N., and Sugiyama, M. (2013). Change-point Detection in
Time-series Data by Relative Density-ratio Estimation. Neural Networks, 43:72 – 83.

Loschi, R.H. and Cruz, F.R.B. (2005). Extension to the Product Partition Model: Computing
the Probability of a Change. Computational Statistics & Data Analysis, 48(2):255–268.

Mair, P. (2015). APR: Applied Psychometrics With R. R package version 0.0-6/r205.

Martínez, A. F. and Mena, R. H. (2014). On a Nonparametric Change Point Detection Model
in Markovian Regimes. Bayesian Analysis, 9(4):823–858.

McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., and Borsboom,
D. (2015). Mental Disorders as Causal Systems: A Network Approach to Posttraumatic
Stress Disorder. Clinical Psychological Science, 3(6):836–849.

Meinshausen, N. and Bühlmann, P. (2006). High-Dimensional Graphs and Variable Selection
with the Lasso. The Annals of Statistics, 34(3):1436–1462.

Merhav, N. and Feder, M. (1998). Universal Prediction. IEEE Transactions on Information
Theory, 44(6):2124–2147.

Mira, A. and Petrone, S. (1996). Bayesian Hierarchical Nonparametric Inference for Change-
Point Problems. In Bernardo, J.M.., Berger, J.O.., Dawid, A.P.., and Smith, A.F.M..,
editors, Bayesian Statistics 5, pages 693–703. Oxford University Press, London.

Mohammadi, A., Abegaz, F., van den Heuvel, E., and Wit, E. C. (2017). Bayesian Modelling
of Dupuytren Disease by using Gaussian Copula Graphical Models. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 66(3):629–645.

Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian
Graphical Models. Bayesian Analysis, 10(1):109–138.

Mohammadi, A. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure
Learning in Graphical Models. Journal of Statistical Software, 89(3):1–30.

Moreno, E., Casella, G., and Garcia-Ferrer, A. (2005). An Objective Bayesian Analysis
of the Change Point Problem. Stochastic Environmental Research and Risk Assessment,
19(3):191–204.

Muliere, P. and Scarsini, M. (1985). Change-point Problems: A Bayesian Nonparametric
Approach. Aplikace matematiky, 30(6):397–402.

Müller, P., Quintana, F., and Rosner, G. L. (2011). A Product Partition Model With Regression
on Covariates. Journal of Computational and Graphical Statistics, 20(1):260–278.

O’Hagan, A. (1995). Fractional Bayes Factors for Model Comparison. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1):99–138.

O’Hagan, A. (1997). Properties of Intrinsic and Fractional Bayes Factors. Test, 6(1):101–118.

Petrone, S. and Raftery, A. E. (1997). A Note on the Dirichlet Process Prior in Bayesian
Nonparametric Inference with Partial Exchangeability. Statistics & Probability Letters,
36(1):69–83.



References 113

Raftery, A. E. and Akman, V. E. (1986). Bayesian Analysis of a Poisson Process with a
Change-point. Biometrika, 73(1):85–89.

Ramsey, F. P. (1926). Truth and Probability. In Braithwaite, R. B., editor, The Foundations
of Mathematics and other Logical Essays, chapter 7, pages 156–198. McMaster University
Archive for the History of Economic Thought.

Rissanen, J. (1983). A Universal Prior for Integers and Estimation by Minimum Description
Length. The Annals of Statistics, 11(2):416–431.

Robert, C. P. (2007). The Bayesian Choice:From Decision-Theoretic Foundations to Compu-
tational Implementation. Springer Science+Business Media, LLC, 233 Spring Street, New
York, NY 10013, USA, 2nd edition.

Roverato, A. (2017). Graphical Models for Categorical Data. SemStat Elements. Cambridge
University Press.

Roverato, A. and Whittaker, J. (1998). The Isserlis Matrix and its Application to Non-
decomposable Graphical Gaussian Models. Biometrika, 85(3):711–725.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal
Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science,
308(5721):523–529.

Sadia, F., Boyd, S., and Keith, J. M. (2018). Bayesian Change-point Modeling with Seg-
mented ARMA Model. PLOS ONE, 13(12):1–23.

Sandberg, I., Lo, J., Fancourt, C., Principe, J., Katagiri, S., and Haykin, S. (2001). Nonlinear
Dynamical Systems: Feedforward Neural Network Perspectives. Adaptive and Cognitive
Dynamic Systems: Signal Processing, Learning, Communications and Control. Wiley.

Schwaller, L. and Robin, S. (2017). Exact Bayesian Inference for Off-line Change-point
Detection in Tree-structured Graphical Models. Statistics and Computing, 27(5):1331–
1345.

Scott, J. G. and Berger, J. O. (2010). Bayes and Empirical-Bayes Multiplicity Adjustment in
the Variable-selection Problem. The Annals of Statistics, 38(5):2587–2619.

Scott, J. G. and Carvalho, C. M. (2008). Feature-Inclusion Stochastic Search for Gaussian
Graphical Models. Journal of Computational and Graphical Statistics, 17(4):790–808.

Scricciolo, C. (1999). Probability Matching Priors: A Review. Statistical Methods &
Applications, 8(1):83–100.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical
Journal, 27(3):379–423.

Shaun, B., Tom, F., and Frank, S. (2016). Algebra, Logic And Combinatorics. LTCC
Advanced Mathematics Series. World Scientific Publishing Company.



References 114

Shojaie, A. and Michailidis, G. (2010). Penalized Principal Component Regression on
Graphs for Analysis of Subnetworks. In Lafferty, J. D., Williams, C. K. I., Shawe-Taylor,
J., Zemel, R. S., and Culotta, A., editors, Advances in Neural Information Processing
Systems 23, pages 2155–2163. Curran Associates, Inc.

Smith, A. F. M. (1975). A Bayesian Approach to Inference about a Change-point in a
Sequence of Random Variables. Biometrika, 62(2):407–416.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. MIT
press, 2nd edition.

Stephens, D. A. (1994). Bayesian Retrospective Multiple-Changepoint Identification. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 43(1):159–178.

Stingo, F. and Marchetti, G. M. (2015). Efficient Local Updates for Undirected Graphical
Models. Statistics and Computing, 25(1):159–171.

Stingo, F. C., Chen, Y. A., Vannucci, M., Barrier, M., and Mirkes, P. E. (2010). A Bayesian
Graphical Modeling Approach to MicroRNA Regulatory Network Inference. The Annals
of Applied Statistics, 4(4):2024–2048.

Sun, D. and Berger, J. O. (2007). Objective Bayesian Analysis for the Multivariate Normal
Model. In Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith,
A.F.M., and West, M., editors, Bayesian Statistics 8, pages 525–563. Oxford University
Press, London.

Tian, G.-L., Ng, K. W., Li, K.-C., and Tan, M. (2009). Non-iterative Sampling-based
Bayesian Methods for Identifying Changepoints in the Sequence of Cases of Haemolytic
Uraemic Syndrome. Computational Statistics & Data Analysis, 53(9):3314–3323.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58(1):267–288.

Villa, C. and Lee, J. E. (2019). A Loss-based Prior for Variable Selection in Linear Regression
Methods. Bayesian Analysis. Forthcoming.

Villa, C. and Walker, S. (2015a). An Objective Bayesian Criterion to Determine Model Prior
Probabilities. Scandinavian Journal of Statistics, 42(4):947–966.

Villa, C. and Walker, S. G. (2015b). An Objective Approach to Prior Mass Functions for Dis-
crete Parameter Spaces. Journal of the American Statistical Association, 110(511):1072–
1082.

Wang, T., Ren, Z., Ding, Y., Fang, Z., Sun, Z., MacDonald, M. L., Sweet, R. A., Wang, J.,
and Chen, W. (2016). FastGGM: An Efficient Algorithm for the Inference of Gaussian
Graphical Model in Biological Networks. PLOS Computational Biology, 12(2):e1004755.

Welch, B. L. and Peers, H. W. (1963). On Formulae for Confidence Points Based on
Integrals of Weighted Likelihoods. Journal of the Royal Statistical Society. Series B
(Methodological), 25(2):318–329.



References 115

Williams, D. R. (2018). Bayesian Inference for Gaussian Graphical Models: Structure
Learning, Explanation, and Prediction. PsyArXiv e-prints.

Wu, Y., Tjelmeland, H., and West, M. (2007). Bayesian CART: Prior Specification and
Posterior Simulation. Journal of Computational and Graphical Statistics, 16(1):44–66.

Yajima, M., Telesca, D., Ji, Y., and Müller, P. (2015). Detecting Differential Patterns of
Interaction in Molecular Pathways. Biostatistics, 16(2):240–251.

Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J., and Moscibroda, T. (2016). Mobility Modeling
and Prediction in Bike-Sharing Systems. In ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys).

Yao, Y.-C. (1984). Estimation of a Noisy Discrete-Time Step Function: Bayes and Empirical
Bayes Approaches. The Annals of Statistics, 12(4):1434–1447.

Yu, J. (2001). Chapter 6 - Testing for a Finite Variance in Stock Return Distributions. In
Knight, J. and Satchell, S. E., editors, Return Distributions in Finance (Quantitative
Finance), pages 143–164. Butterworth-Heinemann, Oxford.

Yuan, M. and Lin, Y. (2007). Model Selection and Estimation in the Gaussian Graphical
Model. Biometrika, 94(1):19–35.



A. Appendix to the Change Point

Chapter

Model prior probabilities to select among models M0, M1 and M2

Here, we show how model prior probabilities can be derived for the relatively simple case

of selecting among scenarios with no change points (M0), one change point (M1) or two

change points (M2). First, by applying the result in Theorem 2, we derive the KL divergences

between any two models. That is:

• the prior probability for model M0 depends on the following quantities:

DKL(M0∥M1) =(n−m1) ·DKL( f1(·|θ̃1)∥ f2(·|θ̃2))

DKL(M0∥M2) =(m2 −m1) ·DKL( f1(·|θ̃1)∥ f2(·|θ̃2))

+(n−m2) ·DKL( f1(·|θ̃1)∥ f3(·|θ̃3))

• the prior probability for model M1 depends on the following quantities:

DKL(M1∥M2) =(n−m2) ·DKL( f2(·|θ̃2)∥ f3(·|θ̃3))

DKL(M1∥M0) =(n−m1) ·DKL( f2(·|θ̃2)∥ f1(·|θ̃1))
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• the prior probability for model M2 depends on the following quantities:

DKL(M2∥M1) =(n−m2) ·DKL( f3(·|θ̃3)∥ f2(·|θ̃2))

DKL(M2∥M0) =(m2 −m1) ·DKL( f2(·|θ̃2)∥ f1(·|θ̃1))

+(n−m2) ·DKL( f3(·|θ̃3)∥ f1(·|θ̃1))

The next step is to derive the minimum KL divergence computed at each model:

• for model M0:

inf
θ1

DKL(M0∥M1) =

[
inf

m1 ̸=n
(n−m1)

]
︸ ︷︷ ︸

1

·
[

inf
θ̃2

DKL( f1(·|θ̃1)∥ f2(·|θ̃2))

]

= inf
θ̃2

DKL( f1(·|θ̃1)∥ f2(·|θ̃2))

inf
θ2

DKL(M0∥M2) =

[
inf

m1 ̸=m2
(m2 −m1)

]
︸ ︷︷ ︸

1

·
[

inf
θ̃2

DKL( f1(·|θ̃1)∥ f2(·|θ̃2))

]

+

[
inf

m2 ̸=n
(n−m2)

]
︸ ︷︷ ︸

1

·
[

inf
θ̃3

DKL( f1(·|θ̃1)∥ f3(·|θ̃3))

]

= inf
θ̃2

DKL( f1(·|θ̃1)∥ f2(·|θ̃2))+ inf
θ̃3

DKL( f1(·|θ̃1)∥ f3(·|θ̃3))

• for model M1:

inf
θ2

DKL(M1∥M2) =

[
inf

m2 ̸=n
(n−m2)

]
︸ ︷︷ ︸

1

·
[

inf
θ̃3

DKL( f2(·|θ̃2)∥ f3(·|θ̃3))

]

= inf
θ̃3

DKL( f2(·|θ̃2)∥ f3(·|θ̃3))

inf
θ0=θ̃1

DKL(M1∥M0) =(n−m1) · inf
θ̃1

DKL( f2(·|θ̃2)∥ f1(·|θ̃1))
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• for model M2:

inf
θ1

DKL(M2∥M1) =(n−m2) · inf
θ̃2

DKL( f3(·|θ̃3)∥ f2(·|θ̃2))

inf
θ0=θ̃1

DKL(M2∥M0) =(m2 −m1) · inf
θ̃1

DKL( f2(·|θ̃2)∥ f1(·|θ̃1))

+(n−m2) · inf
θ̃1

DKL( f3(·|θ̃3)∥ f1(·|θ̃1))

Therefore, the model prior probabilities can be computed through equation (3.9), so that:

• the model prior probability Pr(M0) is proportional to the exponential of the minimum

between:

{
Eπ0

[
inf
θ̃2

DKL( f1(·|θ̃1)∥ f2(·|θ̃2))

]
,Eπ0

[
inf
θ̃2

DKL( f1(·|θ̃1)∥ f2(·|θ̃2))

+ inf
θ̃3

DKL( f1(·|θ̃1)∥ f3(·|θ̃3))

]}

• the model prior probability Pr(M1) is proportional to the exponential of the minimum

between:

{
Eπ1

[
inf
θ̃3

DKL( f2(·|θ̃2)∥ f3(·|θ̃3))

]
,

Eπ1

[
(n−m1) · inf

θ̃1

DKL( f2(·|θ̃2)∥ f1(·|θ̃1))

]}
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• the model prior probability Pr(M2) is proportional to the exponential of the minimum

between:

{
Eπ2

[
(n−m2) · inf

θ̃2

DKL( f3(·|θ̃3)∥ f2(·|θ̃2))

]
,

Eπ2

[
(m2 −m1) · inf

θ̃1

DKL( f2(·|θ̃2)∥ f1(·|θ̃1))+(n−m2)

· inf
θ̃1

DKL( f3(·|θ̃3)∥ f1(·|θ̃1))

]}
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Proofs

Proof of Theorem 1

We distinguish two cases: S =+1 and S =−1. When S =+1, equivalent to m j < m′
j:

DKL( f (x(n)|mmm, θ̃θθ)∥ f (x(n)|mmm′, θ̃θθ)) =
∫

f (x(n)|mmm, θ̃θθ) · ln

(
f (x(n)|mmm, θ̃θθ)

f (x(n)|mmm′, θ̃θθ)

)
dx(n)

=
∫

f (x(n)|mmm, θ̃θθ) ·

 m′
j

∑
i=m j+1

ln
(

f j+1(xi|θ̃ j+1)

f j(xi|θ̃ j)

) dx(n)

=

m′
j

∑
i=m j+1

∫
f (x(n)|mmm, θ̃θθ) ·

[
ln
(

f j+1(xi|θ̃ j+1)

f j(xi|θ̃ j)

)]
dx(n)

=

m′
j

∑
i=m j+1

{
1n−1 ·

∫
f j+1(xi|θ̃ j+1) ·

[
ln
(

f j+1(xi|θ̃ j+1)

f j(xi|θ̃ j)

)]
dxi

}

=

m′
j

∑
i=m j+1

DKL( f j+1(xi|θ̃ j+1)∥ f j(xi|θ̃ j))

=(m′
j −m j) ·DKL( f j+1(·|θ̃ j+1)∥ f j(·|θ̃ j))

=(m′
j −m j) ·d+1

j (θ̃θθ). (A.1)

When S =−1, equivalent to m j > m′
j, in a similar fashion, we get

DKL( f (x(n)|mmm, θ̃θθ)∥ f (x(n)|mmm′, θ̃θθ)) = (m j −m′
j) ·d−1

j (θ̃θθ) (A.2)

From equations (A.1) and (A.2), we get the result in Theorem 1.

Proof of Theorem 2

We recall that the model parameter θi is the vector (m1,m2, . . . ,mi, θ̃1, θ̃2, . . . , θ̃i+1), where

i = 0,1, . . . ,k. Here, θ̃1, θ̃2, . . . , θ̃i+1 represent the parameters of the underlying sampling
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distributions considered under model Mi and m1,m2, . . . ,mi are the respective i change point

locations. In this setting,

f (x(n)|θi) =
m1

∏
r=1

f1(xr|θ̃1)
i−1

∏
t=1

mt+1

∏
r=mt+1

ft+1(xr|θ̃t+1)
n

∏
r=mi+1

fi+1(xr|θ̃i+1) (A.3)

We proceed to the computation of DKL(Mi∥M j), that is the KL divergence introduced in

Section 3.2. Similarly to the proof of Theorem 1, we obtain the following result.

DKL(Mi∥M j) =
mi+2

∑
r=mi+1+1

∫
f (x(n)|θi) ln

(
fi+1(xr|θ̃i+1)

fi+2(xr|θ̃i+2)

)
dx(n)

+
mi+3

∑
r=mi+2+1

∫
f (x(n)|θi) ln

(
fi+1(xr|θ̃i+1)

fi+3(xr|θ̃i+3)

)
dx(n)+

. . .+
n

∑
r=m j+1

∫
f (x(n)|θi) ln

(
fi+1(xr|θ̃i+1)

f j+1(xr|θ̃ j+1)

)
dx(n).

Given equation (A.3), if we integrate out the variables not involved in the logarithms, we

obtain

DKL(Mi∥M j) =(mi+2 −mi+1) ·DKL( fi+1(·|θ̃i+1)∥ fi+2(·|θ̃i+2))

+(mi+3 −mi+2) ·DKL( fi+1(·|θ̃i+1)∥ fi+3(·|θ̃i+3))+

. . .+(n−m j) ·DKL( fi+1(·|θ̃i+1)∥ f j+1(·|θ̃ j+1)).

In a similar fashion, it can be shown that

DKL(M j∥Mi) =(mi+2 −mi+1) ·DKL( fi+2(·|θ̃i+2)∥ fi+1(·|θ̃i+1))

+(mi+3 −mi+2) ·DKL( fi+3(·|θ̃i+3)∥ fi+1(·|θ̃i+1))+

. . .+(n−m j) ·DKL( f j+1(·|θ̃ j+1)∥ fi+1(·|θ̃i+1))



B. Appendix to the Gaussian Graphical

Models Chapter

FINCS algorithm

The FINCS algorithm is schematically outlined below.

Given the data and some parameters do the following steps:

Step 1 Initialize a graph based on the triangular regression done on the data. In this

context, triangular regression simply means that we take each column of the

data matrix and we regress it, through the ordinary least squares method, on

the submatrix formed from the remaining columns to the respective column’s

right. As such, the number of columns will become smaller and smaller as we

progress towards the last column. For each considered column starting from the

leftmost one, we take each estimated regression coefficient and we compare its

absolute value to three times its standard error. If the absolute value is at least as

big as three times the standard error, then the respective regression coefficient is

different than 0 and the corresponding edge is present in the underlying graph,

otherwise we consider the respective covariate as not influencing the response

thus the analogous edge does not appear in the graph.

Step 2 Loop over the iterations in a serial manner:

122
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1 At a certain number of iterations do a global move through a randomized

median triangulation pair. Starting from a random median graph, we add or

delete an edge such that decomposability is maintained and the log score is

improved

2 At a certain number of iterations we resample one of the previous saved

local graphs

3 Do a local move by deleting or adding an edge that maintains decompos-

ability. When an edge is added, it is done in proportion to the estimated

posterior probability of inclusion q̂i j for edge (i, j), whereas when there is a

deletion, the edge is affected in inverse proportion to the estimated inclusion

probabilities

4 Save the local graph in a finite resampling list and remove those graphs that

do not improve the log score.

According to Scott and Carvalho (2008), a randomized median triangulation pair rep-

resents a pair of decomposable graphs chosen in a certain way from the median graph GN

which will often be non-decomposable. One of the pair members will be the minimal decom-

posable supergraph G+ ⊃ GN , whilst the other will be the maximal decomposable subgraph

G− ⊂ GN . Based on the posterior probabilities, we choose one of G+ or G− as our current

generated graph at the respective iteration step. This randomised median triangulation pair

allows the exploration of new regions in the decomposable graph space.
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Pearson correlation matrices

PPPPPPPPPPPPPPP
Variables

Variables
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.00 0.23 -0.36 0.20 -0.08 -0.37 -0.51 -0.16 0.43 0.42 -0.12 0.02 -0.24 -0.08 0.09

2 0.23 1.00 0.00 0.32 0.03 0.13 -0.10 -0.03 0.10 0.02 0.12 0.15 0.06 -0.05 -0.36

3 -0.36 0.00 1.00 -0.19 0.11 0.51 0.37 0.58 -0.22 -0.24 -0.01 -0.05 0.20 0.10 0.06

4 0.20 0.32 -0.19 1.00 -0.01 0.23 -0.29 -0.10 0.40 0.18 0.03 0.23 0.10 -0.09 -0.04

5 -0.08 0.03 0.11 -0.01 1.00 0.15 -0.01 -0.08 -0.43 -0.11 0.14 -0.09 -0.00 0.20 -0.21

6 -0.37 0.13 0.51 0.23 0.15 1.00 0.24 0.26 -0.22 -0.22 0.11 -0.01 0.21 0.10 -0.03

7 -0.51 -0.10 0.37 -0.29 -0.01 0.24 1.00 0.22 -0.52 -0.82 0.05 0.07 0.14 0.19 -0.31

8 -0.16 -0.03 0.58 -0.10 -0.08 0.26 0.22 1.00 0.14 -0.13 -0.04 0.14 0.17 0.13 -0.04

9 0.43 0.10 -0.22 0.40 -0.43 -0.22 -0.52 0.14 1.00 0.56 -0.17 -0.04 0.14 -0.08 0.27

10 0.42 0.02 -0.24 0.18 -0.11 -0.22 -0.82 -0.13 0.56 1.00 -0.23 -0.03 0.05 -0.13 0.30

11 -0.12 0.12 -0.01 0.03 0.14 0.11 0.05 -0.04 -0.17 -0.23 1.00 0.22 -0.12 -0.35 0.06

12 0.02 0.15 -0.05 0.23 -0.09 -0.01 0.07 0.14 -0.04 -0.03 0.22 1.00 0.08 -0.08 -0.21

13 -0.24 0.06 0.20 0.10 -0.00 0.21 0.14 0.17 0.14 0.05 -0.12 0.08 1.00 -0.01 0.12

14 -0.08 -0.05 0.10 -0.09 0.20 0.10 0.19 0.13 -0.08 -0.13 -0.35 -0.08 -0.01 1.00 -0.17

15 0.09 -0.36 0.06 -0.04 -0.21 -0.03 -0.31 -0.04 0.27 0.30 0.06 -0.21 0.12 -0.17 1.00

Table B.1 Pearson correlation matrix computed for the sample used in Table 4.1.

❳❳❳❳❳❳❳❳❳❳❳❳Variables
Variables

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 1.00 -0.45 -0.91 0.96 0.96 -0.98 0.73 -0.96 -0.98 0.97 0.16 -0.20 0.10 0.14 -0.09 -0.05 -0.07 0.26 -0.02 -0.18 -0.09 -0.18 -0.10 0.01 0.02 0.13 -0.14 0.04 -0.11 -0.10 -0.12 0.29 0.05 -0.06 -0.01 0.19 0.05 -0.04 0.09 0.08 0.04 -0.22 0.14 -0.04 -0.12 0.05 0.03 -0.06 -0.21 0.14
2 -0.45 1.00 0.45 -0.50 -0.44 0.42 -0.41 0.48 0.46 -0.44 -0.05 -0.09 0.09 0.12 0.06 0.06 0.20 -0.11 -0.01 0.20 -0.04 0.08 0.19 -0.09 -0.07 -0.11 0.14 -0.08 0.06 -0.14 0.13 -0.24 -0.03 0.00 0.30 -0.09 -0.02 -0.04 -0.12 -0.22 0.06 0.27 -0.08 -0.01 0.04 -0.03 -0.17 0.07 -0.01 0.09
3 -0.91 0.45 1.00 -0.95 -0.91 0.88 -0.78 0.96 0.93 -0.93 -0.20 0.21 -0.05 -0.07 0.02 0.08 0.05 -0.16 0.00 0.19 0.07 0.16 0.07 -0.05 0.03 -0.07 0.20 0.03 0.13 0.03 0.17 -0.28 -0.20 0.11 0.01 -0.16 -0.11 -0.05 -0.10 -0.10 -0.08 0.06 -0.14 -0.02 0.10 -0.00 -0.01 -0.03 0.24 -0.15
4 0.96 -0.50 -0.95 1.00 0.96 -0.94 0.76 -1.00 -0.98 0.97 0.19 -0.20 0.08 0.08 -0.08 -0.06 -0.07 0.19 -0.03 -0.22 -0.04 -0.14 -0.09 0.07 -0.07 0.13 -0.18 -0.07 -0.12 -0.03 -0.17 0.31 0.13 -0.09 0.00 0.18 0.05 0.00 0.14 0.12 0.05 -0.14 0.18 -0.09 -0.11 0.03 0.09 -0.06 -0.21 0.12
5 0.96 -0.44 -0.91 0.96 1.00 -0.94 0.75 -0.96 -0.98 0.96 0.18 -0.26 0.10 0.06 -0.07 -0.04 -0.15 0.19 -0.04 -0.21 -0.05 -0.15 -0.09 0.07 -0.06 0.14 -0.16 -0.02 -0.14 -0.07 -0.13 0.34 0.07 -0.02 0.01 0.17 0.06 0.03 0.16 0.10 0.06 -0.18 0.18 -0.08 -0.19 0.06 0.05 -0.06 -0.20 0.16
6 -0.98 0.42 0.88 -0.94 -0.94 1.00 -0.62 0.94 0.96 -0.95 -0.19 0.19 -0.11 -0.12 0.06 0.02 0.05 -0.30 0.02 0.23 0.06 0.20 0.13 -0.00 -0.01 -0.12 0.13 -0.02 0.13 0.06 0.10 -0.26 -0.07 0.06 0.00 -0.16 -0.07 0.05 -0.10 -0.09 -0.02 0.24 -0.12 0.04 0.10 -0.04 -0.01 0.09 0.20 -0.12
7 0.73 -0.41 -0.78 0.76 0.75 -0.62 1.00 -0.77 -0.77 0.76 0.04 -0.24 -0.01 0.07 -0.13 -0.20 -0.20 -0.02 -0.07 -0.01 -0.07 -0.03 -0.06 0.14 0.01 0.06 -0.18 -0.03 0.05 -0.09 -0.20 0.36 0.15 -0.13 -0.00 0.08 0.11 -0.02 0.06 0.02 -0.03 -0.01 0.16 -0.08 -0.20 0.07 0.08 0.03 -0.15 0.15
8 -0.96 0.48 0.96 -1.00 -0.96 0.94 -0.77 1.00 0.98 -0.97 -0.19 0.21 -0.07 -0.07 0.05 0.07 0.08 -0.18 0.03 0.21 0.03 0.15 0.09 -0.05 0.06 -0.10 0.18 0.05 0.09 0.03 0.17 -0.28 -0.14 0.09 -0.01 -0.17 -0.07 -0.03 -0.15 -0.13 -0.06 0.14 -0.15 0.07 0.12 -0.03 -0.08 0.04 0.21 -0.14
9 -0.98 0.46 0.93 -0.98 -0.98 0.96 -0.77 0.98 1.00 -0.98 -0.18 0.22 -0.11 -0.09 0.08 0.04 0.09 -0.20 -0.00 0.18 0.05 0.14 0.09 -0.03 0.04 -0.11 0.19 0.01 0.11 0.05 0.12 -0.27 -0.13 0.06 -0.00 -0.14 -0.09 -0.02 -0.17 -0.09 -0.05 0.17 -0.14 0.05 0.17 -0.07 -0.03 0.07 0.20 -0.15

10 0.97 -0.44 -0.93 0.97 0.96 -0.95 0.76 -0.97 -0.98 1.00 0.20 -0.25 0.05 0.10 -0.08 -0.07 -0.11 0.18 -0.02 -0.16 -0.09 -0.10 -0.08 0.03 -0.02 0.09 -0.21 0.00 -0.10 -0.05 -0.13 0.26 0.06 -0.07 -0.01 0.15 0.03 -0.00 0.17 0.13 0.06 -0.16 0.15 -0.03 -0.12 0.03 0.03 -0.07 -0.18 0.17
11 0.16 -0.05 -0.20 0.19 0.18 -0.19 0.04 -0.19 -0.18 0.20 1.00 0.01 -0.08 -0.13 0.17 -0.28 0.06 -0.14 0.13 -0.10 -0.08 -0.02 0.12 0.01 -0.07 -0.08 0.08 -0.23 -0.09 0.01 -0.15 0.04 0.05 0.17 -0.13 0.23 0.06 0.09 0.06 0.16 -0.08 -0.25 0.01 -0.14 -0.27 -0.09 -0.05 -0.00 -0.28 0.07
12 -0.20 -0.09 0.21 -0.20 -0.26 0.19 -0.24 0.21 0.22 -0.25 0.01 1.00 -0.19 -0.10 -0.19 -0.00 -0.12 -0.05 0.07 0.05 0.07 -0.10 0.08 -0.12 -0.15 0.24 -0.14 -0.08 0.17 0.21 0.07 -0.12 0.32 -0.01 -0.19 0.00 0.01 0.12 0.07 0.06 0.19 0.08 -0.13 0.29 -0.18 -0.05 0.23 0.23 -0.04 0.05
13 0.10 0.09 -0.05 0.08 0.10 -0.11 -0.01 -0.07 -0.11 0.05 -0.08 -0.19 1.00 0.16 -0.16 0.10 0.15 0.09 0.24 -0.25 -0.13 -0.03 0.00 -0.17 -0.06 0.04 0.11 0.13 -0.06 -0.46 0.03 0.11 -0.01 -0.06 0.09 0.08 -0.11 -0.01 -0.10 -0.18 0.01 -0.01 -0.00 -0.29 -0.04 -0.15 0.04 -0.06 0.14 0.23
14 0.14 0.12 -0.07 0.08 0.06 -0.12 0.07 -0.07 -0.09 0.10 -0.13 -0.10 0.16 1.00 -0.05 0.13 0.09 0.02 -0.11 -0.12 -0.01 0.17 0.11 0.01 -0.01 0.07 -0.07 0.08 -0.07 -0.06 0.07 -0.09 -0.12 -0.07 -0.37 0.00 -0.22 -0.19 -0.11 -0.05 -0.08 0.13 0.07 -0.01 -0.16 -0.15 0.09 -0.02 0.12 0.04
15 -0.09 0.06 0.02 -0.08 -0.07 0.06 -0.13 0.05 0.08 -0.08 0.17 -0.19 -0.16 -0.05 1.00 0.06 0.02 -0.16 0.06 0.08 0.00 -0.19 0.05 -0.21 0.27 -0.16 -0.09 -0.16 -0.06 -0.05 -0.11 -0.23 0.02 0.06 0.03 -0.06 0.22 0.05 0.01 0.02 -0.15 -0.05 -0.28 0.10 -0.15 -0.11 0.06 -0.07 -0.14 -0.01
16 -0.05 0.06 0.08 -0.06 -0.04 0.02 -0.20 0.07 0.04 -0.07 -0.28 -0.00 0.10 0.13 0.06 1.00 0.12 0.08 0.16 -0.11 0.14 -0.08 0.06 0.19 -0.23 0.25 -0.00 0.01 -0.24 -0.07 0.29 -0.11 -0.10 -0.14 0.02 0.03 0.12 0.13 0.11 -0.14 0.10 0.17 0.06 0.12 0.02 0.26 -0.06 -0.00 0.13 -0.15
17 -0.07 0.20 0.05 -0.07 -0.15 0.05 -0.20 0.08 0.09 -0.11 0.06 -0.12 0.15 0.09 0.02 0.12 1.00 0.27 -0.08 0.06 0.14 0.01 0.16 -0.22 -0.10 0.14 0.13 0.04 -0.13 0.22 0.12 -0.08 0.00 -0.13 0.20 -0.21 0.06 0.07 -0.06 -0.05 0.06 0.02 0.00 -0.24 0.09 -0.07 -0.14 -0.26 0.03 0.10
18 0.26 -0.11 -0.16 0.19 0.19 -0.30 -0.02 -0.18 -0.20 0.18 -0.14 -0.05 0.09 0.02 -0.16 0.08 0.27 1.00 0.05 -0.05 -0.11 -0.23 -0.08 -0.23 -0.02 0.27 0.27 0.29 -0.10 -0.01 0.24 -0.22 0.00 -0.12 0.16 0.17 0.04 0.01 -0.26 -0.04 0.17 -0.27 0.02 0.10 -0.08 -0.14 0.09 -0.05 0.19 0.02
19 -0.02 -0.01 0.00 -0.03 -0.04 0.02 -0.07 0.03 -0.00 -0.02 0.13 0.07 0.24 -0.11 0.06 0.16 -0.08 0.05 1.00 0.01 -0.11 -0.04 -0.13 -0.06 0.14 0.15 -0.10 0.05 0.07 -0.30 0.08 -0.21 0.12 0.03 0.23 0.30 -0.08 0.21 -0.19 -0.14 -0.01 0.05 -0.13 0.29 -0.14 -0.06 -0.04 -0.02 -0.04 -0.02
20 -0.18 0.20 0.19 -0.22 -0.21 0.23 -0.01 0.21 0.18 -0.16 -0.10 0.05 -0.25 -0.12 0.08 -0.11 0.06 -0.05 0.01 1.00 -0.06 -0.13 -0.00 -0.25 -0.16 -0.12 0.05 0.05 0.38 -0.05 0.32 -0.10 0.18 0.10 0.12 -0.07 0.18 0.04 0.05 -0.00 0.18 -0.02 0.10 0.22 0.05 0.04 -0.24 0.05 0.11 0.06
21 -0.09 -0.04 0.07 -0.04 -0.05 0.06 -0.07 0.03 0.05 -0.09 -0.08 0.07 -0.13 -0.01 0.00 0.14 0.14 -0.11 -0.11 -0.06 1.00 0.00 0.21 0.18 -0.11 -0.01 -0.07 -0.08 0.14 0.23 0.05 -0.06 0.26 -0.12 -0.01 -0.19 0.19 0.02 0.24 0.07 -0.19 -0.02 0.09 -0.18 -0.17 0.07 -0.03 -0.11 0.17 0.12
22 -0.18 0.08 0.16 -0.14 -0.15 0.20 -0.03 0.15 0.14 -0.10 -0.02 -0.10 -0.03 0.17 -0.19 -0.08 0.01 -0.23 -0.04 -0.13 0.00 1.00 -0.16 0.11 0.21 -0.07 -0.20 -0.06 -0.27 0.21 -0.23 -0.01 -0.07 -0.10 0.08 -0.11 -0.18 -0.21 -0.10 0.17 -0.16 0.28 -0.06 -0.11 -0.07 0.17 -0.28 -0.21 0.32 0.07
23 -0.10 0.19 0.07 -0.09 -0.09 0.13 -0.06 0.09 0.09 -0.08 0.12 0.08 0.00 0.11 0.05 0.06 0.16 -0.08 -0.13 -0.00 0.21 -0.16 1.00 0.11 -0.20 0.02 0.03 -0.06 0.09 -0.03 0.22 -0.07 -0.07 0.11 -0.11 0.03 -0.18 0.18 0.17 0.07 0.08 -0.02 -0.01 -0.13 -0.20 0.20 0.12 0.09 -0.26 -0.05
24 0.01 -0.09 -0.05 0.07 0.07 -0.00 0.14 -0.05 -0.03 0.03 0.01 -0.12 -0.17 0.01 -0.21 0.19 -0.22 -0.23 -0.06 -0.25 0.18 0.11 0.11 1.00 0.00 0.05 0.09 -0.20 -0.20 0.07 -0.05 0.32 -0.24 0.09 -0.06 0.07 -0.20 -0.22 0.15 -0.03 -0.23 0.22 0.26 -0.16 0.02 0.38 -0.12 0.09 -0.07 -0.26
25 0.02 -0.07 0.03 -0.07 -0.06 -0.01 0.01 0.06 0.04 -0.02 -0.07 -0.15 -0.06 -0.01 0.27 -0.23 -0.10 -0.02 0.14 -0.16 -0.11 0.21 -0.20 0.00 1.00 -0.12 -0.04 0.02 0.00 -0.01 -0.07 -0.12 -0.15 0.22 0.06 -0.15 -0.15 -0.13 -0.16 0.02 -0.33 -0.06 -0.01 -0.00 0.12 0.07 -0.14 0.05 0.14 -0.05
26 0.13 -0.11 -0.07 0.13 0.14 -0.12 0.06 -0.10 -0.11 0.09 -0.08 0.24 0.04 0.07 -0.16 0.25 0.14 0.27 0.15 -0.12 -0.01 -0.07 0.02 0.05 -0.12 1.00 -0.10 -0.10 -0.13 0.11 0.11 0.08 0.09 0.07 0.05 0.24 -0.06 0.17 -0.02 -0.17 0.02 0.16 0.21 -0.06 -0.21 -0.13 0.15 -0.01 0.07 -0.02
27 -0.14 0.14 0.20 -0.18 -0.16 0.13 -0.18 0.18 0.19 -0.21 0.08 -0.14 0.11 -0.07 -0.09 -0.00 0.13 0.27 -0.10 0.05 -0.07 -0.20 0.03 0.09 -0.04 -0.10 1.00 0.20 0.02 -0.24 0.05 -0.03 -0.23 0.12 0.09 0.16 -0.03 -0.04 -0.15 0.08 -0.14 -0.19 0.20 -0.25 0.01 0.06 -0.03 0.04 0.03 -0.01
28 0.04 -0.08 0.03 -0.07 -0.02 -0.02 -0.03 0.05 0.01 0.00 -0.23 -0.08 0.13 0.08 -0.16 0.01 0.04 0.29 0.05 0.05 -0.08 -0.06 -0.06 -0.20 0.02 -0.10 0.20 1.00 0.15 -0.08 -0.15 -0.30 -0.21 0.05 -0.07 -0.26 0.14 0.02 -0.09 -0.05 0.09 -0.08 -0.03 0.26 0.04 0.17 -0.26 -0.11 0.11 0.05
29 -0.11 0.06 0.13 -0.12 -0.14 0.13 0.05 0.09 0.11 -0.10 -0.09 0.17 -0.06 -0.07 -0.06 -0.24 -0.13 -0.10 0.07 0.38 0.14 -0.27 0.09 -0.20 0.00 -0.13 0.02 0.15 1.00 0.01 0.16 -0.09 0.15 0.05 0.07 0.01 0.16 0.22 0.12 -0.04 -0.15 -0.12 0.08 0.09 -0.05 -0.03 0.09 0.08 0.21 0.14
30 -0.10 -0.14 0.03 -0.03 -0.07 0.06 -0.09 0.03 0.05 -0.05 0.01 0.21 -0.46 -0.06 -0.05 -0.07 0.22 -0.01 -0.30 -0.05 0.23 0.21 -0.03 0.07 -0.01 0.11 -0.24 -0.08 0.01 1.00 -0.07 -0.12 0.10 -0.01 -0.12 -0.37 0.11 0.08 0.08 0.23 0.16 0.23 0.19 0.09 0.02 0.09 -0.12 0.06 0.07 -0.09
31 -0.12 0.13 0.17 -0.17 -0.13 0.10 -0.20 0.17 0.12 -0.13 -0.15 0.07 0.03 0.07 -0.11 0.29 0.12 0.24 0.08 0.32 0.05 -0.23 0.22 -0.05 -0.07 0.11 0.05 -0.15 0.16 -0.07 1.00 -0.08 -0.01 0.27 0.16 0.04 -0.25 0.09 0.07 0.02 0.02 -0.10 0.33 0.16 -0.01 -0.05 -0.01 0.03 0.26 -0.08
32 0.29 -0.24 -0.28 0.31 0.34 -0.26 0.36 -0.28 -0.27 0.26 0.04 -0.12 0.11 -0.09 -0.23 -0.11 -0.08 -0.22 -0.21 -0.10 -0.06 -0.01 -0.07 0.32 -0.12 0.08 -0.03 -0.30 -0.09 -0.12 -0.08 1.00 -0.05 0.00 -0.17 0.35 -0.04 -0.17 0.01 -0.00 -0.17 -0.13 0.17 -0.23 0.05 0.11 0.02 -0.17 -0.21 0.04
33 0.05 -0.03 -0.20 0.13 0.07 -0.07 0.15 -0.14 -0.13 0.06 0.05 0.32 -0.01 -0.12 0.02 -0.10 0.00 0.00 0.12 0.18 0.26 -0.07 -0.07 -0.24 -0.15 0.09 -0.23 -0.21 0.15 0.10 -0.01 -0.05 1.00 -0.12 0.08 -0.04 0.26 0.34 0.14 -0.06 -0.11 -0.03 -0.04 0.05 -0.22 -0.12 0.08 -0.04 -0.10 0.29
34 -0.06 0.00 0.11 -0.09 -0.02 0.06 -0.13 0.09 0.06 -0.07 0.17 -0.01 -0.06 -0.07 0.06 -0.14 -0.13 -0.12 0.03 0.10 -0.12 -0.10 0.11 0.09 0.22 0.07 0.12 0.05 0.05 -0.01 0.27 0.00 -0.12 1.00 0.02 -0.01 -0.05 0.23 0.17 -0.10 -0.23 0.06 0.26 -0.11 -0.16 0.03 -0.12 0.16 -0.12 -0.12
35 -0.01 0.30 0.01 0.00 0.01 0.00 -0.00 -0.01 -0.00 -0.01 -0.13 -0.19 0.09 -0.37 0.03 0.02 0.20 0.16 0.23 0.12 -0.01 0.08 -0.11 -0.06 0.06 0.05 0.09 -0.07 0.07 -0.12 0.16 -0.17 0.08 0.02 1.00 -0.05 -0.05 -0.03 -0.14 -0.19 -0.09 0.24 -0.01 -0.19 -0.01 0.11 -0.11 -0.07 0.05 0.06
36 0.19 -0.09 -0.16 0.18 0.17 -0.16 0.08 -0.17 -0.14 0.15 0.23 0.00 0.08 0.00 -0.06 0.03 -0.21 0.17 0.30 -0.07 -0.19 -0.11 0.03 0.07 -0.15 0.24 0.16 -0.26 0.01 -0.37 0.04 0.35 -0.04 -0.01 -0.05 1.00 0.01 -0.14 -0.27 -0.10 -0.06 -0.26 0.01 0.06 -0.20 -0.10 0.18 0.10 -0.27 0.05
37 0.05 -0.02 -0.11 0.05 0.06 -0.07 0.11 -0.07 -0.09 0.03 0.06 0.01 -0.11 -0.22 0.22 0.12 0.06 0.04 -0.08 0.18 0.19 -0.18 -0.18 -0.20 -0.15 -0.06 -0.03 0.14 0.16 0.11 -0.25 -0.04 0.26 -0.05 -0.05 0.01 1.00 0.13 0.01 -0.17 0.01 0.03 -0.16 0.10 -0.23 0.01 -0.17 0.08 -0.02 0.04
38 -0.04 -0.04 -0.05 0.00 0.03 0.05 -0.02 -0.03 -0.02 -0.00 0.09 0.12 -0.01 -0.19 0.05 0.13 0.07 0.01 0.21 0.04 0.02 -0.21 0.18 -0.22 -0.13 0.17 -0.04 0.02 0.22 0.08 0.09 -0.17 0.34 0.23 -0.03 -0.14 0.13 1.00 0.15 -0.05 0.10 -0.06 -0.06 0.06 -0.14 -0.05 0.09 -0.02 0.04 0.02
39 0.09 -0.12 -0.10 0.14 0.16 -0.10 0.06 -0.15 -0.17 0.17 0.06 0.07 -0.10 -0.11 0.01 0.11 -0.06 -0.26 -0.19 0.05 0.24 -0.10 0.17 0.15 -0.16 -0.02 -0.15 -0.09 0.12 0.08 0.07 0.01 0.14 0.17 -0.14 -0.27 0.01 0.15 1.00 0.10 -0.03 -0.11 0.18 -0.10 0.01 0.11 -0.15 -0.15 0.05 0.20
40 0.08 -0.22 -0.10 0.12 0.10 -0.09 0.02 -0.13 -0.09 0.13 0.16 0.06 -0.18 -0.05 0.02 -0.14 -0.05 -0.04 -0.14 -0.00 0.07 0.17 0.07 -0.03 0.02 -0.17 0.08 -0.05 -0.04 0.23 0.02 -0.00 -0.06 -0.10 -0.19 -0.10 -0.17 -0.05 0.10 1.00 0.18 -0.19 0.20 0.06 -0.11 -0.03 0.14 0.19 0.25 0.04
41 0.04 0.06 -0.08 0.05 0.06 -0.02 -0.03 -0.06 -0.05 0.06 -0.08 0.19 0.01 -0.08 -0.15 0.10 0.06 0.17 -0.01 0.18 -0.19 -0.16 0.08 -0.23 -0.33 0.02 -0.14 0.09 -0.15 0.16 0.02 -0.17 -0.11 -0.23 -0.09 -0.06 0.01 0.10 -0.03 0.18 1.00 0.02 -0.08 0.34 0.17 0.04 0.05 0.30 -0.05 -0.11
42 -0.22 0.27 0.06 -0.14 -0.18 0.24 -0.01 0.14 0.17 -0.16 -0.25 0.08 -0.01 0.13 -0.05 0.17 0.02 -0.27 0.05 -0.02 -0.02 0.28 -0.02 0.22 -0.06 0.16 -0.19 -0.08 -0.12 0.23 -0.10 -0.13 -0.03 0.06 0.24 -0.26 0.03 -0.06 -0.11 -0.19 0.02 1.00 -0.00 0.03 -0.05 0.02 -0.20 0.27 0.09 -0.08
43 0.14 -0.08 -0.14 0.18 0.18 -0.12 0.16 -0.15 -0.14 0.15 0.01 -0.13 -0.00 0.07 -0.28 0.06 0.00 0.02 -0.13 0.10 0.09 -0.06 -0.01 0.26 -0.01 0.21 0.20 -0.03 0.08 0.19 0.33 0.17 -0.04 0.26 -0.01 0.01 -0.16 -0.06 0.18 0.20 -0.08 -0.00 1.00 -0.05 0.13 0.03 -0.15 0.14 0.22 0.16
44 -0.04 -0.01 -0.02 -0.09 -0.08 0.04 -0.08 0.07 0.05 -0.03 -0.14 0.29 -0.29 -0.01 0.10 0.12 -0.24 0.10 0.29 0.22 -0.18 -0.11 -0.13 -0.16 -0.00 -0.06 -0.25 0.26 0.09 0.09 0.16 -0.23 0.05 -0.11 -0.19 0.06 0.10 0.06 -0.10 0.06 0.34 0.03 -0.05 1.00 0.03 0.11 -0.18 0.16 0.06 -0.00
45 -0.12 0.04 0.10 -0.11 -0.19 0.10 -0.20 0.12 0.17 -0.12 -0.27 -0.18 -0.04 -0.16 -0.15 0.02 0.09 -0.08 -0.14 0.05 -0.17 -0.07 -0.20 0.02 0.12 -0.21 0.01 0.04 -0.05 0.02 -0.01 0.05 -0.22 -0.16 -0.01 -0.20 -0.23 -0.14 0.01 -0.11 0.17 -0.05 0.13 0.03 1.00 0.12 -0.14 -0.22 -0.03 -0.09
46 0.05 -0.03 -0.00 0.03 0.06 -0.04 0.07 -0.03 -0.07 0.03 -0.09 -0.05 -0.15 -0.15 -0.11 0.26 -0.07 -0.14 -0.06 0.04 0.07 0.17 0.20 0.38 0.07 -0.13 0.06 0.17 -0.03 0.09 -0.05 0.11 -0.12 0.03 0.11 -0.10 0.01 -0.05 0.11 -0.03 0.04 0.02 0.03 0.11 0.12 1.00 -0.45 -0.05 -0.11 0.02
47 0.03 -0.17 -0.01 0.09 0.05 -0.01 0.08 -0.08 -0.03 0.03 -0.05 0.23 0.04 0.09 0.06 -0.06 -0.14 0.09 -0.04 -0.24 -0.03 -0.28 0.12 -0.12 -0.14 0.15 -0.03 -0.26 0.09 -0.12 -0.01 0.02 0.08 -0.12 -0.11 0.18 -0.17 0.09 -0.15 0.14 0.05 -0.20 -0.15 -0.18 -0.14 -0.45 1.00 0.17 -0.11 -0.07
48 -0.06 0.07 -0.03 -0.06 -0.06 0.09 0.03 0.04 0.07 -0.07 -0.00 0.23 -0.06 -0.02 -0.07 -0.00 -0.26 -0.05 -0.02 0.05 -0.11 -0.21 0.09 0.09 0.05 -0.01 0.04 -0.11 0.08 0.06 0.03 -0.17 -0.04 0.16 -0.07 0.10 0.08 -0.02 -0.15 0.19 0.30 0.27 0.14 0.16 -0.22 -0.05 0.17 1.00 -0.02 -0.12
49 -0.21 -0.01 0.24 -0.21 -0.20 0.20 -0.15 0.21 0.20 -0.18 -0.28 -0.04 0.14 0.12 -0.14 0.13 0.03 0.19 -0.04 0.11 0.17 0.32 -0.26 -0.07 0.14 0.07 0.03 0.11 0.21 0.07 0.26 -0.21 -0.10 -0.12 0.05 -0.27 -0.02 0.04 0.05 0.25 -0.05 0.09 0.22 0.06 -0.03 -0.11 -0.11 -0.02 1.00 0.15
50 0.14 0.09 -0.15 0.12 0.16 -0.12 0.15 -0.14 -0.15 0.17 0.07 0.05 0.23 0.04 -0.01 -0.15 0.10 0.02 -0.02 0.06 0.12 0.07 -0.05 -0.26 -0.05 -0.02 -0.01 0.05 0.14 -0.09 -0.08 0.04 0.29 -0.12 0.06 0.05 0.04 0.02 0.20 0.04 -0.11 -0.08 0.16 -0.00 -0.09 0.02 -0.07 -0.12 0.15 1.00

Table B.2 Pearson correlation matrix computed for the sample used in Table 4.2.
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