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Abstract 

 

With the arrival of the -omics era and the democratisation of genome sequencing 

the amount of genetic data is escalating in magnitude orders every year. However, 

despite all this raw data, the effect prediction of genetic variations in disease remains 

an open question. The future machine learning algorithms which could solve the 

problem still require lots of information to feed their development, and it is our 

mission as bioinformaticians to extract it from the oceans of data.  

 

This Thesis focusses in the analysis of genetic variation in two complete different 

diseases: Ebolavirus and neuroblastoma.  

 

After the last Ebolavirus outbreak in West Africa (2014), the deadliest one in history, 

researchers sequenced lots of viral genomes for both surveillance and study of the 

pathogenic strain. There are still lots to learn from this virus and this Thesis wants to 

contribute with the study of how it becomes human pathogenic. By comparing 

different Ebolavirus species, four pathogenic to humans and one not, and looking 

into functionally important residues called Specificity Determining Positions (SDPs) 

in their genomes, we predict protein residues which may be key to the host-specifity 

pathogenicity. 

 

Neuroblastoma is one of the most common cancers in infancy, and the high-risk 

variety remains a challenging and deadly disease. Chemotherapy is a key treatment 

for this cancer, so diagnostic of the right drug and effective monitoring of drug 

resistance emergence could increase the cure ratio of patients. In order to learn more 

about the genetic variance of this cancer in response to treatment and the effect of 

these variants in drug resistance emergence, we study the genome of the 

neuroblastoma cell line UKF-NB-3 and its clonal sub-lines. 
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Chapter 1: 

Introduction  

 

 

 

This Thesis contains two different research lines. The first part corresponds to our 

research of Ebolavirus genetic variants and their role in human pathogenicity, while 

the second part focus on neuroblastoma and the description of the cell line UKF-

NB-3 and its drug adapted clones. 

 

1.1 Genome Sequencing 

Genome sequencing is the process of determining the complete DNA sequence of 

an organism’s genome. The technology has walked a long path in just three decades 

from the first sequenced genome of a Bacteriophage MS2, completed in 1976. The 

Human Genome Project started sequencing the first human genome in 1990, and it 

took only 13 years and $3-billion to complete the sequence. 

With that skyrocketing cost, both in time and money, this technology was reserved 

for a few research projects. High-throughput, previously known as Next Generation 

Sequencing (NGS), englobes a set of sequencing technologies which have 

revolutionised genomic research, reducing the cost to sequence a human genome to 

below $1000 and the time required to just days, and making it affordable for 

extensive research and opening the door to clinical applications.  
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1.1.1. Types of Sequencing 

 

The old “basic” sequencing methods have been the gold standard for years, and until 

recently they were considered the most relievable method to sequence a genome. The 

principal characteristic which made these methods so reliable is that they can 

sequence a DNA molecule of a fixed length in one piece, allowing sequencing of 

captured fragments of the genome to be used without any bioinformatics processing. 

But these methods were not useful for sequencing long DNA sequences, including 

whole chromosomes, because each segment of the genome had to be individually 

sequenced one by one and then assembled all together in the right order, turning in a 

highly expensive and time-consuming challenge. These methods are: 

 Chemical sequencing (Maxam & Gilbert, 1977): published by Allan Maxam 

and Walter Gilbert in 1977, this method based on chemical modification 

allowed to sequence purified samples of double-stranded DNA without 

amplification. The technical complexity of the method and the need of 

radioactive labelling discouraged researchers to use it. 

 Sanger sequencing (Sanger, Nicklen, & Coulson, 1977): published in 1977 

and also known as chain-termination method. It became wide used by 

researchers for using less chemicals and lower radioactivity levels than its 

competitor, the chemical sequencing method. During decades it was 

improved in many ways, including automation, replacement of radioactive 

labelling with its fluorescent counterpart and capillary electrophoresis. The 

improvements of the method made possible the sequencing of the first 

human genome in 2003 using this technology. 

Sanger sequencing became the sequencing method until the emergence of high-

throughput methods in the early 2000s (de Magalhães, Finch, & Janssens, 2010). 

These revolutionary technologies lowered even more the price of sequencing 

genomes and nowadays are broadly used around the world. These new high 

throughput sequencing (HTS) methods traded off the ability of sequence longer 
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DNA segments to be able to sequence lots of shorter sequences quickly and 

massively (Figure 1.1). Now a genome could be sequenced in only one 

experiment by using different enzymes to chop it in small overlapping fragments 

and amplifying them with a PCR. The resulting short sequences that will be 

sequenced are called reads and can be used to rebuild the original genome by 

different assembling strategies.  

 

Figure 1.1. Synopsis of HTS strategies. The DNA molecule is split in smaller 

overlapping fragments. Each of those DNA fragments will be sequenced. Finally, 

the sequenced reads have to be computationally assembled in order to rebuild the 

sequenced DNA molecule. 

Some of the most popular methods are: 

 Massively parallel signature sequencing (Brenner et al., 2000): this was the 

first NGS method. It is a bead-based method which split DNA in 

thousands of short sequences.  This method became obsolete when the 

company that created it merged with Solexa and later was bought by 

Illumina, leading to the development of sequencing-by-synthesis. 
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 Pyrosequencing (Margulies et al., 2005): each DNA fragment is attached 

to a bead and introduced inside water droplets in an oil solution, where 

PCR is carried (emulsion PCR). Sequencing is done in individual wells 

where each amplified fragment is deposited by using luciferase for 

detection of the individual nucleotides added to the growing DNA 

sequence. 

 Illumina (Solexa) sequencing (Bentley et al., 2008): Arguably the most 

used method in the last decade, and the one we used to sequence our 

cancer lines in the following chapters. For this reason, this method will be 

explained more in detail step by step (Figure 1.2):  

o First, the randomly fragment DNA segments are attached to a 

ligate adapter in both ends to keep track of the sample they come 

from. 

o Fragments are split into single-stranded fragments and randomly 

bind to the inside surface of the flow cell channels of the 

sequencing plate. 

o Unlabelled nucleotides and enzymes are added to initiate the 

solid-phase bridge amplification, when fragments attach their 

second end to the surface forming a bridge-like structure. 

o The enzymes incorporate nucleotides to build double-stranded 

bridges on the solid-phase substrate. 

o Double-stranded bridges are now denaturised leaving single-

stranded templates anchored to the substrate, but twice the 

amount we had previously. 

o This process is repeated until the desired amount of reads is 

reached, generating several million dense clusters of double-

stranded DNA in each channel of the flow cell. 

o The first sequencing cycle begins by adding four labelled 

reversible terminators, primers, and DNA polymerase. 

o After laser excitation, the emitted fluorescence from each cluster 

is captured and the first base is identified. 
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o The next cycle repeats the incorporation of four labelled 

reversible terminators, primers, and DNA polymerase, and a new 

image is taken after laser excitation to capture the fluorescence of 

the new added base in each cluster. 

o The procedure continues until the last base of each cluster is 

captured. The per-base quality of the sequenced reads is later 

calculated by computing the colour intensities of the clusters in 

each image.  
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Figure 1.2. Illumina sequencing. This method first attaches primers to DNA 

fragments, and those to a flow cell where they are amplified with polymerase forming 

DNA clusters. While the clusters grow base by base, the machine adds four types of 

reversible terminator bases and a camera takes images of the fluorescently labelled 

nucleotides. The non-incorporated nucleotides are washed away and the dye and 

terminal 3’ blocker chemically removed so the next cycle can start. Source of the 

image https://bitesizebio.com/ 

https://bitesizebio.com/
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 Combinatorial probe anchor synthesis (Drmanac et al., 2010): an 

improved version of the anchor ligation technology allowing longer read 

lengths, reaction time reductions and faster time to results. This method 

denatures the DNA to form a single strand DNA circle with each strand. 

DNA is amplified and folds upon itself to produce a three-dimensional 

DNA nanoball. In this way many artefacts caused by PCR during 

amplification can be avoided. DNA nanoballs are fixed to a flow cell and 

sequencing carried by addition of an oligonucleotide probe that attaches 

in combination to specific sites within the nanoball. The probe acts as an 

anchor that then allows one of four single reversibly inactivated, labelled 

nucleotides to bind after flowing across the flow cell. 

 SOLiD (Valouev et al., 2008): sequencing by ligation technology. All 

possible oligonucleotides of a fixed length are labelled according to the 

sequenced position and oligonucleotides are annealed and ligated. Then 

emulsion PCR is used to amplify the samples and the resulting beads are 

sequenced.  

 Ion Torrent semiconductor sequencing (Rusk, 2011): improved version 

of the chemical sequencing but using a semiconductor based system. The 

sequencing is carried by measuring hydrogen ions released during the 

polymerisation of DNA.  

 Nanopore sequencing (Clarke et al., 2009): revolutionary method that 

allows us to sequence complete single DNA strands by passing them 

through a nanopore which changes its ion current depending on the 

shape and size of the molecule passing through. Depending on the charge 

change, the sequencer identifies the molecules passing through. 

There are more methods than the ones listed here, and many more in development 

that will come in the future. The possibilities and applications these and the 

upcoming sequencing methods will bring us are unimaginable and probably will 

revolutionise our world, again. 
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While the previous methods can do a whole genome sequencing (WGS), sometimes 

that amount of data is not needed and other types of sequencing are carried away to 

reduce time and cost of the experiment. One of the most popular in humans is whole 

exome sequencing (WES). WES aims to sequence only the protein-coding genes of a 

genome, the exome, and this is achieved by capturing the genomic regions before 

sequencing the DNA. The capture can be done by different target-enrichment 

strategies, but taking into account that humans have only about 180000 exons that 

account for 1% of the human genome, the cost-efficiency of this technique is 

irrefutable (S. B. Ng et al., 2009). 

 

1.1.2.  Sequence quality 

Despite the improvement of sequencing methods, there is no error-free technique. 

With the old sequencing methods this was a completely different issue; there was just 

one sequence and one probability per base (Figure 1.3A), so even in the cases where 

a base was not 100% clear it was possible to solve it. But with the HTS methods we 

have hundreds of reads covering each base, and those reads can come from different 

cells with genomic variants; so the question is no longer only what is the correct base 

at each position (Figure 1.3B) but which ones are the right ones and which can be 

sequencing errors (Figure 1.4). 
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A. Sanger Sequencing Quality 

 

B. HTS (Illumina) Sequencing Quality  

 

Figure 1.3. Sequence quality per base. Each sequenced base has a probability 

error score associated with it. Upper part of the figure (A) corresponds to Sanger 

sequencing, while the lower part (B) corresponds to HTS (Illumina). A) For Sanger 

sequencing, the error was calculated from the height of the intensity wave used to 
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identify the nucleotide base at that position of the sequence; the higher the wave and 

less interferences with others, less likely to be an error. B) In HTS we have millions 

of sequences at the same time, and every one of them which covers a nucleotide base 

is used to identify it, and therefore their individual errors are taken into account. In 

the plot we can see a box plot of the quality per base of each of the reads, the higher 

the bar the higher its Phred score. More complex statistics (listed in the left side of 

the image) can be used apart of the Phred score, and they are useful to identify 

sequencing errors and artefacts, and even contaminations in the sample. 

The Phred quality score (Ewing et al., 2005) has been used since the late 90s as a 

measure of the quality of each sequenced nucleotide. Phred quality scores not only 

allow us to determine the accuracy of sequencing and of each individual position in 

an assembled consensus sequence, but it is also used to compare the efficiency of the 

sequencing methods. 

Phred quality scores Q are defined (Ewing et al., 2005) as a property which is 

logarithmically related to the base-calling error probabilities P . The Phred quality 

score is the negative ratio of the error probability to the reference level of P = 1 

expressed in Decibel (dB): 

𝑄 = −10 𝑙𝑜𝑔10 𝑃 

or 

𝑃 = 10
−𝑄
10  

A correct measuring of the sequencing quality is essential for identifying problems in 

the sequencing and removal of low-quality sequences or sub sequences. 

Conversion of typical Phred scores used for quality thresholds into accuracy can be 

read in the following table (Table 1.1): 
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Phred score Error probability Accuracy 

10 1 / 10 90% 

20 1 / 100 99% 

30 1 / 1000 99.9% 

40 1 / 10000 99.99% 

50 1 / 100000 99.999% 

60 1 / 1000000 99.9999% 

Table 1.1. Phred score. Equivalences between Phred score, error probability and 

accuracy. 

There are multiple software to read and generate statistics to help with the 

interpretation of the quality of a sequence. One of the most commonly used 

methods for this task is FastQC (Andrews, 2010), a java program that run on any 

system and has both command line and graphic interface. 

 

1.1.3.  Genome Alignment 

As we have seen in previous section 1.1.1 Types of Sequencing, most sequencing 

methods split the genome in smaller fragments and amplify them before sequencing. 

This means that the output of the sequencer is more similar to a giant puzzle than a 

DNA sequence, with millions of pieces that may be duplicated, others may have not 

been sequenced, and the ones that match may do it in more than one place or not 

match perfectly anywhere. To solve the puzzle and align all the genome fragments, 

we use an aligner. 

Most modern aligners can filter out low quality reads and clip ignore low quality 

reads and clip off adapters. In case it has to be done manually because you want to 
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have more control on the trimming of reads or use a particular method for clipping 

the lower quality ends, there are standalone applications that allow you to do it. 

Trimmomatic (Bolger, Lohse, & Usadel, 2014) is one of the most common ones, it is 

written in java and includes a trimming method by sliding windows very interesting; 

while most trimmers remove a fixed amount of bases at the end of the sequence or 

the remove anything until they found one with a higher Phred score than the given 

threshold, the window method takes into account the average Phred value in a 

window of X nucleotides, removing everything until the first window found with a 

higher average Phred score than the given threshold. This allows a better trimming in 

many cases, as sometimes an average quality base can be surrounded by bad quality 

ones form both sides and this is the only way to address this issue. 

There are two main scenarios when aligning a sequenced genome: de novo alignment 

and against reference alignment.  

In the first one, the only information used for the alignment is the reads obtained 

from the sequencing, which demands a high depth of sequencing and long 

computing times. De novo genome assembly consists in taking a collection of short 

sequencing reads and reconstruct the genome sequence, source of all these 

fragments. The output of an assembler is decomposed into contigs: contiguous 

regions of the genome which are resolved, and/or scaffolds: longer sequences 

formed by reordered and oriented contigs with positional information but without 

sequence resolution. 

The outcome may vary depending on the methods used for the alignment, and even 

realigning with the same program and parameters can get a different outcome. The 

advantage of these methods is the creation of a new genome without the need of a 

reference to guide the assembly. 

Aligning against reference is faster and easier to replicate and compare its resulting 

genomes. It needs a reference genome, an already aligned genome of the species or at 

least very similar, and uses it as template to map the sequenced reads over it. For 

each of the short reads in the FASTQ file, a corresponding location in the reference 

sequence is determined. A mapping algorithm will locate a location in the reference 
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sequence that matches the read, while tolerating a certain amount of mismatch to 

allow subsequence variation detection that correspond to the actual difference 

between the reference and de assembled genome (Figure 1.4). 

 

Figure 1.4. Example of mapped reads. This is the visual representation of the 

result of mapping reads against a reference genome. At the top of the figure the 

reference genome is displayed (coordinates we are browsing and both forward and 

reverse strands). Below it there is a blue histogram which represents the depth of 

coverage; this is how many reads are covering each position of the genome. Finally, 

we can see lots of horizontal red and blue arrows, which represent the individual 

forward and reverse mapped reads. The coloured blocks inside them are differences 

of each read not matching the reference genome; they could be variants or 

sequencing errors, among others, and here the depth of coverage, the amount of 

times they are repeated among the reads and the individual Phred scores at that 

position are key to identify them. 

It is clear the outcome will heavily depend on the reference chosen and can be only 

used when working in already known genomes, but is faster and genomes obtained 

from aligning against the same reference are easily comparable, even if different 

methods were used to align them. 
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There are multiple aligners, so I will introduce now only the one used in the 

experiments described in this Thesis: 

Burrows-Wheeler Aligner (BWA) (H. Li & Durbin, 2010) is an improved version of 

the Burrows-Wheeler algorithm which allows alignment of long reads of up to 1Mb 

and is fast, accurate and highly memory efficient. In our analysis, we combine it 

with the pre-processing recommended by Genome Analysis Toolkit (GATK ) 

(DePristo et al., 2011). Integrated in this package there are powerful tools for 

genome analysis used by projects as 1000 Genomes and The Cancer Genome Atlas. 

 

1.2 Genetic variation 

The genome contains all the information to build and maintain a living organism. But 

individuals are unique and species evolve, and therefore the genome has to change 

accordingly to allow this phenotypic variation. In order to predict the effect a genetic 

change cause, we need to first understand how the genome encode the information 

and regulate its expression. 

Let’s remember it was only a century ago when proteins were believed to encode 

genetic information, until Griffith suggested DNA carried genetic information in 

1927 (Griffith, 1927). It was not until 1951 that Crick, Watson and Franklin 

discovered its secondary structure (Watson & Crick, 1953) and we still needed to wait 

until 1961 for Nirenberg and Matthaei to crack the primary genetic code (Matthaei & 

Nirenberg, 1961). Basically all the knowledge we have about the genome has been 

discovered in less than half a century, from the first genome sequenced in 1976 to 

the present day. And despite the impressively fast development of genetics in the last 

decades, the genome is still vastly unknown. 

The variations the genome suffers are based on random mutations. Mutations are un 

common events, and in most cases are neutral or deleterious, but sometimes a new 

phenotype is created. 
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1.2.1.  Types of Genetic Variations 

Mutations can be classified in different groups: 

 Single nucleotide variants (SNVs): a single nucleotide is replaced by other in 

the genetic sequence. These mutations can be classified in two subgroups: 

synonymous SNVs, when the codon changes into a synonym codon and 

therefore the translated protein sequence is not affected; and non-

synonymous SNVs, when the nucleotide change affects the protein sequence 

encoded, replacing one aminoacid for other or a stop codon. In this last 

scenario, the mutation is called nonsense. 

 Insertions and deletions (INDELs): one or more consecutive nucleotides are 

removed o inserted in the genetic sequence. In case they are short and affect 

the reading frame, they are also called frameshift mutations. 

 Copy number variations (CNVs): a genomic region is amplified several times 

in the genome. 

 Structural variants (SVs): structural change of the genome caused by changes 

in larger portions of the genome sequence, which in turn causes a change of 

chromosome assembly. 

Both coding and non-coding regions of the genome can be affected by genetic 

variation. However, due to our limited understanding of the role of non-coding 

regions (Birney et al., 2007; Feingold et al., 2004), predicting the effects of variations 

in those regions remains a challenge. The exception is those variants in non-coding 

regions located in known regulatory regions, where more information is available. 

SNVs that occur frequently in a population are considered benign and are known to 

as single nucleotide polymorphisms (SNPs). A SNV is considered frequent when its 

Minor Allele Frequency (MAF) > 1%, i.e. when more than 1% of the genomes of 

that species contain the mutation. As they are common, they are associated to 

population genetic variance and usually they are not functional. 

On the other hand, SNVs that do not occur frequently (MAF < 1%) are usually 

called rare variants. Before the emergence of deep sequencing methods, it was 
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difficult to know if these variants were real or just sequencing errors, but nowadays it 

has been confirmed that each individual has many of them (Nelson et al., 2012; 

Tennessen et al., 2012). These variants have been observed to be population specific, 

geographically clustered and most interestingly they are more likely to be functional. 

They are particularly enriched in the coding regions of protein ligand binding and 

active sites and involved in hydrogen bonding,   

To study genetic variation in any species, the first need is a reference genome. 

Second, but not less important for determining genetic variability in a population, a 

database of sequenced genomes and common mutations of that population.  

 

1.2.2.   Human Genetic Variation Databases 

The first human reference genome was published in 2001 as result of the Human 

Genome Project (Lander et al., 2001).  This project was an international effort started 

in 1990 and cost $3-billion. And if the sequencing methods had not evolved so 

quickly, it would have taken even more time and money to complete. It was thanks 

to the emergence of shotgun sequencing and NGS methods that it could be 

completed in that time. 

After the first human genome was released, the HapMap Project (Consortium, 2007; 

International & Consortium, 2003) was launched in 2003 with the objective of 

obtaining the human haplotype, a combination of alleles within a region of each 

chromosome, and making it available to the scientific community. This data would 

be used to understand the roles of SNPs and other genetic variants in drug response 

and how they organise across the different chromosomes.  

The first phase of HapMap ended in only three years and identified more than 1 

million SNPs using 269 genomes. In the second phase, released in 2007, 3.1 million 

SNPs were reported in 270 individuals. The third phase finished in 2010 and 

published 1.6 million of common SNPs in 1184 individuals, and was released as 

HapMap3 as an integrated data set of both common and rare alleles. 
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In 2008 started another ambitious sequencing project, the 1000 Genomes Project 

(Abraham et al., 2015; D. M. Altshuler et al., 2012; Wood et al., 2013). The main goal 

of this project was the identification of human polymorphisms with MAF > 1%. The 

sequencing methods used for the project vary between phases, and both WGS and 

WES were combined. 

In 2010 the first phase was complete and nearly 15 million SNPs, 1 million INDELs 

and 20,000 structural variants were identified. They also reported that each genome 

had between 250-300 function SNPs and between 50-100 variants associated with 

inherited disease (D. L. Altshuler et al., 2010). The second phase finished in 2012 

with a total of 1092 sequenced genomes from across 14 different populations. It 

identified over 38 million SNPs and 1.4 million INDELs, and removed over 1.7 

million low quality SNPs from the first phase. The third phase ended in 2015 and 

reported over 68,000 SVs in 2504 unrelated individuals coming from 26 different 

populations. 

The final outcome of the project was identification of 88 million mutations, of which 

84.7 million were SNPs, 3.6 million were INDELs and over 60,000 were structural 

variants. 762,000 variants of the total were rare. The 1000 Genomes Project is now 

publicly available and under the administration of the International Genome Sample 

Resource (IGSR), which forms part of EMBL-EBI. The project is under constant 

expansion as new genomic data keeps being incorporated. 

But the 1000 Genomes is no longer the biggest database of human genetic variance 

(Figure 1.5), as it is only a part of the Genome Aggregation Database (gnomAD)(Lek 

et al., 2016), which includes 123,136 exomes and 15,496 genomes from unrelated 

individuals. In its first release in 2016, gnomAD was called the Exome Aggregation 

Consortium (EXAC) and contained only exome sequencing data. 
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Figure 1.5. Biggest human genome sequencing projects. Number of sequenced 

genomes in the four biggest human sequencing projects: 1000 Genomes, Exome 

Sequencing Project (ESP), Exome Aggregation Consortium (ExAC), and Genome 

Aggregation Database (gnomAD). 

The variants discovered in these sequencing projects have not only been listed, but 

also annotated. These annotations can be found in different databases. One of them 

is dbSNP (Sherry, 2001) which contains over 150 million referenced SNPs 

(RefSNPs) and 538 million submitted SNPs (subSNP). dbSNP is founded by the 

National Centre for Biotechnology Information (NCBI) and apart from human 

variants it also collects variants of 53 other different species. 

Another database of human variants is Clinvar (Harrison et al., 2016). This one 

contains medically relevant variants, which are human variants phenotypically 

associated with disease with supporting evidence. 

 

1.2.3.  Ebola Genetic Variation Databases 
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There was not a centralised genomic repository for Ebolaviruses genomes during the 

last outbreak, despite most of them were uploaded to UCSC databank. We used 

Filovir (Filovir) and their viral genomes searching tool to download all 196 complete 

Ebolavirus genomes sequenced at the time and create our own local genetic variance 

database to work with. 

 

1.3.  The genotype to phenotype relationship 

 Once the genetic variance of an organism is known, it is possible to study the 

relation between genotype and phenotype, i.e. how genetic variants are associated 

with particular traits. This is especially interesting when the traits are related with a 

disease. 

Genetic diseases can be classified in two groups: 

 Mendelian or monogenic diseases: variants in a single gene are responsible 

for the disease, 

 Complex diseases: many genes are involved in the development of the 

disease, and not always the same mutated genes are needed to develop it. 

Despite all the available genomic data, it remains unclear how much heritability 

accounts for in the development of genetic diseases (Eichler et al., 2010). Even in 

deeply studied complex diseases, such as some cancers, it is yet not possible to 

accurately predict the predisposition of the patients from their genetic variants. 

Neither it is possible to know from just the patients genome how many of those 

mutations are due to heritability (Lippert et al., 2013; D. J. Liu & Leal, 2012; Zuk et 

al., 2014). 

 

1.3.1.  Personalised Medicine 

Genetic variants not only affect our predisposition to suffer a disease, but also how 

our organism responds to drug-based medical treatments. Personalised Medicine, 
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also called Precision Medicine (Katsnelson, 2013; Peterson, Doughty, & Kann, 2013), 

aims to use genetic information of the patient to calculate the predisposition to a 

disease and to design an optimal medical treatment individually adapted to that 

specific patient. 

Precision Medicine can be a useful tool for preventive treatments, as it could 

diagnose a disease year before the patients show their first symptoms. An example of 

this is the identification of BRCA1 and BRCA2 mutations for breast cancer, where 

women may choose preventative measures as they have a high risk of developing the 

disease (Levy-Lahad, Lahad, & King, 2014). 

Once the disease has been already diagnosed, Precision Medicine can be also used to 

help choosing the better treatment for the patient’s genetic characteristics (P. C. Ng, 

Murray, Levy, & Venter, 2009). For example, the use of targeted molecules to treat 

myeloid leukaemia, by overcoming AML cell resistance to drug therapy (Gojo & 

Karp, 2014).   

Another application of Precision Medicine is in the field of Pharmacogenomics, 

studying the effect of genomic variants effect in an individual’s drug response  

(Karczewski, Daneshjou, & Altman, 2012; L.Hopkins & R.Groom, 2005). 

 

1.4.  How genetic variation leads to altered phenotype  

Every single genetic variation may cause an effect in the organism. For years 

synonymous SNVs were considered innocuous as they do not cause any changes in 

the translated protein sequence. However, recent studies have reported positive 

selection of synonymous SNVs in cancer genomes and the theory that synonymous 

variants can be functional has been proposed (Supek, Miñana, Valcárcel, Gabaldón, 

& Lehner, 2014). They are believed to play a role in regulatory regions, and affect 

mRNA translation speed and protein folding  (Buske, Manickaraj, Mital, Ray, & 

Brudno, 2013). But due to the lack of solid proof for these hypotheses and 

understanding of the effects of synonymous SNVs, we will consider non-

synonymous SNVs as the only type of this variation with an effect in phenotype. 
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1.4.1.  Analysis of variants associated with disease 

Genome positions which are more likely to cause a disease if mutated are known to 

be less variable than neutral ones (M. Kumar, Joseph, & Chandrashekaran, 2001). 

For this reason, functional variants are evolutionary conserved not only across 

populations but also across species. This phenomenon has made sequence 

conservation one of the most important clues used by bioinformatics tools to 

identify functional residues in protein sequences.  

Apart from conserved functional residues, we can find fairly conserved regions 

across species which encode for the same protein and descend form the same 

ancestor gene. These regions are called orthologues, and are also useful for 

bioinformatics tools designed to predict the effect of variants. 

When translated into protein sequence, most of the diseases causing aminoacid 

changes have been reported to appear in the protein core (Burke et al., 2007). It is in 

the core where a single change is more likely to affect protein structure, and therefore 

its functions. 

Using the HumVar database of variants (David, Razali, Wass, & Sternberg, 2012; 

Pundir, Martin, & O’Donovan, 2016) extended these previous structural analyses to 

consider the role of protein-protein interfaces, mapping variants in protein structures 

from Interactome3D (Mosca, Céol, & Aloy, 2013). As expected from previous 

studies, they observed that disease-associated variants tent to be located in the 

protein core, but also they reported an enrichment of disease-associated non-

synonymous SNVs mapped inside protein-protein interfaces. In (Bordner & 

Zorman, 2013) a similar result was obtained, but this time discovering disease-

associated non-synonymous SNVs inside ligand-binding sides. 

But structure, protein-protein and protein-ligand interactions caused by genomic 

variants are not the only known factors that may affect protein function. For 

example, post translational modifications (PTMs) can alter protein function by two 

mechanisms: by allosterical conformational changes in the functional site or by 
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orthosterically influencing (Nussinov, Tsai, Xin, & Radivojac, 2012). Furthermore, 

some disease-associated variants are known to also affect PTMs sites, and therefore 

affect protein function (J. Li et al., 2014). 

  

1.5.  SNV effect prediction methods 

We have previously explained the relationship between variants and disease and 

introduced some databases of human SNVs containing clinical annotations. The next 

step is introducing the two most used bioinformatics methods that merge those two 

factors in order to predict the effect of non-annotated SNVs. 

The first of these methods, SIFT (Sorting Intolerant from Tolerant) (P. Kumar, 

Henikoff, & Ng, 2009), was designed on the principle that mutations occurring in 

conserved regions are less likely to be tolerated and therefore more likely to be 

functional. This method uses orthologues to build multiple protein sequence 

alignments and create a model based on sequence homology. It takes into account 

sequence conservation, hydrophobic conservation, previously known variants and 

substitution matrix to predict if an aminoacid change is tolerated. The algorithm 

returns a probability score indicating the chances of the variant to be functional. 

The second method, PolyPhen2 (Polymorphism Phenotyping V2) (Adzhubei, 

Jordan, & Sunyaev, 2013), incorporates also paralogues to the multiple sequence 

alignments and many protein annotated features in its Naïve Bayes based machine 

learning algorithm: sequence annotations from Uniprot and from DSSP,  binding 

annotations (disulphide bonds and covalent links), UniprotKB and Swiss-Prot 

functional site annotations (binding site information, enzyme active sites, metal 

binding sites, lipidated residues, glycosylated residues, non-standard amino acids and 

other modification sites), UniprotKB and Swiss-Prot region annotations (membrane 

crossing regions, membrane-contained regions with no crossing, repetitive sequence 

motif or domains, coiled coil regions, endoplasmic reticulum targeting sequences and 

sequences cleaved during maturation), PHAT score (only for positions annotated as 

transmembrane) and multiple features relating to secondary structure from DSSP, 
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Ramachandran maps, normalised B-factors, ligand contacts, inter-chain contacts and 

functional site contacts. Then, the machine learning algorithm is trained with the 

database HumVar. In consequence, this method is capable of predicting if a variant 

causes gain or loss of protein functions. 

Of course, there are more prediction methods following different approaches. But 

one thing all these methods have in common is that, despite performing well in 

benchmarking exercises, their results do not agree between methods (Chun & Fay, 

2009). For this reason, their predictions have to be taken carefully and only 

considered as candidates for further study. 

 

1.6. Introduction to Ebola 

Ebola virus disease (EVD), formerly known as Ebola Haemorrhagic Fever, is a 

deadly disease in humans and other primates caused by members of the genus 

Ebolavirus, with a death rate of up to 90%. Symptoms of EVD include abrupt onset 

of fever, myalgia, and headache in the early phase, followed by vomiting, diarrhoea 

and possible progression to haemorrhagic rash, life-threatening bleeding, and multi 

organ failure in the later phases. There are no treatments for this disease at present 

time, although experimental vaccines have been tried during recent outbreaks. Ebola 

virus is therefore an important threat to public health and a bio-threat pathogen of 

category A. Between 1976-2013 there were 25 verified outbreaks, causing no more 

than 300 deaths each. In 2014 a much larger outbreak occurred in West Africa, which 

killed more than 11,000 people, more than six times the cumulative sum of all the 

previous 24 outbreaks (Gebretadik FA, 2015), and which also saw cases occur 

outside of Africa. 

Ebolavirus is a genus of the family Filoviridae which contains five species (Kuhn et 

al., 2010):  Zaire Ebolavirus (EBOV), responsible of the 2014 outbreak, Bundibugyo 

Ebolavirus (BDBV), Reston Ebolavirus (RESTV), Sudan Ebolavirus (SUDV) and 

Taï Forest Ebolavirus (TAFV). There are other two Filoviridae genera: Marburgvirus 

(Marburg Marburgvirus, MARV) and Cuevavirus (Lloviu Cuevavirus, LLOV).  
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We will use the nomenclature recommended by Kuhn (Kuhn et al., 2010). The genus 

is Ebolavirus. It is only italicized if the name refers to the genus but not if it refers to 

physical viruses, virus fragments or constituents such as proteins or genomes. The 

species are Zaire ebolavirus (type virus: Ebola virus, EBOV), Sudan ebolavirus (type 

virus: Sudan virus, SUDV), Bundibugyo ebolavirus (type virus: Bundigugyo virus, 

BDBV), and Taϊ Forest ebolavirus (formerly Côte d’Ivoire ebolavirus; type virus: Taϊ 

Forest virus, TAFV). 

 

1.6.1. Background 

While four of the five members of the genus Ebolavirus (Zaire Ebolavirus, Sudan 

Ebolavirus, Bundibugyo Ebolavirus and Taϊ Forest Ebolavirus) cause haemorrhagic 

fever in humans associated with fatality rates of up to 90%, Reston viruses are non-

pathogenic to humans (Feldmann & Geisbert, 2011) (Weingartl, 2013). This has been 

documented so far during three Reston virus outbreaks in nonhuman primates: 

1989–1990 in Reston Virginia (USA), 1992–1993 in Siena (Italy), and 1996 in a 

licensed commercial quarantine facility in Texas (USA). All three outbreaks were 

traced back to a single monkey breeding facility in the Philippines. During these 

outbreaks five human individuals were tested positive for IgG antibodies directed 

against Reston Ebolavirus. Moreover, Reston Ebolavirus was found in 2008 in 

domestic pigs in the Philippines, and seroconversion was detected in six human 

individuals. None of the 11 individuals that were seropositive for Reston Ebolavirus 

antibodies reported an Ebola-like disease (Miranda & Miranda, 2011). 

The reasons underlying the differences in human pathogenicity between Reston 

Ebolavirus and the members of the other Ebolavirus species remain unclear. 

Understanding of the molecular causes of these differences would enhance our 

understanding of Ebolavirus function and pathogenicity, and aid investigation into 

treatment of Ebolavirus infection. Therefore, we performed an in silico analysis of 

the genomic differences between Reston Ebolavirus and the human pathogenic 

Ebolaviruses to identify conserved changes at protein level which could explain the 

differences in Ebolavirus pathogenicity in humans. 
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Despite the small sized Ebolavirus genome we still have a limited understanding of 

Ebolaviruses and what causes their pathogenicity and why Reston Ebolavirus is not 

pathogenic in humans (Basler, 2014; Feldmann & Geisbert, 2011; Zhang et al., 2012). 

The importance of understanding these differences is highlighted by the 2014-16 

Zaire Ebolavirus outbreak in Western Africa, which is the first large outbreak and 

has resulted in more than 28,600 suspected cases and over 11,325 deaths in its two 

and a half lifespan years (www.who.int). During this outbreak many additional Ebola 

Ebolavirus genomes were sequenced, enabling us to perform the first comprehensive 

comparison of the non-human pathogenic Reston Ebolavirus to all four human 

pathogenic Ebolaviruses.  

While some studies (Bale et al., 2013; Clifton et al., 2014; Zhang et al., 2012) have 

compared the differences between individual Reston virus proteins derived from a 

certain strain with their equivalent derived from one strain of a human pathogenic 

species, none have performed a systematic analysis of all available protein sequence 

information from all (known) Ebolavirus species. 

 

1.6.2. Ebolaviruses genetics and proteomics 

As shown in Figure 1, the EBOV genome is a single negative-sense RNA strand of 

18,959 nucleotides in length, containing only seven Open Reading Frames (ORFs). 

The same genomic structure is shared by the rest of Ebolaviruses in the family.  

Despite limited encoding capacity, these viruses expand their gene functions by 

forming more proteins and assigning more functions to each of them. Nine proteins 

are known to be translated, including nucleoprotein (NP), the polymerase cofactor 

viral protein (VP35), the major matrix protein (VP40), glycoprotein (GP), soluble 

glycoprotein (sGP), small soluble glycoprotein (ssGP), transcription activator (VP30), 

the minor matrix protein (VP24), and viral RNA-dependent RNA polymerase (L). 

GP, sGP, and ssGP are produced from the GP gene by alternative RNA editing  (de 

La Vega, Wong, Kobinger, & Qiu, 2015; Feldmann & Geisbert, 2011; Mehedi et al., 

2011). The 3′ terminus is not polyadenylated and the 5′ end is not capped. The gene 

order is 3′ – leader – NP – VP35 – VP40 – GP/sGP/ssGP – VP30 – VP24 – L – 
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trailer – 5′; with the leader and trailer being non-translated regions, which carry 

important signals to control transcription, replication, and packaging of the viral 

genomes into new virions. 3 

Many of the Ebolavirus proteins have multiple functions. The virion, represented in 

Figure 1.6, which protects the RNA genome is formed by helically arranged viral 

nucleoproteins NP and VP30, which are linked by matrix proteins VP24 and VP40 

to the lipid bilayer that coats the virion. VP35 is a multifunctional dsRNA binding 

protein that plays important roles in viral replication, innate immune evasion, and 

pathogenesis. The multifunctional nature of VP35 and VP24 also presents 

opportunities to develop countermeasures antagonise the cellular interferon 

response. GP is responsible for the virus’ ability to bind to host cell and virus 

internalisation (Basler, 2014; Feldmann & Geisbert, 2011). The NP-encapsulated 

RNA genome associates with VP35, VP30, and L to form the transcriptase-replicase 

complex. 1,3 Little is known about the functional roles of the secreted proteins sGP 

and ssGP (Feldmann & Geisbert, 2011; Hoenen et al., 2015; Mehedi et al., 2011; 

Miranda & Miranda, 2011). 
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Figure 1.6. EBOV virion and genome. EBOV virion (above) is a filament of 970 

nm long and its diameter is about 80nm. EBOV genome (below) consists in a single 

negative RNA about 18-19 kb in size which encodes for seven genes: NP, VP35, 

VP40, GP, VP30, VP24 and L. GP produces different protein products due to 

mRNA editing: GP, sGP and ssGP. Images taken from ViralZone (Hulo et al., 2011) 

(https://viralzone.expasy.org/207?outline=all_by_species) 

  

https://viralzone.expasy.org/207?outline=all_by_species
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1.7. Introduction to neuroblastoma 

Neuroblastoma is the most common extracranial solid cancer in infancy, affecting up 

to one in every 7000 children (Maris, Hogarty, Bagatell, & Cohn, 2007). It is a 

neuroendocrine tumour cancer that affects neuroblasts, immature nerve tissue cells. 

It usually starts in the nerve tissue of the adrenal glands (40% of cases), but can also 

develop in nerve tissues in the abdomen (30%), chest (19%), neck (1%), spine (1%), 

or pelvis (1%) (Friedman, 2007). Nearly half of neuroblastoma cases occur in 

children younger than two years, and almost all the cases which develop metastasis 

occur before six years. 

As other cancers, neuroblastoma is a complex disease which causes include both 

genetic and environmental factors. Mutations in ALK, PHOX2b and KIF1B(Mossé 

et al., 2008), MYCN amplification (Brathwaite, Wolman, Dalla-favera, Simon, & 

Gallo, 1984), duplicated segments in LMO1 (Wang et al., 2011), and copy number 

variation of NBPF10 (Diskin et al., 2009) have been linked to neuroblastoma. 

Among the risk factors believed to be related with the disease we can divide them in 

two groups: risk factors the parents were exposed during pregnancy and prior 

conception, and diseases in early life. The studies about the impact of typical 

environmental factors like toxic chemicals, radiation, smoking, alcohol, medical drugs 

and birth factors, but studies about the impact of these factors have been 

inconclusive (Olshan & Bunin, 2000). Other factors which impacts in neuroblastoma 

are under research are hormone based treatments and fertility drugs (Olshan et al., 

1999), maternal hair dye (McCall, Olshan, & Daniels, 2005), and atopy and early life 

infections (Menegaux, Olshan, Neglia, Pollock, & Bondy, 2004). 

 

1.7.1. Symptoms, diagnosis and treatment 

Symptoms of this disease are broad and vary depending on tissue of origin and the 

presence of metastasis, making its diagnosis difficult. (Wheeler, 2015). 

The cancer is divided into low-, intermediate-, and high-risk groups based on a 

child's age, cancer stage, and tumour morphology. Different treatments are available 
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depending on the risk group of the patient. Low-risk neuroblastoma can be cured 

with surgery, and the cure rate is above 90%. The intermediate-risk variety needs to 

be treated with a combination of surgery and chemotherapy, but the cure ratio is still 

high, between 70-90%. High-risk neuroblastoma remains a challenging disease, with 

a treatment consisting in a combination of surgery, intensive chemotherapy, radiation 

therapy, bone-marrow transplant and antibody therapy. The cure rate of high-risk 

neuroblastoma remains at 30-60% (Castleberry RP, 1991; Bowman LC, 1997); 

Castleberry RP S. J., 1992; West DC, 1993; Paul SR, 1991). 

 

1.7.2. Cancer cell lines as model system 

Cancer cell lines are immortalised cells originally taken from a patient’s tumour that 

can be continuously cultured in a laboratory. In a cell line, cells from a multicellular 

organism are mutated so they can proliferate indefinitely. In cancer tissues these 

mutations occur naturally, de-regulating the normal cell cycle controls leading to 

uncontrolled proliferation, allowing a cell type which would normally not be able to 

divide to be proliferated in vitro. 

Cell lines are widely used in research as model systems (Kaur & Dufour, 2012). 

Cancer cell lines are important model systems for the study of cancer cell biology and 

the cancer cell drug response (Sharma, Haber, & Settleman, 2010). Many anti-cancer 

drugs have been discovered and/or initially characterised in cancer cell lines and 

cancer cell line panels, such as the NCI60 panel (Holbeck, Collins, & Doroshow, 

2010; Sharma et al., 2010; Shoemaker, 2006). 

The characterisation of cancer cell lines has also revealed in depth insights into 

cancer biology. This includes gene networks associated with cancer, mutation and 

selection processes, and evidence of the DNA damage that triggered carcinogenesis 

(Pleasance et al., 2010). Moreover, the use of cancer cell lines provides fundamental 

insights into cancer cell plasticity and its relevance for the cancer cell response to 

anti-cancer drugs (Eirew et al., 2015; McGranahan et al., 2015; Sharma et al., 2010). 



39 

 

One limitation for this model system is the genetic drift that may occur over multiple 

passages, leading to genetic differences in isolates and potentially different 

experimental results depending on when and with what strain isolate an experiment 

is conducted (Marx, 2014). 

 

1.8. Organisation of this Thesis 

During this introductory chapter we have covered the basis status of nowadays 

genetic sequencing, the process to transform biological sequences into information, 

the keys of human genetic variation, and an introduction to both Ebolavirus and 

neuroblastoma.   

This work is organised as follows: 

Chapter 2 is derived from one of our papers, “Conserved differences in protein 

sequence determine the human pathogenicity of Ebolaviruses” describes analysis to 

identify the molecular determinants of Ebolavirus Pathogenicity; published in 

Scientific Reports. (Pappalardo et al., 2016) 

Chapter 3 introduces neuroblastoma cell line UKF-NB-3 and describes its genetic 

landscape of, and shows its internal heterogeneity when comparing it with single cell 

derived clones of the cell line. 

Chapter 4 continues with the study of the UKF-NB-3 cell line and focus on its 

internal heterogeneity, comparing the variants in its genome with the ones from 

UKF-NB-3 single cell derived clones. 

Chapter 5 concludes this piece of work putting together a general discussion of the 

findings in both research lines and proposing future work on the fields. 
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Chapter 2: 

Ebola: genetic variance and its impact 

in human pathogenicity  

 

 

 

This chapter reports on work that was published in Pappalardo M, Julia M, et al., 

(2016) Scientific Reports 6:23743 Conserved differences in protein sequence 

determine the human pathogenicity of Ebolaviruses. I am joint first author on this 

work, with Morena Pappalardo, we completed much of the research and data analysis 

together. Further, I performed all of the phylogenetic analyses and bootstrapping of 

the SDP method individually. 

 

2.1. Introduction 

Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We 

analyzed 196 Ebolavirus genomes and identified Specificity Determining Positions 

(SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four 

human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences 

in human pathogenicity between Reston and the other four ebolavirus species.  

Structural analysis was performed to identify those SDPs that are likely to have a 

functional effect. This analysis revealed novel functional insights in particular for 

Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 
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function by altering octamer formation. The VP40 SDP Q245P affects the structure 

and hydrophobic core of the protein and consequently protein function. Three 

VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human 

karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signalling. Since 

VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs 

distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic 

Reston viruses may emerge. This is of concern since Reston viruses circulate in 

domestic pigs and can infect humans, possibly via airborne transmission. 

 

2.2. Methods 

The tools used for this research will be introduced in the sections bellow. More 

detailed information about each concrete use of them will be explained in the 

corresponding results section when needed.  

 

2.2.1. Ebolavirus Genome Sequences 

We collected a total of 196 complete Ebolavirus genomes (Annex 1: Suppl. Table 20) 

from the Virus Pathogen Resource (Pickett et al., 2012), consisting of 156 Ebola 

virus (EBOV), 17 Reston (RESTV), 13 Sudan (SUDV), 7 Bundibugyo (BDBV) and 3 

Taï Forest (TAFV) species. These genomes were later scanned for ORFs with 

EMBOSS (Rice, Longden, & Bleasby, 2000), and the predicted protein sequences 

were identified by using BLAST against a database created with the protein 

sequences available per each Ebolavirus in ViPR. We decided to follow this approach 

instead of directly using the protein sequences in ViPR due to the low effective 

number of proteins sequences after removing redundancy.  

 

2.2.2. Multiple Sequence Alignments and identification of specificity 

determination positions 
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Multiple sequence alignments were generated for each of the Ebolavirus proteins 

using Clustal Omega (Sievers et al., 2011), with default settings. Protein sequence 

identities between the different sequences were obtained from the Clustal Omega 

output. The effective number of independent sequences present was calculated for 

the alignment for each protein by building a Hidden Markov Model (hmm) for the 

alignment using hmmer (Mistry, Finn, Eddy, Bateman, & Punta, 2013). The effective 

number of independent sequences identified ranged from 88 for the VP24 and L 

proteins to 148 in NP (Annex 1: Supp. Table 21).  

The S3Det algorithm (Rausell, Juan, Pazos, & Valencia, 2010) was used to predict 

specificity determining positions (SDPs) using a supervised mode with sequences 

assigned to predetermined groups/subfamilies with all of the human pathogenic 

sequences in one group and the Reston virus sequences in a second group. The 

sensitivity of the SDP analysis to the number of sequences used was considered by 

subsampling the sequences Figures 2.1–2.3). SDPs were compared to known 

functional residues (many from mutagenesis studies) in Ebolavirus proteins 

catalogued in UniProt (Apweiler et al., 2014) and in the literature.  

 

2.2.3. Phylogenetic Trees 

Bayesian Phylogenetic trees were generated using BEAST v1.8.2 (Bouckaert et al., 

2014), then the consensus tree for each set of 10000 trees was calculated with 

TreeAnnotator and the node labels obtained analysing the trees with FigTree  

(http://tree.bio.ed.ac.uk/software/figtree/). TreeAnnotator and BEAUti, are part of 

the BEAST package.  

The Maximum Likelihood Phylogenetic trees were generated using RaxML8 

(Stamatakis, 2014). A full Maximum Likelihood analysis and 1000 Bootstrap 

replicate searches were run in order to obtain the best scoring ML tree for each set 

of sequences.  



43 

 

Phylogenetic trees were generated using default settings in both BEAST and 

RaxML8, according to the type of input data. All phylogenetic trees were analysed 

and plotted using the R “ape” package (Paradis, Claude, & Strimmer, 2004).  

 

2.2.4. Structural Analysis 

Where available, protein structures for the Ebolavirus proteins were obtained from 

the protein databank (Rose et al., 2015). Where full length protein structures were 

not available the proteins were modelled using Phyre2 (Kelly, Mezulis, Yates, Wass, 

& Sternberg, 2015). SDPs were mapped onto the protein structures using PyMOL. 

Solvent accessibility for SDPs was calculated using DSSP (Joosten et al., 2011).  

The Reston virus structures of GP1 and GP2 were modelled using one-to-one 

threading in Phyre2 (Kelly et al., 2015) with the EBOV GP trimer structure (PDB 

code 3CSY) used as a template. A model of a Reston virus GP trimer structure was 

generated by aligning the modelled Reston virus GP1 and GP2 structures to their 

corresponding chains in the Ebola virus trimer.  

The Coulombic Electrostatic Potential for the proteins was calculated using Delphi, 

with default parameters (Smith et al., 2012). The electrostatics map was visualised 

and analysed using Chimera (Pettersen et al., 2004). mCSM (Pires, Ascher, & 

Blundell, 2014) was used to predict the effect of each individual SDP on the stability 

of the protein. The Ebola virus structures were used as input and the relevant amino 

acid changed to the one present in the Reston virus.  

 

2.3. Results 

Our large scale analysis of 196 different Ebolavirus genomes focussed on combining 

computational methods with detailed structural analysis to identify the genetic causes 

of the difference in pathogenicity between Reston Ebolavirus and the human 

pathogenic Ebolavirus species. Central to our approach was the identification of 

Specificity Determining Positions (SDPs), which are positions in the proteome that 
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are conserved within protein subfamilies but differ between them (Rausell et al., 

2010) and thus distinguish between the different functional specificities of proteins 

from the different Ebolavirus species. SDPs have been demonstrated to be typically 

associated with functional sites, such as protein-protein interface sites and enzyme 

active sites (Rausell et al., 2010). The SDPs that we have identified and that 

distinguish Reston Ebolavirus from human pathogenic Ebolaviruses, arguably, 

contain within them a set of amino acid changes that explain the differences in 

pathogenicity between Reston Ebolavirus and the four human pathogenic species, 

although a contribution of non-coding RNAs (that may exist but remain to be 

detected) cannot be excluded (Basler, 2014; Teng et al., 2015). The subsequent 

structural analysis was performed to identify the SDPs that are most likely to affect 

Ebolavirus pathogenicity, using an approach that is similar to those used to 

investigate candidate single nucleotide variants in human genome wide association 

and sequencing studies by us and others (Chambers et al., 2011; Palles et al., 2013).  

Phylogenetic analyses were performed for the whole genomes and the individual 

proteins (Annex 1: Supplementary Figure 1).  

In accordance with previous studies (Gire et al., 2014; S. Q. Liu, Deng, Yuan, Rayner, 

& Zhang, 2015; Morikawa, Saijo, & Kurane, 2007), we observed high intra-species 

conservation with greater inter-species variation, as shown in Figure 2.1 and Annex 

1: Supplementary Table 1. The surface protein GP exhibited the greatest variation, 

most likely as a consequence of selective pressure exerted by the host immune 

response (S. Q. Liu et al., 2015).  
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Figure 2.1. Conservation of Ebolavirus proteins. Heatmaps of intra- and inter 

species percentage of sequence identity for Ebolavirus proteins. Acronyms 

represent: EBOV, Ebola virus; BDBV, Bundibugyo virus; SUDV, Sudan virus; 

TAFV, Taϊ Forest virus; RESTV, Reston virus; Pat, human pathogenic species 

(EBOV, BDBV, SUDV and TAFV); and NPat, human non-pathogenic species 

(RESTV). 
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Using the S3Det algorithm (Rausell et al., 2010) we identified 189 SDPs that are 

differentially conserved between Reston viruses and human pathogenic Ebolaviruses 

(Figure 2.2a, Annex 1: Supplementary Figure 2, Annex 1: Supplementary Tables 2–9). 

These SDPs represent the most significant changes between the Reston virus and the 

human pathogenic Ebolaviruses so a subset of these SDPs must explain the 

difference in pathogenicity. SDPs were present in each of the Ebolavirus proteins 

representing between 2.4% of residues in sGP to 5.9% of residues in VP30 (Figure 

2.2b). Comparison of the SDPs with previously published mutagenesis studies (Xu et 

al., 2014) provided no explanation for their functional consequences (Annex 1: 

Supplementary Table 10).  

 

 

Figure 2.2. Ebolavirus SDPs. (a) genomic overview of Ebolavirus conservation. 

An ideogram of Ebolavirus genome and its genes is divided in two fragment, 

showing SDPs positions (vertical red lines) below it and the percentage of protein 
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sequence conservation (blue graph) at the bottom of each fragment. (b) The number 

of SDPs in each of the Ebolavirus proteins is shown with details on: the number of 

SDPs that were mapped onto protein structures and the numbers that were 

identified to have potential roles in changing pathogenicity by either affecting 

protein-protein interactions (interface) or changing protein structure-function. These 

changes were classed as probable, where there is high confidence of the effect and 

possible where there is a lower level of confidence in the observations. 

 

 

2.3.1. Specificity Determining Positions (SDPs) Analysis 

Multiple sequence alignments were generated for each of the Ebolavirus proteins 

using Clustal Omega (Sievers et al., 2011), with default settings. Protein sequence 

identities between the different sequences were obtained from the Clustal Omega 

output. The effective number of independent sequences present was calculated for 

the alignment for each protein by building an hmm for the alignment using hmmer 

(Mistry et al., 2013). The effective number of independent sequences identified 

ranged from 88 for the VP24 and L proteins to 148 in NP (Annex 1: Supplementary 

Table 21).  

The S3Det algorithm (Rausell et al., 2010) was used to predict Specificity 

Determining Positions (SDPs) using a supervised mode with sequences assigned to 

predetermined groups/subfamilies with all of the human pathogenic sequences in 

one group and the Reston virus sequences in a second group. The sensitivity of the 

SDP analysis to the number of sequences used was considered by subsampling the 

sequences (Figures 2.3–2.5). SDPs were compared to known functional residues 

(many from mutagenesis studies) in Ebolavirus proteins catalogued in UniProt 

(Apweiler et al., 2014) and in the literature.  

The sensitivity of the SDP analysis to the number of sequences available was 

considered by subsampling the sequences. Sampling was performed for: only the 

human pathogenic group; only the Reston group; and for both groups 
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simultaneously. Subsampling was performed using between 10%-90% of sequences 

in the group, increasing in 10% increments. For each percentage setting the group 

was sampled 50 times. Where both groups were sampled simultaneously they were 

done so with the same percentage of sequences i.e. at 20% sampling the SDPs were 

predicted each time using 20% of the human pathogenic sequences in one group and 

20% of the Reston sequences in the other. For each sample S3DeT was run to 

predict SDPs using the same settings as for the full dataset. Completely conserved 

SDPs are also compared to those that are not completely conserved.  

The total number of SDPs predicted when sampled is shown in Figure 2.3. When the 

sequences of human pathogenic Ebolaviruses were sampled, while the number of 

Reston sequences remained constant, we observed that the number of SDPs 

predicted decreased as the proportion of sequences sampled increased (Figure 2.3A). 

We further observed that even when a very high proportion of sequences was 

sampled (70%-90%), that there was still some variation in the number of SDPs, 

indicating that there was still further information present in the excluded sequences. 

When the Reston virus sequences were sampled, the pattern observed varied 

between the proteins (Figure 2.3B). For GP, L and VP30, sampling resulted in more 

SDPs being predicted than in the full dataset, with the number reducing as the 

proportion of sequences sampled increased. For NP, sampling the Reston sequences 

generated some samples where fewer SDPs than the total present in the full dataset 

were predicted and other samples where a larger number of SDPs were predicted.  

This is possible for SDPs that are not completely conserved in the two groups, as 

sampling may generate some sets of sequences where these positions appear variable 

and others where they are conserved. For VP35, sampling led to fewer SDPs being 

predicted until 90% of sequences were used. The number of SDPs in VP24 and 

VP40 was invariant across all samples. When sampling both groups (Figure 2.3C) we 

found that the number of SDPs predicted very quickly converged to the number of 

SDPs present in the full dataset.  
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A. Human pathogenic sequence sampled. 
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B. Reston Sequences Sampled 
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C. Both groups sampled 
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Figure 2.3. SDP prediction with subsampling of Ebolavirus sequences. The 
two groups of sequences ‘human pathogenic’ and Reston (‘non-human pathogenic’) 
were sampled and SDP predictions made (see materials and methods). The boxplots 
show the distributions of the number of SDPs predicted in the simulations where A) 
only human pathogenic sequences were sampled, B) only Reston sequences were 
sampled and C) both sets were sampled. Sampling was performed for samples 
consisting of between 10%-90% of sequences (x axis). Red lines indicate the number 
of SDPs predicted in the full dataset without sampling. Note the scale of the Y-axis 
varies between each plot. 
 

 
We then considered the number of SDPs predicted that are present in the full dataset 

and those that are predicted only with subsampled data (Figure 2.4). When the 

human pathogenic sequences were sampled (Figure 2.4A), we found that the vast 

majority of SDPs in the full data set were predicted at all sampling levels. We also 

found that when a small proportion of sequences were sampled, that many new 

SDPs were predicted, which for some proteins (e.g. GP, NP and VP40) was greater 

than the total number of SDPs present in the full dataset. This may not be too 

surprising given that positions that are variable in the full dataset may appear to be 

conserved when a small sample of sequences was taken. As the proportion of 

sequences sampled increased, very few new SDPs were predicted. Sampling the 

Reston sequences (Figure 2.4B) we again found that the vast majority of SDPs 

present in the full dataset was present in all samples. The number of new SDPs 

present in samples was much smaller than for sampling of the human pathogenic 

sequences, which is likely to be due to the smaller number of Reston sequences, 

resulting in fewer samples where positions are conserved that are not conserved in 

the full data set. When both groups were sampled, results were very similar to that 

observed when the human pathogenic group was sampled (Figure 2.4C). 
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A. Human pathogenic sequence sampled. 
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B. Reston Sequences Sampled 
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C. Both groups sampled 
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Figure 2.4. Change in SDP prediction with subsampling of Ebolavirus 
sequences. The two groups of sequences ‘human pathogenic’ and Reston (‘non-
human pathogenic’) were sampled and SDP predictions made (see materials and 
methods). The boxplots show the number of SDPs predicted in each sampling that 
are also in the full dataset (red) and new SDPs that are predicted only in subsamples 
(blue). The black horizontal line indicates the number of SDPs predicted using the 
full dataset. Subsampling performed for A) only human pathogenic sequences were 
sampled, B) only Reston sequences were sampled and C) both sets were sampled. 

 
 

Finally, we considered the number of SDPs in the sampling sets that are completely 

conserved and those that are not (Figure 2.5). In conjunction with the data from 

Figure 2.4, this shows that sampling generates new SDPs that are completely 

conserved (i.e. only one amino acid in each group) and also some where there is 

variation within one or both groups. As the proportion of sequences sampled 

increased these numbers quickly converged to the numbers observed in the full 

dataset. Some of these included SDPs which in some samples were completely 

conserved but as further sequences were added, variation was introduced and they 

were no longer completely conserved.  
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A. Human pathogenic sequence sampled. 
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B. Reston Sequences Sampled 
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C. Both groups sampled 
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Figure 2.5. Analysis of completely conserved SDP with subsampling of 
Ebolavirus sequences. The two groups of sequences ‘human pathogenic’ and 
Reston (‘non-human pathogenic’) were sampled and SDP predictions made (see 
materials and methods). The boxplots show the number of SDPs predicted in each 
sampling that are completely conserved (red) and not completely conserved (blue). 
The red horizontal line indicates the number of completely conserved SDPs present 
in the full dataset and the blue line represents the equivalent for SDPs that are not 
completely conserved. Subsampling performed for A) only human pathogenic 
sequences were sampled, B) only Reston sequences were sampled and C) both sets 
were sampled. 
 

 

2.3.2. Structural Analysis 

The Reston virus structures of GP1 and GP2 were modelled using one-to-one 

threading in Phyre2 (Kelly et al., 2015) with the EBOV GP trimer structure (PDB 

code 3CSY) used as a template. A model of a Reston virus GP trimer structure was 

generated by aligning the modelled Reston virus GP1 and GP2 structures to their 

corresponding chains in the Ebola virus trimer. SDPs were mapped onto the protein 

structures using PyMOL (Annex 1: Figures SF4-5), and solvent accessibility for SDPs 

was calculated using DSSP (Joosten et al., 2011).  

Full-length structures for VP24 and VP40 were available in the PDB, as well as 

structures for the globular domains of GP, sGP, NP, VP30, and VP35 (Annex 1: 

Supplementary Table 11). It was not possible to model the oligomerisation domains 

of VP30 and VP35 nor the structure of L apart from a short 105 residue segment of 

the 2239 residue protein, which contained a single SDP. 47 SDPs could be mapped 

onto Ebolavirus protein structures (or structural models where structures were not 

available). Most SDPs are located on protein surfaces (Annex 1: Supplementary 

Figure 3) and are therefore potentially involved in interaction with cellular and viral 

binding partners and/or immune evasion. Based on our combined computational 

and structural analysis we find evidence for eight SDPs that are very likely to alter 

protein structure/function, with six affecting protein-protein interfaces and two with 

the potential to influence protein integrity and hence affect stability, flexibility and 

conformations of the protein (Table 2.1). Five additional SDPs may alter protein 
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structure/function but the evidence supporting them is weaker (Annex 1: 

Supplementary Tables 12–18). Two of these weaker SDPs were present in NP 

(A705R, R105K - all SDPs are referred to using Ebola virus residue numbering and 

show the human pathogenic Ebolavirus amino acid first and the Reston virus amino 

acid second). A705R is likely to introduce a salt bridge with E694 and R105K will 

alter hydrogen bonding (Annex 1: Supplementary Table 12). The three other SDPs 

with weaker evidence were present in the glycan cap in GP (see 2.3.3. Multiple SDPs 

are present in the GP glycan cap). The eight confident SDPs were present in V24, VP30, 

VP35, and VP40. The VP40 and VP24 SDPs revealed the most changes that may 

relate to differences in human pathogenicity (see 2.3.6. VP40 SDPs may alter oligomeric 

structure and 2.3.7. VP24 SDPs affect KPNA5 binding).  

Protein SDP Interface Protein Integrity 

VP24 T131S KPNA5 interface  
VP24 M136L KPNA5 interface  
VP24 Q139R KPNA5 interface  
VP24 T226A  Loss of Hydrogen 

bond 
VP40 P85T Octamer interface  
VP40 Q245P  Breaks α helix 
VP30 R262A Dimer interface  Loss of Hydrogen 

bond 
VP35 E269D Dimer interface  
Table 2.1. SDPs that are likely to alter Reston virus protein structure and 

function.  

 

2.3.3. Multiple SDPs are present in the GP glycan cap 

GP is highly glycosylated and mediates Ebolavirus host cell entry. Subunit GP1 binds 

to the host cell receptor(s). Sub-unit GP2 is responsible for the fusion of viral and 

host cell membranes. However, their cellular binding partners remain to be defined 

(Dahlmann et al., 2015; Feldmann & Geisbert, 2011; Herbert et al., 2015; Miller et al., 

2012). Reverse genetics experiments have suggested that GP contributes to human 

pathogenicity but is insufficient for virulence on its own (Groseth et al., 2012). We 

identified SDPs in both GP1 and GP2 (Annex 1: Supplementary Figure 4 and Annex 
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1: Supplementary Table 12). Three SDPs (I260L, T269S, S307H) are located in the 

glycan cap that contacts the host cell membrane (Annex 1: Supplementary Figure 4B-

C). These changes (particularly S307H at the top of the glycan cap) alter the 

electrostatic surface of GP (Annex 1: Supplementary Figure 4D) and may therefore 

alter GP interactions with cellular proteins, however given the glycosylation of GP, it 

is unlikely that these residues would physically contact the host cell membrane and 

none of them are near glycosylation sites. So it is not clear what role they may have. 

GP binding to the endosomal membrane protein NPC1 is necessary for membrane 

fusion (Miller et al., 2012). However, residues important for NPC1 binding 

(identified by mutagenesis studies in (Miller et al., 2012)) were conserved in all 

analysed Ebolaviruses and the SDPs were not located close to them (Annex 1: 

Supplementary Figure 5). Thus differences in NPC1 binding do not account for 

differences in Ebolavirus human pathogenicity. This finding is in concert with very 

recent data indicating that NPC1 is essential for Ebolavirus replication as NPC1-

deficient mice were insusceptible to Ebolavirus infection (Herbert et al., 2015).  

It was not possible to predict the consequences of SDPs in sGP and ssGP (Annex 1: 

Supplementary Figure 23), as there is a lack of functional information available for 

these proteins (Mehedi et al., 2011; Miranda & Miranda, 2011). A 17 amino acid 

peptide derived from Ebola virus or Sudan virus GP exerted immunosuppressive 

effects on human CD4+ T cells and CD8+ T cells while the respective Reston virus 

peptide did not (Yaddanapudi et al., 2006). We identified one SDP in the peptide, 

which represents the single amino acid change (I604L) previously observed between 

Reston virus and Ebola virus (Yaddanapudi et al., 2006), demonstrating that this 

difference is conserved between Reston viruses and all human pathogenic 

Ebolaviruses.  

 

2.3.4. Changes in the VP30 dimer may affect pathogenicity  

Analysis of the VP30 SDPs provided novel mechanistic insights into the structural 

differences previously observed between Reston virus and Ebola virus VP30 (Clifton 

et al., 2014) and that may contribute to the differences observed in human 
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pathogenicity between Reston virus and Ebola virus. VP30 is an essential 

transcriptional co-factor that forms dimers via its C-terminal domain and hexamers 

via an oligomerisation domain (residues 94–112) (Bettina Hartlieb, Modrof, 

Mühlberger, Klenk, & Becker, 2003). The VP30 hexamers activate transcription 

while the dimers do not, and the balance of hexamers and dimers has been suggested 

to control the balance between transcription and replication (B. Hartlieb, Muziol, 

Weissenhorn, & Becker, 2007). Crystallisation studies have shown that Ebola virus 

and Reston virus dimers are rotated relative to each other (Clifton et al., 2014). We 

observed two SDPs (T150I, R262A) in the dimer interface that can at least partially 

explain the structural differences between Ebola virus and Reston virus VP30 

dimers. Ebola virus R262 is part of the dimer interface and forms a hydrogen bond 

with the backbone of residue 141 in the other subunit, whereas Reston A262 does 

not and is not part of the dimer interface (Figure 2.6). The removal of the two 

hydrogen bonds (in the symmetrical dimer) is likely to lead to the different Reston 

and Ebola virus dimer structures. mCSM, a software for predicting the effect of 

mutations in proteins using graph-based signatures, predicts this change to be 

destabilising with a ΔΔG −0.969 Kcal/mol. The Reston virus conformation also 

buries functional residues A179 and K180 potentially affecting protein function 

(Clifton et al., 2014) (Figure 2.6). Moreover, our findings show that the Ebola virus 

protein conformation is conserved in all human-pathogenic Ebolaviruses suggesting 

that it is relevant for human pathogenicity.  
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Figure 2.6. SDPs present in the VP30 dimer. The dimer structure of both Zaire 

Ebolavirus (PDB structure 2I8B) and Reston Ebolavirus (PDB structure 3V7O) 

VP30 are shown with SDPs indicated (red – Zaire Ebolavirus, blue – Reston 

Ebolavirus) and functional residues (brown – A179, K180). (a) Cartoon 

representation: For the Zaire Ebolavirus the hydrogen bond of R262 with the residue 

141 of the other subunit is shown. (b) Enlarged display of the hydrogen bond 

between R262 and the backbone of residue 141. (c) Surface representation of the 
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reverse face of the dimer from A, showing the location of the functional residues 

A179 and K180 within the dimer.  

 

2.3.5. VP35 SDP present in dimer interface   

VP35 is a multifunctional protein that antagonises interferon signalling by binding 

double stranded RNA (dsRNA). Structural data are available for both the Zaire 

Ebolavirus and Reston Ebolavirus VP35 monomer and an asymmetric dsRNA 

bound dimer (Bale et al., 2013; Kimberlin et al., 2010; D. W. Leung et al., 2009; Daisy 

W. Leung et al., 2015, 2010). These structures are highly conserved, however 

functional studies have demonstrated that Reston Ebolavirus VP35 is more stable, 

has a reduced affinity for dsRNA, and exerts weaker effects on interferon signalling 

(Daisy W. Leung et al., 2010). The increased stability is proposed to be due to a linker 

between the two subdomains having a short alpha helix in the Reston virus structure 

(Daisy W. Leung et al., 2010). Our analysis shows that the sequence of this linker 

region is completely conserved in all of the genomes, however an SDP is located 

close to the linker (A290V). One SDP (E269D) is present in the dimer interface and 

the shorter aspartate side chain in Reston virus VP35 results in increased distances 

with the atoms that this aspartate forms hydrogen bonds with: R312, R322, and 

W324 (Ebola virus numbering; Annex 1: Supplementary Table 13). mCSM predicts 

this change to be slightly destabilising to the complex (ΔΔG −0.11 Kcal/mol). This 

has the potential to alter the stability of the dimer and thus the ability of VP35 to 

prevent interferon signalling.  

It has recently been demonstrated that a VP35 peptide binds NP and modulates NP 

oligomerisation and RNA binding to NP (Daisy W. Leung et al., 2015)[35]. There 

are two SDPs (S26T, E48D) in this region. S26T is located on the periphery of the 

interface. E48D lies outside the solved structure but is within the region required for 

binding to NP. Both SDPs represent minor changes that maintain the chemical 

properties of the side chains. Thus, there is no evidence suggesting substantial 

differences in the binding of this peptide to NP.  
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2.3.6. VP40 SDPs may alter oligomeric structure  

VP40 exists in three known oligomeric forms (Bornholdt et al., 2013). Dimeric VP40 

is responsible for VP40 trafficking to the cellular membrane. Hexameric VP40 is 

essential for budding and forms a filamentous matrix structure. Octameric VP40 

regulates viral transcription by binding RNA. Two SDPs (P85T and Q245P) can 

affect VP40 structure. P85T occurs at the VP40 octamer interface site (Figure 2.7) in 

the middle of a run of 14 residues that are completely conserved in all Ebolaviruses 

(Figure 2.7b). In the Ebola virus structure, it is located in an S-G-P-K beta-turn, 

where the proline at position 85 (P85) confers backbone rigidity. The change to 

threonine (T) at this residue in Reston viruses introduces backbone flexibility and 

also provides a side chain with a hydrogen bond donor, potentially affecting octamer 

structure and/or formation. mCSM predicted this change to have a destabilising 

effect (ΔΔG −0.626 Kcal/mol). The Q245P SDP introduces a proline residue into 

an alpha helix (Figure 2.7b), which most likely breaks and shortens helix five, 

resulting in the destabilisation of helices five and six and a change in the hydrophobic 

core. Interestingly mCSM predicted this change to have little effect on the stability of 

the protein (predicted ΔΔG 0.059 Kcal/mol). Thus, P85T and Q245P may affect 

VP40 function and human pathogenicity.  
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Figure 2.7. The P85T SDP is present in the VP40 octamer interface. (a) 

Consensus sequence for the region around P85T in Ebolavirus species (R, Reston 

Ebolavirus; E, Zaire Ebolavirus; S, Sudan Ebolavirus; B, Bundibugyo Ebolavirus; T, 

Taϊ Forest Ebolavirus). Black squares indicate positions that are completely 

conserved in all genomes, red squares SDPs. (b) segment of VP40 showing the 
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Q245P SDP (red) from PDB structure 1ES6. (c) The VP40 dimer, with SDPs 

coloured red and shown in stick format (PDB structure 4LDB). (d) The VP40 

octamer, P85 shown in red (side- and top-view) from PDB structure 4LDM. (e) 

Two subunits from the VP40 octamer, P85 is coloured red in sphere format, and the 

SDP I122V is shown as yellow in stick format.  

 

2.3.7. VP24 SDPs affect KPNA5 binding   

VP24 is involved in the formation of the viral nucleocapsid and the regulation of 

virus replication (Feldmann & Geisbert, 2011; Mateo, Carbonnelle, Martinez, et al., 

2011; Mateo, Carbonnelle, Reynard, et al., 2011; Morikawa et al., 2007; Watt et al., 

2014). VP24 also interferes with interferon signalling through binding of the 

karyopherins α 1 (KPNA1), α 5, (KPNA5), and α 6 (KPNA6) and subsequent 

inhibition of nuclear accumulation of phosphorylated STAT1 and through direct 

interaction with STAT1 (Reid et al., 2006; Reid, Valmas, Martinez, Sanchez, & Basler, 

2007; Xu et al., 2014; Zhang et al., 2012). Eight VP24 SDPs are in regions with 

available structural information (Annex 1: Supplementary Tables 17 and 18). Seven 

of these are present on the same face of VP24 (Figure 2.8a) suggesting that they 

affect VP24 interaction with viral and/or host cell binding partners. The SDPs 

T131S, M136L, and Q139R are present in the KPNA5 binding site (Figure 2.8). 

M136 and Q139 are part of multi-residue mutations in Ebola virus VP24 that 

removed KPNA5 interactions (Annex 1: Supplementary Table 17) (Xu et al., 2014) 

and are adjacent to K142 (Figure 2.8a), mutants of which have shown reduced 

interferon antagonism (Ilinykh et al., 2015). Therefore, M136L and Q139R can exert 

significant effects on VP24-KPNA5 binding. Additionally, T226A results in the loss 

of a hydrogen bond between T226 and D48 in Reston virus VP24 (Figure 2.8b), with 

the potential to alter structural integrity and influence protein function. Analysis 

using mCSM predits the T226A change to be destabilizing with a ΔΔG −0.935 

Kcal/mol. mCSM predicted seven of the eight analysed SDPs to be destabilising 

(Annex 1: Supplementary Table 2).  
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VP24-mediated inhibition of interferon signalling may be critical for species-specific 

pathogenicity (Mateo, Carbonnelle, Reynard, et al., 2011; Reid et al., 

2006, 2007; Xu et al., 2014; Zhang et al., 2012). In this context, VP24 

was a critical determinant of pathogenicity in studies in which 

Ebolaviruses were adapted to mice and guinea pigs that are normally 

insusceptible to Ebola Virus Disease (de La Vega et al., 2015; Dowall 

et al., 2014; Ebihara et al., 2006; Mateo, Carbonnelle, Reynard, et al., 

2011; Reid et al., 2006). The adaptation-associated VP24 mutations in 

rodents are located in the KPNA5 binding site with some of them 

being very close to the VP24 SDPs T131S, M136L, and Q139R that 

we determined to be in the KPNA5 binding site (Figure 2.8c and 

2.8d, Annex 1: Supplementary Table 19). Additionally some of the 

mutations are similar to the SDPs in that they would remove 

hydrogen bonds within VP24 (e.g. T187I, T50I, Figure 2.8e and 2.8f, 

& Annex 1: Supplementary Table 19) or alter hydrogen bonding with 

KPNA5 (H186Y, Figure 2.8f & Annex 1:Supplementary Table 19). 

Thus there is strong evidence suggesting that the VP24 SDPs have a 

role in rendering the Reston Ebolavirus non-pathogenic in humans.  
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Figure 2.8. Ebola virus VP24 SDPs and complex with KPNA5. (a) VP24 

Structure (grey) in complex with KPNA5 (cyan) (PDB structure: 4U2X), with VP24 

SDPs (red) and K142 coloured blue. (b) T226 (red) hydrogen bond with the 

backbone of D48 (blue). (c) VP24 showing residues mutated in rodent adaptation 

experiments (magenta) and SDPs identified in this study (red). (d) VP24 (grey) and 

KPNA5 (cyan) complex with residues mutated during adaptation (magenta) and 

SDPs (red). (e) Hydrogen bonds formed by VP24 T50. (f) Hydrogen bonds formed 

by VP24 H186, and T187. Intrachain bonds are coloured black and hydrogen bonds 

between VP24 and KPNA5 are coloured blue.  
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2.4. Discussion   

We have combined the computational identification of residues that distinguish 

Reston Ebolaviruses from human pathogenic Ebolavirus species with protein 

structural analysis to identify determinants of Ebolavirus pathogenicity. The results 

from this first comprehensive comparison of all available genomic information on 

Reston Ebolaviruses and human pathogenic Ebolaviruses detected SDPs in all 

proteins but only few of them may be responsible for the lack of Reston virus human 

pathogenicity.  

Our analysis mapped 47 of the 189 SDPs onto protein structure, so additional SDPs 

may be relevant but the structural data needed to reliably identify them is missing. 

Although it is difficult to conclude the extent to which each individual SDP 

contributes to the differences in human pathogenicity between Reston viruses and 

the other Ebolaviruses, we can identify certain SDPs that have a particularly high 

likelihood to be involved. SDPs present in the oligomer interfaces of VP30, VP35, 

and VP40 may affect viral protein function. VP24 SDPs may interfere with VP24-

KPNA5 binding and affect viral inhibition of the host cell interferon response. These 

findings suggest that changes in protein-protein interactions represent a central cause 

for the variations in human pathogenicity observed in Ebolaviruses. VP24 and VP40 

in particular contain multiple SDPs that are likely to contribute to differences in 

human pathogenicity. Where possible the SDPs have been considered collectively, 

such as for VP24, where most of the SDPs are present on a single face of the protein 

(Figure 2.8a) and three of them are present in the interface with KPNA5. Beyond 

this it is difficult to interpret how any combination of SDPs might be responsible for 

the differences in human pathogenicity.  

In (Pappalardo et al., 2017) our group studied the amino acid changes involved in 

Ebola virus adaptation to rodents, identifying 33 different mutations associated with 

Ebola virus adaptation to rodents in the proteins GP, NP, L, VP24 and VP35. Only 

VP24, GP and NP were consistently found mutated in rodent-adapted Ebola virus 

strains, and fewer than five mutations in these genes seem to be required for the 
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adaptation of Ebola viruses to a new species. Three VP24 mutations located in the 

protein interface with karyopherins may enable VP24 to inhibit karyopherins and 

subsequently the host interferon response. Three further VP24 mutations change 

hydrogen bonding or cause conformational changes. Hence, this is consistent with 

our hypothesis that few mutations including crucial mutations in VP24 enable Ebola 

virus adaptation to new hosts.  

Our data also demonstrate that relevant changes explaining differences in virulence 

between closely related viruses can be identified by computational analysis of protein 

sequence and structure. Such computational studies are particularly important for the 

investigation of Risk Group 4 pathogens like Ebolaviruses whose investigation is 

limited by the availability of appropriate containment laboratories.  

This approach has already been used by our group (Martell, Masterson, McGreig, 

Michaelis, & Wass, 2019) with the newly discovered Ebolavirus Bombali species 

(Goldstein et al., 2018), in order to test its potential to cause disease in humans. The 

1,408 Ebolavirus genomes available at that time were used to predict 166 SDPs, 146 

of which were already identified in this work. At SDPs, Bombali virus shared the 

majority of amino acids with the human pathogenic Ebolaviruses (63.25%). 

However, for two SDPs in VP24 (M136L, R139S) that have been proposed to be 

critical for the lack of Reston virus human pathogenicity because they alter the VP24-

karyopherin interaction, the Bombali virus amino acids match those of Reston virus. 

Thus, Bombali virus may not be pathogenic in humans. Supporting this, no Bombali 

virus-associated disease outbreaks have been reported, although Bombali virus was 

isolated from fruit bats cohabitating in close contact with humans, and anti-

Ebolavirus antibodies that may indicate contact with Bombali virus have been 

detected in humans. 

The role of VP24 appears to be central given the large number of SDPs we identify 

as likely to affect function, particularly KPNA5 binding. This is also highlighted by 

the similarity between these SDPs and the mutations that occur in adaptation 

experiments in mice and guinea pigs (Basler, 2014; D. W. Leung et al., 2009; Reid et 

al., 2006, 2007; Watt et al., 2014). Consequently, the mutation of a few VP24 SDPs 
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could result in a human pathogenic Reston virus. Given that Reston viruses circulate 

in domestic pigs, can be spread by asymptomatically infected pigs, and can be 

transmitted from pigs to humans (possibly by air) (Weingartl, 2013; Barrette et al., 

2009; Marsh et al., 2011), there is a concern that (a potentially airborne) human 

pathogenic Reston Ebolaviruses may emerge and pose a significant health risk to 

humans. Notably, asymptomatic Ebolavirus infections have also been described in 

dogs (Weingartl, 2013) and Zaire Ebolavirus shedding was found in an asymptomatic 

woman (Akerlund, Prescott, & Tampellini, 2015). Thus, there may be further 

unanticipated routes by which Reston viruses may spread in domestic animals and/or 

humans enabling them to adapt and cause disease in humans.  

In summary our combined computational and structural analysis of a large set of 

Ebolavirus genomes has identified amino acid changes that are likely to have a crucial 

role in altering Ebolavirus pathogenicity. In particular the differences in VP24 

together with the observation that Ebolavirus adaptation to originally non-

susceptible rodents results in rodent pathogenic viruses (Basler, 2014; Daisy W. 

Leung et al., 2010; Reid et al., 2006, 2007; Watt et al., 2014) suggest that a few 

mutations could lead to a human pathogenic Reston Ebolavirus. Deeper 

understanding of how this changes work and development of methods to effectively 

predict them from their genetic sequence of newly discovered viruses could lead to 

great advantages in public health control, as the emergence of new pathogenic strains 

or adaptions between species could be easily detected when not even predicted, 

giving public health institutions more time to plan and react before an outbreak. Plus, 

the identification of key amino acids of the proteins responsible for pathogenic 

would bring new insights about the mechanisms viruses uses to infect our organism 

and, therefore, open the door to new candidates for the development of vaccines and 

antiviral treatments in the future. 
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Chapter 3: 

Neuroblastoma UKF-NB-3 Genetic 

Landscape   

 

 

 

3.1. Introduction 

UKF-NB-3 is a MYCN-amplified neuroblastoma cell line that was established from a 

bone marrow metastasis of a high-risk neuroblastoma patient (Kotchetkov et al., 

2005). As we have previously seen in section 1.7.2. Cancer cell lines as model system, 

cancer cell lines are a suitable in vitro research models for cancer. Many anti-cancer 

drugs have been discovered and/ or initially characterised in cancer cell lines and 

cancer cell line panels, such as the NCI60 panel (Holbeck et al., 2010; Sharma et al., 

2010; Shoemaker, 2006). The characterisation of cancer cell lines has also revealed in 

depth insights into cancer biology. This includes gene networks associated with 

cancer, mutation and selection processes, and evidence of the DNA damage that 

triggered carcinogenesis (Pleasance et al., 2010; Pleasance & Stephens, 2010). 

Moreover, the use of cancer cell lines provides fundamental insights into cancer cell 

plasticity and its relevance for the cancer cell response to anti-cancer drugs 

(McGranahan et al., 2015; Sharma et al., 2010). 
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Therefore, by describing the genetic landscape of UKF-NB-3, we expect to improve 

our understanding of drug-resistant high risk neuroblastoma and the genetic variants 

related to this particular case of the disease. 

 

3.2. Methods 

The methods stated in this chapter will be also used in following Chapter 4, which 

experiments build on the study of UKF-NB-3 genetic landscape. 

 

3.2.1. Sequencing 

Whole exome sequencing (WES) was performed on the UKF-NB-3 parental cell line 

and 10 single-cell-derived clones. Exome enrichment was performed using the 

“Nextera Exome Enrichment Kit” (Illumina) according to the manufacturer’s 

instructions. Briefly, 50 ng DNA was used for fragmentation and adapter integration 

by applying transposase-based method, followed by amplification by PCR for 

indexing the different libraries. The indexed libraries were pooled and hybridized to 

biotinylated enrichment probes. Unbound DNA was washed away after binding the 

probes to a streptavidin bead-matrix. The probe-captured DNA was released from 

the beads, amplified by PCR and sequenced on an Illumina HiSeq2000 machine 

using 2x100 bps paired end sequences. An average of 2x 50 million reads was 

produced covering the 62 Mb exome >50x on average.  

 

3.2.2. Variant calling 

 The sample with the lowest coverage was about >58x covered. The resulting 100 nt 

paired-end reads were mapped to the human reference genome hg19 using bwa mem 

(H. Li & Durbin, 2010). Quality of sequencing was acceptable for every sample when 

analysed with Fastqc (Andrews S. , 2010). Trimmomatic was used to clip off bad 

quality ends of the reads and sequencing tags had not already been removed, and to 
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drop low quality and short reads. PCR duplicates were removed using picard (Picard) 

and indels realigned using GATK (McKenna et al., 2010). Variants were and called 

with using samtools mpileup (H. Li et al., 2009), which is a standard and efficient 

pipeline (Alioto et al., 2015). Before calling the variants, picard (Picard) was to 

remove PCR duplicates and GATK (McKenna et al., 2010) for INDELs realigning. 

All the methods were called using the default parameters but samtools, where the 

method for cancer and non-diploid samples was chosen and the threshold was set to 

singleton level, parameters -m 3 -F 0.0002 (3 supporting reads at minimum 0.02% 

frequency), in order to call small INDELs that were detected in previous work. For 

this reason, a strict filtering on 3060 Phred quality score was used to avoid false 

positives. For analysis of UKF-NB-3, common variants were filtered out by 

removing all variants with a frequency greater than 0.01 in gnomAD (Lek et al., 

2016).  

The number of quality variants called in this way was similar to using the GATK 

recommended workflow, and 82% of the hits were shared between the methods 

results. However, GATK workflow was not able to call the small INDELs detected 

in the wet lab.  

 

3.2.3. Cancer genes 

In order to focus our study in cancer related genes, we elaborated a list of 844 cancer 

genes by merging COSMIC’s (Forbes et al., 2017) cancer gene census with Intogen’s 

(Gonzalez-Perez et al., 2013) cancer driver genes (Annex2: Supplementary Table 3) A 

second list of 27 neuroblastoma driver genes was purely extracted from Intogene, 

based on (Pugh, 2013) experimental results (Annex2: Supplementary Table 4).  

 

3.2.4. Variant annotation 

Variants were annotated for functional information by Variant Effect Predictor 

(McLaren et al., 2016). The Genome Aggregation Database (gnomAD) (Lek et al., 
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2016) was used to identify common variants, and SIFT (P. Kumar et al., 2009) and 

PolyPhen-2 (Adzhubei et al., 2013) to predict pathogenic effects. ClinVar (Landrum 

et al., 2018) was also used to annotate clinical related variants. 

 

3.2.5. Other analysis 

R was used for all posterior statistical analysis and the comparison between the 

parental and clone sub-lines (12). Copy number variation (CNV) was calculated with 

CopywriteR (Kuilman et al., 2015). Cancer signatures present in the cell lines were 

identified using signeR (Rosales, Drummond, Valieris, Dias-Neto, & da Silva, 2016). 

Plots and figures were created with ggbio in R (Yin, Cook, & Lawrence, 2012). 

 

3.3. Results 

The analysis of the whole exome sequencing data revealed 15,398 variants (Annex 2: 

Suppl. Table 1), a number that was reduced to 2,414 mutations after the removal of 

common variants (defined as variants that have a frequency of > 1% in gnomAD  

(Lek et al., 2016). This included 437 non-synonymous changes, 121 INDELs, 65 

frameshift mutations, 15 gained stop codons, 320 mutations in splice sites, 340 and 

866 mutations in 5’ and 3’ untranslated regions (UTR) respectively, and 250 

synonymous changes (Annex 2: Suppl. Table 2). 

Using Intogen to predict cancer driver genes (Gonzalez-Perez et al., 2013) and 

Cancer Census of COSMIC (Forbes et al., 2017), we identified a set of 701 mutations 

in 844 putative cancer-associated genes (Annex 2: Suppl. Table 3), 35 of which occur 

in the 27 neuroblastoma driver genes identified by (Pugh, 2013) (Annex 2: Suppl. 

Table 4 and Annex 2: Suppl. Table 5). 

 

3.3.1. Effect of mutations 
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ClinVar is a database that links genomic sequence variants to disease (Landrum et al., 

2018). Only 29 of the 2,414 mutations found in UKF-NB-3 cells were annotated in 

ClinVar and only two of these mutations were categorised as “likely pathogenic”, and 

one as “pathogenic” (Annex 2: Suppl. Table 6). Given that ClinVar is primarily 

focused on (hereditary) genetic variants that cause a certain phenotype (disease) and 

that cancer is a multifactorial process that is largely driven by somatic mutations (and 

epigenetic changes) that are acquired over a lifetime (Stratton, Campbell, & Futreal, 

2009), this may not be too surprising.  

Next, we analysed the putative effects of the 2,414 detected mutations on protein 

structure and function using the two complementary approaches SIFT (P. Kumar et 

al., 2009) and PolyPhen-2 (Adzhubei et al., 2013). The concept of SIFT is based on 

the consideration that crucial positions in protein sequences are conserved during 

evolution. Hence, the method determines the evolutionary conservation of positions 

of interest in protein sequences to estimate their potential effect on protein function 

(P. Kumar et al., 2009). SIFT predicted 157 of the single nucleotide variants to affect 

protein function (Figure 3.1a and Annex 2: Suppl. Table 7). PolyPhen-2 uses 

sequence- and structure-based features to estimate the effects of changes in protein 

sequence on protein function (Adzhubei et al., 2013). It predicted 151 changes to be 

“damaging” to protein function (Figure 3.1b and Annex 2: Suppl. Table 8). There 

was an overlap of 111 variants that were predicted to affect protein function by both 

SIFT and PolyPhen-2 (Figure 3.1 and Annex2: Suppl. Table 9). 
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Figure 3.1. Variant Effect predictions. SIFT (A) and PolyPhen (B) predictions of 

nonsynonymous SNPs. The heatmap (C) shows the overlapping of their predictions. 

 

3.3.2. Mutated genes 

Recent sequencing studies of neuroblastoma tumours identified further common 

neuroblastoma driver genes including ALK, PTPN1, ATRX, MYCN, and NRAS 

(Molenaar et al., 2012; Pugh, 2013). Additionally, Intogen classifies a further 22 genes 

as drivers in neuroblastoma resulting in a group of 27 driver genes. The mutational 

status of UKF-NB3 was considered on those driver genes. 
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We found mutations in 12 of these genes; ALK, ANK3, CEP290, LRP6, MACF1, 

MECOM, MET, MUC4, NF1, NOTCH1, PBRM1, TRIO (Annex 2: Suppl. Table 3). 

 

Figure 3.2. Variants in driver genes. Red batons on the ideogram represent non-

synonymous SNVs in ALK in UKF-NB-3, and the yellow batons show previously 

observed variants. The taller the baton, in more cell lines that variant was observed in 

Original figure and previously observed variants extracted from 

https://www.intogen.org/search?cancer=NB&gene=ALK, a resource of Intogen 

(Gonzalez-Perez et al., 2013). 

UKF-NB-3 has six variants in ALK (Figure 3.2 and Annex 2: Suppl. Table 10). All of 

them are common, two are missense, one nonsense and three synonymous. Only the 

nonsense mutation was not found in ClinVar (chr2_29444095_C_T) and got no 

effect predictions, but it is so frequent (0.97% of gnomAD population contained it) 

that it is highly unlikely it is related to disease. The other four variants are annotated 

in ClinVar as benign, and the two missense ones are also predicted by SIFT to be 

tolerated.  

There are three mutations in ANK3 (Annex 2: Suppl. Table 3), all common and only 

two of them occurring in coding regions but synonymous, both annotated as likely 

benign in ClinVar. 

CEP290 contains one rare missense variant (chr12_88502846_A_G) which is not 

annotated in ClinVar but predicted to be deleterious and probably damaging by SIFT 

https://www.intogen.org/search?cancer=NB&gene=ALK
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and PolyPhen-2, respectively. It also contains three common variants not annotated 

as dangerous in ClinVar (Annex 2: Suppl. Table 3). 

LRP6 shows one common missense mutation not annotated in ClinVar but 

predicted to be tolerated and benign by SIFT and PolyPhen-2 (Annex 2: Suppl. Table 

3). 

11 mutations where found in MACF1 (Annex 2: Suppl. Table 3); two synonymous 

SNVs, one 3’ prime UTR variant, one in a splice site and seven missense variants, 

none of them contained in ClinVar. Two of the missense variants are interesting, as 

one (chr1_39801815_A_C) is possibly damaging according to PolyPhen-2 and the 

other (chr1_39823135_A_G) is rare but predicted to be benign.  

There is one rare mutation in MECOM (chr3_168810845_G_A), not annotated in 

ClinVar but predicted to be to be deleterious and possibly damaging by SIFT and 

PolyPhen-2 (Annex 2: Suppl. Table 3). 

Finally, MUC4 contains 140 different variants, none of them found in ClinVar. As 

previously stated, this gene is abnormally mutated in this cell line. NOTCH has three 

common variants, PBRM1 two and TRIO has one with no effect associated. The 

only variant in MET is common and related with splicing (Annex 2: Suppl. Table 3). 

The mutational status of UKF-NB-3 was also considered for a larger set of 669 

driver genes, which includes the neuroblastoma driver genes and driver genes 

identified across all types of cancer. Exonic non-synonymous mutations were 

identified in 197 of these drivers, 2560 of a total of 2784 variants detected in these 

genes have been previously observed and 1559 occur frequently in ExAC. 43 

mutations were predicted to be deleterious by SIFT and 26 as probably damaging by 

PolyPhen, and nine of them where annotated as pathogenic by ClinVar. (Annex 2: 

Suppl. Table 3). 
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3.3.3. Copy Number Variation 

Analysis of Copy Number Variation (CNV) in UKF-NB-3 using CopywriteR showed 

amplification in many regions and deletions primarily in chromosomes 23 (X) and 24 

(Y) (Fig 3.3). UKF-NB3 was derived from a MYCN amplified tumour and MYCN is 

identified as being highly amplified in the cell line, with 16 times more reads than 

expected for the normal copy number. It is the 29th most amplified gene in UKF-

NB-3.  The most amplified pseudogene is LINC00283 with 7.21. There are 11 genes 

and pseudogenes between 5:6, 19 between 4:5, 95 between 3:4, 948 between 2:3 and 

12608 between 1:2. The genes and pseudogenes with no amplifications or deletions 

(between -1:1) are 68,041, and the ones with a negative CNV are 1,989 between -1:-2, 

202 between -2:-3, 25 between -3:-4, 5 between -4:-5 and 784 almost deleted (Annex 

2: Suppl. Table 10). 

 

 

Figure 3.3. Copy number variation in UKF-NB-3. Values are in log2 scale, 

meaning 0 is the average copy number; 1 being 2x, 2 is 4x and so; and -1 means x0.5 

and -2 is x0.25. Despite not been visible at chromosome scale, many genes like 

MYCN show high values up to 4 (16 times more copies). Chromosomes 23 and 24 

correspond to chromosomes X and Y, respectively. 
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3.3.4. Cancer signature 

The cancer signature of UKF-NB-3 (Fig 3.4) shows three characteristics patterns (2, 

22 and 23). The main one, in the C>T mutations which corresponds to signature 1 in 

COSMIC database, is a cancer signature that has been identified in all cancer types 

and in most cancer samples and correlates with age of cancer diagnosis. It is the 

result of an endogenous mutational process initiated by spontaneous deamination of 

5-methylcytosine, and it is associated with small numbers of small insertions and 

deletions in most tissue types. We can also see three other smaller patterns in C>A, 

C>G and T>C substitutions. These smaller signatures do not correlate with the 

values for these changes in the signature described before, neither with any other 

mayor cancer signature published in COSMIC, so it may be a characteristic signature 

of our cell line. 

  



85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     C > A                C > G               C > T                T > A                T > G              T > C 

 

Figure 3.4. Cancer signature of UKF-NB-3. SigneR predicted only one signature 

(S1). Each block of the horizontal axis contains a particular nucleotide substitution, 

and inside the block all the possibilities of nucleotides surrounding it. The vertical 

axis shows how frequently that nucleotide substitution is happening in that particular 

context. 
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3.3.5. Pathway enrichment analysis 

Pathway, network neighbourhood, gene ontology and protein complex analysis were 

done with the Max Plank Institute for Molecular Genetics over-representation 

analysis tool, ConsensusPathDB (Kamburov et al., 2011) (Figure 3.5). 

As we do not have RNA expression values, we could only evaluate the over-

representation of mutated genes in each pathway. This kind of analysis is not really 

informative, as the effects of the mutations in those genes can have unpredictable 

effects, form not affecting the mutated protein function at all to crippling and/or 

modify one or more of their functions; but we will reuse this result later in 4.3.8. 

Pathway enrichment analysis when studying the internal heterogeneity of UKF-NB-3. 

 

Figure 3.5. Pathway analysis of UKF-NB-3. The pathways are represented as the 

edges of the network and the colour of the dots represents how much the pathway is 

likely to be affected in a scale white-red. The green link represent interaction between 

pathways affected by mutated genes, and the thicker they are the more confident they 

are. 
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3.4. Discussion 

The UKF-NB-3 cell line was stablished in 2005 (Kotchetkov et al., 2005), and since 

then it has been used in multiple experiments (Löschmann et al., 2013; Michaelis et 

al., 2012, 2011). During all this time, we had limited knowledge of its genomic 

properties, and with this research we aim to provide a better understanding of this 

cell line for future experiments. We have sequenced the exome or UKF-NB-3 and 

identified its variants to the reference human genome using variant databases, effect 

prediction tools and population frequencies.  

Here we have described how the mutations are distributed across UKF-NB-3 

genome, especially in neuroblastoma driver genes and other commonly mutated 

genes in cancer. We have considered the clinical information known about the 

variants, and predicted their effects. We have also looked into the CNVs, cancer 

signature and affected pathways as far the characteristics of our data allowed us to 

go.  

More than 15,000 variants were identified in UKF-NB-3, with only ~16% of them 

being considered rare (< 1% frequency in gnomAD). The difficulty of detecting 

some variants observed in previous experiments suggested that the cell line may not 

be homogeneous and/or stable, and further work is reported on this issue in Chapter 

4. 

UKF-NB-3 has 12 mutated neuroblastoma driver genes. We studied in detail the 

potential effect of the rare mutations located in those genes by comparing their 

annotation in ClinVar and their predictions in SIFT and PolyPhen-2. None of them 

were individually linked to disease, but that is expected in a complex disease like 

cancer. Thus, we also looked for the same disease information in a broader set of 

genes which are commonly mutated in cancer, and we generated UKF-NB-3 cancer 

signature to compare it with other better known cancers. Finally, a pathway 

enrichment analysis was executed to gather more information about the collective 

effect of individual mutations.   
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While the whole exome sequencing approach used enabled the identification of many 

SNVs and small indels it is limited in the detection of SVs, particularly CNVs. 

Further, this data would be enhanced by combining with other types of omics data, 

particularly gene expression data (transcriptomics). Therefore, in some parts of our 

analysis we were constricted to use the only tools that have proved to work, even in a 

limited way, with such data. 

We expect the genomic description of UKF-NB-3 cell line will help future research 

in the field and help us to improve our understanding of high-risk neuroblastoma 

cancer genomics. 
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Chapter 4: 

UKF-NB-3 internal heterogeneity 

 

 

 

4.1. Introduction 

It has now become clear that cancer diseases are characterised by an incredible inter- 

and intra-tumour heterogeneity (Jamal-Hanjani, Quezada, Larkin, & Swanton, 2015; 

Lipinski et al., 2016). Large cell line panels are thought to cover the (inter-)tumour 

heterogeneity to a certain extent (Garnett & McDermott, 2014; Sharma et al., 2010). 

Moreover, cancer cell lines have long been known to be characterised by some level 

of intra-cell line heterogeneity (Barranco et al., 1983; Zanker, Treappe, & Blumel, 

1982). This heterogeneity is thought to be the consequence of a combination of two 

events. It is partly caused by the heterogeneity of the cancer cell populations that 

cancer cell lines are derived from. In addition, cancer cells are characterised by 

genetic instability that results together with evolutionary pressures exerted by the cell 

culture environment in a genetic shift (Masramon, 2006; Torsvik et al., 2014). Hence, 

cancer cell lines may play a role in 1) the investigation of cancer cell biology and 

response to anti-cancer drugs and 2) the examination of evolutionary processes in a 

(cancer) model characterised by genetic instability.  

However, detailed research on the intra-cell line heterogeneity of cancer cell lines is 

very limited. To address this, here, the MYCN-amplified neuroblastoma cell line 

UKF-NB-3 (Kotchetkov et al., 2005) was systematically characterised alongside 10 

single cell-derived clonal sub-lines by the determination of growth kinetics, drug 

resistance profiles, and whole exome sequencing for intra-cell line heterogeneity. 

 

4.2. Methods 
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As the research in this chapter continues what was started in Chapter 2, the methods 

used are the same described in that chapter’s section. 

 

4.2.1. Clonal sub-lines 

The ten clonal sub-lines we used to study the internal heterogeneity of UKF-NB-3 

are single-cell derived clones. This means each of them was stablished from the 

parental UKF-NB-3 cell line by extracting one single cell and cultivating it in a new 

medium until growing to become a new clonal sub-line of UKF-NB-3. The numbers 

in the naming of the clones refer to the number of the experiment, as 100 sub-lines 

of this type were planned to be stablished. The choosing criteria for sequencing these 

10 were: 1) to have been successfully stablished, i.e. they did not die in the process; 

and 2) the original cell they come from had to be from different regions of the 

parental cell line so internal heterogeneity would be easier to study. 

 

4.3. Results 

In order to study the internal heterogeneity in detail, we defined four groups of 

variants. For variants that are called in clonal sub-lines but not in the parental UKF-

NB3 line we distinguish two different classifications. For some of these variants it is 

possible that there are reads supporting the variant in the parental UKF-NB3 but 

without sufficient confidence for it to be called. This may reflect a heterogeneous cell 

population, where this variant is present in only a small proportion of cells and 

therefore is not called. We class these as gained mutations. For the remaining 

variants, there is no evidence for them in the parental UKF-NB-3 cell line, so it is 

possible that they have occurred in the clonal sub-line. These are classed as de novo 

mutations. Finally, the lost group was split into two. Partially-lost mutations, where 

the mutation was present in the parental UKF-NB-3 cell line and there was some 

evidence for it in the sequencing data in the sub-lines but not sufficient for it to be 

called. Fully-lost mutations were present in the parental UKF-NB-3 but not detected 

in the clonal sub-lines.  
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Sample Frameshift Indels nonsense nonsyn splicesite synonymous 

Clone 1 74 347 87 8715 1900 9303 

Clone 2 79 379 89 9078 2047 9673 

Clone 24 80 365 83 8874 1923 9416 

Clone 3 80 361 86 8692 1890 9227 

Clone 4 74 350 85 8707 1876 9193 

Clone 56 86 371 93 8869 1935 9456 

Clone 64 77 349 86 8814 1889 9354 

Clone 7 67 363 87 8872 1957 9460 

Clone 80 80 372 89 9084 1998 9643 

Clone 93 74 378 93 9068 2006 9621 

UKF-NB-3 62 312 70 7816 1661 8178 

Table 4.1. Variants present in UKF-NB3 and clone sub-lines. Detailed data are 

presented in Suppl. Table “description_table.txt”. 

Overall, we found that each of the clonal sub-lines had a similar number of 

mutations (Table 4.1), whether considering all mutations, de novo or gain mutations 

(Figure 4.1D, E, and F). The number of gain mutations ranged from 2045 (clone 1) 

to 2339 (clone 93), and de novo mutations from 763 (clone 1) to 914 (clone 93) 

(Annex 3: Suppl. Table 1 and Annex 3: Suppl. Table 2). Hence, for the majority of 

the new mutations there is evidence for them in the parental cell line. Notably, the 

clonal sub-lines did not share any de novo variants, suggesting that as their name 

suggests they are new mutations. Likewise, the clonal sub-lines had lost variants 

ranging from 591 (clone 2) to 903 (clone 4) and de novo lost variants from 217 

(clone 2) to 407 (clone 4). Clone 4 had not only the highest number of lost variants 

but also UKF-NB-3 had its greatest number of de novo mutations when comparing 

to it, being therefore the least similar to the parental UKF-NB-3 cell line of all the 

single cell derived clones and potentially the least represented sub-line captured in 

the original sequencing experiment. 

 

4.3.1. Heterogeneity 

The ten single cell-derived clonal UKF-NB-3 sub-lines displayed between 14,336 

(UKF-NB-3clone3) and 15,222 variants (UKF-NB-3clone93) (Annex 3: 
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Supplementary Table 3). After removal of the common variants, the number of 

variants ranged between 1,579 (UKF-NB-3clone1) and 1805 (UKF-NB-3clone2). 

Notably, the clonal UKF-NB-3 sub-lines displayed (except from UKF-NB-3clone1) 

at the selected Phred score of 30 higher numbers of variants than UKF-NB-3, both 

before (13,012 variants observed in UKF-NB-3) and after removal of the common 

variants (1,413 observed in UKF-NB-3). Our first assumption was that because of a 

lower heterogeneity, variants would be called with more certainty in the clonal sub-

lines than in UKF-NB-3. To examine this hypothesis, we compared the number of 

variants (without removing the common ones) at different levels of stringency, i.e. at 

different Phred scores (Table 4.2). If the higher variability in UKF-NB-3 resulted in a 

lower number of reliable calls, we would expect to see a larger number of calls in 

UKF-NB-3 than in the clonal sub-lines at lower quality thresholds. Indeed, at a 

Phred score of 0, only UKF-NB-3 clone24 displayed a higher number of mutations 

than UKF-NB-3. At a Phred score of 10, five of the clonal UKF-NB-3 sub-lines 

(UKF-NB-3clone2, UKF-NB-3clone3, UKF-NB-3clone4, UKF-NB-3clone7, UKF-

NB-3clone24) displayed higher numbers of mutations than UKF-NB-3. When we 

increased the Phred score thresholds to 80 or 100, all clonal UKF-NB-3 sub-lines 

displayed increased numbers of mutations compared to UKF-NB-3 (Table 4.2).  

These lower scores can be interpreted as the parental cell line not being monoclonal, 

but contains small subpopulations with small genetic differences. This genetic 

variability is inferior in the single-cell-derived clones, which translate in higher quality 

scores for their variants as there is lesser background noise. This analysis partly 

confirmed our initial hypothesis that a higher heterogeneity may be associated with a 

lower number of called variants at high quality thresholds and a higher number of 

called variants at lower quality thresholds. However, other factors, which will need to 

be examined in future studies, also seem to contribute to this phenomenon. 
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Sample Raw Reads QUAL 0 QUAL 10 QUAL 20 QUAL 30 QUAL 60 QUAL 80 QUAL 100 

UKF-NB-3 9406707 527241 373549 216083 190182 63368 49262 40600 

Clone 1 11519307 330648 271744 184306 167051 62536 52733 45503 

Clone 24 14281153 496471 412714 282676 268790 79733 64060 53522 

Clone 2 15860910 542018 448469 302367 230027 67497 54882 46003 

Clone 3 12610134 454198 376695 257572 248597 69820 56448 46968 

Clone 4 13532042 482764 402844 278817 235204 71436 58298 49228 

Clone 56 13190217 387579 320112 217691 251794 72836 58843 49208 

Clone 64 13539427 425433 355336 248573 196380 67382 56254 48269 

Clone 7 14256891 459912 382475 262935 222499 67029 55119 46710 

Clone 80 15405731 431644 359540 249428 223760 72172 59848 51089 

Clone 93 14108200 426880 348390 230849 207748 72819 60301 51490 

Table 4.2. Number of raw reads and variants present in UKF-NB3 and clonal 

sub-lines. The number of variants called using different Phred quality scores 

(QUAL) thresholds is shown. 

 

4.3.2. Variants distribution 

Initially, we analysed the similarity/ relatedness between UKF-NB-3 and its clonal 

sub-lines as well as among the clonal UKF-NB-3 sub-lines. For this analysis, we did 

not remove the common variants. For variants present in the clonal sub-lines, we 

defined two types of variants based on there being any evidence for the variant in 

UKF-NB-3. To do this for all variants identified in the clonal sub-line we considered 

if there was any evidence for them in UKF-NB-3 (i.e. a single read, disregarding 

Phred scores). Where there was no evidence at all of a variant being present in UKF-

NB-3 the variant was classed as de novo i.e. a new mutation that was not present in 

the parental line (Table 4.4). Where there was some evidence for a variant in UKF-

NB-3 but not sufficient for it to be called, then the variant was classed as gained i.e. 

the variants may be present in UKF-NB-3 at low frequencies and is present in one or 

more single cell derived sub-lines (Table 4.3).  

The number of gained mutations in each subline ranged from 2045 in UKF-NB-

3clone1 to 2239 in UKF-NB-3clone93 (Table 4.3), while the number of de novo 

mutations ranged from 763 in UKF-NB-3clone1 to 914 in UKF-NB-3clone93 (Table 

4.4). There was almost no overlap between the de novo mutations in the different 

clones, being most of them unique, providing further evidence that they may be 

actual de novo mutations that occurred after the isolation of the single cells that the 
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clonal sub-lines are derived from and that the parental cell line is not homogeneous 

and contains subpopulations. (Annex 3: Supplementary table 4) 

 

VariantsOf/

NotIn Clone 1 Clone 2 Clone 24 Clone 3 Clone 4 Clone 56 Clone 64 Clone 7 Clone 80 Clone 93 UKF-NB-3 

Clone 1 0 807 978 1172 1162 995 1028 1010 819 854 2045 

Clone 2 1352 0 1204 1420 1407 1222 1284 1187 1024 1060 2336 

Clone 24 1181 862 0 1236 1248 1024 1109 1076 884 921 2138 

Clone 3 1157 860 1018 0 1132 1032 1067 1034 882 888 2071 

Clone 4 1139 839 1022 1124 0 1015 1053 1022 867 838 2080 

Clone 56 1222 904 1048 1274 1265 0 1114 1084 892 927 2181 

Clone 64 1127 838 1005 1181 1175 986 0 1030 827 875 2076 

Clone 7 1226 858 1089 1265 1261 1073 1147 0 911 928 2158 

Clone 80 1316 976 1178 1394 1387 1162 1225 1192 0 1035 2329 

Clone 93 1346 1007 1210 1395 1353 1192 1268 1204 1030 0 2339 

UKF-NB-3 845 591 735 886 903 754 777 742 632 647 0 
Table 4.3. Gained variants in clonal sub-lines. Effect causing variants in UKF-

NB-3 and clones, compared to every sample, i.e., number of high quality variants of 

every sample not present in the others.  

 

VariantsOf/NotIn Clone 1 Clone 2 Clone 24 Clone 3 Clone 4 Clone 56 Clone 64 Clone 7 Clone 80 Clone 93 UKF-NB-3 

Clone 1 0 300 347 411 504 339 373 372 305 298 763 

Clone 2 545 0 475 534 631 460 492 431 395 413 909 

Clone 24 465 332 0 464 531 338 373 409 337 310 829 

Clone 3 453 378 390 0 504 388 430 406 360 353 833 

Clone 4 433 345 380 377 0 368 411 394 338 309 827 

Clone 56 474 350 367 469 555 0 391 410 341 340 828 

Clone 64 422 322 352 427 515 329 0 357 301 318 797 

Clone 7 512 350 411 476 574 395 433 0 343 372 811 

Clone 80 527 363 421 511 612 391 443 459 0 371 889 

Clone 93 510 390 444 542 591 449 503 456 411 0 914 

UKF-NB-3 346 217 258 310 407 259 263 261 224 231 0 
Table 4.4. de novo variants in clonal sub-lines. Effect causing de novo variants 

present in clonal sub-lines compared to every sample, i.e., number of variants of 

every sample that were not detected even with low quality.  
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Each sub-line had a similar number of each type of mutation (Fig 1D-F) when 

considering all variants (including those present in the parental cell line) and gain and 

de-novo mutations.  The distribution of the type of variants present in the clonal-sub 

lines is very similar (Figure 4.1A) with an average of 8,556 (45.89%) being 

synonymous, 7,992 (42.87%) non-synonymous, 1,639 (8.79%) indels, 3,189 (1.71%) 

at splice sites, 80 (0.43%) nonsense and 59 (0.32%) frameshift. This distribution is 

similar when considering all, gain or de novo mutation, with the exception that there 

is a slightly higher proportion of frameshift mutations in the de novo set (Figure 

4.1D, E and F). 
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Figure 4.1. Variants distribution. A) Number of mutated genes in each clone. In 

blue the total number, in orange the genes mutated by variants which were not called 

in the UKF-NB-3 parental cell line and in green the genes mutated by de novo 

variants. B) Distribution of mutated genes across the clones. The x axis represents 

how many samples contain the same mutated gene while y counts the number of 

mutated genes in every group. Again, blue for the total of variants, orange for only 

the variants not called in the parental UKF-NB-3 cell line and green for the de novo 

variants. C) Simulations of distributions for completely random variants (brown) and 

occurring mostly in a set of genes (purple). Explained in detail in section 4.3.3. 

Simulations of variant distributions. D) Total number of variants in each sample and 

parental UKF-NB-3 cell line classified by their type, in log scale. E) Number of 

variants not called in the parental UKF-NB-3 cell line in each sample classified by 

their type, in log scale. F) Number of de novo variants in each sample classified by 

their type, in log scale.  

We wondered if there was an overlap in the genes that were mutated between the 

clonal sub-lines. When considering variants are also present in the parental cell line, 

most of the variants that are shared between all ten sub-lines, as would be expected. 

(Figure 4.1B). When considering de-novo and gain mutation together there are many 

genes that are mutated in only a single sub-line and the number of gene mutated in 

multiple sub-lines decreases as the number of sub-lines compared increases until 3-4 

sub-lines where there is an increase, this again represents variants which may be 

present in the parental cell line. Finally, there is little overlap between the genes that 

de novo mutations occur in. 

We compared the similarity between our samples in two different ways. In the first 

heatmap (Fig 4.2A), we show the percentage of mutated genes shared by the samples. 

It is important to notice that UKF-NB-3 has fewer variants called, which translates 

into a smaller number of mutated genes compared with the clones. In the second 

plot (Fig 4.2B), we show the percentage of variants of the samples in the vertical axis 

shared by the ones of the horizontal axis. 
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Mutated genes by gained variants 

 

Figure 4.2. Similarity between samples. Similarity heatmaps of our samples 

comparing both genes (top) and variants (bottom). It is important to notice that not 

all samples have the same number of genes mutated and variants called, the plots are 

not symmetric. Finally, the third heatmap shows which genes in each clone are 

mutated by gained variants; each row represents a human gene and there is a red line 

if the gene in that sample is mutated.  
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The most frequently mutated genes in every set (all variants, gained variants and de 

novo variants sets) for the parental line and all sub-lines are members of the mucin 

family (MUC4, MUC16, MUC6, and MUC3A) (Annex 3: Suppl. Table 5). Mucins are 

usually products of epithelial tissues and their tumours, but they have also been 

observed overexpressed in cancers of other tissues, including pancreas, ovary, breast, 

lung, colon and prostate (Hollingsworth & Swanson, 2004; Rakha et al., 2005). Mucin 

expression alteration in cancer facilitates cancer growth, as it affects differentiation, 

transformation, adhesion, invasion and immune surveillance (Hollingsworth & 

Swanson, 2004). Another mucin which is not mutated in our samples, MUC1, has 

been reported to be overexpressed in neuroblastoma and a set of cancer cell lines 

(Osterkamp, Cheiner, Tefanova, Loyd, & Instad, 1997), so it is possible that the 

expression of mucins is an intrinsic behaviour of cancer cell lines. MUC4 in 

particular, the most frequently mutated gene in our samples, has been recently 

reported to be a key supporter of propagation and survival processes in various 

epithelial cancer cell lines (Xia et al., 2016). 

Despite the most mutated genes in all samples are shared (Annex 3: Suppl. Table 5), 

there are some variants in not so frequently mutated genes, showing some 

heterogeneity between the clones and UKF-NB-3. Also, the gained and de novo 

variants do not cluster in the same genes. Some of the most highly mutated genes in 

UKF-NB-3 were further mutated with gained mutations in the clonal sub-line 

(Annex 3: Suppl. Table 6), but other genes that were not mutated in the parental 

show up here. The MUC family appears again in the top genes with de novo 

mutations (Annex 3: Suppl. Table 7), suggesting that some of the newly detected 

variants were not present in the parental, but most of the genes showed in this list 

were not mutated in UKF-NB-3. 

Gained mutations present in the clonal sub-lines but not in UKF-NB-3 preferentially 

occurred in a limited number of genes (Fig 4.1A, Fig 4.3 and Annex 3: 

Supplementary Table 6). The number of mutated genes found in each of the clonal 

sub-lines is very similar (Fig 4.1B). Gained variants in the clonal UKF-NB-3 sub-lines 

reflect the selection of clones with certain genome profiles.   
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Figure 4.3. Circos plot showing the mutation profiles of UKF-NB-3 and the 

single cell-derived clonal sub-lines of UKF-NB-3. The external refers to UKF-

NB-3. The interior circles refer to the clonal UKF-NB-3 clone sub-lines. In the 

clones, de novo mutations are showed in red while gained ones are blue. 

There was a substantial overlap in the genes that harboured de novo variants (Figure 

4.1C, Figure 4.2 and Annex 3: Suppl. Table 7). Some of these genes are highly 

mutated both in UKF-NB-3 and in the clonal sub-lines. This suggests that mutations 

in these genes are well tolerated. Some of the novel variants that were not detected in 

UKF-NB-3 occurred in these highly mutated genes (MUC3A, MUC6, MUC4, 

MUC16, KCNJ12, FLG, OR9G1), while other gained variants occurred in genes 

with fewer (or no) variants detected in UKF-NB-3 (ZNRF4, ESPNL, PABPC1, 

MYOM3, GPRIN2, TNN, NR2E3). The other de novo mutations occurred in less 

commonly mutated genes (Annex 3: Suppl. Table 4). An analysis of these de novo 
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variants for known oncogenes and tumour suppressor genes did not reveal the 

presence of new known driver events. In accordance, the de novo appear to be 

randomly distributed and to rather indicate genomic instability instead of a directed 

evolution. Simulations were performed in order to see whether the mutation pattern 

that we observe actually reflects a combination of preferential mutation sites and a 

number of randomly distributed mutations. 

It is worth mentioning special areas of the genome were little to none variants are 

observed in Figure 4.1, as both sexual chromosomes X and Y and some large regions 

in other chromosomes like 3 and 13. This may be due to chromosomal aberrations in 

this cell line. New on-going work with UKF-NB-3 suggest it has lots of 

chromosomal translocations, duplications and deletions. One of those can be 

observed here, as the original donor of the tissue used to create UKF-NB-3 was a 

male, but chromosome Y is inexistent. There are only no variants in that region of 

the genome, but also no mapping reads, agreeing with the last karyotype studies 

where this chromosome could not be found in UKF-NB-3. 

 

4.3.3. Simulations of variant distributions 

To study the existence of patterns behind the distribution of the different kind of 

mutations in our samples, a set of distributions of shared mutated genes across 10 

samples was generated. In each of the distributions the proportion of genes that were 

more likely to gain new mutations was varied, from all genes in the genome 

(completely random distribution, the mutation has the same chance of appear in any 

part of the genome) to only the set of genes that were mutated in our samples (some 

genes have a higher mutation rate and others a minimal mutation rate).  

When comparing the patterns of these simulated distributions with our data, the 

distribution of the set including all our variants follows a deterministic model where 

almost all the mutated genes belong to a set and almost any new gene gets randomly 

mutated, while the non-parental set represents a middle point, and the de novo set 

corresponds to an almost completely random (Fig. 4.1C). 
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4.3.4. Effect prediction 

We then investigated the de novo mutations for a potential functional relevance by 

ClinVar, SIFT, and PolyPhen-2 (Annex 3: Suppl. Table 4). 

Across all clones, there are a total of 20,512 unique de novo variants, 10,880 of them 

rare (Annex 3: Suppl. Table 4). Only 26 of those are annotated in ClinVar, with only 

two of them known to be associated to disease (LPL chr8_19842492_T_C, present 

in UKF-NB-3clone24 and with low quality in UKF-NB-3clone1 and UKF-NB-

3clone64) and pathogenic (SLC19A3 chr2_228566905_T_C, present only in UKF-

NB-3clone2). The rest of de novo variants, SIFT predicted 471 to be deleterious, and 

PolyPhen-2 predicted 466 to be potentially damaging. 

There are a total of 31,432 unique gained mutations across all clones, 13,068 of them 

being rare. From those, only the two de novo variants described above are annotated 

as pathogenic or related with disease, of a total of 39 gained mutations found in 

ClinVar. 545 rare gained mutations were predicted to be deleterious by SIFT, and 

PolyPhen-2 predicted 556 to be potentially damaging.  

 

4.3.5. Differences in driver and cancer genes 

By comparing the most commonly mutated genes in neuroblastoma cell lines (Fig 

4.4B) with our samples (Fig 4.4A), we discovered that the driver genes present in 

UKF-NB-3 are also mutated in the clones, while the neuroblastoma driver genes not 

mutated in the parental cell line remain unchanged in the clones. In particular, ALK 

shows 4 different mutations across the clones, keeping the first mutation in the gene 

common across UKF-NB-3 and the clones, but the second one detected in UKF-

NB-3 only appears in four of the clones. Eight clones contain a known mutation in 

other neuroblastoma cell lines, in the Pkinase Tyr domain, and nine of them contain 

another one before it. PTPN11 does not develop any mutations in any of the clones, 

and ATRX has the same mutation in every sample. On the other hand, some of the 
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commonly mutated genes, that were not mutated in the parental cell line were in the 

clones, seven (PIK3CB) and three (NF1). Extending the range of genes, we compare 

to all known driver genes for any cancer, the internal heterogeneity becomes evident 

(Fig 4.4C). Some cancer genes mutated in UKF-NB-3 are mutated in some of the 

clones and not in others, and many others not mutated in the parental line are 

mutated in some or even all clones. 

    A) 

    C) 
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Figure 4.4. Commonly mutated genes in neuroblastoma cell lines. A) Which of 

the most common mutated genes in neuroblastoma cell lines are mutated in our 

samples. B) Most commonly mutated genes in neuroblastoma cell lines by Intogen. 

In dark blue are represented the driver genes. C) Which ones of the driver genes of 

any cancer are mutated in our samples. 

 

4.3.6. Phylogeny 

Clonal evolution of our samples was calculated based on the proportion of 

alternative alleles in reads (number of reads with ALT alleles divided by the sum of 

ALT and RF alleles) supporting each variant call. Using these values and setting to 0 

every undetected variant in that sample but called in any other sample, we calculated 

a hierarchical clustering to represent the similarities and branching events of the 

subpopulations the clones were derived from. 

Both Bayesian and Maximum Likelihood hierarchies (Figure 4.5) agreed that UKF-

NB-3 parental cell line was the furthest related sample of the study. This result may 

be due to the smaller number of variants it contains, but also to it being a “common 

ancestor” containing almost all common variants to the clones but not the ones that 

differ in each subpopulation. 
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    A) 

 

    B) 
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Figure 4.5. Phylogeny. Bayesian (A) and Maximum Likelihood (B) phylogenetic 

trees of the UKF-NB-3 cell line and clones. 

A second approach to build a hierarchy while trying to identify key differentiating 

events was tried with AncesTree (Figure 4.6). This software was designed to work 

with samples which differ from less variants, not cancer samples. When trying to find 

relevant mutational events that could classify our samples, the large amount of 

variants acts as “background noise” and makes it impossible for the algorithm to find 

any, if exists. 

 

 

 

Figure 4.6. Differentiating evolutionary events. Phylogenetic tree made by 

AncessTree to identify differentiating evolutionary events.  

 

4.3.7. Cancer signatures 

Cancer signatures of all 11 UKF-NB-3 samples were calculated together with SigneR. 

As expected, samples do not differ enough to have a different cancer signature. All 

of them reported only one cancer signature, the same we found in UKF-NB-3 in 

section 3.3.4. Cancer signature. 

 

4.3.8. Pathway enrichment analysis 

Following the same approach as in section 3.3.5. Pathway enrichment analysis, we 

obtained similar results for each clone. Pathway analysis returned similar results for 

the 11 samples, showing 4 core clusters of pathways which are affected. This result 

was expected, as almost 90% of the mutated genes are shared by all the samples. The 
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heterogeneity of the clones induces some variability in their results, adding some 

pathways and removing others, but the core 4 groups are always present (Figure 4.7). 

As previously stated, due to the nature of our data this analysis gives us not much 

useful information apart from confirming that similar pathways were affected in all 

samples. As each clone had a slightly different set of mutated genes compared with 

the parental UKF-NB-3, significantly enriched pathways slightly differ too. 

 

 

Figure 4.7. Pathway analysis of two samples (UKF-NB-3 up and clone 2 

down). The pathways are represented as the edges of the network and the colour of 

the dots represents how much the pathway is likely to be affected in a scale white-
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red. The green link represent interaction between pathways affected by mutated 

genes, and the thicker they are the more confident they are. Parental and clonal 

samples share most of the enriched pathways, but their networks are not identical. 

 

4.4. Discussion 

Cancer cell lines are a broadly used model system for cancer genomics research. 

Recent studies show that inter-tumour heterogeneity can be also observed in cancer 

cell lines in form of intra-cell line heterogeneity (Barranco et al., 1983; Zanker et al., 

1982). Previous research in Chapter 3 suggested that UKF-NB-3 was heterogeneous, 

and therefore that hypothesis was tested with this experiment. 

Here we gained insights into the heterogeneity of UKF-NB-3 cell line, showing that 

it is not a homogeneous sample but it contains subpopulations with different 

mutation profiles. It may also not be completely stable, as there are still many de 

novo variants which are unique for each clonal sub-line and there are not two of 

them identical to each other. Both situations must be happening at the same time, as 

genetic drift is always an issue with cell lines, but no genetic drift would be able to 

cause so many variants in such a short period of time plus the lost variants in the 

clones (the mutations of the parental cell line which are not detected in the sub-lines) 

are highly unlikely mutational events, so they could not be explained only by the cell 

line being unstable. More experiments are needed to address this question: for 

example, a whole genome sequencing of UKF-NB-3 parental cell line could help us 

to address the question of how many structural variants and CNVs really are, and if 

they could be related to the highly number of variants occurring; also, single cell 

sequencing would allow us to better understand the subpopulations and high 

variability of this cell line. 

Individually, the single cell derived clones contains a similar number of variants of 

each type, and their cancer signature does not differ at all from the parental UKF-

NB-3 cell line. The differences between samples translated in a small set of different 

mutated genes in each of them, resulting in minor differences across their enriched 
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pathways. These new mutations are not randomly distributed across the genome, but 

follow a deterministic model where most of them occur in a small set of genes in 

every sample, while only a small proportion of de novo mutations being random. 

The link between mutation and disease of the gained and de novo mutations was 

studied through their existing information in ClinVar and predictions from both 

SIFT and PolyPhen-2. Again, as happened in Chapter 3, the individual effect of each 

mutation is difficult to assess in a complex disease, and none of them gave us new 

information about UKF-NB-3 driver mutations. 

The UKF-NB-3 parental cell line contained more variants called than any single cell 

derived clonal sub-line, and the quality of those variants was lower. Many of the 

variants present in the clones but not called in the parental cell line could be found at 

lowered quality threshold. This suggests that those mutations actually exist in the 

parental UKF-NB-3 cell line, probably in a small proportion of cells, such that they 

are not identified as only a small number of reads are supporting them are present. 

Therefore, sub-populations with different genotypes may coexist in the same cell 

line. 

The study of this internal heterogeneity may be critical to understand the complex 

processes of cancer cell biology, cancer response to anti-cancer drugs and cancer 

differentiation processes. In future work we want to extend this research to drug-

adapted UKF-NB-3 cell lines and compare how the genome changes to gain 

resistance to different drugs and between different concentrations of those drugs. 

Those experiments could be of great help to clarify the drug-resistance emergence 

processes in neuroblastoma, identify new biomarkers to monitor its development, 

personalise treatments depending on patient genetics.  
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Chapter 5: 

Discussion  

 

 

 

This Thesis has presented three scientific studies in the field of genetic variation. The 

first one considered genetic variation in Ebolaviruses and how they determine 

pathogenicity of the virus in humans. The second and third pieces of work detailed 

the genetic landscape and intra-cell line heterogeneity of UKF-NB-3 neuroblastoma 

cell line. 

 

5.1. Genetic variance in Ebolavirus 

The deadliest Ebolavirus outbreak in history was officially over on 2016. However, 

these viruses remain a threat to global public health. During the last outbreak, 

Ebolavirus was close to become a pandemic and it was the first outbreak where 

infected individuals spread beyond Africa. And today a new outbreak is ongoing in 

North Kivu, Democratic Republic of the Congo (Africa), where new genetic variants 

of the virus are continuously being catalogued. 

Further, a new species, Bombali ebolavirus, was recently identified (Goldstein et al., 

2018). It is now important that the genome of this species is compared to the 

existing Ebolavirus genomes to identify if, Bombali is pathogenic in humans, like 

most of the other Ebolavirus species, or if it does not cause disease, like Reston 

virus. This will help identify the public health concern that Bombali virus poses. 
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Our computational analysis of Ebolaviruses genomes in Chapter 2 identified 189 

SDPs which could be responsible for the differences in human pathogeny observed 

between these species. Only 47 SDPs could be mapped on to protein structures for 

the structural analysis, but they were enough to reveal important information as the 

multiple SDPs located in VP24-KPNA5 interface site, suggest that VP24 has an 

important role in determining species pathogeny. This hypothesis has been 

confirmed by other studies, and even it is being considered for a vaccine (Wilson, 

Bray, Bakken, & Hart, 2001). Finally, these findings open the door to a new way, they 

also suggest that Ebolavirus human pathogeny could be caused by just a few 

mutations.   

This study was limited by the number of Ebolavirus genomes and the limited protein 

structure information available at its time. To illustrate how fast these resources 

grow, our analysis was based on 196 complete genomes while today more than 2000 

Ebolavirus genomes are publically available. As these resources and our knowledge 

of Ebolavirus grow, a larger computational study of this type would be able to refine 

complete our study and provide a small set of SDPs – as the many of the 189 SDPs 

currently identified and unlikely to have a role in determining pathogenicity. 

Extrapolating to other infectious diseases, this kind of study could be used to predict 

inter-species virulence of closely related viruses based on computational analysis of 

sequence and protein structure (e.g. Zika virus could be compared between viruses 

identified in Africa that have not really caused disease with those infecting people in 

South America), which could be especially useful for other Risk Group 4 pathogens 

as their investigation is limited by the availability of appropriate containment 

laboratories. 

 

5.2. Genetic variance in UKF-NB-3 

Tumour heterogeneity is a characteristic of all solid cancers, where cells inside the 

same tumour have different cellular morphology, gene expression levels, metabolism, 

motility, proliferation and metastatic potential, all of them caused by genomic 

differences. The development of cancer genomics has unveiled the remarkable 
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genetic complexity of tumours, built by a multitude of subpopulations with different 

genetic variants. This extended genetic variability makes cancers even more difficult 

to characterise, and tumour heterogeneity is believed to play an important role in 

drug resistance. 

Cancer cell lines are a broadly used model system for in vitro cancer genomics 

research, but until recent years they were believed to be homogenous populations 

once they became stable. Now we know that cancer cell lines are genetically 

heterogeneous, representing up to some extend intra-tumour heterogeneity. This 

makes them a potential research platform for the study of tumour differentiation and 

drug resistance emergence. 

In our research we have used high throughput techniques to sequence the exome of 

UKF-NB-3, a high-risk neuroblastoma cell line. We have described its genetic 

landscape to a new level of detail, cataloguing all its mutations, analysing and 

predicting their effect in known cancer-relevant genes, estimating CNVs, looking for 

enriched pathways, and trying to extract as much information about its genomic 

structure as possible from WES data.  

Previous experiments suggesting that UKF-NB-3 might be heterogeneous were 

backed up by some known variants of the cell line not being clearly called by some 

methods. Ten single cell derived clonal sub-lines of UKF-NB-3 were sequenced in 

order to test this hypothesis. We discovered that those clones not only differ from 

the parental UKF-NB-3, but shared only a common major subset of mutations with 

it while showing many others that were thought to be sequencing errors in UKF-NB-

3 alignment and a third set of de novo mutations which made each clone unique. 

These findings suggest that not only UKF-NB-3 contains sub-populations of 

genetically different cells, but also is not completely stable thus every clonal sub-line 

differed from the others by many de novo mutations. 

Our study was limited and biased by the WES data qualities, as this kind of 

sequencing technique gives no information about gene expression values, makes 

almost impossible to detect SVs, and gives no information about non-captured 

regions of the genome. This restricted the type of analysis we could perform, 
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software we could choose from and reliability of results as CNVs and enriched 

pathways analysis. Despite these limitations, we expect our research to bring new 

insights over high-risk neuroblastoma genomics and help future researchers working 

on UKF-NB-3 cell line to better understand the complex processes of cancer biology 

and cancer differentiation processes. 

 

5.3. Future work 

The study of internal cancer heterogeneity is of great importance in the study of 

cancer drug resistance. Understanding the genetic mutations responsible for its 

emergence during treatment and the ability to monitor its progress will be essential 

for effective future precision medicine therapies. 

Following this line of research, we have already sequenced several sets of drug-

adapted clones of UKF-NB-3 which we plan to analyse following the same methods 

established in our UKF-NB-3 analysis and its comparison with the single cell derived 

clonal sub-lines. These sets consist in ten vincristine resistant cell lines, 12 eribuline 

resistant cell lines, ten 2-methoxyestradiol resistant cell lines and nine epothilone B 

resistant cell lines. The four drugs are tubulin-binding agents, three of them with a 

destabiliser effect (vincristine, eribuline and 2-methoxystradiol) and one stabiliser 

agent (epothilone B), thus is it possible that the resistance mechanisms developed by 

the samples of different groups may share similarities, some of them even granting 

cross drug resistance or maybe making the cell vulnerable against the others.  

By comparing these samples and using the single cell derived clones as controls to 

account for sample differences caused by UKF-NB-3 internal heterogeneity and 

potential instability, we expect to describe the differentiation processes occurring in a 

cancer cell line when exposed to the evolutionary pressure of anti-cancer drugs, and 

catalogue the differences and similarities between the paths followed by each sample 

compared both against same and different drugs adapted cell lines. Following this 

approach, we hope to identify biomarkers which allow us to monitor cancer 

resistance emergence and adapt treatments to each patient particularities.  
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In a preliminary analysis, we did not find major genomic differences between the 

groups of samples (Figure 5.1). We observed some genes that mutated more 

frequently in different sets of samples, but also the samples in each group differ from 

each other, resulting in some cases in bigger intra-group than inter-group differences. 

This suggests that our samples did not develop only one resistance mechanism 

against a particular drug, but several different of them could achieve the same result.  

 

Figure 5.1. Distribution and frequencies of mutations in each group of 

samples. Circos plot showing the mutation profiles of the single cell-derived clonal 

sub-lines of UKF-NB-3 and the drug adapted sub-lines. From the most external to 

most internal tracks they refer to: the clonal UKF-NB-3 clone sub-lines, epothilone 

B resistant group, eribuline resistant group, 2-methoxiestradiol group and vincristine 

group. The black bars in each track indicate the presence of a mutation in their 

position, while the high of the bar indicates the proportion of cell lines of that 

sample group sharing that particular mutation. 

Also, as some samples from different sets are more similar to each other than to the 

other same drug-resistant sublines (Figure 5.2), we hypothesise that some drug 
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resistance mechanism could be shared or at least very similar between some drugs. 

This kind of mechanisms could be able to grant resistance to more than one drug at 

the same time, which makes their identification key for an effective therapy 

prescription. The non-drug-adapted single cell derived clones clustered together 

better than any other group, supporting that the mutations making other sample sets 

so heterogeneous are not caused by internal UKF-NB-3 heterogeneity or cell line 

instability, but for differentiation pressure introduced by the anti-cancer drug. 
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Figure 5.2. Phylogenies of the 52 samples. Bayesian (up) and Maximum 

Likelihood (down) phylogenetic trees of the UKF-NB-3 cell line, single cell derived 

clones and drug resistant sub-lines. 

Finally, in a first attempt to identify where each dug applied their differentiation 

pressure, we run a enrichment pathway analysis on each group of samples (Table 

5.1). As explained in Chapter 4, there are some genes more prompt to mutate due to 

the genomic qualities of UKF-NB-3, and also the enriched pathways in the parental 

cell line observed in Chapter 3 are inherited by the sub-lines.  Extracellular matrix 

organization pathway, related to tubulin production, is heavily enriched in all four 

samples sets, as could be expected due to the four drugs being tubulin-binding 

agents. Apart of that, each drug-resistant group have their own enriched pathways, 

but some of them are shared between groups, as the Dorso-ventral axis formation in 

eribuline and 2-methoxiestradiol, which could translate into the existence of shared 

drug resistance mechanism between the groups. 
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 Most commonly enriched pathways among cell line types 

single cell 
clones 

eribuline vincristine 2-methoxiestradiol epothilone 
B 

Dectin-2 
family 

Extracellular 
matrix 
organization 

Dectin-2 family Extracellular matrix 
organization 

RNA 
transport - 
Homo 
sapiens 
(human) 

O-linked 
glycosylation 
of mucins 

Dorso-
ventral axis 
formation - 
Homo 
sapiens 
(human) 

Adefovir Dipivoxil 
Metabolism Pathway 

Dorso-ventral axis 
formation - Homo 
sapiens (human) 

Extracellular 
matrix 
organization 

Termination 
of O-glycan 
biosynthesis 

BMP 
signaling 
Dro 

Extracellular matrix 
organization 

Activation of RAS 
in B cells 

Translation 
Factors 

O-linked 
glycosylation 

Collagen 
formation 

Tenofovir Metabolism 
Pathway 

Adefovir Dipivoxil 
Metabolism Pathway 

Collagen 
chain 
trimerization 

NOTCH-
Ncore 

Dectin-2 
family 

Class C/3 
(Metabotropic 
glutamate/pheromone 
receptors) 

Alpha6Beta4Integrin Dectin-2 
family 

 

Table 5.1. Most enriched pathways across groups of samples. Top 5 most 

enriched pathways in each set of samples. 

This is a very promising research line, and depending on the results we obtain it 

could be easily extended by adding to the comparison new sets of UKF-NB-3 sub-

lines resistant to other anticancer drugs or different concentrations of the same drug. 

Furthermore, these anticancer drugs are not only used for neuroblastoma, so new 

cancer cell lines and their drug-adapted sublines could be incorporated to the analysis 

in order to compare similarities between the differentiation processes which end in 
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drug resistance emergence. By doing that, we could catalogue them into profiles 

depending on the biomarkers specific to each drug, resistance mechanism, and 

cancer type. These profiles could have an important effect not only in future 

research, but also could evolve into clinical application for precision medicine, 

allowing detection and monitoring of drug-resistance emergence process during 

treatment before it fully develops, adapt therapies when it happens and even discover 

new cancer treatments based on drugs cross resistance-sensitiveness mechanisms. 

 

 5.4. Conclusion 

In the previous chapters we have seen the importance of genetic variance analysis in 

two completely different diseases, Ebola and neuroblastoma, and a multitude of 

different types of information that can be extracted from these kind of data analysis 

in each case. Still, our studies were limited by the amount of publicly available 

genomic data, the quality of the sequencing data, type of sequencing, and tools for 

their analysis. 

In Chapter 2 for example, by translating genomic information and its variants to 

protein sequence and structure, we have found a brand new application for the 

S3Det algorithm (Rausell et al., 2010), which original purpose was to identify 

functional residues in protein families. Applying this software, we have studied 

pathogenicity of a virus in a particular specie when comparing its protein sequences 

with the protein sequences of similar viruses already known to be pathogenic or non-

pathogenic for the same species. Following this line of work, in (Martell et al., 2019) 

this idea is tested and our approach used to predict pathogenicity of Bombali 

Ebolavirus in humans. 

As the amount of public genomic data grows, the possibilities of this new method 

correctly predicting pathogenicity in new species do the same, opening the door to a 

near future when new health risks caused by newly discovered, mutated or modified 

organisms, for both humans or other species, could be solved quickly and efficiently 
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in a dry lab with the help of sequencing technologies and a bioinformatics analysis 

similar to the one described in this work. 

A second advantage of this method is the new insights we can get from infectious 

process by studying the location of SDPs in the predicted protein structures. While 

still only a minimum part of the known proteins has a known protein structure and 

the prediction of protein structure computationally remains and unsolved problem, 

both for lack of computational resources and complete understanding of how this 

process works in every protein, we can at least predict new candidate aminoacid and 

protein regions which can be related to it. With this predictions, new candidates for 

aimed experiments can be suggested, reducing the vast amount of potential paths of 

infection to study to only a few. This would reduce both cost and time needed to 

perform. 

In Chapters 3 and 4 a more common variant calling analysis was used to study the 

variants in our cell lines. While broadly used, there is not a unified workflow for this 

kind of analysis yet. Despite GATK (McKenna et al., 2010) has published some best 

practices, it remains an experimental procedure that has to be individually adapted to 

each experiment depending on many factors: species, type of sequencing, quality, 

depth of coverage, available variant databases, … This arises many doubts, especially 

when used in personalised medicine or forensic exams, as depending on the method 

used to process the data the results may vary. For this reason, especially in complex 

diseases like cancer where many factors can be related with the disease, the 

descriptive genetic variant studies are key to improve our understanding and the 

amount of data available for researchers, and sequencing and variant calling 

experiments for describing genetic landscapes of cancers like this one play a huge 

role in this process, providing tons of data for future research. 

The potential of this method for variants discovery is remarkable, and it is a key 

technique to identify, classify and study all kinds of genetic related diseases. In the 

future, as the methods and technology improves, the reliability of variants identified 

will do too, which will bring a new revolution not only to the medical field, where 

personalised medicine will erupt and genetic diagnoses will become far more 
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common, fast and cheap. All the genomic information previously known will be 

ready to be use for new diagnosis methods, identifying biomarkers to direct therapy 

and monitor the disease evolution, and discover potential new treatments. 

But also to the economic and public health spheres will benefit of these technologies 

with the development of one health (https://www.who.int/features/qa/one-

health/en/). This will bring sequencing and variant calling pipelines out of their usual 

medical fields of application to every industry related with food production, 

importation, processing and distribution, as genetic analysis could be able to identify 

the precedence and microbes of any sample of food without any possibilities for 

fraud.  

In conclusion, the analysis of genetic variants is a big challenge with potential great 

rewards. There are many types of information that can be extracted from variants 

analysis, each of them with different applications as the diverse examples that have 

been presented in this Thesis. And this is only the beginning, as every day new 

discoveries in the field open new doors and new bigger challenges never before 

thought to be possible become a reality: from the first bacteriophage genome, 

passing through the human genome to the future of one health when everything will 

be sequenced in almost real-time. This field of study acts in a vicious circle like style, 

as new discoveries provides with new and better methods and data to work with, 

allowing us to ask more questions with each new discovery, and helping us to 

understand the genome one step at a time. But every step cames faster than ever 

before. 

 

 

 

https://www.who.int/features/qa/one-health/en/
https://www.who.int/features/qa/one-health/en/
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Supplementary Figures 
 
Supplementary Figure 1. Phylogenetic tree of the Ebolavirus genomes and 
individual proteins. Bayesian and Maximum Likelihood phylogenetic trees are shown 
for the Ebolavirus genomes and each of the Ebolavirus proteins. A) genome 
Bayesian tree. B) Genome maximum likelihood tree, C) Bayesian tree for protein L, 
D) Maximum likelihood tree for protein L, E) Bayesian tree for protein GP, F) 
Maximum likelihood tree for protein GP, G) Bayesian tree for protein NP, H) 
Maximum likelihood tree for protein NP, I) Bayesian tree for protein VP24, J) 
Maximum likelihood tree for protein VP24, K) Bayesian tree for protein VP30, L) 
Maximum likelihood tree for protein VP30, M) Bayesian tree for protein VP35, N) 
Maximum likelihood tree for protein VP35, O) Bayesian tree for protein VP40. P) 
Maximum likelihood tree for protein VP40. All trees use Ebola virus as root (EBOV, 
Ebola virus; BDBV, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus; 
RESTV, Reston virus). 
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Fig S1A. Bayesian tree for whole genomes. 
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Fig S1B. Maximum likelihood tree for whole genomes. 
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Fig S1C. Bayesian tree for protein L. 



148 

 

 
 
Fig S1D. Maximum likelihood tree for protein L. 
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Fig S1E. Bayesian tree for protein GP.  
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Fig S1F. Maximum likelihood tree for protein GP.  
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Fig S1G. Bayesian tree for protein NP. 
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Fig S1H. Maximum likelihood tree for protein NP. 
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Fig S1I. Bayesian tree for protein VP24. 
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Fig S1J. Maximum likelihood tree for protein VP24. 
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Fig S1K. Bayesian tree for protein VP30. 
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Fig S1L. Maximum likelihood tree for protein VP30. 



157 

 

 
 
Fig S1M. Bayesian tree for protein VP35. 
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Fig S1N. Maximum likelihood tree for protein VP35. 
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Fig S1O. Bayesian tree for protein VP40. 



160 

 

 
 
Fig S1P. Maximum likelihood tree for protein VP40. 
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Supplementary Figure 2. Ebolavirus protein consensus sequences and SDPs. 
The consensus sequence for each Ebolavirus species is shown for each Ebolavirus 
protein. The row above the alignment indicates positions that are 100% conserved 
across all Ebolavirus sequences (black) or specificity determining positions (SDPs) 
that discriminate Reston viruses from the four human pathogenic Ebolavirus species 
(red); R, Reston virus; E, Ebola virus; S, Sudan virus; B, Bundibugyo virus; T, Taϊ 
Forest virus. A) for VP24, B) for GP, C) for VP40, D) VP35, E)VP30, F) sGP, G) 
NP, H)L. 
 
A – VP24 
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B - GP 
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C – VP40 
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D – VP35 
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E – VP30 
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F – sGP 
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G – NP 
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Supplementary Figure 3. Solvent Accessible surface area for Ebolavirus SDPs. 
Histograms showing the Solvent Accessible surface area in square ångstroms of 
SDPs. Values are calculated for the Ebola virus structure and residues. 
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Supplementary Figure 4. GP SDPs. A) Heatmap of intra- and inter-species GP 
sequence identity (EBOV, Ebola virus; BDBV, Bundibugyo virus; SUDV, Sudan 
virus; TAFV, Taϊ Forest virus; RESTV, Reston virus). B) Monomeric representation 
of GP with GP1 (grey) and GP2 (blue). C) EBOV GP trimer (PDB code: 3CSY) 
with SDPs coloured red. The three GP1 chains are coloured grey. The three GP2 
chains are coloured blue, green and yellow. D) Electrostatics surfaces for the EBOV 
structure (3CSY) and a model of a RESTV GP trimer based on 3CSY.  
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Supplementary Figure 5. GP SDPs are located outside the putative NPC1 
binding site. GP SDPS are shown in red. The putative NPC1 binding site is shown 
in cyan. 
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Supplementary Tables 
 

 completely 
conserved 
positions 

Number of 
Positions with 
variation 

% of positions 
with variation 

All species 2597 4555 
 

64% 

Ebola virus 4287 
 

2865 40% 
 

Sudan virus 4363 
 

2789 38% 
 

Bundibugyo  
virus 

4426 2726 38% 

Tai forest virus 4480 2672 37% 

Reston virus 4466 2686 38% 

 
Supplementary Table 1. Variation within the Ebolavirus genomes. The number of 
positions in the Ebolavirus protein multiple sequence alignments that are completely 
conserved and those that have variation are shown. 
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Alignm
ent 
position 

REST
V 

EB
OV 

BDB
V 

SUD
V 

TAF
V 

BLOS
UM 
62 
score 

SASA 
(Å2) 

mCSM (Δ 
Δ G, 
Kcal/mol) 

S3det 
Rank 

17 M17 L17 L17 L17 L17 2 70 

-0.444 
(destabilisi

ng) 1 

22 I22 V22 V22 V22 V22 3 0 

-0.916 
(destabilisi

ng) 1 

31 I31 V31 V31 V31 V31 3 17 

-0.193 
(destabilisi

ng) 1 

131 S131 
T13
1 T131 T131 T131 1 36 

-1.394 
(destabilisi

ng) 1 

132 T132 
N13
2 N132 N132 N132 1 9 

-1.121 
(destabilisi

ng) 1 

136 L136 
M13
6 M136 M136 M136 2 2 

-1.7 
(destabilisi

ng) 1 

139 R139 
Q13
9 Q139 Q139 Q139 1 132 

0.05 
(stabilising

) 1 

226 A226 
T22
6 T226 T226 T226 0 2 

-0.935 
(destabilisi

ng) 1 

248 L248 
S24
8 S248 S248 S248 -2 -  1 

 
Supplementary Table 2. VP24 SDPs. The position in the multiple sequence 
alignment, the amino acid position, and amino acid present in each of the species is 
shown. The BLOSUM62 score represents how frequently such amino acid changes 
are observed in nature. SASA is the solvent accessible surface area, which is only 
available for SDPs that could be mapped to protein structure. SASA was calculated 
using the protein structure with PDB code 4M0Q. RESTV, Reston virus; EBOV, 
Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The 
s3det column shows the ranking of the SDPs by s3det; the closer its value is to 1 the 
more conserved is this SDP between groups. 
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Alignme
nt 
position 

REST
V 

EBO
V 

BDB
V SUDV TAFV 

BLOSU
M 
62 score 

SASA 
(Å2) 

mCS
M (Δ 
Δ G, 
Kcal/
mol) 

S3det 
rank 

53 N53 T52 T52 T52 T52 0 -  1 

54 L54 V53 V53 V53 V53 1 -  1 

64 I64 T63 T63 T63 T63 -1 -  1 

94 D94 E93 E93 E93 E93 2 -  1 

97 N97 T96 T96 T96 T96 0 -  1 

99 H99 R98 R98 R98 R98 0 -  1 

108 R108 K107 K107 K107 K107 2 -  1 

112 I112 S111 S111 S111 S111 -2 -  1 

117 S117 K116 K116 K116 K116 0 -  1 

121 S121 A120 A120 A120 A120 1 -  1 

151 I151 T150 T150 T150 T150 -1 7 

0.455 
(stabil
ising) 1 

158 R158 Q157 Q157 Q157 Q157 1 70 

-0.493 
(desta
bilisin

g) 1 

160 L160 I159 I159 I159 I159 2 6 

-0.859 
(desta
bilisin

g) 1 

197 H197 R196 R196 R196 R196 0 83 

-1.291 
(desta
bilisin

g) 1 

206 D206 E205 E205 E205 E205 -2 148 

-0.373 
(desta
bilisin

g) 1 

263 A263 R262 R262 R262 R262 -1 106 

-0.969 
(desta
bilisin

g) 1 

269 Q269 S268 S268 S268 S268 0 -  1 

 
 
Supplementary Table 3. VP30 SDPs. The position in the multiple sequence 
alignment, the amino acid position, and amino acid present in each of the species is 
shown. The BLOSUM62 score represents how frequently such amino acid changes 
are observed in nature. SASA is the solvent accessible surface area, which is only 
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available for SDPs that could be mapped to protein structure. SASA was calculated 
using the protein structure with PDB code 2I8B. RESTV, Reston virus; EBOV, 
Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The 
s3det column shows the ranking of the SDPs by s3det; the closer its value is to 1 the 
more conserved is this SDP between groups. 
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Alignme
nt 
position 

RES
TV 

EBOV 
BDB
V 

SUDV TAFV 

BLOSU
M 
62 
SCORE 

SAS
A 
(Å2) 

mCS
M (Δ 
Δ G, 
Kcal
/mol
) 

S3de
t 
rank 

27 T15 S26 S26 S26 S26 1 -  1 

49 D37 E48 E48 E48 E48 2 -  1 

77 E65 D76 D76 D76 D76 2 -  2 

86 K74 E85 E85 E85 D86 1 -  3 

93 M81 S92 S92 S92 S92 -1 -  1 

98 T86 V97 V97 V97 I98 0 -  3 

102 N90 T101 T101 T101 A102 0 -  3 

107 A95 S106 S106 S106 S106 1 -  1 

122 I110 V121 V121 V121 M122 3 -  3 

155 S143 A154 A154 A154 A154 1 -  1 

160 V148 T159 T159 T159 T159 0 -  1 

161 D149 E160 E160 E160 E160 2 -  1 

168 K156 G167 
G16
7 

G167 G167 -2 -  1 

175 A163 S174 S174 S174 S174 1 -  1 

182 L170 I181 I181 I181 I181 2 -  2 

270 D258 E269 E269 E269 E269 2 144 

-
0.039 
(dest
abilis
ing) 

1 

291 V279 A290 A290 A290 A290 0 23 

-
0.756  
(dest
abilis
ing) 

1 

315 A303 V314 V314 V314 V314 0 49 

-1.47 
(dest
abilis
ing) 

1 

330 K318 Q329 
Q32
9 

Q329 Q329 1 32 

-
0.513 
(dest
abilis
ing) 

1 

 
Supplementary Table 4. VP35 SDPs. The position in the multiple sequence 
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alignment, the amino acid position, and amino acid present in each of the species is 
shown. The BLOSUM62 score represents how frequently such amino acid changes 
are observed in nature. SASA is the solvent accessible surface area, which is only 
available for SDPs that could be mapped to protein structure. SASA was calculated 
using the protein structure with PDB code 4IBB. RESTV, Reston virus; EBOV, 
Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The 
s3det rank column shows the ranking of the SDPs by s3det. The s3det column shows 
the ranking of the SDPs by s3det; the closer its value is to 1 the more conserved is 
this SDP between groups. 
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Alignm
ent 
positio
n 

RES
TV 

EBO
V 

BDB
V 

SUD
V TAFV 

BLOSU
M 62 
SCORE 

SASA 
(Å2) 

mCS
M (Δ 
Δ G, 
Kcal/
mol) 

S3det 
rank 

46 V46 T46 T46 T46 T46 0 83 

-0.31 
(desta
bilisin

g) 1 

85 T85 P85 P85 P85 P85 -1 142 

-0.626 
(desta
bilisin

g) 1 

122 V122 I122 I122 I122 I122 3 -  1 

201 N201 G201 G201 G201 G201 0 53 

-0.482 
(desta
bilisin

g) 1 

209 L209 F209 F209 F209 F209 0 15 

-1.219 
(desta
bilisin

g) 1 

245 P245 Q245 Q245 Q245 Q245 -1 160 

0.059 
(stabili

sing) 1 

269 Q269 H269 H269 H269 H269 0 -  1 

293 V293 I293 I293 I293 I293 3 14 

-1.411 
(desta
bilisin

g) 1 

325 D325 E325 E325 E325 E325 2 -  1 

 
Supplementary Table 5. VP40 SDPs. The position in the multiple sequence 
alignment, the amino acid position, and amino acid present in each of the species is 
shown. The BLOSUM62 score represents how frequently such amino acid changes 
are observed in nature. SASA is the solvent accessible surface area, which is only 
available for SDPs that could be mapped to protein structure. SASA was calculated 
using the protein structure with PDB code 1ES6. RESTV, Reston virus; EBOV, 
Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The 
s3det column shows the ranking of the SDPs by s3det; the closer its value is to 1 the 
more conserved is this SDP between groups. 
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Alignme
nt 
position 

REST
V 

EBO
V BDBV 

SUD
V 

TAF
V 

BLOSU
M 62 
SCORE 

SAS
A 
(Å2) 

mCS
M (Δ 
Δ G, 
Kcal/
mol) 

S3det 
rank  

4 G4 R4 R4 R4 R4 -2   1 

16 D16 E16 E16 E16 G16 2   2 

30 T30 S30 S30 S30 S30 1   1 

39 K39 R39 R39 R39 R39 2 188 

-
0.161 
(desta
bilisin
g) 1 

42 S42 
P42/ 
Q42 P42 P42 Q42 -1 103 

-
2.173 
(desta
bilisin
g) 3 

56 V56 I56 I56 I56 I56 3 0 

-0.8 
(desta
bilisin
g) 1 

64 I64 V64 V64 V64 V64 3 7 

-
0.135 
(desta
bilisin
g) 1 

105 K105 R105 R105 R105 R105 2 112 

-0.63 
(desta
bilisin
g) 1 

137 L137 M137 M137 M137 
M13
7 2 37 

-
0.649 
(desta
bilisin
g) 1 

212 Y212 F212 F212 F212 F212 3 0 

-
0.692 
(desta
bilisin
g) 1 

274 R274 K274 K274 K274 
K27
4 2 92 

-
0.548 
(desta
bilisin
g) 1 
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279 A279 S279 S279 S279 S279 1 60 

-
0.822 
(desta
bilisin
g) 1 

374 R374 K374 K374 K374 
K37
4 2 103 

-
0.836 
(desta
bilisin
g) 1 

416 N416 K416 K416 K416 
K41
6 0   1 

421 Q421 Y421 Y421 Y421 
Y42
1 -1   1 

426 E426 D426 D426 D426 
D42
6 2   1 

435 N435 D435 D435 D435 
D43
5 1   1 

443 E443 D443 D443 D443 
D44
3 2   1 

453 I453 T453 T453 T453 T453 -1   1 

492 E492 D492 D492 D492 
D49
2 2   1 

497 A497 P497 P497 P497 P497 -1   2 

535 (-) P526 P526 P526 P526    1 

572 S563 T563 T563 T563 T563 1   1 

574 V565 I565 I565 I565 I565 3   1 

611 T602 P602 P602 P602 
N60
2 -1   4 

651 Q641 N641 N641 N641 
K64
1 0   2 

715 R705 A705 A705 A705 
A70
5 -1 24 

-
1.037 
(desta
bilisin
g) 1 

726 N716 D716 D716 D716 
D71
6 1 123 

0.141 
(stabi
lising) 1 

727 N717 G717 G717 G717 
G71
7 0 75 

-
0.461 
(desta
bilisin
g) 2 

 
Supplementary Table 6. NP SDPs. The position in the multiple sequence 
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alignment, the amino acid position, and amino acid present in each of the species is 
shown. The BLOSUM62 score represents how frequently such amino acid changes 
are observed in nature. SASA is the solvent accessible surface area, which is only 
available for SDPs that could be mapped to protein structure. SASA was calculated 
using the protein structure with PDB code 4QB0 for the C terminal and 4YPI for 
the N terminal regions. RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo 
virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The s3det rank column shows 
the ranking of the SDPs by s3det. The s3det column shows the ranking of the SDPs 
by s3det; the closer its value is to 1 the more conserved is this SDP between groups. 
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Alignmen
t position RESTV EBOV 

BDB
V SUDV 

TAF
V 

BLOS
UM 62 

Score 

SAS
A 
(Å2) 

mCS
M (Δ 
Δ G, 
Kcal
/mol
) 

S3de
t 
rank 

2 G2 M1 M1 M1 M1 -3   1 

3 S3 G2 V2 
E2/G
2 G2 0   8 

32 I32 F31 F31 F31 F31 0   1 

38 I38 V37 V37 V37 V37 3 0 

-
0.828 
(dest
abilis
ing) 1 

46 A46 V45 V45 V45 V45 0 30 

-
1.276 
(dest
abilis
ing) 1 

76 I76 V75 V75 V75 V75 3 44 

-
0.295 
(dest
abilis
ing) 1 

197 A197 S196 S196 S196 S196 1   1 

208 D208 E207 T207 E207 T207 2   9 

211 T211 S210 S210 S210 S210 1   1 

261 L261 I260 I260 I260 I260 2 25 

-0.95 
(dest
abilis
ing) 1 

270 S270 T269 T269 T269 T269 1 99 

-
0.432 
(dest
abilis
ing) 1 

308 H308 
S308/ 
L307 S308 S308 S308 -1   2 

326 G326 R325 V325 R325 V325 -2   9 

355 L355 H354 R354 H354 
Q35
4 -3   9 

404 P401 Q403 N401 Q397 S401 -1   9 

419 E412 S418 A409 S412 T409 0   9 

461 P449 T448 S442 T448 T448 -1   7 

497 Y517/ H516 H516 H516 H51 2   6 
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H517 6 

519 K499 R498 R498 R498 R498 2   1 

521 K501 R500 R500 R500 R500 2   1 

535 D515 N514 N514 N514 
N51
4 1 59 

-
1.142 
(dest
abilis
ing) 1 

542 V522 Q521 Q521 Q521 L521 2 19 

0.037 
(stabi
lising

) 6 

568 V548 L547 I547 L547 I547 1 74 

-
1.258 
(dest
abilis
ing) 9 

605 L585 I584 I584 I584 I584 2   1 

628 S608 D607 D607 D607 
D60
7 0   1 

643 E623 K622 K622 K622 
K62
2 1   1 

659 H639 Q638 Q638 Q638 
Q63
8 0   1 

663 L643 D642 D642 D642 S642 -4   6 

665 L645 W644 W644 W644 
W64
4 -2   1 

680 I660 T569 T569 T569 T569 -1   1 

 
Supplementary Table 7. GP SDPs. The position in the multiple sequence 
alignment, the amino acid position, and amino acid present in each of the species is 
shown. The BLOSUM62 score represents how frequently such amino acid changes 
are observed in nature. SASA is the solvent accessible surface area, which is only 
available for SDPs that could be mapped to protein structure. SASA was calculated 
using the protein structure with PDB code 3CSY. RESTV, Reston virus; EBOV, 
Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, Taϊ Forest virus. The 
s3det rank column shows the ranking of the SDPs by s3det. The s3det column shows 
the ranking of the SDPs by s3det; the closer its value is to 1 the more conserved is 
this SDP between groups. 
 
 
 
 
 



191 

 

 
 
 

Alignmen
t position RESTV EBOV BDBV SUDV TAFV 

BLOSU
M 
62 
SCORE 

SASA 
(Å2) 

S3det 
rank 

47 G2 M1 M1 M1 M1 -3  1 

77 I32 F31 F31 F31 F31 0  1 

83 I38 V37 V37 V37 V37 3 21 1 

91 A46 V45 V45 V45 V45 0 84 1 

121 I76 V75 V75 V75 V75 3 61 1 

242 A197 S196 S196 S196 S196 1  1 

256 T211 S210 S210 S210 S210 1  1 

306 L261 I260 I260 I260 I260 2 20 1 

315 S270 T269 T269 T269 T269 1 48 1 

 
Supplementary Table 8. sGP SDPs. The position in the multiple sequence 
alignment, the amino acid position, and amino acid present in each of the species is 
shown. The BLOSUM62 score represents how frequently such amino acid changes 
are observed in nature. SASA is the solvent accessible surface area, which is only 
available for SDPs that could be mapped to protein structure. SASA was calculated 
using the Phyre2 structural model that used template structure 3s88I. RESTV, 
Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; SUDV, Sudan virus; TAFV, 
Taϊ Forest virus. The s3det rank column shows the ranking of the SDPs by s3det. 
The s3det column shows the ranking of the SDPs by s3det; the closer its value is to 1 
the more conserved is this SDP between groups. 
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Alignment 
position RESTV 

EBO
V 

BDB
V 

SUD
V 

TAF
V 

BLOSU
M62 
SCORE 

SASA 
(Å2) 

mCS
M (Δ 
Δ G, 
Kcal/
mol) 

S3det 
rank 

67 T66 V66 V66 V66 V66 0   1 

110 H109 Q109 
Q10
9 Q109 

Q10
9 0   1 

137 L136 I136 I136 I136 I136 2   1 

147 V146 L146 L146 L146 L146 1   1 

222 S221 A221 
A22
1 A221 

A22
1 1   1 

224 L223 Q223 
Q22
3 Q223 

Q22
3 -2   1 

228 Q227 H227 
H22
7 H227 

H22
7 0   1 

277 I276 L276 L276 L276 L276 2 42 

-1.049 
(desta
bilisin

g) 1 

284 V283 L283 L283 L283 L283 1   1 

313 F312 Y312 
Y31
2 Y312 

Y31
2 3   1 

327 S326 A326 
A32
6 A326 

A32
6 1   1 

331 D330 T330 
T33
0 T330 

T33
0 -1   1 

351 D350 E350 
E35
0 E350 

E35
0 2   1 

362 S361 T361 
T36
1 T361 

T36
1 1   1 

366 F365 L365 L365 L365 L365 0   1 

380 I379 V379 
V37
9 V379 

V37
9 3   1 

448 H447 Q447 
Q44
7 Q447 

Q44
7 0   1 

451 S450 P450 P450 P450 P450 -1   1 

466 N465 D465 
D46
5 D465 

D46
5 1   1 

690 S689 E689 
E68
9 E689 

E68
9 0   1 

848 A847 S847 S847 S847 S847 1   1 

869 A868 S868 S868 S868 S868 1   1 

897 Y896 F896 F896 F896 F896 3   1 

926 F925 L925 L925 L925 L925 0   1 
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955 S954 A954 
A95
4 A954 

A95
4 1   1 

996 T995 S995 S995 S995 S995 1   1 

1025 N1024 
T102
4 

T10
24 T1024 

T10
24 0   1 

1074 K1073 
R107
3 

R10
73 

R107
3 

R10
73 2   1 

1120 S1119 
A111
9 

A11
19 

A111
9 

A11
19 1   1 

1164 A1161 
F116
3 

F116
3 F1163 

F116
3 -2   1 

1190 S1187 
D118
9 

D11
89 

D118
9 

D11
89 0   1 

1215 S1212 
A121
4 

A12
14 

A121
4 

A12
14 1   1 

1218 K1215 
R121
7 

R12
17 

R121
7 

R12
17 2   1 

1238 E1235 
D123
7 

D12
37 

D123
7 

D12
37 2   1 

1256 V1253 I1255 
I125
5 I1255 

I125
5 3   1 

1355 K1532 
R153
4 

R15
34 

R153
4 

R15
34 2   1 

1367 A1354 
T136
6 

T13
66 T1366 

T13
66 0   1 

1396 T1393 S1395 
S139
5 S1395 

S139
5 1   1 

1409 M1406 I1408 
I140
8 I1408 

I140
8 1   1 

1415 L1412 I1414 
I141
4 I1414 

I141
4 2   1 

1437 N1434 S1436 
S143
6 S1436 

S143
6 1   1 

1462 Q1459 
K146
1 

K14
61 

K146
1 

K14
61 1   1 

1474 C1471 S1473 
S147
3 S1473 

S147
3 -1   1 

1489 Y1486 
L148
8 

L148
8 L1488 

L148
8 -1   1 

1500 L1497 I1499 
I149
9 I1499 

I149
9 2   1 

1507 A1504 S1506 
S150
6 S1506 

S150
6 1   1 

1510 V1507 I1509 
I150
9 I1509 

I150
9 3   1 

1539 S1536 A153 A15 A153 A15 1   1 
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5 35 5 35 

1627 Y1624 
L162
4 

L162
4 L1624 

L162
4 -1   1 

1631 S1628 
C162
8 

C16
28 

C162
8 

C16
28 -1   1 

1786 I1760 
V176
2 

V17
62 

V176
2 

V17
62 3   1 

1874 T1848 
V185
0 

V18
50 

V185
0 

V18
50 0   1 

1897 S1871 
T187
3 

T18
73 T1873 

T18
73 1   1 

1941 N1914 
R191
6 

R19
16 

R191
6 

R19
16 1   1 

1966 R1939 
E194
1 

E19
41 

E194
1 

E19
41 0   1 

2033 I2006 
L200
8 

L200
8 L2008 

L200
8 2   1 

2069 I2042 
L204
4 

L204
4 L2044 

L204
4 2   1 

2102 T2075 S2077 
S207
7 S2077 

S207
7 1   1 

2123 
D2096 

E209
8 

E20
98 

E209
8 

E20
98 2   1 

2130 L2130 
Q210
5 

Q21
05 

Q210
5 

Q21
05 -2   1 

2133 E2106 
Q210
8 

Q21
08 

Q210
8 

Q21
08 2   1 

2156 F2129 
Y213
1 

Y21
31 

Y213
1 

Y21
31 3   1 

2182 V2155 
L215
7 

L215
7 L2157 

L215
7 1   1 

2193 N2171 
R216
8 

R21
68 

R216
8 

R21
68 0   1 

2200 K2173 
R217
5 

R21
75 

R217
5 

R21
75 2   1 

2202 F2175 
L217
7 

L217
7 L2177 

L217
7 0   1 

2211 L2184 
M218
6 

M21
86 

M218
6 

M21
86 2   1 

 
Supplementary Table 9. L SDPs. The position in the multiple sequence alignment, 
the amino acid position, and amino acid present in each of the species is shown. The 
BLOSUM62 score represents how frequently such amino acid changes are observed 
in nature. SASA is the solvent accessible surface area, which is only available for 
SDPs that could be mapped to protein structure. SASA was calculated using the 
Phyre2 structural model which used template 4n48A (“cap-specific mrna (“cap-



195 

 

specific mrna (nucleoside-2'-o-)-methyltransferase 1 protein in2 complex with capped 
rna fragment”). RESTV, Reston virus; EBOV, Ebola virus; B, Bundibugyo virus; 
SUDV, Sudan virus; TAFV, Taϊ Forest virus. The s3det rank column shows the 
ranking of the SDPs by s3det. The s3det column shows the ranking of the SDPs by 
s3det; the closer its value is to 1 the more conserved is this SDP between groups. 
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Protein  
EBOV 
Res 

REST
V Res 

Mutatio
n 
position Mutation Effect 

GP Q638 H 638 Q → V 
No effect on release of soluble 
GP1,2delta. 

GP R498 K 498-501   
RTRR → 
ATAA 

No effect on cleavage between 
GP1 and GP2. 

GP D642 L 642 D → V 
No effect on release of soluble 
GP1,2delta. 

VP24 M136 L 134/136 F-A/M-A 
Near complete loss of KPNA5 
binding * 

VP24 Q139 R 137-139 RTQ → AAA 
Near complete loss of KPNA5 
binding * 

 
Supplementary Table 10. SDPs that coincide with known mutagenesis data.  
Functional data extracted from UniProt unless stated. Res, residue; EBOV, Ebola 
virus; RESTV, Reston virus 
*Data from Bornholdt et al.,35 
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PROTEIN SPECIES OLIGOMERIC 
STATE 

PDB/TEMPLAT
E 

REGION IN 
SEQUENCE 

GP EBOV Trimer of 
Heterodimers 

3CSY (structure) 31-310 
502-599 

sGP EBOV Dimer 3s88I (model) 32-287 

sGP RESTV Dimer 3s88I (model) 33-288 

L EBOV Monomer 4n48A (model) 223-328 

NP (C-terminal) EBOV Monomer 4QB0 (structure) 645-739 

NP (N-terminal) EBOV Monomer 4YPI (structure) 39-384 

VP24 EBOV Heterodimer 4M0Q (structure) 10-231 

VP24 EBOV Heterodimer 4U2X (structure) 16-231 

VP24 RESTV Dimer 4D9O (structure) 10-231 

VP30 EBOV Dimer 2I8B (structure) 140-266 

VP30 RESTV Dimer 3V70 (structure) 142-272 

VP35 EBOV Heterodimer 4IBB (structure) 218-340 

VP35 EBOV Dimer of 
heterodimers 

3L25 (structure) 209-340 

VP35 RESTV Dimer of 
heterodimers 

3KS8 (structure) 208-329 

VP40 EBOV Monomer 1ES6 (structure) 44-321 

VP40 EBOV Dimer 4LDB (structure) 44-319 

VP40 EBOV Hexamer 4LDD (structure) 45-188 

VP40 EBOV Octamer 4LDM (structure) 69-188 

VP40 RESTV Monomer 1es6A (model) 44-321 

 
 
Supplementary Table 11. Protein structures available for Ebolavirus Proteins. 
EBOV, Ebola virus; RESTV, Reston virus 
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Reston 
virus 
residue 

Pathogenic 
consensus Comments 

Functional 
effect 

I32 F31 

Note- Ebola virus GP structure has R31 rather than F31. 
Surface residue close to interface with GP2 in the trimer.  
Unclear what functional effect may be if any. unclear 

I38 V37 
Surface residue, appears to be a conservative change of 
amino acid that could be well tolerated unlikely 

A46 V45 

Also a surface residue. Conservative change of 
hydrophobic amino acid that could be well 
accommodated. unlikely 

I76 V75 

 
Surface residue, conservative change of amino acid . 
Change should be well accommodated unlikely 

L261 I260 

One of three SDPs located in the glycan cap region of 
GP1. The glycan cap binds the host cell receptor(s) but is 
highly glycosylated so it is not clear if the amino acids 
directly contact the host cell. Surface residue in a cavity. It 
is part packed quite tightly with residue F234, V236, T240 
but should be possible to accommodate change to Leu in 
Reston virus. Could there be a role with the three SDPs 
combined in this region.  possible* 

S270 T269 

Located at the top of the structure, is a surface residue 
(with side chain pointing to the solvent) representing a 
conservative amino acid change. Again could it have a 
role in conjunction with the 2 other SDPs in this region? possible* 

H308 
S308/ 
L307 

Also located in the glycan cap and also a surface residue. 
Present in loop so unlikely to alter structure but could 
have a functional role, and alters charge on the protein 
surface. possible* 

D515 N514 

Surface residue, results in loss of negative charge in 
Reston virus GP. Located at the end of a beta sheet. 
Seems unlikely to have a structural effect. Possible 
combined effect with adjacent L547V? unlikely 

V522 Q521 

Close to trimer interface (GP2-GP2) but directly within 
the interface. Not clear what effect this change would 
have on protein structure unclear 

V548 L547 

Surface residue at end of a beta sheet. Appears to be 
minor change in amino acid. Possible combined effect 
with adjacent N514D? unlikely 

L585 I584 

Largely buried amino acid. At the interface with GP1 (in 
the same GP monomer). EBOV I584 interacts with F572,  
not clear if this interaction would change in with Leu in 
Reston virus. unlikely 
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Supplementary Table 12. Structural analysis of GP SDPs. Details of the 
structural analysis are included with an assessment of whether the amino acid change 
is likely to have an effect on the protein. Four categories are used for the effect 
column unlikely (the change seems unlikely to alter the structure/function), unclear 
(the change could be functional but there is limited evidence), possible (more 
confident that there is an effect than the unclear group) and probably (highly 
confident that the change will have a structural/functional effect). 
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Reston 
virus 
residue 

Pathogenic 
consensus Comments 

Functional 
effect 

K39 R39 
R39 forms a H bond with D71. Change to K is likely to 
maintain this H bond.  unlikely 

S42 
P42/ 
Q42 

Unusual to see Pro in a sheet. The amino acid is on the 
protein surface and it there is nothing to suggest that a 
change to Ser would alter the protein unclear 

V56 I56 

I56 is largely buried and packed against other sidechains. 
While change to Val would reduce the size of the side 
chain, it seems likely that it would be accommodated 
within the structure. Also V64I is adjacent to this SDP. unlikely 

I64 V64 

In a surface loop facing the helix containing I56V. 
Possible co-evolution with I56 – reduce size in one, 
matched with increased size in the other.  unlikely 

K105 R105 

The side chain guanidino group of R105 provides a 
hydrogen bond with the side chain of Q38 as well as with 
the local backbone NH of G103 to provide a stabilized 
region of the protein. Although the mutation R105K 
appears conservative and maintains the side chain positive 
charge, the ability to form multiple hydrogen bonds is 
reduced due to resonance stabilization in the guanidino 
group being lost in the transfer to the lysine side chain 
amino group. This has the potential to weaken interactions 
in this region. possible 

L137 M137 

M137 is located at the end of helix and packs against an 
adjacent helix. The conservative change to L137 in Reston 
virus seems unlikely to have a significant effect on 
structure/function unlikely 

Y212 F212 

A minor change in side chains. P212 is located in an alpha 
helix and the sidechain is largely buried. The change to 
Y212 in Reston virus is unlikely to have a significant effect 
on protein structure/function unlikely 

R274 K274 

K274 is located in the VP35 binding site. K274 forms a 
hydrogen bond with VP35 D46 and a change to Arg 
should be able to maintain this interaction. unlikely 

A279 S279 

S279 is located in an alpha helix on the protein surface. 
The change to A279 in Reston virus would introduce a 
hydrophobic amino acid on the protein surface that could 
have an effect on protein structure.  unclear 

R374 K374 

K374 is located in an alpha helix on the protein surface. It 
is not unlikely that the change to R374 in Reston virus will 
alter protein structure. It is a conservative change of side 
chain. unlikely 

R705 A705 

A695 is located on the protein surface so the charge 
introduce by the change to R695 in Reston virus should be 
tolerated. Proximity of Reston virus R705 to E694 may Possible 
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result in a salt bridge that would reduce flexibility in 
Reston virus NP. There could different hydrodynamic 
volumes between the Reston virus and pathogenic NP 
proteins as well as in the pathogenic ebolaviruses exposing 
residues that remain buried in the Reston virus NP. The 
salt bridge could make RESTV more thermostable (and 
possibly more resistant to proteolysis and denaturants). 

N716 D716 

Present in a surface loop this change will change the 
charge properties. Should be considered with adjacent 
amino acid, which is also an SDP. Overall we see the 
removal of a negatively charged amino acid with two polar 
side chains. unclear 

N717 G717 

Adjacent to D716N pSDP. The loss of Gly would change 
the turn from type1 to a type 2 turn. Also See comment 
above. unclear 

 
Supplementary Table 13. Structural analysis of NP SDPs. Details of the structural 
analysis are included with an assessment of whether the amino acid change is likely to 
have an effect on the protein. Four categories are used for the effect column unlikely 
(the change seems unlikely to alter the structure/function), unclear (the change could 
be functional but there is limited evidence), possible (more confident that there is an 
effect than the unclear group) and probably (highly confident that the change will 
have a structural/functional effect). 
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Reston 
virus 
Residue 

Pathogeni
c 
consensus 

Comments Functional 
effect 

D258 E269 

Present in dimer interface (only for one of the subunits as 
the dimer is asymmetric). Forms hydrogen bonds with 
R301, R311 and W313 (RESTV numbering). Distances 
between atoms are slightly different between the 2 
species. W324 3.1A (2.8 in Ebola virus), R301 3.2A (2.9 
in Ebola virus) R322 2.8 and 3.0 (both 2.8A in Ebola 
virus). Also close to A303 across interface, they could 
compensate or presence of both changes could have 
greater effect on interface in this area. (6.1A in RESTV, 
7.5 in Ebola virus) 

 probable 

V279 A290 

Present in a surface loop packs against adjacent helix, 
conservative change of hydrophobic amino acid. Could 
be some local conformational changes and is located 
adjacent to the linker between the two subdomains, 
which is in RESTV has a short alpha helix that is not 
present in EBOV. 

Unclear 

A303 V314 
Present in a surface loop near the VP35 dimer interface. 
Close in space to D258 in the other subunit. 

unclear 

K318 Q329 

Located at the end of a beta sheet. Adjacent to His285 in 
next strand. His285 is completely conserved in all 
Ebolavirus species. So Reston virus VP35 has increased 
positive charge in this position 

unclear 

 
 
Supplementary Table 14. Structural analysis of VP35 SDPs. Details of the 
structural analysis are included with an assessment of whether the amino acid change 
is likely to have an effect on the protein. Four categories are used for the effect 
column unlikely (the change seems unlikely to alter the structure/function), unclear 
(the change could be functional but there is limited evidence), possible (more 
confident that there is an effect than the unclear group) and probably (highly 
confident that the change will have a structural/functional effect). 
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RESTV 
residue 

Pathogeni
c 
consensus Comments 

functiona
l effect 

I151 T150 

The side chain is largely buried and it appears that Reston virus 
I151 would be tolerated although a hydrogen bond with the 
backbone of the previous turn of the helix will be lost. unlikely 

R158 Q157 

Located in a surface loop, will increase surface charge. It is 
possible that Reston virus forms a salt bridge with D159, 
which would increase stability and reduce flexibility in this area 
of the protein. This SDP is in a region of SDPs and very close 
to another SDP (I159L). So possible effects may be 
compensated by other changes. unlikely 

L160 I159 

Located in a surface close to another SDP (see above). 
Appears to be a conservative change that given the other 
species specific changes in this area it seems unlikely that it will 
have a functional effect on the protein. unlikely  

H197 R196 
Surface residue so change in size/shape should well 
accommodated, positive charge maintained in side chain. unlikely 

D206 E205 
Exposed surface residue, conservative change of amino acid. 
Unlikely to alter protein structure. unlikely 

A263 R262 

This residue is present in the dimer interface. In Ebola virus 
VP30 R262 hydrogen bonds with the backbone of A141 and 
G140. Reston virus A263 will be unable to hydrogen bond. 
This is likely to reduce the affinity of the dimer (given that it is 
symmetrical and so the Ebola virus R262 in each subunit 
forms hydrogen bonds with  the other subunit. The Reston 
virus dimer has been observed to be rotated relative to the 
Ebola virus. The loss of the hydrogen bonds may explain this. probable 

 
Supplementary Table 15. Structural analysis of VP30 SDPs. Details of the 
structural analysis are included with an assessment of whether the amino acid change 
is likely to have an effect on the protein. Four categories are used for the effect 
column unlikely (the change seems unlikely to alter the structure/function), unclear 
(the change could be functional but there is limited evidence), possible (more 
confident that there is an effect than the unclear group) and probably (highly 
confident that the change will have a structural/functional effect). 
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Reston 
virus 
residue 

Pathogenic 
consensus Comments 

Possible 
Functional 
effect 

V46 T46 

Present in a surface loop (although only third amino acid 
in structure). Reston virus V46 introduces a hydrophobic 
amino acid on surface, could affect stability but no 
evidence for this. unclear 

T85 P85 

Ebola virus P85 is in a S-G-P-K beta-turn, proline 
confers backbone rigidity and change to Thr in Reston 
virus would introduce backbone flexibility and provide a 
side chain with H-bond donor. Located in the Ebola 
virus octamer interface, will result in changes to this 
interface and likely alter the octamer structure. In an 
octamer structure (if it were to remain similar to the 
Ebola virus octamer), T85 could hydrogen bond with 
the backbone of L117 or the sidechain of R137. probably  

V122 I122 

This change appears to be conservative substitution of 
two hydrophobic amino acids. Ebola virus I122 is 
packed with other hydrophobic residues and it appears 
that the region would be able to accommodate the 
change to Reston virus V122 with a slightly smaller side 
chain.  unlikely 

 
 
N201 

 
 
G201 

Located in a surface loop. Based on the Ebola virus 
structure, the Reston virus N201 side chain would be 
likely to point into the protein structure. But not clear 
what effect this would have on the protein structure, if 
any given that the structure has gaps in this region so 
cannot be confident. unclear 

L209 F209 

Packed in a largely hydrophobic region the SDP results 
in a reduction in side chain size in Reston virus. The 
smaller Leucine may adopt different side chain 
conformations to aid stability. Ebola virus F209 does not 
interact with other aromatic side chains so the structure 
is unlikely to be adversely affected by the swap to 
Leucine. Surrounding hydrophobic residues are aliphatic 
(I261, I285, V298, A318, P317) so the change to Leucine 
could be well accommodated. unlikely 

P245 Q245 

Located at the end of an alpha helix, the Reston virus 
P245 would break the helix and shorten it to either L244 
or more likely M241, which is a better C-capping residue.  
This could have a destabilizing effect on the two helices 
in this region and the base of the hydrophobic core 
because secondary structure will most likely change to 
accommodate the inflexible Proline. probably 

Q269 H269 

A surface residue, loss of charge to polar side chain. This 
is a highly charged region with E265, R270, K274, K275. 
So the positive charge would be reduced in Reston virus unclear 
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VP40.  

V293 I293 
Packs with other hydrophobic residues. Appears to be a 
conservative change Unlikely 

 
Supplementary Table 16. Structural analysis of VP40 SDPs. Details of the 
structural analysis are included with an assessment of whether the amino acid change 
is likely to have an effect on the protein. Four categories are used for the effect 
column unlikely (the change seems unlikely to alter the structure/function), unclear 
(the change could be functional but there is limited evidence), possible (more 
confident that there is an effect than the unclear group) and probably (highly 
confident that the change will have a structural/functional effect). Analysis is based 
on the VP40 dimer structure unless otherwise stated. 
 
 
 
 
 

Reston 
virus 
residue 

Pathogenic 
consensus Comments 

Possible 
functional 
effect 

M17 L17 

Located in a helix. Appears to be a conservative change 
in amino acid. No suggestion from structure that it 
would alter structure/function. unlikely 

I22 V22 

Located in a helix and is fairly tightly packed against 
the adjacent helix but would expect the pocket to 
accommodate the change.  unlikely 

I31 V31 

Located in a sheet facing a loop. Side chain is relatively 
exposed so structure should be able to accommodate. 
Adjacent in space to another SDP (132)  unlikely 

S131 T131 

Ebola virus T131 forms hydrogen bonds with the side 
chains of T129, W125 and with the backbone of H133. 
Model of Reston virus VP24 suggests S131 would 
continue to interact with the same residues. This 
residue is on the edge of the KPNA5 binding site. 
Appears to be a conservative change of amino acid. probable 

T132 N132 

Exposed polar residue exchanges for another polar 
residue. Unlikely to affect structure. Adjacent in space 
to an SDP (V31S) and in sequence to 131. unlikely 

L136 M136 

Part of the interface site with KPNA5. Mutagenesis of 
M136 in combination with other residues resulted in 
loss of KPNA5 binding34. Although it appears to be a 
conservative substitution. probable 

R139 Q139 

Interface residue. In Ebola virus Q139 forms an H 
bond with the backbone of R137. This is likely to be 
lost in Reston virus VP24 with the longer R139 side 
chain. Change will also introduce positive charge at 
interface site. probable 
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A226 T226 

Located in a helix facing a sheet. Ebola virus T226 
forms a hydrogen bond with the backbone of D48. 
Reston virus A226 will not be able to form this 
hydrogen bond. This is likely to reduce the stability of 
the protein and increase flexibility. Probable 

 
Supplementary Table 17. Structural analysis of VP24 SDPs. Details of the 
structural analysis are included with an assessment of whether the amino acid change 
is likely to have an effect on the protein. Four categories are used for the effect 
column unlikely (the change seems unlikely to alter the structure/function), unclear 
(the change could be functional but there is limited evidence), possible (more 
confident that there is an effect than the unclear group) and probably (highly 
confident that the change will have a structural/functional effect). 
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Region Residue Conservation  

1 L136 SDP 

1 R139 SDP 

1 S140 Not an SDP but conserved S in Reston viruses and mainly R in Ebola 
viruses, not conserved enough to be SDP 

   

2 L107 Vary in species specific manner 

2 H109 Vary in species specific manner 

2 T116 Vary in species specific manner 

2 G120 Not an SDP – G in Reston viruses and Ebola viruses (mainly), differs in 
others 

   

3 S184  

3 T185 Not an SDP. T in Reston viruses, mainly N in other species 

3 H186 Vary in species specific manner 

3 T187 Not an SDP, primarily T in most species (A in Sudan viruses) 

3 F197 Vary in species specific manner 

   

4 V201 Vary in species specific manner 

   

5 S50 Not an SDP 

 
Supplementary Table 18. Residues in VP24 previously identified to differ between 
Reston viruses and Ebola viruses and/or Sudan viruses. Zhang et al., identified five 
regions that differed between Reston viruses and Ebola viruses and/or Sudan 
viruses7 .The five regions are listed along with conservation information i.e. whether 
the position is an SDP, varies in a species specific manner (i.e. not an SDP, but a 
different residue is conserved in each of the different species) or otherwise 
conserved. Region one is part of the KPNA5 (karyopherin α5) binding site and 
region two is thought to be part of the STAT1 binding site7.  
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Mutation Location/Comments Relationship 
to SDPs 

From Volchhkov et al.,43 – experiment 1 

M71I Surface residue. Not clear what functional effect would be. Not close 

L147P Part of an alpha helix, the proline would be expected to break 
the helix and could lead to conformational changes that would 
alter function. 

Close to SDPs 
L17M, V22I 

T187I Adjacent to interface site. T187 forms Hydrogen bonds with 
the backbone of H186 and E203. Mutation to I would remove 
these hydrogen bonds and reduce stability/increase flexibility 
in this area. (Also close to L26F mutation from a separate 
study) 

Not close 

 
From Volchhkov et al., 43 – experiment 2 

H186Y Present in interface with KPNA5. Forms a hydrogen bond 
with the backbone of T434 in KPNA5. Mutation to Tyr would 
still enable Hydrogen bonding with KPNA as the functional 
group is maintained. 

Not close 

 
From Ebihara et al., 44 

T50I The side chain of Ebola virus T50 can hydrogen bond with the 
backbones of Q36 and K52. Removal of these interactions 
with mutation Ile will reduce stability/increase flexibility. 

Close to SDP 
T226A 

 
From Dowall et al., 45 

L26F Largely buried side chain. Increase in size to phenylalanine 
could require some conformational change. Interesting that is 
located close to T187I (see above). 

Close to V22I 

F29V* Largely buried side chain. Reduction in size would create space 
and therefore likely to result in some conformational change?  

Close in space 
to SDPs 
T131S, 
N132T,  V31I. 

A43P* Close in space to L26F (see above). Present in a turn.  

K218R* Appears to be a conservative change. K218 is present in the 
KPNA5 interface. Is close to M436 and D489. Possible 
electrostatic interaction. Possible the mutation to R enables 
this interaction to continue in the different species. 

 

 
Supplementary Table 19. VP24 Mutations occurring in adaption of Ebola virus 
to rodent species. The location of the mutation and how it may alter structure and 
function is listed with details of proximity to SDPs. *indicates that after passage one 
the predominant amino acid at that position was the wild type 44. In the Dowall et 
al.45, study L26F is the only mutation where the mutation is predominantly 
maintained in in all passages. Separate experimental evidence suggests that the L26F 
mutation along results in pathogenicity in guinea pigs37. 
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Genome Identifier Ebola virus species Host

gb:KJ660346 Organism:Zaire ebolavirus H.sapiens-wt/GIN/2014/Makona-Kissidougou-C15 Human

gb:KJ660347 Organism:Zaire ebolavirus H.sapiens-wt/GIN/2014/Makona-Gueckedou-C07 Human

gb:KJ660348 Organism:Zaire ebolavirus H.sapiens-wt/GIN/2014/Makona-Gueckedou-C05 Human

gb:KP342330 Organism:Zaire ebolavirus H.sapiens-wt/GIN/2014/Conacry-192 Human

gb:KP096422 Organism:Zaire ebolavirus H.sapiens-tc/GIN/14/WPG-C15 Human

gb:KP096421 Organism:Zaire ebolavirus H.sapiens-tc/GIN/14/WPG-C07 Human

gb:KP096420 Organism:Zaire ebolavirus H.sapiens-tc/GIN/14/WPG-C05 Human

gb:KC242800 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/2002/Ilembe Human

gb:KC242794 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/2Nza Human

gb:KC242797 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/1Oba Human

gb:KC242795 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/1Mbie Human

gb:KC242798 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/1Ikot Human

gb:KC242793 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1996/1Eko Human

gb:KC242792 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/GAB/1994/Gabon Human

gb:KC242784 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/9 Luebo Human

gb:KC242790 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/5 Luebo Human

gb:KC242788 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/43 Luebo Human

gb:KC242789 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/4 Luebo Human

gb:KC242787 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/23 Luebo Human

gb:KC242786 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/1 Luebo Human

gb:KC242785 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/2007/0 Luebo Human

gb:KC242799 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/1995/13709 Kikwit Human

gb:KC242796 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/1995/13625 Kikwit Human

gb:KC242791 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/1977/Bonduni Human

gb:KC242801 Organism:Zaire ebolavirus EBOV/H.sapiens-tc/COD/1976/deRoover Human

gb:KM233118 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-NM042.3 Human

gb:KM233117 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-NM042.2 Human

gb:KM233116 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-NM042.1 Human

gb:KM233115 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3857 Human

gb:KM233114 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3856.3 Human

gb:KM233113 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3856.1 Human

gb:KM233112 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3851 Human

gb:KM233111 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3850 Human

gb:KM233110 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3848 Human

gb:KM233109 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3846 Human

gb:KM233108 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3845 Human

gb:KM233107 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3841 Human

gb:KM233106 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3840 Human

gb:KM233105 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3838 Human

gb:KM233104 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3834 Human

gb:KM233103 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3831 Human

gb:KM233102 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3829 Human

gb:KM233101 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3827 Human

gb:KM233100 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3826 Human

gb:KM233099 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3825.2 Human

gb:KM233098 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3825.1 Human

gb:KM233097 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3823 Human

gb:KM233096 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3822 Human

gb:KM233095 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3821 Human

gb:KM233094 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3820 Human

gb:KM233093 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3819 Human

gb:KM233092 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3818 Human
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gb:KM233091 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3817 Human

gb:KM233090 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3816 Human

gb:KM233089 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3814 Human

gb:KM233088 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3810.2 Human

gb:KM233087 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3810.1 Human

gb:KM233086 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3809 Human

gb:KM233085 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3808 Human

gb:KM233084 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3807 Human

gb:KM233083 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3805.2 Human

gb:KM233082 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3805.1 Human

gb:KM233081 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3800 Human

gb:KM233080 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3799 Human

gb:KM233079 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3798 Human

gb:KM233078 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3796 Human

gb:KM233077 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3795 Human

gb:KM233076 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3789.1 Human

gb:KM233075 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3788 Human

gb:KM233074 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3787 Human

gb:KM233073 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3786 Human

gb:KM233072 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3782 Human

gb:KM233071 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3771 Human

gb:KM233070 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3770.2 Human

gb:KM233069 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3770.1 Human

gb:KM233068 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3769.4 Human

gb:KM233067 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3769.3 Human

gb:KM233066 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3769.2 Human

gb:KM233065 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3769.1 Human

gb:KM233064 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3765.2 Human

gb:KM233063 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3764 Human

gb:KM233062 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3758 Human

gb:KM233061 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3752 Human

gb:KM233060 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3750.3 Human

gb:KM233059 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3750.2 Human

gb:KM233058 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3750.1 Human

gb:KM233057 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3735.2 Human

gb:KM233056 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3735.1 Human

gb:KM233055 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3734.1 Human

gb:KM233054 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3729 Human

gb:KM233053 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3724 Human

gb:KM233052 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3713.4 Human

gb:KM233051 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3713.3 Human

gb:KM233050 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3713.2 Human

gb:KM233049 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3707 Human

gb:KM034563 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3687.1 Human

gb:KM034562 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3686.1 Human

gb:KM034561 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3683.1 Human

gb:KM034560 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3682.1 Human

gb:KM034559 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3680.1 Human

gb:KM034558 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3679.1 Human

gb:KM034557 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3677.2 Human

gb:KM034556 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3677.1 Human

gb:KM034555 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3676.2 Human

gb:KM034554 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3676.1 Human
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gb:KM034553 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-G3670.1 Human

gb:KM233048 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM124.4 Human

gb:KM233047 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM124.3 Human

gb:KM233046 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM124.2 Human

gb:KM233045 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM124.1 Human

gb:KM233044 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM121 Human

gb:KM233043 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM120 Human

gb:KM233042 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM119 Human

gb:KM233041 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM115 Human

gb:KM233040 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM113 Human

gb:KM233039 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM112 Human

gb:KM233038 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM111 Human

gb:KM233037 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM110 Human

gb:KM233036 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM106 Human

gb:KM233035 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM104 Human

gb:KM034552 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM098 Human

gb:KM034551 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM096 Human

gb:KM034549 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM095B Human

gb:KM034550 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/SLE/2014/Makona-EM095 Human

gb:KP178538 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/LBR/2014/Makona-201403007 Human

gb:KP120616 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/GBR/2014/Makona-UK1 Human

gb:KP271020 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/COD/2014/Lomela-Lokolia19 Human

gb:KP271018 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/COD/2014/Lomela-Lokolia16 Human

gb:KP728283 Organism:Zaire ebolavirus Ebola virus/H.sapiens-wt/CHE/2014/Makona-GE1 Human

gb:KP701371 Organism:Zaire ebolavirus Ebola virus/H.sapiens-tc/SLE/2014/Makona-Italy-INMI1 Human

gb:KP184503 Organism:Zaire ebolavirus Ebola virus/H.sapiens-tc/GBR/2014/Makona-UK1.1 Human

gb:KM655246 Organism:Zaire ebolavirus Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Ecran Human

gb:KP260802 Organism:Zaire ebolavirus Ebola virus H.sapiens/MLI/14/Manoka-Mali-DPR4 Human

gb:KP260801 Organism:Zaire ebolavirus Ebola virus H.sapiens/MLI/14/Manoka-Mali-DPR3 Human

gb:KP260800 Organism:Zaire ebolavirus Ebola virus H.sapiens/MLI/14/Manoka-Mali-DPR2 Human

gb:KP260799 Organism:Zaire ebolavirus Ebola virus H.sapiens/MLI/14/Manoka-Mali-DPR1 Human

gb:NC_002549 Organism:Zaire ebolavirus Ebola virus H.sapiens-tc/COD/1976/Yambuku-Mayinga Unknown

gb:AY354458 Organism:Zaire ebolavirus Zaire 1995 Unknown

gb:JA489037 Organism:Zaire ebolavirus UNKNOWN-JA489037 Unknown

gb:HC874683 Organism:Zaire ebolavirus UNKNOWN-HC874683

gb:HC874681 Organism:Zaire ebolavirus UNKNOWN-HC874681

gb:HC874677 Organism:Zaire ebolavirus UNKNOWN-HC874677

gb:HC874665 Organism:Zaire ebolavirus UNKNOWN-HC874665

gb:HC874661 Organism:Zaire ebolavirus UNKNOWN-HC874661

gb:HC069241 Organism:Zaire ebolavirus UNKNOWN-HC069241

gb:HC069239 Organism:Zaire ebolavirus UNKNOWN-HC069239

gb:HC069235 Organism:Zaire ebolavirus UNKNOWN-HC069235

gb:HC069221 Organism:Zaire ebolavirus UNKNOWN-HC069221

gb:HC069217 Organism:Zaire ebolavirus UNKNOWN-HC069217

gb:KF827427 Organism:Zaire ebolavirus rec/COD/1976/Mayinga-rgEBOV Human

gb:AF272001 Organism:Zaire ebolavirus Mayinga Guinea Pig

gb:AF499101 Organism:Zaire ebolavirus Mayinga Guinea Pig

gb:AY142960 Organism:Zaire ebolavirus Mayinga Guinea Pig

gb:EU224440 Organism:Zaire ebolavirus Mayinga Guinea Pig

gb:AF086833 Organism:Zaire ebolavirus Mayinga Guinea Pig

gb:JQ352763 Organism:Zaire ebolavirus Kikwit Unknown

gb:JA489027 Organism:Tai Forest ebolavirus UNKNOWN-JA489027 Unknown

gb:FJ217162 Organism:Tai Forest ebolavirus UNKNOWN-FJ217162 Human
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gb:NC_014372 Organism:Tai Forest ebolavirus Tai Forest virus/H.sapiens-tc/CIV/1994/Pauleoula-CI Human

gb:EU338380 Organism:Sudan ebolavirus Yambio Human

gb:HC874655 Organism:Sudan ebolavirus UNKNOWN-HC874655

gb:HC069211 Organism:Sudan ebolavirus UNKNOWN-HC069211

gb:KC242783 Organism:Sudan ebolavirus SUDV/H.sapiens-tc/SSD/1979/Maleo Human

gb:NC_006432 Organism:Sudan ebolavirus Sudan virus/H.sapiens-tc/UGA/2000/Gulu-808892 Unknown

gb:JN638998 Organism:Sudan ebolavirus Sudan Human

gb:AY729654 Organism:Sudan ebolavirus Gulu Unknown

gb:KC545392 Organism:Sudan ebolavirus EboSud-682 2012 Human

gb:KC589025 Organism:Sudan ebolavirus EboSud-639 Human

gb:KC545391 Organism:Sudan ebolavirus EboSud-609 2012 Human

gb:KC545390 Organism:Sudan ebolavirus EboSud-603 2012 Human

gb:KC545389 Organism:Sudan ebolavirus EboSud-602 2012 Human

gb:FJ968794 Organism:Sudan ebolavirus Boniface Unknown

gb:HC874675 Organism:Reston ebolavirus UNKNOWN-HC874675

gb:HC874663 Organism:Reston ebolavirus UNKNOWN-HC874663

gb:HC874659 Organism:Reston ebolavirus UNKNOWN-HC874659

gb:HC874657 Organism:Reston ebolavirus UNKNOWN-HC874657

gb:HC069233 Organism:Reston ebolavirus UNKNOWN-HC069233

gb:HC069219 Organism:Reston ebolavirus UNKNOWN-HC069219

gb:HC069215 Organism:Reston ebolavirus UNKNOWN-HC069215

gb:HC069213 Organism:Reston ebolavirus UNKNOWN-HC069213

gb:JX477165 Organism:Reston ebolavirus Reston09-A Swine

gb:FJ621585 Organism:Reston ebolavirus Reston08-E Swine

gb:FJ621584 Organism:Reston ebolavirus Reston08-C Swine

gb:FJ621583 Organism:Reston ebolavirus Reston08-A Swine

gb:NC_004161 Organism:Reston ebolavirus Reston virus/M.fascicularis-tc/USA/1989/Philippines89- Pennsylvania Unknown

gb:AB050936 Organism:Reston ebolavirus Reston

gb:AF522874 Organism:Reston ebolavirus Pennsylvania

gb:AY769362 Organism:Reston ebolavirus Pennsylvania

gb:JX477166 Organism:Reston ebolavirus Alice, TX USA MkCQ8167 Monkey

gb:NC_014373 Organism:Bundibugyo virus Bundibugyo virus/H.sapiens-tc/UGA/2007/Butalya-811250 Human

gb:JA489018 Organism:Bundibugyo ebolavirus UNKNOWN-JA489018 Unknown

gb:FJ217161 Organism:Bundibugyo ebolavirus UNKNOWN-FJ217161 Human

gb:KC545396 Organism:Bundibugyo ebolavirus EboBund-14 2012 Human

gb:KC545395 Organism:Bundibugyo ebolavirus EboBund-122 2012 Human

gb:KC545394 Organism:Bundibugyo ebolavirus EboBund-120 2012 Human

gb:KC545393 Organism:Bundibugyo ebolavirus EboBund-112 2012 Human
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Supplementary Table 20. Information on the 196 complete Ebolavirus 
genomes. Genomes were downloaded from Virus Pathogen Resource, VIPR 
(http://www.viprbrc.org/brc/home.spg?decorator=vipr) . 
 
 
 
 
 
 

Protein Effective number of 
sequences 

Effective number of 
human pathogenic 

sequence 

Effective number of 
Reston virus 

sequences 

GP 95.15 86 4 

L 99.2 78 7 

NP 148.96 133 7 

VP24 88.2 79 7 

VP30 96.04 84 7 

VP35 99.96 87 7 

VP40 90.16 80 7 

 
 
Supplementary Table 21. Effective number of independent sequences in the 
dataset. The effective number of independent sequences present in the multiple 
sequence alignments for each of the Ebolavirus proteins is shown. Values were 
calculated using hmmer (see material and methods). 
 
 
  

http://www.viprbrc.org/brc/home.spg?decorator=vipr
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Supplementary Tables 
 

 

UKF-NB-3_all_variants.tsv 

Supplementary Table 1. Variants in UKF-NB-3. They are fully annotated by VEP 

and also include their presence in each of the ten clonal sub-lines. 

 

number_of_variants_samples.xls 

Supplementary Table 2. Number of each type of variant per sample, sub-classified 

by variants that were called and variants that had enough quality to pass the 30 

QUAL Phred threshold. 

 

par.cancer.xls 

Supplementary Table 3. Mutations of UKF-NB-3 located in common cancer genes 

and neuroblastoma driver genes. 

 

ABCB1 CD79A EPHA4 HSP90AB1 MUTYH PTPRJ TAOK1 

ABCB4 CD79B EPHB2 HSPA8 MYB PTPRU TAOK2 

ABL1 CDC27 ERBB2 IDH1 MYC RAC1 TBL1XR1 

ABL2 CDC73 ERBB2IP IDH2 MYCN RAD21 TBX3 

ACACA CDH1 ERBB3 IGF2R MYD88 RAD23B TCF12 

ACAD8 CDK12 ERBB4 IKBKB MYH10 RAD50 TCF4 

ACO1 CDK4 ERCC1 IKZF1 MYH11 RAD51C TCF7L2 

ACSL3 CDK6 ERCC2 IKZF3 MYH14 RAD51D TET2 

ACSL6 CDKN1A ERCC3 IL6ST MYH9 
RAD51L3-
RFFL TFDP1 

ACTB CDKN1B ERCC4 IL7R MYOD1 RAD54B TFDP2 

ACTG1 CDKN2A ERCC5 ING1 NAP1L1 RAD54L TGFBR1 

ACTG2 CDKN2B ERCC6 ING2 NBN RAF1 TGFBR2 

ACVR1 CDKN2C ESR1 INHBA NCF2 RASA1 THRAP3 
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ACVR1B CEBPA ETNK1 INPP4A NCK1 RASA2 TJP1 

ACVR2A CEP290 ETV6 INPP4B NCKAP1 RASGRP1 TJP2 

ADAM10 CHD1L EXT1 INPPL1 NCOR1 RB1 TMEM127 

ADCY1 CHD2 EXT2 IREB2 NCOR2 RBBP7 TNFAIP3 

AFF4 CHD3 EZH2 IRF1 NDRG1 RBBP8 TNFSF10 

AHCTF1 CHD4 FAF1 IRF2 NEDD4L RBM10 TNPO1 

AHR CHD6 FAM123B IRF4 NF1 RBM5 TNPO2 

AKT1 CHD8 FAM175A IRF6 NF2 RBX1 TOM1 

AKT2 CHD9 FAM46C IRF7 NFATC4 RECQL4 TP53 

ALK CHEK2 FANCA IRS2 NFE2L2 RET TP53BP1 

ANK3 CIC FANCC ITGA9 NFKBIE RFC4 TPMT 

APAF1 CIITA FANCD2 ITSN1 NKX3-1 RGS3 TRAF3 

APC CLASP2 FANCE JAGN1 NOTCH1 RHEB TRAF7 

AQR CLCC1 FANCF JAK1 NOTCH2 RHOA TRERF1 

AR CLCN2 FANCG JAK2 NPM1 RHOT1 TRIO 

ARAF CLOCK FANCI JAK3 NR2F2 RNF43 TRIP10 

ARAP3 CLSPN FAS JMY NR4A2 RNF6 TRRAP 

ARFGAP1 CLTC FAT1 KANSL1 NRAS ROS1 TSC1 

ARFGAP3 CNOT1 FAT2 KAT6B NSD1 
RP11-
286N22.8 TSC2 

ARFGEF1 CNOT3 FBXO11 KAT8 NT5C2 RPGR TSHR 

ARFGEF2 CNOT4 FBXW7 KCNJ5 NTRK1 RPL10 TXNIP 

ARHGAP26 CNTNAP1 FCRL4 KDM1A NTRK2 RPL22 U2AF1 

ARHGAP29 COL1A1 FGFR1 KDM5C NUP107 RPL5 UBC 

ARHGAP35 COPS2 FGFR2 KDM6A NUP93 RPSAP58 UBR5 

ARHGEF2 COPS3 FGFR3 KDR NUP98 RQCD1 UGT1A1 

ARHGEF6 COPS4 FGFR4 KEAP1 OGG1 RRAS2 UPF3B 

ARID1A COPS5 FH KIT OPCML RTN4 USP6 

ARID1B COPS6 FIP1L1 KLF4 PABPC1 RUNX1 VHL 

ARID2 CR1 FKBP5 KLF6 PABPC3 RUNX3 VIM 

ARID4A CRBN FLCN KRAS PALB2 SBDS WAS 

ARID4B CREBBP FLT3 LCP1 PAX5 SCAI WASF3 

ARID5B CRNKL1 FLT4 LDHA PBRM1 SDHA WHSC1 

ARNTL CRTC3 FMR1 LEP PCBP1 SDHAF2 WHSC1L1 

ASH1L CSDA FN1 LIMA1 PCSK6 SDHB WIPF1 

ASPM CSDE1 FOXA1 LMO1 PDGFRA SDHC WNK1 

ASXL1 CSF1R FOXA2 LNPEP PDGFRL SDHD WNT5A 

ATF1 CSF3R FOXL2 LRP6 PER1 SEC24D WRAP53 

ATF2 CSNK1A1 FOXP1 LRPPRC PGR SEC31A WRN 

ATIC CSNK1G3 FRG1 LZTS1 PHF6 SETBP1 WT1 

ATM CSNK2A1 FRG1B MACF1 PHOX2B SETD2 WWOX 

ATP1A1 CTCF FUBP1 MAD1L1 PIK3C2B SETDB1 XPA 

ATP6AP2 CTNNB1 FUS MAGI2 PIK3CA SF3A3 XPC 
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ATR CTNND1 FXR1 MAP2K1 PIK3CB SF3B1 XPO1 

ATRX CTTN G3BP1 MAP2K2 PIK3R1 SF3B3 XRCC2 

AXIN1 CUL1 G3BP2 MAP2K4 PIK3R2 SFPQ XRN1 

AXIN2 CUL2 G6PD MAP3K1 PIK3R3 SH2B3 YBX1 

B2M CUL3 GATA1 MAP3K11 PIP5K1A SHMT1 ZC3H11A 

BAP1 CUL4A GATA2 MAP3K13 PLCG1 SIN3A ZFHX3 

BARD1 CUX1 GATA3 MAP3K4 PLCG2 SLC22A18 ZFP36L1 

BAX CYLD GJB2 MAP4K1 PLXNA1 SMAD2 ZFP36L2 

BAZ2B CYTH4 GNA11 MAP4K3 PLXNB2 SMAD3 ZMYM2 

BCL10 DAXX GNAI1 MARK2 PMS1 SMAD4 ZNF292 

BCL11A DCC GNAI2 MAT2A PMS2 SMARCA1 ZNF638 

BCL6 DDB1 GNAQ MAX POLE SMARCA4 ZNF750 

BCLAF1 DDB2 GNAS MCC POLR2B SMARCB1 ZNF814 

BCOR DDR2 GNG2 MCM3 POM121 SMARCD1 ZNRF3 

BIRC3 DDX3X GOLGA5 MCM8 POT1 SMARCE1 
 BLM DDX5 GPC3 MECOM PPARG SMC1A 
 BMPR1A DEPDC1B GPS2 MED12 PPM1D SMO 
 BMPR2 DHX15 GPSM2 MED17 PPP2R1A SMURF2 
 BPTF DHX35 GTF2F2 MED23 PPP2R5A SOCS1 
 BRAF DHX9 H3F3A MED24 PPP2R5C SOS1 
 BRCA1 DICER1 H3F3B MEF2C PPP6C SOS2 
 BRCA2 DIS3 HCFC1 MEN1 PRDM1 SOX17 
 BRD2 DLC1 HDAC2 MET PRF1 SOX9 
 BRIP1 DLG1 HDAC3 MFNG PRKAA1 SPEN 
 BRWD1 DNM2 HDAC9 MGA PRKAR1A SPOP 
 BTK DNMT3A HERC2 MGMT PRKCZ SPTAN1 
 BUB1B DPYD HGF MITF PRPF8 SRC 
 C15orf55 ECT2L HIC2 MKL1 PRRX1 SRGAP1 
 CAD EEF1A1 HIST1H3A MLH1 PSIP1 SRGAP3 
 CALR EEF1B2 HIST1H3B MLH3 PSMA2 SRSF2 
 CAPN7 EFTUD2 HIST1H3C MLL PSMA6 STAG1 
 CARD11 EGFR HIST1H3D MLL2 PSMB4 STAG2 
 CARM1 EIF1AX HIST1H3E MLL3 PSMB5 STARD13 
 CASP1 EIF2AK3 HIST1H3F MLLT4 PSMD11 STAT3 
 CASP10 EIF2C3 HIST1H3G MMP2 PSME3 STAT5B 
 CASP8 EIF4A2 HIST1H3H MNDA PSMG1 STIP1 
 CAT EIF4G1 HIST1H3I MPL PSMG2 STK11 
 CBFB EIF4G3 HIST1H3J MRE11A PTCH1 STK4 
 CBL ELF1 HLA-A MSH2 PTEN SUFU 
 CBLB ELF3 HLA-B MSH3 PTGS1 SUV39H1 
 CBLC ELF4 HLF MSH6 PTPN11 SUZ12 
 CCAR1 EP300 HNF1A MSR1 PTPN12 SVEP1 
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CCND1 EPHA1 HNRPDL MTOR PTPRB SYK 
 CCT5 EPHA2 HRAS MUC20 PTPRC SYNCRIP 
 CD36 ZRSR2 HSP90AA1 MUC4 PTPRF TAF1 
  

Supplementary Table 4. Commonly mutated genes in cancer. This list is a 

combination of the Cancer Census’ and Intogene’s common cancer genes lists.  

 

ALK TRIO NRAS MLL2 MET NOTCH1 

PTPN11 AHR NF1 PIK3CB COL1A1 CEP290 

ATRX STAG1 ATM LRP6 EIF2C3 
 MYCN ANK3 ARID1A CREBBP KLF4 
 MACF1 PIK3CA PBRM1 MECOM TAF1 
  

Supplementary Table 5. Neuroblastoma driver genes list, extracted from Intogene. 

 

ClinVar_filtered.xls 

Supplementary Table 6. UKF-NB-3 variants annotated in ClinVar. 

 

SIFT_filtered.xls 

Supplementary Table 7. UKF-NB-3 variants with SIFT prediction. 

 

PolyPhen2_filtered.xls 

Supplementary Table 8. UKF-NB-3 variants with PolyPhen-2 prediction. 

 

SIFTandPlyPhen2_filtered.xls 
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Supplementary Table 9. Overlap of variants whose effect was predicted by both 

SIFT and PolyPhen-2. 

 

 

CNVs_clones.ods 

Supplementary Table 10. CNV variations of each gene in log2 scale. 
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Supplementary Tables 
 

 

VariantsOf/NotIn Clone 1 Clone 2 Clone 24 Clone 3 Clone 4 Clone 56 Clone 64 Clone 7 Clone 80 Clone 93 UKF-NB-3 

Clone 1 0 807 978 1172 1162 995 1028 1010 819 854 2045 

Clone 2 1352 0 1204 1420 1407 1222 1284 1187 1024 1060 2336 

Clone 24 1181 862 0 1236 1248 1024 1109 1076 884 921 2138 

Clone 3 1157 860 1018 0 1132 1032 1067 1034 882 888 2071 

Clone 4 1139 839 1022 1124 0 1015 1053 1022 867 838 2080 

Clone 56 1222 904 1048 1274 1265 0 1114 1084 892 927 2181 

Clone 64 1127 838 1005 1181 1175 986 0 1030 827 875 2076 

Clone 7 1226 858 1089 1265 1261 1073 1147 0 911 928 2158 

Clone 80 1316 976 1178 1394 1387 1162 1225 1192 0 1035 2329 

Clone 93 1346 1007 1210 1395 1353 1192 1268 1204 1030 0 2339 

UKF-NB-3 845 591 735 886 903 754 777 742 632 647 0 
Supplementary Table 1. Gained variants in clonal sub-lines. effect causing variants 

in UKF-NB-3 and clones, compared to every sample, ie., number of high quality 

variants of every sample not present in the others 

 

VariantsOf/NotIn Clone 1 Clone 2 Clone 24 Clone 3 Clone 4 Clone 56 Clone 64 Clone 7 Clone 80 Clone 93 UKF-NB-3 

Clone 1 0 300 347 411 504 339 373 372 305 298 763 

Clone 2 545 0 475 534 631 460 492 431 395 413 909 

Clone 24 465 332 0 464 531 338 373 409 337 310 829 

Clone 3 453 378 390 0 504 388 430 406 360 353 833 

Clone 4 433 345 380 377 0 368 411 394 338 309 827 

Clone 56 474 350 367 469 555 0 391 410 341 340 828 

Clone 64 422 322 352 427 515 329 0 357 301 318 797 

Clone 7 512 350 411 476 574 395 433 0 343 372 811 

Clone 80 527 363 421 511 612 391 443 459 0 371 889 

Clone 93 510 390 444 542 591 449 503 456 411 0 914 

UKF-NB-3 346 217 258 310 407 259 263 261 224 231 0 
Supplementary Table 2. de novo variants present in clonal sub-lines compared to 

every sample, ie., number of variants of every sample that were not detected even 

with low quality. 
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description_table.xls 

Supplementary Table 3. Variants per sample. Between brackets is the number of 

gained variants of each type. In the second table we show the number of variants of 

the parental UKF-NB-3 cell line not detected in each of the clonal sub-lines (lost) 

and the de novo mutations. In both tables, the parental cell line row (par) refers to 

the number of its variants not detected in any of the clonal sub-lines  

 

all_denovo_variants.tsv 

Supplementary Table 4. De novo variants in each clone and overlap across 

samples. 

 

genes.freqs.variants.PASS.all.tsv 

Supplementary Table 5. Frequency of mutated genes, considering all mutations. 

 

genes.freqs.variants.PASS.gained.tsv 

Supplementary Table 6. Frequency of mutated genes, considering only gained 

mutations. 

 

genes.freqs.variants.PASS.denovo.tsv 

Supplementary Table 7. Frequency of mutated genes, considering only de novo 

mutaitons. 

 


