University of

"1l Kent Academic Repository

Buckland, Stephen T., MacMillan, Douglas C., Duff, Elizabeth I. and Hanley,
Nick (1999) Estimating mean willingness to pay from dichotomous choice
contingent valuation studies. Journal of the Royal Statistical Society: Series
D (The Statistician), 48 (1). pp. 109-124. ISSN 0039-0526.

Downloaded from
https://kar.kent.ac.uk/23106/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1111/1467-9884.00175

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/23106/
https://doi.org/10.1111/1467-9884.00175
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The Statistician (1999)
48, Part1, pp. 109-124

Estimating mean willingness to pay from
dichotomous choice contingent valuation studies

S. T. Buckland,
University of St Andrews, UK

D. C. Macmilian,
Universily of Aberdeen, UK

E. I. Duff
Biomathemalics and Stalistics Scotland, Aberdeen, UK

and N. Hanley
Universily of Edinburgh, UK

[Received August 1996, Final revision August 1998}

Summary. Methods for estimating mean willingness 1o pay for some envirenmental goal are
reviewed. Loglstic regrassion analysis of data from dichotomous choice centingant valuation studies
often models the willingness-to-pay curve poorly. We develep solutions to this problem. We also
show how to model responses as a function of several covariates, and how to model the case in
which a proportion of respondents is not willing to pay anything, Analytic and bootstrap methods for
quantifying precision are developed. We illustrate the methods by using an example in which
biodiversity losses due to acid rain deposition In Scotland are valued,
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1. Introduction

Economists are increasingly interested in a range of approaches to the valuation of the non-use
benefits of environmental programmes. Of these, the contingent valuation method using discrete
choice (take it or leave it) questions is considered to be the most promising approach fo the
measurement of the relevant welfare measures such as willingness to pay (WTP) (National
QOceanic and Atmospheric Administration, 1993).

In a discrete choice contingent valuation study, a questionnaire is sent to a representative
sample of the population of interest. Each individual in the sample js offered a bid, and the
respondents must state whether they would be willing to pay that sum to achieve a specified level
of environmental improvement. Although each respondent is offered a single bid level, different
respondents are offered different bid levels, according to some design. Hanemann (1984) showed
how the analysis of such binary response data could be integrated into economic theory by using
the random utitity model.
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Although mean WTP is the most relevant welfare measure with regard to cost—benefit analysis
(Johansson ef al., 1989), the median is often the preferred money measure (Hanemann, 1984).
This is because the mean is sensitive to outliers in the data and the WTP curve may be pootly
modelled by logistic regression. Median WTP is a measure of the amount 50% of the population
would be willing to pay but is not a valid estimate of the average amount people are willing to pay
(unless the probability density function of the maximum that a person is willing to pay is sym-
metric about the mean). In this paper, we describe measures to improve the fit of the logistic
curve to discrete choice data, so that mean WTP can be more reliably estimated, and show how fo
model responses as a function of several covariates. We also address the case in which a pro-
portion of respondents is not willing to pay anything.

There is a useful relationship between the WTP curve, representing the proportion of a
population willing to pay at least x expressed as a function of x, and the random variable X
representing the maximum amount that a respondent is willing to pay. We know that, if the
respondent accepts a bid xp, X > xo. Thus the cumulative distribution function of X'is 1 minus the
WTP curve. Hence, given a model for the WTP curve, the corresponding probability density
function of X is found by differentiating and reversing sign.

2. Methods

2.1. Logistic regression
The natural way to analyse dichetomous choice data is logistic regression. 1f there are no covariate

data, the regression equation may be expressed as
1

FOD = T exp (=BG, ) M
where E(y;) is the probability that a respondent accepts bid x;, and B (<< 0) and p are parameters
to be estimated. Each observation y is 0 (bid rejected) or | (accepted) and is assumed to have a
binary distribution with parameter E(y). Standard logistic regression software may be used to
obtain estimates & and m of B and , and corresponding standard errors. Most software provides
estimates b and by, where o = E(by) = —f, so that m = —b,/b. The above parameterization is '
convenient, as the parameter g is both the mean and the median WTP. The variance of its estimate
m, var(m), and cov(b, m) may be estimated by using the delta method (Seber, 1982). Here var(:)
and cov(:, ) represent the estimated variance and covariance respectively. Fonmulae are given in
equations (14) and (15) of Appendix A.

This formulation is adequate for the case that bids can be negative. For example, the specified
goal may be detrimental to some individuals, and acceptance of a negative bid corresponds to an
acceptable level of compensation (Johansson ef al., 1989). In many contingent valuation applica-
tions, it is desirable to restrict estimated WTP to a non-negative random variable. Often, negative
bids are inconsistent with the hypothetical environmental change (e.g. prevention of acid rain
damage). Also, it may not be appropriate to model willingness to accept and WTP by using the
same mathematical functions, since they may be based on entirely different lines of reasoning
(Hanemann, 1991). We now address the case where bids cannot be negative. This raises two
issues: how should the analysis be modified first to acknowledge that bids must be non-negative
and second to allow for a proportion of individuals who would not be willing to pay anything?

2.2, Left truncation of the logistic curve
Perhaps the simplest solution is to truncate the logistic curve fo the left of x = 0. For the un-

truncated curve,
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and this might be taken as the assumed proportion ¢, of respondents who are not willing to pay
anything. More work is now required to estimate mean WTP. Consider first only those respondents
who are willing fo pay something, Differentiating the WTP curve and reversing the sign yields

—Bexp{—plx - 1)} 3
[1 -+ exp{—B(x — )})>’

where 8 < 0. Denoting mean WTP for those who are willing to pay something by g, we have

= J mxf(.\') dx. 4}

0

J(x) =

The estimates b and » may now be substituted into equation (3) and m; = fi, obtained by numer-
ical integration of equation (4). Again using the delta method, we obtain var(n ) {(Appendix A,
equation (16)),

If those who are not willing to pay anything are included in the mean WTP calculation, then
if fto denotes this mean WTP we have je = (1 — ¢ho)p;. Its estimate #1, may be obtained by
substituting b and m for B and g in the expressions for ¢y and g,; the corresponding variance is
var(my) (Appendix A, equation (17)).

2.8, Logarithmic transformation of bid

When negative bids are not possible, rather than left truncate a curve whose argument ranges from
—00 to co, it seems more satisfactory to transform x so that negative values are impossible. The
obvious transformation to try is log.(x). The log-linear function, although not entirely consistent
with utility theory (Hanemann, 1984), can be considered a first-order approximation for a utility
difference (Bowker and Stoll, 1988). If standard logistic regression software is to be used, the
logarithm of each bid is calculated; then the regression is carried out as before, with z = log.{x)
replacing x. Equation {1) now becomes

1
E(y]) = 1 - exp[ﬂﬁ{log(ﬂ'j) - /“}] (5)

from which

—Bexpl~pilog(x) - )] ©
X1+ exp[—B{log(x) — s}1P”

Mean WTP g, is again estimated from numerical integration of equation (4), with parameters
and p replaced by estimates b and m from the logistic regression.

We could work with the density of z, say f,{z), but that would yield an estimate of the mean of
the logarithm of WTP. The exponential of that mean is a biased estimate of mean WTP. By
continuing to work with x and f(x), we avoid this difficulty.

The estimate m; of 4, has approximate variance var(m,) (Appendix A, equation { 18)).

S =

2.4. Reciprocaf bid transformation

The logarithmic transformation might adequately handle the difficulty of fitting the lower tail of
the logistic curve. However, it may create a far greater difficulty in the upper tail. Mean WTP is
insensitive to poor model fits in the lower tail because this corresponds to a WTP close to 0, and
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large relative bias in almost zero amounts can be tolerated. This is not true of the upper tail, which
is substantially lengthened by the logarithmic transform. Thus the methed can give rise to absurdly
high estimates of mean WTP if there are few bids that correspond to a mean probability of
acceptance close to 0, or if the fit of the medel is poor in the upper tail. Right truncation at some
arbitrary x, corresponding for example to the largest bid in the design, can reduce the problem
(Boyle ef al., 1988) and is readily accommodated in numerical integration routines (Duffield and
Patterson, 1991). However, the estimated mean WTP will be very sensitive to the choice of
truncation point. Another solution is to identify a transformation that removes the problem of the
range of x in the lower tail but does not alter behaviour of the upper tail. One such transformation
is w = x — a/x for some a. The left truncation method deseribed above is a limiting case of this
transformation, as @ — 0. The value of @ might be fixed arbitrarily, but it is better considered an
estimate of an unknown parameter «.
We now have, instead of equation (1),

E(y;) =

1

1+ exp{—p(x; — a/x; — 1} O

from which

B+ afx)exp{—Blx — afx — 10}
SO = T exp(pG—afs —1O}F ®

We estimate mean WTP g, from numerical integration of equation (4), with parameters «, B and
1t replaced by estimates @, b and m obtained from the logistic regression as follows,

The linear predictor in equation (7), —B(x; — a/x; — #), may be expressed as —ffy — fiy;
—B,/x;, where By = —Bu, i = B and B, = ~aff. Thus we can obtain estimates by, b, and b, of
B, 1 and BB, respectively, together with their standard errors and covariances, from a standard
logistic regression with covariates x; and 1/x;. Then b=1b, a=—b/b and m = —by/b.
Further, var(b) = var(hy), var(m) is given by equation (14) of Appendix A, cov(b, n) by
equation (15) and var(a), cov(h, a) and cov(m, a) by equations (19}, (20) and {21} respectively.
The estimate m, of ¢, has approximate variance var(m, ) given in equation (22).

2.5, Modified model for when some respondents are willing not to pay anything

In logistic regression, it is assumed that the upper asymptote of the logistic curve is exactly 1. In
the context of estimating mean WTP, this implies that there should be a bid that everyone would
accept. Because the curve is continuous, no discrete lump of probability should be attached to any
particular value of x. In particular, there should not be a group of people who are willing to pay
nothing, but who would reject any positive bid, This condition is unlikely to be met in contingent
valuation studies. A simple modification is possible provided that respondents are first asked
whether they are willing to pay anything. This modification can be used with all the methods
described above. In the case of the first method (ordinary logistic regression), the correction
allows for respondents who are willing to pay nothing but do not require compensation either, ie.
they are indifferent to the change. In the second method, the correction can also be applied; the
apparent proportion of respondents who are willing to pay nothing under the feft truncation
method is an artefact of the modelling, in which the logistic curve is truncated before it attains the
upper asymptote, If those respondents who are not willing to pay anything are excluded from the
analysis, then in reality ¢ under the left truncation method is the proportion of people who are
willing to pay very little, who, owing to the poor fit of the logistic model to untransforimed bid
values, are estimated to be willing to pay only negative amounts.
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Let 7 be the proportion of the population willing to pay nothing, estimated by p,, the
proportion of respondents who respond negatively to the initial question of whether they are
willing o pay anything. The above logistic regression analyses are now carried out using data on
only those who responded positively to the initial question. If the mean WTP of those willing to
pay something is g, with estimate m, obtained by one of the above methods, then the mean WTP
in the entire population is

Hp = (1 — 70) ®
with estimate
my = my(1 — py). (10)
Assuming independence between m, and py,
var(m,) = (1 — py) var(m,) + ms, var(p) + var(m,) var(p) (1D

(Seber (1982), p. 9), where var{p,) = po(1 — py)/n, with n equal to the total number of respon-
denis.

2.6. Logistic regression with covariates
When covariates are present, the logistic regression equation may be expressed as

exp(ﬁo + g:ﬁfs-a) 1

1+ exp([)‘ﬂ + ; ﬁ,._‘-jj) - {4+ exp(— 8, — ZJ: ﬁ;x,j) (12)

E(yp =

where xj is the value of covariate 7 for respondent j, i 1 (x; is the bid offered to respondent j
and is always in the model), and g, are coefficients to be estimated, i = 0.

Thus equation (1) may be expressed in this form by setting x; to x,,, f to 8, and y to -Bo/ B
Stepwise methods may be used to reduce the number of covariates, but bid level should always be
retained in the model (as should the reciprocal of the bid level if the reciprocal bid transform is
used). The corresponding fitted model may be expressed as

7 : (13)

1+ exp(bg -y b,-.\',-) '

The presence of covariates complicates estimation of mean WTP of the population as a whole,
As noted by Cameron (1988), most researchers have estimated mean WTP by averaging over all
covariates other than bid. This yields a single logistic curve, representing probability of accepting
the bid against bid value. The parameter estimates for this curve may be entered into the
calculations for any of the methods listed above, to obtain a mean WTP, However, this represents
the mean WTP of individuals whose covariate values correspond to the mean for the population.
Even if a representative sample of the entire population of interest has been obtained, this will be
a biased estimate for the mean WTP in the population, because of the non-linear relationship
between the covariates and WIP. For example, the mean WTP of a group of people on average
income is likely to be smaller than that for a group randomly selected from the population, which
may comprise a few individuals who are willing (and able) to pay a large sum.

One solution is to take each respondent in turn, and to substitute his or her covariate values into
equation (13}, with the exception of the bid that each was offered. Thus, for that individual, a
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logistic curve is obtained which is a function of the bid alone. The mean WTP of individuals with
the same covariate values as that respondent can then be estimated by any of the methods
presented above. This procedure has the merit that WTP can be estimated for each respondent,
and, assuming that the respondents are a random sample from the population of interest, the
average across all respondents is an estimate of the mean WTP in the population. Furthermore,
averaging can be carried out across subgroups, ¢.g. to quantify mean WIP by income band. Its
disadvantage is that it assumes that just the location of the WTP curve (when plotted against
z = log(x) or w=x —«/x in the case of the third and fourth approaches respectively} changes
when the covariates change, whereas a change in shape might occur, in which case bias should be
expected.

A method that is less sensitive to such bias is the following, Evaluate 3; for each respondent j,
using equation (13), and record the bid value x offered to the respondent. Evaluate the mean
prediction at each bid level k: px = (2 3,)/m, where the summation is over the u; predictions
corresponding to a bid value of x;. (Thus ny is the number of responses received from individuals
offered a bid of x;.) Now fit a logistic curve to the pj, with x (suitably transformed if the log-
transform is selected, and together with 1/x if the reciprocal transform is used) as the independent
variable. This can be done using curve fitting software that allows a logistic curve with upper
asymptote equal to | and lower asymptote equal to 0. Weights should be specified equal to
g/ pi(l — pi). In the absence of such software, logistic regression software might be used, by
setting #, px values (rounded to the nearest integer) to 1 and the remaining 1, (1 — py) values at
bid value x; to 0. If this approach is adopted, the dispersion parameter should be estimated rather
than assumed to be 1, and each 7, should be reasonably large. Some grouping across bid levels
may be required. In this approach, the number of values set to 1 at a given bid level may differ
from the observed number of acceptances in the data, as an adjustment has been made for the
covariates. Also, because an adjustment has been made for covariates, at this stage, the logistic
regression is univariate, with bid (possibly transformed) as the independent variable. (In the case
of the reciprocal bid transform, the curve will be bivariate.) Thus the resulting logistic curve can
be analysed by any of the methods described carlier, to obtain the estimated mean WTP and ifs
variance.

2.7, Estimates of precision

Where the coefficient of variation of mean WTP is small, or where the unmodified logistic
method, allowing negative values for WTP, is adopted, an approximate 100(1 — 2¢)% confidence
interval for mean WTP may be obtained as

ny = 2/ var(im)

where z, is the appropriate percentile from the standardized normal distribution. However, if WTP
is constrained to be non-negative, a better approximation is obtained by assuming that its mean
has a log-normal distribution. An approximate 100(1 — 2a)% confidence interval may then be
found as (Burnham ef al., 1987)

(my [k, k)
where & = expfz./var{log.(a)}], with
var{log.(m;)} = log.{1 + var(m)/m}}.

The variance estimates var(m,) require numerical evaluation and are based on several
approximations. The bootstrap (Efron, 1979) may be used either to check the adequacy of these
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approximations or to provide alternative variance and interval estimates. The simplest method of
generating a bootstrap resample is to sample with replacement from the n respondents yntil the
sample size is again #. Mean WTP is estimated from the resample by one of the above methods,
and this estimate, together with that of any other parameter of interest, is stored, A second
resample is generated, and the process is repeated. Further resamples are generated, unti] ¢
estimates of each parameter of interest are available, For a given parameter, the variance of its
estimate is given by the sample variance of the bootstrap estimates of that parameter. A percentile
confidence interval for the parameter is obtained by ordering the 7 values from smaliest to largest.
A 100(1 — 2a)% confidence interval is then given by the rth and sth ordered values from the list,
where r = (f + {)a and s = (¢ + 1)(1 — «) (Buckland, 1984). Thus if 999 resampies were gener-
ated, and a 95% confidence interval was required, the 25th smallest and 25th largest estimates
would be selected.

Park et al. (1991) advocated use of the parametric bootstrap, in which bootstrap estimates of
the parameter vector are generated from a multivariate normal distribution. This method is
superior when the assumption of multivariate normality holds, but it may be less robust in
practice, unless the sample size is too small for a reliable application of the nonparametric
bootstrap. Duffield and Patterson (1991) advocated a bootstrap approach in which they assumed
that, of the # respondents offered a given bid level, the number s that accept follows a binomial
distribution with estimated probability of acceptance s/n. They generated resamples by generating
a deviate from this fitted binomial distribution, This is again a parametric bootstrap, although the
method is equivalent to resampling with replacement from the responses of the » respondents,
which is the nonparametric bootstrap method. The nonparametric bootstrap described above
includes the methed of Duffield and Patterson (1991) as a special case, in which covariates are not
recorded. Cooper (1994) has provided the framework for a more sophisticated application of the
bootstrap to logistic regression, in which the residuals are resampled, but in a way that recognizes
that their variance is a function of the mean response.

3. An example: valuing blodiversity losses due to acid rain deposition in
Scotland

Contingent valuation was used to assess the mean WTP of people in Scotland to reverse the effects
of acid rain through higher prices on commonly purchased consumer items (electricity, cars and
central heating) caused by stiffer pollution control (Macmillan ef al., 1995). This was felt to be a
realistic option, and fair in the sense that it reflected the ‘polluter pays principle’. In an initiai pilot
study, 254 individuals were selected by using a systematic sample of Scottish houscholds drawn
from the telephone directory. Respondents were asked how much they were willing to pay to
reverse the effects of acid rain (i.e. an open-ended format was used). The method of Cooper
(1993) was then used to select bid levels (together with the sample size at each bid level) for
use in the main survey, in which respondents were asked whether they were willing to pay the
specified amount of the bid. In total, nearly 3000 dichotomons choice questionnaires were mailed
in the main survey. Although the open-ended question of the pilot study suggested a mean bid
level per household of only £75, in the main survey most respondents who were willing to pay
something and were offered the highest bid of £396 accepted it. Even allowing for the 21% not
willing to pay anything, this represents a strong disparity between responses to the open question
of the pilot study and the closed question of the main survey, which compromises our ability to
estimate mean WTPE. A further 30 questionnaires were mailed with a bid level of £798, allowing
mmproved estimation of mean WTP. The responses are summarized in Table 1. Respondents were
presented with one of five potential damage scenarios. Analyses here are restricted to three of
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Table 1, Summary of responses to the questionnaire to assess mean
WTP for reversing ihe effects of acid rain in Scotland

Number not willing to pay anything 280
Number witling to pay something, but who refused the bid offered 399
Number who accepted the bid offered 638
Number who do not know 352
Total number of valid responses 1669
Number protesting about some aspect of the survey 118
Number of incomplete returns 33
Total number of questionnaires returned 1820
Number of blank questionnaires retumed 110
Non-responses 790
Total number of questionnaires mailed 2720

these scenarios, corresponding to low, medium and high damage, so that subsequent sample sizes
are smaller than indicated in Table 1.

The questionnaire sought information on a number of potential covariates, and the methods
outlined above for when covariates other than bid level are present were used. Respondents were
also asked an initial question about whether they were willing to pay anything towards reversing
the effects of acid rain. This allowed us to modify estimates to take account of households which
were not willing to pay anything, as outlined above. Ouly those willing to pay something were
asked whether they would accept the bid offered or not, and the logistic regression was based on
those respondents only.

Straightforward logistic regression suggested that the WTP of many respondents was negative,
but because of the initial filter question it was known that all were willing to pay something. This
is explained by the poor fit of the logistic curve very close to 0; many households that are willing
to pay something are nevertheless not willing to pay as much as £10. The use of either log(bid
level) or the reciprocal bid transformation defined earlier resolves this difficulty. However, the
failure of the survey to tie down adequately the upper tail of the WTP curve renders estimation
very sensitive to the choice of truncation point for WTP if a Jog-transform of bid level is used.
Tnstead, we use here the reciprocal bid transformation without fruncation.

The analysis carried out may be summarized as follows.

(a) Carry out stepwise logistic regression, including bid level x, ifs reciprocal 1/x and any
other covariates that significantly reduce the residual deviance.

(b) Obtain the predicted probabilities (fitted values) corresponding to all respondents, by using
equation (13).

(c) Calculate py, the mean of the »; predictions corresponding to respondents offered bhid
level x,. Fit a logistic curve to the p,, constraining the upper asymptote to | and the lower
asymptote fo 0, to model WTP as a fanction of the transformed bid levels x — afx. Weight
the pr by ny/ pr(1 — ).

(d) Estimate the mean WTP from this fitted curve. Adjust this estimate for respondents who
were not willing to pay anything, by using equation (10).

(¢) To estimate the precision of the estimated mean WTP, create a boofstrap data set by
resampling with replacement from the list of respondents. Apply steps (a)—(d) fo this
resample. Repeat 999 times, and extract appropriate summaries. (For simplicity, only the
model identified from stepwise logistic regression on the real data was fitted to the boot-
strap resamples.)
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The logistic equation from step (a) is summarized in Table 2. The questionnaire that provided
the covariate information appears as an appendix in Macmillan ef af, (1995). From the resuits, we
see that WTP increases with income, with the number of environmental organizations that the
respondent is a member of, with the projected level of damage caused by acid rain and with the
level of concern about international environmental issues. WTP decreases with increasing bid
level, increasing opposition to Government expenditure on environmental issues and the number
of reminders sent before a response was received. Higher levels of understanding of information
presented in the questionnaire and higher priority assigned to the problem of pollution relative to
other social concerns (e.g. education and defence) both correlated with higher WTP.

Table 2. Summary of the analysis of deviance for the logistic regression
of individual response {acceplance or rejection of the bid offered) on
covarfates selected by the stepwise procedurei

- Degrees of fieedom Deviance Mean deviance
Regression 10 2254 22.54
(bid + 1/bid 2 457 22.83
+ income i 105.7 105.66
+ govt 1 243 24.28
+ return I 14.8 14.78
+ understand 1 117 11.69
+ member 1 8.6 8.56
-+ pollu 1 6.2 6.22
+ damage [ 4.5 4.49
+ abroad 1 4.0 4.05)
Residual 732 716.7 0,98
Total 742 942,
Estimate Standard ervor Students 1

constant 1.079 0.738 146
bid —{0.00429 0.00093 —4.63
bid 16.3 11.0 1.48
income 0.419 0.048 8.70
govt —0.427 0.147 —2.91
retum —0.406 0.122 ~3.33
understand —0.372 0.129 ~2.88
member 0.371 0.146 2.54
pollu -0.173 0.075 —2.31
damage 0.306 0,153 2.01
abroad 0.132 0.066 2.01

thid, x, the bid level offered; 1/bid, I/x; incomte, annual gross household
income {1 = <£5000; 2 =£5000—10000; 3 = £10000—15 000;...;9=
> £40000); govt, attitude towards the Governments role in protecting the
environment (Government should protect environment regardless of cost )
through to Government should have no control over the environment 5
retum, the return date category (1 = no reminder necessary; 2 = one reiinder;
3 = two reminders); understand, the ltevel of uaderstanding of the information
presented (i = ‘T understand it through to 4 = ‘I realiy do not understand most
of it'); member, the number of environmental organizations or charities of
which the respondent is a member (maximum 6); polly, a priority ranking of
pollution among six social issues (1 = most important; 6 = least important);
damage, the level of future losses ‘predicted’ if no action is taken (F = low
damage; 2 = moderate damage; 3 = high damage); abroad, a score reflecting
the level of concern about two environmental issues not affecting the UK
directly {for each issue, 1 = not concemed through to 4 = very concerned);
abroad is the sum of the two scores.
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The finding that the number of reminders is a useful predictor is not unusual. Those respon-
dents who have strong views on the issues that are raised in the questionnaire are more likely to
return it without the need for any reminder, On average, these people are likely to be willing to pay
mote than those who respond only afier receiving reminders.

The fitted logistic curve from step (¢) was

) 1
1= 1 ¥ expl0.003727(x; — 3807/x, — 345.9)}

This curve is plotted in Fig. 1. Analytic and bootstrapped standard errors and correlations are
compared in Table 3. For simplicity, we conditioned on the estimate a = 3807 obtained from step

Probability of occeplonce

R S S R S A A A I
Bid level
Fig. 1. Scallerplot of the proportion of respondents accepting a bid {O} and of the mean predicted probability of

acceptance of a bid (<) against bid lavel under the reciprocal bid transformation: alsc shown is the fitted logislic
curve { ) from which mean WTP is estimated

Table 3. Estimates of the parameters of the WTP curvef

Parameter Estimate Standard error
Analytic Bootsirap
o 3807 3101 4317
B —0.003727 0.608327 0.000867
1 3459 204 422
corr(é, B 0.639
cort{d, ) 0.197
core(3, ji) 0.593

+Also shown are analytic and bootstrap standard errors of the parameter estimates,
and correlations estimated by using the bootstrap, The form of the curve is E{y;)

= 1/[t + exp{—Blx, — a/x; — 10}].
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(a) when fitting the curve, although we re-estimated a at step (a) in each bootstrap resample. The
number of bootstrap replications was 999, and the balanced bootstrap was used, i.e. each respondent
featured in the bootstrap resamples exactly 999 times in total. The Jarge correlation between & and
f, coupled with bootstrap standard errors that are substantially larger than the analytic standard
errors, suggest that precision is more reliably quantified by using the bootstrap. Table 4 provides
little evidence of a systematic departure from the model, although the observed proportions fluc-
tuate at the higher bid levels. The fluctuations exhibited by ihe mean predicted probabilities of
acceptance in Fig. 1 are appreciably smaller than those of the observed proportions accepting the
bid, suggesting that the larger differences between observed and predicted in Table 4 can be
explained by differences in values of the covariates for respondents offered different bid levels,

Numerically integrating the above equation and using the bootstrap to quantify the precision,
we estimate that the mean annual WTP for those willing to pay something is £425, with 95%
‘percentile’ confidence interval (£333, £596). Adjusting for the 21.26% of respondents who are
not willing to pay anything, we estimate the mean annual WTP for the population as £335, with
95% confidence interval (£261, £475). Thus, if we assume that each respondent represents his or
her household and take the number of households in Scotland to be 1.96 million, we estimate that
the fotal annual WTP for Scotland is £656 million, with 95% confidence interval (£512, £930)
mitlion. If we make the extreme assumption that all invalid and non-responses correspond fo
households that are not willing to pay anything, then these estimates should be reduced by
multiplying by the fraction of valid responses, 1669/2720 = 0.6136 (from Table 1), giving a total
annual WIT for Scotland of £402 imillion with 95% confidence interval (£314, £570) million.

In Table 5, we show the estimated mean annual WTP under various model assumptions.
Whereas a logistic curve provides a very poor fit to the data at small bid levels if the bid level is
untransformed (Fig. 2), the pragmatic approach of left truncating the curve at 0 to disallow

Table 4. Number of respondents offered each bid levelt

Bid levelx  Number offered Number accepting FProportion accepting offer
bid level x offer
Observed Predicted
11 7 6 0.857 0.927
17 6 4 0.667 0.887
21 8 7 0.875 0.868
26 11 10 0.909 0.850
31 12 10 0.833 0.836
a7 9 7 0.778 0.823
42 18 16 0.889 0.813
48 19 16 0.842 0.803
55 14 12 0.857 0.793
63 25 21 0.840 0.782
7l 28 20 0.714 0.773
81 29 17 0.586 0.762
92 38 31 0.816 0.750
196 42 33 0.786 0.736
122 49 38 0.776 0.721
143 56 33 0.589 0.702
170 73 57 0.781 0.677
209 80 51 0.638 0.64¢
270 41 70 0.496 0.583
396 69 37 0.536 0.462
798 9 2 0.222 .159

7Also shown are the observed and predicted numbers accepting the bid and the correspond-
ing proportions.
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Table 5. Estimated mean WTP under various analysis optionst

Transformation Truncation Covariates Estimated
averaged mean WIP (£)
Reciprocal None Ne 335
None Left truncation at £0 No 308
Logarithmic None No 4442
Reciprocal None Yes 341

$Estimates are adjusted for those not willing to pay anything, estimated to be
21,26% of the population.
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Flg. 2. Seallerplot of the proportion of respondents accepting a bid (O} and of the mean predicted probability of
acceptance of a bid {X) against bid level under left-truncation of the WTP curve, fitted using the untransformed
bid level: afso shown is the logistic curve { ) fitted 1o the mean predicted probabilities

negative predicted WTP yields a reasonable estimate of mean WTP. This is because the poor fit is
only at small bid levels, which leave the mean bid level largely unaffected. By contrast, if we
log-transform bid Jevels, the logistic fit is very good except at the highest bid level, where the
predicted probability of acceptance is substantially higher than the observed probability (Fig. 3).
If this curve is not truncated to the right, a huge estimated mean WTP is obtained (Table 5). The
usual solution of truncating the curve, say at the highest bid level, may reduce the estimated mean
to believable levels but does not cure the problem. The estimation is extremely sensitive to the
arbitrary and subjective choice of truncation distance. The rule of truncating at the highest bid
level renders the estimation highly sensitive to the design decision of what bid levels to offer.
Another ‘solution’ is to estimate the mean log(WTP), and then to back-transform. This provides a
more ‘respectable’ estimate of £387, but it is a (strongly) biased estimate of mean WTP. It is a
better estimate of the median WTP, which is substantially smaller than the mean under the
assumed model. To estimate total WTP across the population, we require a valid estimate of the
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Flg. 3. Scatlerplot of the proportion of respondents accepling a bid (O) and of the mean predicted probability of
acceplance of a bid {x) against bid level under the logarithmic bid fransformation: also shown is the logistic curve
( ) fitted to the mean predicted probablfities

mean, not the median. The final method that we consider is one that is often recommended, of
predicting WTP by bid level at the average of the other covariate values. In Fig. 4, we see that the
estimated WTP curve at low bid levels is rather high relative to the observed proportions accepting
the bid, presumably because individuals on average income are likely to accept low bid levels,
whereas most on very low incomes reject these bid levels, In this study, the effect on estimated
mean WTP is slight (Table 5), largely because the cffect reverses at high bid levels, so that positive
bias in the estimated WTP curve at low bid levels is offset by negative bias at high levels.

4. Discussion

In the theoretical development of this paper, it has been assumed that WTP is integrated over the
range (oo, Because we rely on numerical integration, in practice, oo is replaced by some large
finite value, chosen so that the area of the tail above that value is negligible. Several researchers
have noted the sensitivity of mean WTP to the choice of model, and Duffield and Patterson (1991)
have made a convincing argument for truncating the WTP curve at some smaller value, All the
above results, except for the simple logistic model without left truncation or transformation, apply
equally to the case of right truncation, provided that co is replaced by the truncation value in the
integrals. Some researchers advocate the use of median estimators, but these can be severely
biased for estimating the mean (or total) WTP in the population, if the WTP curve is markedly
asymmetric. Again, Duffield and Patterson (1991) have provided a useful discussion of this issue.
We have described methods that can be readily implemented using standard statistical software
that provides logistic regression and logistic curve fitting facilities, together with numerical
integration. Cameron (1988) has shown that it is possible to model WTP without including bid
level as a covariate. Instead, she developed a type of censored logistic regression, Her more direct
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Fig. 4. Scatierplot of the proportion of respendents accepting a bid (O} agalnst bid lavel under the reciprocal bid
transformation: also shown is the logistic curve } obtained by averaging cver covariales other than bid
level

approach to estimating WTP has considerable appeal but requires methods that are not available
in standard statistical software.

It is important in contingent valuation siudies to secure a high response rate, as WTP is likely
to be correlated with whether an individual responds. In our example, we found that respondents
who required reminders were willing to pay less than those who responded before reminders were
mailed. Hence it is likely that non-respondents were on average willing to pay less than respon-
dents. Tt can also be expected that the proportion of non-respondents who were not willing to
pay anything will be higher than the 21.3% estimated from respondents.
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Appendix A

We provide here the formulae required to estimate variances under the models of Section 2. The nofa-
tion is defined there. Integrals may be evaluated by any numerical integration routine. All variance
and covariance expressions were obtained by using the delta method as described for example by
Seber (1982).

Let x; be random vaviables with expectation 8;, = 1, ..., n. Suppose that we wish to cstimate the
variance of some function g(xi, ..., x,) and iis covariance with another function A(x,, ..., x,)- Using a
Taylor series expansion,
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: E
gty o X) = 8By, oy 0.+ Y (x — 9,9£+ .
=1 A

and similarly for A. Ignoring higher order terms,

n dg dg
var{g{xy, ..., Xx.)} = g var(x;) ( 3-\‘:) +2 ’Z; EI cov{x;, X;) ag ax,’
cov{g(xy, ..., X2), Hxy, .. X))} = Z cov(x;, X)) == Og Ok

=1 j=1 ax, ax,

A.1. Model 1: logistic regression
bl var(b) + b var(by) — 2bb, cov(b, b}

var(m) ~ 74 (14)
byvar(by  cov(b, bg)
cov(b, m) ~ > g e, (i3)
A2, Model 2: left truncation of the logistic curve
’ . * xuf{bx — 1) — (b + Du} > (e~ 1)
var(nn) =~ var(h) Uo 0ty 1} + var(m){L W (h}
f xu{(bv — 1) — (bx + Du} = BPxu(u— 1)
+ 2 cov(b, m)J a1y dx L T+ (16)
where 1 = exp{—b(x — m)}.
— = xufo{b(x — m) — 1 — 1} — b{uv{x — m) + m(l + ) exp(bm)}}
var(mg) ~ \ar(b)( L o1+ )
Pax{2uv — (1 + u)} }
+ var(m) “ 211 0y dy
+ 2cov(b, m) (J xufef{b(x — ) —u—1} - i:{m)(x —my -+ m(l+w) exp(bm)}] )
o V(1 + u)?
* Pur{2uw —(1+mw)} |
L TN an

where v = | + exp(bm) and u is as above,

A3, Model 3: logarithrnic transformation of bid

] ulblog(x} — 1 — {blog(x)+ 1} }
var(my) =~ var(b) (L oy i )
* bruu—1)

+ var(m){ L W d\'}

, F ulblog(x) ~ | — {blog(x) + L}u} . [~ Pu(u—1) ,
-+ 2covih, m) L i+ uy dx Ju d+uy & (18)

where u = exp[—b{log(x) — m}].
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A.d. Model 4. reciprocal bid transformation
B} var(b) + b? var(b,) — 2bb, cov(b, by)

V@ = b (19)
cov(b, @) = 22 V;r(b) B cov(z, ba) o0
cov(m, @) ~ IjObl var(b) — bb, cov{h, b} —bfbg cov(b, b;) + b cov(by, b)) ’ @
+ var(a) { I bu{ bv(u ;1 Iii)(s L+w/x} }
+ 2 cov(b, m)J xuo{l -+ “(JI i— 12353(")(” - 1)} dx L bz.;uf:‘; 1)
oo e ] gt
+ 2cov(m, a) J ”’-}"I"f‘“; D 4 J bu{bu(u - li t)(ll +ufx} o2

where u = exp{—b(x — a/x — m)} and v =1+ a/x*
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