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SUMMARY

The niche critically controls stem cell behavior, but
its regulatory inputat thewhole-genome level ispoorly
understood. We elucidated transcriptional programs
of the somatic and germline lineages in theDrosophila
testis and genome-wide binding profiles of Zfh-1 and
Abd-A expressed in somatic support cells and
crucial for fate acquisition of both cell lineages. We
identified key roles of nucleoporins and V-ATPase
proton pumps and demonstrate their importance in
controlling germline development from the support
side. To make our dataset publicly available, we
generated an interactive analysis tool, which uncov-
ered conserved core genes of adult stem cells across
species boundaries. We tested the functional rele-
vance of these genes in the Drosophila testis and
intestine and found a high frequency of stem cell
defects. In summary, our dataset and interactive
platform represent versatile tools for identifying gene
networks active in diverse stem cell types.
INTRODUCTION

Animal tissues and organs are generated and maintained by

adult stem cells, which remain undifferentiated and proliferative

while at the same time producing daughter cells that undergo dif-

ferentiation. Due to this ability, they can replace dying, lost, or

damaged cells and are thus critical for tissue homeostasis. The

balance between self-renewal and differentiation is tightly

controlled, and stem cell-intrinsic mechanisms are known to

play an important role in this process (Biteau et al., 2011; Pear-

son and Sánchez Alvarado, 2008). In addition, signals from the

stem cell niche are equally important to control the activity of

stem cells and their progeny (Hsu and Fuchs, 2012; Morrison

and Spradling, 2008). However, it is still poorly understood
3072 Cell Reports 24, 3072–3086, September 11, 2018 ª 2018 The A
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how niche cells execute their regulatory function on a global

level.

The Drosophila testis represents an excellent model for study-

ing stem cell-niche interactions (de Cuevas and Matunis, 2011).

At the tip of the testis, germline stem cells (GSCs) and somatic

cyst stem cells (CySCs) maintain spermatogenesis (Fuller and

Spradling, 2007). Each GSC is enclosed by two CySCs, and

both stem cells are anchored to nondividing somatic cells, called

the hub (Hardy et al., 1979), through adhesion molecules (Matu-

nis et al., 1997; Wang et al., 2006). GSCs and CySCs divide

asymmetrically to produce gonialblasts (Gbs) and somatic cyst

cells (SCCs) that form a developmental unit called cyst. Whereas

gonialblasts undergo four rounds of mitotic divisions to produce

16 spermatogonia that develop into spermatocytes, SCCs grow

without division and co-differentiate with the germline (Figure 1A)

(Fuller and Spradling, 2007).

The somatic cell population fulfills several support functions in

the Drosophila testis. Hub cells express Unpaired (Upd), the

ligand that activates the Janus kinase-signal transducer and

activator of transcription (JAK-STAT) pathway in adjacent

CySCs, instructing their maintenance (Kiger et al., 2001; Tulina

and Matunis, 2001) and regulating GSC anchoring to the hub

(Leatherman and Dinardo, 2008; Stine et al., 2014). CySCs and

their progenies are equally critical for germline development.

They not only induce GSC fate by signaling to germ cells via

the transforming growth factor-b (TGF-b) pathway (Shivdasani

and Ingham, 2003) but also instruct the self-renewal of GSCs.

The transcriptional regulator zinc-finger homeodomain protein

1 (Zfh-1), which is activated by JAK-STAT signaling in CySCs,

is key for the soma-germline crosstalk and CySC development

(Leatherman and Dinardo, 2008). Importantly, Zfh-1 is sufficient

for the induction of GSC self-renewal, even outside the niche

(Leatherman and Dinardo, 2008), and controls an uncharacter-

ized gene network essential for soma and GSC maintenance.

Moreover, the close communication between somatic and

germline cells is required not only for GSC maintenance but

also for later stages of spermatogenesis (Fabrizio et al., 2003;

Kiger et al., 2001). In sum, these studies highlight the importance
uthor(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The Hox Transcription Factor Abd-A Controls the Switch from CySCs to Early and Late SCCs

(A) Schematic diagram of early spermatogenesis in Drosophila third-instar larval (L3) testis. CySC, somatic cyst stem cell; Gb, gonialblast; GSC, germline stem

cell; SCCs, somatic cyst cells.

(B) L3 wild-type testes stained for Abd-A (red) and actin (green) to mark cyst cells and germline fusomes. The yellow arrow marks the hub.

(C) L3 wild-type testis stained for Zfh-1 (green) and Vasa (red).

(D). Quantification of TJ-positive cells in wild-type and c587 > abdARNAi testes (***p < 0.001).

(E–H) L3wild-type (E and F) and c587 > abdARNAi (G and H) testes stained for Zfh-1 (magenta), Vasa (red), and LamC (green). Yellow arrows point to Zfh-1-positive

cells in the vicinity of LamC-labeled spermatocytes.

(I–L) L3 wild-type (I and J) and TJ > abdARNAi (K and L) testes stained for TJ (magenta), Vasa (red), and DAPI (blue) for DNA.

(legend continued on next page)
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of the soma for the activity of the niche and stem cells, as well as

for the maintenance of the testis.

Here, we applied genome-wide in vivomapping of DNA-protein

interactions to determine genes active in the Drosophila larval

testis soma and germline as well as genes targeted by two tran-

scription factors (TFs) active in the somatic lineage. One of them

is the well-described stem cell regulator Zfh-1 (Leatherman and

Dinardo, 2008), and the other one is the Hox TF Abdominal-A

(Abd-A), for which we uncovered a stem cell function in the

Drosophila testis. Meta-analysis of these datasets recovered a

set of genes known to control stem cell development in the

Drosophila testis and identified a large number of regulators. To

make our dataset accessible and amenable to comparative anal-

ysis, we developed an interactive data-mining and analysis tool.

Data cross-comparison using this tool allowed us to identifymajor

processes active in the soma.By comparing our data to published

datasets from diverse stem cell systems and organisms, we

uncovered a core gene set of adult stem cells conserved across

species boundaries. Testing TFs from this category revealed an

unusuallyhigh frequencyof stemcell phenotypes in theDrosophila

testis and intestine. Moreover, our analysis identified system spe-

cific regulators, which may represent factors that allow individual

cell types to respond to and interact with their typical yet diverse

microenvironments. Taken together, we elucidate mechanisms

usedbysomatic support cells to control the activity of neighboring

germ cells and provide a rich resource to identify important (and

conserved) regulators of the proliferation-differentiation balance

in a genetically tractable stem cell system.

RESULTS

Defining Abd-A as a Regulator in the Drosophila Testis
Soma
To uncover gene activities in the testis soma, we determined the

transcriptome of the somatic and germline lineages by RNA po-

lymerase II Targeted DamID (TaDa) (Southall et al., 2013), fol-

lowed by the identification of genes bound by two regulators

active in somatic subpopulations and controlling their develop-

ment using regular DNA adenine methyltransferase identification

(DamID) (van Steensel et al., 2001). By combinatorial analysis of

these datasets, we expected to identify genes specifically active

in Drosophila testis support cells and contributing to their

functions.

We focused on Zfh-1, which is highly expressed in CySCs (Fig-

ures 1C, 1E, 1F, 2A, and 2A0) and known to block CySCs differ-

entiation as well as to control GSC self-renewal (Leatherman and

Dinardo, 2008). However, Zfh-1 has no known role in early SCCs,

which support the first stages of germline differentiation. To

elucidate genes regulating these events within early SCCs, we

aimed at identifying a TF controlling early SSC behavior by

screening our transcriptome datasets for TFs with exclusive

expression in the soma. We excluded Traffic Jam (TJ) and
(M–P and T) L3 wild-type (M andN) and c587 > abdARNAi (O, P, and T) stained for T

(O and P) are shown by yellow arrows.

(Q–S) L3 wild-type (Q), c587>abdA (R), and c587 > zfh1RNAi (S) testes stained for

and first Eya-positive cells in the testes. Yellow asterisks mark the location of the

Testes are oriented anterior left. Scale bars, 10 mm. See also Figure S1.
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Chinmo, two factors known to be active in CySCs and early

SCCs (Flaherty et al., 2010; Li et al., 2003), as TJ is particularly

critical for hub specification (Wingert and DiNardo, 2015), while

Chinmo is also expressed in germ cells (Flaherty et al., 2010).

One candidate was the Hox TF Abd-A, and expression analysis

revealed Abd-A accumulation in hub cells, CySCs, and early

SCCs of third-instar larval (L3) testes (Figure 1B), similar to the

CySC and early SCC marker TJ (Figures 1I and 1J). While

Abd-A and Zfh-1 expression partially overlaps (Figures 1B and

1C), they have clearly distinct functions in the testis. Cell-type-

specific knockdown of abd-A using the c587-GAL4 driver

(Figure 3A) (Manseau et al., 1997) resulted in testes strongly ex-

pressing Zfh-1 not only in CySCs but also in SCCs far away from

the hub (Figures 2A–2B0), leading to increased numbers of SCCs

co-expressing Zfh-1 and the late SCC marker Eya (Figure 2C).

Thus, somatic cells with sustained Zfh-1 expression formed

cysts with early spermatocytes marked by Lamin C (LamC)

(Figures 1E–1H). This result indicated that Abd-A controlled

SCC differentiation by mediating the transition from the CySC

to SCC fate. Consistently, TJ-positive cells were expanded

when abd-A was depleted in the soma using the c587-GAL4 or

TJ-GAL4 lines (Tanentzapf et al., 2007) (Figures 1I–1O and 1T).

Conversely, overexpression of abd-A resulted in fewer Zfh-1

positive cells (data not shown), as well as an expansion of Eya

to the anterior, leading to Eya-positive cells close to the hub (Fig-

ure 1R), which was never the case in wild-type testes (Figure 1Q)

(Fabrizio et al., 2003). Indeed, the distance between the hub and

Eya-positive cells was decreased in c578>abdA as well as in

c587 > zfh1RNAi testes (Figures 1Q–1S), indicating that cells

close to the hub started to differentiate when Abd-A was overex-

pressed (or Zfh-1 activity was reduced). This was not the case

when Abd-A was ectopically expressed in late SCCs using the

eyes absent (eya) GAL4 driver (Leatherman and Dinardo, 2008)

(Figures 2D and 2E), showing that CySCs and early but not late

SCCs responded to Abd-A expression. By performing Edu

5-ethynyl-20-deoxyuridine (EdU) incorporation assays, we found

TJ-expressing and Edu-positive cells located several cell diam-

eters away from the hub in abd-A knockdown testes (Figures 1O,

1P, and 1T), which we never observed in wild-type testes (Fig-

ures 1M and 1N). Defects in the soma were not due to Abd-A’s

expression in the hub (Figure 1B), as neither soma-specific

knockdown nor overexpression of Abd-A affected morphology

or size of the Fasciclin 3 (Fas3)-stained hub (Figures 2L–2N).

To test whether Abd-A controls the JAK-STAT and Hedgehog

pathways, which are known to control CySC fate and behavior

(Kiger et al., 2001; Michel et al., 2012; Tulina and Matunis,

2001), we performed immunostainings and found that they

were unaffected in abd-A knockdown (Figures S1A–S1D and

S2A –S2D) and gain-of-function conditions (Figures S1A, S1B,

S1E, and S1F). In sum, these results showed that Abd-A regu-

lates the identity of early and late SCCs, Abd-A levels are critical

for the switch from CySC to early SCC and then to late SCC fate,
J (red) and Edu (green). Overproliferating SCCsmarked by TJ (O and T) and Edu

Eya (red) and actin (green). White lines indicate the distances between the hub

hub.



Figure 2. Abd-A Does Not Control Develop-

ment of the Germline

(A–B0 ) L3 wild-type (A and A0) and c587 > abdARNAi

(B and B0) testes stained for Zfh-1 (red) to label

CySCs and with the late SCC marker Eya (green).

Knockdown of abd-A results in co-localization of

Zfh-1- and Eya-expressing cells far away from the

hub (marked by yellow arrows in B and B0).
(C) Quantification of the number of Zfh-1 and

Eya double-positive cells in wild-type and c587 >

abdARNAi testes.

(D and E) Wild-type (D) and eya>abdA (E) adult

testes stained for TJ (magenta), Zfh-1 (green),

Vasa (red), and DAPI (blue) for DNA.

(F–H) L3 wild-type (F), c587 > abdARNAi (G), and

c587>abdA (H) stained for the germline differenti-

ation marker Bam (green) and DAPI (blue) for DNA.

(I–K) L3 c587-GAL4;esg-lacZ (I), c587;esg-lacZ >

abdARNAi (J), and c587;esg-lacZ > abdA (K) testes

stained for b-Gal (green), Vasa (red), and DAPI

(blue).

(L–N) L3 wild-type (L), c587 > abd-ARNAi (M), and

c587>abdA (N) stained for Fas3 (green), TJ

(magenta), Vasa (red) and DAPI (blue). Yellow as-

terisks mark the location of the hub.

Testes are oriented anterior left. Scale bars, 10 mm.

See also Figure S2.
and Abd-A negatively controls proliferation of somatic cells

when they enter the differentiation program.

To elucidate whether Abd-A, similar to Zfh-1 (Leatherman and

Dinardo, 2008), controlled germline development, we investi-

gated germline subpopulations in abd-A knockdown and over-

expression settings, GSCs and gonialblasts using the escargot

(esg)-lacZ reporter (Gönczy and DiNardo, 1996), and differenti-
Cell Reports
ating germ cells using the differentiation

marker Bam. This analysis revealed that

neither germline maintenance nor differ-

entiation was affected, as both markers

were unchanged (Figures 2F–2K).

In sum, our analysis showed that Zfh-1

and Abd-A represent ideal candidates to

identify genes controlling processes

active in the early stages of the somatic

support cells and critical for non-autono-

mously regulating the balance between

stem cell self-renewal and differentiation

in the germline.

A Functional Gene Expression Atlas
of the Drosophila Testis Soma
In a next step, we identified genes ex-

pressed in the Drosophila testis soma

and germline by driving a fusion protein

consisting of the Escherichia coli Dam

and Pol II (UAS-Dam-PolII) either

throughout the somatic cell population

using the c587-GAL4 driver (Figure 3A)

or the germline lineage using the nanos
(nos)-GAL4 line (Figure S3A) (Van Doren et al., 1998). We also

mapped genome-wide binding profiles of Zfh-1 and Abd-A by

generating Dam-Abd-A and Dam-Zfh-1 transgenic flies and us-

ing leaky expression from the heat-shock promoter (Tolhuis

et al., 2011; van Steensel et al., 2001).

We relied on the DamID strategy, because it had been suc-

cessfully used in the past for mapping binding sites of TFs active
24, 3072–3086, September 11, 2018 3075



Figure 3. Profiling and Comprehensive

Analysis of the Drosophila Testis Soma

(A) c587 > nlsGFP L3 testis stained for GFP, actin

to mark cyst cells, and DAPI for DNA. The yellow

asterisk marks the location of the hub.

(B) Venn diagram showing the overlap of genes

bound by Zfh-1 (green) and Abd-A (orange) and

expressed in the soma (PolII) (blue) in Drosophila

L3 testes. Gene numbers in the different gene

classes are indicated.

(C) Heatmap displaying presence of genes

belonging to different signaling pathways in five

major gene classes. The color range corresponds

to the fraction of genes annotated to the category

that also appear in the sample: dark red, 75% of

the genes of the category are present in the sam-

ple; dark blue, none of the genes in the category

are present in the sample.

(D) Heatmap displaying enrichment of general

higher-order categories. The color represents the

p values: dark red, <10�20; dark blue, >0.05. Green

frame highlights all genes active, but not bound by

Zfh-1 and Abd-A (class 7); red frame highlights all

gene classes containing active genes targeted by

Zfh-1 and/or Abd-A.

(E) Zfh-1 and Abd-A-Dam binding profiles for the

zfh-1 and Socs36E loci. Average peak intensity

calculated from 2 repeats in dark and light green,

respectively. Associated genes or transcript are

shown in light orange.

Testes are oriented anterior left. Scale bars, 10 mm.

See also Figure S3.
in stemcells (Jin et al., 2015) and allows to identify binding events

over the course of testis development. In contrast, other

genomic approaches, such as RNA sequencing (RNA-seq) or

chromatin immunoprecipitation sequencing (ChIP-seq), can

only provide snapshots of individual time points. Expression of

the Dam fusion proteins had no visible or molecular effect on

testis development; fully functional adult testes were formed,

which showed gene expression indistinguishable from wild-

type testes (Figures S3C–S3H). Methylated DNA was purified

and detected by hybridization to Drosophila tiling arrays, a stan-

dard high-throughput technology for transcriptome profiling with

similar output performance as RNA sequencing (Chen et al.,

2017; Kogenaru et al., 2012). Enriched binding regions were

defined by comparing PolII/Zfh-1/Abd-A methylation profiles to

a Dam-alone control (see Experimental; Procedures). We called

genes that had at least one enriched genomic region within 2 kb

of the gene body in both DamID replicates as targets. For gene

detection in TaDa experiments, we used high stringency param-

eters (FDR < 0.01), which led to the recovery of 5,905 genes ex-

pressed in larval somatic cells (Figures 3B and S3B). This list

included zfh-1 and abd-A as well as many other genes known

to be active in the testis soma (Table S3). For the germline, we

identified 2,199 expressed genes using the same strategy

(Figure S3B).

The Dam-fusion proteins were equally expressed in the soma

and germline, while endogenous Zfh-1 and Abd-A are exclu-

sively active in the soma. Thus, we analyzed our datasets for

specificity by comparing active genes identified by germline or

soma TaDa with the 2,686 genes that are targeted by Abd-A
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and/or Zfh-1. We found only 6% (222/2,686) of the germline-

restricted active genes to be associated with Abd-A and/or

Zfh-1 binding events, while 94% (2,464/2,686) of the genes ex-

pressed exclusively in the soma were targeted by either or

both TFs (Figure S3B). This result demonstrated that Zfh-1 and

Abd-A interacted with cis-regulatory regions preferentially in

the somatic lineage, maybe due to permissive chromatin envi-

ronments or availability of suitable cofactors.

After having confirmed the specificity of our datasets, we

excluded the germline-specifically expressed and TF-targeted

genes from the analyses and combined the soma-specific tran-

scriptome with the TF-binding datasets. Among the seven gene

classes identified (Figure 3B; Table S1), we considered the so-

matically expressed genes bound exclusively by Zfh-1 (class 2)

or Abd-A (class 3) or by both TFs (class 1) (3,366 genes in total)

(Figure 3B) to contain many genes expressed in CySCs and early

SCCs in larval testis development (Table S1). Consistently, 15

genes known to be active in CySCs and early SCCswere present

in these three classes (Table S3; Figures 3E, S3I, and S3J).

Genes targeted by both TFs (class 4) or exclusively by Zfh-1

(class 5) or Abd-A (class 6), but not recovered in the PolII TaDa

experiment (1,663 in total) (Figure 3B), were classified as genes

inactive in the testis soma and either actively repressed by

Zfh-1 and/or Abd-A or neutrally bound (Table S1). And finally,

genes recovered in the soma-specific PolII TaDa experiment

but not associated with Zfh-1 or Abd-A binding (2,539) (class

7) (Figure 3B) were categorized as genes expressed throughout

the soma, with their expression being independent of Zfh-1 and

Abd-A inputs (Table S1). Importantly, 75% of somatically



expressed genes targeted by Zfh-1 were co-bound by Abd-A

(Figure 3B), supporting the important function of Abd-A in the

soma and suggesting that the two TFs converge on a similar

stem cell-related output program.

Gene Functions Active in the Support Cells of the
Drosophila Testis
To obtain functional insights into the gene classes, we performed

standard gene ontology (GO) and pathway analyses (Cabezas-

Wallscheid et al., 2014; Dutta et al., 2015; Llorens-Bobadilla

et al., 2015). In addition, we developed a freely available online

tool to elucidate diverse and common signatures in the different

gene classes by assessing the enrichment of functionally related

GO terms combined into higher-order categories (Table S4) in a

comparative fashion across multiple samples (see Experimental

Procedures for details) (Trost et al., 2018).

We first tested our assignment of gene activities to somatic

cell populations (Table S1). To this end, we compared processes

overrepresented in the Zfh-1 and Abd-A active class (classes 1,

1+2, 1+3, 1+2+3), which we assumed to be required in CySCs

and early SCCs (Table S1), with those enriched in the control

class (class 7), which we defined as essential processes in all so-

matic cells not controlled by Abd-A and Zfh-1 (Table S1). This

analysis revealed a striking correlation of functional categories

with the diverse cell types in the somatic lineage and known re-

quirements for stem cell regulatory processes. For example, the

functional term ‘‘Translation’’ was significantly overrepresented

among genes of class 7, while this term was only weakly repre-

sented in the classes defined by Zfh-1 and Abd-A binding (Fig-

ure 3D). This finding is consistent with the low translational rates

recently described for diverse stem cell types (Slaidina and Leh-

mann, 2014; Llorens-Bobadilla et al., 2015; Signer et al., 2014).

Conversely, we found differentiation-related genes to be promi-

nently overrepresented in Zfh-1 and Abd-A active classes, but

not in class 7 (Figure 3D). Thus, differentiation processes seem

to be primed in CySCs (and early SCCs), which is in line with

functional studies in the testis (Figures 1E–1T) (Leatherman

and Dinardo, 2008), and included the TF-encoding genes

Stat92E (Kiger et al., 2001), zfh-1, and CtBP (Leatherman and

Dinardo, 2008). In addition, our tool recovered many other differ-

entiation genes so far not known to control development of

the testis soma, including the TFs myeloid leukemia factor

(Mlf), Hyrax (Hyx), and female sterile (1) homeotic (Fs(1)h).

Signaling and stimulus terms were also enriched among the

genes of the Zfh-1 and Abd-A active classes, but not in class 7

(Figure 3D). This finding may reflect the well-known dependency

of the male stem cell niche on the proper interplay of signaling

pathways (Kiger et al., 2001; Sinden et al., 2012). Intriguingly,

components of the JAK-STAT (Kiger et al., 2001; Tulina and Ma-

tunis, 2001), epidermal growth factor receptor (EGFR) (Chen

et al., 2013a), Hedgehog (Michel et al., 2012), mitogen-activated

protein kinase (MAPK) (Amoyel et al., 2016a), TGF-b (Li et al.,

2007), Hippo (Amoyel et al., 2014), and phosphatidylinositol 3-ki-

nase (PI3K)/Tor (Amoyel et al., 2016b) pathways, which had been

shown to be active and functional in somatic support cells, were

highly enriched in Zfh-1 and Abd-A active classes but much less

in class 7 (Figure 3C). In addition, we identified signaling path-

ways so far not well studied in the Drosophila testis soma,
including the Wnt, Toll, and juvenile hormone pathways (Fig-

ure 3C). These findings now open new avenues to resolve the

individual and combinatorial contribution of these signaling path-

ways in balancing stem cell maintenance and differentiation.

A Comparative Approach Identifies a High Fraction of
Stem Cell Regulators
To select among the large number of genes the most significant

ones for functional studies, we took a comparative approach by

intersecting our data with published expression data retrieved

from other stem cell systems. Our reasoning was that genes ex-

pressed in multiple stem cell types should regulate stem cell

behavior with a higher probability. We selected data from

Drosophila neural stem cells (NBs) (Southall et al., 2013) and in-

testinal stem cells (ISCs) (Dutta et al., 2015), as well as mamma-

lian hematopoietic stem cells (HSCs), to delineate common and

divergent genes and processes across functionally but also

evolutionary diverse stem cell systems. These datasets were

generated using diverse technologies, cell sorting, and RNA-

seq for ISCs (Dutta et al., 2015) and HSCs (Cabezas-Wallscheid

et al., 2014), while NBs (Southall et al., 2013) and the testis soma

were profiled using DamID. For NBs, the list of genes defined as

active was taken from the original publication (Southall et al.,

2013); for the testis soma, we used the Abd-A and Zfh-1 active

genes (class 1+2+3); and for ISCs and HSCs, the top 50% of de-

tected transcripts were analyzed.

We first performed GO term analysis using our tool, which

identified a small number of processes to be overrepresented

in all systems, in particular cell growth and cell cycle (Figure 4B).

Processes related to cytoskeleton and cell adhesion as well as

signaling were found moderately overrepresented (Figure 4B),

which is in line with the intimate stem cell-niche interaction and

communication critical for long-term maintenance and function

of stem cell systems (Chen et al., 2013b). Importantly, Wnt,

MAPK, JAK/STAT, EGFR, and the Hippo pathways were signifi-

cantly overrepresented in all four stem cell systems (Figure S4T).

Several signatures were different in the various stem cell sys-

tems, including a high representation of stem cell-related pro-

cesses in NBs, metabolic processes in HSCs, and the immune

response in the testis soma (Figure 4B).

We next searched for individual genes common to all datasets;

thus, we used orthology mapping to convert mouse gene

identifiers into Drosophila gene identifiers. Intersecting whole-

transcriptome profiling of fluorescence-activated cell-sorted

(FACS) mouse HSCs (Cabezas-Wallscheid et al., 2014) with

the Drosophila datasets identified 716 transcripts common to

all systems (Figure 4A), with 21 of them encoding TFs (Tables

S2 and S5). TFs had been demonstrated to control the balance

between self-renewal and differentiation in diverse stem cell sys-

tems (Takahashi and Yamanaka, 2006; Yamanaka and Blau,

2010), and consistently, some of the TFs had already reported

functions in different stem cell types. (Leatherman and Dinardo,

2008; Zhu et al., 2011; Dominado et al., 2016; Viatour et al.,

2008). We next tested the majority of TF encoding genes in the

Drosophila testis, revealing that 7 out 17 (41%) of the commonly

expressed TFs controlled testis development (Table S5). Impor-

tantly, knockdown of these TFs resulted in diverse phenotypes,

showing that they fulfill distinct regulatory roles. For example,
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Figure 4. Comparative Analysis of Different Stem Cell Systems Identifies Commonly Expressed TFs with Functional Relevance in the

Drosophila Testis

(A) Comparison of the transcriptomes of Drosophila neural stem cells (NBs) (purple), Drosophila intestinal stem cells (ISCs) (red), Drosophila male somatic stem

cells (CySCs), and early somatic cyst cells (SCCs) (blue) as well asmouse hematopoietic stem cells (green). 716 genes were found in all four conditions, 354 genes

are specific in the testis soma dataset, 1,650 in Drosophila ISCs, 435 in Drosophila NBs, and 4,388 in mouse hematopoietic stem cells.

(B) Heatmap displaying presence of genes belonging to higher-order categories in different stem cell systems. The color range corresponds to the centered and

scaled (per column) fraction of genes annotated to the category that also appear in the sample; red represents high values, and blue represents low fractions of

genes in the category that are also present in the sample. Rows and columns are hierarchically clustered using Euclidean distance with complete linkage.

(C–T) L3wild-type (C–E), c587 > hyxRNAi (F–H), c587 >CtBPRNAi (I–K), c587 > fs(1)hRNAi (L–N), c587 > RbfRNAi (O–Q), and c587 >DORRNAi (R–T) testes were stained

for Vas (red) to label the germline, TJ (magenta) to label CySCs and early SCCs, actin (green) tomark cyst cells, and DAPI (blue) for DNA. Insets in (L) and (O) show

overproliferation of early germ cells indicated by bright DAPI staining. Yellow asterisks mark the location of the hub.

Testes are oriented anterior left. Scale bars, 10 mm. See also Figure S4.
soma-specific interference with Hyx, a member of the Paf1 pro-

tein complex (Mosimann et al., 2009), and CtBP resulted in a

reduction of TJ positive somatic cells (Figures 4C, 4E, 4F, 4H,

4I, and 4K). These somatic defects were accompanied with a

reduction or absence of spermatogonial cysts and premature

germline differentiation (Figures 4D, 4G, and 4J). Knockdown

of DOR, a transcriptional co-activator of Ecdysone receptor

signaling (Francis et al., 2010), the bromodomain protein Fs(1)h

(Florence and Faller, 2008), and Rbf increased the number

of TJ-positive somatic cells (Figures 4L, 4N, 4O, 4Q, 4R,

and 4T) and induced overproliferation of early germ cells in

fs(1)hRNAi and RbfRNAi testes (Figures 4M and 4P) (Dominado
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et al., 2016) and germline differentiation defects in DORRNAi

testes (Figure 4S) (Table S5). We next asked whether the

commonly expressed TFs function also in other stemcell systems.

Thus, we reduced their activity in Drosophila ISCs using the esg-

GAL4 driver (Micchelli and Perrimon, 2006). We found again a

high portion (50%) of the testable TF-encoding genes to affect

stem cell proliferation in the Drosophila intestine (Table S5), as

stem cell numbers were either decreased (Figures S4A–S4M) or

increased (Figures S4N and S4P–S4S) in knockdown conditions.

Interestingly, while seven TFs had a similar effect in both stem

cell systems, eight of them affected stem cell behavior in a

different manner in the Drosophila testis and intestine (Table S5).



In sum, combining expression data from diverse stem cell sys-

tems using our online tool resulted in the definition of stem cell-

specific and common signatures as well as a unique core gene

set. This core gene set contains a high proportion of functionally

relevant stem cell regulators. In total, 67% of the 18 TF-encoding

genes expressed in the four stem cell types produced RNAi

induced phenotypes in the Drosophila testis and intestine, which

was 5- to 10-fold higher compared to phenotypes found in stem

cells by genome-wide RNAi screening (Neum€uller et al., 2011;

Zeng et al., 2015). Importantly, the fact that many of the

commonly expressed TF encoding genes caused divergent phe-

notypes in the different stem cell types highlighted that these

genes are not simply required for general cell survival but rather

fulfill specific regulatory roles across systems.

Looking beyond TFs, we identified among the 716 commonly

expressed transcripts components of protein complexes thought

to execute general cellular functions, including nucleoporins

(Nups), building blocks of the nuclear pore complex (NPC), and

subunits of the vacuolar (H+)-ATPase (V-ATPase) proton pump.

Recent data show that these protein complexes are more dy-

namic than previously thought and that individual subunits can

have diverse and cell-type-specific functions (Toda et al., 2017;

Tognon et al., 2016). Thus, we assumed these proteins to control

stem cell behavior and decided to study them in more detail.

A Regulatory Network of Transport: NPC
NPCs are nuclear-envelope-embedded protein assemblies that

are composed of more than 30 different Nups, creating a

selective transport channel between the nucleus and the cyto-

plasm (D’Angelo and Hetzer, 2008). In addition, Nups control

chromatin organization, gene expression and regulation, cell cy-

cle progression, signaling, and differentiation (Pascual-Garcia

and Capelson, 2014; Van de Vosse et al., 2013) and have

emerged as potential regulators of stem cell activity (Chen

et al., 2013a; Toda et al., 2017).

To elucidate the cell-type-specific function of Nups in the

Drosophila testis, we interfered with the function of two NPC

scaffold proteins (Nup44A and Nup93-1), one Nup located in the

cytoplasmic ring (Nup358), and Nup205, which we found to be

specifically expressed in the somatic lineage (Figure 5C), in the

testis soma. In all cases, we observed an expansion of cells

expressing LamDm0 (Figures 5A, 5B, and S5A–S5D), which

strongly labels GSCs, gonialblasts, and spermatogonia (Chen

et al., 2013a). This showed that early germ cells overproliferated

at the expense of differentiation, as LamC-positive spermatocytes

were significantly reduced (Figures S5I–S5K, S5M, and S5N). As a

consequence, 2, 4, and 8 spermatogoniawere lost, and the testes

were filled with small LamDm0-labeled germ cells (Figures 5A, 5B,

and S5A–S5D). Germline overproliferation is observed when

SCCsdie (LimandFuller, 2012) or are unable toproperly encapsu-

late the germline (Dominado et al., 2016; Li et al., 2003). By

analyzing the distribution of bPS-integrin, amarker for cyst cell ex-

tensions that encapsulate the germ cells (Papagiannouli et al.,

2014), we found that in the absence of Nup205 SCCswere unable

to properly wrap the overproliferating germ cells (Figures 5G and

5H). In addition, TJ-positive cells were lost (Figures 5D–5F), and

analysis with the cell death marker caspase-3 (Casp-3) revealed

induction of apoptosis in c587 > nup205RNAi testes (Figures 5J
and 5K). Viability of the somatic cell population was restored

when apoptosis was prevented by co-expression of the anti-

apoptotic baculovirus protein p35 (Hay et al., 1994) (Figures 5I,

5L, S5E, and S5F). Suppression of apoptosis seemed to partially

rescue the developmental defects, since c587 > p35;nup205RNAi

testes contained normal spermatocytes and spermatogonial

cysts reappeared (Figures 5A and 5L). These results indicated

that the germline lineage was at least partially able to enter the

transit-amplifying (TA) program even in the absence of Nup205

when the somatic cell population was kept alive. Importantly, the

UAS-p35-mediated rescue was not due to a titration of the

nup205RNAi-induced phenotype by the presence of a second

UAS construct (UAS-p35 and UAS-nup205RNAi), as testes co-ex-

pressing the UAS-nup205RNAi and UAS-mCD8-GFP transgenes

were similar to c587 > nup205RNAi testes with respect to size (Fig-

ures 5A, 5B, S5G, S5H, S5L, and S5O) and the inability of somatic

cells to properly enclose the germline (Figures 5G, 5H, S5G, S5H,

and S5L). Interestingly, knockdown of Nup44A, one of the Nups

expressed in all four stem cell systems, in the adult intestine

resulted in a loss of ISCs and their progenies (Figures S4N and

S4O), indicating that Nups function is highly specific in diverse

stem cell types.

Taken together, these results showed that Nups have highly

specific functions in the Drosophila testis, as they are required

for the fitness and survival of SCCs, enabling them to properly

encapsulate the neighboring germ cells, thereby restricting pro-

liferation of spermatogonia and promoting their differentiation

into spermatocytes.

A Regulatory Network of Signal Processing and
Signaling
V-ATPases are hetero-multimeric complexes composed of a

cytoplasmic domain, V1, required for ATP hydrolysis and a trans-

membrane domain, V0, critical for proton translocation (Stevens

and Forgac, 1997). These proton pumps are generally required

for acidification of subcellular compartments, membrane traf-

ficking, pH homeostasis, and protein degradation (Forgac,

2007). More recently, different subunits have been shown to con-

trol the activity of various intracellular signaling pathways in

different cell contexts (Gross et al., 2012; Zoncu et al., 2011; Pet-

zoldt et al., 2013). The communication between the niche and

stem cells is dependent on the interplay of various signaling path-

ways. Thus, we functionally analyzed four of the 16 genes encod-

ingV-ATPase subunits expressed in the testis soma: Vha16-1 and

Vha44, two subunits active in all four stem cell systems and, ac-

cording to our prediction, active in CySCs and early SCCs (Table

S1); and Vha13 and VhaAC45, two subunits found among the

gene class 7 (Figure 3B). First, we showed exemplarily for

Vha13, a component uniformly expressed throughout the somatic

lineage (Figures S6A and S6B), and Vha45AC that they controlled

endolysosomal acidification in the Drosophila testis, as Lyso-

tracker-488, a pH-sensitive green fluorescent dye, was strongly

reduced in Vha13- and Vha45AC-depleted testes (Figures S6D

and S6F) in comparison to wild-type testes (Figures S6C and

S6E). Soma-specific interference with Vha16-1, Vha13, and

VhaAC45 impaired soma differentiation, as the CySC and early

SCC marker TJ was expanded (Figures S7F–S7K). This resulted

in cells co-expressing TJ and the late SCC marker Eya up to the
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Figure 5. Nucleoporins Have a Critical

Function within the Cyst Cell Population

and Cell-Non-autonomously Control the

Germline of the Drosophila Testis

(A and B) L3 wild-type (A) and c587 > nup205RNAi

(B) testes were stained for Vas (red) to mark the

germline, actin (blue) to label cyst cells and

germline fusomes, and LamDm0 (green) to

indicate early germ cells (GSCs, gonialblasts, and

spermatogonia).

(C) nup205>nlsGFP L3 testis were stained for GFP

(green) and actin (red) to label somatic cyst cells

and DAPI (blue) for DNA.

(D and E) L3 wild-type (D) and c587 > nup205RNAi

(E) testes were stained for Vas (red) to label the

germline and TJ to label CySCs and early SCCs.

(F) Quantification of TJ-positive cells in wild-type,

c587 > nup205RNAi and c587 > p35;nup205RNAi

testes (***p < 0.001).

(G and H) L3 wild-type (G) and c587 > nup205RNAi

(H) testes were stained for bPS-integrin (white) to

indicate cyst cells.

(I) L3 c587>p35 control testis stained for TJ (green)

to label CySCs and early SCCs, LamDm0 (red) to

indicate early germ cells, and DAPI (blue) for DNA.

(J and K) L3 wild-type (J) and c587 > nup205RNAi

(K) testes stained for TJ (red) to label CySCs and

early SCCs, LamDm0 (blue) to indicate early germ

cells, and caspase-3 (Casp3) (green) to mark

apoptotic cells.

(L) c587 > p35;nup205RNAi testis stained for TJ

(green) to label CySCs and early SCCs, LamDm0

(red) to indicate early germ cells, and DAPI (blue)

for DNA. Yellow asterisks mark the location of

the hub.

Testes are oriented anterior left. Scale bars, 10 mm.

See also Figure S5.
posterior end of the testes (Figures S7I–S7L). This was never

observed in wild-type testes, which co-expressed TJ and Eya

only close to the hub (Figure S7I). These phenotypically similar

defects in somatic cells had different outputs in the germline. In

c587 > Vha16-1RNAi testes, we identified a reduced number of

GSCs as well as clusters of proliferating and unorganized sper-

matogonia (Figures 6B, 6C, 6E, 6L, and 6N), which were unable

to properly differentiate. Germline differentiation defects were

confirmed using germ cell-specific, spectrin-rich organelles. In

wild-type testes, these organelles were spherical when associ-

ated with GSCs and gonialblasts (spectrosomes) and highly

branched when germ cells differentiated (fusomes) (Deng and

Lin, 1997) (Figure S7A). In c587 > Vha16-1RNAi testes, highly

branched fusomeswere absent andonly spherical spectrosomes

were found, demonstrating that germline differentiationwasaber-

rant (Figures S7A and S7E). In contrast, spermatogonia in c587 >

Vha13RNAi and c587>VhaAC45RNAi testeswere unable to exit the
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mitotic cycle and overproliferated, result-

ing in cysts containing more than 16 sper-

matogonial cells (Figures 6B, 6C, 6E, 6F,

6H, 6I, and 6K). Concomitantly with their

inability to exit mitosis, the germline in
c587 > Vha13RNAi and c587 > VhaAC45RNAi testes displayed dif-

ferentiation defects, indicated by the presence of spherical or

dumbbell shaped spectrosomes throughout the testis (Figures

S7A–S7C).Theobservedphenotypewasnot due toa lossof inter-

action between developing germ cells and SCCs, as Vha13,

VhaAC45-depleted, andwild-typeSCCs labeledbyF-actin envel-

oped the germ cells equally well (Figures 6D, 6G, and 6J), which

was also the case for Vha16-1 (Figure 6M).

V-ATPases has been shown to control various signaling path-

ways (Gleixner et al., 2014; Petzoldt et al., 2013). Importantly, we

found the TOR signaling pathway to be enriched in our datasets

(Figure 3C), and network analysis revealed an interaction of

V-ATPase subunits with the TOR (Figure 6A). TOR signaling

was implicated in the regulation of various mammalian and

Drosophila stem cell systems (Murakami et al., 2004; Sun et al.,

2010) and has recently been shown to control CySC differentia-

tion in the testis (Amoyel et al., 2016b). Similar to the effects



Figure 6. V-ATPases Are Required for

Proper Development of the Germline and

Somatic Lineage in the Drosophila Testis

(A) Gene network showing interactions of

V-ATPase subunits and a few signaling compo-

nents identified in this study; pink indicates genes

analyzed in detail.

(B) Quantification of testes displaying proliferation

and/or differentiation defects in the germline of the

Drosophila testis in wild-type, c587 > Vha16RNAi,

c587 > Vha13RNAi, and c587 > VhaAC45RNAi

animals.

(C–N) L3 wild-type (C–E), c587 > Vha13RNAi (F–H),

c587 > VhaAC45RNAi (I–K), and c587 > Vha16-1RNAi

(L–N) testes were stained for Vas (red) to label the

germline, actin (green) to mark cyst cells, and DAPI

(blue) for DNA. The yellow dashed line in (G) and (J)

marks overproliferating spermatogonia; in (C) –(E)

and (L)–(M), it encircles the hub. The yellow arrows

in (L) and (M) highlight unorganized spermato-

gonia. The insets in (F) and (I) represent high-

magnification images. Yellow asterisks mark the

location of the hub.

Testes are oriented anterior left. Scale bars, 10 mm.

See also Figure S6.
observed in V-ATPase knockdown conditions, and consistent

with a previous report (Amoyel et al., 2016b), soma-specific inter-

ference with the central pathway player, Tor, resulted in an

expansion of TJ-positive somatic cells (Figures 7A, 7C–7E, and

7G). This was accompanied with an increase in the number of

mitotically dividing spermatogonial cells that were unable to
Cell Reports
differentiate into mature spermatocytes

(Figures 7B and 7F), indicated also by

the absence of highly branched fusomes

(Figures S7A and S7D). The phenotypic

similarities in Tor and V-ATPase subunit

knockdown prompted us to test a direct

target of Tor phosphorylation, the eIF4-

binding (4E-BP) protein (Gingras et al.,

1999; Miron et al., 2003), in Vha13- and

VhaAC45-depleted somatic cells using

an antibody against p4E-BP. Consistent

with a previous report, we detected p4E-

BP and thus Tor pathway activation in

CySCs and early SCCs of wild-type testes

(Figures 7M and 7N) (Amoyel et al.,

2016b), which was completely lost in

c587 > VhaAC45RNAi testes (Figures 7O

and 7P). However, Tor seemed to function

also independently of V-ATPases, since

differentiated Eya-positive SCCs were

reduced in Tor soma-depleted testes (Fig-

ures 7H-7L), which was never the case in

Vha-13- and VhaAC45-depleted testes

(Figures S7I–S7K).

In sum, these data demonstrated that

different V-ATPase subunits had highly

specific functions in the Drosophila
testis. Differences in the cell-non-autonomous effects of the

Vha16-1 subunit and the Vha13 and VhaAC45 subunits in

the germline suggested that these components controlled

different signaling pathways required for proper germline dif-

ferentiation, and we showed that one of them was the TOR

pathway.
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Figure 7. The TOR Pathway Is Required for Proper Development of the Germline and Somatic Lineage and Is Controlled by V-ATPase

Subunits

(A–C) L3 wild-type testes were stained for Vas (red) to label the germline, TJ (magenta) to label CySCs and early SCCs, actin (green) to mark cyst cells, and DAPI

(blue) for DNA.

(D) Quantification of testes displaying an expansion of TJ-positive cells to the posterior end of the testis in wild-type and c587 > TorRNAi animals.

(E–G) L3 c587 > TorRNAi testes were stained for Vas (red) to label the germline, TJ (magenta) to label CySCs and early SCCs, actin (green) to mark cyst cells, and

DAPI (blue) for DNA.

(H) Quantification of testes displaying reduced numbers of Eya positive cells in wild-type and c587 > TorRNAi animals.

(I–L) L3 wild-type (L) and c587 > TorRNAi (I–K) testes were stained for actin (red) to mark cyst cells and Eya (green) to label late SCCs.

(M–P) L3 wild-type (M and N) and c587 > VhaAC45RNAi (O and P) testes stained for TJ (magenta) to indicate CySCs and early SCCs, actin (red) to mark cyst cells,

p4E-BP (green) to label Tor activity, and DAPI (blue) for DNA. Yellow asterisks mark the location of the hub.

Testes are oriented anterior left. Scale bars, 10 mm. See also Figure S7.
DISCUSSION

Using cell-type-specific transcriptome profiling and in vivo TF

binding site mapping together with an interactive data analysis

tool, we comprehensively identified genes involved in controlling

proliferation and differentiation within a stem cell support sys-

tem. Importantly, many candidates we have functionally tested
3082 Cell Reports 24, 3072–3086, September 11, 2018
not only were required within the soma, but also had non cell-

autonomous functions in the adjacent (germline) stem cell

lineage.

We identified an interconnected network of TFs that play an

important role in the maintenance and differentiation of both

germline and somatic cell populations, signal processing

V-ATPase proton pumps, and nuclear-transport-engaged



Nups as regulators in the Drosophila male stem cell system.

V-ATPases have been implicated in the regulation of various

cellular processes in not only invertebrates but also vertebrates.

For example, the V-ATPase subunit V1e1 was previously shown

to be essential for the maintenance of NBs in the developing

mouse cortex, as loss of this subunit caused a reduction of

endogenous Notch signaling and a depletion of NBs by promot-

ing their differentiation into neurons (Lange et al., 2011). Further-

more, two independent studies revealed that V-ATPase subunits

and their isoforms are required for proper spermatogenesis in

mice, in particular for acrosome acidification and spermmatura-

tion (Imai-Senga et al., 2002; Jaiswal et al., 2014). Thus, it is

tempting to speculate that these proton pumps also have impor-

tant functions in the stem cell pool of the mammalian testis and

very likely many other stem cell systems, and we provide some

evidence for their crucial role also in ISCs.

This work also uncovered nuclear transport associated pro-

teins, the Nups, as important control hubs in the somatic line-

age of the Drosophila testis. This is of particular interest, since

cell-type-specific functions of Nups have been identified only

recently and may represent a critical feature of different stem

cell systems. Examples include Nup153, one of the Nups ex-

pressed in all four stem cell systems, which interacts with

Sox2 neural progenitors and controls their maintenance as

well as neuronal differentiation (Toda et al., 2017); Nup358,

which plays a role at kinetochores (Roscioli et al., 2012); and

Nup98, which regulates the anaphase promoting complex

(APC) andmitotic microtubule dynamics to promote spindle as-

sembly (Salsi et al., 2014). Interestingly, it has been shown just

recently that Nups play a critical role in regulating the cell fate

during early Drosophila embryogenesis, thereby contributing

to the commitment of pluripotent somatic nuclei into distinct lin-

eages (Hampoelz et al., 2016), and our results suggest that they

may play a similar role in controlling the transition of continu-

ously active adult stem cells toward differentiation. The next

challenge will be to unravel how variations in the composition

of an essential and basic protein complex like the NPC causes

differential responses of cells, in particular in stem cells and

their progenies.

Our datasets in conjunction with the versatile and easy-

to-use analysis tool allowed us to identify a substantial number

of stem cell regulators for detailed mechanistic characteriza-

tion. Importantly, our analyses have shed first light on pro-

cesses and genes shared between diverse invertebrate and

vertebrate stem cell systems and uncovered functionally rele-

vant differences. Owing to its flexibility and the option to include

datasets from any species, our online tool represents a valuable

resource for the entire stem cell community. It not only provides

an open platform for data analysis but also leverages the power

of comparative analysis to enable researchers mining genomic

datasets from diverse origins in a meaningful and intuitive

fashion.
EXPERIMENTAL PROCEDURES

Fly Stocks and Husbandry

See Supplemental Experimental Procedures for a list of fly strains used in this

study
Immunofluorescence Staining and Microscopy

See Supplemental Experimental Procedures for detailed list of antibodies used

in this study.

DamID

Analysis was performed as previously reported (Papagiannouli et al., 2014).

For a detailed protocol, see Supplemental Experimental Procedures.

DamID Analysis and GO term Enrichment Analysis

See Supplemental Experimental Procedures for details.

Interactive Data-Mining Tool

The enrichment analysis method presented in this paper is implemented as a

user-friendly Shiny (Beeley, 2016) web application accessible at http://

beta-weade.cos.uni-heidelberg.de. The user can select the set of genes to

perform the GO enrichment analysis and the respective background indepen-

dently. Results of the analysis are presented as a plot, an interactive table dis-

playing significantly enrichedGOgroups, and an interactive heatmap, showing

the counts of enriched GO terms within the respective higher-order GO group.

It is also possible to get an insight into the individual GO terms that make up a

category and into the genes that contributed to the categories or terms. The

functionality of the tool exceeds what is described here; a detailed documen-

tation of the tool is deposited under http://beta-weade.cos.uni-heidelberg.de,

and an interactive guide is provided in the online application.
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