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Abstract. This paper discusses how much information on a Friedrichs
model operator can be detected from ‘measurements on the boundary’.
We use the framework of boundary triples to introduce the generalised
Titchmarsh–Weyl M -function and the detectable subspaces which are
associated with the part of the operator which is ‘accessible from bound-
ary measurements’. The Friedrichs model, a finite rank perturbation
of the operator of multiplication by the independent variable, is a toy
model that is used frequently in the study of perturbation problems. We
view the Friedrichs model as a key example for the development of the
theory of detectable subspaces, because it is sufficiently simple to allow a
precise description of the structure of the detectable subspace in many
cases, while still exhibiting a variety of behaviours. The results also
demonstrate an interesting interplay between modern complex analysis,
such as the theory of Hankel operators, and operator theory.
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1. Introduction

In this paper, we determine detectable subspaces [4,6,7]—associated with
the part of the operator which is ‘accessible from boundary measurements’—
for the so-called Friedrichs model. The Friedrichs model is a toy model, first
introduced in [9], and used frequently in the study of perturbation problems
(see e.g. [18]). The particular form of the Friedrichs model we study here is a
finite rank perturbation of the operator of multiplication by the independent
variable acting on L2(R) and is given by the expression

(Af)(x) = xf(x) + 〈f, φ〉ψ(x), (1.1)
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where φ, ψ are in L2(R) and 〈·, ·〉 denotes the inner product. The simplicity
of the model will allow for rigorous calculation of the detectable subspace
for certain choices of the functions φ, ψ. Even for this simple model, we will
see that the detectable subspace exhibits a wide variety of properties and
its determination is related to the theory of Hankel operators. Moreover,
the analysis will require detailed results in complex analysis and serves to
underline the interplay of this area with operator theory. We consider the
Friedrichs model as a key example for the development of the theory of de-
tectable subspaces, because it allows a precise description of the structure
of the detectable subspace in many cases, while exhibiting such a variety of
behaviours that one can hardly expect to obtain a description of the space in
all cases in unique terms. Detectable subspaces for the Friedrichs model were
already studied in [7] under very specific conditions, such as disjointness of
the supports of φ and ψ. Here, we consider more general cases, providing for
a richer theory and more diverse behaviour.

The abstract setting we employ is that of adjoint pairs of operators and
boundary triples. Adjoint pairs of operators arise naturally in many contexts
in mathematics, in particular for differential operators. In the abstract set-
ting of boundary triples [5,15–17] it is possible to introduce the Titchmarsh–
Weyl functions associated with an adjoint pair of operators. These represent,
in an appropriate sense, boundary measurements of the underlying system.
The detectable subspace sets limits on the spaces in which the operators
can be reconstructed, to some extent, from the information about boundary
measurements contained in the Titchmarsh–Weyl functions. For instance,
Derkach and Malamud [8] show that in the formally symmetric case, if the
detectable subspace is the whole Hilbert space, then the operator can be re-
constructed up to unitary equivalence. In terms of the Q-function, this result
was proved earlier by Krĕın, Langer and Textorius [13,14]. If the underlying
operator is not symmetric, but the detectable subspace is the whole Hilbert
space, then the Titchmarsh–Weyl function determines the operators of an
adjoint pair up to weak equivalence [16]. However, weak equivalence does not
preserve the spectral properties of the operators. In an abstract setting this
result is optimal: further information depends on having a priori knowledge
of the operator. It is therefore instructive to look at particular examples to
see what information may be determined from the Titchmarsh–Weyl func-
tions. In earlier articles, the authors have considered this question for certain
types of matrix-differential operators [6] and looked at very simple cases of
the so-called Friedrichs model [7]. Improving the result on weak equivalence
in some special cases is the topic of [1–3,10].

The paper is arranged as follows. Section 2 introduces adjoint pairs
of operators, the associated Titchmarsh–Weyl functions and the detectable
subspaces in the general setting of boundary triples. In Sect. 3, we consider
the specific example of the Friedrichs model and determine an appropriate
boundary triple and the associated Titchmarsh–Weyl function. Section 4 con-
siders the reconstruction of the M -function from one resolvent restricted to
the detectable subspace, while Sect. 5 deals with determining the detectable
subspace for various combinations of the parameters of the Friedrichs model.
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2. Preliminaries: The Detectable Subspace

This section introduces concepts and notation that will be used throughout
the article, as well as some results from previous papers which are needed
later to develop the theory. We make the following assumptions.

1. A, ˜A are closed, densely defined operators in a Hilbert space H.
2. A and ˜A are an adjoint pair, i.e. A∗ ⊇ ˜A and ˜A∗ ⊇ A.

Then (see [15]) there exist “boundary spaces” H, K and “trace operators”

Γ1 : Dom ( ˜A∗) → H, Γ2 : Dom ( ˜A∗) → K,

˜Γ1 : Dom (A∗) → K and ˜Γ2 : Dom (A∗) → H

such that for u ∈ Dom ( ˜A∗) and v ∈ Dom (A∗) we have an abstract Green
formula

〈

˜A∗u, v
〉

H
−
〈

u,A∗v
〉

H
=
〈

Γ1u, ˜Γ2v
〉

H
−
〈

Γ2u, ˜Γ1v
〉

K
. (2.1)

The trace operators Γ1, Γ2, ˜Γ1 and ˜Γ2 are bounded with respect to the graph
norm. The pair (Γ1,Γ2) is surjective onto H × K and (˜Γ1, ˜Γ2) is surjective
onto K × H. Moreover, we have

Dom (A) = Dom ( ˜A∗) ∩ ker Γ1 ∩ ker Γ2

and

Dom ( ˜A) = Dom (A∗) ∩ ker ˜Γ1 ∩ ker ˜Γ2.

The collection {H ⊕ K, (Γ1,Γ2), (˜Γ1, ˜Γ2)} is called a boundary triple for the
adjoint pair A, ˜A.

We next define the Titchmarsh–Weyl M -functions associated with
boundary triples (see e.g. [5,16,17]). Given bounded linear operators B ∈
L(K,H) and ˜B ∈ L(H,K), consider extensions of A and ˜A (respectively)
given by

AB := ˜A∗|ker(Γ1−BΓ2) and ˜A
˜B := A∗|ker(˜Γ1− ˜B˜Γ2)

.

In the following, we assume the resolvent set ρ(AB) 	= ∅, in particular AB is
a closed operator. For λ ∈ ρ(AB), define the M -function via

MB(λ) : Ran (Γ1 − BΓ2) → K,

MB(λ)(Γ1 − BΓ2)u = Γ2u for all u ∈ ker( ˜A∗ − λ)

and for λ ∈ ρ( ˜A
˜B), we define

˜M
˜B(λ) : Ran (˜Γ1 − ˜B˜Γ2) → H,

˜M
˜B(λ)(˜Γ1 − ˜B˜Γ2)v = ˜Γ2v for all v ∈ ker(A∗ − λ).

For λ ∈ ρ(AB), the linear operator Sλ,B : Ran (Γ1−BΓ2) → ker( ˜A∗−λ)
given by

( ˜A∗ − λ)Sλ,Bf = 0, (Γ1 − BΓ2)Sλ,Bf = f, (2.2)
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is called the solution operator. For λ ∈ ρ( ˜A∗
B), we similarly define the linear

operator ˜Sλ,B∗ : Ran (˜Γ1 − B∗
˜Γ2) → ker(A∗ − λ) by

(A∗ − λ)˜Sλ,B∗f = 0, (˜Γ1 − B∗
˜Γ2)˜Sλ,B∗f = f. (2.3)

The operators MB(λ), Sλ,B , ˜M
˜B(λ) and ˜Sλ,B∗ are well defined for λ ∈

ρ(AB) and λ ∈ ρ( ˜A
˜B), respectively. Moreover, the solution operators are

surjective.
We are now ready to define one of the main concepts of the paper, the

detectable subspaces, introduced in [4].
Fix μ0 ∈ ρ(AB). Then define the spaces

SB := Span δ �∈σ(AB)(AB − δI)−1 ker( ˜A∗ − λ), (2.4)

TB := Span μ�∈σ(AB) ker( ˜A∗ − λ), (2.5)

and similarly,
˜SB∗ := Spanδ �∈σ(ÃB∗ )(ÃB∗ − δI)−1 ker(A∗ − λ), (2.6)

˜TB∗ := Spanμ�∈σ(ÃB∗ ) ker(A∗ − λ). (2.7)

Remark 2.1. In many cases of the Friedrichs model we will be considering,
the spaces SB and TB coincide and are independent of B. This follows from
[7, Proposition 2.9]. To avoid cumbersome notation, in many places we shall
denote all these spaces by S. We will refer to S as the detectable subspace.

In [4, Lemma 3.4], it is shown that S is a regular invariant space of the
resolvent of the operator AB : that is, (AB − μI)−1S = S for all μ ∈ ρ(AB).

From (2.4) and [5, Proposition 3.9], we get

S⊥ =
⋂

B∈L(K,H)

⋂

λ∈ρ(AB)

ker(S∗
λ,B) =

⋂

B∈L(K,H)

⋂

λ∈ρ(AB)

ker
(

˜Γ2( ˜AB∗ − λ)−1
)

.

(2.8)

3. The Friedrichs Model

In this section we introduce the Friedrichs model.
We consider in L2(R) the operator A with domain

Dom (A) =
{

f ∈ L2(R)
∣

∣

∣xf(x) ∈ L2(R),

lim
R→∞

∫ R

−R

f(x)dx exists and is zero

}

,

given by the expression

(Af)(x) = xf(x) + 〈f, φ〉ψ(x), (3.1)

where φ, ψ are in L2(R). Observe that since the constant function 1 does not
lie in L2(R) the domain of A is dense.

We first collect some results from [4] where more details and proofs can
be found:
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The adjoint of A is given on the domain

Dom (A∗) =
{

f ∈ L2(R) | ∃cf ∈ C : xf(x) − cf1 ∈ L2(R)
}

, (3.2)

by the formula

(A∗f)(x) = xf(x) − cf1 + 〈f, ψ〉φ(x). (3.3)

Note that Dom (A) ⊆ Dom (A∗) and that cf = 0 for f ∈ Dom (A).
We introduce an operator ˜A in which the roles of φ and ψ are exchanged:

Dom ( ˜A) = Dom (A) and

( ˜Af)(x) = xf(x) + 〈f, ψ〉φ(x). (3.4)

We immediately see that Dom ( ˜A∗) = Dom (A∗) and that

( ˜A∗f)(x) = xf(x) − cf1 + 〈f, φ〉ψ(x). (3.5)

Thus ˜A∗ is an extension of A, A∗ is an extension of ˜A.
Since cf = limR→∞(2R)−1

∫ R

−R
xf(x) dx is uniquely determined, we can

define trace operators Γ1 and Γ2 on Dom (A∗) as follows:

Γ1u = lim
R→∞

∫ R

−R

u(x)dx, Γ2u = cu. (3.6)

Note that Γ1u =
∫

R
(u(x)−cu1sign(x)(x2+1)−1/2)dx, which is the expression

used in [4].

Lemma 3.1. We have

A = ˜A∗
∣

∣

∣

ker(Γ1)∩ker(Γ2)
and ˜A = A∗|ker(Γ1)∩ker(Γ2)

; (3.7)

moreover, the following Green’s formula holds

〈A∗f, g〉 − 〈f, ˜A∗g〉 = Γ1fΓ2g − Γ2fΓ1g. (3.8)

We finish our review from [4] with the M -function and the resolvent:

Lemma 3.2. Suppose that 
λ 	= 0. Then f ∈ ker( ˜A∗ − λ) if

f(x) = (Γ2f)
[

1
x − λ

− 〈(t − λ)−1, φ〉
D(λ)

ψ(x)
x − λ

]

. (3.9)

Here D is the function

D(λ) = 1 +
∫

R

1
x − λ

ψ(x)φ(x)dx. (3.10)

Moreover, for B ∈ C, the Titchmarsh–Weyl coefficient MB(λ) is given by

MB(λ) =
[

sign(
λ)πi − 〈(t − λ)−1, ψ〉〈(t − λ)−1, φ〉
D(λ)

− B

]−1

. (3.11)

For the resolvent, we have that (AB − λ)f = g if and only if

f(x) =
g(x)
x − λ

− 1
D(λ)

ψ(x)
x − λ

〈

g

t − λ
, φ

〉

+ cf

[

1
x − λ

− 1
D(λ)

ψ(x)
x − λ

〈

1
t − λ

, φ

〉]

, (3.12)
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in which the coefficient cf is given by

cf = MB(λ)
[

−
〈

1
t − λ

, g

〉

+
1

D(λ)

〈

g

t − λ
, φ

〉〈

1
t − λ

, ψ

〉]

. (3.13)

Remark 3.3. There is another approach to the Friedrichs model via the Fourier
transform which may appear much more natural. It is easy to check that, de-
noting the Fourier transform by F and Ff = f̂ , we get

FAF∗ = i
d

dx
+
〈

·, φ̂
〉

ψ̂, Dom (FAF∗) = {u ∈ H1(R) : u(0) = 0},

F ˜A∗F∗ = i
d

dx
+
〈

·, φ̂
〉

ψ̂, Dom (F ˜A∗F∗)={u ∈ L2(R) : u|R± ∈ H1(R±)},

and

FABF∗ = i
d

dx
+
〈

·, φ̂
〉

ψ̂,

Dom (FABF∗) =
{

u ∈ L2(R) : u|R± ∈ H1(R±), u(0+) =
B − iπ

B + iπ
u(0−)

}

,

where u(0±) denotes the limit of u at zero from the left and right, respectively.
Moreover, Γ1f =

√

π/2(f̂(0+) + f̂(0−)) and Γ2f = i(2π)−1(f̂(0+) − f̂(0−)).
There are similar expressions for the adjoint operators and traces.

In terms of extension theory it looks much more natural to use this
Fourier representation compared to the standard form of the Friedrichs model
(as a perturbed multiplication operator). However, despite the equivalence of
both representations, for our later calculations the original model is more
suitable, as it gives a simpler formula for the resolvent than working with the
differential operator, and reduces many questions to more straightforward
residue calculations.

4. Friedrichs Model: Reconstruction of MB (λ) from One
Restricted Resolvent (AB − λ)−1|S

In this section we show how to reconstruct MB(λ) explicitly from the re-
stricted resolvent. The fact that even the bordered resolvent determines
MB(λ) uniquely was proved in the abstract setting in [7], but of course meth-
ods of reconstruction depend on the concrete operators under discussion.

We introduce the notation ·̂ for the Cauchy or Borel transform given
by

̂φ(λ) =
〈

1
t − λ

, φ

〉

, ̂ψ(λ) =
〈

1
t − λ

, ψ

〉

(4.1)

and P± : L2(R) → H±
2 (R) for the Riesz projections given by

P±f(k) = ± 1
2πi

lim
ε→0

̂f(k ± iε) = ± 1
2πi

lim
ε→0

∫

R

f(x)
x − (k ± iε)

dx, (4.2)

where the limit is to be understood in L2(R) (see [12]). Here, H+
p (R) and

H−
p (R) denote the Hardy spaces of boundary values of p-integrable functions
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in the upper and lower complex half-plane, respectively. To simplify notation,
we also sometimes write (f̂)±(k) = ̂f(k ± i0) := 2πiP±f(k).

Theorem 4.1. For the Friedrichs model, assume that (AB − λ)−1|S is known
for all λ ∈ ρ(AB)\R. Then MB(λ) can be recovered.

Remark 4.2. We assume that (AB − λ)−1|S is known for all λ ∈ ρ(AB)\R,
though it is certainly sufficient to know it at one point in each connected
component of C\σ(AB). If σ(AB) does not cover all of either half-plane C±
then it is enough to know (AB − λ)−1|S at two points, one in each of C±. If,
additionally, σ(AB) does not cover R, then it suffices to know (AB − λ)−1|S
for just one value of λ.

Proof. 1. Recovering the function ψ Take non-zero g ∈ S and λ ∈ C\(R ∪
σ(AB)). Observe that (3.12) may be rewritten in the form

f(x) − g(x)
x − λ

− cf

x − λ
=

ψ(x)
x − λ

A(λ), (4.3)

in which

A(λ) = − 1
D(λ)

[〈

g

t − λ
, φ

〉

+ cf

〈

1
t − λ

, φ

〉]

and D(λ) is given by (3.10). The left hand side of (4.3) is known as a function
of λ, at least for g ∈ S. To determine ψ up to a scalar multiple it is therefore
sufficient to find g and λ so that A(λ) is non-zero: in other words, find g such
that the function A(·) is not identically zero.

We proceed by contradiction. Suppose we have a non-trivial Friedrichs
model (i.e. neither φ nor ψ is identically zero). If A(·) is identically zero then
multiplying by MB(λ)−1 from (3.11) and using (3.13) we obtain

[

iπsign(
λ) − 1
D(λ)

〈

1
t − λ

, φ

〉〈

1
t − λ

, ψ

〉

− B

]〈

g

t − λ
, φ

〉

+
[

−
〈

1
t − λ

, g

〉

+
1

D(λ)

〈

g

t − λ
, φ

〉〈

1
t − λ

, ψ

〉]〈

1
t − λ

, φ

〉

≡ 0,

(4.4)

from which it follows

(iπsign(
λ) − B)
〈

g

t − λ
, φ

〉

−
〈

1
t − λ

, g

〉〈

1
t − λ

, φ

〉

≡ 0. (4.5)

For all non-real μ such that D(μ) is nonzero (this is true for a.e. non-real μ
by analyticity), there exists g ∈ S in the range of the solution operator Sμ,B.
We know from (3.9) that such g have the form

g(x) =
1

x − μ
− 1

D(μ)

〈

1
t − μ

, φ

〉

ψ(x)
x − μ

, (4.6)
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though we do not know the function ψ or the value of 1
D(μ)

〈

1
t−μ , φ

〉

. Sub-
stituting (4.6) into (4.5) yields

(iπsign(
λ) − B)
[〈

1
(t − μ)(t − λ)

, φ

〉

− 1
D(μ)

〈

1
t − μ

, φ

〉〈

ψ

(t − μ)(t − λ)
, φ

〉]

≡
〈

1
t − λ

, φ

〉[〈

1
(t − λ)(t − μ)

,1
〉

− 1
D(μ)

〈

1
t − μ

, φ

〉〈

1
(t − λ)(t − μ)

, ψ

〉]

. (4.7)

If we use the identity

λ − μ

(t − λ)(t − μ)
=

1
t − λ

− 1
t − μ

(4.8)

and use the notations from (4.1) then multiplying by (λ − μ), (4.7) becomes

(iπsign(
λ) − B)
[

̂φ(λ) − ̂φ(μ) − 1
D(μ)

̂φ(μ)(D(λ) − D(μ))
]

≡ ̂φ(λ)

[

∫

R

λ − μ

(t − λ)(t − μ)
dt −

̂φ(μ)
D(μ)

( ̂ψ(λ) − ̂ψ(μ))

]

. (4.9)

Performing the integral for the case in which 
λ · 
μ < 0, we obtain

(iπsign(
λ) − B)
[

̂φ(λ) − D(λ)
D(μ)

̂φ(μ)
]

≡ ̂φ(λ)

[

±2πi −
̂φ(μ)
D(μ)

( ̂ψ(λ) − ̂ψ(μ))

]

.

(4.10)

Fix λ and let μ → i∞, so that D(μ) → 1 and ̂φ(μ) → 0. This yields

(iπsign(
λ) − B)̂φ(λ) ≡ ±2πîφ(λ). (4.11)

If, on the other hand, we consider 
λ · 
μ > 0 in (4.9) then the value of the
integral is zero, and we obtain, upon letting μ → i∞,

(iπsign(
λ) − B)̂φ(λ) ≡ 0. (4.12)

Equations (4.11,4.12) together imply that ̂φ is identically zero, and hence so
is φ. In this case the function ψ is irrelevant and so our Friedrichs model is
trivial, a contradiction. Thus (4.3) determines ψ up to a constant multiple.
We may choose this (non-zero) multiple arbitrarily, since φ can be rescaled
if necessary to obtain the correct Friedrichs model.
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2. Recovering the boundary condition parameterB Returning to the
parameter cf in (3.13) and using the notation (4.1), we have

[

iπsign(
λ) − B − 1
D(λ)

̂φ(λ) ̂ψ(λ)
]

cf

=
[

−
〈

1
t − λ

, g

〉

+
1

D(λ)

〈

g

t − λ
, φ

〉〈

1
t − λ

, ψ

〉]

=
[

−
〈

1
t − λ

, g

〉

+ O
(

‖g‖2|
λ|−3/2
)

]

,

as 
λ → ∞, and uniformly in g. Now, for μ ∈ C\R with D(μ) 	= 0, we choose
an element from S of the form

g(x) ≡ gμ(x) :=
1

x − μ
− η(μ)

ψ(x)
x − μ

, (4.13)

with some η(μ) = O(|
μ|−1/2). We know that for such μ a coefficient η(μ)

exists such that g ∈ S, and indeed may be chosen as ̂φ(μ)/D(μ), but we do
not yet know φ and therefore do not claim that our particular choice of η is
given by this formula. We fix some choice of η, so that g = gμ is determined
and cf is known as a function of λ and μ. We have

(iπsign(
λ) − B + O(|
λ|−1))cf

=
[

−
〈

1
t − λ

,
1

t − μ

〉

+ η(μ)
〈

1
t − λ

,
ψ

t − μ

〉

+ O(|
λ|−3/2)‖gμ‖2

]

= −
∫

R

1
(t − λ)(t − μ)

dt + O(|
μ|−3/2)O(|
λ|−1/2)

+O(|
λ|−3/2)
(

O(|
μ|−1/2) + ‖ψ‖2
|η(μ)|
|
μ|

)

.

Assuming that 
λ · 
μ < 0, we know that

−
∫

R

1
(t − λ)(t − μ)

dt =
±2πi

λ − μ
.

Put λ = −μ and letting 
μ → ∞, we obtain

(iπsign(
λ) − B)cf =
±2πi

2λ
+ O(|λ|−2).

For one choice of sign(
λ) at least, iπsign(
λ)−B 	= 0 and so we can recover
B from the asymptotic behaviour of cf as 
λ → ∞.

3. Recovering ̂φ(λ)/D(λ) Once again we choose g = gμ of the form
(4.13). Returning to (4.3) and indicating the μ-dependence of f by writing
f = fμ = (AB − λ)−1gμ, we have

(AB − λ)−1gμ − gμ(x)
x − λ

−
cfµ

(λ)
x − λ

= − ψ(x)
x − λ

1
D(λ)

[〈

gμ

t − λ
, φ

〉

+ cfµ
(λ)
〈

1
t − λ

, φ

〉]

.
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Since the left hand side of this equation is known and since ψ is known, this
implies that

1
D(λ)

[〈

gμ

t − λ
, φ

〉

+ cfµ
(λ)
〈

1
t − λ

, φ

〉]

is known. Substituting the known choice of gμ we discover that

λ − μ

D(λ)

[〈

1
(t − λ)(t − μ)

, φ

〉

− η(μ)
〈

ψ

(t − λ)(t − μ)
, φ

〉

+ cfµ
(λ)
〈

1
t − λ

, φ

〉]

is known. Using identity (4.8) this means that

1
D(λ)

[

̂φ(λ) − ̂φ(μ) − η(μ)(D(λ) − D(μ)) + (λ − μ)cfµ
(λ)̂φ(λ)

]

(4.14)

is also known. We shall now fix λ and let 
μ → ∞, for which purpose we
need to know how (λ − μ)cfµ

(λ) will behave. From (3.13), we have

cfµ
(λ)(λ − μ) = (λ − μ)MB(λ)

[

−
〈

1
t − λ

,
1

t − μ

〉

+ η(μ)
〈

1
t − λ

,
ψ

t − μ

〉

+
̂ψ(λ)
D(λ)

{〈

1
(t − λ)(t − μ)

, φ

〉

− η(μ)
〈

ψ

(t − λ)(t − μ)
, φ

〉}

]

.

(4.15)

Choosing μ 	= λ with 
λ · 
μ > 0 causes the integral term
〈

1
t−λ , 1

t−μ

〉

to
vanish. This yields

cfµ
(λ)

= MB(λ)

[

η(μ)( ̂ψ(λ) − ̂ψ(μ) − D(λ) + D(μ)) +
̂ψ(λ)
D(λ)

(̂φ(λ) − ̂φ(μ))

]

→ MB(λ)
̂ψ(λ)
D(λ)

̂φ(λ),

as 
μ → ∞. Letting 
μ → ∞ in (4.14) therefore yields that

1
D(λ)

[

̂φ(λ) + MB(λ)
̂ψ(λ)
D(λ)

̂φ(λ)2
]

(4.16)

is known. However, taking account of (3.11), the known quantity appearing
in (4.16) is

MB(λ)
̂φ(λ)
D(λ)

[iπsign(
λ) − B] .

This means that α := MB(λ)̂φ(λ)D(λ)−1 is known, and simple algebra shows
that

̂φ(λ)
D(λ)

(1 + α ̂ψ(λ)) = α(iπsign(
λ) − B), (4.17)
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which determines
̂φ(λ)
D(λ) and hence MB(λ) provided the factor 1 + α ̂ψ(λ) is

not identically zero; equivalently, provided iπsign(
λ) − B is not zero.
We are therefore left to rule out just one pathological case: the case in

which B = iπsign(
(λ)) in one half-plane and ̂φ ̂ψ ≡ 0 in the same half-plane.
This can only happen if MB(λ)−1 is zero in this half-plane, which means that
every point in the half-plane is an eigenvalue of AB and the corresponding
gλ given by

gλ(x) =
1

x − λ
−
̂φ(λ)
D(λ)

ψ(x)
x − λ

=
1

x − λ

belongs to L2(R) and also satisfies the conditions to lie in the domain of AB :

iπsign(
λ) = iπsign(
λ) −
̂φ(λ) ̂ψ(λ)

D(λ)
= Γ1gλ = BΓ2gλ = B

(see (6.16) in [4]). This determines ̂φ(λ)/D(λ), and the proof is complete.
�

Remark 4.3. (Uniqueness of gμ) An alternative approach can be found by
examining the uniqueness of the function gμ in S defined in (4.13). If we
know that the choice of η(μ) is unique then we can immediately determine
̂φ(μ)/D(μ), which must be equal to η(μ). This is determined by gμ if gμ is
unique with its required properties. We examine this now.

Definition 4.4. The non-uniqueness set is the set

Ω =
{

μ ∈ C \ R

∣

∣

∣ ∃η1(μ) 	= η2(μ) :
1

x − μ
+ ηj(μ)

ψ(x)
x − μ

∈ S, j = 1, 2
}

.

(4.18)

Equivalently,

Ω =
{

μ ∈ C \ R

∣

∣

∣

1
x − μ

∈ S and
ψ(x)
x − μ

∈ S
}

.

We also let Ω± = C±∩Ω and call the sets C±\Ω± the uniqueness sets in
the upper an lower half-planes. We can ignore the condition D(μ) 	= 0 since
it can be removed by taking a closure. We can also assume that S 	= L2(R)
since otherwise we know the whole resolvent (AB − λ)−1, which means we
know AB and hence MB . We consider two cases in C+ (the situation in C−
is similar): (I) C+\Ω+ has measure 0 and (II) C+\Ω+ has positive measure.

In case (II) the uniqueness set in C+, where we can recover ̂φ(μ)/D(μ)

immediately from gμ, has an accumulation point in C+ and thus ̂φ(μ)/D(μ)
is uniquely determined in C+, by analyticity.

In case (I) we have that for almost all μ ∈ C+, the function x �→ (x−μ)−1

lies in S. However
∨

	μ>0
1

x−μ is the Hardy space H−
2 , and hence S ⊇ H−

2 .
Consider the situation in C−. If we are in the case |Ω−| > 0 then

S ⊃
∨

μ∈Ω−

1
x − μ

= H+
2 ,

and so we have proved the following.
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Lemma 4.5. If C±\Ω± has measure zero, then S contains H2
∓, respectively,

while if C±\Ω± has positive measure then we can recover ̂φ(μ)/D(μ) uniquely,
for μ ∈ C±.

Corollary 4.6. Assume that the function ̂φ(μ)/D(μ) in C+ coincides with the

analytic continuation of ̂φ(μ)/D(μ) in C−. (This happens, for instance, if φ
has compact support or is zero on an interval.) Then either S = L2(R) or we

can reconstruct ̂φ(μ)/D(μ) in C\R uniquely from (AB − λ)−1|S .

Proof. In the first case, under the hypotheses of Theorem 4.1, we know (AB −
λ)−1 and hence we know (a) φ if ψ is not identically zero, (b) ψ if φ is
not identically zero, (c) B by checking the boundary conditions satisfied by
elements of Dom (A) = Ran ((AB − λ)−1). �

5. Determining S for the Friedrichs Model

This section is devoted to a detailed analysis of the space S for the Friedrichs
model. We shall demonstrate how different aspects of complex analysis are
brought into the problem of determining S and we compute the defect number
def(S) = dim(S⊥) for various different choices of the functions φ and ψ which
determine the model.

We note that we analysed some cases of the Friedrichs model in [7].
In particular, it contains a comprehensive study of the case of disjointly
supported φ and ψ.

Before proceeding, we introduce some notation. Let D(λ) be as in (3.10).
Denote by D±(λ) its restriction to C± and (to shorten notation) by D± :=
D±(k ± i0), k ∈ R, the boundary values of these functions on R (which exist
a.e., cf. [12,20]). In general, the functions D±(λ) do not have a meromorphic
continuation to the lower/upper half-plane. In cases when they do, we will
continue to denote this extension by D±(λ). Note that this extension will in
general not coincide with D(μ) in the other half-plane.

We next give a characterisation of the space S, or, more precisely, its
orthogonal complement from [7, Proposition 7.2]. The proof is based on the
definition of S using (2.5) and on Lemma 3.2.

Proposition 5.1. Let P± be the Riesz projections defined in (4.2) and D(λ)
be as in (3.10).

1. Let φ, ψ ∈ L2. Then g ∈ S⊥
if and only if

P+g − 2πi

D+
(P+φ)P+(ψg) = 0 and P−g +

2πi

D−
(P−φ)P−(ψg) = 0, (5.1)

if and only if
{

(i) (P+φ)P+(ψg)
D+

∈ H+
2 , (ii) (P−φ)P−(ψg)

D−
∈ H−

2 ,

(iii) g − 2πi
D+

(P+φ)P+(ψg) + 2πi
D−

(P−φ)P−(ψg) = 0 (a.e.).
(5.2)
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2. If φ ∈ L2, ψ ∈ L2 ∩ L∞ or φ, ψ ∈ L2 ∩ L4, then g ∈ S⊥
if and only if

any of the following three equivalent conditions holds:
[

D+ − 2πi(P+φ)ψ
]

g = 2πiφ[ψP−g − P−(ψg)] (a.e.), (5.3)
[

D+ − 2πi(P+φ)ψ
]

g = 2πiφ[−ψP+g + P+(ψg)] (a.e.), (5.4)
[

D+ − 2πi(P+φ)ψ
]

g = 2πiφ[P+(ψP−g) − P−(ψP+g)] (a.e.). (5.5)

Remark 5.2. 1. The second part of the proposition allows us to replace all
three conditions (i)–(iii) in (5.2) with a single pointwise condition under
mild extra assumptions on φ and/or ψ.

2. Note that the operator [P+(ψP−g) − P−(ψP+g)] in the last characteri-
sation of S⊥

is the difference of two Hankel operators.

As an immediate consequence of (5.3), we get

Theorem 5.3. Assume φ ∈ L2, ψ ∈ L2 ∩ L∞ or φ, ψ ∈ L2 ∩ L4. Define the
operator L on L2(R) by

Lu = [−P+(ψφ) + P+(φ)ψ]u + φ[ψP− − P−ψ]u (5.6)

with the maximal domain Dom (L) = {u ∈ L2(R) : Lu ∈ L2(R)}.1 Then
S 	= L2(R) iff 1/(2πi) ∈ σp(L) and S⊥

= ker(L − 1/(2πi)).
Furthermore, let η ∈ L∞(R) be a function such that η(k) 	= 0 a.e. and

η[−P+(ψφ) + P+(φ)ψ], ηψφ, ηφ ∈ L∞(R). Define the operator L on L2(R)
by

Lu = η

[

− 1
2πi

− P+(ψφ) + P+(φ)ψ
]

u + ηφ[ψP− − P−ψ]u (5.7)

with dense domain Dom (L) = {u ∈ L2(R) : ηφP−(ψu) ∈ L2(R)}. Then
S 	= L2(R) iff 0 ∈ σp(L). Moreover, S⊥

= ker L. Note that if ψ ∈ L∞, then
Dom (L) = L2(R).

Remark 5.4. Introducing a scaling parameter α ∈ C\{0} and replacing ψ by
αψ, we denote the corresponding detectable subspace by Sα. Then, under
the conditions in the second part of Proposition 5.1, we get g ∈ S⊥

α iff

1
2πiα

g =
[

−P+(ψφ) + P+(φ)ψ]g + φ[P+ψP− − P−ψP+

]

g = Lg,

where the right hand side is the sum of a multiplication operator and the
difference of two Hankel operators multiplied by φ. As in the theorem, we
then get S⊥

α 	= {0} iff 1/(2πiα) ∈ σp(L) and S⊥
α is given by the corresponding

kernel.

1Under our assumptions, for any u ∈ L2 we have Lu ∈ L1 (where we mean the expression
L in (5.6), not the operator L).
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5.1. Results with φ, ψ ∈ H+
2

We note that in the Fourier picture described in Remark 3.3, the condition
that φ, ψ ∈ H+

2 corresponds to Fφ,Fψ being supported in R
− (by the Paley-

Wiener Theorem [12]). A similar remark applies to the next subsection when
φ, ψ ∈ H+

2 where the Fourier transforms will be supported on different half
lines. Moreover, similar results will hold if both φ, ψ ∈ H−

2 .

Proposition 5.5. Let φ, ψ ∈ H+
2 . Then

g ∈ S⊥ ⇐⇒
{

(I) g ∈ H+
2 ,

(II) g = − 2πi
D−

φP−(ψg) (a.e.).

Proof. We consider the conditions in (5.1). As φ ∈ H−
2 , we have P+φ = 0,

giving P+g = 0, hence g ∈ H−
2 and g ∈ H+

2 . Since P−g = g and P−φ = φ,
the second condition in (5.1) becomes (II). �
Theorem 5.6. Let φ, ψ ∈ H+

2 . Then

S =
∨

μ∈C+

1
x − μ

+
∨

μ∈C−

D(μ) + 2πiφ̄(μ)ψ(x)
x − μ

.

Moreover, if ψ(x) =
∑N

j=1
cj

x−zj
with cj 	= 0, 
zj < 0 and zi 	= zj for i 	= j,

then
• The rational function D+(μ), μ ∈ C+, has a meromorphic continuation

to the lower half-plane and is given by D+(μ) = 1+2πi
∑N

j=1 cjφ(zj)(μ−
zj)−1 for μ ∈ C (note that this will not coincide with D(μ) in the lower
half-plane and that for generic φ ∈ H+

2 the continuation of the function
D−(μ) to C+ will not even exist),

• def (S) = N −P −M −M0, where P =
∑

pk and pk is the order of poles
of φ(μ)/D+(μ) in C−\{zj}N

j=1, M =
∑

mi, where mi are the ‘order of
the poles’ of φ(x)/D+(x) in R (i.e. mi is the minimum integer such
that (x − xi)miφ(x)/D+(x) is square integrable), M0 corresponds to a
degenerated case and is given by

M0 =
∣

∣

∣

∣

{

j : φ(zj) = 0 and lim
μ→zj

2πiφ̄(μ)cj

D+(μ)(μ − zj)
	= 1
}∣

∣

∣

∣

.

Remark 5.7. It is possible to choose rational φ and ψ in H+
2 (R) so that the

defect number N − P of Theorem 5.6 takes any value between 0 and N − 1,
while the corresponding defect number Ñ − P̃ for S̃ takes any value between
0 and Ñ − 1, independently of the value of N − P . Therefore, any values can
be realized for the defect numbers of S and S̃.

Proof. (outline) We use the fact that S = T where T is as defined in (2.5):
the elements of T are found by solving (Ã∗ − μ)u = 0 and varying μ over
the resolvent set of some appropriate operators AB . We therefore start by
solving

( ˜A∗ − μ)u = (x − μ)u − cu1 + 〈u, φ〉ψ = 0
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where φ, ψ ∈ H+
2 . Dividing by (x − μ) we find that u = (cu1 − 〈u, φ〉ψ)(x −

μ)−1. Taking the inner product with φ we get D(μ)〈u, φ〉 −
〈

cu
x−μ , φ

〉

= 0.

There are two cases to consider.

(1) μ ∈ C+. This means
〈

1
x − μ

, φ

〉

= 0, and therefore D(μ)〈u, φ〉 = 0.

There are two subcases to consider.

(1a) D(μ) 	= 0 which implies 〈u, φ〉 = 0, giving u =
1

x − μ
up to arbitrary

constant multiples.

(1b) D(μ) = 0 giving u =
cu1 − c̃ψ

x − μ
for arbitrary values cu and c̃. For any

boundary condition B, by suitable choice of the two constants we see
that μ belongs to the spectrum of AB . Therefore these functions are

not included in the space S. However, functions
1

x − μ
are in S due to

being able to approximate them using neighbouring values of μ.

(2) We take μ ∈ C−. Then 〈u, φ〉D(μ) =
〈

cu

x − μ
, φ

〉

= −2πicuφ̄(μ).

There are some subcases to consider.

(2a) D(μ) 	= 0 which implies u = cu
1 + (2πiφ̄(μ)/D(μ))ψ

x − μ
for arbitrary cu;

(2b) D(μ) = 0, φ̄(μ) = 0 giving by explicit calculation a two dimensional

kernel: u =
cu1 − c̃ψ

x − μ
for arbitrary values cu and c̃;

(2c) D(μ) = 0, φ̄(μ) 	= 0 giving cu = 0 and u = c̃
ψ

x − μ
for any c̃.

In the case (2b) for any boundary condition B, by suitable choice of the
two constants we see that μ belongs to the spectrum of AB . Therefore these

functions are not included in the space S. In the case (2c) the function
ψ

x − μ
should be included in S. There is only one B for which it is an eigenfunction
(formally B = ∞), but even for this choice of B it can be approximated by
elements from neighbouring kernels with D(μ) 	= 0. Note that this means
that S is independent of B as expected. This proves the formula for T = S
in the theorem.

We now obtain the expression for the dimension of S⊥, in the generic
case M = 0 = M0, when ψ(x) =

∑n
j=1 cj/(x − zj), where the zj are distinct,

lie in C− and the cj are all non-zero. We know that g ∈ S⊥ if and only if g
satisfies both (I) and (II) in Proposition 5.5: Using the definition of D− and
the fact that P− = I − P+ the second condition becomes

0 = (1 − 2πiP−(ψφ) + 2πiφψ)g − 2πiφP+(ψg)

= (1 + 2πiP+(ψφ))g − 2πiφP+(ψg). (5.8)
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The first bracket gives D+ and by Proposition 5.5 we know that g ∈ H−
2 and

so, taking boundary values, (5.8) becomes

D+(x)g − 2πiφ

N
∑

j=1

cjP+

(

1
x − zj

g

)

= 0, g ∈ H+
2 , x ∈ R

in which D+(x) are the boundary values on the real line of the function
D+(μ) = 1 +

∫

R

ψ(x)φ(x)
x−μ dx, μ ∈ C+. Thus by the Residue Theorem,

g ∈ H+
2 , g(x) =

2πiφ(x)
D+(x)

N
∑

j=1

cjg(zj)
x − zj

, x ∈ R. (5.9)

Therefore, by unique continuation of the meromorphic function to the lower
half plane (see [12]) g is given by

g ∈ H+
2 , g(μ) =

2πiφ(μ)
D+(μ)

N
∑

j=1

cjg(zj)
μ − zj

, μ ∈ C−, (5.10)

from which it is immediately clear that the space of all such g is at most N -
dimensional. Note that the expression on the right hand side of the equality
sign in (5.10) is not clearly an element of H−

2 ; to deal with this we substitute
the particular ψ under consideration into the formula for D+ and use residue
calculations to obtain the following expression for its analytic continuation
to C:

D+(μ) = 1 − 2πi
N
∑

j=1

φ(zj)
zj − μ

, μ ∈ C. (5.11)

If D+(μ) has no zeros in C− and if φ(zj) 	= 0 for all j then we get

g(μ) = 2πiφ(μ)
N
∑

j=1

cjg(zj)
D+(μ)(μ − zj)

, μ ∈ C−

and the condition that limμ→zj
g(μ) = g(zj) gives no additional restrictions,

as can be confirmed by a simple explicit calculation. In this case, therefore,
the defect of S is N .

Now suppose D+ has zeros in C−; for simplicity we are assuming that
they all lie strictly below the real axis. We let μ1, . . . , μν be the distinct poles
of φ/D+, with orders p1, . . . , pν and set P =

∑ν
j=1 pj . In order to ensure that

g given by (5.10) lies in H+
2 we need that the conditions

N
∑

j=1

cj

(μk − zj)n
g(zj) = 0, n = 1, . . . , pk, k = 1, . . . , ν, (5.12)

all hold - a total of P linear conditions on the numbers g(z1), . . . , g(zN ). We
now check that this is a full-rank system. Suppose for a contradiction that
there is a non-trivial set of constants αi,k such that

ν
∑

k=1

pk
∑

n=1

αi,k

(μk − zj)n
= 0, j = 1, . . . , N.
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Define a rational function by F (z) =
∑ν

k=1

∑pk

n=1
αi,k

(μk−z)n so that F has zeros
at z1, . . . , zN . Observe that Q(z) := F (z)

∏ν
k=1(μk − z)pk is a polynomial of

degree strictly less than P =
∑ν

k=1 pk, having N zeros. Now D+(μ) → 1 as

(μ) → ∞, so D+ has the same number of zeros as poles. In particular, D+

has at least as many poles in C as it has zeros in C−, giving N ≥ P . Thus
Q is a polynomial of degree < P ≤ N having N zeros. This means Q ≡ 0,
so F ≡ 0, and the constants αi,k must all be zero. This contradiction shows
that the set of linear constraints on the N values g(zj) has full rank P , and
so the set of allowable values for (g(z1), . . . , g(zN )) has dimension N − P .

The degenerated case leading to non-zero M and M0 can be analysed
similarly by considering the local behaviour of φ/D+ around zeroes of D+(x)
on the real axis. �

We conclude this part with an example. The details justifying the state-
ments can be found below.

Example 5.8. Let

ψ(x) =
α

x − z1
, z1 ∈ C−, α ∈ C\{0} and φ(x) =

1
x − w1

, w1 ∈ C+.

The root of D(λ) in C+ or its analytic continuation D+(λ) in C− is

λ0 = z1 +
2πiα

w1 − z1
.

We have three cases for N,P,M,M0 as in Theorem 5.6:
1. If λ0 ∈ C+ then N = 1, P = M = M0 = 0,
2. if λ0 ∈ C− then N = P = 1, M = M0 = 0,
3. if λ0 ∈ R then N = M = 1, P = M0 = 0.

Therefore, S⊥ is non-trivial if and only if λ0 = z1 + 2πiα
w1−z1

∈ C+. In this case,
S⊥ is one dimensional. Moreover,

S⊥ =

{

const

(t − w1)(t − z1 + 2πiα
w1−z1

)

}

and S = {f ∈ L2(R) : (P+f)(w1) = (P+f)(λ0)}.

Similarly, ˜S⊥ is non-trivial if and only if ˜λ0 := w1 + 2πiα
w1−z1

∈ C− (and

therefore D(˜λ0) = 0). Note that if λ0 ∈ C+, then also ˜λ0 ∈ C+, whilst if
˜λ0 ∈ C−, then also λ0 ∈ C−. Therefore, at least one of S and ˜S is the whole
space.

Moreover, we see that the bordered resolvent does not detect the sin-
gularities at the eigenvalues λ0 ∈ C+ or ˜λ0 ∈ C−: For λ ≈ λ0 ∈ C+ we have
from (3.12) and (3.13) that

(AB − λ)−1 = regular part at λ0 +
Pλ0

λ − λ0
, (5.13)

with the Riesz projection Pλ0 given by Pλ0 = 〈·, u1〉 u2, where

u1 =
φ

x − λ0

and u2 = α(z1 − λ0)
ψ(x) − 2πiMB(λ0)ψ(λ0)

x − λ0
. (5.14)
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Since u1 ∈ S⊥, the singularity is cancelled by PS . u2 is the eigenvector of
AB − λ0 (see [11]).

For λ ≈ ˜λ0 ∈ C− we have again from(3.12) and (3.13) that

(AB − λ)−1 = regular part at λ0 +
P
˜λ0

λ −˜λ0

, (5.15)

with

P
˜λ0

=

〈

·, (˜λ0 − w1)
φ(x) − 2πiMB(˜λ0)φ(˜λ0)

x −˜λ0

〉

αψ

x −˜λ0

, (5.16)

where ψ

x−˜λ0
is an eigenvector of AB for all (!) B and lies in ˜S⊥, so P

˜S cancels
the singularity of the resolvent.

We note that this behaviour of the bordered resolvent is in accordance
with Theorem 3.6 in [4].

Proof. (Statements in Example 5.8.) In this example, for λ ∈ C
+ we have by

the residue theorem

D+(λ) = 1 + α

∫ (

1
x − z1

· 1
x − w1

)

1
x − λ

dx

= 1 +
2πiα

(z1 − w1)(λ − z1)
=

λ0 − λ

z1 − λ
.

Clearly, this formula also gives the meromorphic continuation of D+ to the
lower half plane. We remark that this differs from D− which is given by
D−(λ) = 1 + (2πiα)(z1 − w1)−1(w1 − λ)−1. We now calculate the numbers
N,P,M,M0 from Theorem 5.6. ψ has a simple pole at z1 ∈ C−, hence N = 1.
As φ has no zeroes, M0 = 0. The function D+ has one pole at z1 ∈ C−, φ has
a simple pole at w1 ∈ C+. Thus all poles of φ/D+ in C− stem from zeroes of
D+. The only zero of this function is at λ0 = z1 + 2πiα(w1 − z1)−1. Thus, if
λ0 ∈ C+ then P = M = 0; if λ0 ∈ C− then P = 1, M = 0; if λ0 ∈ R then
P = 0, M = 1.

We next show the form of S⊥ and S in the case λ0 ∈ C+. Using φ ∈ H+
2 ,

from (5.1), we have g ∈ H−
2 and g = −2πiD−1

− φP−(ψg). Hence,
(

1 +
2πiα

(z1 − w1)(λ − w1)

)

g = − 2πiα

λ − w1
P−

(

g

λ − z1

)

= − 2πiα

λ − w1

(

g − g(z1)
λ − z1

)

.

Noting that g(z1) is a free parameter, a short calculation shows that

g =
−2πig(z1)

(λ − w1)(λ − λ0)
or g(x) =

const

(x − w1)(x − λ0)
.

Now, f ∈ S iff

0 =
∫

fg = const

∫

f(t)
(

1
t − w1

− 1
t − λ0

)

. (5.17)

This is equivalent to (P+f)(w1) = (P+f)(λ0). �
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Remark 5.9. We note that in the case when φ, ψ ∈ H+
2 taking λ, μ ∈ C+,

the M -function and the ranges of the solution operators Sλ,B and ˜Sμ,B∗

do not depend on φ and ψ [see (3.11) and (3.9)]. In fact, we have MB(λ) =
[sign(
λ)πi − B]−1, Sλ,Bf = (Γ2f)(x−λ)−1 and ˜Sμ,B∗f = (˜Γ2f)(x−μ)−1. In
this highly degenerated case, only the boundary condition B can be obtained.
Therefore, in this case a Borg-type theorem allowing recovery of the bordered
resolvent from the M -function is not possible, even with knowledge of the
ranges of the solution operators in the whole of the suitable half-planes. On
the other hand, knowledge of the ranges of the solution operators in both
half-planes, together with the M -function at one point allows reconstruction
by [7].

5.2. Analysis for the Case φ, ψ ∈ H+
2

Theorem 5.10. Let φ, ψ ∈ H+
2 . If B 	= −πi then def (SB) = 0. Similar results

hold for ˜SB by taking adjoints.

Remark 5.11. We note that the space SB as defined in (2.4) can depend on
B. In the case B = −πi we have

SB =
∨

μ∈C+

(

D(μ) − 2πiφ(μ)ψ(x)
x − μ

)

.

If φ or ψ additionally lies in L∞, then this gives def(SB) = +∞. However,
we consider this choice of B as a degenerate case, since the hypotheses of [7,
Proposition 2.9] are not satisfied.

Proof. We use the characterisation of S⊥ given in (5.1):

g ∈ S⊥ ⇐⇒ P+g − 2πi

D+
φP+(ψg) = 0 and P−g = 0

⇐⇒ g ∈ H+
2 and g =

2πi

D+
φψg.

Since D+ = 1 + 2πiψφ on R we have g ∈ H+
2 and (1 + 2πiφψ)g = 2πiφψg,

so g = 0. �

5.3. The General Case ψ, φ ∈ L2

We conclude this section by studying the general case. Without assumptions
on the support, or the Hardy class of φ and ψ, the results are rather compli-
cated. Therefore, in what follows we will not worry about imposing slightly
stronger regularity conditions on φ and ψ. Thus we assume

φ ∈ L2 and ψ ∈ L2 ∩ L∞ or φ, ψ ∈ L2 ∩ L4. (5.18)

In some cases (which will be mentioned in the text), we will require the
slightly stronger condition

φ ∈ L2 ∩ L2+ε for some ε > 0 and ψ ∈ L2 ∩ L∞ or φ, ψ ∈ L2 ∩ L4.

(5.19)
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We first define the following set

E0 := {α ∈ C : ∃ a set of positive measure E ⊆ R s.t.

1 + 2πiα(P+(φψ) − ψ(P+(φ))) = 0 on E}. (5.20)

Note that E0 consists of those α such that the factor
[

D+ − 2πi(P+φ)ψ
]

appearing in (5.3)–(5.5) vanishes on some non-null set E when ψ is replaced
by αψ.

Remark 5.12. In many cases, such as when ψ is analytic on R, the set E0 will
be empty. However, it is possible to construct examples with non-empty E0.
We now give such an example. Take φ and ψ with disjoint supports. Then
their product is 0 and the second term in formula (5.20) disappears. Choose
the function φ additionally such that P+(φ), the multiple of ψ in the third
term of (5.20), does not vanish on an interval, say [0, 1]. This is, for example,
the case if φ has fixed sign and its support is an interval. One can then choose
the function ψ on the interval [0, 1] such that, for some fixed non-zero value
of the parameter α, the whole third term −2πiαψ(P+(φ)) in (5.20) is equal
to −1 on the interval [0, 1]. Then for that choice of α the set E includes [0, 1]
and E0 is not empty.

Proposition 5.13. The set E0 defined in (5.20) is countable.

Proof. Let α ∈ E0\{0} and E be the set of positive measure on which 1 +
2πiα(P+(φψ) − ψ(P+(φ))) = 0. Set f = 2πi(P+(φψ) − ψ(P+(φ))). As 1 +
αf |E = 0 then f |E = −1/α; this can only be true for a countable set of α.
See, e.g. [7, Lemma 7.12]. �

Theorem 5.14. Assume (5.19). Let α ∈ E0, then def Sα = +∞.

Remark 5.15. When considering the corresponding ˜Sα note that the set

˜E0 :=
{

α : 1 + 2πiα(P+(ψφ) − φ(P+(ψ))) = 0 on a set of positive measure
}

does not need to coincide with E0, so it is possible to have def Sα 	= def ˜Sα

even for α ∈ E0. For examples of this, see [7].

Proof. Without loss of generality, we assume α = 1. Let E be the set of
positive measure from (5.20). For φ ∈ L2+ε, choose h ∈ L2(E) ∩ L∞(E),
while if φ ∈ L4, then choose h ∈ L2(E) ∩ L4(E). Now, set g = (P+φ)χEh −
φP−(χEh). By our assumptions on h and in (5.19), we have g ∈ L2.

We next show that g satisfies the right hand side of (5.3) pointwise. Note
that here and in several other places in this proof we use that P−P+f = 0.
This is justified as our assumptions on h and in (5.19) guarantee that the
functions f we apply this to are in appropriate function classes. We have

P−g = P−((P+φ)χEh − φP−(χEh))

= P−((P+φ)P−(χEh) − φP−(χEh))

= P−((P+φ − φ)P−(χEh))

= P−(−(P−φ)P−(χEh)) = −(P−φ)P−(χEh).
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Multiplying by 2πiψ and using that D+ − D− = 2πiψφ on the real axis by
the Sohocki–Plemelj Theorem (see [12]), gives

2πiψP−g = −2πiψ(P−φ)P−(χEh) = 2πiψ(−φ + (P+φ))P−(χEh)

= (−(D+ − D−) + 2πiψ(P+φ))P−(χEh). (5.21)

We rewrite the D−-term as follows.

D−P−(χEh) = P−(D−P−(χEh))
= P−((D− − D+)P−(χEh)) + P−(D+P−(χEh))
= P−((D− − D+)P−(χEh)) + P−(D+χEh).

Inserting this in (5.21), and rearranging gives the identity

2πiψP−g − P−((D− − D+)P−(χEh)) − P−(D+χEh)

= (−D+ + 2πiψ(P+φ))P−(χEh).

Multiplying by φ and using that on E we have D+ = 2πiψ(P+φ) this gives

2πiφ
(

ψP−g + P−(ψφP−(χEh)) − P−(ψ(P+φ)χEh)
)

= −(D+ − 2πiψ(P+φ))φP−(χEh),

which, noting that (D+ − 2πiψ(P+φ))χEh = 0, is the equation on the right
hand side of (5.3).

We now need to chose h ∈ L2(E) suitably to obtain an infinite dimen-
sional subspace for the corresponding g. Choose E′ ⊂ E with |E′| > 0 and suf-
ficiently small such that Ωφ 	⊆ E′ (as E has positive measure and φ is not iden-
tically zero this is always possible). Consider g = (P+φ)χE′h − φP−(χE′h).
By the above arguments, g ∈ S⊥. Moreover, g|(E′)c = −χ((E′)c)φP−(χE′h).
As χ((E′)c)φ 	≡ 0 and P−(χE′h) are the boundary values of an analytic func-
tion and therefore non-zero a.e. on R, we have g 	≡ 0 whenever P−(χE′h) 	≡ 0
(see [12]), which gives an infinite dimensional set of such functions. �

Theorem 5.16. Let φ ∈ L2 ∩ L∞ and ψ ∈ L2 ∩ C0(R), where C0(R) is the
space of continuous functions vanishing at infinity, and assume α 	∈ E0.

(i) Then def Sα > 0 if and only if (2πiα)−1 ∈ σp(M + K), where M =
(

(P+φ)ψ − P+(ψφ)
)

is a possibly unbounded multiplication operator and
K = φ [P+ψP− − P−ψP+] is the difference of two compact Hankel op-
erators multiplied by φ. Note that Dom (M + K) = Dom (M), where
Dom (M) is the canonical domain of the multiplication operator.
Moreover,

S⊥
α = ker

(

M + K − 1
2πiα

)

, so def Sα = dim ker
(

M + K − 1
2πiα

)

.

If (2πiα)−1 /∈ essrank∈RM(k), then

def Sα = dim ker

(

I + K
(

M − 1
2πiα

)−1
)

< ∞.
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(ii) Additionally assume M(k) is continuous. Then C\Ran M(k) is a count-
able union of disjoint connected domains. Set μ = (2πiα)−1. Then in
each of these domains we have either
(I) def Sα = 0 whenever μ is in this domain except (possibly) a discrete

set, or
(II) def Sα 	= 0 is finite and constant for any μ in the domain except

(possibly) a discrete set.
Moreover, for μ sufficiently large, we have def Sα = 0.

Proof. (outline) The first part follows easily from (5.5) in Proposition 5.1 and
standard results on compact operators. The compactness of the difference of
Hankel operators follows from [19, Corollary 8.5].

For the second part, consider the analytic operator-valued function I +
(M − μI)−1K which is a compact perturbation of I. We need to know the
values μ ∈ C for which this operator has non-trivial kernel. Each connected
component of C\essran M either contains only discrete (countable) spectrum
or else lies entirely in the spectrum. However for large μ, {0} = ker(I +
(M−μ)−1K), so by the Analytic Fredholm Theorem (see [21]), outside some
bounded set there is no spectrum of M + K. �

Although this theorem gives a description of Sα for a rather general case
of ψ and φ, for concrete examples as investigated in previous subsections it is
useful to determine the space explicitly rather than just give the description
in terms of operators K and M. However, this theorem shows the topological
properties of the function def Sα in the α-plane.

Example 5.17. Let

ψ(x) = α

(

c1

x − z1
+

c2

x − z2

)

with z1, z2 ∈ C−, z1 	= z2, α ∈ C\{0}

and

φ(x) =
1

x − w1
with w1 ∈ C+.

We wish to analyse the defect as a function of α. By Theorem 5.6, we need
to determine the number of roots of the analytic continuation D+(λ) of D(λ)
in C−. Now,

D+(λ) = 1 − 2πiα

(

c1

(z1 − w1)(z1 − λ)
+

c2

(z2 − w1)(z2 − λ)

)

. (5.22)

After setting μ̂ := 2πiα
(z1−w1)(z2−w1)

a short calculation shows that the roots of
D+(λ) solve

λ2 + λ(d1μ̂ − z1 − z2) + d2μ̂ + z1z2 = 0, (5.23)

where

d1 = c1(z2 − w1) + c2(z1 − w1) and d2 = −c1z2(z2 − w1) − c2z1(z1 − w1).

In particular, for μ̂ = 0 the roots are z1, z2 ∈ C−. By continuity, for small
|α|, by Theorem 5.6 we have def Sα = 0.
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For a polynomial λ2 + pλ+ q = 0, an elementary calculation shows that
it has a real root iff

(
q)2 = (
p) (�p
q − �q
p) and 4�q ≤ |p|2. (5.24)

We now analyse the defect in a few examples.
(A) We first make the specific choice

ψ(x) = α

(

−2
x + i

+
3

x + 2i

)

and φ(x) =
1

x − i
.

Then d1 = 0, d2 = −6 and the equation in (5.24) becomes

(
μ̂)2 =
1
2
(1 + 3�μ̂). (5.25)

All μ̂ satisfying (5.25) satisfy the inequality in (5.24). This gives a
parabola in the α-plane (or equivalently the μ̂-plane) with def Sα = 0
inside or on the parabola and def Sα = 1 outside. In the 1/α-plane this
gives a curve whose interior is a petal-like shape with def Sα = 0 for
1/α outside or on the curve and def Sα = 1 for 1/α inside the curve.

(B) We now return to the formula for D+ in (5.22). Setting μ = (2πiα)−1,
we have

μ =
c1

(z1 − w1)(z1 − λ)
+

c2

(z2 − w1)(z2 − λ)
. (5.26)

Clearly for λ → ±∞, we have that μ = 0. We now choose c1, c2 to get
another real root at λ = 0. Consider

ψ(x) = α

(

−1
x + i

+
3

x + 2i

)

and φ(x) =
1

x − i
.

In the μ-plane this leads to one petal. As λ runs through R, this curve is
covered twice (once for λ < 0 and once for λ > 0). We have def Sα = 0
for μ outside the curve and def Sα = 2 for μ inside the curve. On the
curve we have def Sα = 0. The double covering of the curve allows the
jump of 2 in the defect when crossing the curve.

(C) More generally, if ψ has N terms, then the problem of finding real roots
of D+(λ) leads to studying the real zeroes of

ξ(λ) :=
N
∑

k=1

ak

zk − λ
, where ak = ckφ(zk).

Generically ξ will not have real zeroes and we will only get one petal
in the μ-plane. However, we can arrange it that ξ has N − 1 real zeroes
which leads to N petals in the μ-plane. Assume aN 	= 0. Then to do
this, we need to solve the linear system,

Z

⎛

⎜

⎝

a1

...
aN−1

⎞

⎟

⎠
=

⎛

⎜

⎝

− aN

zN−λ1
...

− aN

zN−λN−1

⎞

⎟

⎠
, (5.27)

where the matrix Z has jk-component given by zjk = (zk − λj)−1. Z is
invertible whenever all zk ∈ C−, λj ∈ R are distinct.
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Figure 1. The curve in the 1/α-plane along which D+ has
a real root for the case λ1 = 0, λ2 = 1, λ3 = −2, z1 = −i,
z2 = 1− i, z3 = −2− i, z4 = 3−2i and a4 = 1. On the right,
zoom of part of the curve including the number of roots of
D+ in C− in different components

For the example in Fig. 1, the defect in each of the components is
given by 4− ν− where ν− denotes the number of roots of D+ in C− (by
Theorem 5.6). At each curve precisely one of the roots crosses from the
lower to the upper half-plane, thus increasing the defect by 1. On the
curve itself, one root is on the real axis and by Theorem 5.6, the defect
coincides with the smaller of the defects on the components on each
side of the curve. By a similar reasoning at the three non-zero points
of self-intersection of the curve the defect coincides with the smallest
defect of the neighbouring components.

This example displays the analytical nature of finding the defect
in terms of the location of roots of D+ using Theorem 5.6. On the
other hand, it also displays the topological nature of the same situation
mentioned in Theorem 5.16. The complex 1/α-plane is separated into
components in which the defect is constant everywhere (in this exam-
ple the exceptional discrete set is empty). The curves are the range of
2πiM(t) on the real axis.
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