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Abstract: This paper reviews the existing literature on the superimposed renewal process, with its foci on

probabilistic and statistical properties, statistical inference, and applications in reliability analysis and maintenance

policy optimisation. It then proposes future research topics. Copyright © 2019 John Wiley & Sons, Ltd.

1. Introduction

Let fN(t); t > 0g be a nonnegative integer-valued stochastic process and the number of occurrences of an event during

the time interval (0; t], where the time durations between consecutive occurrences are independent and identically

distributed random variables. Then, fN(t); t > 0g is a renewal process (see stat05084 for more discussion).

Suppose there are n independent renewal processes fNi(t); t > 0g with i = 1; 2; :::; n. The stochastic process

f
∑

n

i=1 Ni(t); t > 0g is the superposition of the n renewal processes, or a superimposed renewal process (SRP).

For the convenience of expression, we denote fXi ;k ; k = 1; 2; :::g as the inter-renewal times of the i-th renewal

process, Fi(t) as the cumulative distribution function (CDF) of Xi ;k , fYn;k ; k = 1; 2; :::g as the successive occurrence

times between events of the SRP, and Gn;k(t) as the CDF of Yn;k .

In the language of reliability mathematics, the above notions can be explained as follows. Suppose that a system is

composed of n sockets, each of which contains a component. Whenever a component fails, the system fails and the

failed component is replaced with a new and identical one. Since the replacement of a component in its corresponding

socket can result in the socket as being �good as new� immediately after the replacement, the replacement can be

regarded as a renewal. Thus, the counting process that counts the observed cumulative number of failures in socket

i , Ni(t), forms a renewal process. Xi ;k is therefore the lifetime of the component in socket i after the (k � 1)-th

replacement (where Xi ;k � 0); Fi(t) is the lifetime distribution of the components in socket i ; Yn;k is the lifetime of

the system after the (k � 1)-th failure; and Gn;k(t) is the CDF of the life time between the (k � 1)-th and k-th failures

of the system.
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Figure 1 illustrates an SRP formed by the failure process of a series system composed of three sockets. The failures

are marked by the blue crosses on the three sockets, which are represented by the top three horizontal lines, and the

failures of the system, marked by the red crosses on the bottom horizontal line, are formed by the union of all the

failures of the three sockets.

Figure 1. Superimposed renewal process.

It is known in the reliability literature that the mean cumulative number of failures (MCF) is one of the most

widely used reliability indices. Denote Mi(t) as the MCF of the i-th socket. Since the occurrences of failures of the

components in the n di�erent sockets are independent, the MCF of the system can be estimated by

M(t) =

n∑
i=1

Mi(t); (1)

where Mi(t) can be estimated with the renewal function: Mi(t) = E[Ni(t)] =
∑
1

k=1 F
(k)
i

(t) and F
(k)
i

(t) is the k-fold

convolution of Fi(t).

One may also use the rate of occurrence of failures (ROCOF), m(t), to describe the reliability of a repairable

system, as de�ned below,

m(t) =
dM(t)

dt
: (2)

Denote mi(t) =
dMi (t)

dt
, then m(t) =

∑n

i=1mi(t) =
∑n

i=1
dMi (t)

dt
.

Examples. In the reliability literature, there are many examples of the SRP. For example, Kallen (2011) considers

a steel structure that is protected against corrosion by a coat of paint. Once 3% of the total surface of the coating

is damaged, these damaged areas are repaired. The remaining 97% of the surface is left as such. The author then

regards that the coated surface is composed of a grid of cells and that the arrival of damages to the coating in each

cell follows a renewal process. As a result, the arrivals of damages on the entire surface form an SRP. Other reliability

examples can also be found in Krivtsov & Frankstein (2014); Zhang et al. (2017) and Song & Xie (2018).

The literature on the SRP is rich. Cinlar (1972) provides an excellent review of the SRP. This paper aims to give a

literature review of the existing research conducted since 1972. The remainder of the paper is structured as follows.

Sections 2, 3, and 4 review the probabilistic and statistical properties of the SRP, the statistical inference of the SRP,

and the applications of the SRP in reliability engineering, respectively. Section 5 concludes the paper and proposes

future research topics.
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2. Probabilistic and Statistical Properties

In the literature, the foci on the SRP are on the limiting properties of the probability distribution Gn;k(t) and its

relevant statistics such as the expected value and the variance.

Cox & Smith (1954) prove that, as n approaches to in�nity and Fi(t) are the same with i = 1; 2; : : : ; n, the SRP

becomes a homogenous Poisson process (HPP). For the case that Fi(t) are di�erent with i = 1; 2; : : : ; n, Drenick

(1960) shows that when n is in�nity and the time is far away from the origin, an SRP behaves like an HPP (Drenick's

theorem). He also proved that the distribution of the time to �rst failure of a series system with n !1 is approximately

the exponential distribution.

Corrections to the exponential distribution that account for the case with n <1 are also provided by Drenick (1960)

and Cox (1962), respectively. Later, Blumenthal et al. (1973) develop correction terms for the �nite age of the system

as well (i.e., for the case of t <1).

If Xi ;k > 0, then a renewal process fNi(t); t > 0g is called an ordinary renewal process. Samuels (1974) shows that

if the superposition of two ordinary renewal processes is an ordinary renewal process, then all processes are Poisson.

Ferreira (2000) later generalises Samuels's result to the case in which the inter-renewal times of a process may be zero

(i.e., Xi ;k � 0) and showed that, besides the Poisson processes, there are two pairs of binomial-like processes whose

superposition is a renewal process as well. Teresalam & Lehoczky (1991) extend the asymptotic results for ordinary

renewal processes to the SRP. In particular, the ordinary renewal functions, renewal equations, and the key renewal

theorem are extended to the SRP.

An SRP tends toward (statistical) equilibrium as the time of operation becomes very large. Blumenthal et al. (1984)

show that for the SRP at equilibrium, the exponential distribution for times between failures is reasonably well justi�ed.

In the transient state, the times between failures follow the exponential distribution as well, but with a time varying

scale parameter. The authors state that ignoring this parameter and using a partly aged system to make inferences

about the mean life of a fully aged system can lead to very misleading outcomes. Franken (1963); Grigelionis (1963)

and Grigelionis (1964) show that the number of events,
∑

n

i=1 Ni(t), in time interval (0; s) has a complex distribution

and it can be approximated by the Poisson distribution for the case of n being large, which agrees with the results of

(Drenick, 1960; Cox & Smith, 1954). This approximation is inaccurate if n is not large enough(Blumenthal, 1993). If

no individual renewal process fNi(t); t > 0g has more than one event in time interval (0; s), Blumenthal (1993) gives

a binomial-like expression of the probability of exactly r events for the SRP.

Given two stochastic processes: an SRP in which Fi(t) (i = 1; 2; :::; n) are mixed exponential distributions and whose

MCF is M(t), and a nonhomogeneous-Poisson-process (NHPP) fN�(t); t � 0g with E[N�(t)] = M(t), Arjas et al.

(1991) obtain the relationship between their variances: Var[N�(t)] � Var[M(t)].

Barlow & Proschan (1996) give general discussions of SRPs and some limiting results. In general, the SRP will not

be a renewal process unless the component renewal processes are homogenous Poisson processes.

Krivtsov & Frankstein (2014) discuss methods of statistical hypothesis testing to distinguish two situations: that

all or most of the failures of a multi-socket system with the same type of component in each socket (namely, an

SRP with identical Fi(t) for i = 1; 2; :::; n) are caused by the failure of one socket because of a system problem (e.g.,

components are stressed more in one socket, relative to the others) and that the failures of the system may be caused

by di�erent sockets. The authors illustrate their method using the failure data of a 4�cylinder petroleum engine with

four identical spark plugs.

Simulation Examples. We use Monte Carlo simulation to generate the failure processes of six series systems. The
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�rst three systems are composed of 250, 2000, and 20000 sockets, in which components are identical, respectively,

and the second three systems are composed of the same numbers of sockets as the �rst three systems, however, the

components in di�erent sockets in a system may be di�erent. The lifetime distributions of the components follows

Weibull distributions, i.e., Fi(t) = 1� e
�( t

�
)� , where � and � may be di�erent. We then calculate the failure rates

within time intervals (k � 1; k ] (k = 1; 2; :::), that is, the number of failures within time interval (k � 1; k ] divided by

the number of components. Figures 2-7 show the failure rate functions of the systems that are composed of n = 250,

n = 2; 000, and n = 20; 000 components, respectively, as indicated by the caption of each �gure. That is, in each

�gure, the X axis shows time and the Y-axis show failure rates.

� All of the components in Figures 2, 3, and 4 have the same shape parameter and scale parameter, � = 1:5 and

� = 20;

� Figures 5, 6, and 7 have di�erent shape parameters and scale parameters and are randomly generated with

constraints: � 2 [0:5; 4] and � 2 [12; 60].

Figure 2. n = 250, � = 1:5, and � = 20.
Figure 3. n = 2000, � = 1:5, and � =

20.

Figure 4. n = 20000, � = 1:5, and � =

20.

Figure 5. n = 250,� 2 [0:5; 4], and � 2

[12; 60]:

Figure 6. n = 2000, � 2 [0:5; 4], and � 2

[12; 60]:

Figure 7. n = 20000, � 2 [0:5; 4], and

� 2 [12; 60]:

From the above six �gures, it can be seen that, for systems composed of identical components and for systems

composed of di�erent components, the failure rate functions reach an equilibrium state when n becomes large and

time becomes large, which agrees with the results of the limiting lifetime distribution Gn;k(t) of the SRP for n and k

approaching in�nite (Cox & Smith, 1954; Drenick, 1960; Cox, 1962). From the six �gures, the failure rate functions

are increasing in the early period of each �gure, which con�rms the result of Khinchin's statement that the SRP

behaves like a NHPP if the number of sockets in an SRP is large (Khinchin, 1956). Unfortunately, we are not able to

con�rm the result of Drenick (1960) that the distribution of the time to �rst failure of a series system with n !1 is

approximately the exponential distribution, which is because there is only one observation representing the �rst time

to failure and therefore there is no dynamic movement that can be observed in each �gure.
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In addition to the above interpretation of the �gures, we have the following two notes.

� It is noted that the �uctuations may become less severe if we draw the failure rate functions based on a wider

time interval, for example, calculate failure rates within time interval (k � 1; k + 1], where k = 2k0 � 1 and

k0 = 1; 2; :::. However, if the unit of the scale parameter � is year, for example, � = 20 re�ecting a 20 year

design life, then it is reasonable to calculate the failure rate of a system within time interval (k � 1; k + 1], i.e.,

on a one-year basis.

� The failure rates are calculated on discrete intervals and should have therefore shown di�erent points on the

�gures. In the �gures, however, the failure rates are linked for the sake of visualisation.

3. Statistical Inference

As discussed in Section 1, an SRP may include the following quantities:

� n: the number of sockets;

� Fi(t): the cumulative probability distribution of the times between successive occurrences;

� Mi(t): the mean cumulative number of failures (MCF).

In the literature, there are publications on estimating the above three quantities, which are reviewed in this section.

3.1. Estimation of n

Nayak (1991) considers a superposition of an unknown number of independent HPPs with unknown rates. The author

then estimates the number of renewal processes (i.e., the number of sockets) and their rates by observing the failure

process of the system for some time.

Dewanji et al. (2012) propose a nonparametric method to estimate the number of the renewal processes in an SRP

with Fi(t) being identical distribution function for i = 1; 2; :::; n.

3.2. Estimation of Reliability Indices

The reliability of a series system, for example, socket i , can be characterised by one of the two functions: Fi(t) and

Mi(t). Obviously, the quantity mi(t) discussed in Section 1 (i.e., the rate of occurrence of failures (ROCOF)), can be

derived from Mi(t).

3.2.1. Estimation of Fi(t)

There have been few studies on estimating the component failure-time distribution Fi(t) in an SRP. For applications

involving aircraft components, Peixoto (2009) proposes a method to estimate the failure-time distribution Fi(t) by

assigning the event times to sockets randomly, and then using simulation to correct for bias. In Peixoto's study, a

second layer of simulation is needed to quantify statistical uncertainty (e.g., to compute con�dence intervals).

There has been some other work on estimating component lifetime distributions Fi(t). Trindade & Haugh (1980)

propose a non-parametric estimator of the lifetime distribution, based on the deconvolution of the renewal equation.

Baxter (1994) derives a non-parametric estimator of the lifetime distribution function in a discretised manner and

investigates the performance of the method proposed based on the renewal function deconvolution. Tortorella (1996)
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proposes an estimation procedure by building a pooled discrete renewal process model and estimating the component

reliability based on a maximum likelihood-like method.

Kallen (2011) proposes an asymptotic inter-failure time distribution method to estimate the lifetime distribution

Fi(t), which requires the system to have run for a long time (i.e., t is large) before the asymptotic approximation

becomes valid.

In practice, it often happens that times between failures are known and the causes of failure observations are

obtained. Such data are referred to as masked times between failure data. For example, Usher (1987) notes, `... when

large computer systems fail, analysis is often performed such that a small subset of components, perhaps a circuit

board, is identi�ed as the cause of failure. In an attempt to repair the system as quickly as possible, the entire subset

of components is replaced and the exact failing component may not be investigated further`.

Based on the consideration that the likelihood for a single SRP is the sum of the likelihoods for all possible data

con�gurations that could have led to the observed SRP, Zhang et al. (2017) estimate the lifetime distribution of a

component from the aggregated event data for a �eet with multiple identical systems, namely, a set of identical SRP's.

Here, by the aggregated data, the authors mean �masked times between failure data". The procedure works well when

the number of events for each SRP is relatively small and the number of systems is su�ciently large, but has limitation

for SRPs with a large number of events.

3.2.2. Estimation of M(t)

Mukhopadhyay & Samuel (2010) propose a Bayesian approach to estimating the expected number of system repairs

(i.e, M(t)), the system failure rate, and the conditional intensity function by sampling from posterior distributions of

the Weibull parameters.

Assuming the underlying lifetime distribution of the components to be identically mixed-exponential and each failure

is masked with the same probability p for all components, where p is unknown and can be estimated from �eld data,

Hansen & Thyregod (1990) suggest a least squares technique based method for an SRP to approximate the mean

cumulative number of failures in a repairable system and compare its properties with the properties of the maximum

likelihood method by means of simulation studies. Their work indicates that for a given type of data, the approximate

method seems to provide e�cient and almost unbiased estimates. Moreover, to �nd the parameter estimates, the

method only requires a fraction of the time needed for the corresponding maximum likelihood estimation.

4. Approximation and Applications of the SRP

In the reliability literature, the e�ectiveness of maintenance is classi�ed into the following three categories.

� AGAN (as good as new): If a new, identical item is used to replace a failed item, then the reliability of the new

item equals to that of the failed item. That is, the e�ectiveness of the maintenance (precisely, replacement in

this case) is AGAN.

� ABAO (as bad as old): If a maintenance restores a failed item to the status immediately before the item failed,

we say the maintenance is an ABAO one or the maintenance is a minimal maintenance.

� imperfect: an imperfect maintenance restores the maintained item to a status between AGAN and ABAO.

The renewal process is widely used for modelling the failure process of a socket with the AGAN maintenance

e�ectiveness and the NHPP is for modelling the ABAO. The maintenance e�ectiveness of an event occurrence in
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an SRP, on the other hand, is a typical example of the imperfect maintenance. For an SRP with di�erent Fi(t), the

e�ectiveness of replacing failed components in di�erent sockets may be di�erent on the system and can be regarded

as a random variable. This makes the SRP di�erent from most existing repair models, including the virtual age process

(Kijima & Sumita, 1986), the geometric process (Lam, 1988), and the doubly geometric process (Wu, 2018), in all

of which the maintenance e�ectiveness is deterministic.

4.1. Approximation of the SRP

Due to the complexity of the SRP, to develop approaches to approximating the SRP o�ers an alternative solution,

which has received much attention. Below we simply review approximation methods for solving reliability problems.

Hansen & Thyregod (1990) state that if only masked time between failure data are available, the most common

approach is to approximate the SRP model by a NHPP with the same MCF. This approximation is particularly

reasonable in the case where either data are sparse, or where the number of sockets is large.

Wu & Scarf (2017) and Wu (2019) assume that the components are heterogeneous in the series system and the

causes of the system failures are unknown, or masked. They then propose methods to approximate the SRP for the

cases when there are only masked time between failure data available.

Wu & Scarf (2017) propose two models, Model I and Model II, to approximate the failure process of a series system

composed of di�erent components. Model I regards the failure process of a series system equivalent to that of a

virtual system consisting of two sockets into each of which a virtual component is inserted. Whenever the system

fails, replacement occurs at socket 1 and no maintenance is conducted on the virtual component in socket 2. Model

II regards the failure process of a series system equivalent to that of a virtual system consisting of a socket and a

subsystem. The socket contains one virtual component and the subsystem contains a number of sockets into each of

which there is an inserted virtual component. Broadly speaking, whenever the series system fails, replacement occurs

at socket 1 and the virtual subsystem is imperfectly repaired.

By taking the work of Wu & Scarf (2017) forward, Wu (2019) proposes other two models. The �rst model simply

regards the failure process of a real-world system equivalent to that of a virtual system composed of a number of

di�erent virtual components and the second assumes that those virtual components are identical. In either model, it is

assumed: if the real system fails, the oldest virtual component is replaced. According to the comparison between the

two models and the nine other existing models on arti�cially generated data, with respect to the model performance

metrics Akaike's information criterion (AIC), corrected Akaike's information criterion (AICc) and Bayesian information

criterion (BIC), the second model proposed in his paper outperforms the ten other models. It also outperforms the

nine other existing models on �fteen real-world datasets.

To overcome the problem of the data scarcity and that of the unknown failure modes, Wu's method essentially

builds a time series model on the failure intensity functions after system failures (Wu, 2019).

4.2. Applications of the SRP in Reliability

Barnett & Kenward (1996, 1998) use the SRP in scheduling inspection policies for alarm security systems. They

obtain some theoretical properties of the relevant SRP model for the case of a Poisson alarm process both when the

inter-inspection interval is constant and when it takes the form of another independent HPP. These properties are used

to motivate the choice of inference procedures for examining the basic nature of the underlying processes. Kim & Kuo

(2011) compares two burn-in options: component burn-in and system burn-in, where one of the systems considered is

a series system whose failures form an SRP.
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5. Conclusions and Future Research

This paper reviewed the existing research on the superimposed renewal process. Most publications are concentrated

on its probabilistic properties and statistical inference.

As above-discussed, one can safely regard the maintenance e�ectiveness of the replacements in the SRP is imperfect

on the entire system. In the literature, much research on modelling imperfect maintenance for single-component systems

has been published. The SRP is a good model for modelling the failure processes of multi-component systems and

deserves more study in the reliability literature. Since real-world systems are normally composed of a limited number of

components, simply applying those limiting probabilistic properties may lead to biased results. As such, the following

research topics may be of interest.

� How can maintenance policies for a system modelled by the SRP be developed to minimise relevant cost due to

failures.

� Sensitivity analysis should be performed on the approaches to approximating an SRP and associated risks may

then be analysed.

� Further to the work of Wu & Scarf (2017); Wu (2019), better methods to approximate the failure process of a

system with a small number of sockets should be developed.

Further Readings

As above-discussed, the renewal process and the nonhomogeneous Poisson process are the two most commonly used

stochastic processes in the reliability literature. In addition to the superposition of renewal processes, there are some

other research on the superposition of other stochastic process in the reliability literature.

Zhao & Xie (1994) use the EM algorithm to solve the problem of maximum likelihood estimation for the superposition

of nonhomogeneous Poisson process models (see, stat04548, for more discussion on Poisson processes). This result

makes it very easy to obtain maximum likelihood estimates of parameters. Weckman et al. (2001) estimate the

parameters of the superimposed NHPP process for a series system composed of identical components and illustrate

the method with an example of a jet engine application.

Lam (1993) studies the superposition of Markov renewal processes (SMRP) with countable state spaces. The author

de�nes the SMRP equations associated with the superposed process. The solutions of the superposition-Markov renewal

equations are derived and the asymptotic behaviours of these solutions are studied.

On publications on the super-imposed renewal process related to the other processes, the reader is referred to Stadje

(2012) and Alamilla et al. (2015), for example.

Other relevant and interesting readings include stat04170, stat04174, stat04177, stat04178, stat04179, stat04181,

stat04182, stat04183.

Acknowledgements

The author would like to thank Professor Fabrizio Ruggeri for his helpful comments, which lead to improvements in

the presentation of this paper.

Copyright © 2019 John Wiley & Sons, Ltd. 8 Wiley StatsRef 2019, 99 1�11

Prepared using WileySTAT.cls



Superimposed Renewal Processes in Reliability Wiley StatsRef

References
Alamilla, JL, Vai, R & Esteva, L (2015), `Estimating seismic-source rate parameters associated with incomplete

catalogues and superimposed poisson-renewal generating processes,' Journal of Seismology, 19(1), pp. 55�68.

Arjas, E, Hansen, CK & Thyregod, P (1991), `Heterogeneous part quality as a source of reliability improvement in

repairable systems,' Technometrics, 33(1), pp. 1�12.

Barlow, RE & Proschan, F (1996), Mathematical theory of reliability, vol. 17, John Wiley & Sons, New York.

Barnett, V & Kenward, MG (1996), `Security systems and renewal processes,' Communications in Statistics-Theory

and Methods, 25(3), pp. 475�487.

Barnett, V & Kenward, MG (1998), `Testing a poisson renewal process in the context of security alarm maintenence

policies,' Communications in Statistics-Theory and Methods, 27(12), pp. 3085�3094.

Baxter, LA (1994), `Estimation from quasi life tables,' Biometrika, 81(3), pp. 567�577.

Blumenthal, S (1993), `New approximations for the event count distribution for superimposed renewal processes at

the time origin with application to the reliability of new series systems,' Operations research, 41(2), pp. 409�418.

Blumenthal, S, Greenwood, J & Herbach, L (1973), `The transient reliability behavior of series systems or superimposed

renewal processes,' Technometrics, 15(2), pp. 255�269.

Blumenthal, S, Greenwood, JA & Herbach, LH (1984), `Series systems and reliability demonstration tests,' Operations

Research, 32(3), pp. 641�648.

Cinlar, E (1972), `Superposition of point processes,' in Lewis, P (ed.), Superpositiof point processes, Stochastic Point

Processes: Statistical Analysis, Theory, and Applications, Wiley, New York, NY.

Cox, D & Smith, WL (1954), `On the superposition of renewal processes,' Biometrika, 41(1-2), pp. 91�99.

Cox, DR (1962), Renewal theory, Methuen, London.

Dewanji, A, Kundu, S & Nayak, TK (2012), `Nonparametric estimation of the number of components of a superposition

of renewal processes,' Journal of Statistical Planning and Inference, 142(9), pp. 2710�2718.

Drenick, R (1960), `The failure law of complex equipment,' Journal of the Society for Industrial and Applied

Mathematics, 8(4), pp. 680�690.

Ferreira, J (2000), `Pairs of renewal processes whose superposition is a renewal process,' Stochastic Processes and

Their Applications, 86(2), pp. 217�230.

Franken, P (1963), `A re�nement of the limit theorem for the superposition of independent renewal processes,' Theory

of Probability & Its Applications, 8(3), pp. 320�328.

Grigelionis, B (1963), `On the convergence of sums of random step processes to a poisson process,' Theory of

Probability & Its Applications, 8(2), pp. 177�182.

Grigelionis, B (1964), `Limit theorems for sums of renewal processes,' Cybernetics in the Service of Communism, 2,

pp. 246�266.

Hansen, CK & Thyregod, P (1990), `Estimation of the mean cumulative number of failures in a repairable system

with mixed exponential component lifetimes,' Quality and Reliability Engineering International, 6(5), pp. 329�340.

Wiley StatsRef 2019, 99 1�11 9 Copyright © 2019 John Wiley & Sons, Ltd.

Prepared using WileySTAT.cls



Wiley StatsRef Shaomin Wu

Kallen, MJ (2011), `Modelling imperfect maintenance and the reliability of complex systems using superposed renewal

processes,' Reliability Engineering & System Safety, 96(6), pp. 636�641.

Khinchin, AI (1956), `On poisson streams of random events,' Theory of Probability and Its Applications, 1, pp.

248�255.

Kijima, M & Sumita, U (1986), `A useful generalization of renewal theory: counting processes governed by non-negative

markovian increments,' Journal of Applied Probability, 23(1), pp. 71�88.

Kim, KO & Kuo, W (2011), `Component and system burn-in for repairable systems,' IIE Transactions, 43(11), pp.

773�782.

Krivtsov, V & Frankstein, M (2014), `Reliability analysis of `sibling' components,' in 2014 Reliability and Maintainability

Symposium, IEEE, pp. 1�4.

Lam, CT (1993), `Superposition of markov renewal processes and applications,' Advances in Applied Probability, 25(3),

pp. 585�606.

Lam, Y (1988), `Geometric processes and replacement problem,' Acta Mathematicae Applicatae Sinica, 4, pp. 366�

377.

Mukhopadhyay, C & Samuel, MP (2010), `Bayesian analysis of a superimposed renewal process,' Communications in

Statistics-Theory and Methods, 40(2), pp. 279�303.

Nayak, TK (1991), `Estimating the number of component processes of a superimposed process,' Biometrika, 78(1),

pp. 75�81.

Peixoto, J (2009), `Estimating lifetimes when several unidenti�ed components are reported,' Proceedings of the

Physical and Engineering Sciences Section of the American Statistical Association, pp. 5078�5092.

Samuels, S (1974), `A characterization of the poisson process,' Journal of Applied Probability, 11(1), pp. 72�85.

Song, S & Xie, M (2018), `An integrated method for estimation with superimposed failure data,' in 2018 IEEE

International Conference on Prognostics and Health Management (ICPHM), IEEE, pp. 1�5.

Stadje, W (2012), `Embedded markov chain analysis of the superposition of renewal processes,' Statistics & Probability

Letters, 82(8), pp. 1497�1503.

Teresalam, C & Lehoczky, JP (1991), `Superposition of renewal processes,' Advances in Applied Probability, 23(1),

pp. 64�85.

Tortorella, M (1996), `Life estimation from pooled discrete renewal counts,' in Lifetime data: models in reliability and

survival analysis, Springer, pp. 331�338.

Trindade, DC & Haugh, LD (1980), `Estimation of the reliability of computer components from �eld renewal data,'

Microelectronics Reliability, 20(3), pp. 205�218.

Usher, JS (1987), Estimating component reliabilities from incomplete accelerated life test data, Ph.D. thesis, North

Carolina State University.

Weckman, G, Shell, R & Marvel, J (2001), `Modeling the reliability of repairable systems in the aviation industry,'

Computers & Industrial Engineering, 40(1-2), pp. 51�63.

Wu, S (2018), `Doubly geometric processes and applications,' Journal of the Operational Research Society, 69(1),

pp. 66�77.

Copyright © 2019 John Wiley & Sons, Ltd. 10 Wiley StatsRef 2019, 99 1�11

Prepared using WileySTAT.cls



Superimposed Renewal Processes in Reliability Wiley StatsRef

Wu, S (2019), `A failure process model with the exponential smoothing of intensity functions,' European Journal of

Operational Research, 275(2), pp. 502�513.

Wu, S & Scarf, P (2017), `Two new stochastic models of the failure process of a series system,' European Journal of

Operational Research, 257(3), pp. 763�772.

Zhang, W, Tian, Y, Escobar, LA & Meeker, WQ (2017), `Estimating a parametric component lifetime distribution

from a collection of superimposed renewal processes,' Technometrics, 59(2), pp. 202�214.

Zhao, M & Xie, M (1994), `EM algorithms for estimating software reliability based on masked data,' Microelectronics

Reliability, 34(6), pp. 1027�1038.

Wiley StatsRef 2019, 99 1�11 11 Copyright © 2019 John Wiley & Sons, Ltd.

Prepared using WileySTAT.cls


	1 Introduction
	2 Probabilistic and Statistical Properties
	3 Statistical Inference
	3.1 Estimation of n
	3.2 Estimation of Reliability Indices
	3.2.1 Estimation of Fi(t)
	3.2.2 Estimation of M(t)


	4 Approximation and Applications of the SRP
	4.1 Approximation of the SRP
	4.2 Applications of the SRP in Reliability

	5 Conclusions and Future Research

