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Abstract 

This paper introduces the Steiner Pollution-Routing Problem (SPRP) as a realistic variant of the PRP that can take 

into account the real operating conditions of urban freight distribution. The SPRP is a multi-objective, time and 

load dependent, fleet size and mix PRP, with time windows, flexible departure times, and multi-trips on congested 

urban road networks, that aims at minimising three objective functions pertaining to (i) vehicle hiring cost, (ii) 

total amount of fuel consumed, and (iii) total makespan (duration) of the routes. The paper focuses on a key 

complication arising from emissions minimisation in a time and load dependent setting, corresponding to the 

identification of the full set of the eligible road-paths between consecutive truck visits a priori, and to tackle the 

issue proposes new combinatorial results leading to the development of an exact Path Elimination Procedure 

(PEP). A PEP-based mixed integer programming model is further developed for the SPRP and embedded within 

an efficient mathematical programming technique to generate the full set of the non-dominated points on the 

Pareto frontier of the SPRP. The proposed model considers truck instantaneous Acceleration/Deceleration (A/D) 

rates in the fuel consumption estimation, and to address the possible lack of such data at the planning stage, a new 

model for the construction of reliable synthetic spatiotemporal driving cycles from available macroscopic traffic 

speed data is introduced. Several analyses are conducted to demonstrate the added value of the proposed approach, 

exhibit the trade-off between the business and environmental objectives on the Pareto front of the SPRP, show 

the benefits of using multiple trips, and verify the reliability of the proposed model for the generation of driving 

cycles. A real road network based on the Chicago’s arterial streets is also used for further experimentation with 

the proposed PEP algorithm.  

Keywords: Time-dependent pollution-routing, Path elimination, Multiple trips, Fuel consumption, Roadway 

network   
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1. Introduction 

Urban Freight Distribution (UFD) is essential to the functioning of urban economies; however, it generates significant 

externalities such as traffic congestion and environmental pollution. European surveys indicate that the share of emissions 

of freight vehicles is between 20% and 30% of the total urban traffic emissions. For instance, in London in 2006 around 

23% of Carbon Dioxide (CO2) emitted by all forms of transport was due to freight vehicles (MDS Transmodal, 2012). The 

European Commission has therefore set a target for “essentially CO2-free city logistics in urban centres by 2030” (European 

Comission, 2011).  

A recent survey that is aimed at assessing the target set by the European Commission (Allen, Browne, & Piecyk, 

2017) reviews freight initiatives that are expected to reduce Heavy Goods Vehicles (HGVs) kilometres and CO2 emissions 

in European urban areas, and ranks vehicle routing and scheduling tools among the top 10 impactful initiatives, which can 

help achieving around 23% reduction in HGV vehicle kilometres by 2030. Therefore, introducing pollution related 

objectives into traditional Vehicle Routing Problems (VRPs) can be viewed as a major approach to combat Greenhouse 

Gas (GHG) emissions, and can assist decision makers to strike a balance between business and environmental objectives. 

This need has led to the development of a significant body of the literature related to the Emissions Minimising Vehicle 

Routing Problems (EMVRPs), comprising Green VRPs and the Pollution-Routing Problem (PRP) (Bektas & Laporte, 

2011). In the EMVRPs a fuel consumption estimation model, which is dependent on several vehicle and roadway network 

characteristics, is explicitly incorporated into the routing decision. Hence, unlike the traditional VRP that is predominantly 

concerned with the allocation of customers to feasible truck routes, realistic emissions minimising routing decisions on 

congested urban road networks must address a much more complicated decision, mainly due to the effect that the time-

varying traffic conditions, the vehicle payload, and certain vehicle’s physical and mechanical characteristics have on the 

fuel consumption level of a truck. A very first implication of this, which has not been sufficiently addressed  by the previous 

related work in the field, is that the consideration of a priori determined single road-path for travelling between consecutive 

truck visits is not possible, as in practice several alternative paths can become optimal in terms of the fuel consumption 

between a given origin-destination pair on the underlying roadway graph depending on the departure time from the origin 

node, the load on the truck, and the type of the truck that is to be dispatched; none of which are known prior to realising 

the full route plan and schedule. Despite very recent efforts in addressing this situation (Qian & Eglese, 2016; Ehmke, 

Campbell, & Thomas, 2016; Androutsopoulos & Zografos, 2017; Huang, Zhao, Van Woensel, & Gross, 2017), existing 

approaches can only identify a limited subset of the eligible paths for the time and load dependent emissions minimisation, 

and it is still an open research issue to identify optimally all road-paths that must be retained.  

This paper aims to close this gap by studying a new variant of the PRP, called the Steiner PRP (SPRP), directly on 

the original urban roadway network, and proposing new combinatorial results to develop an exact path elimination 

approach for the identification of the full set of the eligible road-paths (i.e. paths that might appear in a fuel consumption 

minimising route) in a fast pre-processing stage. It is worth mentioning that in calling the proposed variant the SPRP, we 

are following Cornuéjols, Fonlupt, and Naddef (1985) and Letchford, Nasiri, and Theis (2013) in calling a relevant variant 

of the Travelling Salesman Problem (TSP) on road networks as the Steiner TSP. 

In addition to the aforementioned issue, the first step in constructing fuel-efficient truck routes involves an accurate 

estimation of the amount of fuel consumed at each route. Existing PRPs assign this task to a simplified average-speed 

version of the Comprehensive Modal Emissions Model (CMEM) formula (Barth, Scora, & Younglove, 2004), in which all 

model parameters are assumed to remain constant during a truck haul, except for load and speed which might vary from 

one road-link to another. However, as it has been recently argued by Turkensteen (2017), CMEM is a microscopic fuel 
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consumption and emission model and relies on instantaneous vehicle kinematic variables, such as second-by-second speed 

and Acceleration/Deceleration (A/D) rates. Lack of this information at the planning stage, especially the A/D rates, which 

are assumed zero over a truck haul in average-speed CMEM, can lead to an inaccurate estimation of fuel consumption and 

hence might lead to unreliable and misleading routing decisions. While the proposed model in this paper is developed to 

work directly with the instantaneous CMEM formula, to address the lack of truck A/D data we propose a simple and reliable 

model for the construction of synthetic driving cycles from the available macroscopic traffic speed data. 

The paper also acknowledges the fact that in urban areas travel times are rather small and it is often possible that after 

performing short routes trucks are reloaded and used again (Olivera & Viera, 2007). Therefore, the proposed model in the 

paper incorporates for the first time in the area of EMVRPs the decision regarding multiple uses of the cost and energy 

efficient resources during the planning horizon through the multi-trip decision-making in a multi-objective setting, where 

both business and environmental objectives are considered. In the SPRP three objective functions pertaining to (i) vehicle 

hiring cost, (ii) total amount of fuel consumed, and (iii) total makespan (duration) of the routes are considered, and to solve 

the problem to multi-objective optimality the paper develops a multi-phase solution framework, underpinned by the 

proposed exact network reduction technique, for the identification of the full set of the Non-Dominated (ND) points.  

The contribution of this paper is multi-fold: (i) the SPRP is introduced as a multi-objective, time and load dependent, 

fleet size and mix PRP with multiple trips, time windows, and flexible departure times on congested urban road networks. 

In particular, the added value of the proposed model is in integrating all previously studied attributes contributing to fuel 

consumption, and other new important decisions such as multiple trips, into a single modelling and solution scheme, (ii) to 

overcome difficulties in solving the problem directly on the original roadway network, and eliminate the computational 

burden of the intermediate problem of finding the emissions minimising paths between consecutive visits on-the-fly, new 

combinatorial results are developed and used in proposing a new exact Path Elimination Procedure (PEP) that reduces the 

network size to a significant extent in a fast pre-processing stage by discarding all proven to be redundant paths from the 

network without eliminating ad-hoc ND points, (iii) to address a shortcoming of previous research in estimating fuel 

consumption accurately, the microscopic CMEM formula incorporating instantaneous truck kinematic variables including 

the time-dependent second-by-second speed and A/D rates is used in the models proposed in the paper, and (iv) a new 

Mixed Integer Linear Programming (MILP) model for the construction of realistic road-and-time-dependent driving cycles 

from macroscopic traffic speed data is proposed, to supply the model with the possible lack of the instantaneous truck A/D 

data at the planning stage.  

The remainder of the paper is structured as follows: section 2 discusses a background on the most relevant literature. 

Section 3 develops the SPRP model. Section 4 elaborates on the proposed path elimination approach and the model based 

on it. Section 5 discusses the methodology used for the identification of ND points to the SPRP. Section 6 discusses the 

proposed approach for generating driving cycles. Computational experiments are presented in Section 7; and finally, section 

8 concludes the paper. 

2. Previous related work 

The problem considered in this paper encompasses several attributes frequently encountered in real world urban freight 

distribution settings, including the time-varying road congestion, time and load dependent path selection, multiple use of 

the vehicles in the fleet, decisions on hiring a heterogeneous fleet of vehicles, and inclusion of both business and 

environmental objectives in decision making. There is research work focusing on each independent aspect of the proposed 

problem; however, the intention of this section is to discuss a selected review of the key studies in the general area of 

emissions minimising vehicle routing, and the more specific area of emissions minimisation on congested urban road 
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networks. For an inclusive and up-to-date review on the state-of-the-art literature on the role of operational research in 

green freight transportation, the reader is referred to the recent study of Bektaş, Ehmke, Psaraftis, and Puchinger (2019). 

We may also refer to Ben Ticha, Absi, Feillet, and Quilliot (2018) for a review on VRPs that are studied on road networks. 

In the VRPs with explicit consideration of environmental performance of the planned routes, fuel consumption is 

usually used as a proxy for pollutants emissions, particularly CO2 emissions which are proportional to the amount of fuel 

consumed. Fuel consumption is in turn dependent on many factors, and several of these factors such as vehicle type, speed, 

and load have already been considered in emissions minimising vehicle routing models. Some of these models only 

incorporate the effect of the load carried by the vehicle on the fuel consumption level of routes (Kara, Kara, & Yetis, 2007; 

Xiao, Zhao, Kaku, & Xu, 2012; Ubeda, Arcelus, & Faulin, 2011). The main bearing on the emissions level in this category 

of models is due to the sequence that customers are visited which affects the payload between consecutive visits. More 

sophisticated models recognise the major role of the vehicle speed over each road-link in addition to the vehicle load. In 

the PRP (Bektas & Laporte, 2011) and several related papers (Demir, Bektaş, & Laporte, 2012; Kramer, Maculan, 

Subramanian, & Vidal, 2015) fuel consumption is assumed a nonlinear convex function of the vehicle speed, and hence 

speed optimisation in a time-independent setting, where non-congested traffic conditions are assumed throughout the day 

throughout the network, is attempted. However, the acknowledgement of the fact that travel speed could not be freely 

chosen in congested urban areas, as it fully depends on the expected time-varying traffic conditions, has led to the 

consideration of time-dependent variants of the VRP for a more accurate estimation model of fuel and other relevant 

decisions with temporal dependencies (Figliozzi, 2010; Figliozzi, 2011; Franceschetti, Honhon, Woensel, Bektas, & 

Laporte, 2013; Ehmke et al., 2016; Androutsopoulos & Zografos, 2017; Çimen & Soysal, 2017; Ehmke et al., 2018). Some 

of these studies also consider the possible benefits of waiting at the depot and/or the customers (Xiao et al., 2012; 

Franceschetti et al., 2013; Androutsopoulos & Zografos, 2017).  

Very recent research (Turkensteen, 2017; Kancharla & Ramadurai, 2018) has shed light on the inaccuracy of the fuel 

consumption estimation model used within EMVRPs due to ignoring truck A/D rates. Using numerical experiments from 

available chassis dynamometer driving schedules, Turkensteen (2017) shows that the magnitude of this error can be high. 

Kancharla and Ramadurai (2018), on the other hand, collect some on-road truck A/D data in a time-independent and static 

setting and randomly feed these data into their model for fuel consumption estimation. A major shortcoming of their 

proposed approach, however, lies in the fact that the spatial and temporal characteristics of the road-links in the graph are 

completely ignored. This issue is addressed in the current work by using the microscopic CMEM formula that incorporates 

instantaneous time-dependent second-by-second speed and A/D rates. 

The effect of the type and the number of the trucks that are included in the fleet to execute the routes on fuel 

consumption was previously considered in the context of the EMVRPS by Koç et al. (2014) and Xiao and Konak (2016). 

The studies of Demir, Bektaş, and Laporte (2014) and Androutsopoulos and Zografos (2017) are the only available studies 

that identify the objectives of fuel consumption minimisation and driving time as two conflicting objectives and study the 

problem as a bi-objective optimisation problem. Some very recent research work has also acknowledged the problem of 

fuel-consumption minimising path identification in a time-dependent setting, and new emissions minimising vehicle 

routing models considering alternative road-paths between the consecutive truck stops have been published very recently 

(Qian & Eglese, 2016; Ehmke et al., 2016; Huang et al., 2017; Androutsopoulos & Zografos, 2017). This last category of 

research is the most pertinent to the current study and will be discussed further in the sequel.  

In Table 1 different attributes and features that are considered by the key literature in the area and the current work 

are indicated using tick marks. This table can highlight two major gaps in the field that the proposed work is trying to 

address: (i) despite its important implications with regard to multiple use of energy-efficient resources multiple times during 
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the planning horizon, multi-trips decision making has not yet been incorporated into emissions minimising vehicle routing 

models, and (ii) all factors and attributes identified and addressed have not yet been unified into a realistic integrated 

modelling and solution framework. It is also worth mentioning that the proposed work in this paper is the first study in the 

area to consider vehicle cost as a major business objective next to makespan and fuel consumption objectives in a tri-

objective setting. 

Table 1 

Overview of attributes covered by the previous related works 

  Attributes covered 
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Kara et al. (2007)            

Ubeda et al. (2011)            

Bektas and Laporte (2011)            

Figliozzi (2011)            

Franceschetti et al. (2013)            

Demir et al. (2014)            

Koç et al. (2014)            

Xiao and Konak (2016)            

Qian and Eglese (2016)            

Ehmke et al. (2016)            

Huang et al. (2017)            

Androutsopoulos and Zografos (2017)            

Kancharla and Ramadurai (2018)            

Proposed work            

Except for the last category of the models discussed above (i.e. models that consider alternative road-paths), a major 

limitation of most of the existing research work in the area of EMVRPs lies in the fact that they consider an a priori 

determined single road-path for travelling between each pair of customers. There are at least two main reasons why this is 

not possible when routing on a congested urban road network for fuel consumption minimisation: 

(1) Determining a minimum fuel consuming path between a given pair of origin/destination on urban road networks 

with time-varying traffic conditions requires a knowledge of the time the origin node is to be departed, the type of 

the truck to be dispatched to traverse the path (in case of a heterogeneous fleet), and the load to be carried by the 

dispatched truck over the path. All these variables are unknown until the routing plan and schedule is fully realised, 

and therefore identifying a path (or a set of paths) between every pair of the required nodes (customers and the 

depot) in order to transform the roadway network into a complete graph seems impossible. 

(2) For a given sequence of visits starting and terminating at the depot (a vehicle route), and a given departure time from 

the depot, it is not guaranteed that merely fuel consumption minimising paths are taken by the truck between every 

pair of consecutive stops in order to minimise the total amount of fuel required by the vehicle route. In other words, 

inferior paths in terms of the fuel consumption might appear in the optimal fuel consuming vehicle route (see 

examples in Androutsopoulos and Zografos – 2017). 
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We are aware of 4 papers that acknowledge one or both of these issues and try to address them. Qian and Eglese 

(2016) and Huang et al. (2017) propose to use a multi-graph of the Time-Dependent Shortest Paths (TDSPs) between the 

required nodes, where a set of such paths as candidate paths are precomputed between every pair of required nodes and 

kept. However, this approach is not sufficient as it does not take load (and vehicle type) dependency into account. In the 

hope of partially tackling the effect of load-dependency, Huang et al. (2017) also include the distance-minimising path to 

the set of the time-minimising paths. While this might be partially helpful, there is no guarantee that all eligible road-paths 

are included. Ehmke et al. (2016) identify the first issue mentioned above and state that the identification of a set of all 

eligible paths a priori is not possible. Instead, to take both time and load-dependency into consideration, they propose a 

new result that identifies a condition under which a time-dependent path between two customers is load invariant (in case 

of a homogenous fleet). This allows them to reduce the computational challenge of finding the time and load-dependent 

paths between some customers at some time instants by making it possible to precompute expected time-dependent fuel 

consumption minimising paths between them. However, still for the rest of the customer pairs where the condition they 

check is not satisfied they need to carry out shortest path computation on-the-fly in their Tabu Search algorithm, which is 

a costly requirement that prohibits solving problems with larger than 30 customers even heuristically. Androutsopoulos 

and Zografos (2017) acknowledge both of the stated issues and propose a network reduction approach that is based on the 

use of the k-shortest distance road paths. This approach is, however, sensitive to the selection of the value of k. They try to 

show that when k is small (e.g. k=2) eligible paths might be excluded from the reduced network, and if a higher value for 

k is selected (e.g. k=5), while the number of excluded eligible paths is reduced, the computational time increases, 

accordingly. 

Based on this review, the exact identification of the full set of the eligible emissions minimising road-paths between 

the required nodes on a time-dependent graph is still an open research issue. To tackle this, an efficient exact Path 

Elimination Procedure is proposed by this paper that advances the result found by Ehmke et al. (2016) and can identify and 

discard all proven to be redundant paths between the required nodes in a pre-processing stage and eliminates the need for 

the shortest-path calculation on-the-fly. Our results are generalised for the case of a heterogeneous fleet, with multiple 

objective functions to be minimised by the planned routes. 

3. Model development: notation and definitions 

The SPRP is defined on a directed graph ᵃ� = (ᵃ�, ᵃ�), representing a real roadway network, where ᵃ�  is the set of network 

nodes and ᵃ� is the set of directed road-links. The set ᵃ� = {ᵃ�� ∪ ᵃ�� ∪ ᵃ��} is comprised of the depot ᵃ�� = {0}, customer 

nodes ᵃ�� = {1,2, … , ᵅ�}, and network junctions ᵃ�� = {ᵅ� + 1, … , ᵅ� + �}. There is a fleet of heterogeneous vehicles ᵃ�, 

with |ᵃ�| = ᵱ�, located in the central depot, which is assumed to be composed of ᵕ� different types of trucks. To each truck 

ᵅ� ∈ ᵃ� a curb weight ᵰ�� (kg), a maximum payload ᵃ��  (kg), and a daily hiring fixed cost ᵃ�� (£), among other vehicle-

specific factors such as engine friction factor, engine speed, engine displacement, coefficient of aerodynamic drag, and 

frontal surface area is attributed. 

Each customer ᵅ� ∈ ᵃ�� is associated with a certain demand ᵅ�� ≤ max
�∈�

ᵃ�� to be delivered within its pre-determined 

hard time window denoted by ᵅ�� = [ᵃ��, ᵅ��], with service time ᵅ��. The depot working hours which is also considered as the 

planning horizon is denoted by ᵃ� = ᵅ�� = [ᵃ��, ᵅ��], and while it is assumed that trucks are initially loaded, reloading them 

for operating a new route takes ᵅ�� time at the depot. To each road-link (ᵅ�, ᵅ�) ∈ ᵃ�, a distance ᵃ���, and a time-dependent 
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travel time ���
� , depending on the departure time from the origin node ᵅ�, i.e. ᵰ� ∈ [ᵃ��, ᵅ��] is attributed. In this study we 

assume that the time-dependent travel times (���
� ) are integer. 

The aim of the SPRP is to determine an optimal composition of vehicles in the fleet to operate routes that start and 

finish at the depot and serve every customer exactly once within their pre-defined time-windows, without violating vehicle 

capacities and working day limits, such that the following objectives are minimized: (i) vehicle hiring cost, (ii) total amount 

of fuel consumed, and (iii) total makespan (duration) of the routes.  

The following terms are used throughout this paper:  

o Required nodes: required nodes (ᵃ��) are the nodes on the roadway network representing the location of the depot 

and the customers; i.e. ᵃ�� = ᵃ�� ∪ ᵃ��. 

o Road-link: a road-link is any kind of road in the hierarchy of roads such as a freeway, an arterial, a collector, or a 

local road that connects two nodes on the roadway network; i.e. (ᵅ�, ᵅ�) ∈ ᵃ�. 

o Road-path: a road-path ᵅ��� , or simply a path, is a sequence of road-links which connects a pair of required 

nodes ᵅ�, ᵅ� ∈ ᵃ�� , ᵅ� ≠ ᵅ� on the roadway network; i.e. ᵅ��� = [(ᵅ�, 1), (1,2), … , (ℓ, ᵅ�)], 1. . ℓ ∈ ᵃ� ∖ ᵅ�, ᵅ�. By convention, 

let us assume that ���  is the set of all paths between a pair of required nodes, i.e. ��� = {ᵅ�����, ᵅ�����, … , ᵅ�����} 

(identification of this set can be intractable). Whenever it is needed, we denote the time-dependent travel time of a 

road-path ᵅ���  by �� (ᵅ���) for departure time ᵰ�  from node ᵅ�; moreover, the fuel consumption of a truck ᵅ� ∈ ᵃ� , 

carrying a load ᵃ� ∈ [0, ᵃ��] over a given road-path ᵅ���  is denoted by ��
�� (ᵅ���). Note that since no waiting is allowed 

at intermediate nodes between the origin and the destination of the path, knowing the departure time from the origin 

node is sufficient for estimating the time-dependent attributes of the path. 

o Route (trip): A route or a vehicle trip (ᵅ�) is a sequence of visits starting at the depot, passing through at least one 

customer and terminating at the depot, i.e. ᵅ� = {0, ᵅ�, … ,0}, ᵅ� ∈ ᵃ��. 

o Route-path: A route-path (ᵅ��)  of route (ᵅ�)  is a route enhanced by the road-paths connecting every pair of 

consecutive required nodes on the route; i.e. ᵅ�� = ��0, ᵅ�, ᵅ������, … , (ᵅ�, 0, ᵅ�����)�, ᵅ�, ᵅ� ∈ ᵃ��, ᵅ����� ∈ ���, ᵅ����� ∈

��� .   

o Route-trajectory: A route-trajectory (ᵅ��
�� ) is basically a scheduled route-path detailing the departure time from the 

depot and hence each required node on the route-path, i.e. ᵅ��
�� = ��0, ᵅ�, ᵅ�����, ᵰ���, … , �ᵅ�, 0, ᵅ�����, ᵰ����, ᵅ�, ᵅ� ∈

ᵃ��, ᵅ����� ∈ ���, ᵅ����� ∈ ���, ᵰ��, ᵰ�� ∈ ᵃ� . The total makespan and fuel consumption of a truck ᵅ� ∈ ᵃ� over a route-

trajectory ᵅ��
��  are denoted by �(ᵅ�ᵅ�

ᵰ�0 ) and ��(ᵅ��
��  ), respectively. Note that, since ��(ᵅ��

��  )  is deduced from the 

aggregation of the fuel consumption over each of the constituting road-paths with varying payloads, it is not indexed 

by the truck load. 

o SPRP solution: A feasible SPRP solution is a set of feasible route-trajectories enhanced by the type of the truck with 

enough capacity to carry out each one of them. The solution moreover specifies the amount of load that is carried 

by each truck over each road-path, and any need for reloading any of the vehicles for extra rounds of trip. 

The SPRP is categorised as a Multi-Objective MILP (MOMILP) problem with three conflicting objectives. Unlike 

the single objective optimisation, where a global optimal solution is reachable, solution to an MOMILP is the set of the 

ND points, or efficient solutions called the Pareto Optimal Set (POS). The reader is referred to Coello, Lamont, and Van 
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Veldhuizen (2007) for definitions relevant to Pareto optimality, Pareto dominance, weak/strict Pareto optimality and the 

Pareto front.  

A list of all notation and acronyms used throughout the paper is provided in Appendix A of the paper.   

3.1. The time-dependent travel time estimation model 

Most of the existing research work in the area of the Time-Dependent VRP (TDVRP) relies on the model proposed by 

Ichoua, Gendreau, and Potvin (2003) for the calculation of the time-dependent travel time of a road-link. Their algorithm 

uses a step function for speed to deduce a piecewise linear function for travel time that satisfies the FIFO property. 

However, despite its ease of use, the application of the model proposed by Ichoua et al. (2003) on real life congestion 

situations is hindered by their extra simplification in viewing congestion speed as a step function which implies that changes 

in travel speed occur instantly (i.e. A/D rates equal to infinity) with unjustified leaps from one level to the next, ignoring 

the time required for A/D. In reality, a lot of such A/Ds occur during the actual arc traversal, especially in congested urban 

areas, and this leads to lack of accuracy in estimating the expected travel times.  

This shortcoming can be overcome by using the travel time model in Horn (2000) which allows using directly the 

archived point-based historical speed data. Connecting each speed observation at each given time instant results in a 

continuous piecewise linear function of the time for speed (including A/Ds) (Figure 1), using which a FIFO-consistent non-

linear travel-time function could be deduced. In Horn (2000) the computation of these travel times is performed by counting 

time from the departure time up to the point in time that a distance equal to the length of the arc is traversed, which can be 

computationally intensive. Androutsopoulos and Zografos (2012) enhance this model by presenting a closed form formula 

for calculating the travel time on any road-link given a departure time from the origin node, based on the computation of 

the arrival time at the destination node. Here, we propose an alternative closed form approach that compared with that of 

Androutsopoulos and Zografos (2012) is less complicated to implement and use, and unlike their formula does not require 

to observe if departure and arrival time occur within the same time interval or not. Another added advantage of the proposed 

formula is that it could be simply used in backward travel time calculation (i.e. finding the departure time for an intended 

arrival time).  

 
Figure 1 Speed as a piecewise linear function of time 

    To deduce the intended closed-form formula, suppose that there are  ℎ��  speed observations during the planning 

horizon ᵃ�  for road-link (ᵅ�, ᵅ�) ∈ ᵃ�. For notational simplicity, in the rest of this section we drop ᵅ�ᵅ� indices for all parameters. 

We denote by ᵅ��, ᵅ� ∈ {1,… , ℎ} the speed observation at time instant ᵅ�� . The line segment connecting ᵅ�� to ᵅ��+�  has a 

slope ᵃ��  (i.e. A/D rate) equal to (ᵅ��+� − ᵅ��) (ᵅ��+� − ᵅ��)⁄ , and an intercept ᵯ�� equal to (ᵅ�� − ᵃ��ᵅ��), ∀ᵅ� ∈ {1,… , ℎ − 1} 
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(ᵃ�� = ᵯ�� = 0  for ᵅ� = ℎ). The distance that could be traversed from time instant ᵅ�� = ᵃ��  until time instant ᵅ��, ᵅ� ∈

{2, … , ℎ}, is denoted by ᵯ�� , and could be calculated as follows:  

ᵯ�� = ᵯ��−� + �
1
2
(ᵅ�� − ᵅ��−�)(ᵅ�� + ᵅ��−�)�,     ᵯ�� = 0, ᵅ� ∈ {2, … , ℎ} (1) 

This equation is based on the premise that the area below the speed curve is equal to the physical distance that can 

be travelled. The equation hence calculates sequentially the area below the speed curve bounded by each pair of consecutive 

time instants (which is indeed a right trapezoid as highlighted in Figure 1) and adds this area to the entire area below the 

curve up until time instance ᵅ��−� , i.e. ᵯ��−� . Based on the definition of ᵯ�� , the time-definitive accumulated distance 

function ᵰ� , which is the building block of our closed form formula, is defined as follows: 

Definition 1 The time-definitive accumulated distance function ᵰ�(ᵰ�) is defined as a function that calculates the distance 

possible to traverse from the beginning of the planning horizon until any given time instant ᵰ� ∈ ᵃ� :  

ᵰ�(ᵰ�) = ᵯ��+� − �1
2
(ᵅ��+� − ᵰ�)(ᵅ�� + ᵅ��+�)� ,     ᵰ�ᵱ�[ᵅ��, ᵅ��+�), ᵅ� ∈ {1, … , ℎ − 1} (2) 

where ᵅ��  denotes the speed at time instant ᵰ� , which is equal to ᵅ�� + [ᵃ��(ᵰ� − ᵅ��)].  

Then, for any given road-link in the network with distance ᵃ� the following relationship always holds: ᵃ� = ᵰ�(ᵰ�ᵕ�) −

ᵰ�(ᵰ�ᵕ�), where ᵰ�ᵕ� denotes the departure time from the origin of the given road-link, and ᵰ�ᵕ� denotes the arrival time at the 

destination of the road-link. Hence, for any given departure time ᵰ�ᵕ�, the arrival time ᵰ�ᵕ� could be found using the inverse of 

the � function, and this implies the possibility of proposing a FIFO-consistent closed form formula for the time-dependent 

travel time calculation. To derive such formula, as ᵃ� = ᵰ�(ᵰ�ᵕ�) − ᵰ�(ᵰ�ᵕ�), we have ᵰ�(ᵰ�ᵕ�) = ᵃ� + ᵰ�(ᵰ�ᵕ�), which can be written as 

ᵰ�(ᵰ�ᵕ�) = ᵃ�, where ᵃ� = ᵃ� + ᵰ�(ᵰ�ᵕ�), ᵃ� ∈ [ᵯ��, ᵯ��+�), ᵅ� ∈ {1, … , ℎ − 1}. Then, based on the definition of ᵰ� function we can 

write: ᵯ��+� − ��
� (ᵅ��+� − ᵰ�ᵕ�)�ᵅ��ᵕ�

+ ᵅ��+��� = ᵃ�, and further based on the definitions of ᵅ��ᵕ�
 and ᵯ��+�, we can write: ᵯ�� +

[�� (ᵅ��+� − ᵅ��)(ᵅ��+� + ᵅ��)] − [�� (ᵅ��+� − ᵰ�ᵕ�)(ᵃ��ᵰ�ᵕ� + ᵯ�� + ᵅ��+�)] = ᵃ�, and writing this for ᵰ�ᵕ� we will have the following 

expression:  

ᵰ�ᵕ� =

⎩
��
⎨
��
⎧[ᵯ��

� − 2ᵃ��ᵯ�� + 2ᵃ��ᵃ� + ᵃ��
�ᵅ��

� + 2ᵃ��ᵅ��ᵯ��]
�

�� − ᵯ��
ᵃ��

, ᵃ�� ≠ 0

ᵅ�� + ᵃ� − ᵯ��
ᵅ��

,                                           ᵃ�� = 0
 (3) 

Note that the model by Ichoua et al. (2003) is a special case of expression (3), where ᵃ�� = 0, ∀ᵅ� ∈ ᵃ� . Also note that 

this formula can use microscopic traffic speed data (i.e. second-by-second speed variations) as well as macroscopic data 

(e.g. every 5, 10, or 15 minutes) as input. As will be discussed later in section 6 of the paper, when microscopic data are 

not available, the travel time estimated from macroscopic data using this formula provides a basis for the generation of 

synthetic driving cycles with instantaneous speed variations.  

For the most efficient implementation of (3), all model parameters including ᵃ��, ᵯ��, and ᵯ��, and also ᵰ�(ᵰ�) and ᵅ��  for 

all possible departure times, could be pre-computed, which then make the application of expression (3) pretty simple and 

straightforward. A useful feature of (3) is that it is also possible to find the departure time ᵰ�ᵕ� for any given arrival time ᵰ�ᵕ� 

using the same formula with the only modification that ᵃ� = ᵰ�(ᵰ�ᵕ�) − ᵃ�.  

It is worth mentioning that the time-dependent travel time of a given scheduled road-path could be simply estimated 

from its constituent road-links, and thus as the time-dependent travel times of the road-links preserve the FIFO property, 

any simple paths considered on the graph would be also FIFO-consistent (given that waiting is not allowed on intermediate 

nodes).  
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3.2. The instantaneous fuel consumption estimation model 

Assume that the spatiotemporal instantaneous driving cycles  ᵃ�ᵃ���
� , denoting the expected second-by-second speed 

variations, are available for each road-link (ᵅ�, ᵅ�) ∈ ᵃ� of the network, for all time instants ᵰ� ∈ ᵃ� . It is worth mentioning 

that with the current advancements in the Global Positioning System (GPS) devices, it is possible to create a historical 

archive of such data for the required road-links at different times of a day (Belliss, 2004; Byon, Shalaby, & Abdulhai, 2006; 

Lee, Sener, & Mullins III, 2016); however, in the event that they are unavailable at the planning stage, they could be instead 

generated synthetically using the approach proposed later in the paper.  

Given such cycles, the instantaneous time, load and truck-type dependent fuel consumption (in litres) over the given 

road link (ᵅ�, ᵅ�) ∈ ᵃ� for vehicle ᵅ� ∈ ᵃ�, i.e. ℱ��
�� , could be computed using the CMEM formula of Barth et al. (2004) as 

follows: 

ℱ��
�� = �

ᵰ�
ᵰ�ᵱ�

�ᵃ��ᵊ��ᵃ�� +
0.5ᵃ��ᵰ�ᵃ��ᵅ����

�

1000ᵰ�ᵱ�
� +

�+���
�

�=�
(ᵰ�� + ᵃ���) �

ᵰ�
ᵰ�ᵱ�

�
ᵅ����(ᵃ� ᵅ�ᵅ�ᵅ� ᵰ� + ᵃ�ᵃ�� ᵃ�ᵅ�ᵅ� ᵰ� + ᵃ��)

1000ᵰ�ᵱ�
�

�+���
�

�=�
,

∀(ᵅ�, ᵅ�) ∈ ᵃ�, ᵅ� ∈ ᵃ�, ᵰ� ∈ ᵃ� , 

(4) 

where ᵰ� is fuel-to-air mass ratio, ᵰ� is the heating value of a typical diesel fuel (kJ/g), ᵱ� is a conversion factor from grams 

to litres (from (g/s) to (l/s)), ᵃ�� is the engine friction factor (kJ/rev/l) for vehicle ᵅ�, ᵊ�� is the engine speed (rev/s) for 

vehicle ᵅ�, ᵃ��  is the engine displacement (l) for vehicle ᵅ�, ᵰ� is the air density (kg/m3), ᵃ�� is the frontal surface area (m2) for 

vehicle ᵅ�, ᵅ���� is the vehicle speed (m/s) at the ᵅ�th second of the cycle, ᵰ�� is the vehicle curb weight (kg) for vehicle ᵅ�, ᵃ���  

is the load (kg) carried over the given road link by the truck, ᵃ� is the gravitational constant (equal to 9.81 m/s2), ᵰ� is the 

road angle, ᵃ�� and ᵃ��  are the coefficient of aerodynamic drag and rolling resistance, ᵰ� is vehicle drive train efficiency and 

ᵱ� is an efficiency parameter for diesel engines.  

Expression (4) divides CMEM into a time-dependent term Unrelated to Truck Mass (called the UTM attribute and 

indicated by ᵃ���
��  hereafter), and a time-dependent term linearly Related to the Truck Mass (called the RTM attribute and 

indicated by ᵮ���
�  hereafter), and both of these could be precomputed and stored for all road-links (or road-paths) at all 

possible departure times based on the available ᵃ�ᵃ���
� s. Hence, this expression could be simply re-written as ℱ��

�� = ᵃ���
�� +

ᵮ���
� (ᵰ�� + ᵃ���), ∀(ᵅ�, ᵅ�) ∈ ᵃ�, ᵰ� ∈ ᵃ�  (to see more detail on the derivation of this formula in a homogenous fleet case, the 

reader can refer to appendix A in Androutsopoulos and Zografos - 2017). As a note on the storage space requirement for 

storing all UTM and RTM attributes along with time-dependent travel times for all road-links at all possible departure 

times, it should be mentioned that the space complexity is ᵃ�((ᵕ� + 2)|ᵃ�||ᵃ� |), where |ᵃ�| is the number of network road-

links, and |ᵃ� | is the number of all possible departure times. However, as will be explained later in section 4.1., this required 

storage space could be critically reduced by using ‘time periods’ instead of ‘time instants’.  

In this study, for experimental purposes, similar to the work of Koç et al. (2014) on the fleet size and mix PRP, we 

consider the fleet to be composed of light, medium and heavy duty trucks and use the same values they use for the common 

and vehicular specific parameters, which they obtain for the three main vehicle types of MAN Trucks (see Tables 1 and 2 

in Koç et al. - 2014).    

4. The Path Elimination Procedure (PEP) 

The intention of this section is to deal with an important prerequisite to any subsequent exact/heuristic solution algorithm 

for the SPRP, which is to alleviate the difficulty of solving the problem directly on the real roadway network, without 

losing the essential information contained in the original graph. As discussed in section 2 of the paper, existing approaches 
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in the literature can only identify a limited subset of eligible road-paths that must be preserved between the required nodes 

and cannot guarantee that all paths that might be used in the design of an optimal vehicle route are identified and preserved. 

In the case of the SPRP, a much more complicated situation must be coped with, since not only a time, load and truck type 

dependent fuel consumption objective is to be minimised, but also this objective is considered alongside two other 

conflicting objectives, and any set of the paths that are returned by any pre-processing algorithm should ensure that ad-hoc 

ND points will not be eliminated.  

Since the main problematic objective function that causes complications is the time, load and truck type dependent 

fuel minimisation objective, we begin by focusing on this objective only, and then generalise all our results for the multi-

objective case of the SPRP. The underlying idea of the proposed PEP in this section is hence to identify and retain all road-

paths that might be used by at least one of the truck types in the fleet, for at least one time instant during the planning 

horizon, to carry some load levels in the range of the truck capacity, and then eliminate all other paths as redundant paths 

from the network. An “eligible” path can be therefore defined formally as follows:  

Definition 2 A road-path ᵅ�����  between a pair of required nodes ᵅ�, ᵅ� ∈ ᵃ��: ᵅ� ≠ ᵅ� is called an ‘eligible’ path, iff ∃ᵅ� ∈

ᵃ�, ᵃ� ∈ [0, ᵃ��], ᵰ� ∈ ᵃ� : ��
��(ᵅ�����) ≤ ��

�� (ᵅ�����), ∀ᵅ����� ∈ ��� . 

The elimination of an eligible road-path from the underlying roadway network can hence lead to a suboptimal vehicle 

route in terms of fuel consumption, and all such paths must be identified and retained.  

In order to set the scene, the motivation of the PEP is reiterated through the following remarks: 

Remark 1 Determining a priori a (set of) minimum fuel consuming road-path(s) between a given pair of origin/destination 

on urban road networks with time-varying congestion seems impossible. 

Remark 2 A minimum fuel consuming route-trajectory is not necessarily concatenated; i.e. its constituent scheduled road-

paths are not necessarily optimal, and they can be road-paths which are inferior in terms of the fuel consumption. 

It is easy to acknowledge the first remark, which stems from our lack of knowledge about the departure time from 

the origin node, the type of the truck that is going to traverse the path and the amount of load that the truck is going to carry 

over the road-path, prior to realising the full truck route and schedule. However, the second remark is not as intuitive, 

because it might seem that once fuel consumption minimising road-paths between every consecutive visit, for every 

possible departure time, and any load on the trucks are known, these paths can be retained to minimise the overall amount 

of fuel required by the route, and the alternative inferior road-paths could be simply ignored. However, it is not difficult to 

show that it might be beneficial to take road-paths that are not optimal in terms of fuel consumption to gain improvements 

in the overall fuel consumption of the route (see example 1 in Androutsopoulos and Zografos - 2017). Note that despite 

Androutsopoulos and Zografos (2017) identify this as an inherent issue for the bi-objective time-dependent VRPs, it is 

even an issue in a single objective case. In fact, this is a largely ignored situation in any general routing for some time-

dependent cost minimisation in a time-dependent network, and an important generalisation of Remark 2 is that the cheapest 

path in a time-dependent setting is not necessarily concatenated.  

Let ᵉ��� be the set of all minimum fuel consuming paths between required nodes ᵅ� and ᵅ� for all possible departure 

times ᵰ� ∈ ᵃ�  from node ᵅ�. Then, building on some previous results for the time-dependent shortest path problems (Orda & 

Rom, 1990; Hamacher, Ruzika, & Tjandra, 2006) the following theorem is proposed: 
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Theorem 1 Suppose the set ℰ�� is the set of all paths ᵅ��� with non-dominated vectors [�� (ᵅ���), ��
�� (ᵅ���)] for at least one 

ᵰ� ∈ ᵃ� , ᵅ� ∈ ᵃ�, and ᵃ� ∈ [0, ᵃ��] (note that ᵉ��� ⊆ ℰ��), and let ℰ = {ℰ��|ᵅ�, ᵅ� ∈ ᵃ��, ᵅ� ≠ ᵅ�}; if departure time from the depot 

is unrestricted, then any optimal route-trajectory in terms of fuel consumption has its road-paths in ℰ. 

Proof. Without loss of generality, assume that ᵅ�� = 0 and ᵅ�� = ᵅ�� for all ᵅ� ∈ ᵃ��. With this assumption, the departure time 

from a required node is upon the arrival time at the node from an upstream required node. Suppose that ᵅ��
�� =

��0, ᵅ�, ᵅ�����, ᵰ���, �ᵅ�, 0, ᵅ�����, ᵰ���� is an optimal route-trajectory in terms of fuel consumption. Since there is only one 

customer ᵅ� ∈ ᵃ�� that is served over this route-trajectory, a truck ᵅ� ∈ ᵃ� , that is sufficiently large to carry ᵅ��  is used. 

According to the backward principle of optimality (see Definition 3.2 and Theorem 3.2 in Hamacher et al. - 2006) road-

path ᵅ����� is optimal in terms of fuel consumption for departure time ᵰ�� from node ᵅ�, and thus ᵅ����� ∈ ℰ. Therefore, we 

must only prove that ᵅ����� ∈ ℰ. To use a proof by contradiction, initially suppose that ᵅ����� is not in ᵉ��� . The assumption 

that ᵅ����� is not in ᵉ��� implies that there is a fuel consumption minimising path ᵅ����� ∈ ᵉ���  that arrives at node ᵅ� at time 

ᵰ��. Assume that to arrive at customer ᵅ� at time ᵰ��, the truck must depart the origin of path ᵅ����� (i.e. the depot) at time ᵰ�� 

(remember that departure time from the depot is not restricted). This means ���

���(ᵅ�����) < ���

���(ᵅ�����), and there is a route-

trajectory ᵅ��
�� = ��0, ᵅ�, ᵅ�����, ᵰ���, �ᵅ�, 0, ᵅ�����, ᵰ���� , such that ��(ᵅ��

��) < ��(ᵅ��
��) ; contradicting the fact that ᵅ��

��  is an 

optimal route trajectory. This proof is, however, incomplete under a certain condition; the departure time from the depot 

for path ᵅ�����, i.e. ᵰ�� can be smaller or larger than ᵰ��, meaning that ���(ᵅ�����) can be smaller or larger than ���(ᵅ�����). 

Under the condition that ᵰ�� < ᵰ�� and ᵰ�� < ᵃ�� , path ᵅ����� is infeasible; however, as in that case ᵅ����� has a  non-dominated 

vector [���(ᵅ�����), ���

��� (ᵅ�����)], it already exists in ℰ. �  

Based on this theorem, the key to address the situation in Remark 2 is indeed departure time optimisation, and except 

for a special case, working on a graph based on ᵉ� is usually sufficient for the minimisation of the fuel consumption by the 

routes. However, for completeness this theorem proposes to work on ℰ, since if the set ℰ could be somehow constructed, 

the same minimum fuel consuming route-trajectories that can be found directly on ᵃ� could be found on ℰ. In the sequel, 

we propose new results to construct this set.   

In the rest of this section, whenever we refer to a road-path, it is meant to be a road-path between a given pair of 

required nodes ᵅ�, ᵅ� ∈ ᵃ�� , but for notational simplicity we drop origin/destination indices of paths and their attributes. 

Moreover, instead of writing  ���ᵅ���, ᵃ����ᵅ��� and ᵮ���ᵅ��� for the attributes of a path ᵅ����� ∈ ���, we simply write ��
� , ᵮ��

��  

and ᵮ��
� , respectively. 

Proposition 1 (Ehmke et al., 2016) If path ᵅ�� is a fuel consumption minimising path for both a fully loaded truck of type ᵅ�, 

and an empty truck of the same type ᵅ� for departure time instant ᵰ� , then this path is optimal in terms of fuel consumption 

for any other size of load on the truck of type ᵅ�. 

This proposition modifies slightly the proposition stated in Ehmke et al. (2016), in the sense that they do not explicitly 

state that this is a condition that must be checked for all possible departure times. Moreover, to generalise it for a 

heterogeneous fleet, the type of the truck matters and is mentioned here. It is also worth noting that while they have 

proposed this proposition in the context of the average-speed CMEM, their proof is applicable for the case of the 

instantaneous CMEM, as well. 
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While Proposition 1 establishes an interesting result, which can be used to precompute expected time-dependent fuel 

consumption minimising paths between some customers at some time instants, our computational experiments on a real 

world urban road network demonstrate that there are cases when this condition is not satisfied for up to around 60% of the 

times (see Appendix B); nevertheless, Proposition 1 serves as a building block to a more important theorem that underpins 

the proposed PEP: 

Theorem 2 If for a given departure time ᵰ� , path ᵅ�� is a fuel consumption minimising path for a fully loaded truck of type 

ᵅ�, and path ᵅ��  is a fuel consumption minimising path for an empty truck of the same type ᵅ� such that ᵅ�� ≢ ᵅ��, then any 

other path ᵅ��  is an eligible path iff it is a fuel consumption minimising path for truck type ᵅ� carrying some load ᵃ� ∈

[��
��−��

��

��
�−��

� − ᵰ��, ��
��−��

��

��
�−��

� − ᵰ��]. 

Proof. We first lay out some useful valid inequalities derived from the assumptions: 

The optimality of ᵅ��  for the fully loaded truck yields the following inequalities: 

ᵮ��
�� + ᵮ��

� (ᵰ�� + ᵃ��) ≤ ᵮ��
�� + ᵮ��

� (ᵰ�� + ᵃ��) (5) 

ᵮ��
�� + ᵮ��

� (ᵰ�� + ᵃ��) ≤ ᵮ��
�� + ᵮ��

� (ᵰ�� + ᵃ��) (6) 

And the optimality of ᵅ��  for the empty truck suggests the following: 

ᵮ��
�� + ᵮ��

� (ᵰ�� + 0) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + 0) (7) 

ᵮ��
�� + ᵮ��

� (ᵰ�� + 0) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + 0) (8) 

Now, to prove the proposed “if and only if” statement a two-way proof must be given: 

Part 1 (forward proof): Path ᵅ�� is a fuel consumption minimising path for truck type ᵅ� carrying some load ᵃ� ∈ [��
��−��

��

��
�−��

� −

ᵰ��, ��
��−��

��

��
�−��

� − ᵰ��] ⇒ path ᵅ��  is an eligible path: if we only prove that ��
��−��

��

��
�−��

� − ᵰ�� ≥ 0, and ��
��−��

��

��
�−��

� − ᵰ�� ≤ ᵃ�� , then 

we have proved ᵃ� ∈ [0,ᵃ��], which then makes the stated assumption per se sufficient for the eligibility of ᵅ��  (note that 

��
��−��

��

��
�−��

� − ᵰ�� ≤ ��
��−��

��

��
�−��

� − ᵰ��  is already assumed). A proof by contradiction can be used where we assume either 

��
��−��

��

��
�−��

� − ᵰ�� < 0, or ��
��−��

��

��
�−��

� − ᵰ�� > ᵃ�� . If ��
��−��

��

��
�−��

� − ᵰ�� < 0, since it is equivalent to ᵮ��
�� + ᵮ��

�ᵰ�� < ᵮ��
�� + ᵮ��

�ᵰ�� , 

we will have a contradiction with (8). At the same time, if ��
��−��

��

��
�−��

� − ᵰ�� > ᵃ�� , since it is equivalent to ᵮ��
�� +

ᵮ��
� (ᵰ�� + ᵃ��) > ᵮ��

�� + ᵮ��
� (ᵰ�� + ᵃ��), we will have a contradiction with (6). Therefore, neither ��

��−��
��

��
�−��

� − ᵰ�� < 0, nor 

��
��−��

��

��
�−��

� − ᵰ�� > ᵃ��, and as ᵃ� ∈ [0, ᵃ��], path ᵅ�� is a fuel consumption minimising path for truck type ᵅ� carrying some 

load ᵃ� ∈ [0, ᵃ��] and is hence an eligible path based on definition.  

Part 2 (backward proof): path ᵅ�� is an eligible path ⇒ Path ᵅ�� is a fuel consumption minimising path for truck type ᵅ� 

carrying some load ᵃ� ∈ [��
��−��

��

��
�−��

� − ᵰ��, ��
��−��

��

��
�−��

� − ᵰ��] : The eligibility of ᵅ��  necessitates that both of the following 

inequalities hold for some ᵃ� ∈ [0, ᵃ��]: 

ᵮ��
�� + ᵮ��

� (ᵰ�� + ᵃ�) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ�) (9) 

ᵮ��
�� + ᵮ��

� (ᵰ�� + ᵃ�) ≤ ᵮ��
�� + ᵮ��

�(ᵰ�� + ᵃ�) (10) 

 Since (9) is equivalent to ��
��−��

��

��
�−��

� − ᵰ�� ≥ ᵃ� , and (10) is equivalent to ��
��−��

��

��
�−��

� − ᵰ�� ≤ ᵃ� , we have  ��
��−��

��

��
�−��

� − ᵰ�� ≤ ᵃ� ≤

��
��−��

��

��
�−��

� − ᵰ��. � 
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Corollary 1 If for a given departure time ᵰ� , path ᵅ�� is a fuel consumption minimising path for a truck of type ᵅ� carrying 

load ᵃ�� = ��
��−��

��

��
�−��

� − ᵰ��, then ᵅ�� is an eligible path. 

Proof. Based on Theorem 2 we must prove that ᵃ�� ∈ [��
��−��

��

��
�−��

� − ᵰ��, ��
��−��

��

��
�−��

� − ᵰ��]; that is, we must prove ��
��−��

��

��
�−��

� ≤

��
��−��

��

��
�−��

� ≤ ��
��−��

��

��
�−��

� . The optimality of ᵅ�� for the truck carrying load ᵃ�� = ��
��−��

��

��
�−��

� − ᵰ�� yields: 

ᵮ��
�� + ᵮ��

� (
ᵮ��

�� − ᵮ��
��

ᵮ��
� − ᵮ��

� ) ≤ ᵮ��
�� + ᵮ��

� (
ᵮ��

�� − ᵮ��
��

ᵮ��
� − ᵮ��

� ) (11) 

ᵮ��
�� + ᵮ��

� (
ᵮ��

�� − ᵮ��
��

ᵮ��
� − ᵮ��

� ) ≤ ᵮ��
�� + ᵮ��

� (
ᵮ��

�� − ᵮ��
��

ᵮ��
� − ᵮ��

� ) (12) 

where (11) is equivalent to ��
��−��

��

��
�−��

� ≤ ��
��−��

��

��
�−��

� , and (12) is equivalent to ��
��−��

��

��
�−��

� ≤ ��
��−��

��

��
�−��

� . � 

In order to understand better the proposed results and the proofs, we further provide some visual presentations in 

Figure 2. In Figure 2.a, the lines that correspond to the equations of the fuel consumption minimising paths for a full and 

an empty truck ᵅ� at time instant ᵰ� , are given as ᵅ�� and ᵅ�� , respectively. Figure 2.b illustrates an ineligible path that can 

never minimise the truck fuel consumption at any load level within the truck capacity. Figure 2.c, illustrates an eligible 

path satisfying all conditions set in the Theorem. This figure shows further the condition set in Corollary 1. Finally, Figure 

2.d shows two different eligible paths satisfying all conditions. Obviously, no line of an eligible path could be sketched 

without its eligibility range being within the one defined in Theorem 2. 

a. b. 

  
c. d. 

  
Figure 2 a. Paths ᵅ�� and ᵅ�� and their attributes, b. an ineligible path, c. an eligible path, and d. two different eligible paths 

In order to use Theorem 2 in the development of the PEP, we need to generalise it to derive efficient progression and 

exit conditions for the algorithm: 

Corollary 2 Assume that for a given departure time ᵰ� , paths ᵅ�� and ᵅ�� are two eligible paths, such that ᵅ�� ≢ ᵅ��. Then, if a 

distinct path ᵅ�� is the fuel consumption minimising path for load level ᵃ�� = ��
��−��

��

��
�−��

� − ᵰ��, it is an eligible path.  

Proof. A proof similar to the one used for corollary 1 can be employed. � 

Truck curb weight and load Truck curb weight and load

Truck curb weight and load



  
 

14 

 

With these results, the PEP is given in Algorithm 1. In this algorithm, the core operation is assigned to the function 

(ᵅ��, ᵃ�ᵃ�ᵃ��): = ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�(ᵅ�, ᵅ�, ᵰ�, ᵅ�, ᵃ�), that takes as input the origin and destination nodes (ᵅ�, ᵅ�), the departure time (ᵰ� ), 

the truck type (ᵅ�) and the load carried by the truck (ᵃ�), and outputs the time-dependent fuel consumption minimising path 

(ᵅ��) and its attributes (ᵃ�ᵃ�ᵃ��), comprising ��
� , ᵮ��

��  and ᵮ��
� , under the given settings. In our implementation, ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�  is 

based on a modified extension of the time-dependent shortest-path algorithm of Ziliaskopoulos and Mahmassani (1993).  

In the beginning of the algorithm (line 2) the set ℛ��
�� , ᵉ�ᵊ�ᵊ���

�� , ᵃ�ᵃ� , and ᵃ�ᵃ� are initialised as empty sets to retain 

eligible paths (for departure time ᵰ� , vehicle type ᵅ�), their attributes, untreated points, and intersecting lines, respectively. 

In lines 3 and 4 of the algorithm, the fuel consumption minimising paths for the full and the empty truck are respectively 

found, and then are compared with each other in line 5. If these two paths are the same, then only one of them is retained 

and the algorithm is terminated (Proposition 1). Otherwise, the algorithm computes and stores a new untreated point and 

an intersecting lines pair and goes to line 7. In lines 7 to 15, every time a new untreated point is pulled out from the front 

of the ᵃ�ᵃ� , and until ᵃ�ᵃ�  is not empty the operations of these lines are repeated.  

Assuming that |�| is the cardinality of ℛ��
�� , this algorithm must make a maximum of 2|�| − 1 calls to the ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�  

function and hence is quite fast (note only that in the case of |�| = 1 two calls are required and not one). Another speeding 

up feature that is built in the proposed PEP algorithm is due to the use of the information from customers’ time-windows 

and demands. Note that in line 1 of the algorithm instead of ᵰ� ∈ ᵃ�  the search space can be significantly reduced by using 

ᵰ� ∈ [ᵃ�� + ᵅ��,ᵅ�ᵅ�ᵅ� (ᵅ�� + ᵅ��, ᵅ��)] , where ᵃ�� + ᵅ��  is the earliest possible departure time, and ᵅ�ᵅ�ᵅ� (ᵅ�� + ᵅ��, ᵅ��)  is the latest 

possible departure time from the origin node. Moreover, in lines 3 and 4, instead of using ᵃ�� and 0 as input to ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�  

to identify ᵅ��  and ᵅ�� , respectively, we have used ᵃ�� − ᵅ��, and ᵅ��. This is because even if upon departure from the depot 

the truck is fully loaded, its load over the path from ᵅ� to ᵅ� cannot exceed ᵃ�� − ᵅ��, and it is not going to be less than the 

demand of the destination customer, i.e. ᵅ��. Note that we assume ᵅ�� = 0, so this stays consistent when the origin node is 

the depot.  

Algorithm 1 The PEP (phase I) 

1 Input origin node ᵅ� ∈ ᵃ��, desination node ᵅ� ∈ ᵃ��, time instant ᵰ� ∈ [ᵃ�� + ᵅ��,ᵅ�ᵅ�ᵅ� (ᵅ�� + ᵅ��, ᵅ��)], vehicle type ᵅ� ∈ ᵃ�  

2 Initialise ℛ��
�� = {}, ᵉ�ᵊ�ᵊ���

�� = {}, ᵃ�ᵃ� = {}, and ᵃ�ᵃ� = {} 

3 (ᵅ��,ᵃ�ᵃ�ᵃ��):= ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�(ᵅ�, ᵅ�, ᵰ� , ᵅ�,ᵃ�� − ᵅ��) 

4 (ᵅ��,ᵃ�ᵃ�ᵃ��):= ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�(ᵅ�, ᵅ�, ᵰ� , ᵅ�, ᵅ��) 

5 if ᵅ�� ≡ ᵅ�� then ℛ��
�� = {ᵅ��} and ᵉ�ᵊ�ᵊ���

�� = {ᵃ�ᵃ�ᵃ��} and go to line 15  end if 

6 ℛ��
�� = {ᵅ��, ᵅ��}, ᵉ�ᵊ�ᵊ���

�� = {ᵃ�ᵃ�ᵃ��,ᵃ�ᵃ�ᵃ��}, ᵃ�� = ��
��−��

��

��
�−��

� − ᵰ��, ᵃ�ᵃ� = {ᵃ��}, and ᵃ�ᵃ� = {(ᵅ��, ᵅ��)} 

7 while ᵃ�ᵃ�  is not empty do 

8  Pull out the front element of ᵃ�ᵃ�  and denote it by ᵃ�������; also pull out the front pair in ᵃ�ᵃ� and denote it by (ᵅ�ᵕ�, ᵅ�ᵕ�) 
9  (ᵅ��,ᵃ�ᵃ�ᵃ��):= ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�(ᵅ�, ᵅ�, ᵰ� , ᵅ�, ᵃ�������) 
10  if ᵅ�� ∉ ℛ��

��  then,  

11   Add ᵅ��to ℛ��
�� ,  ᵃ�ᵃ�ᵃ��  to ᵉ�ᵊ�ᵊ���

�� , and compute ᵃ�ᵕ� = ��
��−�ᵕ�

��

�ᵕ�
�−���

− ᵰ��  and ᵃ�ᵕ� = �ᵕ�
��−��

��

���−�ᵕ�
� − ᵰ�� 

12   Add ᵃ�ᵕ� and ᵃ�ᵕ� respectively to the end of ᵃ�ᵃ� ; also add the pairs (ᵅ��, ᵅ�ᵕ�) and (ᵅ�ᵕ�, ᵅ��) respectively to the end of ᵃ�ᵃ�  

13  end if 

14 end while 

15 return ℛ��
�� , ᵉ�ᵊ�ᵊ���

��  

In order to visualise the working of the proposed PEP algorithm, a step-by-step example is illustrated in Figure 3. In 

this figure, in the first step, Figure 3.a, ᵅ�� is found (line 3 of the algorithm), and in the second step, Figure 3.b, ᵅ��  is found 
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(line 4 of the algorithm) and as it is not same as ᵅ�� , ᵃ��  is calculated and added to the end of ᵃ�ᵃ�  (line 5 of the algorithm). 

The pair (ᵅ��, ᵅ��) is also added to the end of ᵃ�ᵃ�. In the next step, Figure 3.c, ᵃ��  is extracted from the beginning of ᵃ�ᵃ�  (line 

8 of the algorithm), and the fuel consumption minimising path for the truck at load ᵃ��  is found (line 9 of the algorithm). 

Since a different path from ᵅ��  and ᵅ�� , i.e. path ᵅ��  is found, it is added to ℛ��
��  and ᵃ��  and ᵃ�� are calculated and along with 

pairs (ᵅ��, ᵅ��) and (ᵅ��, ᵅ��) are added to the end of ᵃ�ᵃ�  and ᵃ�ᵃ�, respectively (line 11 and 12 of the algorithm). In the next 

step, Figure 3.d, the active point is the first element in ᵃ�ᵃ� , i.e. ᵃ�� , and a new eligible path is found and the same operations 

as in the previous step are repeated. After this step, however, as no other new eligible path is found by examining all points 

in ᵃ�ᵃ�  (Figure 3.e), the algorithm terminates and returns 4 distinct eligible paths, following a total of 7 calls to the 

ᵃ�ᵃ�ᵃ�ᵃ�ᵃ�ᵃ� . An interesting outcome of the algorithm is further shown in Figure 3.f, which implies it is possible to know 

exactly at what load ranges carried by the considered truck at the considered departure time, which path is optimal. In other 

words, the PEP can return also a piecewise linear function for fuel consumption based on payload.    

a. b. 

 
 

c. d. 

  
e. f. 

  
Figure 3 PEP steps 

The constructed set ℛ�� = {ℛ��
�� : ∀ᵅ� ∈ ᵃ�, ᵰ� ∈ �ᵃ�� + ᵅ��, min�ᵅ�� + ᵅ��, ᵅ����} after the application of the PEP-phase I, 

corresponds to the set ᵉ���, and based on Theorem 1, it must be expanded to ℰ��. However, in most cases no further attempt 
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is required for this expansion as the retained set is already equivalent to the set ℰ�� . This is mainly because the fastest path 

already exists in ℛ��
�  (ℛ��

� = {ℛ��
�� : ∀ᵅ� ∈ ᵃ�}) in most cases (e.g. it is often observed that the fastest path is the fuel 

consumption minimising path for an empty light duty truck). In any case, for the sake of completeness any necessary further 

attempt must be identified and carried out in the second phase of the algorithm. 

Assume that ᵅ�� is the fastest path in the set ℛ��
�  after the application of the PEP phase-I for all vehicle types at time 

instant ᵰ� ∈ ᵃ� , and ᵅ�ᵕ� is the globally fastest path at this time instant. Let the ordered set ℳ��
� = {ᵅ�ᵕ�, ᵅ�ᵕ�+�, . . . , ᵅ�ᵕ�+�} be the 

set of the k fastest paths at time instant ᵰ� , such that �� (ᵅ�ᵕ�+�) < �� (ᵅ��). Then, none of the paths in the set ℳ��
�  are 

dominated by the paths in ℛ��
�  because of their first element in the vector [�� (ᵅ���), ��

�� (ᵅ���)] (refer back to Theorem 1). 

However, lower ranked paths in the set ℳ��
�  might be dominated by higher ranked paths in this set in terms of fuel 

consumption; hence, this set could be further refined using the following strong dominance rule: 

Proposition 2 At time instant ᵰ� , a path ᵅ�ᵕ�  in ℳ��
�  is not dominated by the higher ranked path ᵅ�ᵕ�−�  in ℳ��

�  iff ∃ᵅ� ∈

ᵃ�: ��
�� (ᵅ�ᵕ�) < ��

��(ᵅ�ᵕ�−�) and/or ∃ᵅ� ∈ ᵃ�: ���

�� (ᵅ�ᵕ�) < ���

�� (ᵅ�ᵕ�−�). 

Proof. The forward statement is obvious and requires no proof; that is, if there is at least one truck ᵅ� ∈ ᵃ� that prefers path 

ᵅ�ᵕ� over path ᵅ�ᵕ�−�when it is empty and/or when it is fully loaded, then ᵅ�ᵕ�  is not dominated by ᵅ�ᵕ�−�. Yet, we need to prove 

the backward statement; i.e.: path ᵅ�ᵕ�  is not dominated by path ᵅ�ᵕ�−� ⇒  ∃ᵅ� ∈ ᵃ�: ��
�� (ᵅ�ᵕ�) < ��

�� (ᵅ�ᵕ�−�)  and/or ∃ᵅ� ∈

ᵃ�: ���

�� (ᵅ�ᵕ�) < ���

�� (ᵅ�ᵕ�−�): Recall that the domination rule established in Theorem 1 is based on the vector [�� (ᵅ�ᵕ�), ��
�� (ᵅ�ᵕ�)], 

for at least one � ∈ �, � ∈ �, and ᵃ� ∈ [0, ᵃ��].  At time instant ᵰ� , from the definition of ℳ��
�  we know that �(ᵅ�ᵕ�−1

ᵰ� ) < �(ᵅ�ᵕ�
ᵰ�); 

therefore, for path ᵅ�ᵕ�  to be not dominated by ᵅ�ᵕ�−� , we must have ��
�� (ᵅ�ᵕ�) < ��

�� (ᵅ�ᵕ�−�) for at least one � ∈ �, and ᵃ� ∈

[0, ᵃ��], and this is equivalent to (13) below: 

ᵮ�ᵕ�
�� + ᵮ�ᵕ�

� (ᵰ�� + ᵃ�) < ᵮ�ᵕ�−�
�� + ᵮ�ᵕ�−�

� (ᵰ�� + ᵃ�) (13) 

 Now, to use a proof by contradiction we assume that path ᵅ�ᵕ�  is not preferred over path ᵅ�ᵕ�−�neither when truck ᵅ� is empty, 

nor when it is fully loaded; that is: 

ᵮ�ᵕ�−�
�� + ᵮ�ᵕ�−�

� ᵰ�� < ᵮ�ᵕ�
�� + ᵮ�ᵕ�

�ᵰ��  (14) 

ᵮ�ᵕ�−�
�� + ᵮ�ᵕ�−�

� (ᵰ�� + ᵃ��) < ᵮ�ᵕ�
�� + ᵮ�ᵕ�

� (ᵰ�� + ᵃ��) (15) 

The combination of (13) and (14) yields that ᵮ�ᵕ�
� < ᵮ�ᵕ�−�

� , while the combination of (13) and (15) yields ᵮ�ᵕ�
� > ᵮ�ᵕ�−�

�  which 

is a contradiction. � 

Hence, the second phase of the PEP is presented in Algorithm 2. Note that in line 3 of the algorithm, a k-fastest path 

algorithm, that takes �� (ᵅ��) as input, must be used. This algorithm begins by finding the time-dependent fastest path, and 

loops for the ᵅ� fastest path where ᵅ� = ∞ or any large number, and breaks out of the loop once the last path found has a 

travel time greater than or equal to �� (ᵅ��). 

Algorithm 2 The PEP (phase II) 

1 Input origin node ᵅ� ∈ ᵃ��, desination node ᵅ� ∈ ᵃ��, time instant ᵰ� ∈ [ᵃ�� + ᵅ��,min (ᵅ�� + ᵅ��, ᵅ��)], ᵅ��, ��(ᵅ��) , ℛ��
�  

2 

ℰ��
� ← ℛ��

�   
3 Construct the set ℳ��

� = {ᵅ�ᵕ�, ᵅ�ᵕ�+�, . . . , ᵅ�ᵕ�+�}, such that �� (ᵅ�ᵕ�+�) < ��(ᵅ��) 

4 if ℳ��
� = {} then go to line 15  end if 

5 Pull ou the front element of ℳ��
� , denote it by ᵅ��−� and add it to the end of ℰ��

�  
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6 while ℳ��
�  is not empty do 

7  Pull out the front element of ℳ��
�  and call it ᵅ�� 

8  for ᵅ� =  1 to ᵕ� do 

9   if ��
��(ᵅ��) < ��

��(ᵅ��−�) or ���

�� (ᵅ��) < ���

�� (ᵅ��−�) then 

10    ᵅ��−� ← ᵅ�� and add ᵅ�� to the end of ℰ��
�  

11    break 

12   end if 

13  end for 

14 end while 

15 return ℰ��
�  

 The output of the PEP is a set of retained road-paths between the required nodes with a complete archive of their 

distance, time-dependent travel times, UTM and RTM attributes in easy-to-access look-up tables, which greatly facilitate 

the application of any subsequent solution algorithm. However, we still need to generalise the results for the multi-objective 

case of the SPRP.  

Indeed, thanks to the second phase expansion based on paths’ travel times, the proposed PEP can be already 

generalised to the multi-objective case of the SPRP. Let ᵃ�̂ = (ᵃ�̂ , ᵃ�)̂ be the resulting multi-graph after the application of 

the PEP, where ᵃ�̂ = {ᵃ�� ∪ ᵃ��} , and ᵃ�̂  is the set of retained directed road-paths between the nodes, i.e. ᵃ�̂ =

{(ᵅ�, ᵅ�, ᵅ�)|ᵅ�, ᵅ� ∈ ᵃ�̂ , ᵅ� ∈ ℰ}. Then, we propose the following theorem: 

Theorem 3 Let ᵊ�ℱ be the POS of any instance of the SPRP solved on the reduced graph ᵃ�,̂ and ᵊ�ℱ∗ be the POS of the 

very SPRP instance solved directly on ᵃ�. Then, ᵊ�ℱ ≡ ᵊ�ℱ∗. 

Proof. We must prove that no Pareto optimal path is discarded from ᵃ�̂ by applying the PEP. Consider a proof by 

contradiction and suppose that at least for one given departure time instant ᵰ� , and a vehicle of type ᵅ� carrying a load of size 

ᵃ� , road-path ᵅ�� ∈ ᵃ� between required nodes ᵅ�, ᵅ� ∈ ᵃ�� , which is discarded from ᵃ� ̂by applying the PEP (i.e. ᵅ�� ∉ ᵃ�)̂, is a 

Pareto optimal path, and its corresponding non-dominated objective value in the criterion space is �� = (��
�, ��

�, ��
�). The 

fact that ᵅ��  is excluded from ᵃ� ̂implies that ᵅ�� ∉ ℰᵅ�ᵅ�
ᵰ�  and hence the vector [�� (ᵅ��), ��

�� (ᵅ��)] is a dominated vector. On the 

other hand, since ��
� =  ��

�� (ᵅ��) and ��
� = �� (ᵅ��), the only way for ��  to be a non-dominated vector is to be non-

dominated based on ��
� . However, the vehicle hiring cost objective is path-independent. � 

4.1. The PEP-based MILP for the SPRP 

A MILP formulation of the SPRP based on the PEP, which is equivalent to a multi-objective, time and load dependent, 

fleet size and mix PRP, with time windows, flexible departure times, and multi-trips is proposed. 

Prior to introducing the decision variables and the model, however, to reduce computational complexity, we need to 

describe an alternative discretisation of the planning horizon ᵃ� , independently for each road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ�.̂ As we 

discussed earlier the time-dependent travel time of a road-link (and hence a road-path) is assumed integer. With this 

assumption it is probable to have the same travel time at several consecutive departure times. For example, it is possible 

that if the truck departs the origin of the road-path at any of the consecutive minutes {ᵰ� , ᵰ� + 1, ᵰ� + 2, . . , ᵰ� + ℓ} ∈ ᵃ� , the 

travel times would be equal; i.e. ����
� = ����

�+� = ����
�+� = ⋯ = ����

�+�. Correspondingly, the UTM and the RTM attributes 

would be the same. Therefore, the whole set of these ‘time instants’ might be bundled together as a ‘time period’ ᵕ�, to 
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which a unique ����
ᵕ� ,  ᵃ����

�ᵕ�  and ᵮ����
ᵕ� , can be attributed. In other words, departing at any time instant ᵰ�  during time period ᵕ�, 

will yield ����
ᵕ� ,  ᵃ����

�ᵕ�  and ᵮ����
ᵕ� .      

With this explanation, the planning horizon ᵃ�  could be discretised independently for each road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂

(using a customised notation ᵊ����), into a number of time periods ����, proportionate to the changes in the travel time of 

the path during the planning horizon. Therefore, the discretisation of ᵊ����  would yield (we drop path indices from �  and 

ᵊ� for notational simplicity), ᵊ� = {[����
� , ����

� ], [����
� , ����

� ], . . . , [����
� , ����

� ]}, where ����
� = ᵃ��, ����

� = ᵅ��, and ����
ᵕ�  and 

����
ᵕ�  denote the lower boundary and the upper boundary of time period ᵕ� ∈ ᵊ�, respectively. Confining this discretisation 

further by using the information from time-windows, it is possible to impose that ����
� = ᵃ�� + ᵅ�� and ����

� = ᵅ�ᵅ�ᵅ�(ᵅ�� +

ᵅ��, ᵅ��), ∀(ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂| ᵅ� ≠ 0. The following decision variables are then introduced and used by the formulation: (i) the 

binary variable ᵅ����
�ᵕ� , which is equal to 1 iff vehicle ᵅ� ∈ ᵃ� departs node ᵅ� ∈ ᵃ�̂  during time period ᵕ� ∈ ᵊ� to go to node ᵅ� ∈

ᵃ�̂ , through road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ�,̂ (ii) the continuous variable ᵃ����
�ᵕ�  ∈ [0, ᵃ��] which represents the size of load carried by 

vehicle ᵅ� ∈ ᵃ� over the road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂during time period ᵕ�, and (iii) the integer variable ᵅ����
�ᵕ� , which indicates the 

exact departure time from the origin of path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂given that it is departed by vehicle ᵅ� ∈ ᵃ�  during time period ᵕ�. 

Note that ᵃ����
�ᵕ�  must be time-indexed as it is multiplied by the RTM component in the instantaneous CMEM which is time-

dependent.  

In order to allow vehicles to make multiple trips, assuming that each vehicle is allowed to make a maximum of � 

trips during the planning horizon, � copies of the set ᵃ� is added to its end. With this modification, the length of the set ᵃ� 

will be �ᵱ� and vehicles {ᵅ� + ᵱ�, ᵅ� + 2ᵱ�, . . . , ᵅ� + �ᵱ�}  all are the dummy copies of vehicle ᵅ� ∈ ᵃ� , but with no assignment 

cost. It is worth mentioning that the definition of a fixed set of vehicles follows two main reasons and has no contradiction 

with defining the problem as a fleet size and mix problem; first, the use of the fleet set in the formulation of the problem 

adds to its generality as it could be simply used for the case of a heterogeneous or homogeneous fixed size fleet as well, 

and second, it helps multi-trip scheduling. It is clear that if a large enough number of each vehicle type is included in the 

fleet the problem is a fleet size and mix problem.  

The mathematical formulation of the proposed problem is given by (16)-(28). 

ᵅ�� ≔ � � � ᵃ��ᵅ����
�ᵕ�

ᵕ�∈��∈�(�����)∈�̂
 

(16) 

ᵅ�� ≔ � � � ᵃ����
�ᵕ� ᵅ����

�ᵕ� + � � ᵮ����
ᵕ� (� ᵅ����

�ᵕ�

�∈�
ᵰ�� + � ᵃ����

�ᵕ�

�∈�
)

ᵕ�∈�(�����)∈�̂ᵕ�∈��∈�(�����)∈�̂
 

(17) 

ᵅ�� ≔ � � ��ᵅ����
�ᵕ� + ����

ᵕ� ᵅ����
�ᵕ� �

ᵕ�∈��∈�(�����)∈�̂
− � � �ᵅ����

�ᵕ�

ᵕ�∈��∈�(�����)∈�̂
 

(18) 

  
ᵃ�ᵅ�ᵅ� (ᵅ��, ᵅ��, ᵅ��) (19) 

Subject to:  

� � � � ᵅ����
�ᵕ�

ᵕ�∈�
= 1,          ∀ᵅ� ∈ ᵃ��

�∈��∈ℇ���∈�̂

 
(20) 

� � � ᵅ����
�ᵕ�

ᵕ�∈�
− ᵅ����

�ᵕ� = 0,          ∀ᵅ� ∈ ᵃ�, ᵅ� ∈ ᵃ�̂
�∈ℇ���∈�̂

 
(21) 

� � � � ᵃ����
�ᵕ�

ᵕ�∈��∈��∈ℇ���∈�̂

− ᵃ����
�ᵕ� = ᵅ��,          ∀ᵅ� ∈ ᵃ�� 

(22) 
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ᵅ��ᵅ����
�ᵕ� ≤ ᵃ����

�ᵕ� ≤ (ᵃ�� − ᵅ��)ᵅ����
�ᵕ� ,          ∀(ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ�,̂ ᵅ� ∈ ᵃ�, ᵕ� ∈ ᵊ� (23) 

����
ᵕ� ᵅ����

�ᵕ� ≤ ᵅ����
�ᵕ� ≤ ����

ᵕ� ᵅ����
�ᵕ� ,          ∀(ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ�,̂ ᵅ� ∈ ᵃ�, ᵕ� ∈ ᵊ� (24) 

� ��ᵅ����
�ᵕ� + ����

ᵕ� ᵅ����
�ᵕ� �

ᵕ�∈��∈ℇ��

− � � ��ᵅ����
�ᵕ� − ᵅ��ᵅ����

�ᵕ� �
ᵕ�∈��∈ℇ���∈�̂

≤ 1 − � � ᵅ����
�ᵕ�

ᵕ�∈��∈ℇ��

, ∀ᵅ� ∈ ᵃ�̂ , ᵅ� ∈ ᵃ��, ᵅ� ∈ ᵃ� 
(25) 

� � � ��ᵅ����
�ᵕ� − ᵅ��ᵅ����

�ᵕ� � =
ᵕ�∈��∈�

ᵅ�ᵃ�ᵅ�(� � � ��ᵅ����
�ᵕ� + ����

ᵕ� ᵅ����
�ᵕ� �

ᵕ�∈��∈��∈ℇ���∈�̂

, ᵃ��)
�∈ℇ��

,          ∀ᵅ� ∈ ᵃ��
�∈�̂

 
(26) 

� � � ᵅ����
�ᵕ�

ᵕ�∈��∈ℇ���∈�̂

− ᵅ����
(�+�)ᵕ� ≥ 0,          ∀ᵅ� ∈ {1, . . (� − 1)ᵱ�} (27) 

� � � ᵅ����
(�+�)ᵕ� − �ᵅ����

�ᵕ� + (����
ᵕ� + ᵅ��)ᵅ����

�ᵕ� �
ᵕ�∈��∈ℇ���∈�̂

≥ ᵃ�(� � �ᵅ����
(�+�)ᵕ� − 1

ᵕ�∈��∈ℇ���∈�̂

), ∀ᵅ� ∈ {1, . . (� − 1)ᵱ�} (28) 

Expressions (16) to (18) are the objective functions, constraints (20) and (21) are routing constraints, constraints (22) 

and (23) are capacity and load flow constraints, constraints (24) to (26) are scheduling constraints, and constraints (27) and 

(28) are multi-trip constraints. The first objective function (16) represents the total hiring cost of the trucks assigned to the 

routes. Note again that ᵃ�� = 0, ∀{ᵅ� ∈ ᵃ�|ᵅ� > ᵱ�}, so that trucks operating extra rounds of trips are not penalised more than 

once. The second objective function (17) estimates the total time, load and truck type dependent fuel consumption of the 

routes; and the third objective (18) represents the total duration of each truck route.  

Constraints (20) indicate that each customer must be visited exactly once for delivery. Constraints (21) guarantee that 

the same vehicle that enters each customer node also exits the node. Constraints (22) model the flow on each road-path. 

Constraints (23) are used to restrict the total load a vehicle carries by its capacity. Constraints (24) determine the time-

period during which the origin of a path must be departed. Note that with these constraints ᵅ����
�ᵕ�  variables will be a non-

negative integer just for one time period, and zero for all other periods. Constraints (25) tune the time-dependent travel 

time of each road-path based on the departure time from its origin. Constraints (26) indicate that a customer is departed 

upon the completion of the service. It is worth noting that through the variable domain definition, we have already implicitly 

imposed that service takes place within the customers’ time windows. Constraints (27) and (28) are multi-trip constraints 

and together ensure that vehicles could operate another round of trip only if they are back from their first trip and are 

reloaded for a new one. In (28), ᵃ�  is a sufficiently large number, and without loss of generality could be set equal to ᵅ�0 +

ᵅ�0. 

5. Generating the full set of the ND points to the SPRP 

It is well-known that Multi-Objective Combinatorial Optimisation (MOCO), dealing with Multi-Objective Integer and 

Mixed Integer Linear Programming (MOILP/MOMILP) problems, is much more difficult than the Multi-Objective Linear 

Programming (MOLP), since the feasible set is no longer convex, and unsupported ND points may exist. Hence, even if a 

complete parameterization on the weight of each objective is attempted, unlike in the MOLP, the ND point set of the 

problem cannot be fully determined (Alves & Clímaco, 2007). Some of these methodological difficulties can be easier 

overcome in the bi-objective case than in the multi-objective one (Alves & Clímaco, 2007), and this is mainly the reason 

why most of the solution methodologies in the literature focus on a bi-objective case.  

Noticeable developments have been made recently in the area of Mathematical Programming Techniques (MPTs) for 

the exact solution of tri- and multi-objective integer programming problems, and efficient algorithms have been proposed 

that can find the full set of the ND points, saving greatly in the total number of IPs required to be solved (Sylva & Crema, 

2004; Özlen & Azizoglu, 2009; Dhaenens, Lemesre, & Talbi, 2010; Lokman & Köksalan, 2013; Özlen, Burton, & MacRae, 
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2014; Boland, Charkhgard, & Savelsbergh, 2016; Boland, Charkhgard, & Savelsbergh, 2017). Unfortunately, though, these 

algorithms cannot be directly applied on the MOMILP problems as infinite number of ND points can lie (e.g. on a line 

segment) in the continuous parts of the solution space to an MOMILP, and the current state-of-the-art in tackling MOMILPs 

only allows the consideration of two objectives within a branch-and-bound scheme. However, given the characteristics of 

the SPRP, the following useful remark allows us to apply directly any successful MPT developed for MOILPs on our 

problem: 

Remark 3 If in an MOMILP continuous variables only appear in at most one of the objective functions, then the given 

MOMILP has a discrete ND frontier and there is no continuous part in the ND frontier. For such MOMILP, since the ND 

frontier is discrete, the methods developed for pure MOIPs can be used to find all ND points. 

This remark is based on the fact that the projection of the image of a feasible solution to a multi-objective problem 

in the criterion space with continuous variables in only one of the objectives, is a point, and no line segment can exist along 

the Pareto frontier (assume a bi-objective problem for visualisation). Therefore, based on this remark, since in the case of 

the SPRP continuous variables only appear in the objective function related to the fuel consumption minimisation, efficient 

MPTs for MOILPs are applicable.  

 We have identified the Quadrant Shrinking Method (QSM) (Boland et al., 2017) as one of the best state-of-the-art 

MPTs for the exact solution to tri-objective integer programming problems. This MPT needs to solve a maximum of 

3|ᵊ�ℕ| + 1 IPs (where ᵊ�ℕ is the set of non-dominated points) for the generation of the full set of the ND vectors, and is 

relatively easy to implement.   

For the sake of brevity, an exposition of the QSM method is avoided here and the reader is referred to Boland et al. 

(2017) for an introduction. To solve the SPRP for the identification of the full set of ND points, we use the PEP-based 

MILP for the SPRP as the core optimisation problem inside QSM. For returning a ND vector in each iteration of the QSM, 

two (M)IPs must be solved that correspond to (i) an IP which is a single-objective problem in the third objective of the 

SPRP, i.e. the total travel time of the routes, and (ii) a MIP which is an aggregation of all the three objectives of the SPRP. 

This hybridisation turns out to be very efficient, and as will be reported in the computational experiments section of the 

paper, we are able to find the POS of all instances considered over a reasonable computational time despite the difficulty 

of the problem. 

6. Construction of realistic spatiotemporal driving cycles   

As discussed earlier, with the current technological advancements in Intelligent Transportation Systems (ITSs) and GPSs 

it is possible to collect data on fine-grained speeds variations over any given road-link in the road network at different times 

of a given day using probe vehicles. However, these data are usually unavailable at the planning stage. On the other hand, 

it has been shown that lack of such data, especially the instantaneous A/D data, can cause inaccuracy in estimating fuel 

consumption and hence might lead to unreliable and misleading routing decisions (Turkensteen, 2017).  

The only relevant study in the area of EMVRPs trying to take this situation into account is a recent study by Kancharla 

and Ramadurai (2018) who propose to incorporate driving cycles into the estimation of fuel consumption in a time-

independent routing context. The authors collect 450 km (144 h of driving) GPS data in the city of Chennai, India, and then 

for each arc in their test graphs randomly combine the collected micro-trips through an iterative process until the distance 

of the intended arc is covered. Despite the effort that is put in collecting these data, a major shortcoming of their proposed 

approach lies in the fact that the spatial and temporal characteristics of the road-links in the graph are completely ignored. 
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The location of a road-link in the roadway graph and the time of the day the given road-link is traversed have a fundamental 

impact on the shape of the speed-time profile and the frequency of vehicles A/Ds.    

The spatiotemporal characteristics of a road-link, however, are very well reflected in the macroscopic time-dependent 

speed data, which are widely available for decision making and could be efficiently used for constructing reliable synthetic 

driving cycles. Developing microscopic traffic data from macroscopic traffic data based on reconstructed synthetic vehicle 

trajectories is not something new and is a well-known stream of research in transportation engineering (Zegeye, De 

Schutter, Hellendoorn, Breunesse, & Hegyi, 2013; Wang, Daamen, Hoogendoorn, & Van Arem, 2011; Silvas, Hereijgers, 

Peng, Hofman, & Steinbuch, 2016). However, in this paper we adopt a completely different operational research approach 

and propose a simple but reliable method for the generation of synthetic spatiotemporal driving cycles with using only the 

road-link distance and the time-dependent average speed as input, and with no parameter tuning. The proposed approach 

is validated against an extensive library of real-world driving cycles and the results are presented in the ‘computational 

results’ section of the paper.  

Our proposed approach builds on a model for the generation of worst-case driving cycles, which is then simply 

weakened with slight parameter relaxation to lead to realistic cycles. Let ᵃ��� be the distance of a given road-link (ᵅ�, ᵅ�) ∈ ᵃ�, 

and ���
ᵕ�  be the time-dependent travel time of the given road-link during time period ᵕ� ∈ ᵊ�, deduced from the macroscopic 

traffic speed data using expression (3) (note that it is not necessary to generate the cycles for every time instant of the 

planning horizon; instead, in line with the arguments in section 4.1, we can generate cycles in the ‘time period’ level). Also, 

let ᵉ���� and ᵉ���� respectively denote the maximum possible acceleration and deceleration rates for a truck. Finally, 

suppose the maximum possible speed in the network is ᵅ�� . Then, the worst-case second-by-second A/D rates (ᵃ��) for the 

given road link during time period ᵕ� could be constructed by determining speed levels of every second (��) (where ᵃ�� =

�� − ��−�) using the following nonlinear programming model:    

ᵃ�ᵃ�ᵅ� � |�� − ��−�|
���

ᵕ� +���
ᵕ�

�=���
ᵕ� +�

 (29) 

Subject to:  

� ��

���
ᵕ� +���

ᵕ�

�=���
ᵕ�

= ᵃ���, (30) 

−ᵉ���� ≤ �� − ��−� ≤ ᵉ����,          ∀ᵅ� ∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } (31) 

����
ᵕ� = ����

ᵕ� +���
ᵕ� = 0, (32) 

0 ≤ �� ≤ ᵅ�� ,          ∀ᵅ� ∈ {���
ᵕ� , ���

ᵕ� + 1, . . . , ���
ᵕ� + ���

ᵕ� }  (33) 

The nonlinear objective function (29) maximises the positive difference between speed levels of every two 

consecutive seconds of the cycle, and hence the A/D rates. Constraint (30) tunes the instantaneous speeds in a way that the 

cycle is completed within the estimated time-dependent travel time of the given road link. Constraints (31) ensure that the 

A/D rates do not violate the maximum possible A/D rate of the truck. Constraint (32) indicate that the truck accelerates 

from idle (departing node ᵅ�) and comes to a full stop at the end of the cycle (arriving at node ᵅ�). Note that this is based on 

the assumption that in an urban road network trucks are usually forced to reduce their speed significantly or come to a full 

stop at network junctions (e.g. at a cross road traffic light or a turning point). Finally, constraints (33) determine the range 

of speed values. 
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In order to linearize (29)-(33), we define two new non-negative continuous decision variables ᵃ�ᵃ�ᵃ��, ᵃ�ᵃ�ᵃ��, ∀ᵅ� ∈

{���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } which indicate the acceleration rates and the deceleration rates during second ᵅ� − 1 until 

ᵅ�, respectively; and a new binary decision variable ᵱ�� ∈ {0,1},∀ᵅ� ∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� }, which is 1 iff 

vehicle accelerates during second ᵅ� − 1 until ᵅ�, and 0 otherwise. Then, the following MILP which is called the Driving 

Cycle (ᵃ�ᵃ���
ᵕ� ) model hereafter can be developed: 

ᵃ�ᵃ���
ᵕ� : ᵃ�ᵃ�ᵅ� � ᵃ�ᵃ�ᵃ�� + ᵃ�ᵃ�ᵃ��

���
ᵕ� +���

ᵕ�

�=���
ᵕ� +�

 (34) 

Subject to:  

�� − ��−� = ᵃ�ᵃ�ᵃ�� − ᵃ�ᵃ�ᵃ��,          ∀ᵅ� ∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } (35) 

0 ≤ ᵃ�ᵃ�ᵃ�� ≤ ᵱ��ᵉ����,          ∀ᵅ� ∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } (36) 

0 ≤ ᵃ�ᵃ�ᵃ�� ≤ (1 − ᵱ��)ᵉ����,          ∀ᵅ� ∈ {���
ᵕ� + 1, ���

ᵕ� + 2, . . . , ���
ᵕ� + ���

ᵕ� } (37) 

and (30), (32) and (33).  

While one can use this model in the development of the robust extension of the SPRP, as we will show later in the 

computational results section of the paper, very realistic cycles could be generated from the same model only by simply 

using empirical ‘mean’ acceleration and deceleration rates (ᵉ���� and ᵉ����) in the model instead of ᵉ���� and ᵉ����. In 

this paper, for these parameters we use the reported results by Bokare and Maurya (2017) from their study on the A/D 

behaviour of various vehicle types including trucks. Based on their results while ᵉ���� ≅ 1 m/s2, and ᵉ���� ≅ 0.88 m/s2, 

the mean acceleration rate of a truck is around 0.3 m/s2 and the mean deceleration rate is around 0.5 m/s2. In Figure 4.a, as 

a real-world driving cycle, we are illustrating the EPA1 heavy duty urban driving schedule which covers a distance of 

around 8935 m in 1060 s, with an estimated fuel consumption of 2.55 litres for an empty light-duty truck. Using ᵃ�ᵃ���
ᵕ�  the 

worst-case driving cycle is generated and illustrated in Figure 4.b with a fuel consumption of 3.22 litres, and the cycle 

based on the mean A/Ds with a very close amount of fuel consumption to the original cycle, i.e. 2.60 litres, is shown in 

Figure 4.c. 

(a) 
FC = 2.55 lit. 

(b) 
FC = 3.22 lit. 

(c) 
FC = 2.60 lit. 

   
Figure 4 Example synthetic driving cycles constructed from the proposed MILP model 

Using the proposed model, if historical microscopic data are unavailable at the planning stage, it is possible to 

generate reliable driving cycles without collecting field data, and estimate fuel consumption more accurately than using 

the average-speed CMEM. To generate the required cycles for all network links at all time periods, the proposed model 

must be used iteratively. An intuitive iterative algorithm for this purpose is presented in Appendix C. In the next section, 

we report the computational cost of generating the network-wide driving cycles in the case of each instance using this 

algorithm. 

                                                             
1 https://www.epa.gov/sites/production/files/2015-10/huddscol.txt 
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As a wrapper of all modules and processes introduced in the paper, in the flow chart in Figure 5, we present the flow 

of the operations that are carried out on the original roadway graph until the full set of the ND points to an instance of the 

SPRP are identified. In this flow chart, we are indicating the section of the paper that is relevant to each of the four main 

modules introduced.  

Start

1. Compute the time-
dependent travel times for 
all road-links (section 3)

2. Use the iterative algorithm to generate 
the network-wide driving cycles and the 
consequent UTM and RTM attributes of 

road-links (Section 6)

3. Apply the PEP and identify 
the set of the retained road-paths 
with their attributes (Section 4)

4. Use the QSM with the 
PEP-based MILP to find the 
efficient frontier (Section 5)

Input: The original 
roadway network G with  
macroscopic speed data 

for all road-links

Output: The 
full set of ND 

points

End
 

Figure 5 The flow of modules introduced in the paper until finding the full set of the ND points 

7. Computational results 

A set of time-dependent roadway graphs with 100 nodes are created as the test bed of the proposed PEP-based MILP. For 

these instances, the raw graphs are generated using the procedure proposed by Letchford et al. (2013) that leads to graphs 

which resemble real-life road networks. To generate time-dependent travel times for the arcs, a planning horizon of 480 

minutes is assumed, and traffic condition is supposed to follow a non-congested/congested/non-congested/congested 

pattern. The two congested periods represent the morning and evening rush hours with speed values generated randomly 

within the range 15-40 km/h. Non-congested speeds, on the other hand, are determined randomly within the range 40-70 

km/h. Within this pattern, random speed observations are generated independently for each arc in 15-minute increments 

(i.e. 32 speed observations per road-link) such that speed levels change from one period to the next smoothly. Following 

this, the time-dependent travel times of arcs are computed per minute using the proposed closed form formula (3) and 

rounded up to the nearest integer. For all arcs, driving cycles are generated using ᵃ�ᵃ���
ᵕ�  MILP for each time period, and the 

resulting UTM and RTM attributes of the arcs are computed and stored.   

Across the generated road networks, we have randomly selected 10 customers to be served by a central depot. For 

multi-objective experiments, to be able to generate the full set of the ND points on the efficient frontier within a reasonable 

time, we have considered 5 customers. It is worth mentioning that while the dimension of the proposed instances compares 

well with other existing papers with an exact approach given the extra complications from multi-trips and flexible paths, it 

is not an intention of this paper to solve large size test instances, and it has been the task of our follow up paper on the 

development of multi-objective optimisation heuristics for the SPRP. Instead, here we are more interested in observing the 

performance of the PEP, the contributions of the multi-trips, the trade-offs on the Pareto front of the SPRP and presenting 

a benchmark for examining the performance of future heuristics for the problem.  

In all test instances, service times and the reloading time at the depot for vehicles executing an extra round of trip are 

assumed 20 minutes. Feasible time-windows and demands are induced for the customers using a procedure based on a 

nearest neighbour algorithm where a heavy-duty truck is dispatched to visit the nearest customer in each iteration of the 

algorithm, until capacity or time constraints are violated. Customers’ demands are drawn randomly from the discrete 

uniform distribution on the interval [1000kg, 15000kg], and relatively wide time-windows covering up to 40% of the 
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planning horizon are generated around the arrival time of the dispatched trucks. For all instances, the fleet is supposed to 

be composed of two light-duty, two medium-duty, and two heavy-duty trucks, and all trucks are allowed to execute a 

maximum of two rounds of trips during the planning horizon. All the test instances developed in this paper along with the 

reported solutions in this section are available at: https://dx.doi.org/10.17635/lancaster/researchdata/266, or could be 

requested from the authors via email.  

All the experiments were performed on a computer with Intel Core™ i5 3.20 GHz processor with 8 GB RAM. The 

branch-and-bound solver of CPLEX™ 12.6.3 was used as the exact solver, and except for the PEP and the travel time 

calculation algorithms that were coded in MATLAB™, all other algorithms were modelled as OPL scripts in pre-

processing, post-processing and model flow control on top of the OPL models of the core MILPs. No global time limit was 

used to allow the solver to generate the full set of the ND points for benchmarking purposes.  

7.1. Performance of the PEP 

To demonstrate the efficiency of the proposed PEP and the MILP based on it in addressing the SPRP, all test instances 

with 10 customers are solved to optimality for the fuel consumption minimisation objective using the PEP-based MILP, 

and solutions are compared with the solutions from a TDSP-based MILP, where a multi-graph based on the full set of the 

TDSPs between required nodes is used. The results of this comparison are presented in Table 2. In this table, the total 

number of arcs in the original networks, and in the reduced networks after applying the PEP and the TDSP are shown, 

along with the litres of fuel consumed (FC) by the optimal solutions returned by each of the formulations, and the runtime 

(in minutes). One column is also devoted to reporting the percentage optimality gap of the TDSP-based formulation from 

the optimal solution returned by the PEP-based formulation. Table 2 shows that for all the instances considered, the solution 

based on the TDSP is suboptimal. The table also indicates that TDSPs on average can only represent less than 44% of the 

eligible road-paths in the graph. Observe that the runtime columns of the table suggest that despite the difficulty of the 

problem, the proposed MILP formulation can find the optimal solutions in a reasonable runtime with an average of less 

than 10 minutes. 

Table 2 
Optimal fuel consumption yielded by the PEP-based and the TDSP-based formulations 

Instance 
# 

Network 
Arcs 

 PEP-based MILP  TDSP-based MILP 

 Arcs FC 
Runtime 
(min) 

 Arcs FC 
Runtime 
(min) 

Gap 

1 344  149 54.24 11.03  109 55.56 29.72 2.43% 
2 370  270 79.32 1.26  82 86.43 0.23 8.96% 
3 358  195 55.36 18.03  127 57.27 4.68 3.46% 
4 348  187 77.06 1.94  96 84.64 4.06 9.83% 
5 362  259 65.85 5.26  112 69.97 3.28 6.26% 
6 366  182 68.30 1.02  92 74.21 0.26 8.65% 
7 354  247 59.09 32.20  152 63.38 80.98 7.26% 
8 358  218 71.56 0.76  108 79.02 0.92 10.42% 
9 374  190 82.15 3.44  131 84.80 3.45 3.22% 
10 350  208 82.95 0.82  117 90.14 0.79 8.67% 
11 358  172 56.49 4.65  119 58.99 10.72 4.42% 
12 360  157 81.25 0.90  90 87.60 0.60 7.82% 
13 362  180 67.39 1.39  96 68.86 0.50 2.18% 
14 358  214 79.84 1.62  121 85.51 1.35 7.11% 
15 360  247 49.12 15.86  145 51.15 12.62 4.13% 
16 348  149 60.28 0.28  99 65.75 0.86 9.08% 
17 412  210 65.48 3.76  102 69.25 1.47 5.76% 
18 348  158 78.31 1.71  89 86.21 1.36 10.09% 
19 426  238 51.58 5.21  102 58.01 6.77 12.48% 
20 352  167 71.20 0.23  85 77.27 0.22 8.53% 
21 346  248 77.16 3.96  99 82.73 0.54 7.22% 
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22 370  211 76.04 0.59  106 81.58 0.71 7.27% 
23 350  200 77.47 1.93  103 85.20 0.49 9.96% 
24 368  221 77.80 11.52  103 83.87 1.43 7.80% 
25 362  182 78.69 2.03  83 87.70 1.89 11.45% 
Avg. 362.56  202.36 69.76 5.26  106.72 75.00 3.33 7.52% 

A more in-depth analysis of the performance of the PEP and the three other approximate algorithms on a real road 

network based on the Chicago’s arterial streets is provided in Appendix B.  

7.2.  Fleet size and mix, and the effect of using multiple-trips 

The fleet size and mix of the optimal solutions to instances with 10 customers in case of the fuel consumption minimisation 

is analysed and presented in Table 3. In this table, the column ‘C’ indicates the cost of hiring the trucks in the solution, and 

the column ‘R’ denotes the number of routes in the solution. Number of each vehicle type light-duty (L), medium-duty (M) 

and heavy-duty (H) employed by the solution is presented under the heading ‘NU’. Average percentage of capacity of each 

truck type used when departing the depot is shown by ‘CU’, and the number of each truck type employed for multiple trips 

is given under the heading ‘MT’. Since only medium-duty trucks are selected by all solutions for multi-trips, the average 

percentage of their capacity used for the second round of delivery is shown in column ‘CUM’. Finally, the last two columns 

of the table denote the percentage savings in fuel consumption and cost due to the use of multi-trips. To measure the 

savings, we have prohibited multi-trips from all instances and then re-optimised the problems for fuel consumption 

minimisation and calculated the deviation. Note that in case of instance #9 the problem is infeasible if multi-trips are not 

allowed. 

Table 3  
Fleet size and mix, average capacity use and the use of the multiple-trips in the optimal fuel consuming solutions 

 

Inst. C  R 
NU  CU  MT  CUM  MT savings 
L M H  L M H  L M H  M  Fuel cost 

1 162 5 1 2 0  79% 91% -  0 2 0  68%  2% 84% 
2 214 4 0 2 1  - 74% 94%  0 1 0  82%  2% 16% 
3 120 4 0 2 0  - 74% -  0 2 0  77%  9% 78% 
4 308 4 0 2 2  - 60% 82%  0 0 0  -  0% 0% 
5 204 5 2 2 0  98% 63% -  0 1 0  97%  4% 46% 
6 214 4 0 2 1  - 76% 89%  0 1 0  64%  3% 44% 
7 120 4 0 2 0  - 77% -  0 2 0  79%  2% 148% 
8 214 4 0 2 1  - 53% 75%  0 1 0  80%  0% 39% 
9 392 8 2 2 2  92% 82% 73%  0 2 0  77%  - - 
10 214 5 0 2 1  - 54% 86%  0 2 0  85%  3% 64% 
11 204 5 2 2 0  73% 81% -  0 1 0  94%  3% 0% 
12 214 5 0 2 1  - 68% 94%  0 2 0  75%  2% 44% 
13 298 6 2 2 1  68% 85% 87%  0 1 0  67%  2% 32% 
14 298 6 2 2 1  84% 51% 51%  0 1 0  80%  0% 0% 
15 162 4 1 2 0  73% 67% -  0 1 0  80%  10% 58% 
16 214 5 0 2 1  - 83% 58%  0 2 0  86%  5% 44% 
17 214 4 0 2 1  - 95% 97%  0 1 0  74%  4% 44% 
18 214 5 0 2 1  - 83% 69%  0 2 0  75%  2% 44% 
19 204 5 2 2 0  79% 59% -  0 1 0  78%  0% 46% 
20 214 4 0 2 1  - 72% 68%  0 1 0  40%  2% 0% 
21 308 5 0 2 2  - 85% 70%  0 1 0  56%  4% 0% 
22 214 4 0 2 1  - 89% 84%  0 1 0  73%  4% 16% 
23 214 4 0 2 1  - 85% 94%  0 1 0  92%  5% 64% 
24 256 6 1 2 1  72% 79% 30%  0 2 0  70%  4% 37% 
25 214 5 0 2 1  - 66% 84%  0 2 0  77%  3% 44% 
Avg. 224.16 4.80 0.60 2.00 0.84  80% 74% 77%  0.00 1.36 0.00  76%  3% 31% 

It is clear from the table that the medium-duty truck is the most preferred resource in the fleet, as it establishes an 

adequate balance between the energy-efficient but capacity-inefficient light-duty truck, and the energy-inefficient but 

capacity-efficient heavy-duty truck. Moreover, capacity usage in all cases for all vehicle types is very well distributed, for 
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which some contribution could be attributed to multiple-trips possibility. It is also interesting to see that when a vehicle is 

assigned to an extra round of trip it is not under-utilised in terms of its capacity.  

7.3. The Pareto front of the SPRP 

All the test instances with 5 customers were solved to multi-objective optimality for the generation of the full set of the 

ND points on the true Pareto fronts using the approach discussed in section 5 of the paper, i.e. embedding the PEP-based 

MILP within the framework of the QSM (QSM+PEP-based MILP). Again, an alternative approach based on the integration 

of the QSM with the TDSP-based MILP (QSM+TDSP-based MILP) is considered to further see the effect of suboptimal 

network reduction techniques on the generation of the true Pareto fronts. The QSM+TDSP-based MILP uses the TDSP-

based MILP described earlier as the core optimisation problem. That is, a multi-graph based on the full set of the TDSPs 

between required nodes is considered, and the MILP described in (16)-(28) is solved on this multi-graph rather than on the 

original PEP-based multi-graph. Like the case of the QSM+PEP-based MILP, in each iteration of the QSM+TDSP-based 

MILP, for returning a ND vector, the two (M)IPs discussed in section 5 must be solved. For all test instances we had to 

calibrate only ᵱ��  as the first objective is integer, and hence considered ᵱ�� = 1 , and ᵱ�� = 0.01  (ᵱ��  and ᵱ��  are QSM 

parameters). Also, as earlier mentioned no time limit was applied on the solver to allow the full set of the ND points to be 

found.  

In Table 4, the total number of ND points and the objective-wise values of the extreme points on the Pareto fronts 

found by each of the two approaches are shown. In this table, the columns Obj1, Obj2, and Obj3 represent the global 

minimum value found for the first objective (vehicle cost in £), the second objective (fuel consumption in lit.) and the third 

objective (travel time in mins.), respectively. The important column here is the column with the heading ‘I ≺ II’ which 

indicates the number of ND points found by the QSM+TDSP-based MILP which are strictly dominated by the ND points 

on the QSM+PEP-based SPRP Pareto front.  

Table 4 
Extreme points on the Pareto fronts generated by each approach 

Instance 
# 

I: QSM+PEP-based MILP  II: QSM+TDSP-based MILP 

# of 
ND 
points 

Extreme points Runtime 
(min) 

 # of 
ND 
points 

Extreme points 
I ≺ II Runtime 

(min) Obj1 Obj2 Obj3  Obj1 Obj2 Obj3 

1 40 94 43.66 228 127.24  28 94 49.54 228 22 21.78 
2 43 60 28.16 245 808.28  37 60 29.11 245 33 46.63 
3 50 94 38.86 222 150.20  12 94 41.41 222 10 10.13 

4 39 60 25.13 229 73.45  33 60 25.52 229 24 43.90 
5 31 94 36.96 267 166.40  12 94 38.46 267 10 12.73 

6 65 94 36.91 227 1095.91  41 94 38.35 227 34 175.08 

7 51 94 41.91 256 662.77  46 94 43.57 256 31 171.47 

8 79 94 41.52 270 222.03  72 94 42.11 270 70 123.31 

9 77 136 50.08 250 218.51  57 136 50.74 250 35 103.90 

10 101 154 67.75 323 616.62  78 154 68.46 323 43 299.35 

11 39 94 44.31 210 51.84  25 94 46.30 210 12 8.12 
12 41 94 25.97 192 657.65  28 94 26.89 192 19 116.95 

13 27 154 56.75 239 82.50  22 154 58.67 239 13 108.78 

14 82 136 41.90 234 133.68  55 136 43.31 234 43 67.65 
15 30 94 31.67 207 76.88  23 94 32.29 207 16 63.87 

16 100 94 41.04 247 982.92  88 94 41.18 247 82 775.78 
17 34 94 24.52 180 159.99  39 94 26.62 180 35 63.89 

18 53 60 33.98 231 177.97  13 60 34.81 231 6 8.22 

19 61 94 38.21 212 48.66  33 94 39.14 212 21 7.75 
20 41 94 25.97 192 566.37  28 94 26.89 192 19 111.30 

21 27 154 56.75 239 83.78  22 154 58.67 239 13 106.04 

22 82 136 41.90 234 108.65  55 136 43.31 234 43 70.34 
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23 34 94 24.52 180 133.43  39 94 26.62 180 35 59.76 

24 53 60 33.98 231 129.54  13 60 34.81 231 6 7.87 
25 61 94 38.21 212 41.26  33 94 39.14 212 21 7.29 

Average 53.64 100.8 38.82 230.28 303.06  37.28 100.8 40.24 230.28 27.84 103.68 

It is observed that in several of the cases the number of the ND points found by the TDSP-based formulation is much 

less than what is found by the PEP-based one, and more importantly, many of these are strictly dominated. For example, 

there are 50 ND points on the true Pareto front of instance #3 found by the PEP-based formulation, and there are only 12 

ND points on the Pareto front of the TDSP-based model; however, 10 of these are strictly dominated by the solutions on 

the true front, meaning that the TDSP-based approach has been in effect able to find only 2 ND points out of the 50 

solutions. On average, the number of the ND points found by the TDSP-based formulation is 70% of what is found by the 

PEP-based formulation, but around 75% of these are strictly dominated by the true front. Comparison of the extreme points, 

on the other hand, reveals that as expected the solutions with minimal vehicle cost and travel time could be found by the 

TDSP-based formulation; however, complying with the results in Table 2, in all cases a suboptimal solution for fuel 

consumption minimisation is yielded by the TDSP-based formulation.  

It is worth mentioning that despite the size of the POSs (i.e. around 54 ND points on average) the full sets of ND 

points are generated within a very reasonable runtime of around 304 minutes on average, suggesting the successful 

integration of the QSM with the proposed MILP formulation.  

Unlike bi-objective optimisation, visualisation of the Pareto front in the case of the multi-objective optimisation with 

more than two objectives is not easy. However, to provide the decision maker with a useful visual presentation of the trade-

offs among the ND points on the Pareto front, and aid her/him to select a solution that provides a suitable compromise 

among the objective values, we propose the use of enhanced heat maps similar to the one shown in Figure 6. In this figure, 

the Pareto front of instance #4 is selected and the percentage deviations from the absolute minimum in case of each 

objective function for all the 39 solutions on the considered front is shown. While it can be observed that there exists a 

significant trade-off among the three objectives of the SPRP and the minimisation of one objective can significantly 

deteriorate the value of the other two, with the help of the colour gradient, this figure makes it possible to visually locate 

the more balanced solutions. 

 
Figure 6 Heat map illustrating the ND points to a given SPRP instance 
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It is also clear from Figure 6 that in the case of the considered instance the range of deviations in the travel time 

objective is much larger than the other two objectives, and it is particularly maximised when the solution tends to minimise 

fuel consumption. To investigate this further, we analyse that when one of the objectives is minimised, how much sacrifice 

is made in case of the other two objectives. As an average over all the instances with 5 customers, Figure 7 illustrates this 

trade-off. Similar to Figure 6, Figure 7 shows clearly that less sacrifice must be made in the other two objectives, when one 

minimises travel time, whereas the minimisation of fuel consumption can lead to a significant increase in the other two 

objectives.   

 
Figure 7 Average trade-off among the objective functions in case of the 5-customer instances 

Finally, in Figure 8 for one instance we illustrate the routing patterns of the solution with minimum vehicle cost, the 

solution with minimum fuel consumption, and the solution with minimum travel time.  

Vehicle cost minimising routes 
Vehicle cost: 94 (£) 
Fuel consumption: 85.11 (lit.) 
Travel time: 420 (min) 

Fuel consumption minimising routes 
Vehicle cost: 120 (£) 
Fuel consumption: 51.13 (lit.) 
Travel time: 1081 (min) 

Travel time minimising routes 
Vehicle cost: 94 (£) 
Fuel consumption: 79.87 (lit) 
Travel time: 398 

   
Figure 8 Routing patterns in case of the minimal objective value for each of the objectives 

In this figure, in case of the minimum fuel consumption routes, two medium duty trucks are used for four routes (each 

making an extra round of trip), whereas in the other two cases all customers are served by one heavy–duty truck that also 

makes an extra round of delivery. 

7.4. Reliability of the constructed driving cycles 

In order to demonstrate the reliability of the proposed model for the generation of synthetic driving cycles, an extensive 

library of real-world driving cycles, consisting of over 19,000 different on-road driving cycles collected by Kancharla and 

Ramadurai (2018), are used as the benchmark set. For each cycle, the travel time and the distance of the cycle is fed into 

the proposed model, and the model is gotten to generate a synthetic cycle. Following the cycle generation, an empty light-

duty truck (which is similar to the probe truck used in data collection in their study) is assumed to traverse both the real 

and the synthetic cycles, and the incurred fuel consumption based on the instantaneous CMEM in each case is computed. 

The percentage deviation of the incurred fuel consumption over the synthetic cycle from the incurred fuel consumption 

over the real driving cycle (i.e. [(ᵃ�ᵅ�ᵃ�ᵅ���������� − ᵃ�ᵅ�ᵃ�ᵅ�����) ᵃ�ᵅ�ᵃ�ᵅ�����⁄ ] × 100 ) is then calculated. A descriptive statistics 

summary of the percentage deviations in all the 19,362 cases is presented in Table 5, and a histogram of these deviations 

is illustrated in Figure 9. 
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Table 5 
Descriptive statistics summary table of percentage deviation of the generated cycles from on road-cycles 

Count 19362  Sample Variance 0.000127964 

Mean 0.018511164  Kurtosis 1.31344784 

Standard Error 8.12959E-05  Skewness 1.025999919 

Median 0.016021384  Range 0.0983492 

Mode 0.054775047  Minimum -0.020289727 

Standard Deviation 0.011312111  Maximum 0.078059472 

 

 
Figure 9 Histogram of percentage deviations of fuel consumption on synthetic cycles from on-road data 

Based on Table 5, the proposed MILP can generate driving cycles, which have fuel consumption characteristics very 

close to real-life driving cycles, and on average lead to a fuel consumption estimation inaccuracy of less than 2%. Based 

on the histogram in Figure 9, for over 75% of the cycles considered, deviation lies between 0 and 2.5%. 

Finally, it is useful to see the value of gaining this information and using truck A/D rates in fuel consumption 

estimation when routing on congested road networks. To this aim, we have solved all the instances with 10 customers to 

fuel consumption optimality when A/D rates are ignored and assumed zero all over the network, throughout the planning 

horizon. The performance of these solutions is then evaluated under the ‘real’ speed-time profiles; i.e. when the truck in 

practice accelerates and decelerates based on the generated driving cycles. With this, we are able to see to some extent the 

sub-optimality of these solutions and the estimation inaccuracy they contain. The results of these experiments are presented 

in Table 6.  

Table 6  
The effect of estimating fuel consumption inaccurately due to ignoring truck A/D rates 

Instance #  Arcs 
Percentage 
optimality gap 

Estimation 
inaccuracy 

DCs generation 
runtime (seconds) 

1  129 11.67% 75.51% 294.90 

2  157 5.73% 76.89% 512.66 

3  160 2.80% 61.08% 320.29 

4  169 1.02% 68.03% 484.26 

5  185 2.06% 56.64% 351.54 

6  151 0.37% 67.26% 483.57 

7  191 2.13% 57.33% 317.61 

8  168 3.68% 65.44% 532.96 

9  120 9.59% 81.36% 1006.06 

10  172 2.97% 66.49% 469.92 

11  156 4.41% 68.61% 325.69 

12  130 4.23% 71.33% 514.18 

13  138 2.49% 52.77% 527.12 

14  190 4.74% 73.33% 459.93 

15  188 0.71% 57.80% 319.48 

16  142 3.04% 58.43% 463.71 
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17  155 0.84% 58.82% 617.72 

18  147 2.17% 68.74% 504.84 

19  188 3.53% 45.77% 673.53 

20  172 1.13% 58.52% 496.20 

21  188 2.90% 75.05% 480.11 

22  174 7.54% 76.86% 522.29 

23  150 2.96% 65.74% 450.84 

24  184 2.20% 55.03% 492.37 

25  145 8.57% 79.10% 531.54 

It must be noted that ignoring truck A/D rates results in a completely different reduced network when the PEP is 

applied. As it is presented in Table 6, when A/D rates are ignored the PEP can only represent on average around 80% of 

all eligible road-paths that are identified in the case of the instantaneous CMEM with A/D data. As the table suggests, 

ignoring A/D rates leads to suboptimal solutions in all cases.  

In Table 6, we have also reported the total computational time required for the generation of all driving cycles for all 

road-links in the network at all time periods in case of each instance, under the column ‘DCs generation runtime’. Observe 

that in comparison with field data collection, the required computational cost reported in the table can be considered 

insignificant. 

8. Discussion and concluding remarks 

In this paper, we introduced a realistic urban freight distribution model that can address traditional business and 

environmental objectives simultaneously while integrating several factors affecting fuel consumption, on the original 

roadway network. The proposed model is a variant of the well-known PRP, called the SPRP, and is a multi-objective, time 

and load dependent, fleet size and mix, emissions minimising vehicle routing and scheduling problem, with time windows, 

flexible departure times, and multi-trips on congested urban road networks. The paper focused mainly on a key 

complication arising from emissions minimisation in a time and load dependent setting, corresponding to the identification 

of the full set of the eligible road-paths between consecutive truck visits. It was shown that the state-of-the-art pre-

processing approaches are unable to extract all such paths from the underlying roadway graph and thus lead to sub-optimal 

solutions with an optimality gap of as high as 12% in terms of fuel consumption. It was also observed that compared with 

the proposed approach in the paper, the other approach based on the TDSPs has a very limited ability to identify true ND 

points on the Pareto front in a multi-objective case, where it is only able to identify less than 18% of the true ND points on 

average. Further experiments on a real road network based on Chicago’s arterial streets indicated that the set of eligible 

road-paths between a given origin/destination pair can be so large, and while TDSPs constitute a very limited subset of 

these paths, the PEP can identify them all.   

All models in the paper are based on the instantaneous CMEM formula and can incorporate second-by-second speed 

variations and thus A/D rates for a more accurate estimation of fuel consumption. However, acknowledging the fact that 

such well-grained speed data are rarely available to the decision maker at the planning stage, the paper proposed a simple 

optimisation model for the construction of reliable spatiotemporal driving cycles that with very few model inputs and no 

parameter tuning can yield synthetic driving cycles that very well approximate the expected real-life fuel consumption of 

the truck. Experiments that are carried out on over 19000 different on-road driving cycles confirm an average over-

estimation of less than 2% for the proposed model. This model hence can replace the costly and time-consuming data 

acquisition phase for attaining reliable figures on the expected fuel consumption in routing applications. 

The proposed model in the paper also shed light on an interesting opportunity to further cut down on GHG emissions 

and costs by using more energy-and-cost-efficient resources in the fleet multiple times during the planning horizon through 

multi-trip optimisation; especially in urban areas where trips are rather short, and trucks could be simply reloaded and 
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dispatched for an extra round of trip. Multi-trip optimisation in a time-dependent setting, however, has never been studied 

before, and would constitute an interesting line of research due to new and previously unvisited challenges that it brings 

about when tackling real life size test instances.    

The SPRP is a realistic and hence a very difficult problem to solve, and the main limitation of the current work lies 

in its inability in addressing large practical size SPRP instances. We are developing tailored multi-objective optimisation 

heuristics for the SPRP in a follow up paper to cope with this situation. While there are multiple research opportunities 

relevant to the study of EMVRPs directly on the roadway networks, we identify the incorporation of the effect of non-

recurrent congestion in the routing decisions through the development of real-time or stochastic variants of the SPRP as a 

significant line for future research. Moreover, as a recommendation for further research, the development of realistic 

problem instances that can reflect the real daily congestion patterns, and allow the analyses of different what-if scenarios 

for the departure time, depot location, customers’ demands and time-windows negotiation, planning horizon alterations, 

and fleet size and mix decisions, can help gaining many practical insights for a logistics system operating in an urban area. 

Appendices   

Appendix A: List of the notation and acronyms 

The following table presents the major notation used in the text. We have attempted to keep unique meaning for each 

notation to the greatest extent possible. In those cases where an item has additional uses, they should be clear from context. 

Only notations that are used in more than one section are presented, and additional notations that are used within specific 

sections are explained when used. 

Notation Definition Notatio
n 

Definition 

ᵃ� A directed graph representing a real 
roadway network 

ℎ�� Number of available speed observations during the planning 
horizon for road-link (ᵅ�, ᵅ�) ∈ ᵃ� 

ᵃ�  The set of network nodes in ᵃ� ᵅ�� Observed speed at time instant ᵅ�� 

ᵃ� The set of directed road-links in ᵃ� ᵃ�� Slope of the line segment connecting ᵅ�� to ᵅ��+�  

ᵃ�� The set comprising the depot only ᵃ���
��  UTM attribute of a road-link (or a road-path if it is explicitly 

mentioned) for truck type ᵅ� ∈ ᵃ� at departure time ᵰ�  
ᵃ�� The set of customer nodes ᵮ���

�  RTM attribute of a road-link (or a road-path if it is explicitly 
mentioned) at departure time ᵰ�  

ᵃ�� The set of network junctions ᵉ��� The set of all minimum fuel consuming paths between 
required nodes ᵅ� and ᵅ� 

ᵅ� Number of customers ℰ�� The set of all paths ᵅ��� with non-dominated vectors 

[�� (ᵅ���), ��
��(ᵅ���)] 

� Number of network junctions ᵃ�ᵃ�ᵃ�� Tuple containing the attributes of path ᵑ� 

ᵃ� The fleet of heterogeneous vehicles ℛ��
��  The set of retained eligible paths between nodes ᵅ�, ᵅ� ∈ ᵃ�� for 

vehicle type ᵅ� ∈ ᵃ� at departure time ᵰ�  
ᵱ� The total number of vehicles in ᵃ�  ᵉ�ᵊ�ᵊ���

��  The set of tuples containing the attributes of all paths retained 
in ℛ��

��  

ᵕ� The number of vehicle types ℳ��
�  The ordered set of the k fastest paths at time instant ᵰ�  

ᵰ��  Curb weight of vehicle ᵅ� ∈ ᵃ�  � Maximum number trips a truck is allowed to make 
during the planning horizon 

ᵃ�� Maximum payload of vehicle ᵅ� ∈ ᵃ�  ����
ᵕ�  Travel time of road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂during time period ᵕ� 

ᵃ�� Daily hiring fixed cost of vehicle ᵅ� ∈ ᵃ� ᵃ����
�ᵕ�  UTM attribute of road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂during time period ᵕ� 

ᵅ�� Demand requested by customer ᵅ� ∈ ᵃ�� ᵮ����
ᵕ�  RTM attribute of road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂during time period ᵕ� 

ᵅ�� Hard time window of customer ᵅ� ∈ ᵃ�� ᵊ���� Time horizon dedicated to road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂for 
customised discretisation 

ᵃ�� Lower boundary of ᵅ�� ���� Number of time periods during ᵊ���� 

ᵅ�� Upper boundary of ᵅ�� ����
ᵕ�  The lower boundary of time period ᵕ� ∈ ᵊ� 

ᵅ�� Service time at customer ᵅ� ∈ ᵃ�� ����
ᵕ�  The upper boundary of time period ᵕ� ∈ ᵊ� 
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ᵃ�  The planning horizon ᵅ����
�ᵕ�  Binary variable equal to 1 iff vehicle ᵅ� ∈ ᵃ� departs node ᵅ� ∈

ᵃ�̂  during time period ᵕ� ∈ ᵊ� to go to node ᵅ� ∈ ᵃ�̂ , through 

road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂

ᵃ��� Distance of road-link (ᵅ�, ᵅ�) ∈ ᵃ� ᵃ����
�ᵕ�  Continuous variable to represents the size of load carried by 

vehicle ᵅ� ∈ ᵃ� over the road-path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂during time 

period ᵕ� 
���

�  The time-dependent travel time of road-
link (or a road-path if it is explicitly 
mentioned) for departure time ᵰ�  

ᵅ����
�ᵕ�  Integer variable indicating the exact departure time from the 

origin of path (ᵅ�, ᵅ�, ᵅ�) ∈ ᵃ� ̂given that it is departed by 
vehicle ᵅ� ∈ ᵃ�  during time period ᵕ� 

ᵃ�� The set of required nodes ᵊ�ℕ The set of non-dominated points 

ᵅ��� A road-path that connects a pair of required 
nodes ᵅ�, ᵅ� ∈ ᵃ��. 

ᵉ���� The maximum possible acceleration rate for a truck 

��� The set of all paths between a pair of 
required nodes ᵅ�, ᵅ� ∈ ᵃ��  

ᵉ���� The maximum possible deceleration rate for a truck 

��(ᵅ���) The time-dependent travel time of road-
path connecting nodes ᵅ� to ᵅ� for departure 
time ᵰ�  

ᵅ��  The maximum possible speed in the network 

��
��(ᵅ���) Fuel consumption of a truck ᵅ� ∈ ᵃ�, 

carrying a load ᵃ� ∈ [0,ᵃ��] at departure 

time ᵰ�  

�� Speed level at each second ᵅ� of a driving cycle 

ᵅ� A route or a vehicle trip ᵃ�ᵃ�ᵃ�� The acceleration rate during second ᵅ� − 1 until ᵅ� 
ᵅ�� A route-path ᵃ�ᵃ�ᵃ�� The deceleration rate during second ᵅ� − 1 until ᵅ� 
ᵅ��

�  A route-trajectory  ᵱ��  Binary decision variable equal to 1 iff vehicle accelerates 
during second ᵅ� − 1 until ᵅ� 

�(ᵅ�ᵅ�
ᵰ� ) Travel time of a route trajectory ᵅ��

�  ᵱ�� QSM parameter 

��(ᵅ��
�� ) Fuel consumption of a truck ᵅ� ∈ ᵃ� over a 

route-trajectory ᵅ��
�  

ᵱ�� QSM parameter 

The following table presents the list of acronyms used within the paper: 

Acronym Meaning Acronym Meaning 

SPRP Steiner Pollution Routing Problem TDSP Time-Dependent Shortest Path 
PEP Path Elimination Procedure MOMILP Multi-Objective MILP 
A/D Acceleration/Deceleration POS Pareto Optimal Set 
UFD Urban Freight Distribution TDVRP Time-Dependent VRP 
CO2 Carbon Dioxide GPS Global Positioning System 
HGV Heavy Goods Vehicle UTM Unrelated to Truck Mass 
VRP Vehicle Routing Problem RTM Related to the Truck Mass 
GHG Greenhouse Gas MOCO Multi-Objective Combinatorial Optimisation  
EMVRP Emissions Minimising Vehicle Routing 

Problem 
MOILP Multi-Objective Integer Linear Programming  

PRP Pollution Routing Problem MOMILP Multi-Objective Mixed Integer Linear Programming 
TSP Travelling Salesman Problem  MOLP Multi-Objective Linear Programming 
CMEM Comprehensive Modal Emissions Model MPT Mathematical Programming Technique 
ND Non-Dominated  QSM Quadrant Shrinking Method 
MILP Mixed Integer Linear Programming ITS Intelligent Transportation System 

Appendix B: Analysis of the PEP on Chicago’s road network 

A publicly available real-world urban road network with time-dependent speed observations is used for further 

experimentation with the PEP. This is based on the Chicago’s arterial (non-freeway) streets (https://data.cityofchicago.org) 

(Figure 10). We use the graph and the traffic updates provided by Dokka and Goerigk (2017) based on this database. They 

record 98 speed observations in 15-minute intervals over a time horizon of 24 hours spanning Monday March 27th, 2017 

morning to Tuesday March 28th, 2017 morning, for a graph containing 538 nodes and 1308 arcs.  
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Figure 10 Chicago’s arterial streets 

A set of 11 source-sink pairs were selected on this road network, and a planning horizon of 12 hours from 07:00 to 

19:00 was considered for experiments. To validate the performance of the PEP, an exhaustive approach for the exact 

identification of the full set of the eligible paths was used. This approach is based on the discretisation of the load range 

[0,26000] in 20 kg increments (1301 increments), and computation of the emissions minimising paths for all the resulting 

increments and feasible vehicle types, at all 720 possible departure times (every minute in the planning horizon). With this 

approach (called the Exact approach hereafter) we can identify the full set of all eligible paths and consider this set as the 

benchmark for the evaluation of the alternative approaches. In Table 7, the performance of the PEP and TDSP algorithms 

against the exact set of the eligible paths is reported. The reported runtime is based on the average of 10 runs. 

Table 7  
The performance of the PEP and TDSP algorithms against the Exact set of the eligible road-paths 

Pair Node Regions 
 No. of Paths  Runtime (seconds) 
 Exact PEP TDSP  Exact PEP TDSP 

(499,481) (C, C)  5 5 1  1400.97 4.21 0.87 
(7,314) (E, E)  2 2 2  1110.91 3.96 0.90 

(106,325) (N, N)  9 9 4  955.36 4.88 0.58 
(426,117) (S, S)  6 6 2  984.09 3.21 0.46 

(3,72) (W, W)  1 1 1  1330.73 3.71 0.80 

(20,175) (C, E)  16 16 6  1505.43 3.60 0.89 
(19,325) (NW, N)  10 10 4  963.59 2.49 0.90 

(49,111) (S, SE)  9 9 5  2303.67 3.65 1.17 
(82,55) (N, S)  18 18 7  1407.33 3.46 1.10 

(3,15) (W, E)  28 28 14  1805.42 4.13 0.77 

(47,430) (SW, NE)  46 46 24  1760.21 4.34 0.64 

According to Table 7, while the PEP is able to exactly identify all of the eligible paths in a very appealing runtime, 

the TDSP can identify only less than 50% of the eligible paths in most of the cases. Note that this also implies that adding 

the shortest distance path to the set of the TDSPs (if it is not already there) as proposed by Huang et al. (2017) cannot help 

much. This table also suggests that the number of the paths to retain is a pretty much relative value depending on several 

factors, and it is not possible to issue any prescription on a reliable number of paths to retain as in the k-shortest path 

network reduction technique of Androutsopoulos and Zografos (2017).  

The percentage of time that the fuel consumption minimising path for a full truck of a given type, i.e. ᵅ�� , has been 

not the same as the fuel consumption minimisation path for the same truck type with no load, i.e. ᵅ��, (see Proposition 1) in 

our experiments is also illustrated in the stacked bar chart in Figure 11 for all the 11 source-sink pairs in case of each 

vehicle type. This is the ratio of time instants out of the total 720 minutes in the time-horizon when the difference is 

observed.  
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Figure 11 The percentage of time that ᵅ�� ≠ ᵅ�� for each truck type 

Appendix C: The iterative algorithm for generating the network-wide driving cycles 

Algorithm C.1 presents an iterative algorithm for the generation of all driving cycles for all road-links in the network at all 

time periods. To speed up this procedure, two things are done; firstly, we set the relative MIP gap tolerance of the CPLEX 

mixed integer programming setting to 0.01, and the global time limit to 3 seconds. That is, if an optimal solution or a 

solution with 1% MIP gap is observed in less than 3 seconds, it is accepted; otherwise, the solution that is returned by 

CPLEX after 3 seconds is accepted and used in the calculation of the road-link attributes (we never encountered a solution 

with over 5% optimality gap with this setting). While CPLEX usually requires a few seconds to close the MIP gap and 

return the optimal solution, in almost all our observations, a solution with 1% MIP gap is returned within fractions of a 

second. This solution is either the same as the optimal solution or very marginally different from that. Secondly, we store 

the obtained information iteratively in a hash table to use in later iterations. Indeed, the ᵃ�ᵃ���
ᵕ�  MILP relies mainly on two 

pieces of information; i.e. ᵃ���  and ���
ᵕ� . If we use �ᵃ���� instead of ᵃ��� , then the combination �ᵃ���� and ���

ᵕ�  is repeatedly 

observed for many road-links at different time periods. Note that the effect of this rounding up of distances on the ultimate 

values for the UTM and RTM attributes of the road-link is very negligible. Hence, in each iteration of the algorithm once 

the cycle is returned by the ᵃ�ᵃ���
ᵕ�  MILP and the UTM and RTM attributes of the road link are computed, they are stored in 

the hash table (ᵃ�ᵃ� ) with their key (�ᵃ����, ���
ᵕ� ). In following iterations before calling CPLEX to solve the ᵃ�ᵃ���

ᵕ�  MILP, the 

key is checked with the hash table to see if UTM and RTM values could be directly obtained from the table. Observe that 

at the end of the algorithm execution, it only needs to return the hash table, from which all UTM and RTM attributes of all 

road-links at all time periods could be extracted.  

Algorithm C.1 Networkwide generation of driving cycles 

1 Input ᵃ�, ᵃ��� ∀ᵅ�, ᵅ� ∈ ᵃ� , ���
ᵕ�  ∀ᵅ�, ᵅ� ∈ ᵃ�, ᵕ� ∈ ᵊ��� 

2 ᵃ�ᵃ�  = {}   

3 for ᵅ� =  0 to ᵅ� + � do 

4  for ᵅ� =  0 to ᵅ� + � do 

5  if ᵅ� ≠ ᵅ� then 

6   for ᵕ� =  1 to ��� do 

7    if ᵃ�ᵃ�  does not contain the key (�ᵃ����, ���
ᵕ� ) then 

8     Solve ᵃ�ᵃ���
ᵕ�  MILP  

9     Compute ᵃ���
�ᵕ� ∀ᵅ� ∈ ᵃ� and  Γ��

ᵕ�  and add them to the ᵃ�ᵃ�  along with the key (�ᵃ����, ���
ᵕ� )   

10    end if 

11   end for 

12  end for 

13 end for 

14 return ᵃ�ᵃ�   
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