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Abstract

The paper aims to address the issue of comparing agent-based models (ABMs) with more traditional
VAR and DSGE models by developing a multivariate extension of the Markov Information Criterion
(MIC) of Barde (2017). The univariate MIC measures the informational distance between a simulation
model and some empirical data by mapping the simulated data to a Markov transition matrix, and is
proven to provide an unbiased measurement for all models reducible to a Markov process. As a result,
the MIC can accurately measure distance using only simulated data, for a wide class of data generating
processes. The paper first presents the multivariate extension of the MIC and its validation on VAR and
DGSE models before carrying the first direct comparison between a macroeconomic ABM and a DGSE
model, namely the benchmark ABM of Caiani et al. (2016) and Smets and Wouters (2007).
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1. Introduction

The last decade has seen a fundamental shift in the ‘technological readiness level’ of agent-based

computational economics (ACE), driven mainly by the joint maturation of agent-based models (ABMs)

and the validation methodologies required to bring them to the data. As identified by Grazzini and

Richiardi (2015, p.150), ACE is gradually transitioning from the purely qualitative replication of stylised

facts to a more quantitative replication based on ‘sound econometric techniques’, with a view to inform

policy-making.1 This in turn has increased the need to validate the simulations models on empirical

data, in order to ensure that they are in fact a suitable description of the phenomena they aim to model.

ABM practitioners are acutely aware of this requirement as well as the challenges involved in doing so.

However, as pointed out by Marks (2013, p. 41), at the time “validation of any but very simple simulation

models has been slow in appearing in the literature”. A practical illustration of this problem comes from

the recent and active ABM research into macroprudential regulation: Ashraf et al. (2017), Popoyan et al.

(2017), Raberto et al. (2018) and Baptista et al. (2016) all investigate the impact of macroprudential

banking regulation, and policymakers may well want to know whether these models agree, which offers the

best predictions for a given scenario, or how well they fit the data relative to standard models estimated

with traditional techniques.

Validation of an ABM requires overcoming two problems, both of which are complicated by to the

fact that ABMs typically do not possess analytical descriptions, and properties of the model instead need

to be inferred from the simulated data they produce. The first is the estimation of the ABM’s parameters

from available empirical data, and the second is the comparison of or selection amongst various ABM

specifications and traditional models. This pressure to validate models has lead to the development of

methodologies that can address both these issues. Fagiolo et al. (2019) provide an excellent review of

the problems posed by ABM validation as well as the new methods available to address them. Early

approaches to estimation typically rely on the simulated methods of moments (SMM) proposed by Gilli

and Winker (2003), a more recent version of which can be found in Grazzini and Richiardi (2015).

Other recent developments of interest are the simulated maximum likelihood (SML) of Kukacka and

Barunik (2017) as well as Grazzini et al. (2017) and Lux (2018), who investigate Bayesian and state-

space estimation methods consistent with those used in more traditional macroeconomic DSGE models.

A promising contribution which takes a very different approach to the estimation problem is that of

Lamperti et al. (2018), who use machine leaning to build a surrogate model of the ABM in order to

efficiently explore its parameter space.

Model comparison methods have seen similar developments. Marks (2013) provides a comparison of

three distance measures between two vectors of data. Guerini and Moneta (2017) maps the structure of

an ABM to a structural VAR in order to help identify the channels through which shocks are transmitted

at the aggregate level. Two recent additions are the Generalized Subtracted L-divergence (GSL-div) of

Lamperti (2018b) and the Markov Information Criterion (MIC) of Barde (2017), both of which have been

used to perform empirical model comparison exercises. Lamperti (2018a) compares 5 distinct versions

of the Brock and Hommes (1998) model of asset pricing with heterogeneous beliefs on the EuroSTOXX

50 and CSI 300, while Barde (2016) compares the performance of the Gilli and Winker (2003), Alfarano

et al. (2005) and Franke and Westerhoff (2011) models of recruitment on a range of financial indices

against standard ARCH/GARCH processes.

1 Fagiolo and Roventini (2012, 2017) and Haldane and Turrell (2018) provide a comprehensive set of surveys of such
policy-orientated macroeconomic ABMs, as well as the potential contribution that ACE can make to informing policy
makers. Notable examples are the Keynes vs Schumpeter (KS) framework of Dosi et al. (2010), used in Dosi et al. (2013)
and Dosi et al. (2015) to investigate fiscal and monetary policy, and the Eurace model of Deissenberg et al. (2008) and
Teglio et al. (2010), the policy applications of which are discussed in Dawid et al. (2018, 2019) and Raberto et al. (2018). A
third example is the stock-flow consistent (SFC) model of Caiani et al. (2016) used in Caiani et al. (2019) to analyse fiscal
policy and in Schasfoort et al. (2017) to investigate monetary policy channels.
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In most cases these new estimation and comparison methods are applied to relatively small scale

or univariate models in an empirical setting where data is plentiful, typically a financial ABM applied

to market index data. This is understandable given the new and often experimental nature of the

methodologies involved. However, validation of the large-scale, policy-relevant ABMs discussed above will

require demonstrating that these methodologies can be carried over to typical macroeconomic settings

characterised by larger sets of observable variables and a smaller number of observations.2 The present

paper aims to address this issue by extending the univariate ABM comparison exercise of Barde (2016)

to a macroeconomic setting, in order to verify that the MIC can also perform model comparison in this

more empirically challenging environment. This first requires developing and validating an extension of

the MIC algorithm of Barde (2017) to a multivariate state space. Once this is done the paper provides a

proof of concept for multivariate model comparison by carrying out an ABM - DSGE comparison exercise

in the spirit of Fagiolo and Roventini (2012, 2017), using the Caiani et al. (2016) and Smets and Wouters

(2007) models.

The remainder of the paper is organised as follows. Section 2 first presents the desirable theoretical

properties of the MIC and provides a simple illustration of its effectiveness in univariate settings. Sections

3 and 4 then present the computational strategy used to extend the MIC to multivariate systems and

the validation of the strategy, while section 5 presents the comparison exercise itself.

2. Theoretical properties of the univariate MIC

The MIC is a generalisation of the AIC (Akaike, 1974), in the sense that it provides an unbiased

measurement of the cross entropy between the data and a model. Like the AIC, the difference in MIC

across models is therefore a measurement of their relative Kullback and Leibler (1951) (KL) divergence.

This indirect approach allows the use of the KL divergence to identify the best candidate model while

getting around the standard problem that it is not computable in general. Marks (2013, 2019) correctly

points out that the KL divergence suffers from not being a true metric, as it is not symmetric and does

not satisfy the triangle inequality. Nevertheless, as will be discussed in the first part of this section,

it does possess solid information-theoretical foundations and also maps to likelihoods, and is therefore

intimately linked to many model comparison/selection techniques.

The key practical deviation from Akaike (1974) is that instead of using the likelihood to estimate the

value of the cross entropy, the MIC measures the cross entropy directly from the empirical and simulated

ABM data. This relies on a modified version of the two-pass context tree maximisation (CTM) algorithm

of Willems et al. (2006), which itself is an extension of the Willems et al. (1995) one-pass context tree

weighting (CTW) algorithm. In the MIC protocol, simulated data is used in the CTM first stage in order

to learn the probability structure of the simulation model, which is then used to compress the empirical

data in the second stage.3 The cross-entropy measurement is then simply the length of the compressed

empirical data.

The sections below will introduce the notation used throughout the paper, as well as clarify the

structure of the CTW/CTM algorithms and explain their desirable theoretical properties, in particular

the correction of bias in the cross entropy measurement. This preliminary step is required because this

2 Exceptions to this general observation within the papers discussed are Grazzini et al. (2017) and Guerini and Moneta
(2017). The former estimate 9 parameters for a macroeconomic ABM, although only 2 observable variables are used
(inflation and output gap). In the latter, the causal structure of the Dosi et al. (2015) KS model is explored using a
structural VAR on 6 US variables (consumption, investment, unemployment, GDP, inflation and federal funds rate). The
comparison does not extend to other macroeconomic models, however.

3 By contrast, in a pure one-pass data compression application, the data to be compressed is also used for learning the
probabilities required for compression, and these are updated after each symbol is compressed. This is because the ultimate
goal is to be able to eventually decompress the data: as a given symbol is decompressed, the probabilities can be updated,
allowing the decompression of the following symbol.
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data compression approach and its associated algorithms are likely to be unfamiliar. Furthermore, because

the multivariate extension presented in section 3 aims to preserve the univariate MIC’s properties, it is

important that they be detailed as a first step.

2.1. Conditional likelihood as a biased measurement of cross entropy and Kullback Leibler divergence

Let X = {Xt ∈ S : t ∈ N} be a sequence of discrete random variables following a Markov chain of

arbitrary order L ∈ N over a set of discrete symbols S. In addition, let the number of distinct symbols be

fixed at |S| ∈ N. The dynamics of this Markov chain are completely determined by a transition matrix P

of size |S|L× |S|. Each entry in P is indexed by an ordered pair (Ωt, xt), and contains the corresponding

probability p (Xt = xt | Ωt) of observing the realisation xt conditional on Ωt = {xt−1, xt−2, ..., xt−L}, an

information set containing the last L symbols in the chain, which identifies the state of the system.

Suppose that the true transition matrix P is unobserved, so that the probabilities must therefore be

modelled or approximated. Let P̂ i be the transition matrix provided by model i, containing transition

probabilities p̂i (Xt = xt | Ωt). As pointed out by Burnham and Anderson (2002), the following KL

divergence per transition (Ωt, xt) in the chain then provides a theoretical measure of the distance from

the model P̂ i to the truth P .

D
(
P || P̂ i

)
= EP

[
ln
p (Xt = xt | Ωt)
p̂i (Xt = xt | Ωt)

]
(1)

Here EP [. . .] indicates that the expectation is taken with respect to the limit distribution of the true

process P . The KL divergence’s usefulnes for the purpose of model selection is that due to Jensen’s

inequality and the concavity of the logarithm, D
(
P || P̂ i

)
= 0, iff P̂ i = P and otherwise D

(
P || P̂ i

)
>

0, ∀ P̂ i 6= P . Unfortunately, because P is not known, the KL divergence cannot be directly calculated.

It is possible to make an indirect measurement, however, using cross entropy. Taking advantage of the

linearity of the expectations operator to separate the logarithmic ratio in (1) and rearranging one obtains

the following expression, which defines the cross entropy rate per transition (Ωt, xt):

H
(
P || P̂ i

)
= H

(
P
)

+D
(
P || P̂ i

)
with


H
(
P || P̂ i

)
= EP

[
ln

1

p̂i (Xt = xt | Ωt)

]

H
(
P
)

= EP

[
ln

1

p (Xt = xt | Ωt)

] (2)

The cross entropy rate between the true P and a model P̂ i, labelled H
(
P || P̂ i

)
, is the sum of the KL

divergence and a term, H
(
P
)
, which depends on P only and is therefore constant for all models P̂ i. As

a result, in the words of Burnham and Anderson (2002, p.58) when taking differences in cross entropy

across models “truth drops out as a constant” and the differences in cross entropy across models reflect

only differences in the KL divergence of each model to the truth.

H
(
P || P̂ i

)
−H

(
P || P̂ j

)
= D

(
P || P̂ i

)
−D

(
P || P̂ j

)
(3)

This indirect approach to measuring KL divergence across models forms the foundation of many

model selection methods. In essence, while it is not possible to know in absolute terms how close a given

model P̂ i is to the truth P , it is possible to compare two models P̂ i and P̂ j by calculating their relative

distance to the truth.4 Measurement of cross entropy is feasible because, unlike the KL divergence (1),

4 It also forms the basis of the caveat for such methods. The fact that in a comparison exercise one model is selected
as the best in a relative sense should not be construed as implying that it is a good model: all the candidate models being
compared on a dataset might well be very poor in an absolute sense! This forms one of the main criticisms to the use of
KL divergence in Fagiolo et al. (2007) and Marks (2013).
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it does not contain the (unknown) true probabilities P in the argument of the logarithm. Obtaining an

accurate measurement, however, remains problematic for two related reasons. The first is that measuring

(2) still requires taking an expectation with regards to the truth P . While this can be proxied by the

empirical frequencies realised in the data x, this will induce a measurement error. A second problem

is the fact that the model probabilities P̂ i are themselves often not known with certainty, for example

due to parameter uncertainty in the underlying model. The existing literature on the measurement of

information quantities, such as Basharin (1959), Carlton (1969), Panzeri and Treves (1996) and Roulston

(1999), point out that because such a measurement error enters the argument of an expected logarithm,

Jensen’s inequality will lead to the existence of a bias.

Identifying these biases forms the key goal of model selection methods based on KL divergence. A

first important interpretation of cross entropy, which underpins the insight of Akaike (1974) and the AIC,

is that it can be estimated using the likelihood function, as their theoretical specifications are related. In

the context of the Markov process describes above, let τ (Ωt) count the number of occurrences of each

state Ωt and τ (Ωt, xt) count the occurrences of a transition identified by the ordered pair (Ωt, xt). The

empirical likelihood of a model P̂ i given a realisation x of the Markov chain is then provided by the

following expression, which is similar to a multinomial likelihood function.

L
(
P̂ i | x

)
=

T∏
t=L

p̂i (Xt = xt | Ωt)τ(Ωt,xt) (4)

Taking logarithms to obtain the log likelihood, dividing by the number of observed transitions in the

chain T − L and rearranging provides the mean contribution of a single transition to the empirical log

likelihood:

lnL
(
P̂ i | x

)
=

T∑
t=L

τ (Ωt)

T − L
τ (Ωt, xt)

τ (Ωt)
ln p̂i (Xt = xt | Ωt) (5)

The two ratios weighting the logarithm of the model probabilities in the sum are respectively the

empirical frequencies for the states and the transitions observed in the data. When taking the limit

of this average likelihood as the length of the chain goes to infinity, assuming that the chain X is

ergodic, these frequencies will converge almost surely to the limit distribution π (Ωt) and the transition

probabilities p (Xt = xt | Ωt). Asymptotically the expected contribution to the likelihood of a single

transition is therefore the negative of the cross entropy rate (2) of the Markov process.

lim
T→∞

lnL
(
P̂ i | x

)
=
∑

Ωt,xt

[
π (Ωt) p (Xt = xt | Ωt) ln p̂i (Xt = xt | Ωt)

]
= −H

(
P || P̂ i

)
(6)

For finite sample sizes, however, the empirical likelihood will only provide an approximation, fur-

thermore, as already stated, any error in the model probabilities will also lead to a systematic bias.

Suppose that the model probabilities depend on a parameter set θ of dimension K = |θ|, and that the

estimated parameters θ̂ are obtained by maximum likelihood (ML) estimation, such that P̂ i = P i
(
θ̂
)
.

Akaike (1974) establishes that in this case, under the assumption that the candidate models P i
(
θ̂
)

are

good approximations to the truth P and the sample size is large, a good first-order approximation for

the resulting bias is simply the size of the parameter set K. Correcting the empirical log likelihood for

the bias provides an estimate of the cross entropy of the T − L observations:5

H
(
P ||P i(θ̂)

)
× (T − L) ≈ − lnL

(
P i(θ̂) | x

)
+K (7)

5 In the original derivation of the AIC this is multiplied by 2 ‘for historical reasons’ (Burnham and Anderson, 2002,
p. 654). In this manner the AIC can be interpreted as a penalised version of the deviance of a model, which is given by
−2 lnL.
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The requirement that the candidate models be close to the truth was investigated by Takeuchi (1976),

who derives a more general specification of the bias estimate that does not require this assumption:

H
(
P ||P i(θ̂)

)
× (T − L) ≈ − lnL

(
P i(θ̂) | x

)
+ Tr

(
J(θ̂)I(θ̂)−1

)
(8)

Here J(θ̂) is the outer product of the gradient of the likelihood ∇θ lnL
(
P i(θ̂) | x

)
and I(θ̂) is the

Fischer information matrix. Both are K ×K matrices, evaluated at the ML value of the parameters θ̂.

Once can see that the AIC is a special case of (8) as J(θ̂) = I(θ̂) when P i
(
θ̂
)

= P and argument of the

trace term is the identity matrix. While the TIC is more general than the AIC, Burnham and Anderson

(2002) point out that in practice, reliable estimation of J(θ̂) and I(θ̂) is difficult, and K often provides

the best estimator of the trace term in (8). Furthermore, when P i
(
θ̂
)

is such a poor model of P that K is

no longer a good estimate of the bias, the poor fit of the model reflected in lnL
(
P i(θ̂) | x

)
will dominate

the resulting information criterion, making the inaccurate measurement of bias irrelevant.

Sugiura (1978) addresses the second core requirement of the AIC, which is the large sample size, and

proposes a second order approximation which provides a more reliable estimate of the bias when the

sample size is small. This sample corrected AIC (AICc) simply adds a correction factor to the bias which

depends on the degrees of freedom of the parameter estimation.

H
(
P ||P i(θ̂)

)
× (T − L) ≈ − lnL

(
P i(θ̂) | x

)
+K

n

n−K − 1
(9)

The bias derivations (7) - (9) all rely on the apparatus of ML estimation applied to parametric models

P i(θ) to provide estimates of the bias between cross entropy and the empirical likelihood. A priori,

this makes an extension to simulation models rather complicated: most simulation models, particularly

ABMs, do not possess a closed-form specification of the model probabilities as a function of the model

parameters, i.e. P i(θ) is typically not available. Instead, the model probabilities P̂ i must be estimated

directly from a run of simulated data xi(θ), which can be considered as realisations of the Markov

chain Xi(θ) corresponding to the ABM with parameter set θ. Clearly, as is the case for the parametric

framework presented above, model probabilities P̂ i estimated from simulation data xi(θ) will contain a

measurement error.

Crucially, it should be apparent that the core problem in obtaining an accurate cross entropy mea-

surement for pure simulation models is not the calculation of the empirical cross entropy itself: as pointed

by (6) this is directly provided by the empirical likelihood of the model probabilities. Instead, the hurdle

is the calculation of P̂ i
(
xi(θ)

)
in a manner that provides a well-behaved expression for the resulting bias.

Unfortunately, the absence of a formal specification for these probabilities as a function of either the

simulated data or underlying parameters complicates the evaluation of the size and properties of this

measurement error, ruling out a systematic derivation of the bias along the lines of (7) - (9).

It is at this point that the data compression interpretation of cross entropy becomes helpful. In such

a setting, the random variables in the Markov chain X are typically byte values encoding data to be

compressed, and the true Markov transition table P governs the dynamics of the DGP.6 Given this, the

cross entropy rate (2) measures the expected lossless compression rate per symbol in the chain that can

be achieved by using model probabilities P̂ i. The H
(
P
)

term, known as the Shannon (1948) entropy, is

the intrinsic information content of a symbol in the Markov chain and provides the fundamental limit to

compression, as it can only be achieved if P̂ i = P . For the general case where P̂ i 6= P , the KL divergence

(1) measures the increased size of the compressed data per symbol resulting from having to relying on

approximate probabilities provided by a model P̂ i rather than the truth P .

The practical utility of this interpretation for calculating cross entropy on the basis of simulated data is

6 The number of symbols in this case is |S| = 256, with the bytes encoding characters, numerical data, pixels, etc.
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that in the typical data compression application, the model probabilities for the Markov chain are nearly

always determined directly from the data to be compressed, i.e. data compression algorithms have to

determine P̂
(
x
)
. The IT revolution, the rise of the internet and the resulting demands on communication

bandwidth and data storage have motivated the search for efficient data compression methods, which

has led to the development of a large array of methodologies and approaches in the literature, aimed at

efficiently determining P̂
(
x
)
.7 Key to achieving this is modelling general DGPs in a way that produces

well-behaved error terms for probability estimates, thus producing small and predictable biases to cross

entropy over a large range of data sources.

The CTW and CTM algorithms are chosen because they are proven in Willems et al. (1995) and

Willems et al. (2006) respectively to perform optimally over all Markov sources, i.e. the compression in-

efficiency incurred by the measurement error on the probabilities P̂
(
x
)

is tightly bound above a theoretical

bound. Barde (2017) shows that when using data compression as a method of measuring cross entropy

between two datasets (empirical and simulated), this translates to providing an unbiased measurement.8

As will be shown below, this desirable property arises from the use of a context tree structure to learn the

model probabilities, and the fact that the data is processed in a binary representation. Unfortunately,

it is also the reliance on a context tree which creates computational challenges in extending the MIC to

multivariate Markov sources, discussed in section 3. The next section will formally present the CTW and

CTM algorithms and their role in the MIC methodology in order to clarify these issues.

2.2. Structure of the binary discretisation and context trees

Supposing that the state space of the Markov chain X has size |S| = 2R, R ∈ N, each realisation x can

be identified using a unique R-length binary representation. This provides a natural encoding scheme for

cases where the discrete values of the Markov chain result from the discretisation of a real-valued variable,

as illustrated in Figure 1(a) for a 3-bit resolution. Given a closed interval [xmin, xmax] which bounds the

support of the real-valued observations x, the most significant bit (MSB) of the binary representation

encodes which half of the interval the observation occupies. Each subsequent bit added to the left of a

code similarly locates the observation within the subinterval defined by that code. The last bit used to

encode the observation is called the least significant bit (LSB) as it only provides information over a very

small range of variation.9

This binary encoding scheme allows a Markov chain with arbitrary state spaces to be decomposed into

a nested sequence of Bernoulli trials: rather than drawing xt directly from 2R possible values, it can be

obtained by performing R Bernoulli trials, each with a parameter conditioned on the last L realisations

of the chain and on the outcome of the previous trials. Letting Xr,t and xr,t represent the rth bit of

Xt and xt respectively, the transition probabilities of the Markov transition matrix can be expressed as

follows.

p (Xt = xt | Ωt) =

R∏
r=1

p (Xr,t = xr,t | Ωt,Φr,t) with


xr,t ∈ {0, 1}
Φ1,t = ∅
Φr,t = {x1,t, x2,t, ..., xr−1,t}

(10)

7 A near exhaustive reference is provided by Salomon and Motta (2010), who ironically comment that the 1307 page
handbook is far from a quick reference guide. The authors also review in introduction the reasons why data compression
methods remain relevant, despite improvements in data storage capacity and internet connection speeds.

8 The assumption that simulated data from the DGP can be mapped to a Markov process implies that the DGP is time
invariant and ergodic, which may not hold for many ABMs. The CTW and CTM algorithms do not formally require these
properties to achieve a measurement, however some precautions, discussed in section 4.1 of Barde (2017) may need to be
taken to establish the reliability of a measurement.

9 Clearly, this discretisation discards information through a truncation error, and the choice of R needs to be made
carefully. Barde (2017) shows that as long as that this error is i.i.d uniformly distributed and uncorrelated with the
discretised variable, it has no effect on the relative score of models. For further details, including which tests to carry out
to select R, the reader is referred to Barde (2017).
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Figure 1: Binary data structures

In addition to Ωt, the information set containing the last L observations in the chain, each of the

bit-level probabilities p (Xr,t = xr,t) are now also conditioned on a second information set Φr,t. This set,

which contains the realisations of the first r − 1 bits of xt, enables the rth bit of an observation to be

conditioned on the bits that precede it. For convenience, let Φt = {Φr,t} be the super set of the R sets

required for conditioning the bits of an observation xt. In practice, the CTW algorithm uses binary

strings, called contexts, to represent the information sets Ωt and Φt. Given 2R possible distinct values

for xt and L lags in the Markov process, the information set Ωt contains RL bits of information. Each

possible realisation of Ωt can therefore be mapped to a unique binary string ωt of length RL, using a

context hashing function hc(.).
10 Similarly, φt encodes the information of Φt through a trivial observation

hashing function ho(.), which produces all the substrings of xt of length zero to R− 1.{
ωt = hc (Ωt)

φt = ho (xt)
(11)

The conditioning of a bit’s transition probability p (Xr,t = xr,t) on the context information {ωt, φr,t}
is carried out by using a set of binary context trees of depth D, an illustration of which is provided

in figure 1(b) for D = 3 bits. The role of the contexts {ωt, φr,t} is to index a location in the set of

trees, similar to the way the ordered pair (Ωt, xt) indexes the row and column in P̂i from which to draw

p̂i (Xt = xt | Ωt). In fact, the role of the hashing functions (11) is simply to convert the information in the

ordered pair (Ωt, xt) into a format suitable for indexing in the tree. Assuming that D = RL, the number

of leaves in the binary tree matches the number of possible histories for the system and each binary string

ωt uniquely maps to a leaf in the tree. One binary tree can thus store the transition probabilities of a

single Bernoulli trial, conditioned on all possible realisations of Ωt. Given a discretisation resolution R

for the random variable Xt, 2R − 1 such trees are therefore needed to store the full transition table, one

per one per possible realisation of Φr,t. In summary, φt allows us to select which tree to use and ωt then

identifies the correct leaf in that tree.

Intuitively, the 2RL leaves on 2R − 1 trees provide a direct analogue to the Markov transition matrix

P̂ i, as they will provide a frequency table for the simulated data xi over the state space S, for each

possible history Ωt.
11 The benefit of using a set of trees instead of a frequency table is that the branch

10 Defining hc(.) this explicitly may seem like an unnecessary step: after all, if xt−1, xt−2, etc. are already in a binary
representation, the context ωt is simply the concatenation of the conditioning observations. This is indeed true for univariate
processes, however, when moving to the multivariate case this natural definition is less evident as there is no obvious way to
order the bits from different variables. The choice of hc(.) will become an important degree of freedom for the researcher.

11 As explained in section 2.1, the Markov matrix for the system is 2RL × 2R, the binary decomposition relies on the
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nodes allow for partial conditioning, in cases where a context ωt is rarely (or never) observed, and the

resulting leaf frequency might therefore contain a large measurement error. Given a context ωt, one can

trace a unique path from the corresponding leaf to the root, shown in bold in figure 1(b) for ωt = 011.

Let d ≤ D, with d ∈ N index the depth of a node on the path, such that d = 0 identifies the root of the

tree and d = D labels the leaf. Each node in the path corresponds to a partial context ωd,t, which is

the d-length suffix of ωt, and contains a set of counting functions ai (ωd,t, φr,t) and bi (ωd,t, φr,t), which

respectively keep track of the number of zeros and ones observed in the realiation of the model Markov

chain Xi for the partial context set {ωd,t, φr,t}. A direct consequence of the binary structure of the tree is

that the zero or one counters for a specific partial context ω∗d,t can be obtained by summing the counters

in the leaves of the subtree rooted in the node identified by ω∗d,t, where [...] is the Iverson bracket:
ai
(
ω∗d,t, φr,t

)
=
∑
ωt

ai (ωt, φr,t)
[
ωd,t = ω∗d,t

]
bi
(
ω∗d,t, φr,t

)
=
∑
ωt

bi (ωt, φr,t)
[
ωd,t = ω∗d,t

] (12)

The counters in nodes corresponding to a partial context ωd,t truncated at a low depth d will be

updated more often than in nodes for which the partial context is truncated at a depth closer to D. At

either end of the leaf-to-root path, the counter in the leaves are incremented only for their specific context

ωt, while the root of the tree ω0,t is included in every path, and its counters will therefore be updated for

every full context in the training data. When a leaf is not observed very often, drawing probabilities from

nodes closer to the root will reduce the measurement error in the frequency caused by using low counts,

at the cost of introducing another error by only partially conditioning on the context. The efficiency of

the CTW algorithm stems from its ability to optimally solve the trade-off between these two sources of

error.

2.3. Efficient calculation of probabilities and biases

Expressing the transition probabilities of the Markov chain Xi as a set of nested Bernoulli trials (10)

and using a context tree to store them is central to the performance of the methodology as this reduces

the problem of estimating the multinomial transition probabilities from a realisation xi to the estimation

of a set of Bernoulli parameters. For all possible partial context sets {ωd,t, φr,t} the counting functions

ai (ωd,t, φr,t) and bi (ωd,t, φr,t) can be used in conjunction with the Krichevsky and Trofimov (1981) (KT)

to provide optimal estimates of the corresponding Bernoulli parameter:

p̂i (Xr,t = 0 | ωd,t, φr,t) =
ai (ωd,t, φr,t) +

1

2

ai (ωd,t, φr,t) + bi (ωd,t, φr,t) + 1

p̂i (Xr,t = 1 | ωd,t, φr,t) =
bi (ωd,t, φr,t) +

1

2

ai (ωd,t, φr,t) + bi (ωd,t, φr,t) + 1

(13)

The KT estimator for Bernoulli parameters (13) is proven to be optimal, in the sense that the mea-

surement error induced by relying on observed frequencies to approximate a real-valued probability is

tightly bound. Without loss of generality, let ai (.) and bi (.) represent the counting functions for an

arbitrary binary sequence xi generated by a Bernoulli process with parameter θi, and let P e
(
ai (.) , bi (.)

)
be the one-pass estimated probability of observing this sequence, where ai (.), bi (.) and the KT estimate

probabilities summing to one to eliminate one column.
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of the corresponding Bernoulli parameter (13) is updated after observing each bit value. This probability

is initialised as P e (0, 0) = 1 and is updated recursively using (13) after each realisation xit as follows:12



P e
(
ai (.) + 1, bi (.)

)
=

ai (.) +
1

2

ai (.) + bi (.) + 1
P e
(
ai (.) , bi (.)

)

P e
(
ai (.) , bi (.) + 1

)
=

bi (.) +
1

2

ai (.) + bi (.) + 1
P e
(
ai (.) , bi (.)

) (14)

Intuitively, compressing the sequence xi using the one-pass KT probabilities (14) will be inefficient

compared to what could be achieved using the true, but unobserved, parameter θi. Indeed, even if the

sequence xi is long enough to allow the KT estimator (13) to converge to θi, performance on the initial

observations will be poor. A critical property of the KT estimator is that this difference between the

entropy of the binary sequence obtained using (14) and true likelihood (4) based on θi is bounded above:

log2

1

P e
(
ai (.) , bi (.)

) − log2

1

(1− θi)ai(.)θbi(.) ≤ 1

2
log2

(
ai (.) + bi (.)

)
+ 1 (15)

In a series of key contributions, Rissanen (1984, 1986) shows that the compression efficiency cost of

updating any estimator of θi as the bits are processed possesses a theoretical lower bound in expectation,

which for the case of the KT estimator is 1
2 log2

(
ai (.)+bi (.)

)
. The fact that upper bound (15) is only one

bit above this theoretical lower bound (known as the Rissanen bound) is what makes the KT estimator

optimal for binary sources.13 Furthermore, by recasting a Markov chain as a sequence of Bernoulli trials,

the binary encoding scheme (10) extends the optimality of the CTW algorithm to Markov chains with

arbitrary state spaces |S| > 2. This is confirmed by Begleiter et al. (2004), who show that such an

extended CTW algorithm typically outperforms other compression algorithms in practice.

While these tight bounds apply to one-pass compression, where the probabilities are updated as

observations are compressed, Barde (2017) shows that in a two-pass application, where the probabilities

are first determined from a simulated chain Xi and then applied to compress an observation from an

empirical chain Xt, the increase in the Rissanen bound for the extra observation provides a measurement

of the bias, allowing the empirical measurement of cross entropy of each individual bit to be corrected.

This bias term can be calculated for every node in the context trees identified by its partial context set

{ωd,t, φr,t}:

εi (xr,t | ωd,t, φr,t) =
1

2
log2

ai (ωd,t, φr,t) + bi (ωd,t, φr,t) + 1

ai (ωd,t, φr,t) + bi (ωd,t, φr,t)
(16)

The second issue to resolve is the choice of depth d from which to calculate p̂i
(
Xr,t = 1

)
given the

full context set {ωt, φr,t}. As explained in section 2.2, {ωt, φr,t} indexes a unique leaf in a tree, and thus

a leaf-to-root path, giving the option of D different nodes to choose (13) from. This can be done by

generating a weighted probability in each node, which is a mixture of the KT probabilities (13) of the

leaf nodes from the subtree rooted in that node. These weighted probabilities are obtained from the odds

ratio of a node ηi (ωd,t, φr,t):

12 One can see that this initialisation is equivalent to an uninformative prior, as combined with (14), this leads to
P e (1, 0) = P e (0, 1) = 0.5.

13 As discussed by Willems et al. (1995), such an upper bound does not exist for the more familiar Laplace estimator,
which is why the CTW algorithm relies instead on KT probabilities (13) to prove optimality of the CTW algorithm over
Markov chains of arbitrary order.
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p̂w (Xr,t = 0 | ωd,t, φr,t) =

ηi (ωd,t, φr,t)

ηi (ωd,t, φr,t) + 1

p̂w (Xr,t = 1 | ωd,t, φr,t) =
1

ηi (ωd,t, φr,t) + 1

(17)

The odds ηi (ωd,t, φr,t) are themselves calculated recursively on any leaf-to-root path. In the leaf,

where d = D, the odds are simply:

ηi (ωD,t, φr,t) =
p̂i (Xr,t = 0 | ωD,t, φr,t)
p̂i (Xr,t = 1 | ωD,t, φr,t)

(18)

It is obvious from (17) and (18) that p̂w (Xr,t = xt | ωD,t, φr,t) = p̂i (Xr,t = xt | ωD,t, φr,t), therefore

no weighting occurs in the leaf. For nodes on the branches of the tree, where d < D, the odds ηi (ωd,t, φr,t)

are a weighted mixture of the KT probabilities (13) in that node and the weighted probabilities (17) of

the child node on the path:

ηi (ωd,t, φr,t) =
p̂i (Xr,t = 0 | ωd,t, φr,t)βi (ωd,t, φr,t) + p̂w (Xr,t = 0 | ωd+1,t, φr,t)

p̂i (Xr,t = 1 | ωd,t, φr,t)βi (ωd,t, φr,t) + p̂w (Xr,t = 1 | ωd+1,t, φr,t)
(19)

The mixture is controlled by βi (ωd,t, φr,t), which is a probability ratio ∈ [0,∞[. Willems et al. (2006)

refer to this variable as a ‘switch’, which controls whether a node contributes information to the weighted

probability or not. This can be seen by taking the limits of (19) for the extreme values of βi (ωd,t, φr,t).
ηi (ωd,t, φr,t)→

p̂i (Xr,t = 0 | ωd,t, φr,t)
p̂i (Xr,t = 1 | ωd,t, φr,t)

as βi (ωd,t, φr,t)→∞

ηi (ωd,t, φr,t) =
p̂w (Xr,t = 0 | ωd+1,t, φr,t)

p̂w (Xr,t = 1 | ωd+1,t, φr,t)
for βi (ωd,t, φr,t) = 0

(20)

In the first case, as βi (ωd,t, φr,t) becomes large, the odds are determined by the KT estimator only.

The interpretation is that the depth d node can actually be treated as a leaf, as its odds tends towards

(18). In the second case, ηi (ωd,t, φr,t) = ηi (ωd+1,t, φr,t) therefore the node simply transmits the odds

it has received and can thus be considered as ‘switched off’. The node switches βi (ωd,t, φr,t) associated

to a context tree are therefore the crucial component determining the informational structure of that

tree. The values of βi (ωd,t, φr,t) are updated recursively every time the node is on the leaf-to-root path

corresponding to a transition in the simulated data xi. Assuming that a node identified by a partial

context {ωd,t, φr,t} was last visited in period t− k, the node’s β switch is updated using the ratio of the

KT probabilities (13) to weighted probabilities (17) for that transition:

βi (ωd,t, φr,t) = βi (ωd,t−k, φr,t−k)
p̂i (Xr,t = xr,t | ωd,t, φr,t)

p̂w (Xr,t = xr,t | ωd+1,t, φr,t)
(21)

This recursive updating rule implies that βi (ωd,t, φr,t) is the relative likelihood of two different models

for the binary sequence observed by that node. The use of the KT probabilities (13) in the numerator of

the updating rule (21) means that the numerator of βi (ωd,t, φr,t) is equivalent to (14) and thus measures

the likelihood of a single Bernoulli source where the parameter is provided by the KT estimator for

the node. The denominator is instead the likelihood of a mixture of two Bernoulli sources, where each

parameter is estimated using a weighted mixture of all the leaves in the two sub-trees rooted in the

child nodes of {ωd,t, φr,t}. The βi (ωd,t, φr,t) ratio therefore tracks the relative performance of a very

simple model with a small measurement error (the KT estimator, with aggregated counts) against a

more complex mixture model containing more conditioning information. If the simple model dominates

the relative likelihood, the value of βi (ωd,t, φr,t) will be large, and as shown by (20), the node will weigh

the KT probabilities more heavily. Conversely if the complex model dominates, the value of βi (ωd,t, φr,t)
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will be small and the node will favour the weighted probability.

Given this informational structure, Willems et al. (1995) prove that the best possible performance for

the one-pass CTW algorithm is obtained when compressing each observation in a Markov chain Xt by

drawing the weighted probability from the root of the tree, i.e. using p̂w (Xr,t = xr,t | ω0,t, φr,t), as the

observation is used to update the tree. However, the one-pass CTW algorithm is not much use for our

purpose. First of all, a two pass algorithm is needed, where the tree is trained using a simulated Markov

chain Xi, and the resulting probabilities are scored on the transitions observed in the empirical data X.

Secondly, it is important to use KT rather than weighted probabilities, so that the bias incurred in the

measurement can be calculated from the ai(.), bi(.) counts using (16).

Fortunately, the switch property of the β ratios identified in (20) can be used to identify the best

sub-tree from which to draw KT probabilities. First, let us start with the observation that it is very

likely that βi (ω0,t, φr,t) ≈ 0, in other words, the root node is switched off and simply transmits weighted

probabilities from the incoming branched of the tree.14 Finding a good sub-tree simply requires traversing

every root-to-leaf path on the tree and stopping at the first node that can be treated as a leaf, as indicated

by βi (ω0,t, φr,t). This idea is formalised in Willems et al. (2006), who defineQi (ωd,t, φr,t) as the maximum

a posteriori (MAP) probability that a given tree node is a leaf in the best sub-tree. For the leaf nodes of

the full tree, the MAP probability of being a leaf must be Qi (ωD,t, φr,t) = 1, by construction. For nodes

located a depth d < D, the MAP probability can be calculated recursively from the relative likelihoods

in the node during the first pass of the CTW algorithm, while the set of context trees is being trained

on the simulated data Xi:

Qi (ωd,t, φr,t) = max

[
Qi0 (ωd,t, φr,t)Q

i
1 (ωd,t, φr,t)

1 + βi (ωd,t, φr,t)
,

βi (ωd,t, φr,t)

1 + βi (ωd,t, φr,t)

]
(22)

Here the Qi0(.) and Qi1(.) notation indicates the MAP probabilities of the two child nodes of the parent

node Qi(.). If the first term is the largest, this indicates that the best performance is achieved by mixing

the probabilities of the child nodes, therefore the current node is a branch. If instead the second term

is the largest, then the node should be treated as a leaf. This updating rule can be used to identify the

optimal nodes from which to draw probabilities when scoring the transitions in the empirical data X in

the second pass of the algorithm. Specifically, given a transition identified by a context set {ωt, φr,t}, one

starts in the root of the tree and traverses the path to the corresponding leaf, comparing the numerators

in the argument (22) until one finds the first node for which the βi(.) ratio dominates the product of the

child node probabilities Qm0 (.) and Qm1 (.):

d∗ = min
{
d : Qi0 (ωd,t, φr,t)Q

i
1 (ωd,t, φr,t) < βi (ωd,t, φr,t)

}
(23)

The CTM empirical cross entropy for a transition (Ωt, xt) according to model i is then simply the

sum of the R bit-level entropies, using probabilities drawn at the optimal depth (23):

λi (xt | Ωt) = −
R∑
r=1

log2

[
p̂i (Xr,t = xr,t | ωd∗,t, φr,t)

]
(24)

The bias induced by using the KT estimates of the unobserved model probabilities is the sum of the

bit-level bias (16), with the counts taken at the optimal depth (23).

14 If instead the root node is ‘switched on’, i.e. βi (ω0,t, φr,t) >> 1, then this actually implies that the best model for the
binary sequence is simply the KT estimator in the root node. In such a case, the entire tree is redundant and conditioning
on past observations is not necessary.
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εi (xt | Ωt) =
1

2

R∑
r=1

log2

ai (ωd∗,t, φr,t) + bi (ωd∗,t, φr,t) + 1

ai (ωd∗,t, φr,t) + bi (ωd∗,t, φr,t)
(25)

As explained in Barde (2017), the expected bias (25) can be substracted from the raw cross-entropy

measurement (24) to obtained the corrected MIC measurement for that transition, which is unbiased in

expectation.

λic (xt | Ωt) = λi (xt | Ωt)− εi (xt | Ωt) (26)

Finally, the MIC for the entire empirical sequence x with respect to the simulated training data xi is

simply the sum of the observation-level scores (26).

λic (x) =

T∑
t=L

λic (xt | Ωt) (27)

The fact that the aggregate MIC (27) is the sum of an observation-level vector (26) means that one

can test the relative statistical significance of measurements obtained for several models Xi, for example

using the model confidence set (MCS) procedure of Hansen et al. (2011).

2.4. An illustration of the univariate MIC

It is helpful at this point to illustrate the two key properties of the univariate MIC, which are the

link between binary cross entropy measurement and the conditional likelihoods as well as the reduction

in bias relative to a näıve alternative to determining model probabilities from simulated data, in this case

kernel density estimation (KDE). This can be achieved by running a simple Monte Carlo exercise based

on the following DGP, which is similar to the one used in Barde (2017) and is composed of two AR lags,

two MA lags and two ARCH lags:{
Xt = a1Xt−1 + a2Xt−2 + b1σt−1εt−1 + b2σt−2εt−2 + σtεt

σ2
t = c0 + c1ε

2
t−1 + c2ε

2
t−2

(28)

The central values for the parameter set θ = {a1, a2, b1, b2, c0, c1, c2} are provided in table 1. A set of

128 alternative models is generated by varying the parameters within a range of [−0.1, 0.1] around their

central values using the nearly orthogonal latin hypercube (NOLH) design of experiment proposed by

Cioppa (2002) and Cioppa and Lucas (2007). This provides a 129 × 7 matrix of shocks ∈ [−1, 1] which

are multiplied by 0.1 and added to the central value above.15 The NOLH sampling approach provides a

setting where all parameters can be varied orthogonally, and the hypercube of the parameter space within

which models are drawn is well covered by the sample. Figure A-1 in appendix A shows the two-way

scatter plots for the 129 sets of parameter shocks ∆θi illustrating the good space-filling properties of the

NOLH design matrix.

A key motivation for the choice of the ARMA-ARCH specification (28) is that one can easily compute

the conditional log likelihood of a particular realisation of xi, obtained with parameter θi, given an

alternate parameter vector θj :
lnL

(
θj | xi

)
= − T − 2

2 ln (2π)
− 1

2

T∑
t=3

ln (st)−
1

2

T∑
t=3

ut
st

ut = xit − aj1xit−1 − aj2xit−2 − bj1ut−1 − bj2ut−2

st = cj0 + cj1 (ut−1)
2

+ cj2 (ut−2)
2

(29)

15 By construction, one of the 129 samples has a zero-valued shock for all parameters, and therefore corresponds to the
central value in table 1.
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Table 1: NOLH ARMA-ARCH model parameters

a1 a2 b1 b2 c0 c1 c2

Central value 0.5 0.25 0.2 0.2 0.25 0.5 0.3
NOLH shock range ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.1

(a) Log-likelihood deviations from truth (b) MIC vs Log-likelihood, 500 runs

(c) MIC & KDE vs Log-likelihood, levels (d) MIC & KDE vs Log-likelihood, 250 runs

Figure 2: Univariate MIC scores versus KDE and log-likelihood

This allows the calculation of the following average log deviation, which measures the expected dis-

tance per observation between θj and the ‘true’ data-generating parameter vector θi. In line with (6), the

negative sign is included to make the likelihood comparable to a cross entropy, as is done when calculating

the AIC from a likelihood.

∆ lnLj,i(xi) = −
[
lnL

(
θj | xi

)
− lnL

(
θi | xi

)]
(30)

10 simulated realisations xi of 1000 observations are generated for each of the 129 parametrisations of

(28). With M = 129 distinct models available, this provides 10×M(M − 1) = 165120 possible pairwise

comparisons between a data realisation xi and a model θj . Figure 2(a) shows the distribution of these

pairwise comparisons according to their log likelihood distance (30), and the aim of the exercise is to

establish if alternate measures of the likelihood, obtained directly from simulated data, can replicate this

distribution.

The training data for the MIC algorithm consists of 500 simulated runs of 1000 observations for all M

models, which are all discretised to a resolution R = 7 on the [−30, 30] interval. Figure 2(b), which shows

the scatter plots of the mean relative MIC measurement ∆λj,ic (xi) against ∆ lnLj,i(xi), confirms that
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the MIC is a reliable, if slightly noisy, measure of the relative conditional likelihood of model parameters

θj and θi given xi. Interestingly, the high correlation (0.969) between the two enables us to verify that

the proportionality ratio between the two is close to the base conversion factor of 1/ ln 2 ≈ 1.44 that one

would expect given that the likelihoods (29) are calculated using the natural logarithm, while the MIC

(26) uses the binary logarithm.

In order to illustrate the biases generated by using estimates of the model densities with unknown

measurement errors, a ‘näıve’ KDE is used to generate an estimated value of the likelihood (29) directly

from the training data. The conditional log likelihood is the difference of the log of two kernel density

estimates, one based on the estimated probability of observing the current variable and its two lags, the

second containing the joint probability of the lags only.

lnLjK(xi) =

T∑
t=3

[
ln p̂jK3(xit, x

i
t−1, x

i
t−2)− ln p̂jK2(xit−1, x

i
t−2)

]
(31)

Here p̂jK3(.) and p̂jK2(.) are estimated on the jth training dataset using a 3D and 2D gaussian kernel

respectively, and a cross validated bandwidth. It is important to note, finally, that due to computational

requirements, only 250 training series were used for the KDEs. The KDE-based likelihood (31) can be

used to generate a mean deviation from the true model ∆ lnLj,iK (xi) in the same manner as the theoretical

likelihood (30). Figures 2(c) and 2(d) provide the scatter plots for lnLjK(xi) against lnL
(
θj | xi

)
and

∆ lnLj,iK (xi) against ∆ lnLj,i(xi) respectively. For comparison, both plots include the λjc(x
i) and ∆λj,ic (xi)

measurements obtained using the same 250 series of training data. In order to be able to superimpose

these measures in the same diagram, both lnLjK(xi) and λjc(x
i) are centred using their respective median

values, and the MIC measurements are converted to base e. While clearly it is possible to use more

efficient methods than KDE to estimate the likelihoods from the training data, the purpose of figure 2(c)

is to illustrate the argument made in section 2.1 that näıvely estimating the transition probabilities from

simulated data can generate considerable upward bias. Furthermore, as shown in figure 2(d), this bias

can be large enough that the relative likelihoods obtained for two models no longer enables the reliable

identification of the better model. This is not the case for the MIC measurement, and the main challenge

with the extension to the multivariate case is ensuring that these properties are conserved.

3. Extending the MIC to multivariate settings

Let Xt = {X1
t , X

2
t , ..., X

V
t } be part of a multivariate Markov chain, where each of the V random

variables can be used to represent an empirical observable following the notation set up in section 2.2,

and let Xi
t = {Xi,1

t , Xi,2
t , ..., Xi,V

t } be a simulated multivariate Markov chain produced by model i for

the same V variables. If r = (R1, R2, ..., RV ) is the corresponding vector of discretisation resolutions for

these V variables, then the total number of bits required to describe one realisation of either Xt or Xi
t is

Rmv =
∑V
v=1R

v. From a conceptual point of view, extending the MIC framework presented in section 2

to such a multivariate setting is not a problem, as the transition probabilities to a particular realisation

xt conditional on the past L realisations xt−1,xt−2, ...,xt−L can still be stored in a suitable context tree.

In practice, however, a direct extension of the univariate MIC framework of section 2.2 to a state

space of size Rmv is not feasible due to the curse of dimensionality. Because the CTW algorithm relies

on binary trees, the memory requirement of the algorithm increases exponentially with the depth of the

trees and given L lags in the Markov process, attempting to set the depth of the tree to D = RmvL will

lead to intractable requirements. As an illustration, the univariate example in section 2.1, which follows

Barde (2016), uses a R = 7 bit resolution and L = 3 lags of memory, for a context size of RL = 21

bits. Keeping the same resolution for a 3-variable system would result in a context size of RmvL = 63.

While the worst-case memory requirement of 221 nodes per tree is tractable in the univariate case, the
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263 requirement for the 3-variable system is clearly not. This is compounded by the fact that the binary

decomposition (10) of the current observation xt would require 2R
mv − 1 binary trees to provide the

conditioning set Φt, which is needed to condition on the observation bits. In the univariate case with

R = 7, 127 trees are needed. In a näıve multivariate extension with Rmv = 21 this would increase to

221 − 1 trees, which again is simply intractable.

The computational strategy for extending the MIC to a multivariate setting therefore centres on

reducing the dimensionality of Ωt and Φt in order to keep the memory requirements tractable. The first

element of the strategy is to use the chain rule for entropy to decompose the multivariate MIC into a

sum of univariate cross entropy measurements, each of which is suitably conditioned on the realisations

of other variables in the system.

λic (xt | Ωt) = λic
(
X1
t = x1

t | x2
t , ..., x

V
t ,Ωt

)
+ λic

(
X2
t = x2

t | x3
t , ..., x

V
t ,Ωt

)
+ ...

+ λic
(
XV
t = xVt | Ωt

) (32)

This provides two related advantages. First of all, by scoring each variable separately the number of

trees required for conditioning on observation bits via Φt is dramatically reduced. Rather than requiring

2R
mv − 1 trees for the whole set of V variables, one only requires 2R

v − 1 trees for any given variable

v. The second advantage is that by expressing (32) as a sequence of univariate MIC measurements, the

desirable properties outlined in section 2 can be preserved. However, the decomposition (32) comes at

the cost of having to perform V distinct runs of the algorithm, as well as conditioning on the realisation

of contemporaneous variables xt in addition to the information set Ωt, which already contains the past

L realisations of these variables.

The second element of the extension strategy addresses the increased memory requirement per tree

which results from the larger multivariate context ωt produced by the hashing function (11) from the

information set Ωt. Hardware constraints will impose in practice a de-facto cap D̃ on the depth of the

context tree, which will be smaller than the total number of context bits in Ωt, i.e. D̃ < RmvL.16 Let

ω̃t represent the partial context string obtained by truncating the full context ωt at depth D̃. Here ω̃t

represents the maximum amount of conditioning information that one can manage from a computational

point of view. It is straightforward to show that using the truncated context ω̃t instead of the full context

ωt in a cross entropy measurement (2) is equivalent to the introduction of a measurement error in the

model probabilities, as the argument of the logarithm in the cross entropy term can be expanded to

recover and isolate the model probabilities conditioned on ωt:

EP

[
ln

1

p̂i (Xr,t = xr,t | ω̃d∗,t, φr,t)

]
= EP

[
ln

1

p̂i (Xr,t = xr,t | ωd∗,t, φr,t)

]

+ EP

[
ln
p̂i (Xr,t = xr,t | ωd∗,t, φr,t)
p̂i (Xr,t = xr,t | ω̃d∗,t, φr,t)

] (33)

The second term in the expansion can be expressed as a function of a measurement error ν̃ir,t, which

captures the percentage difference between the estimated model probabilities conditioned on ω̃t and ωt.

EP

[
ln

1

p̂i (Xr,t = xr,t | ω̃d∗,t, φr,t)

]
= EP

[
ln

1

p̂i (Xr,t = xr,t | ωd∗,t, φr,t)

]
+ EP

[
ln
(
1 + ν̃ir,t

)]
(34)

This is essentially the same problem as was discussed in section 2.1, where the presence of measurement

error on the model probabilities combined with Jensen’s inequality will bias the resulting cross entropy.

16 Because the constraint is the available amount of working memory, this cap is hardware-dependant, and one might
expect the constraint to relax somewhat with improvements in computers. The applications presented here use D̃ = 28.
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The complication is that there are now two sources of measurement error, the first being the fact real-

valued probabilities are approximated by frequencies, the second being the effect of using conditioning

on truncated information. Unfortunately, while the MIC can deal with the former via the bias correction

term (25), the properties of the latter are not known, potentially re-introducing the problem of bias in

comparison methods for simulated models.

Two properties of the context Ωt and CTW algorithm can be used to minimise the effect of the

conditioning error ν̃ir,t. First, note that if d∗ ≤ D̃, then it must be that ν̃ir,t = 0, as in this case the two

partial context strings ω̃d∗,t and ωd∗,t are identical. Second, the binary discretisation of the context Ωt

is likely to possess a sparse information structure, and not all the bits of the resulting context ωt string

will be equally informative for conditioning the transition probabilities. As is visible from figure 1(a),

when attempting to predict the value of Xt from knowledge of xt−1, the MSB of xt−1, which determines

if the observation is in the top/bottom half of the range of variation, will be the most informative.

Conversely, because the LSB encodes the smallest range of variation measured by the discretisation, it

will not provide as much conditioning information when predicting the value of the variable of interest.

In addition to this, current and lagged observations from the different variables in the system will not be

equally informative in predicting the value of Xt.

Intuitively, these two properties suggest that way to minimise the measurement error ν̃ir,t induced by

truncating ωt at a depth D̃ is to ensure that the most informative bits of context are placed at a depth

d ≤ D̃, thus only truncating out the bits that contribute the least information to the context. In practice,

this can be done through the use of a suitable hashing function (11). As mentioned in section 2.2, for the

univariate case the hashing function hc (Ωt) is trivial, as it simply concatenates the binary representation

of the observations in Ωt. For the multivariate case, one needs to find a mapping that ensures that the

truncated context string ω̃t preserves as much of the useful information in ωt as possible.

First, during the discretisation process the binary representation of each variable is divided into an

informative and an uninformative section, by identifying the resolution at which correlation between the

real-valued variable and its discretised version passes 0.95. For example, supposing a variable is discretised

to a 7-bit resolution, only the first 3 bits would be treated as informative. Next, before each univariate

MIC measurement of a variable xvt lagged variables in the information set and the contemporaneous

variables required by the use of the (32), are ranked in order of decreasing correlation with xvt . The

context string ωt is obtained by first concatenating the informative bits of the variables according to

their correlation rank, followed by the uninformative bits, again following the correlation rank. The result

is that the most informative bits of the most informative conditioning variable are processed closest to

the root of the context trees. The bits in ωt truncated by the computational resource constraint D̃ are

therefore the least informative ones.

Despite the use of both strategies described above (a chain rule decomposition and the permutation

of context bits), it is likely that the accuracy of the MIC will suffer from the large increase in the

state space resulting from the shift to a multivariate setting. The final component of the extension

strategy is to increase the accuracy of the measurement using a super-resolution approach, which enables

multiple measurements with no additional empirical or simulated data. This relies on the fact that the

entropy chain rule decomposition (32) is theoretically independent of the conditioning order used in the

decomposition. Let a conditioning order o be a permutation of the sequence {1, 2, ..., V }, and let λi,o(x)

be the measurement obtained for model i by conditioning according to o as follows:

λi,oc (xt | Ωt) = λic (Xo1
t = xo1t | xo2t , ..., xoVt ,Ωt) + λic (Xo2

t = xo2t | xo2t , ..., xoVt ,Ωt) + ...

+ λic (XoV
t = xoVt | Ωt)

(35)
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In the absence of measurement error, the empirical cross entropy of the multivariate system should be

the same regardless of the order in which the chain rule decomposition is carried out. It should therefore

be that λi,oc (xt | Ωt) = λi,o
′

c (xt | Ωt) for any two orderings o and o′ of the V variables in the system.

In practice, however, this is not going to be the case, due to various measurement errors, including

(33) induced by truncating the context at depth D̃. It is possible, however, to increase the accuracy

of the measurement by averaging multiple MIC measurements (35) obtained on the same empirical and

simulated datasets by varying only the conditioning order o. Again, the cost of doing so is an increase in

the number of times the algorithm has to be run to obtain a final measurement.

4. Validation exercises for the multivariate MIC

Two validation exercises are carried out to evaluate the effectiveness of the extension strategy outlined

above. Both follow the general approach of the univariate example in 2.4, using the NOLH design to

generate a set of similar parameterisations and taking advantage of the availability of a benchmark

measure to test the effectiveness of the multivariate MIC. The first is a bivariate VAR, which forms the

simplest possible extension to the univariate setting. The second, more challenging, test applies the MIC

to a the Smets and Wouters (2007) DSGE framework.

4.1. MIC vs. Bivariate VAR likelihood

The bi-variate VAR provides the smallest possible extension of the univariate setting. This follows

the strategy used in Barde (2017) for the original validation of the univariate MIC: if the proposed

methodology fails even in the simplest and most favourable setting, then the approach is immediately

falsified. The DGP is given by the following bi-variate VAR(2):

xt = A1xt−1 + A2xt−2 + εt εt ∼ N (0,Σ) (36)

With the following central parametrisation Θ = {A1, A2,Σ}:

A1 =

[
0.20 0.15

−0.15 0.15

]
A2 =

[
0.50 0.30

−0.25 0.55

]
Σ =

[
1 0.5

0.5 1

]
(37)

The VAR DGP follows the strategy used in section 2.4 of varying these central parameters using a

129 by 9 NOLH design. This allows all the parameters in matrices A1 and A2, as well as the off-diagonal

component of Σ to be modified by a uniform [−0.1, 0.1] shock. Given this, the conditional likelihood of

a given parameterisation Θj given a realisation xi is given by: lnL
(
Θj | xi

)
= − (T − 2) ln (2π)− T − 2

2
ln |Σ| − 1

2

T∑
t=3

u
′

tΣ
−1ut

ut = xit −Aj
1x
i
t−1 −Aj

2x
i
t−2

(38)

Following (30), these conditional likelihoods are averaged and normalised by the conditional likelihood

for the ‘true’ parameter set Θi in order to obtain the relative likelihood ∆ lnLj,i(xi). Figure 3 confirms

that the 129 models generated through the NOLH shocks are again very similar: the mass of the pairwise

likelihood deviations from the true DGP resembles the one in figure 2(a) for the univariate setting, and

the tight distribution of the eigenvalues visible in figure 3(b) suggests that the models are dynamically

very similar. Figure 3(b) also confirms that all 129 models are stable, as their eigenvalues all lie within

the unit circle.

Each of the 129 models is used to produce 510 simulated time series of 1000 observations each. The

MIC training set consists of 500 of these series, while the remaining 10 series form the ‘empirical’ data.
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(a) Log-likelihood deviations (b) VAR eigenvalues

Figure 3: Dynamic properties of the bi-variate VAR(2) model set

Both variables are discretised using r = 7 bits of resolution over the [−10, 10] interval.17 The MIC

algorithm uses L = 2 lags of memory, the depth cap D̃ for the context trees is set at 24 bits and the

measurement is obtained by averaging the following two measurements, obtained by taking advantage of

the chain rule decomposition (35) for a two-variable system.
λj,o1c

(
xit | Ωit

)
= λjc

(
Xi,1
t = xi,1t | xi,2t ,Ωit

)
+ λjc

(
Xi,2
t = xi,2t | Ωit

)
λj,o2c

(
xit | Ωit

)
= λjc

(
Xi,2
t = xi,2t | xi,1t ,Ωit

)
+ λjc

(
Xi,1
t = xi,1t | Ωit

) (39)

In addition to this, a ‘näıve’ MIC measurement is generated by taking the sum of two univariate

MIC measurements made on each of the variables. This provides a counterfactual which can be used

to judge the effectiveness of the computational strategy outlined in section 3, while also illustrating the

risk involved in ignoring conditioning error in the CTW probabilities when moving to a multivariate

setting. Figure 4(a) presents the scatter plot of the resulting ∆λj,ic (xi) measurements against the relative

likelihoods ∆ lnLj,i(xi) obtained analytically from (38), and suggests that differences in the multivariate

MIC across models again consistently tracks the relative likelihood for the same models. As was the

case in figure 2(b), the slope of the regression line is approximately 1/ ln 2. The figure also confirms that

univariate MIC performs poorly in this setting, illustrating the importance of taking conditioning error

seriously.

One apparent difference between the multivariate performance in figure 4(a) and the univariate version

in figure 2(b) is that the multivariate MIC displays heteroscedasticity, with the noise in the measured

MIC deviation increasing with the size of the deviation itself. Some heteroscedasticity is to be expected

from the fact that the deviations are the difference between two sums of random variables (27) and their

variance is therefore given by var
(
∆λj,i

c (xi)
)

= var
(
λj

c(xi)
)

+ var
(
λi

c(xi)
)
− 2cov

(
λj

c(xi), λi
c(xi)

)
. Even if

the variance of a measurement var
(
λj

c(xi)
)

is constant across pairwise comparisons, the covariance will

vary: models that are very close will be highly correlated, which is not the case for models that are more

distant. Figure 4(b) reveals however that in addition to this composition effect, the variance of a raw

measurement var
(
λj

c(xi)
)

is indeed increasing with the size of the measurement. Importantly the figure

inset in 4(b) reveals that this is also the case for the univariate MIC, the main difference being that

the range of variation of the MIC in the univariate case is much smaller, leading to a smaller variance

between models.

The final test of the computational strategy is the histogram in figure 2(c) of the difference between

measurements made using the two available orderings to the cross entropy chain rule (39). This is obtained

17 See appendix B for discretisation diagnostics.
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(a) MIC vs. log-likelihood

(b) MIC heteroscedasticity (univariate inset) (c) Distribution of conditioning order errors

Figure 4: Stability properties of the bi-variate VAR(2)

by taking the difference between the values of the individual measurements λj,o1c (xit) and λj,o2c (xi) from

λjc(x
i) for all 165120 pairwise comparisons. The zero mode of the resulting distribution confirms that the

cross entropy measurement does not on average depend on the decomposition ordering used in the chain

rule. It also confirms that MIC measurements obtained using a single ordering o will contain an error,

and that the accuracy of the MIC can be improved by averaging over multiple decomposition orderings.

4.2. MIC vs. Smets and Wouters (2007) marginal densities

Having validated the strategy in a relatively benign setting, a tougher and more realistic test was

carried out using the Smets and Wouters (2007) (SW) model, taking advantage of the fact that the

ranking of estimated DGSE models can be established using the marginal density. The two factors that

make the test tougher are that 7 observable variables are included, greatly increasing the state space of

the Markov processes, and that the amount of empirical data is much lower that in the univariate ARMA

and VAR settings. The comparison framework uses the standard version of the SW model as well as two

additional versions created by imposing parameter restrictions. By fixing the values of parameters that

are estimated in the basic model, the aim is to create clearly inferior versions of the model from the point

of view of empirical fit. The first set of parameter restrictions involves the utility households derive from

consumption, which is embedded in the objective function below. As explained in Smets and Wouters

(2007, p 589), setting the habit formation parameter λ = 0 and the CRRA parameter σc = 1 leads to

a strictly forward-looking consumption. The aim here is to remove the smoothing provided by habits,

which in practice makes a significant contribution to the goodness of fit.
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Table 2: NOLH parameters for the SW models

δ λw εp εw

Central value 0.025 1.5 10 10
NOLH shock range ± 0.015 ± 0.4 ± 5 ± 5

Et

[∑∞

s=0
βs

[(
Ct+s − λCt+s−1

)1−σc

1− σc

]
exp

(
σc − 1

1 + σl
(Lt+s)

1+σl

)]
(40)

In addition to the restrictions on the utility from consumption, the third version of the model also

restricts the following shock processes for spending (εgt ), prices (εpt ) and wages (εwt ). The wage and price

shocks are ARMA(1,1) processes based on i.i.d normal innovations ηpt and ηpt , while the spending shock

includes a passthrough from the innovation in productivity ηat which is controlled via ρga. The restriction

involves setting ρga = µp = µw = 0, thereby turning all three shocks into AR(1) processes. As for the

consumption restrictions, the aim is to target a feature of the model which improves the empirical fit of

the model by smoothing capturing the high-frequency component in wages and prices.
εgt = ρgε

g
t−1 + ηgt + ρgaη

a
t

εpt = ρpε
p
t−1 + ηpt − µpηpt−1

εwt = ρwε
w
t−1 + ηwt − µwηwt−1

(41)

In addition to this, four of the five calibrated parameters are shocked around their original values

using a 65×4 NOLH design, in line with the previous tests. These are the depreciation rate δ, the labour

market mark-up rate λw and the two curvature parameters for the Kimball (1995) aggregator used in the

goods and labour markets, εp and εw. The fifth calibrated parameter of the SW model, the government

spending to GDP ratio gy, is left unchanged at 0.18 as it is determined from the observed empirical ratio.

Table 2 shows the variation range applied to each of these parameters, as well as the fact that the central

values are unchanged from the original setting of Smets and Wouters (2007).

With 65 different calibrations applied to the three versions of the SW model, 195 distinct specifications

are available for this comparison exercise. These are estimated on the original Smets and Wouters (2007)

dataset, made up of 7 US macroeconomic observables over 160 quarters, from 1965:Q1 to 2004:Q4. The

parameter estimates obtained for the three central versions of the SW model are provided in appendix

C.18 Figure 5(b), which shows the histogram of marginal densities obtained for the 195 specifications,

confirms that the specifications are clustered in three distinct peaks. Furthermore, it confirms that the

loss of flexibility associated with the parameter restrictions significantly worsens the fit of the models.

The test is now to check whether training the MIC on simulated data from these 195 specifications and

scoring the same 7 US variables results in similar model rankings.

As for the previous exercises, the MIC algorithm is trained using 500 simulated series of 1000 obser-

vations each. As is shown in appendix B, all seven variables are discretised to 6 bits of resolution, using a

single lag of memory (L = 1) and a cap D̃ = 28 on the depth of the trees. With 7 variables, 7! = 5040 po-

tential orderings are available for the chain rule decomposition, which is more than is practical. Instead,

the final MIC measurement is the average of 21 separate measurements based on orderings generated

from cyclic permutations of {1, 2, 3, 4, 5, 6, 7}, {7, 6, 5, 4, 3, 2, 1} and {1, 7, 2, 6, 3, 5, 4}.19 Finally, in order

18 These specifications of the SW model are estimated and simulated using Dynare, based on modified versions of the
code originally prepared by Jerome Williams and available through https://github.com/jeromematthewcelestine/.

19 The use of cyclic permutations ensures that the 7 measurements obtained from each decomposition ordering are distinct
from each other, as there is no duplication of portions of the entropy decomposition (35).

21
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(a) MIC vs. log-likelihood

(b) Distribution of SW models by marginal density (c) Measurement error

Figure 5: MIC results on SW models, high resolution, 1 lag

to verify the robustness of the results obtained, the exercise was run a second time using a very coarse

discretisation of the variables (3 bits) and L = 3 lags of memory. The results obtained with this alter-

nate setting are provided in appendix D and very much in line with the those obtained with the 6-bit,

1 lag settings. This also seems to support the findings of Lamperti (2018b), who shows that entropic

measurements of real-valued series are robust to coarse discretisations.

Figure 5(a) provides a scatter plot of the MIC scores obtained for the 195 calibrations against the

absolute marginal log densities in figure 5(b), confirming that the MIC can replicate the overall ranking of

the three versions of the SW model, despite the larger state space and the much small number of empirical

observations than in the VAR example. The figure also reveals that large part of this performance comes

from averaging the 21 chain rule decompositions, as the dispersion of these individual measurements is

large. It is important to note that in order to be able to meaningfully superpose the scatter plots of

the individual orderings, the MIC scores of the 195 models obtained for each ordering are centred on

the mean.20 This enables the calculation of the difference between the measurements obtained using

the 21 orderings and their average, λi,oc (x) − λic(x). The histogram of these 4095 differences, provided

in figure 5(b), reveals a normal distribution, further supporting the strategy of averaging multiple MIC

measurements to improve precision.

The top half of table 3 presents the MIC scores obtained for the central parametrisations of the 3

SW models in the comparison exercise. The use of the chain rule (35) means that MIC measurements

are available both at the level of individual variables, as well as on aggregate, although one should note

20 Because this ends up shifting all the 195 model MICs by a constant (which is the average MIC over all 195 models and
21 measurements), this does not affect the relative rankings of the models.
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the aggregate MIC is not the sum of the variable-level MIC because of the mutual information between

variables. As the MIC (27) is calculated at the level of single observations, it is possible to use the MCS

procedure to test whether a given model significantly underperforms relative to others. As expected,

the two restricted models are significantly excluded from the confidence set on aggregate. Regarding

individual variables, it is interesting to note that the impaired performance for the restricted models

seems to come from the real variables (∆y, ∆c, ∆i and to a lesser extend L), while the fit of the nominal

variables (r,π and ∆w) does not seem affected as badly by the parameter restrictions.

A few additional observations can be made. First, because the original purpose of the CTW/CTM

algorithms is data compression, the MIC measurement has a natural interpretation as the number of bits

that the discretised data can be compressed to using the model probabilities. Dividing the MIC by the

number of bits in the original data provides a compression ratio which can help judge model performance.

The compression ratios for the various SW models are provided in the bottom half of table 3, and they

reveal that all three models tend to do better on labour hours and the policy rate than it does on output,

wage and consumption changes. One should not directly conclude from this that the model is better

at predicting the former variables than the latter ones: the better compression rate on L and r can be

explained by the fact that these two variables have lower variability and are therefore inherently more

predictable.

The compression ratio is particularly useful as it allows the MIC to address the criticism of Marks

(2013) and Fagiolo et al. (2007), mentioned in section 2.1. This is because a compression ratio of 1,

i.e. the original data is not compressed at all, is what results from attempting to compress data using

uniform model probabilities. This provides an anchor point for interpreting the absolute value of the

MIC measurement obtained on a model. Following Fagiolo et al. (2007), supposing all the candidate

models in the comparison set are flawed, the KL divergence will still aim to identify the best. However,

the large compression ratios will unambiguously signal that all the candidate model are worse than an

uninformative model. This is not the case here for the SW comparison, but this will be relevant in the

following section.

Secondly, it is important to state that the measurements obtained are noisy, as was the case in all

previous illustrations. While the MIC can correctly identify which of the 3 versions of the SW model

performs best, figure 5(a) suggests that it is difficult to distinguish amongst the local variants generated

by the 65 NOLH parameterisations. Running the MCS on all 195 versions of the model confirms that this

is the case, as it results in a confidence set of 63 models, which are all NOLH variants of the benchmark

SW model. In other words, it is difficult to distinguish models that are intrinsically similar. This is

consistent with the performance of the univariate MIC reported in Barde (2017), and underlines the

importance of testing the statistical significance of any model comparison carried out with the MIC.

5. A macroeconomic agent-based model comparison exercise

As explained in in the introduction, a range of ABM frameworks have been developed with a view to

analysing the effect of macroeconomic and macro-prudential policy scenarios. This section illustrates how

the multivariate MIC can be used to compare such models against more traditional DSGE approaches,

using the ABM proposed by Caiani et al. (2016). This choice is motivated by two considerations, first

the model was explicitly designed with the aim of addressing some shortcomings of pre-crisis DSGE

models, hence justifying a comparison with Smets and Wouters (2007). Second, because it aims to be a

‘benchmark model’, the source code for the model is publicly available, which greatly facilitates replication

and testing of the framework by others in the field.21

21 The model’s code is based on the Java Macro Agent Based (JMAB) toolbox, and freely available from https://github.

com/S120/jmab. The simulation and code for this exercise is available in the supplementary material.
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Table 3: Variable-level and aggregate MIC for central SW models, high resolution, 1 lag

L r π ∆y ∆c ∆i ∆w Aggr.

MIC measurements

Benchmark 600.69 649.61 709.37 810.60 779.33 742.52 861.89 5107.39
(0.000) (1.795) (0.000) (0.000) (0.000) (0.000) (0.445) (0.000)

Restrict 1 604.20 634.31 715.33 835.93∗∗∗ 814.50∗∗∗ 754.49∗∗ 860.71 5165.42∗∗∗

(0.621) (0.000) (0.936) (4.805) (3.923) (2.423) (0.225) (4.192)

Restrict 2 617.68∗∗ 648.59 717.42 828.42∗∗∗ 830.90∗∗∗ 754.15∗∗ 859.99 5191.98∗∗∗

(2.378) (1.489) (1.052) (4.356) (9.506) (2.585) (0.000) (4.707)

Compression ratios

Benchmark 0.626 0.677 0.739 0.844 0.812 0.773 0.898 0.760
Restrict 1 0.629 0.661 0.745 0.871 0.848 0.786 0.897 0.769
Restrict 2 0.643 0.676 0.747 0.863 0.866 0.786 0.896 0.773

- Note: ‘Restrict 1’ refers to the model with restricted consumption parameters, ‘restrict 2’ is the model with
additional restrictions to the shock processes. MCS t-statistics are provided in parenthesis, with superscripts ‘*’,
‘**’ and ‘***’ indicating that the model is excluded from the confidence set at the 10%, 5% and 1% significance
level, based on bootstrapped standard errors.

Before presenting the features of the ABM and the results of the comparison against the SW model, it

is important to flag an important issue. The ABM parameter values used in the comparison exercise are

unchanged from their original values in Caiani et al. (2016), and the ABM will therefore not be optimised

for the datasets used in the comparison, unlike the SW model whose parameters are estimated from the

data. While great progress has been made on the development of estimation methods for ABMs, the

methods discussed in the introduction have not yet matured to the point where they can easily interface

with the existing code base of ABM models. As a result, the comparison exercise can legitimately be

seen as unfair, as one would expect the performance the ABM to suffer relative to SW. However, this

does replicate the situation that researchers are currently confronted with in attempting to move from

demonstration ABMs with ad-hoc parameter calibrations to a descriptive policy models. Indeed, the

findings will show that even in such a situation the comparison exercise can be fruitful in identifying the

features of the data where the ABM most needs improvement.

5.1. The Caiani et al. (2016) stock-flow consistent macroeconomic model

The agent-based, stock-flow-consistent framework introduced by Caiani et al. (2016) was designed to

address several of the shortcomings of DSGE models identified in the aftermath of the 2008 crisis. As was

identified in Del Negro and Schorfheide (2013) and Del Negro et al. (2016), the forecast performance of

the workhorse SW model over this period is relatively poor, and can be greatly improved by introducing

information about financial frictions, such as interest rate spreads. While these financial extensions to

DSGE models do improve their performance, Lindé et al. (2016) conclude that they may not do enough to

allow effective investigations into the effect of unconventional monetary policy or macroprudential instru-

ments, as these require being able to effectively model the interbank network or allow for heterogenous

agents. The Caiani et al. (2016) model attempts to address these concerns by developing a fully-fledged

stock-flow consistent banking sector, with endogenous money creation in the form of bank loans to other

agents. A key feature is that credit risk is built into the model by assuming a 20 period horizon on loans,

while bank liabilities are formed of short-term demand deposits. This, combined with the presence of a

bank-firm credit network, discussed below, enables the framework to model banking balance sheet crises

of the type encountered in 2008 as well as their contagion to the production sector.

The model contains the following types of agents. Households consume, sell labour to firms, pay

taxes and have deposits with banks. They own the firms and banks and receive dividends. The model

24



possesses consumption and capital goods firms in a vertical structure, with upstream firms using labour

to produce capital goods, which is then used by downstream firms in combination with more labour to

produce the final consumption good. All firms invest and finance production from retained profits and

by borrowing from banks. Next, banks collect deposits from households and firms, purchase government

bonds, and create loans to firms subject to a liquidity ratio. The model possesses a central bank, whose

role is to provide advances to banks at a fixed rate of interest, to allow them to meet their liquidity ratio

requirement. Finally, the model also includes a government, which employs some public workers, issues

benefits to unemployed workers funded by taxes on households and firms, and issues bonds. These agents

interact on a set of markets which each generate a network of connections. The consumption goods

market matches households and consumption good firms, while the capital goods market matches the

consumption firms to capital firms. The labour market is wider, and allocates households to both types

of firms, as well as the government. On the financial side of the economy, the credit market connects

both types of firms to the banks, and banks collect deposits from households and firms on the deposit

market.

Crucially, the model can be used to generate macroeconomic observables from simulated data which

are comparable to the seven variables in Smets and Wouters (2007), and can thus form the basis of the

comparison exercise. Four of them are directly comparable in their construction: π is the one period log

difference in the price index of the consumption good. ∆w is the one period log difference in real wages,

calculated by deflating the average household nominal wage using the price index. Similarly, ∆y is the

one period log difference of real GDP and ∆i is the one period log difference in real firm investment,

both deflated from their nominal values. The remaining three variables are a bit more problematic.

The consumption variable, ∆c, is determined as an accounting identity from the difference between

nominal output and investment. While this is appropriate given the closed nature of the ABM, it does

highlight the absence of foreign trade in aggregate demand. Second, because households supply their

labour inelastically in the ABM, they do not possess an intensive margin. As a result the labour variable

L is simply the deviation of the employment rate from the sample mean and does not measure hours

worked, as in Smets and Wouters (2007). Finally, the interest rate r is the variable that poses the most

problems, as the ABM does not posses an effective counterpart to the empirical US federal funds rate.

Banks fund their lending via the collection of deposits, on which they pay interest, and the central bank

acts as a lender of last resort for the banking sector, which would suggest that its deposit rate is the

natural counterpart to the empirical variable. However central bank advances are made to banks at a

fixed, exogenous interest rate which forms an upper bound to the deposit rate, truncating the range of

variation. The simulations reveal that this is indeed the case, as the deposit rate is essentially constant

at the exogenous advance rate. This leads us to use the average interest rate on loans to firms, which

is the other major interest rate in the model, as the observable rate r. As will be discussed below, this

design problem leads to a poor fit on the data.

The training data for the MIC algorithm is generated by running 1000 simulations of the ABM for

800 periods. The first 300 periods of each run are treated as a burn-in period and thus discarded, which

results in the same total number of training observations as for the SW case seen in section 4.2.22 In

addition to the main benchmark simulation, a small-scale sensitivity analysis is run along the lines of the

one carried out in Caiani et al. (2016) as a robustness check for the comparison. Because the main focus

of the paper is contagion of crises in the bank/firm credit network, their analysis varies the parameters

related to lending decisions made by banks and investment decisions made by firms. For the former, the

parameters that are varied are the risk aversion of lending to consumption and capital firms, while for the

latter it is the parameters of the consumption firms’ investment functions that are modified. The values

22 The author is particularly grateful to Luca Fierro for his advice regarding the appropriate length of the burn-in period
for the Caiani et al. (2016) model.
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Table 4: Parameters used in sensitivity analysis

Bench. Low High

Bank risk aversion:

Towards consumption firms 3.92 1 8
Towards capital firms 21.51 5 40

Consumption firm investment function:

Capacity utilization weight 0.02 0 0.04
Cash flow weight 0.01 0 0.04
Precautionary deposits 1 0.5 1.5

- Note: The bank risk aversion parameters with respect to both kinds of firms
are varied jointly, which results in 8 alternative parameterisations.

values for these are provided in table 4, and correspond to the endpoints of the parameter grid used in

Caiani et al. (2016). This restriction is due to the large simulation requirement involved in generating

the training data.

5.2. Comparison results against Smets and Wouters (2007)

The comparison exercise is similar to the one used for the Smets and Wouters (2007) validation

exercise, in particular the parameter settings for the MIC algorithm are kept the same.23 Two different

datasets are used to compare the models. The first is the original Smets and Wouters (2007) 1965:Q1

- 2004:Q4 dataset, while the second is an extended version of the datset covering the ‘crisis period’ of

1997:Q1 - 2017:Q2. Because this second dataset contains the 1997 Asian financial crisis, the 2000 dot-com

crash and 2008 great recession it should enable us to test the relative performance of the ABM and SW

models in crisis periods. In addition to the Smets and Wouters (2007) and Caiani et al. (2016) models,

the comparison also includes a VAR(1) model estimated on the relevant empirical data set. Because the

MIC can only assess the relative performance of models, this provides a benchmark by which to assess the

performance of the DSGE model itself. As previously explained, the SW and VAR models are estimated

on both datasets, while the ABM calibration is the same benchmark calibration as Caiani et al. (2016)

in both cases.

The results of the main comparison are provided in table 5, with the top half of the table providing the

scores for the original dataset. The immediate observation here is that the performance of the ABM model

is poor across the board relative to the other two models, and it is clearly rejected from the confidence set.

In addition, both the SW model and VAR(1) are included in the confidence set on aggregate, as well as for

all individual variables except output, where the SW model seems to do slightly better. Given the noise

present in the MIC measurement, this is consistent with the findings in table 2 of Smets and Wouters

(2007), who also run several VAR specifications and find that the unconstrained VAR(1) is outperformed

by their model. The poor aggregate performance of the ABM model relative to SW is expected, given

the fact it is not calibrated on the data, therefore what is more interesting from the point of view of the

modeler is the breakdown by variable. This reveals that the performance on the real variables (L, ∆y, ∆c

and ∆i), while poor, is not too far from the VAR and SW models, and is not unreasonable considering the

lacking calibration. In particular, the compression ratio for these variables is below 1, with the exception

of consumption, which is borderline, indicating that the model has explanatory power on the data even

in its uncalibrated state. Conversely, the ABM clearly performs poorly on the nominal variables (π, r

and ∆w), with compression rates significantly above 1, the threshold which indicates that a particular

23 As for the Smets and Wouters (2007) validation presented in section 4.2, a robustness check is carried out with a
coarser discretisation. The results, presented in appendix D, are consistent with the ones presented here.
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Table 5: Macroeconomic model comparison, high resolution, 1 lag

L r π ∆y ∆c ∆i ∆w Aggr.

Smets & Wouters dataset (1965:Q1 - 2004:Q4)

VAR(1) 590.37 638.03 724.10 818.34∗∗∗ 780.68 745.80 857.83 5115.72
0.615 0.665 0.754 0.852 0.813 0.777 0.894 0.761

SW 600.69 649.61 709.37 810.60 779.33 742.52 861.89 5107.39
0.626 0.677 0.739 0.844 0.812 0.773 0.898 0.760

Caiani et al. 894.51∗∗∗ 1715.08∗∗∗ 1817.16∗∗ 924.78∗∗∗ 971.27∗∗∗ 918.64∗∗∗ 1892.02∗∗∗ 9368.98∗∗∗

0.932 1.787 1.893 0.963 1.012 0.957 1.971 1.394

Crisis period (1997:Q1 - 2017:Q2)

VAR(1) 267.94 164.48 306.11 369.95 356.09 346.64 446.47 2269.31
0.551 0.338 0.630 0.761 0.733 0.713 0.919 0.667

SW 300.62∗∗∗ 234.81∗∗∗ 321.26∗ 381.68 369.23∗∗∗ 347.93 444.81 2396.26∗∗∗

0.619 0.483 0.661 0.785 0.760 0.716 0.915 0.704

Caiani et al. 511.67∗∗∗ 563.54∗∗ 407.00∗∗∗ 417.21∗∗∗ 457.10∗∗ 463.95∗∗∗ 1081.27∗∗∗ 4139.31∗∗∗

1.053 1.160 0.837 0.858 0.941 0.955 2.225 1.217

- Note: Because the MIC algorithm parameters are the same as in section 4.2, the scores obtained for the Smets &
Wouters model over the original dataset are the same as in table 3.
- A MCS analysis was carried out but only the significance of the test is reported in order to save space. As before,
superscripts ‘*’, ‘**’ and ‘***’ indicating that the model is excluded from the confidence set at the 10%, 5% and 1%
significance level, based on bootstrapped standard errors. Compression ratios are included below the score.

model is outperformed by uninformative uniform transition probabilities. These findings carry across

to the results of the sensitivity analysis, provided in table A-1 in appendix A: all calibrations possess

similar aggregate scores and tend to display the same pattern on the real and nominal variables. The

only significant deviation relates to the cash flow weight parameter, where a low value greatly worsens

the performance, while a high value improves well it beyond that of the main calibration in table 5. In

both cases, this is linked to the π and ∆w variables and to a lesser extent L and r.

Before discussing the origin of this difference in performance across variables and its potential design

implications for the Caiani et al. (2016) model, it is important to briefly discuss the performance of the

models on the crisis sample, in the bottom half of table 5. A first observation is that the compression rates

of all models improve, reflecting the fact that several variables exhibit lower variance over the period and

become easier to predict, most notably r and π, due to the lower zero bound. A second relevant finding

is the clear worsening of the SW model’s performance relative to the VAR, to the point where the SW

model is excluded from the confidence set on aggregate and also for most variables. This is in line with the

findings of the literature mentioned in section 5.1 regarding the poor performance of DSGE models that

do not incorporate financial frictions over the crisis period. While ABM still performs poorly, the 12.7%

improvement in the aggregate compression ratio is in line with that of the VAR (12.4%), and much larger

than the 7.4% improvement seen for SW. This improvement is mainly driven by large improvements on the

inflation and interest rate variables, which provides support to the claim in Caiani et al. (2016) that their

ABM is designed and calibrated towards replicating the crisis period. Interestingly, the labour market

variables (wages and employment) see instead a slight degradation in performance compared to original

dataset for the ABM. This is not the case for the VAR and SW models, who see slight improvements in

compression ratios for these variables.

The MIC scores obtained by the ABM on the nominal variables (π, r and ∆w) are poor enough

that they can be explained by a failure of the ABM to match the unconditional distributions of those

variables, let alone the conditional transition probabilities. In order to illustrate this, figure A-2 in

appendix A provides the unconditional probability distributions of the observable variables for the ABM

and Smets and Wouters models. These are obtained simply by taking the histograms of the respective
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training datasets over the discretisation range used by the MIC algorithm.24 The plot confirm that

the distributions of the policy rate and inflation in particular are very sharply peaked and inconsistent

with the ones generated by SW on the original period. Similarly, the shifts in the SW distributions for

these variables over the crisis period explain the great improvement in the ABM performance for this

second sample. For the real variables (L, ∆y, ∆c, ∆i), the ABM is much closer to the SW unconditional

distributions.

Several observations relating to the design of the ABM can be made at this point. First, the combined

lack of an active monetary policy and policy rate in the modelling of the central bank is probably a major

factor in the inability of the model to replicate the interest rate and inflation data. Second, the poor

performance on wages seem to stem mainly from the fact that changes in real wages are centred about

zero. While the distribution is not fully symmetric, it does suggest that reductions in the real wages are

relatively common in the ABM, which is not the case in the real data, where downward rigidities mean

negative real wage growth is relatively rare. Finally, even though the fit for the real variables (∆y, ∆c,

∆i) is good considering the lack of calibration, the unconditional distributions are also centred close to

zero, and are thus shifted to the left compared to the SW model. This can be linked to the fact that the

ABM has a fixed number of workers and constant labour/capital productivities and therefore does not

possess a trend growth component. This design implication has been addressed in Caiani et al. (2019) in

the form R & D investment in by the capital goods firms which will improve the productivity of machines

over time.

6. Conclusion

The central aim of this paper is to provide a proof of concept for a multivariate model comparison

framework based on simulated data alone. In order to ensure accuracy in the comparison, the key difficulty

that needs to be overcome is the evaluation of the bias generated by errors in the conditional probabilities

that are estimated directly from the simulated data. The algorithms underpinning the univariate version

of the MIC in Barde (2017, 2016) are chosen specifically for their proven ability to minimise the bias

incurred and calculate its expected value. The challenge in extending this to a multivariate setting is in

managing the increased computational requirements without loosing these desirable theoretical properties.

The paper’s first contribution is therefore to show that the MIC can indeed be extended to multivariate

systems and successfully discriminate models on relatively short time series. Several validation exercises

are carried out to establish that the extension strategy is effective. The multivariate extension of the

MIC enables allows us to demonstrate how a VAR, an ABM and a DSGE model can be compared on the

same empirical data on the basis of simulated data alone. The exercise is clearly able to rank the relative

performance of these models, both at the aggregate level and on individual variables. This provides the

proof of concept that forms the main contribution of the paper. In principle, this can be further extended

beyond purely macroeconomic models, although integrating cross-sectional or distributional variables

into the MIC would require first generating time-series of moments or statistics of these variables, and

verifying such a strategy is left for further research.

There are several weaknesses or potential criticisms of this comparison exercise that need to be

discussed. First, as was previously highlighted, the ABM is not calibrated on the empirical data used in

the comparison, which certainly puts it at an unfair disadvantage in a comparison with the SW model.

While this is unfortunate, it does reflect the current state of play in the ACE field, which has developed

both rich, policy-relevant large-scale models and advanced validation techniques, but has yet to properly

connect the two. This highlights the need for further research and development of platforms where ABM

24 The unconditional distributions for the VAR are not provided for reasons of clarity, as they overlap the Smets and
Wouters distribution for most variables.
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development and validation can be better integrated. In addition, despite the clear disadvantage of the

ABM, the comparison does provide useful insights and directions for developing the model to improve its

empirical performance. For example, considering the lack of an effective calibration, the model performs

well on the real variables, and it is instead the monetary policy variables that require reworking.

Conversely, one could argue that because the scores obtained on the ABM are much greater than

those of the SW model, the comparison exercise is too easy, and as a result is not a good test of the MIC

as a criterion for model selection. It is partly to address such concerns that two Monte Carlo validation

exercises are run on the multivariate MIC prior to the comparison exercise itself. Both of these establish

that the criterion can indeed distinguish between multivariate models, even with a relatively low number

of observations. This is confirmed by the inclusion of a VAR(1) in the macroeconomic comparison, which

correctly identifies the degradation in the performance of the SW model during the crisis period, in line

with the standard finding of the literature. This effect is much more subtle that the large gap between

the ABM and the SW model, and the MIC is able to detect it using only 80 empirical observations.

Finally a more general discussion relates to what variables are appropriate for the comparison of

frameworks with such different ontologies as DGSE models and ABMs. To some extent this more general

debate goes beyond the scope of this paper, however it can help illustrate the limits of the comparison

exercise carried out here. ABM researchers would rightly point out that Caiani et al. (2016) model many

more phenomena and variables than standard DGSE models. Indeed their paper not only displays the

time evolution of aggregate variables, but also micro-stylised facts such as firm size or income distributions,

connectivity in the various inter-agent networks, etc. As explained by Fagiolo and Roventini (2017), these

micro-level variable, which are typical in many ABM frameworks, simply have no counterpart in many

DSGE models, including Smets and Wouters (2007) due to simplifying assumptions. One might then

legitimately argue that the ABM is the better model, as it encompasses more phenomena. As a practical

example, suppose that empirical data on firm size or income distributions is included in the dataset used

to compare the models in section 5.2. The Caiani et al. (2016) model would be able to produce simulated

counterparts to this new empirical data, however the use of representative agents in Smets and Wouters

(2007) would lead to degenerate distributions. Attempting to score these with the MIC would then lead

to infinite scores for the SW model, which in some sense is entirely correct as it reflects the fact that one

should reject a model which cannot account for the existence of an observed phenomenon. However, it is

also unhelpful, as any model able to produce a non-degenerate distribution on these observables would

be preferable to the SW model, even if its performance on the macroeconomic variables is unacceptably

poor. The premise used in this comparison exercise is therefore that models should be ranked on the

basis of how well they explain the variables they have in common. Indeed, if a model aims to target

more empirical variables than an alternative model, it can only be judged to encompass the alternative

model if it offers at least equivalent performance on the variables they possess in common. In practice,

however, it may well be that trade-offs exist between ABM and DSGE modelling approaches, much in the

way Del Negro and Schorfheide (2006) show the DSGE as a restricted version of a VAR. The increased

availability of reliable estimation and comparison tools will hopefully enable a better understanding of

this important area of research.
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A. Supplementary results

Figure A-1 below provides an illustration of the NOLH shocks used in the Monte Carlo analysis

presented in sections 2.4, 4.1 and 4.2 of the main body. Figure A-2 and table A-1 relate instead to the

macroeconomic comparison exercise discussed in section 5.2.

Figure A-1: Two-way scatter diagram of ∆θi NOLH parameter shocks, 129 samples

32



(a) Labour (b) Policy rate (c) Inflation

(d) Output (e) Consumption (f) Investment

(g) Wages

Figure A-2: Unconditional probability distributions
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Table A-1: Caiani et al. (2016) sensitivity analysis, high resolution, 1 lag

L r π ∆y ∆c ∆i ∆w Aggr.

Smets & Wouters dataset (1965:Q1 - 2004:Q4)

Low bank risk av. 851.52 1704.36 1818.66 905.03 925.81 909.99 1885.79 9337.17
0.887 1.775 1.894 0.943 0.964 0.948 1.964 1.389

High bank risk av. 865.52 1843.42 1633.00 905.93 932.65 930.71 1882.54 9325.12
0.902 1.920 1.701 0.944 0.972 0.969 1.961 1.388

Low cap. util. weight 854.77 1767.54 1195.28 941.73 913.07 906.42 1703.99 8769.86
0.890 1.841 1.245 0.981 0.951 0.944 1.775 1.305

High cap. util. weight 854.18 1809.27 1823.76 897.99 891.19 940.66 1916.59 9420.62
0.890 1.885 1.900 0.935 0.928 0.980 1.996 1.402

Low prec. deposit 845.22 1860.19 1881.58 901.52 902.35 913.27 1790.61 9442.60
0.880 1.938 1.960 0.939 0.940 0.951 1.865 1.405

High prec. deposit 867.68 1717.41 1811.28 881.09 913.23 897.18 1862.45 9271.72
0.904 1.789 1.887 0.918 0.951 0.935 1.940 1.380

Low cash flow weight 2152.35 2912.44 2230.79 1075.58 1002.68 949.69 2031.12 12501.56
2.242 3.034 2.324 1.120 1.044 0.989 2.116 1.860

High cash flow weight 828.42 1754.15 955.41 924.26 869.66 961.95 1130.82 8129.37
0.863 1.827 0.995 0.963 0.906 1.002 1.178 1.210

Crisis period (1997:Q1 - 2017:Q2)

Low bank risk av. 756.43 595.63 371.42 410.10 448.26 463.51 1067.37 4373.74
1.556 1.226 0.764 0.844 0.922 0.954 2.196 1.286

High bank risk av. 644.83 565.00 418.54 419.39 410.17 456.32 1045.95 4107.15
1.327 1.163 0.861 0.863 0.844 0.939 2.152 1.207

Low cap. util. weight 602.49 585.94 392.60 441.09 418.30 458.73 953.19 4066.97
1.240 1.206 0.808 0.908 0.861 0.944 1.961 1.195

High cap. util. weight 580.09 538.98 425.69 408.38 411.88 459.79 1100.61 4055.01
1.194 1.109 0.876 0.840 0.847 0.946 2.265 1.192

Low prec. deposit 502.68 567.05 433.57 422.94 398.35 463.97 1089.57 4077.72
1.034 1.167 0.892 0.870 0.820 0.955 2.242 1.199

High prec. deposit 479.20 521.88 437.37 414.80 414.26 457.16 1093.32 3980.33
0.986 1.074 0.900 0.854 0.852 0.941 2.250 1.170

Low cash flow weight 1380.74 941.45 622.76 477.20 463.22 436.08 768.60 5655.57
2.841 1.937 1.281 0.982 0.953 0.897 1.581 1.662

High cash flow weight 604.10 600.62 380.84 470.28 396.12 496.22 686.49 3782.52
1.243 1.236 0.784 0.968 0.815 1.021 1.413 1.112

- Note: A MCS analysis was carried out but in order to save space no results are included in this table, as all the
Caiani et al. (2016) variants are excluded from the confidence set. Compression ratios are included below the score.
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B. MIC discretisation diagnostics

This appendix provides the results of the diagnostics tests suggested in Barde (2017) for checking

that the discretisation parameters used in the MIC analysis are appropriate. Table A-2 provides the

diagnostics for the ARMA-ARCH and VAR Monte Carlo exercises carried out in sections 2.4 and 4.1,

while table A-3 presents the diagnostics for the Smets and Wouters (2007) dataset used in sections 4.2

and 5.2.

Table A-2: Quantisation diagnostics for Monte Carlo validation exercises

ARMA-ARCH VAR(2)

X X1 X2

Lower bound -30 -10 -10
Upper bound 30 10 10
Smallest observation -256.118 -17.243 -14.996
Largest observation 147.040 16.387 15.599

Proportion out of bounds 0.050 0.012 0.009
Proportion of KS fails 0.002 0.002 0.002
Proportion of LB fails 0.058 0.051 0.054
Proportion of Spearman fails 0.788 0.119 0.143

- The ARMA-ARCH column provides the diagnostics for the analysis in section
2.4, The VAR(2) does the same for the analysis in section 4.1.
- N = 1000, 1290 series (129 parametrisations, 10 repetitions each)

Table A-3: Quantisation diagnostics for the Smets and Wouters (2007) dataset

L r π ∆y ∆c ∆i ∆w

Support diagnostics

Lower bound −7 0 −1 −3 −3 −10 −1
Upper bound 7 5 3 3 3 10 2.5
Min obs. −7.749 0.209 −1.101 −3.080 −2.957 −9.386 −1.097
Max obs. 5.745 4.445 3.661 3.728 4.763 9.869 2.661
N◦ out of bounds 4 0 2 4 1 0 3
Resolution (bits) 6 6 6 6 6 6 6

Kolmogorov-Smirnov (KS) tests for uniformity of discretisation errors

Test statistic 0.061 0.052 0.035 0.057 0.039 0.078 0.070
P-value 0.775 0.906 0.999 0.846 0.994 0.466 0.619

Ljung-Box (LB) tests for autocorrelation of discretisation errors

Test statistic 20.276∗∗∗ 4.200 2.628 1.781 7.689 3.476 3.726
P-value 0.002 0.650 0.854 0.939 0.262 0.747 0.714

Spearman correlation of discretisation error with discretised data

Correlation 0.045 −0.000 0.040 0.123∗ −0.100 −0.066 −0.100
P-value 0.499 0.998 0.549 0.064 0.131 0.319 0.131

- Tests are run on the full 1947:Q3 - 2004:Q4 Smets and Wouters (2007) dataset, so N = 230.
- KS test H0: Discretisation errors are uniformly distributed
- LB test H0: Discretisation errors are independently distributed. χ2(0.05, 6) = 12.592.
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C. Central Smets & Wouters estimates for section 4.2

Table A-4: Prior & posterior distribution of structural parameters for the central SW models
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Table A-5: Prior & posterior distribution of shock processes for the central SW models
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D. Results for alternate MIC settings

As mentioned in sections 4.2 and 5.2, this appendix provides the results obtained when re-running

the MIC comparison with coarser discretisation settings. In order to facilitate the evaluation of the

robustness of the approach, each table and figure is designed to be directly comparable to its counterpart

in the main body.

Table A-6: Variable-level and aggregate MIC for SW models, low resolution, 3 lags

L r π ∆y ∆c ∆i ∆w Aggr.

MIC measurements

Benchmark 184.75 196.20 242.81 353.74 322.94 306.00 384.65 1952.63
(0.028) (0.000) (0.000) (0.000) (0.000) (0.000) (0.114) (0.000)

Restrict 1 184.61 208.90 249.19 373.84∗∗∗ 346.99∗∗∗ 318.45∗∗ 384.38 2025.56∗∗∗

(0.000) (0.849) (1.126) (4.136) (2.795) (2.493) (0.000) (4.214)

Restrict 2 189.36 204.79 261.38∗∗ 364.71∗∗∗ 360.46∗∗∗ 322.58∗∗∗ 384.71 2041.26∗∗∗

(1.802) (0.604) (2.804) (2.736) (6.690) (3.524) (0.129) (4.373)

Compression ratios

Benchmark 0.385 0.409 0.506 0.737 0.673 0.637 0.801 0.581
Restrict 1 0.385 0.435 0.519 0.779 0.723 0.663 0.801 0.603
Restrict 2 0.395 0.427 0.545 0.760 0.751 0.672 0.801 0.608

- Note: ‘Restrict 1’ refers to the model with restricted consumption parameters, ‘Restrict 2’ is the model with
additional restrictions to the shock processes. MCS t-statistics are provided in parenthesis, with superscripts
‘*’, ‘**’ and ‘***’ indicating that the model is excluded from the confidence set at the 10, 5 and 1% significance
level, based on bootstrapped standard errors. See table 3 for comparison.

(a) MIC vs. log-likelihood (b) Measurement error

Figure A-3: MIC results on SW models, Low resolution, 3 lags - See figure 5 for comparison.
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Table A-7: Macroeconomic model comparison, low resolution, 3 lags

L r π ∆y ∆c ∆i ∆w Aggr.

Smets & Wouters dataset (1965:Q1 - 2004:Q4)

VAR(1) 183.57 196.33 261.88∗∗∗ 353.77 322.32 308.42 384.18 1968.34
0.382 0.409 0.546 0.737 0.671 0.643 0.800 0.586

SW 184.75 196.20 242.81 353.74 322.94 306.00 384.65 1952.63
0.385 0.409 0.506 0.737 0.673 0.637 0.801 0.581

Caiani et al. 351.71∗∗∗ 923.42∗∗ 1192.71∗∗ 490.27∗∗∗ 392.96∗∗∗ 430.59∗∗∗ 1211.44∗∗∗ 5158.22∗∗∗

0.733 1.924 2.485 1.021 0.819 0.897 2.524 1.535

Crisis period (1997:Q1 - 2017:Q2)

VAR(1) 67.97 47.41 94.47 137.58 127.25 109.37 226.99 798.27
0.287 0.200 0.399 0.580 0.537 0.461 0.958 0.481

SW 75.04 53.04 99.29 145.74 133.14 115.53 225.68 831.66∗∗∗

0.317 0.224 0.419 0.615 0.562 0.487 0.952 0.501

Caiani et al. 282.93∗∗∗ 137.99∗ 122.98 178.81∗∗ 183.94∗∗∗ 208.87∗∗∗ 650.55∗∗∗ 1979.83∗∗∗

1.194 0.582 0.519 0.754 0.776 0.881 2.745 1.193

- Note: A MCS analysis was carried out but only the significance of the test is reported in order to save space. As
before, superscripts ‘*’, ‘**’ and ‘***’ indicating that the model is excluded from the confidence set at the 10%, 5%
and 1% significance level, based on bootstrapped standard errors. Compression ratios are included below the score.
See table 5 for comparison.
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Table A-8: Caiani et al. (2016) sensitivity analysis, low resolution, 3 lags

L r π ∆y ∆c ∆i ∆w Aggr.

Smets & Wouters dataset (1965:Q1 - 2004:Q4)

Low bank risk av. 477.37 857.75 1198.56 511.94 371.23 441.37 1193.35 5286.38
0.995 1.787 2.497 1.067 0.773 0.920 2.486 1.573

High bank risk av. 292.91 951.41 956.36 442.26 390.93 441.13 1253.55 4943.56
0.610 1.982 1.992 0.921 0.814 0.919 2.612 1.471

Low cap. util. weight 327.08 940.26 547.32 503.41 426.84 393.51 1086.94 4517.15
0.681 1.959 1.140 1.049 0.889 0.820 2.264 1.344

High cap. util. weight 280.19 953.15 931.00 430.36 379.32 449.20 1287.33 4916.17
0.584 1.986 1.940 0.897 0.790 0.936 2.682 1.463

Low prec. deposit 281.66 963.10 912.50 434.54 386.53 439.38 1249.89 4868.70
0.587 2.006 1.901 0.905 0.805 0.915 2.604 1.449

High prec. deposit 266.78 920.71 941.42 433.34 379.51 432.24 1254.54 4873.31
0.556 1.918 1.961 0.903 0.791 0.900 2.614 1.450

Low cash flow weight 1478.62 1936.21 1627.57 581.38 470.34 373.19 1451.49 8114.01
3.080 4.034 3.391 1.211 0.980 0.777 3.024 2.415

High cash flow weight 307.39 952.01 437.98 515.59 422.94 518.57 670.77 4238.57
0.640 1.983 0.912 1.074 0.881 1.080 1.397 1.261

Crisis period (1997:Q1 - 2017:Q2)

Low bank risk av. 392.97 175.16 132.52 176.66 175.14 214.78 653.05 2165.89
1.658 0.739 0.559 0.745 0.739 0.906 2.755 1.306

High bank risk av. 195.84 132.23 134.15 166.95 158.84 209.17 650.63 1845.62
0.826 0.558 0.566 0.704 0.670 0.883 2.745 1.112

Low cap. util. weight 159.10 148.63 125.83 182.37 197.60 194.84 613.93 1828.72
0.671 0.627 0.531 0.769 0.834 0.822 2.590 1.102

High cap. util. weight 168.51 134.29 130.68 164.41 159.91 217.24 681.02 1835.83
0.711 0.567 0.551 0.694 0.675 0.917 2.873 1.107

Low prec. deposit 158.09 142.43 135.75 162.78 163.66 209.18 656.35 1804.77
0.667 0.601 0.573 0.687 0.691 0.883 2.769 1.088

High prec. deposit 169.78 156.77 124.51 162.22 157.00 213.19 684.83 1837.64
0.716 0.661 0.525 0.684 0.662 0.900 2.890 1.108

Low cash flow weight 782.74 340.14 275.90 202.78 172.53 173.31 649.69 3064.28
3.303 1.435 1.164 0.856 0.728 0.731 2.741 1.847

High cash flow weight 151.58 162.45 106.90 203.30 196.70 244.75 412.43 1612.84
0.640 0.685 0.451 0.858 0.830 1.033 1.740 0.972

- Note: A MCS analysis was carried out but in order to save space no results are included in this table, as all
the Caiani et al. (2016) variants are excluded from the confidence set. Compression ratios are included below
the score. See table A-1 for comparison.
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