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1 Introduction

The partial di�erential equation

mt + umx + 2uxm = 0, m = u− uxx (1)

was derived from asymptotic expansions in shallow water theory by Camassa
and Holm [6], who also obtained a bi-Hamiltonian structure and found re-
markable weak solutions in the form of a superposition of peaks (peakons),

u(x, t) =
N∑
j=1

pj(t) e
−|x−qj(t)|, (2)

where (qj, pj)j=1,...,N form a set of canonical coordinates and momenta in a
�nite-dimensional Hamiltonian system with time t that is completely inte-
grable in the Liouville sense. Although it is a nonlocal partial di�erential
equation, either in the form (1) in terms of m with u = (1 − D2

x)
−1m, or

rewritten as an evolution equation for u, i.e. ut = . . . (cf. equation (5) be-
low), the Camassa-Holm equation has an in�nite hierarchy of commuting
symmetries which are given by local evolution equations in m.

The integrability of the equation (1) itself was already included in earlier
results of Fokas and Fuchssteiner on hereditary symmetries and recursion
operators [16], but the work of Camassa and Holm led to new analytical and
geometrical insights: in addition to the peakons given by (2), and smooth
solitons [22, 25, 33] that appear when linear dispersion is added to (1), other
classes of initial data produce wave breaking [26]; and the equation has a
variational formulation as a geodesic �ow on (an extension of) a di�eomor-
phism group [30]. The geometrical interpretation of (1) as an Euler-Poincaré
equation naturally generalizes to di�eomorphisms in two or more dimensions,
and the analogues of the weak solutions (2) can be applied to the problem
of template matching in computational anatomy [20]; but in general such
higher-dimensional extensions do not to preserve integrability. Further re-
search on the one-dimensional case has been concerned with the derivation
[17, 32] and classi�cation [31] of integrable scalar equations analogous to (1),
as well as the search for suitable two-component or multi-component ana-
logues [9, 15, 21, 24, 37, 36, 38, 39]. From the analytical point of view, there
is also considerable interest in �nding dispersive equations with higher order
nonlinearity, which (despite not being integrable) display similar features in
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the form of peakons, wave breaking and one or more higher conservation laws
[1, 19].

Recently Xia, Qiao and Zhou introduced the following two-component
system of partial di�erential equations:

mt = (mH)x +mH − 1
2
m(u− ux)(v + vx),

nt = (nH)x − nH + 1
2
n(u− ux)(v + vx),

(3)

with
m = u− uxx, n = v − vxx. (4)

In the above, H is an arbitrary function of x and t, which (in particular) can
be �xed by choosing it to be a speci�c function of the �elds u, v and their
derivatives. The authors of [39] refer to this system in the title of their paper
as �synthetical� because it provides a synthesis of several di�erent systems
admitting peakon solutions, by choosing H to have a speci�c dependence
on u, v; reductions to integrable scalar partial di�erential equations can be
achieved by imposing further conditions on u and v. For instance, setting
H = u and v = 2 reduces (3) to the Camassa�Holm equation [6], which can
be rewritten as

(1−D2
x)ut = 3uux − 2uxuxx − uuxxx; (5)

while setting H = u2 − u2x and v = 2u produces the equation

(1−D2
x)ut = Dx

(
u2xuxx − u2uxx − uu2x + u3

)
, (6)

which was �rst derived by Fokas [17], then by Olver and Rosenau [32], and
has been studied more recently by Qiao [34].

Coupled systems of Camassa-Holm type (both integrable and non-
integrable equations) are very interesting because they exhibit new be-
haviour: for instance, there are waltzing peakons [10], and the scattering
of two peakons need not give rise to a simple phase shift as in the scalar case
[4]. Other examples include the two-component system

mt = 1
2
Dx

(
m(u− ux)(v + vx)

)
,

nt = 1
2
Dx

(
n(u− ux)(v + vx)

) (7)

introduced in [36], whose multipeakon solutions were recently analyzed in
[8], which arises from (3) by taking

H =
1

2
(u− ux)(v + vx); (8)
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or the system obtained from the choice

H =
1

2
(uv − uxvx), (9)

that is
mt = 1

2
Dx

(
m(uv − uxvx)

)
− 1

2

(
m(uvx − uxv)

)
,

nt = 1
2
Dx

(
n(uv − uxvx)

)
+ 1

2

(
n(uvx − uxv)

)
,

(10)

which was studied in [38].
The adjective �synthetical� in the title of the paper [39] is rarely used,

but the English word �synthetic� is much more common, and it is synony-
mous with �arti�cial� or �fake� in everyday language. Although the system
(3) arises as the compatibility condition of a linear system (Lax pair), which
yields an in�nite sequence of conservation laws, we will show that this is
not su�cient for this two-component system (or all its reductions) to be in-
tegrable. In fact, the linear system obtained in [39] should be considered
as an example of a fake Lax pair (see [7] or [5, 35]): by a combination of
a change of independent variables (reciprocal transformation) and a gauge
transformation, the function H can be removed, and the system decouples
into an integrable scalar equation together with an arbitrary evolution equa-
tion (which is generically non-integrable). As the consequence, the in�nite
sequence of conservation laws only depend on a single dependent variable
(the variable ϑ below). Thus it turns out that it is appropriate to apply the
word �synthetic� in this context.

Our main result can be summarized as follows.

Theorem 1. Let (3) be speci�ed as an autonomous system of partial di�er-
ential equations for u = u(x, t) and v = v(x, t), by making a particular choice
of function H = h(u, v, ux, vx, . . .) of u, v and their x-derivatives. Then there
is a reciprocal transformation to a triangular system for ϑ = ϑ(X,T ) and
κ = κ(X,T ), given by

ϑT + 1
4

(
(ϑXT−2)2

4ϑ2
− ϑ2

T

)
X

= 0,

κT + κF [ϑ, κ] = 0,
(11)

where F [ϑ, κ] denotes a (possibly nonlocal) function of ϑ, κ and their X-
derivatives.
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As we shall see, on its own the �rst equation for ϑ in the system (11) is
integrable: it corresponds to a negative �ow in the modi�ed KdV hierarchy;
but in general the second equation is not integrable, for an arbitrary choice
of F (which corresponds to the arbitrariness of H). In the next section we
will derive the above result, explaining how the dependence of the system
(3) on H can be removed from the Lax pair.

Section 3 is concerned with a di�erent question, namely the degree of
nonlinearity that appears in integrable peakon equations. Using the approach
of Dubrovin and Zhang, which is based on writing equations as series that are
perturbations of the dispersionless limit [11, 12, 13], we present a theorem to
the e�ect that there are no integrable homogeneous scalar peakon equations
with nonlinearity of degree greater than three. This result should be su�cient
to infer that all integrable multi-component analogues of the Camassa-Holm
can have only quadratic or cubic nonlinear terms, since such systems reduce
to the scalar case by identifying �elds or by setting all but one of the �elds
to zero. The paper ends with a brief discussion of the results.

2 Lax pair and reciprocal transformation

For what follows it will be convenient to rescale the dependent variables u, v
in (3) so that

u→ 2u, v → −2v,

which implies that m→ 2m, n→ −2n, and introduce the quantities

A = u− ux, B = v + vx, (12)

so that the system takes the form

mt = (mH)x +mH + 2mAB,
nt = (nH)x − nH − 2nAB,

(13)

with
m = A+ Ax, n = B −Bx. (14)

With this choice of scaling, the Lax pair presented in (10) can be rewritten
as

Ψx = UΨ, Ψt = VΨ, (15)
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where

U =

(
−1

2
mλ

nλ 1
2

)
, V =

(
−1

2
λ−2 + AB Aλ−1 +mHλ

Bλ−1 + nHλ 1
2
λ−2 − AB

)
.

By a standard method, transforming the x part of (15) into a Riccati
equation and making an asymptotic expansion of the Riccati potential in
powers of λ, it was shown in [39] that the system (3) has in�nitely many
conservation laws. With the choice of scaling as in (13), the �rst of these is

qt = (qH)x, q =
√
mn. (16)

Using the latter, we transform the independent variables via the reciprocal
transformation

dX = q dx+ qH dt, dT = dt, (17)

so that partial derivatives transform as Dx = q DX , Dt = DT + qH DX . It is
then helpful to replace m,n throughout by q, κ, where

κ =

√
n

m
,

so that the system (13) becomes

(q−1)T +HX = 0,
(log κ)T +H + 2AB = 0,

(18)

and (14) produces

AX = −Aq−1 + κ−1, BX = Bq−1 − κ. (19)

The reciprocal transformation can also be applied to the Lax pair (15), to
yield

ΨX = ÛΨ, ΨT = V̂Ψ, (20)

where

Û =

(
−1

2
q−1 κ−1λ
κλ 1

2
q−1

)
, V̂ =

(
−1

2
λ−2 + AB + 1

2
H Aλ−1

Bλ−1 1
2
λ−2 − AB − 1

2
H

)
.

The compatibility conditions for (20), coming from the zero curvature
equation Ut − Vx + [U,V] = 0, are precisely the equations (18) and (19).
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We now explain how these equations can be decoupled into a triangular
system consisting of an integrable scalar equation together with an arbitrary
evolution equation (which is generically non-integrable). To see this, we
introduce the gauge transformation

Ψ = gΦ, g =

(
κ−1/2 0

0 κ1/2

)
,

which transforms the Lax pair (20) to

ΦX = UΦ, ΦT = VΦ, (21)

where

U =

(
ϑ λ
λ −ϑ

)
, V =

(
−1

2
λ−2 Fλ−1

Gλ−1 1
2
λ−2

)
,

with

ϑ = − 1

2q
+

1

2
(log κ)X , F = κA, G = κ−1B. (22)

The compatibility conditions for (21) are

ϑT = F −G,
FX = 2ϑF + 1,
GX = −2ϑG− 1.

(23)

The latter system can be written as a single scalar equation for ϑ, by elimi-
nating F and G. This is best achieved by noting that the second and third
equations in (23) imply (FG)X = G−F , and so the �rst equation yields the
conservation law

ϑT + (FG)X = 0. (24)

The di�erence of the last two equations in (23) also gives 2ϑ(F + G) =
(F −G)X −2 = ϑXT −2 (using the �rst equation once again), so that overall
we have F and G given in terms of ϑ as

F =
ϑXT − 2

4ϑ
+

1

2
ϑT , G =

ϑXT − 2

4ϑ
− 1

2
ϑT . (25)

Finally, if we substitute these expressions into the conservation law (24), we
obtain the equation

ϑT +
1

4

(
(ϑXT − 2)2

4ϑ2
− ϑ2

T

)
X

= 0, (26)
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which is an integrable partial di�erential equation for ϑ(X,T ). In fact, (26)
corresponds to the �rst negative �ow in the modi�ed KdV hierarchy, which
is best seen by rewriting (21) as a scalar Lax pair for the �rst component
φ = φ1 of the vector Φ = (φ1, φ2)

T , to �nd

(DX + ϑ)(DX − ϑ)φ ≡ (D2
X +W )φ = λ2φ,

φT = λ−2
(
FφX − 1

2
FXφ

)
,

with
W = −ϑX − ϑ2;

the X part is just the KdV spectral problem, and the potential W in the
Schrödinger operator is given by the standard Miura expression in terms
of ϑ. However, observe that the time evolution of the �eld κ(X,T ) is not
determined by the Lax pair (21); we shall return to this shortly.

Since (26) takes the form of a conservation law, it is convenient to intro-
duce a potential f(X,T ) such that ϑ = fX , and then the equation

fT +
(fXXT − 2)2

16f 2
X

− f 2
XT

4
= 0 (27)

is obtained, by integrating and absorbing an arbitrary function of T into f .
Thus we can describe solutions of the system (13) in the following way.

Theorem 2. Let f(X,T ) be a solution of (27), let κ(X,T ) be an arbitrary
function, and let ϑ(X,T ) = fX(X,T ). Then a solution (A(x, t), B(x, t)) of
the system (13) with non-autonomous coe�cient H(x, t) is given in paramet-
ric form by setting

x = log κ(X, t)− 2f(X, t)

and T = t in the expressions

A = κ−1F, B = κG, H = −(log κ)T − 2FG,

where F and G are given in terms of ϑ by (25).

In the above formulation, the function κ is arbitrary, and together with
ϑ it completely determines the quantity H, viewed as a non-autonomous
coe�cient appearing in the system (13). However, in [39] the role of H
was envisaged somewhat di�erently: in that setting, one must consider
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the inverse problem of determining κ(X,T ), when H is some given func-
tion of the original �elds and their derivatives that is speci�ed a priori, i.e.
H = h(u, v, ux, vx, uxx, vxx, . . .) in (3), or H = ĥ(A,B,Ax, Bx, . . .) in (13).
With this alternative perspective, the original coupled system for u, v (or
A,B) with independent variables x, t is equivalent under the reciprocal trans-
formation (17) to a system consisting of the integrable equation (26) together
with the evolution equation

κT = −κ(H + 2FG) (28)

for κ, with F and G given by (25). The latter system is triangular, since
(26) is an autonomous equation for ϑ alone, while the terms on the right-
hand side of (28) generally depend on both κ, ϑ and their derivatives in
a complicated way; for instance, given H = ĥ(A,B,Ax, Bx, . . .) we should
replace A,B by A = κ−1F , B = κG and use (25), while Ax should be replaced
by qAX = q(κ−1F )X where

q =
(

(log κ)X − 2ϑ
)−1

,

and so on; alternatively, given H = h(u, v, ux, vx, . . .) one must consider
potentially nonlocal expressions, since (12) gives u − ux = A, so u − quX =
κ−1F , etc. Moreover, the equation (28) is completely independent of the Lax
pair (21), so there is no reason for it to be integrable.

Thus, by identifying F = H + 2FG, we have arrived at Theorem 1, and
our main conclusion: in general, for a given choice of H, the Lax pair (15) is
insu�cient to infer that the system (3) is integrable. An integrable coupled
system only arises for certain exceptional choices of H.

One particular exception is the case corresponding to (8) above, namely

H = −2AB,

which causes the right-hand side of (28) to vanish, since FG = AB. In that
case, in terms of A,B with m,n given by (14), the system (13) takes the
form

mt = −2(ABm)x, nt = −2(ABn)x, (29)

which is one of the coupled cubic integrable systems derived recently in [24].
After rescaling the dependent variables, this corresponds to the system (7)
obtained in [36], via the Miura map (12); the equation (6) is a reduction of
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this system to a scalar equation. This is a situation where the equation (28)
trivially decouples from (26), with κT = 0 implying that κ is an arbitrary
function of X. For some exact solutions of the system (29), see [24].

Another exceptional situation arises by taking a reduction to a scalar
equation with

H = ku, v = `, for k, ` constant,

so that B = n = `. From the second equation in (13) it follows that ` = −k/2
must hold, and the �rst equation becomes the Camassa-Holm equation (5),
up to rescaling. To �x the choice of scale we set k = −2, ` = 1, to �nd

q =
√
m = κ−1,

while using FG = AB gives

H + 2FG = −2u+ 2(u− ux) = −2quX = qHX ,

from which it follows that the two equations in (18) are equivalent to each
other, and by (22) we see that ϑ is given in terms of q as

ϑ =
qX − 1

2q
.

The �eld q satis�es the equation

(q−1)T +
(
q(log q)XT − 2q2

)
X

= 0,

which can be rewritten in the form

WT = −2qX , W = −qXX
2q

+
q2X
4q2
− 1

4q2
,

identifying it as the �rst negative �ow in the KdV hierarchy (see [18, 23] for
more details).

However, for other choices of H we expect that an integrable system does
not arise; in particular, it appears that the system (10) and other examples
considered in [39] are not integrable.
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3 Homogeneous Camassa-Holm type equations

In this section we consider integrable Camassa-Holm type equations with
homogeneous nonlinear terms, of the form

(1−D2
x)ut = αukux + βukuxxx + γuk−1uxuxx + δuk−2u3x. (30)

Nonlinearities of this type have been considered in [1, 19]. Here α, β, γ, δ, k
are arbitrary complex constants, and we assume that αk 6= 0.

Known integrable examples of Camassa-Holm type equations of the form
(30) correspond to k = 1 and k = 2. We show that under the above assump-
tions these are the only possible degrees of nonlinearity.

To prove this we adopt the viewpoint of Dubrovin-Zhang, which takes a
perturbative approach to integrability, with quasilinear hyperbolic systems
as the starting point; the reader is referred to [11, 12, 13] for the origin of
these ideas, and to [14] for a more recent review. Consider a formal series

ut = λ(u)ux + ε (a1(u)uxx + a2(u)u2x)
+ ε2 (b1(u)uxxx + b2(u)uxuxx + b3(u)u3x) + · · · =: F,

(31)

where ε is an arbitrary parameter, and we assume that λ′(u) 6= 0. Expressions
at each power εn are homogeneous di�erential polynomials in x-derivatives
of u of weight n+ 1 if we adopt the convention that the weight of u is 0 and
the weight of the jth derivative of u is j, for j ≥ 0. The series (31) may or
may not truncate. In the former case the expression (31) is an evolutionary
partial di�erential equation. Following [14] we adopt the following de�nition
of integrability for the formal series (31):

De�nition 1. The series (31) is integrable if there exists another formal
series (formal symmetry)

uτ = µ(u)ux + ε (A1(u)uxx + A2(u)u2x)
+ε2 (B1(u)uxxx +B2(u)uxuxx +B3(u)u3x) + · · · =: G

(32)

that commutes with (31) for an arbitrary choice of the function µ(u).

De�nition 1 can be viewed as a reformulation and extension of De�nition
3.1 on p. 7 of [14], with the main di�erence being that we do not require
the formal series (31) and (32) to be Hamiltonian. The above de�nition
was also adopted by Arsie, Lorenzoni and Moro in their study of integrable
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viscous conservation laws [2, 3]. Taking the dispersionless limit ε → 0 in
(31) yields an equation in the (dispersionless) Burgers hierarchy, which has
uτ = µ(u)ux as a symmetry for any µ(u). Since µ is arbitrary, one can
produce an in�nite sequence of formal symmetries by taking µ(u) = uj for
j = 0, 1, 2, . . ., corresponding to an in�nite number of symmetries for (31),
which is the usual requirement of integrability in the symmetry approach
[27, 28]. The main di�erence is that from the latter point of view a symmetry
is usually de�ned by starting from its leading linear dispersion term, whereas
in [14] and [2, 3] one starts with the leading nonlinear term, de�ned by µ(u).

The commutator of two formal series (31) and (32), is again a series in
positive powers of ε:

[F,G] = εK1 + ε2K2 + ε3K3 + · · · .

Each term Km, m > 2 is a homogeneous di�erential polynomial in
derivatives of u of weight m + 1 with coe�cients expressed in terms of
λ, µ,Ai, Bi, . . . , ai, bi, . . . and their derivatives. Vanishing of Km leads to two
di�erent sets of relations on λ, µ,Ai, Bi, . . . , ai, bi, . . .:

• Vanishing of coe�cients of Km at monomials of the form
Dn1
x (u)Dn2

x (u) · · ·Dnj
x (u)usx, with s > 0 and n1, n2, . . . , nj > 1 leads

to a triangular linear system of equations on coe�cients of (32). From
this system one explicitly �nds Ai, Bi, . . . in terms of λ, µ, ai, bi, . . . and
their derivatives.

• Vanishing of coe�cients of Km at monomials of the form
Dn1
x (u)Dn2

x (u) · · ·Dnj
x (u) with n1, n2, . . . , nj > 1 leads to a system of

di�erential constraints on λ, µi, ai, bi, . . .. The requirement of vanishing
of the commutator [F,G] for any function µ(u) leads to a condition that
coe�cients at every monomial µ(u)k1 µ′(u)k2 µ′′(u)k3 · · · should vanish.
These form a system of ordinary di�erential equations for the functions
λ(u), a1(u), a2(u), b1(u), . . ., which are the integrability conditions for
(31). The �rst integrability condition occurs at order ε3:

a1(−4a1a2λ
′ − 2a1a

′
1λ
′ + 3b1λ

′2 + 4a21λ
′′) = 0,

Thus, at each order in ε, the vanishing of the commutator leads to neces-
sary conditions for (31) to be integrable in the sense of De�nition 1, and so
checking these conditions provides a test for integrability. Having veri�ed a
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�nite number of conditions, one then requires a di�erent argument to verify
whether such conditions are also su�cient for integrability. Let us illustrate
the approach by the following examples:

Example 1. Consider the following extension of the Burgers equation:

ut = λ(u)ux + εuxx = F, λ′(u) 6= 0. (33)

Applying the above procedure requires that there exists a formal series G
(32) that commutes with F for an arbitrary choice of µ(u). Then

G = µ(u)ux + ε 1
λ′2

(µ′λ′uxx − (µ′λ′′ − µ′′λ′)u2x)
+ε2

(
− 2

3λ′3
(µ′λ′′ − µ′′λ′)uxxx + · · ·

)
+ ε3(· · · )

The integrability condition at order ε3 then yields λ′′ = 0, which implies
that equation (33) is integrable if and only if it is equivalent to the Burgers
equation.
Example 2. Consider now another equation of Burgers type, namely

ut = uux + εf(u)uxx = F, f(u) 6= 0. (34)

In this case, with µ = µ(u),

G = µux + εf(µ′uxx + µ′′u2x)
+ε2

(
2
3
f 2µ′′uxx + 5

3
f(f ′µ′′ + fµ′′′)uxuxx + · · ·

)
+ · · · .

The integrability condition at order ε3 gives f ′ = 0 and hence this yields the
standard Burgers equation once again.
Example 3. Consider now an equation of KdV type, namely

ut = λ(u)ux + ε2uxxx = F, λ′(u) 6= 0. (35)

In this case all terms in (32) at odd powers of ε vanish. We have

G = µux + ε2
(
µ′

λ′
uxx − 2

µ′λ′′ − µ′′λ′

λ′2
uxuxx + · · ·

)
+ · · · .

The �rst non-identically vanishing integrability conditions occur at order ε8.
These are equivalent to λ′′′ = 0, yielding the KdV equation and the mKdV
equation.
Example 4. Similarly, in the case of

ut = uux + ε2f(u)uxxx = F, f(u) 6= 0, (36)
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we have

G = µux + ε2
(
fµ′uxxx + 2fµ′′uxuxx +

1

2
fµ′′′u3x

)
+ · · · .

The �rst non-identically vanishing integrability conditions occur at order ε8.
These are equivalent to

3ff ′′ − f ′2 = 0.

Modulo rescaling and shifting u → u+ const, all solutions are equivalent
to either f = 1 or f = u

3
2 . This leads to the KdV equation and another

integrable equation of Harry Dym type, namely

ut = u
3
2uxxx + uux.

The application of the above test to the Camassa-Holm type equations
(30) with homogeneous nonlinearity is the following. First of all we rewrite
(30) as an evolutionary formal series by inverting the operator 1−D2

x:

ut = (1−D2
x)
−1(αukux + βukuxxx + γuk−1uxuxx + δuk−2u3x)

= αukux + (α + β)ukuxxx + (3kα + γ)uk−1uxuxx
+(δ + k(k − 1)α)uk−2u3x + · · · .

(37)

By rescaling x and t it is convenient to introduce the parameter ε, which
counts the weight of every monomial:

ut = αukux + ε2 F2[u] + ε4 F4[u] + · · · , (38)

where

F2[u] = (α + β)ukuxxx + (3kα + γ)uk−1uxuxx + (δ + k(k − 1)α)uk−2u3x

and the omitted terms are O(ε6). (It is easy to see that all odd orders of ε
are absent from the above expression.)

The procedure leads to the following theorem:

Theorem 3. If equation (30) with α 6= 0 and k 6= 0 is integrable then k = 1
or k = 2.

Sketch of the proof: The proof consists of four main steps which are
outlined below; most of the resulting algebraic conditions are omitted, as
they are too lengthy to include here.
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1. The condition that αk 6= 0 in the theorem guarantees the applicability
of the test. Since (38) contains only terms with even powers of ε, we
can seek a formal symmetry without odd order powers of ε, that is

uτ = µ(u)ux + ε2
(
B1(u)uxxx +B2(u)uxuxx +B3(u)u3x

)
+ · · · .

2. Compatibility conditions up to order ε6 do not impose any constraints
on the equation (38).

3. At order ε8 one obtains 17 algebraic equations on α, β, γ, δ and k. The
�rst of them reads as

(−27 + 18k + 4k2)α2 + (−54 + 45k − 26k2)αβ + 54(k − 1)αγ − 108αδ

−3(k − 3)(2k − 3)β2 + 9(k − 6)βγ − 108βδ + 9γ2 = 0,

and the remaining ones are increasingly more complicated.

4. The �nal step of the proof requires computations up to order ε10. The
resulting algebraic system of equations for α, β, γ, δ and k possesses
non-trivial (non-zero) solutions only if k = 1 or k = 2.

4 Discussion

Lax pairs and an in�nite number of conservation laws are considered to be
hallmarks of integrability for systems of partial di�erential equations. How-
ever, a rigorous de�nition of these concepts is required, in particular for
multi-component systems. Without it, a Lax pair alone is not su�cient to
infer integrability [5, 7, 35], and even an in�nite number of conservation laws
may not be enough. No matter what choice of H is made, the system (3)
formally arises from a Lax pair, and this Lax pair yields an in�nite number
of conservation laws, but our calculations show that this Lax pair is �fake�
in the sense that the dependence on H can be removed, and the system can
be reduced to an integrable scalar equation coupled with another equation
which is not integrable in general. Nevertheless, there are certain speci�c
choices of H for which the second equation is either trivial or equivalent to
a copy of the �rst equation, corresponding to the Camassa-Holm equation,
or to the system (7) found in [36] (which includes (6) as a scalar reduction).
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There are other systems found in [39] for which compatible bi-
Hamiltonian operators are presented, including the system (10) from [38].
As bi-Hamiltonian structures are considered to be another hallmark of inte-
grability, this would seem to contradict our claim that these other choices
of H should not give integrable systems. However, it appears that the pairs
of compatible Hamiltonian operators J,K presented for these other cases in
[39] do not give rise to an in�nite hierarchy of local symmetries in terms
of the �elds m,n. Within the symmetry approach to integrable systems
[27, 28, 29], there is a requirement of in�nitely many local symmetries, yet
most of the recursion operators JK−1 or KJ−1 found in [39] produce only
nonlocal equations, so there is no contradiction.

Furthermore, we expect that in the peakon sector it may not possible be
obtain a consistent spectral problem from the Lax pair for (10) and the other
systems presented in [39], apart from the exceptional system (7), for which
the spectral theory for the peakons was derived in [8].

All of the known integrable scalar equations or coupled systems of
Camassa-Holm type contain nonlinear terms of degree at most three. The
result in the third section above shows that this condition on the degree is
necessary for integrability.
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