
Johnson, Colin G. (2019) Stepwise Evolutionary Learning using Deep Learned
Guidance Functions. In: Bramer, Max and Petridis, Miltos, eds. Lecture
Notes in Artificial Intelligence. Artificial Intelligence XXXVI: 39th SGAI International
Conference on Artificial Intelligence, AI 2019, Cambridge, UK, December
17–19, 2019, Proceedings. Lecture Notes in Computer Science , 11927.
Springer ISBN 978-3-030-34884-7.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/78198/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-030-34885-4_4

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/78198/
https://doi.org/10.1007/978-3-030-34885-4_4
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Stepwise Evolutionary Learning using
Deep Learned Guidance Functions

Colin G. Johnson[0000−0002−9236−6581]

1 School of Computing, University of Kent, Canterbury, Kent, UK
C.G.Johnson@kent.ac.uk

2 IASH, University of Edinburgh, Edinburgh, UK Colin.Johnson@ed.ac.uk

Abstract. This paper explores how Learned Guidance Functions (LGFs)—
a pre-training method used to smooth search landscapes—can be used
as a fitness function for evolutionary algorithms. A new form of LGF is
introduced, based on deep neural network learning, and it is shown how
this can be used as a fitness function. This is applied to a test problem:
unscrambling the Rubik’s Cube. Comparisons are made with a previous
LGF approach based on random forests, and with a baseline approach
based on traditional error-based fitness.

1 Introduction

The aim of this paper is to present a new kind of fitness function in evolutionary
algorithms. Instead of the fitness being defined directly from an error function,
a pre-training process is used to learn a fitness function from a set of solved
examples of the problem class. This new kind of fitness is based on Learned
Guidance Functions. These smooth out the fitness landscape by taking a set of
solved examples for a problem, and learning a new fitness function based on
the distance taken to move between state in the solved examples and the solved
state. This function can then be applied to previously unseen examples.

The fitness function is one of the key components of evolutionary algorithms.
Typically, a fitness function is either a domain-specific loss function, measuring
how far a particular population member is from being a solution, or a ranking
function that allows the comparison of two population members, returning the
fittest. This is one of the powerful aspects of evolutionary algorithms—we can
specify a problem by giving a single, simple function that allows us to choose
between population members.

There are problems with such an approach. Most obviously, such functions
typically have many local minima. Typically, this is seen as an intrinsic part of
the problem, to be solved by the search process. A large amount of the evolu-
tionary computation literature is dedicated to operators and other techniques
that allow the search to escape local minima and ensure a balanced exploration
of the search space. The focus of this work is typically on improvements to the
search process. However, another strand of work is focused on transformations to
the fitness function itself. This has a long history in the evolutionary computa-
tion, typifed by work on fitness scaling [11,17,12,30]. The principle aim of fitness

scaling prevent premature convergence of the search algorithm, by composing
a scaling function with the fitness function that doesn’t change the ranking of
points in the search space but ensures a more even distribution of the fitness
values allocated to those points.

A more recent version of this transformation approach is exemplified by ge-
ometric semantic genetic programming (GSGP) [21] have which attempts to
reconfigure the problem so that a much simpler search process such as hillclimb-
ing can be used. The “intelligence” in these approaches is in this initial phase
of reconfiguring the problem. However, these approaches have sometimes traded
off this simplicity of search against another kind of complexity; for example,
in basic GSGP, this tradeoff is against the size of the solution, though more
recent implementations have used a caching strategy to make implementation
more efficient [29]. This idea of of reconfiguring the fitness function prior to the
main evolutionary algorithms being run is one source of inspiration for the work
in this paper; this has been explored elsewhere in evolutionary computation in
work showing how a good choice of genotype-phenotype mapping can be used
to create a smoother landscape [4].

Another form of smoothing the search landscape is in the form of pattern
databases [6]. These consist of patterns in the search space such that the patterns
have the same cost of solution—typically, these represent symmetries of the
underlying problem. If a solution of a particular cost is known for one problem
that matches the pattern, then any other solution matching the pattern will
have at most that cost to solve because all of the moves to the solution can
be similarly transformed. This has a similar idea of transforming the search
space to the above work, but it is different because the pattern databases are
produced based on domain knowledge. Some work has used learning methods
to generalise from pattern databases—for example, by using neural networks to
learn how pattern databases can be combined [20]

Another important source of inspiration is the view that traditional fitness
functions take a very narrow view of the problem; whilst a traditional fitness
function is a good guide as to which elements of the population to choose for the
next generation, it is a very simple representation of the complexity of a problem.
Instead, it is argued, rather than a fitness function that returns a single number
or a ranking, we should be using more complex fitness drivers that give us more
information about the population member, allowing a more directed application
of operators [15,16]. However, such fitness drivers can require more domain-
specific knowledge than a traditional fitness function. One of the aims of this
paper is to give a generic method by which more information about problems
can be incorporated into the evolutionary search, in this case by pre-training.

A more fundamental problem for evolutionary algorithms is that for some
problems, defining the fitness function is difficult, because each problem has a
different goal state. Call these non-oracular problems. As an example, consider
the protein-folding problem in bioinformatics [7]. Biological proteins consist of a
sequence of amino acids, which then fold into a three-dimensional shape, which
is (with a few exceptions such as prions) entirely dependent on the sequence.

To define this as a traditional evolutionary search is problematic, because we do
not have access to a measure of how far a particular configuration is from the
solution—indeed, if we did know what configuration we were searching for, we
would have solved the problem! Therefore, evolutionary computing approaches
to these types of problems have focused on learning parameters in, or functional
forms of, a domain-specific model [31].

Another potential advantage to pre-training for simplifying the fitness land-
scape is that more extensive computational effort can be expended during an
early training phase, and then when evolution is applied to a specific problem,
the evolutionary algorithm can run in fewer generations because more domain-
specific information has been encoded into the fitness function. This may be of
importance in some application where running a traditional evolutionary algo-
rithm might be infeasible because of the need for a large population and many
generations to escape local minima, whereas a smaller population and fewer
generations might be needed for the simpler function.

2 Deep Learned Guidance Functions

Fitness functions in evolutionary learning are provided as part of the problem
definition. Typically, these are then used directly—individuals are evaluated us-
ing the fitness function, and operators in the search are used to avoid problems in
the fitness landscape such as local minima. However, an alternative approach has
been applied in both evolutionary learning [28] and reinforcement learning [8],
where the fitness function is shaped so that it more directly represents routes
through the fitness landscape from an arbitrary point to the desired target.

A form of this called Learned Guidance Functions (LGFs) was introduced by
[14]. The input to this is a search space and set of existing solution trajectories
for the problem. For example, in the protein folding problem these would be
sequences of points in the space of three-dimensional structures, going from a
sequence to a completely folded structure. For an image denoising problem, this
would be a sequence of images from a clean image to a very noisy one. These
are an example of True Distance Heuristics [26], but with a particular layered
structure and the use of a predictive function to give the heuristic value rather
than a look-up table.

These solution trajectories can be obtained in a number of ways. For some
problems, we will have access to a set of already-solved examples. For others,
we can construct artificial examples by starting from a solved state and carrying
out a number of moves from that solved state to generate trajectories in reverse
(a similar approach has been called Autodidactic Iteration in [19]).

These trajectories can then be used to create a training set for a supervised
learning problem. Each trajectory will consist of a number of states in the search
space of the problem, each of which is paired with a number that is the number
of steps away from the target that it took to get to that state. These pairs then
become the training set: so, the task for the supervised learning problem is to
build a model that takes an arbitrary state of the system and assigns a number

predicting how many steps it will take to get to the target state. The LGF is
the model learned from this supervised learning process.

This LGF then be used as a ranking function in an evolutionary algorithm.
Take a each member of the population, and apply the LGF to it. Then select
the individuals that will form the parents of the next population from the lowest
scoring ones on the LGF—these are the ones that are being predicted as being
closest to the solution.

2.1 Formalisation

Now we formalise this idea. Consider a search space S consisting of a set of points,
which is the node set of a directed graph MS , which represent the possible moves
(mutations) from each point in the search space. Identify one or more of these
as goal states; these might be the only goal states, or they might represent a
sample of the class of states that the eventual problem is trying to solve.

Now take a set of trajectories T = {T1, T2, ...TnT
}, where each trajectory is

a set of points in S, i.e. Ti = [s1, s2, ..., snTi
], where in each of these cases s1

is a goal state, and where each adjacent pair (si, si+1) are joined by an edge in
Ms. Now create a new set X consisting of the pairs (si, i) for all the si in all
members of T .

X can now be used as a training set for a supervised learning algorithm.
The trained model from that supervised learning algorithm, L : S → Z≥0, is a
function that takes a set in the search space and predicts how many moves are
needed to get to the goal state. This function will be used as an alternative kind
of fitness function in the experiments below.

3 Example: Applying Deep LGFs to the Rubik’s Cube

In [14] we applied the LGF to the problem of unscrambling the Rubik’s Cube.
We used a number of classifiers from the scikit-learn library [2] to implement
LGFs, and demonstrated that (1) the LGF can learn to recognise the number
of turns that have been made to a cube to a decent level of accuracy; and, (2)
that this LGF can then be used to unscramble particular states of the cube in a
sensible number of moves. Unscrambling is not one of the non-oracular problems,
but it has a complex fitness landscape with many local minima, and so is a good
test for these kind of algorithms.

The search space C consists of all possible configurations of coloured facelets
on the six faces of the cube, each of which has a 3×3 set of facelets. The move set
M is notated by a list of twelve 90◦ moves, {F,B,R,L, U,D, F ′, B′, R′, L′, U ′, D′}
[23], which are functions from C to C.

This paper presents two new aspects compared to the previous one. Firstly,
we introduced a new approach to learning the LGFs, based on deep learning [10].
Secondly, we apply a population-based approach to this problem, based around
an evolution strategy, rather than the hillclimbing approach used in the previous
paper.

3.1 Constructing the LGF

The LGF for this problem is constructed as follows (pseudocode in 1). For ns
iterations, start with a solved cube and make n`−1 moves. Each time a move is
made (and in the initial state), the pair consisting of the current state and the
number of moves made to get to that state is added to the training set. This is
illustrated in Figure 1.

Algorithm 1 Training set construction for the Rubik’s cube

1: procedure ConstructTrainingSetRubik(ns, nm)
2: let M = {F,B,R,L, U,D, F ′, B′, R′, L′, U ′, D′}
3: let X = ∅
4: for s ∈ [0, . . . , ns − 1] do
5: let c be a new cube in the solved state
6: for ` ∈ [0, . . . , nm − 1] do
7: let X = X ∪ {(c, `)}
8: let m = random element from M
9: let C = m(c)

10: end for
11: end for
12: return T
13: end procedure

The LGF is then constructed from this training set by applying a supervised
learning algorithm, specifically a deep neural network implemented in the Keras
framework [1] on TensorFlow [3]. The specific network used is illustrated in Fig-
ure 2. This is a fairly standard deep learning network, with dropout [25] used
to encourage generalisation and prevent overfitting. The categorical crossentropy
function was used for the loss function, and the adam optimizer was applied. Fu-
ture work will apply meta-learning of parameters and network shape to optimise
the model produced [13].

Once an LGF is learned, it can be applied to the task at hand, which is to take
a scrambled state of the cube and move through the search space with the aim
of finding the solved state. This is done using a variant on evolution strategies.
The initial state of the cube is duplicated to fill the population. Then, in each
generation a number of mutants are generated by making a random move for
each member of the population. Any solutions that are predicted by the LGF
to be closer to the solution than the current one are placed in an intermediate
population pool, and a new generation created by uniform random sampling
with replacement from this pool to bring the population up to full size. This is
repeated until one of three states occurs: (1) the solution is found; (2) none of
the mutants produce any improvement, in which case the algorithm is restarted;
(3) a user-set limit on the number of generations is reached (in the experiments
below, this is 100 generations), in which case a fail-state is returned.

Pair with
label

Pair with
label

Pair with
label

Random
move

Random
move

Random
move

(,0) (,1) (,2)

Random
move
Random
move

Training set

Fig. 1. Construction of the training set (modified from [14]).

Input layer: Dense 9x6 tanh

Dense 9x6 relu

Dropout 0.3

Dense 9x6 relu

Softmax output layer

(1,5,5,2,2,2,2,2,2,...) (0,0,0,0,1,0,0,...)

(,4)

Error Calculation

Fig. 2. Keras deep learning network used for training.

This is summarised in pseudocode in 2, where the inputs are: n`, the problem
size (number of scrambling twists given); np, the population size; θ the maximum
number of generations; and, L the LGF function used.

3.2 Sources of Error

Note that if a perfect LGF existed for a problem, we could solve the problem in
a minimal number of steps. Starting from an arbitrary scrambled state, we can
examine all possible moves from that state. At least one of these will be closer
in terms of number of moves to the target state, and so we can move the state
of the system to the state which is closest, and repeat until we reach the target
state.

In practice, there are two forms of error. The first is in the formation of
the training set for the problem. A particular sequence of scrambling moves of
length n might, nonetheless, end up with the cube in a state which could have
been reached using fewer moves. A simple example of this is where one move is
followed by a move which is the inverse of that move (this is explored in more
detail in [14]). The second is where the model makes the wrong prediction. For
these reasons, the fitness landscape created by a real LGF will still have local
minima.

4 Experiments and Results

The experiments were carried out as follows. For each pair (n`, nm) ∈ [2, 13] ×
[2, 13] where n` ≤ nm, Algorithm 2 was run 100 times with the following param-
eters:

– Size of problem n` = n`
– Population size np = 100
– Maximum number of generations θ = 100
– LGF function used L is the result of running Algorithm 1 with trajectory

length nm and 100,000 trajectories, then using that as the training set for
the Keras network in Figure 2 with 50 epochs.

The total time to run all of these experiments was under three hours, not in-
cluding time to train the models (training time was between 11s–59s per epoch
depending on the size of the model).

Results for the unscrambling experiments are presented in two tables. Ta-
ble 1 shows for each (n`, nm) pair the percentage of times that the problem was
solved. Table 2 shows the number of generations taken by successful algorithms
to unscramble the cube.

There are a number of observations. Firstly, for the smaller problem sizes, a
solution to the problem is frequently found; for problems below size 9, at least
half of the attempts are successful, and it is very reliable for small problem sizes.
Secondly, the size of the model makes little difference—using a larger model than
the problem size is of little value. Thirdly, the number of generations needed is

Algorithm 2 Scrambling/unscrambling algorithm for the Rubik’s cube

1: procedure ES-LGF-Unscramble(n`, np, θ, L)
2: let M = {F,B,R,L, U,D, F ′, B′, R′, L′, U ′, D′}
3: let c be a new cube in the solved state
4: for ` = 0; ` < n`; ` = `+ 1 do
5: let m = random element from M
6: let c = m(c)
7: end for
8: . c now in scrambled state
9: let ` = n`

10: let P = np copies of c
11: for t = 0; t < θ; t = t+ 1 do
12: let P ′ = ∅
13: for p ∈ P do m = random element from M
14: let P ′ = P ′ ∪m(p)
15: if m(p) is the solved state then
16: return p . Problem Solved
17: end if
18: end for
19: let P ′′ = ∅
20: for p ∈ P ′ do
21: if L(p) < ` then
22: let P ′′ = P ′′ ∪ p
23: end if
24: end for
25: if P ′′ == ∅ then
26: let P = np copies of c . Reinitialise
27: let ` = n`

28: else
29: let P = ∅
30: for n = 0;n < np;n = n+ 1 do
31: P = P∪ random member of P ′′

32: end for
33: let ` = `− 1
34: end if
35: end for
36: return null . Timed out
37: end procedure

small for the lower problem sizes, but increases for large problem sizes; this may
be an effect of more re-initialisations needing to be carried out.

Fourthly, note that some of the average lengths in Table 2 are shorter than
the problem size. This is because the problems were constructed by scrambling
randomly n` times, but no check was made to ensure that the resulting state
could not be solved in less than n` moves; indeed, doing such a check is rather
complex. Therefore, the starting state for some runs may contain a problem that
can be solved in fewer than n` moves.

Table 1. Percentage of times unscrambling problem of each size was solved using a
model of each size. Results from 100 runs.

Size of Problem
2 3 4 5 6 7 8 9 10 11 12 13

S
iz

e
o
f

M
o
d
el

2 100 - - - - - - - - - - -
3 100 100 - - - - - - - - - -
4 100 100 100 - - - - - - - - -
5 100 100 100 98 - - - - - - - -
6 100 100 100 89 92 - - - - - - -
7 100 100 100 94 80 70 - - - - - -
8 100 100 100 93 82 71 61 - - - - -
9 100 100 100 92 76 57 52 47 - - - -
10 100 100 100 97 85 75 63 60 38 - - -
11 100 100 99 92 83 73 73 52 37 21 - -
12 100 100 100 97 89 73 71 56 37 22 15 -
13 100 100 100 90 77 61 63 50 37 22 17 6

Table 3 and Table 4 compare the results to two experiments in a previous
paper [14]. The main experiments in the current paper (Deep LGF + ES) varied
from the experiments in this earlier paper (Random Forest LGF + Hillclimbing)
in two main ways. Firstly, the models were trained using a random forest classifier
(the implementation in the scikit-learn package [2]). The tables give the results
for models trained on examples with up to 13 moves. Secondly, the unscrambling
in the earlier paper was based on a simple hill-climbing approach rather than
the ES used in this paper.

These tables also contain a comparison with a baseline experiment also de-
scribed in detail in the earlier paper [14] (Error + Hillclimbing). This also uses
a simple hill-climbing method, but the choice of moves is made by choosing the
move that maximises the number of correct facelets. This is more similar to a
traditional error-based fitness function.

It is notable that the percentage of successes in the Deep LGF + ES approach
is considerably higher than the Random Forest LGF + Hillclimbing approach.
However, the length of the solutions found by the new approach is much larger for
larger problem sizes. This may well reflect the use of reinitialisation in the latter

Table 2. Average number of generations needed to solve problem of each size using
trained model of each size. Includes successful solutions only, and includes restarts.

Size of Problem
2 3 4 5 6 7 8 9 10 11 12 13

S
iz

e
o
f

M
o
d
el

2 1.0 - - - - - - - - - - -
3 1.0 1.7 - - - - - - - - - -
4 1.0 1.7 2.6 - - - - - - - - -
5 1.0 1.7 2.8 4.4 - - - - - - - -
6 1.0 1.6 2.7 4.3 8.4 - - - - - - -
7 1.0 1.7 2.8 4.0 6.7 8.1 - - - - - -
8 1.0 1.8 2.8 4.8 7.0 11.8 18.1 - - - - -
9 1.0 1.7 2.7 4.1 5.9 7.8 10.0 23.4 - - - -
10 1.0 1.7 2.8 3.6 6.2 12.9 13.3 20.2 28.8 - - -
11 1.0 1.7 2.7 4.0 6.8 10.8 16.7 21.9 23.5 34.3 - -
12 1.0 1.8 2.8 4.2 7.3 11.1 14.7 20.5 30.4 31.4 30.5 -
13 1.0 1.7 2.8 4.1 5.4 10.5 11.4 16.7 19.2 33.6 25.4 69.8

approach; in the earlier paper, a search that did not terminate was considered
a failure. Both methods clearly outperform the traditional error-based fitness
measure, demonstrating the value of this pre-training step.

Table 3. Comparison of three models: deep learning of LGF with evolution strategies,
random forest learning of LGF and hillclimbing, and error-based fitness with hillclimb-
ing. Percentage of runs that found the solution.

Size of Problem
2 3 4 5 6 7 8 9 10 11 12 13

Deep LGF + ES (this paper) 100 100 100 90 77 61 63 50 37 22 17 6
RF LGF + Hillclimbing [14] 100 100 98 75 62 45 20 17 11 9 7 0
Error + Hillclimbing [14] 62 33 24 10 4 3 2 0 0 0 1 0

5 Related Work

There are similarities between this approach and the idea of a learned value
function in reinforcement learning [27]. However, the reinforcement learning ap-
proach calculates this by starting from a point in the space and working back
from later successes, whereas the approach in this paper constructs trajectories
by making moves back from a successful state (similar to the approach taken by
McAleer et al. [19]). It would be interesting to see if this approach of backwards
synthesis of trajectories could be applied to the learning of value functions in

Table 4. Comparison of three models: deep learning of LGF with evolution strategies,
random forest learning of LGF and hillclimbing, and error-based fitness with hillclimb-
ing. Average length to solution for successful runs.

Size of Problem
2 3 4 5 6 7 8 9 10 11 12 13

Deep LGF + ES (this paper) 1.0 1.7 2.8 4.1 5.4 10.5 11.4 16.7 19.2 33.6 25.4 69.8
RF LGF + Hillclimbing [14] 1.8 2.6 3.3 3.9 4.2 4.6 4.8 5.5 4.9 4.6 4.9 -
Error + Hillclimbing [14] 2.1 2.2 2.3 2.8 4.5 3.7 2.0 - - - 4.0 -

reinforcement learning. It is notable that the idea of learning from a rich set of
behaviour trajectories—rather than just from a single measure of quality—is be-
coming more prominent in machine learning, for example in the work by Bojarski
et al. [5] on self-driving cars which learn from examples of human driving.

In the metaheuristics literature the idea of learning from a set of already-
solved problems is explored in the idea of target analysis [9]. This takes a set
of solved problems from a problem class, and uses those known solutions to set
the parameters of a metaheuristic. This is different to our approach in that it
still relies on the metaheuristic operators to avoid local optima in the landscape,
whereas the approach in this paper uses those already-solved problems to con-
struct a new landscape based on a metric which is designed to have fewer such
local optima. The idea of learning a metric from a large set of examples is ex-
plored in the literature on metric learning [18], and it would be interesting to
explore further connections between metric learning and the idea of constructing
new fitness functions.

It should be noted that there are algorithms specifically for solving the Ru-
bik’s Cube, as summarised in the book by Slocum et al. [24]. However, com-
parisons with these are less relevant to this paper, which was using the Rubik’s
Cube as an example to see whether a learning algorithm could learn näıvely
from it. The importance of these methods that can learn without explicit hu-
man knowledge has been emphasised as an important route towards artificial
general intelligence [22].

6 Summary and Future Work

We have introduced the idea of deep learning for learned guidance functions, and
shown how these can then be used as fitness drivers in evolutionary computation.
This has been applied to a case study of solving a Rubik’s Cube, and shown to
have a advantages in terms of frequency of finding a solution and the size of
the models needed when compared to a random forest-based LGF; however, the
number of generations needed is, for more complex problems, larger. It would
be interesting to explore the comparative impact of the deep learning aspects
and the evolutionary computation aspects by doing more experiments that use
these two separately.

There are a number of areas for future work. Firstly, there is much of scope
for optimising the deep learning system using automated machine learning ap-
proaches both to optimise the parameters and the structure of the system[13].
Secondly, there are a number of further experiments that would investigate the
behaviour further: investigating the frequency of and impact of the reinitialisa-
tion in this method, using measures of landscape smoothness to understand the
effect of the LGF on the landscape, and experimenting with different population
sizes. Finally, there are a large number of other problems to which this approach
could be applied, e.g. protein folding, and de-noising of audio and video files.

References

1. Keras: The python deep learning library, http://keras.io/ (visited January 2019)
2. scikit-learn: Machine learning in python, http://scikit-learn.org/ (visited January

2019)
3. Tensorflow: An open source machine learning framework for everyone,

http://www.tensorflow.org/ (visited January 2019)
4. Asselmeyer, T., Ebeling, W., Rosé, H.: Smoothing representation of fitness land-

scapes — the genotype-phenotype map of evolution. Biosystems 39(1), 63–76
(1996)

5. Bojarski, M., et al.: End to end learning for self-driving cars. CoRR
abs/1604.07316 (2016), http://arxiv.org/abs/1604.07316

6. Culberson, J., Schaeffer, J.: Pattern databases. Computational Intelligence 14(3),
318–334 (1998)

7. Dobson, C.M.: Protein folding and misfolding. Nature 426, 884–890 (2003)
8. Erez, T., Smart, W.D.: What does shaping mean for computational reinforcement

learning? In: 2008 7th IEEE International Conference on Development and Learn-
ing. pp. 215–219 (2008)

9. Glover, F., Greenberg, H.: New approaches for heuristic search: A bilateral linkage
with artificial intelligence. European Journal of Operational Research 39(2), 119–
130 (1989)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2017)
11. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE

Transactions on Systems, Man, and Cybernetics 16, 122–128 (1986)
12. Hopgood, A.A., Mierzejewska, A.: Transform ranking: a new method of fitness scal-

ing in genetic algorithms. In: Bramer, M., Petridis, M., Coenen, F. (eds.) Research
and Development in Intelligent Systems XXV. pp. 349–354. Springer (2009)

13. Hutter, F., Kotthoff, L., Vanschoren, J.: AutoML: Methods, Systems, Challenges
(2019), book in preparation. Current draft at https://www.automl.org/book/ (vis-
ited July 2019)

14. Johnson, C.G.: Solving the Rubik’s Cube with learned guidance functions. In:
Proceedings of the 2018 IEEE Symposium Series in Computational Intelligence.
IEEE Press (2018)

15. Krawiec, K.: Behavioural Program Synthesis with Genetic Programming. Springer
(2016)

16. Krawiec, K., Swan, J., O’Reilly, U.M.: Behavioral program synthesis: Insights and
prospects. In: Riolo, R., Worzel, B., Kotanchek, M., Kordon, A. (eds.) Genetic
Programming Theory and Practice XIII. pp. 169–183. Springer (2016)

http://arxiv.org/abs/1604.07316

17. Kreinovich, V., Quintana, C., Fuentes, O.: Genetic algorithms: What fitness scaling
is optimal? Cybernetics and Systems 24, 9–26 (1993)

18. Kulis, B.: Metric learning: A survey. Foundations and Trends R© in Machine Learn-
ing 5(4), 287–364 (2013). https://doi.org/10.1561/2200000019, http://dx.doi.

org/10.1561/2200000019

19. McAleer, S., Agostinelli, F., Shmakov, A., Baldi, P.: Solving the Rubik’s Cube
Without Human Knowledge. ArXiv e-prints (May 2018)

20. Mehdi Samadi, Ariel Felner, J.S.: Learning from multiple heuristics. In: Proceed-
ings of Association for the Advancement of Artificial Intelligence (AAAI-08). pp.
357–362 (2008)

21. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello Coello, C.A., et al. (eds.) Parallel Problem Solving from Nature -
PPSN XII: 12th International Conference, Taormina, Italy, September 1-5, 2012,
Proceedings, Part I. pp. 21–31. Springer Berlin Heidelberg (2012)

22. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017), http://dx.doi.org/10.1038/nature24270

23. Singmaster, D.: Notes on Rubik’s Magic Cube. Enslow Publishing, Hillside, NJ
(1981)

24. Slocum, J., et al.: The Cube: The Ultimate Guide to the World’s Best-Selling
Puzzle. Black Dog and Leventhal (2011)

25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(1), 1929–1958 (2014)

26. Sturtevant, N.R., Felner, A., Barrer, M., Schaeffer, J., Burch, N.: Memory-based
heuristics for explicit state spaces. In: Proceedings of the 21st International Joint
Conference on Artifical Intelligence. pp. 609–614. IJCAI’09, Morgan Kaufmann
Publishers Inc. (2009)

27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

28. Szubert, M., Jaśkowski, W., Liskowski, P., Krawiec, K.: Shaping fitness function for
evolutionary learning of game strategies. In: Proceedings of the 15th Annual Con-
ference on Genetic and Evolutionary Computation. pp. 1149–1156. ACM (2013)

29. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geo-
metric semantic gp and its application to problems in pharmacokinetics. In: Kraw-
iec, K., et al. (eds.) Genetic Programming. pp. 205–216. Springer Berlin Heidelberg
(2013)

30. Ware, J.M., Wilson, I.D., Ware, J.A.: A knowledge based genetic algorithm ap-
proach to automating cartographic generalisation. In: Macintosh, A., Ellis, R., Co-
enen, F. (eds.) Applications and Innovations in Intelligent Systems X. pp. 33–49.
Springer (2003)

31. Widera, P., Garibaldi, J.M., Krasnogor, N.: Gp challenge: evolving energy function
for protein structure prediction. Genetic Programming and Evolvable Machines
11(1), 61–88 (2010)

https://doi.org/10.1561/2200000019
http://dx.doi.org/10.1561/2200000019
http://dx.doi.org/10.1561/2200000019
http://dx.doi.org/10.1038/nature24270

