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Abstract

We introduce a prior distribution for the number of components of a mixture model. The prior

considers the worth of each possible mixture, measured by a loss function with two components: one

measures the loss in information in choosing the “wrong” mixture and one the loss due to complexity.

Keywords: mixture models ; Bayesian inference ; default priors ; loss-based priors ; clustering

1 Introduction

This paper takes a novel look at the construction of a prior distribution for the number of components for

finite mixture models. These models represent a flexible and rich way of modeling data, allowing to extend

the collection of probability distributions that can be considered and used. Mixture models have been widely

developed and researched upon for over a century. To name a few key contributions, we have Titterington

et al. (1985), Neal (1992), McLachlan and Peel (2000), Marin et al. (2005), Frühwirth–Schnatter (2006) and

the recently issued Celeux et al. (2019). Besides the general literature on mixture models, a wide range

of applications have been discussed, including genetics and gene expression profiling (McLachlan et al.,

2002; Yeung et al., 2001), economics and finance (Juárez and Steel, 2010; Dias et al., 2010), social sciences

(Reynolds at al., 2000; Handcock at al., 2007) and more.

The basic idea of a mixture model is to assume that observations x are drawn from a density which is

the result of a combination of components

x ∼
k∑
j=1

ωjfj(· | θj), (1)

where the form of fj is known for each j, while the parameters θj and the weights ωj are unknown and

have to be estimated. In this work, we assume k to be unknown as well and, in accordance to the Bayesian
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framework, we assign a prior distribution to it. We think that a golden standard approach in how to identify

the prior distribution for the parameter k is still an open problem in the literature and a comparative study

among the available proposals to understand advantages and disadvantages of them is missing. In this paper,

we aim at presenting such comparison among the main proposals, namely the uniform prior, the Poisson

prior and the loss-based prior here proposed. Other methods to deal with an unknown k are the following.

One way is based on model selection and consists in fitting mixtures with k = 1, . . . ,K (for a suitable K)

and comparing the models through some index, such as the Bayesian information criterion; see, for example,

Baudry et al. (2010) and Celeux et al. (2019) for an analysis of model choice approaches in this setting.

Alternatively, one could set a large k and let the weights’ posterior behaviour to identify which components

are meaningful. This is known as an overfitted mixture model and the aim is to define a prior distribution

which has a conservative property in reducing a posteriori the number of meaningful components (Rousseau

and Mengersen, 2011); Grazian and Robert (2018) have discussed the same approach by using the Jeffreys

prior for the mixture weights conditionally on the other parameters, while Malsiner–Walli et al. (2016)

estimate the posterior distribution of the number of meaningful components by specifying a sparse Dirichlet

prior on the component weights.

The other main line of research in the setting of mixture is using a nonparametric Dirichlet process prior,

as in Antoniak (1974), where an infinite components mixture is assumed by construction and the number

of clusters is inferred by implementing Monte Carlo Markov Chain (MCMC) algorithms, see Müller and

Mitra (2013) for a recent survey. However, while these models seem to have good properties in terms of

density estimation (see, for example, Ghosal and Van der Vaart (2017) for a thorough review of posterior

asymptotics results), there is some suggestion that inference of the number of components is not consistent

(Miller and Harrison, 2014) for a large class of nonparametric mixtures over a large variety of families of

distributional components.

From the point of view of the implementation, several techniques have been proposed to deal with k

through the use of a prior P (k): see, for example, Richardson and Green (1997), Stephens (2000), Nobile and

Fearnside (2007) and McCullagh and Yang (2008). A well-known and widely used method is the reversible-

jump MCMC (Green, 1995) which, due to its non-trivial set up, has led to the search of alternatives. A
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recent and interesting one is proposed by Miller and Harrison (2018), where the model in (1) is written as

k ∼ P (k),

(ω1, . . . , ωk) ∼ Dir(γ, . . . , γ), Z1, . . . , Zn ∼ (ω1, . . . , ωk), (2)

θ1, . . . , θk ∼ H,

xi ∼ fθZj
,

where P (k) is the prior on the number of components defined over the set {1, 2, . . .}, H is the prior base

measure, both the Zs and the θs are conditionally independent and identically distributed and the Zs are

latent variables describing the component membership. Miller and Harrison (2018) then show how the stick-

breaking representation of the Dirichlet mixture model can be efficiently exploited in a finite mixture model

as well. Here we follow this suggestion and both our simulation studies and real data analysis have been

obtained by the use of the Jain-Neal split-merge samplers (Jain and Neal, 2004, 2007), as implemented by

the above authors. Our paper is concentrated on the choice of a prior for k and, conditionally on k, we

follow the model described by equations (2). Notwithstanding, it is interesting to note how our model can

be reinterpreted, from a Bayesian nonparametric perspective, as a mixture of Pitman–Yor processes with a

negative discount parameter, i.e. −γ; see for example Gnedin and Pitman (2005) and De Blasi at al. (2015).

This observation is on the line of building a bridge from parametric to nonparametric Bayesian inference,

already discussed and explored by Rousseau and Mengersen (2011) and Malsiner–Walli et al. (2016).

In terms of the determination of P (k), which is the focus of this work, the literature is definitely gaunt.

In particular, it appears that there is only one proposed prior for k with a non-informative flavour, that

is k ∼ Poi(1) (Nobile, 2005). Although other authors proposed to use a prior proportional to a Poisson

distribution, see for example Phillips and Smith (1996) and Stephens (2000), only Nobile (2005) gave some

theoretical justifications on how to choose the Poisson parameter when there is lack of prior knowledge about

k. Another option, suitable when there is no sufficient prior information, would be to assign equal prior mass

to every value of k; however, in the case one would like to consider, at least theoretically, the possibility of

having an infinite support for the number of components, this last solution would not be viable or would

need a truncation of the support which might influence inference. Alternatively, the geometric distribution

depicts a possible representation of prior uncertainty (Miller and Harrison, 2018), although no discussion is

reserved in setting the value of the parameter in a scenario of insufficient prior information for the number

of components. Finally, Gnedin (2010) discusses a heavy-tailed prior for k in a nonparametric setting.

Although the illustrations we present here will refer to mixtures of univariate and multivariate normal
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densities, the loss-based prior for k we introduce does not depend on the form of the fjs, therefore it

is suitable for any mixture. Throughout the paper we will adopt, for the weights and the component

parameters, the priors proposed in Miller and Harrison (2018); this will not affect the analysis of the results

and the comparisons among different priors for k.

2 Prior for the number of components

Let us consider the finite mixture distribution

g(x | k, ω, θ) =
k∑
j=1

ωjfj(xi | θj), i = 1, . . . , n, (3)

for a set of observations x1, . . . , xn, where fj(·|·) is the probability distribution of the j-th component,

θ = (θ1, . . . , θk), θj is the (possibly vector-valued) parameter of fj and ω = (ω1, . . . , ωk) are the weights of

the components, with ωj > 0 for ∀j = 1, · · · , k and
∑k

j=1 ωj = 1. In the following, we will focus on the

prior distribution for k and we consider the mixture weights {ωj}kj=1 and the parameters of the mixture

components {θ}kj=1 as independent; although other possibilities are easy to implement.

For model (3) the prior can be specified as π(k, ω, θ) = P (k)π(ω | k)π(θ | k). The aim of this paper is

to define a prior for k, therefore the prior distributions for ω and θ will be chosen to be proper “standard”

priors, minimally informative if necessary; see, for example, Richardson and Green (1997) or Miller and

Harrison (2018). The posterior for k is then given by

P (k | x) ∝
∫
f(x | k, ω, θ)× P (k)π(ω | k)π(θ | k) dω dθ.

It is now fundamental to discuss the support of k. Although for practical purposes the range of values k

can take is finite, k = 1, 2, . . . ,K, it may be appropriate to define a prior over N. In fact, by truncating the

support of k there may be possible distortions of the posterior around the boundary, affecting the inferential

results. It has to be noted that this is needed when using a uniform prior, since the prior on k must be

proper, as proved by Nobile (2005). It seems, therefore, more reasonable to use a proper prior defined on N.

The posterior distribution on the number of components of a mixture is known to show inconsistency

problems in the nonparametric setting related to the use of Pitman-Yor prior processes (Miller and Harrison,

2014). We believe these problems could be prevented by penalising larger values and, therefore, we propose

to define the prior distribution with a loss-based approach. While a theoretical analysis of the properties of

the prior distribution we propose is out of the scope of this work, we aim at showing through simulations
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that the posterior distribution can concentrate around the “true” number of components.

To obtain the loss-based prior on k, we build on Villa and Walker (2015) and Villa and Lee (2019). In

particular, we define the prior on k by assigning a prior on the space of models determined by the mixtures

with k = 1, 2, . . . components. The basic idea is that we can assign a worth to each mixture by objectively

measuring what is lost if such mixture is removed from the space of models, and it is the true one. While

in Villa and Walker (2015) the worth of a model was associated to a measure of loss in information only,

in cases of mixture models it is sensible to include a component of loss due to the complexity of the model

as well (Villa and Lee, 2019). Thus, the loss associated to a mixture with k components is formed by the

cumulative loss Loss(k) = LossI(k) + LossC(k), where LossI(k) is the component measuring the loss in

information and LossC(k) is the component measuring the loss due to complexity.

The quantification of the worth comes from a result in Berk (1966) which states that, if the model is

misspecified, the posterior distribution asymptotically tends to accumulate at the most similar model so to

minimise the loss in information, where the similarity is measured by the Kullback–Leibler divergence. In

general, if we consider mixture models Ms =
{
gs(x|θ̃s), πs(θ̃s)

}
, for s = 1, . . . , l, where θ̃s = (ωs, θs) we have

that

LossI(k) = Eπs

{
inf

θ̃m,m6=j
DKL

(
gs(x|θ̃s)‖gm(x|θ̃m)

)}
, (4)

where the expectation is with respect to the prior on the parameters θ̃s to reflect the uncertainty about

their true value, and the infimum is obtained by considering θs as fixed. The above loss is linked to the

prior mass by means of the self-information loss function (Merhav and Feder, 1998), which associates a

loss to a probability statement, say P (A), and it has the form − logP (A). As such, we can equate the

self-information loss associated to a mixture with k components to the information loss related to its worth,

given by −LossI(k), obtaining

P (k) ∝ exp {LossI(k)} .

It is straightforward to see that the loss in (4) attains its minimum at zero. In fact, consider mixtures

gk =
∑k

j=1 ωjfj(x|θj) and gk′ =
∑k

j=1 ω̆jfj(x|θ̆j) + ω̆k+1fk+1(x); the minimum, which is zero, is obtained

when we set ω̆j = ωj and θ̆j = θj , for j = 1, . . . , k; implying ω̆k+1 = 0. The same result applies for any

k′ > k; however, as we are seeking to the most “similar” model to the true one, setting k′ = k is sensible, as

the perturbation in terms of overall uncertainty would be minimal. It is easy to see that if k′ < k, then the

Kullback–Leibler divergence will be larger than zero. In conclusion, the infimum in (4) is zero for every k,

resulting in LossI(k) = 0 for every k.
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To fully describe the worth of a mixture model it is also necessary to take into consideration its complexity.

This is determined as follows. If we keep the mixture model with k components, the loss would be related

to the number of parameters that have to be estimated, and therefore the number of components. So,

the loss of keeping a mixture model increases with the number of components it contains, and we have

LossC(k) = U(keep k) = −c · k, where U(·) is a utility function. As seen above, for mixture models, there is

no loss in information in selecting the “wrong” mixture, as such the prior on k becomes

P (k) ∝ exp {−c · k} , (5)

where c > 0 is included as loss functions are defined up to a constant. Although the prior in (5) could

be directly used, with the interpretation that c is a hyper-parameter which allows to control for sparsity,

our recommendation is to reparametrise it by setting p = exp(−c) and assign a suitable prior to p. In

particular, by having p ∼ Beta(α, β), the prior for k is a particular beta-negative-binomial, that is a beta-

geometric distribution, when the support for k is infinite, as the following Theorem 2.1 (whose proof is

in the Supplementary Material) shows. The complexity loss is set to be linear for simplicity, and other

choices are also possible. However, choosing a linear loss seems reasonable when seeing it as a penalisation

on the increasing number of parameters. Other loss functions can be considered, for example to take into

account asymmetric penalisation between small and large numbers of components. Theorem 2.1 shows that

a linear loss provides an elegant derivation of the prior distribution P (k) which is analytically manageable,

in comparison with other choices.

Theorem 2.1 Consider the prior distribution for the number of components of a finite mixture model, as

defined in (5), where we set p = exp{−c} and k = 1, 2, . . .. If we choose p ∼ Beta(α, β), with α, β > 0, then

P (k|p) = pk−1(1− p),

which is a geometric distribution with parameter 1− p, and

P (k) =
Γ(α+ β)

Γ(α)Γ(β)

Γ(k + β − 1)Γ(α+ 1)

Γ(k + α+ β)
, (6)

which is a beta-negative-binomial distribution where the number of failures before the experiment is stopped

is equal to 1, and shape parameters α and β.

The prior in (6) is strictly positive on the whole support of k. This is a necessary condition (Nobile, 1994)
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to have consistency on the number of components. In addition, the prior in (6) is proper, which is another

requirement to yield a proper posterior (Nobile, 2004) when the support is k = {1, 2, . . .}. On this aspect, as

the Jeffreys prior for a geometric distribution is improper, the prior for k will be improper as well. As such, a

default choice for P (k) should be chosen on different grounds. In particular, the default choice will not give

any preference to particular values of p, and this can be achieved by setting p ∼ Beta(1, 1). The resulting

prior is then a beta-negative-binomial with all parameter values equal to one which can be approximated by

using a Stirling’s approximation to the beta function as P (k) = [k(k + 1)]−1.

In a more general setting, the parameters α and β of the Beta prior on p can be used to reflect available

prior information about the true number of components. The expectation and the variance of the prior in

(6) are respectively

E(k) = E(E{k|p}) = E(p−1) =
α+ β − 1

α− 1
, for α > 1, (7)

Var(k) = E(Var{k|p}) + Var(E{k|p}) =
αβ(α+ β − 1)

(α− 2)(α− 1)2
, for α > 2. (8)

From equation (7) we see that, as β → 0, then E(k) → 1. So, for a given α > 1, we have that the hyper-

parameter β can be interpreted as the quantity controlling how many components in the mixture we want a

priori. The choice of α, among values strictly larger than 2, allows to control the variance of the prior, i.e.

how certain (or uncertain) a priori we are about the true value of k.

If the support for k is finite, say k = {1, 2, . . . ,K}, the prior for the number of components (with

p ∼ Beta(α, β)) will have the form:

P (k) =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)
pk+α−2(1− p)β 1

1− pK
dp, (9)

which does not have a closed form. Although the prior in (9) can be easily implemented in a Markov Chain

Monte Carlo procedure, one has to be careful as its performance might depend on the choice of K. Besides

this, the prior certainly yields a proper posterior for k and is consistent on the number of components.

3 Illustrations

To illustrate the performance of the loss-based prior we have run a simulation study (results are shown

in the Appendix) and analysed two data sets. We have considered univariate and multivariate scenarios,

comparing the proposed prior, under default settings, with current alternatives found in the literature.
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Before describing the analysis and illustrate the results, the following clarifications have to be made.

First, as the aim of this paper is to propose a novel prior distribution for the number of components, we do

not discuss in detail the prior assigned to model weights and to the parameters of the components of the

mixture. Second, for the same reason, we limit the examples to mixture of normal densities. In fact, keeping

both model and priors relatively straightforward allows to better appreciate any difference in the priors.

Finally, the computational algorithm implemented assumes that the maximum number of components in

the mixture is 50, so that the uniform prior is defined over k = {1, . . . , 50}; although the truncation is

necessary for the uniform prior only, so to have a proper posterior, the choice of 50 is sufficiently large to

not interfere with any of the analysis performed.

For the implementation, we have used the algorithms described in Miller and Harrison (2018).

3.1 Real data sets

In this section we illustrate the performance of the prior by analysing two available data sets. The first

dataset is the galaxy data set (Roeder, 1990), which is considered a benchmark for comparison in the

univariate case. We also consider a multivariate case; in particular, the discriminating cancer subtypes using

gene expression data set (Armstrong et al., 2001), which has n = 72 observations for d = 1081 variables.

3.1.1 The Galaxy Dataset

The galaxy data sets contains the velocities of 82 galaxies in the Corona Borealis region. Given that the

focus here is on the prior for the number of component, we do not go beyond an already tested set up

for the model. In particular, the model used in Richardson and Green (1997) where the components of

the mixture are normal densities, i.e. fj(x) = N(x|µj , λ−1j )), with independent priors for the parameters,

normal densities for the means (µj ∼ N(µ0, σ
2
0)) and gamma densities for the precision (λj ∼ Gamma(a, b)).

We also have a = 2, b ∼ Gamma(a0, b0), with a0 = 0.2, while data-dependent priors are chosen for the

remaining hyper-parameters: µ0 = (maxxi + minxi)/2, σ0 = maxxi −minxi and b0 = 10/σ20.

The evaluation of the number of components has proved to be delicate, for example, Roeder and Wasser-

man (1997) select three components with information criteria, Richardson and Green (1997) identify five or

six components by using a uniform prior for k and implementing a reversible-jump MCMC method, Escobar

and West (1995) propose an nonparametric approach based on Dirichlet processes which shows a posterior

mode on seven components and Grazian and Robert (2018) present a conservative approach based on the use

of the Jeffreys prior for the mixture weights where the posterior mass is concentrated around three non-zero

weights.
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Figure 1: Posterior distributions of the number of components.

The posteriors obtained by implementing the loss-based prior, the uniform prior and the Poisson(λ = 1)

prior are plotted in Figure (1a) and have modes, respectively, at k = 4, k = 6 and k = 3. There is no

unanimous agreement in the number of components in the literature and this is supported by the results in

Figure (1a), which shows estimates of k comparable to what has been already identified. However, while the

posterior 95% credible intervals obtained with the loss-based prior and the uniform prior, [3, 9] and [3, 12]

respectively, are sensible, the interval for the Poisson(1) appears to be quite narrow [3, 5], excluding values of

k previously estimated in the literature. It seems that the loss-based prior provides an intermediate posterior

distribution, between the one deriving from the Poisson prior, which is very peaked around 3, and the one

deriving from the uniform prior, which gives non-negligible posterior mass to large values as 12.

3.1.2 Gene expression data

Mixture modelling is becoming popular in genomics to identify clusters based on how much a gene is expressed

in different tissues. For example, identification of cancer types based on Gaussian mixture models has been

proposed in Yeung et al. (2001), McLachlan et al. (2002) and Medvedovic et al. (2004) among others, with

deSouto et al. (2008) showing that Gaussian mixture models exhibit the best performance among seven

clustering methods on 35 datasets, given that the true number of components is known. This is a problem

of primary interest in health sciences, since, once a particular cancer type is identified, it is possible to offer

patient-specific treatments As stated before, Gaussian mixture models may represent an essential tool in this

setting, however it is necessary to identify the right number of groups (deSouto et al., 2008). In practice, this

could be difficult, therefore the availability of a method to perform inference on the number of components

which clearly states the assumption and the a priori knowledge is essential.

Following Miller and Harrison (2018), we analyze a dataset collected by Armstrong et al. (2001) for
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a study of leukemia subtypes, measuring gene expression levels in 72 patients. The goal of our analysis is

showing if it is evident from the data a third type of leukemia, beyond the standard ones (acute lymphoblastic

leukemia and myelogenous leukemia), as proposed by the authors. The analysis of this dataset has given

results very similar for the three priors. As Figure (1b) shows, the posterior distributions for k do not differ

much, which is supported by the posterior mode, k = 3, and posterior 95% credible intervals, [3, 4], in all

cases. It is obvious that the amount on information about k in the data is sufficiently strong to dominate

any of the used priors.

4 Conclusions

We see that, in a setting of limited information, the prior chosen for the number of components influences the

posterior distribution; in particular, the uniform prior, which is often used as a default prior, does not seem

to be conservative. In terms of inference, some level of conservativeness should be preferred, given the fact

that the complexity of the inferential problem explodes with the number of meaningful components. On the

other hand, the Poisson(1) prior seems to be too conservative, so that the true value may not even included

in the posterior credible interval. In an informative context, the proposed loss-based prior allows to include

information on both centrality and variability of the uncertainty about k. This possibility appears to lack

in currently used options, such as the Poisson or the geometric prior, where only one piece of information

can be included. Analysis on both real and simulated data shows that the loss-based prior represents a good

compromise between having a prior which excessively penalises for complexity (Poisson(1)) and the uniform

prior which suffers from theoretical and implementation weaknesses. We think that this work may also

offer an important contribution in an applied context: mixture models offer a flexible tool to analyse non-

standard data, however identifying the correct number of components is essential for a good fit. We believe

it is important to use a prior distribution for the number of components which both can represent particular

assumptions on the model and shows a property of conservativeness to better interpret and estimate the

model, as the one derived here.
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