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Concentric Set Schematization
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Universitat Tubingen

Fabian Frank
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ABSTRACT

Sets can be visualized in various ways and settings. An important
distinction between techniques is based on whether the elements
have a spatial location that is to be used for the visualization, for
example, the elements are cities on a map. Strictly adhering to such
location may severely limit the visualization and force overlay, inter-
sections and other forms of clutter. On the other hand, completely
ignoring the spatial dimension omits information and may hide spa-
tial patterns in the data. In this abstract, we present ongoing research
on a method that is in between spatial and nonspatial visualizations.
The main idea is to schematize (move) the spatial locations onto
concentric circles, to improve the visualization of the set system
while roughly maintaining spatial structure.

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques—Graph drawings

1 INTRODUCTION

Set systems (or hypergraphs) are useful for modeling various types
of data. To analyze such systems, various techniques have been
developed to visualize sets, either on a geographically accurate base
map or in an abstract nonspatial layout. In the former locations of
the elements are prescribed, whereas in the latter the elements can
be placed freely by a visualization algorithm. A recent survey [3]
shows variety of visualization techniques; various of these methods
target spatial data, e.g. [2,6,7,10]; see Figure 1, left. In the graph-
drawing community, most attention has been afforded to hypergraph
supports [9] for both fixed and free vertex locations, e.g. [1,4,5, 8].
However, geographic accuracy is often not necessary for overview
tasks or tasks focusing on set structures, even for spatial data. Yet,
completely discarding spatial context may also hide structure or pat-
terns. Schematic maps have been successful in various applications,
such as metro maps, by simplifying and abstracting spatial relations
to a minimum functional level, thereby clarifying and emphasizing
structure in data while not disregarding (geographic) space.

In this abstract, we explore the possibility of computing schematic
set visualizations. That is, we are given a set of points in a geographic
space, each associated with one or more sets. We want to shift the
points to new locations such that we can provide a clear representa-
tion for each of the sets; this representation is a geometry connecting
(e.g. atree, cycle or path) or encompassing (e.g. a simple polygon)
exactly the points that belong to the set. The main considerations
are the extent of the changes we allow to the points, such that we
can control for geographic distortion, and the criteria and measures
to assess the quality of the resulting set representations.

2 CONCENTRIC SET SCHEMATIZATION

We define a generic concentric set schematization problem as fol-
lows. We are given a hypergraph H = (V,S) with vertices V and
hyperedges (sets) S, where each vertex as a (geo)spatial position in
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the plane. Moreover, we have a set of concentric circles C, roughly
spanning the range of locations in V. The goal is to displace all
vertices of H onto the circles of C, such that the resulting placement
admits a good drawing of the set visualization; such as sketched
in Figure 1, middle. This results in two aspects of quality: spatial
quality and hyperedge quality.

Spatial quality aims at capturing how well the spatial locations
of the vertices are preserved. That is, less displacement or less
structural change results in a visualization that more accurately
reflects the input. A standard measure is the maximum or total
distance between original and displaced location of each vertex, but
other measures could be used as well.

Hyperedge quality aims at capturing how well we can render
the various hyperedges. We assume that we use a rendering style
compatible with supports: that is, we structure our visualization
based on a graph G = (V, E) with the same vertices, such that each
hyperedge of H induces a connected subgraph in G. For supports,
typical graph drawing measures can be used, such as total edge
length and number of intersections.

Both aspects are to be considered simultaneously in order to
obtain high-quality schematic set visualizations. Through various
models can be considered, we focus on allowing vertices to move
only along the ray through it, originating from the circles’ center.
For every vertex an interval of possible circle locations is given
with the input. The sets are to be represented as connecting geome-
tries (trees, paths, or cycles). That is, we aim to compute a vertex
placement together with a support of the hypergraph, such that their
combination has good quality.

3 CROSSING MINIMIZATION

The problem of finding a support with minimal crossings bears
resemblance to layered graph drawing and (multispine) book embed-
dings, yet is distinct with different challenges. Hence, we conjecture
that the general problem is NP-hard.

Let us turn towards a simple case. We assume C contains exactly
two circles, each vertex may map to either of the two circles, the
hyperedges of H are pairwise disjoint, and the support is given.
Moreover, we assume edges are always routed between the two
circles: that is, the space where we may draw the edges is effectively
the annulus enclosed by the two circles.

We define two configurations: one implies that a support edge
must have its endpoints on the same circle, and one implies that
a support edge must have its endpoints on different circles. To
define these, consider all vertices to be ordered clockwise around
the center of C, denoted as v{,...v,. If an edge e = (v;,v;) of the
support is “contained” within another edge f = (vj,,v;) — that is,
h <i < j < k- then e must have its endpoints on the same circle, to
avoid intersecting f. If there is an even-length sequence of edges
e1,...,ex, such that the first vertex of ¢; is in between the vertices
of ¢;_; and the second vertex is in between the vertices of e; 1, and
there is an edge f with its first vertex between those of e; and its
second vertex between those of ey, there f must have its endpoints
on different circles.

If there are no contradicting configurations, then a planar support
exists, by appropriately choosing sides for each vertex. The above
works on a strip rather than an annulus. To test for an annnulus, we
test every edge to have its endpoints on different circles: this cuts
the annulus into a strip and we define the order based on the cut.



Figure 1: Three set visualizations of the same data set. Left: KelpFusion set visualization [10] on a geographically accurate base map. Middle:
Manual sketch of a concentric schematic representation of the sets. Right: Preliminary result of our prototype implementation.

4 LENGTH MINIMIZATION

Let us now turn to minimizing total edge length. We assume that
the desired support G = (V,E) is given: designed or already com-
puted by another algorithm. Considering the concentric design, a
support that is a union of paths or cycles obtained by connecting
each hyperedge clockwise around the center may for example yield
a reasonable support.

We need to decide only on which circle to place each vertex.
Rather than Euclidean length, we measure the length of an edge as
the difference between circle radii of its endpoints. Hence, we ignore
the angular change, which is constant in our setting constrained by
rays. It also implies that we do not implicitly favor placement on
smaller circles over larger circles — and as such may even be a more
effective measure of quality that edge length in this setting.

To minimize the radial change for each support edge, a simple
linear program (LP) suffices. Assume the circles in C are indexed,
sorted by their radius and that the difference in radius between con-
secutive circles is constant. The input specifies a range [Viin; Vmax|
of indices that each vertex v € V may be placed on. We use d, to
capture the radial change of Specifically, the LP is as follows:

minimize Y ,cpde
Vimin < ¢ <vmax forveV
de>cy—cy fore:(u7v)€E
de>cy—c, fore=(u,v)€E

The LP requires that the ¢, variables are integer. However, we
prove that the relaxation has an optimal integer solution and thus
the problem can be solved efficiently. In particular, every solution
to the LP has a set of constraints that are not tight (one of the
two constraints for each edge e € E): removing these yields an LP
with the same solution, for which the underlying matrix is totally
unimodular. In fact, all vertices of the feasible region induced by the
original LP are integral and in bijection to the layer assignments. As
a consequence the optimization problem can be solved by greedily
improving a layer assignment.

Using the cycle-based support as described above, an example
assignment, where each vertex is allowed to move to its two closest
circles, is given in Figure 1, right.

5 OUTLOOK

These initial findings leave us with a host of interesting questions,
both algorithmic in nature and on visual design of concentric set
schematization. Our current solutions assume that the support is
given or decided previously — algorithms to decide on good supports

using the flexible, yet constrained vertex placement are useful to
further improve the reuslting visualization. In particular, we plan to
also investigate different models of spatial distortion and criteria for
layout quality. Finally, We need to determine how to best route the
connecting geometries to obtain an effective design of schematic set
representations.
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