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Abstract

Export containers must be carried over from the port storage area to container

ships to be delivered to their destination. Optimizing containers’ transport rout-

ing is essential in order to enhance port performance and save costs. This thesis

deals with a single vehicle routing problem in a container terminal environment.

Heuristic strategies Beam Search and Ant Colony Optimization are proposed to

solve the problem and are tested comparatively. A new strategy for container col-

lection is proposed as a substitute for the traditional greedy strategy of container

collection.
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Chapter 1

Introduction

1.1 Problem context

The introduction of containers caused several changes in port environment and

transportation by sea. It required innovations in the use of specialized equipments

and revolutionized storage methods by taking advantage of containers’ uniform

shape which facilitates stacking.

There are two basic work flows for the container handling, depending on the

final objective of the transport:

� import containers are unloaded from a ship, placed temporarily on a mar-

shaling area, moved from there to storage areas and finally transferred to a

terminal area for road or rail transportation to their destinations.
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� export containers are unloaded from a truck or a train, placed into storage

areas until their ship departure date and finally uploaded onto a ship heading

to a determined location.

Therefore, port operations concerning containers essentially comprehend loading,

stocking and transferring which have a direct impact on port service time and

involves high costs. Port efficiency does not only involve service time but also

waiting time which together define the berth time of the ships and affects their

total traveling time and the transportation cost of the containers. Efficiency alone

does not increase port customers’ satisfaction since they also want to monitor

container movements in real time systems, for example. All theses factors require

optimization and improvements in port processes. Minimizing handling, transport

and storage of containers becomes vital for both time and cost reasons.

This port scenario involves several computational problems, such as allocation

of containers in port yards and also in ships, as well as routing and manipulation of

containers. Kim and Kim [8] proposed a mathematical model for import container

space allocation problem in container terminals. They focused on a segregation

policy for stacking containers based on their arrival time, arrival rate and duration

of stay. The objective was to minimize re-handling, i.e. prevent stacking contain-

ers which would stay longer to be placed on top. Kim et al [10] classified arriving

export containers by weight, also considering their size and destination, to propose
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a dynamic programming model for minimizing loading relocations. Ship stabil-

ity is assured by placing heavier containers, which should be loaded first, below

lighter containers, which should be loaded last. This principle guided their study

which also allowed the extraction of decision trees in order to establish a load

sequence list for load planners. Kozan and Preston [13] proposed an analytical

scheduling model, and a solution based on genetic algorithm, in order to mini-

mize handling for loading export containers into ships. Avriel et al [1] focused on

the so called stowage planning, i.e. container storage allocation within a ship. The

purpose of their work was to optimize ship storage space and minimize container

shifting, which occurs when a container with an earlier departure date is stacked

below a container with a later departure date. A Suspensory Heuristic procedure

was proposed to resolve the problem. Preston and Kozan [16] proposed a solution

to minimize container handling, i.e. placing and removing containers on storage

areas, by optimizing involved operations using job scheduling. They suggested

a solution based on Genetic Algorithm heuristic and discussed schedule versus

random storage policies, changes to the yard layout and to the number of yard

machines which perform loading. Kim and Kim [12] formulated the port routing

problem for export containers during the loading process using Integer Program-

ming. A Dynamic Programming solution was proposed to minimize the total

travel distance of a single straddle carrier vehicle, used for container transporta-

tion between storage and marshaling areas. In [9] they proposed a Beam Search
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procedure for resolving the same routing problem. An evaluation of algorithm

performance was discussed based on numerical experimentation and comparison

between Beam Search and Genetic Algorithm results.

1.2 The focus of the present work

Loading export containers on a ship requires three types of equipments: straddle

carriers, yard trucks and quay cranes. Each one has a specific task in the overall

loading process.

The straddle carrier has to move containers from where they are stored within

a container terminal and to deliver them to a yard truck.

The yard truck, a combination of yard tractor and yard trailer, has to transport

containers received from a straddle carrier to the marshaling area.

The quay crane has to pick up containers from the marshaling area and to place

them inside container ships. It is a static equipment.

A container terminal yard is subdivided into blocks of yard-bays which contain

containers arranged in rows. A yard-map shows the distances between blocks and

between consecutive yard-bays.

Each straddle carrier, the only equipment allowed to enter yard-bays, is as-

signed to fulfill a quay crane loading sequence. This sequence defines a work

schedule which determines the exact order in which containers must be handled
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Figure 1.1: Port Container Terminal Diagram
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and delivered by a straddle carrier (and consequently by a yard truck) to a quay

crane.

Thus a straddle carrier has to accomplish the task of collecting all containers

defined under the quay crane work schedule. In order to do that it has to move to

a yard-bay which contains the specified container group, to pick-up the required

quantity of containers and to move to the yard-bay end in order to be able to

deliver all collected containers to a yard truck. The container distribution table

gives the exact location of containers on a terminal yard.

The described scenario, Figure 1.1, involves two optimization problems which

can be solved separately: determining a quay crane work schedule and determin-

ing a straddle carrier yard-bay visiting sequence. The first one is a transportation
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problem and the goal is to find the exact order the quay crane must follow for ship

loading. An optimal loading sequence as well as the right quantity to be loaded

will reduce container ship loading time. The second problem is a vehicle rout-

ing problem and is highly affected by the work schedule determined by the first

problem. The straddle carrier travel distance will be much longer if two consecu-

tive containers must be collected far from one another instead of from consecutive

yard-bays, for example. So, finding the minimum straddle carrier travel distance

will guarantee port efficiency and allow cost savings.

The main focus of this work is the single straddle carrier routing problem

in an export container terminal environment. No container stacking or weight

constraints will be considered.

Chapter two describes and models the problem and discusses the problem

complexity as a motivation for using heuristic solving methods, chapter three

presents heuristic strategies Beam Search and Ant Colony Optimization, chap-

ter four gives numeric results and compares both implemented strategies, chapter

five discusses multiple vehicle routing problem and chapter six finalizes this thesis

by presenting conclusions and pointing to future work.
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Chapter 2

Single Straddle Carrier Routing

Problem

2.1 Problem description

The objective of the straddle carrier (SC) routing problem is to minimize the total

travel distance of a straddle carrier. It is bounded by the following restrictions and

assumptions.

� a single SC is assigned to a single quay crane (QC);

� a SC must carry out a complete QC work schedule, following the exact

order specified under the QC work schedule;

� container group repetition under the work schedule is allowed;

7



Table 2.1: A work schedule

Container group CMB ASH HKG SIN

Quantity 3 2 2 4

� all containers located under the container terminal must be collected by a

SC;

� a SC is allowed to re-visit a yard-bay more than once;

� only distances between yard-bays will be considered since distances within

a same yard-bay are constant.

The problem considers as provided:

1. the QC work schedule, which defines the work to be performed (Table 2.1);

2. the container stock or container distribution table, which defines the exact

location of all containers at yard-bays (Table 2.2);

3. the container terminal yard-map, which defines distances between blocks

and between yard-bays (Figure 2.1).

A SC performs a so called partial tour to pick-up containers of a same group,

according to the work schedule. For example, in order to fulfill the first work

8



Figure 2.1: A yard-map
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Table 2.2: A distribution of containers

block yard-bay ContainerGroup Quantity

block-1 1 CMB 1

block-1 2 CMB 2

block-1 3 ASH 1

block-1 3 SIN 1

block-1 4 ASH 1

block-1 4 SIN 2

block-2 7 HKG 2

block-2 8 SIN 1
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Table 2.3: Reviewed work schedule

Container group CMB CMB ASH HKG SIN

Quantity 1 2 2 2 4

schedule item (CMB=3 from Table 2.1), the SC could move from block-1/yard-

bay1 (pick-up one CMB) to block-1/yard-bay2 (pick-up two CMB). Therefore the

first partial tour would be block-1/yard-bay1, block-1/yard-bay2.

Notice that a work schedule as in Table 2.3 with the first item as CMB=1 is

perfectly possible. In this case however, the SC would stay at block-1/yard-bay1

because it only needs to pick-up one CMB to fulfill the first work schedule item.

The first partial tour, in this case, would be block-1/yard-bay1. It is important to

keep in mind that the work schedule must be accomplished exactly as stated and

that, for each work schedule item, there is a partial tour associated which may

define more than one SC movement.

Each partial tour item, composed of yard-bay, container group and quantity

attributes, will define a so called cluster for implementations of this problem .

A Tour is a collection of partial tours, i.e. a tour defines all locations the SC

shall visit in order to pick up all containers specified under the QC work schedule.

Therefore the solution of the problem is a SC tour.
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2.2 Problem formulation

The formulation of a single SC problem has been presented in [9].

Notation:

� = number of partial tours for a SC complete tour,

� = number of yard-bays,

�
= number of container groups,

�
= set of indexes of yard-bays { �����	��
�
�

� � },

�
= set of indexes of container groups { �����	��
�
�

� � },

�������
= set of indexes of partial tours corresponding to container group

�
,

� �����
= set of yard-bay numbers which contain containers of group

�
,

����� = initial number of containers of group
�

stacked at yard-bay � ,

��� = number of containers to pick up during partial tour � ,
 !� = container group number to be picked up during partial tour � ,
"$# � = travel distance between yard-bays % and � ,

& �� = number of containers picked-up at yard-bay � during partial tour �

An SC tour can be expressed as a network graph represented by vertices
��'(�

and arcs
�*)+�

, where
),��'(�

is the set of arcs
),��'-� � {

� %.�/� �10 %2�3�54 '
}, given a

set of vertices
'

. For this problem, the vertice is represented as �
#

where � is the

partial tour number and % is the yard-bay number (Figure 2.2).

� �  � � � {
�

} source,
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Figure 2.2: A network representation
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} sink,

Decision variables:

� �# � � ��� if SC moves from yard-bay % to � after completing partial-tour � ; � ,

otherwise

	 �# � � �$� if SC moves from yard-bay % to � during a partial-tour � ; � , otherwise

The problem can be formulated as:


���
�������� ������ �� �
��

��� � � #����! #" ��$ � j � B(gt+1 $
� "$# ��� �# �&%

��
�����

�
# � � ���! #" �'$

"$# ��	 �# � (2.1)

Subject to:

�
� ���! #" ��$

� �( � � � (2.2)
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� �
� ���  " � $

� ���� � � � (2.3)

�
� ���  " ����� $ �	� ���! #" � $

� � ��
 �� # % 	 �� # � � �
� � �! " �
��� $ ��� ���! #" � $

� � �# � % 	 �# � � � � � % 4 � �  !� � � � � �$� �	��
�
�
 � �

(2.4)

�
 # � � $ � �! " � $

	 �# ��� 0�� 0 � �$� for all
��� � �  !� � � � � �$� �	��
�
�
 � � (2.5)

& ������ � �
� ���! #" � $

	 �� �&% �
#����! #" ����� $

� ��
 �# � � � �54 � �  � � � � � �$���	��
�
�
 � � (2.6)

�
��� �! #" � $

& �� � ��� � � � �����	��
�
�

� � (2.7)

�
� � (  � $

& �� � � ��� � � 4 � �  !� � � � � �$��� ��
�
�
 � � (2.8)

� �# � 4 � ����� % 4 � �  !� � � �54 � �  ����� � �-� � � ���$��
�
�
 � � (2.9)

	 �# � 4�� 0,1  � %.� � 4 � �  � � � � � �$���	��
�
�
 � � (2.10)

& ���! � � � 4 � �  � � � � � �$��� �#"�"�" � � (2.11)

The first sum in Equation 2.1 represents the total distance traveled between

partial-tours and the second represents the total distance traveled within a partial-
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tour.

Constraints 2.2 to 2.4 guarantee flow conservation, defining/including the source

node as a starting point and the sink node as a finishing point.

� in 2.6 is a large number.

Constraint 2.7 guarantees that containers picked up in a partial-tour correspond

to the containers requested by the work schedule.

Constraint 2.8 guarantees that no containers will be left behind, i.e. containers

stocked at yard-bays will all be picked up.

2.3 Problem complexity

First of all, some computer science concepts will be reviewed and then a study of

the complexity of the Single Straddle Carrier Routing Problem (SSCRP) will be

presented.

Computer devices (independent of technology limitations) can only solve prob-

lems for which an algorithm can be constructed, i.e. a sequence of instructions,

leading to a guaranteed solution at the end. Alan Turing presented in 1936 an

abstract model, called Turing Machine, for simulating what a physical computer

is able to do. Therefore, he demonstrated there are problems which have an al-

gorithm [6, 5], i.e. which can be solved by a halting Turing Machine. They are

called decidable problems. However there are other problems which do not have
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an algorithm, i.e. they never come to an end no matter how long they run on a

halting Turing Machine. They are called undecidable problems.

A deterministic Turing Machine [14] is defined by � � ��� ��� ������� � where

�
is a finite set of states, � is a finite set of symbols (or alphabet) which always

contains “blank”( � ) and “start”( 	 ) symbols, � is a transition function which maps

��
 � to
���
�

{
� � ��� � � � � � ���$��� � ����� � � � � ��� � � � � ���$��� ��� � � � � ��� � � � � � ��� } ��


� 

{
� ��� ��� � %  � ������� � � }and � 4 �

is the initial state. The machine initializes

with state � , string symbol 	 followed by a finitely long input string & � where

& 4 � � � { � }
�
. From there, the machine performs a called action according to

� and determined by the state/symbol combination. Therefore it changes its state,

prints a symbol and moves the cursor until it reaches one of the states
�

, � ��� or ��� .
A nondeterministic Turing Machine follows the same concept as the deterministic

one except by the fact there are choices of next actions, i.e. for each state/symbol

combination there may exist more than one appropriate next step or even no step

at all.

Algorithm complexity studies [14, 5, 6], although a vast theory field which

involve many computational aspects, also deal with estimation of the time an al-

gorithm takes to find a problem solution for each possible problem input. As

such it determines how efficient an algorithm is. Computer scientists identify two

important classes of algorithms complexity: polynomial time algorithms and ex-

ponential time algorithms. The first class comprehends algorithms for which the
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Table 2.4: Comparison of polynomial and exponential time complexity functions

time complexity size
�

function 10 20 30 40 50�
0.00001 sec 0.00002 sec 0.00003 sec 0.00004 sec 0.00005 sec���
0.0001 sec 0.0004 sec 0.0009 sec 0.0016 sec 0.0025 sec���
0.001 sec 0.008 sec 0.027 sec 0.064 sec 0.125 sec

���
0.001 sec 1.0 sec 17.9 min 12.7 days 35.7 years

���
0.059 sec 58 min 6.5 years 3855 centuries 2x

� �	� centuries

solution response time is bounded by a polynomial curve function for the prob-

lem input length ( � ). Therefore, algorithms with complexity

 � � � � for ����
 ! �

and also polynomial bounded algorithms with complexity

 � ������� � � are all con-

sidered as polynomial algorithms. The second class includes all algorithms with

a non-polynomial response time, such as algorithms with complexity

 � 
 � � for


�� � , 
 � � � � , 
 � ��� � and

 � ������� � � . Polynomial time algorithms usually resolve

problems within an acceptable amount of time, while this is true to exponential

time algorithms only in case of small instances of problems. If a problem cannot

be resolved in polynomial time, it is called an intractable problem. According to

[6], if a problem can be solved in polynomial time by a Turing Machine, it can also

be solved in polynomial time by an ordinary computer and vice-versa. Table 2.4,

extracted from [6], allows the comparison between polynomial and exponential

time complexity functions.

According to [6], decidable problems can be classified as:
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1. Class P (Polynomial): a problem belongs to this class if it can be resolved

in polynomial time by a deterministic Turing Machine (TM);

2. Class NP (Nondeterministic Polynomial): a problem belongs to this class

if it can be resolved in polynomial time by a nondeterministic Turing Ma-

chine. Since deterministic TM (without choices) is a special case of nonde-

terministic TM (with choices), P
�

NP.

3. Class NP-complete: a problem belongs to this class if it is a NP problem

and any NP problem reduces to it in polynomial time.

4. Class NP-hard: a problem belongs to this class if any NP problem reduces

to it in polynomial time but there is no proof it is a NP problem, i.e. it is

not certain it can be solved in polynomial time by a nondeterministic TM.

A NP-hard problem is an intractable problem.

Note that whether P = NP is mathematical open question, however it is strongly

believed the answer is negative [6]. If so, then P
�� NP, as on Figure 2.3.

Turing Reducibility [5, 7] is the ability to have an algorithm for converting

instances of problem � � to instances of problem � � with the same answers. In this

case, it is usual to say that � � reduces to � � .

Polynomial-Time Reductions is a subset of the Turing Reductions [6, 15]

which allows proving that, if there is a polynomial time reduction algorithm which
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Figure 2.3: Class complexity (if P
�� NP)

NP

P

NP−complete

P and NP classes

reduces a problem � � to a problem � � then, if � � does not belong to class P, � �

will not belong either.

Figure 2.4, extracted from [6], shows reductions between NP-complete prob-

lems.

By theorem 10.24 from [6], we know that TSP (Traveling Salesman Problem)

is a NP-complete problem.

Given a graph
� � ��' ��� � with � cities

� � � � � � ��
�
�
 � ��� � 4 '
and numbers

" # � � � , representing distance between cities, for each � � # � ����� 4�� . The objective

is to visit all cities and return to the initial city making a tour of the shortest length.

This is the TSP problem.
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Figure 2.4: Reductions among NP-complete problems

3SAT

DHC

CSAT

IS

NC HC

TSP

SAT

SAT − Satisfiability Problem

CSAT − Satisfiability for formula in CNF Problem

3SAT − 3_Satisfiability Problem

IS − Problem of Independent Sets

NC − Node−Cover Problem

DHC − Directed Hamilton−Circuit Problem

HC − Undirected Hamilton−Circuit Problem

TSP − Traveling Salesman Problem
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Figure 2.5: Work schedule for the generic SSCRP problem

Container Group �  � �  � 
�
�
 �� � 
�
�
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�
�
 �� �
Quantity � � � 
�
�
 � � �

—- � —- 
�
�
 —- � —-

Figure 2.6: Distribution of containers for the generic SSCRP problem

Container Group �  � �  � 
�
�
 �  �
��� � � � ���� � � � �

�
�
����� � � �

Now given the TSP problem (our problem � � ), we want to model a generic

SSCRP problem (our problem � � ) such that the solution for the latter provides a

solution for the former.

Suppose we have a work schedule as in Table 2.5 and a distribution of con-

tainers in yard-bays as in Table 2.6.

Each yard-bay belongs to a block and distance between blocks is defined as

" # � � � .

If we consider the yard-bays (SSCRP) as cities (TSP) and the distances be-

tween blocks or yard-bays (SSCRP) as the distances between the cities (TSP), we

can visualize a TSP to SSCRP conversion as in Figure 2.7.

In order to fulfill the generic SSCRP work schedule, the SC can follow two

basic approaches:
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Figure 2.7: The generic TSP problem mapped to a SSCRP problem
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� collect one container belonging to container group 1 in yard-bay 1, then

move to yard-bay 2 to collect one container belonging to container group 2

and so on performing � loops;

� collect one container of each group at yard-bay 1, then move to yard-bay 2

to collect one container of each group again and so on performing a single

loop.

It is not difficult to see that a tour of shortest length would be obtained with the

second choice, which corresponds to a solution for the TSP. Therefore a solution

for the SSCRP is also a solution for TSP what means that, if a polynomial solution

could be found for SSCRP (problem � � ), a polynomial solution for TSP (problem

� � ) could be found as well. As no polynomial solution has ever been found for

TSP [5], the same is true for SSCRP.

21



An interesting extension to this work would consist of trying to propose a

non-deterministic TM algorithm for the SCCRP problem. In case such algorithm

exists, SCCRP is NP-complete; if not, SCCRP is NP-hard. Considering that any

NP problem can be reduced to TSP, according to Figure 2.4, and that TSP can

also be reduced to SCCRP, as shown above, any NP problem could be reduced to

SCCRP.

Since no polynomial-time solution for SSCRP can be found, exact algorithms

can become time prohibitive (see Table 2.4) and heuristics are a good alternative.

Heuristics [2] are methods which generally produce good solutions without any

guarantee that an optimal solution will be found. Typically, two kinds of heuristic

methods are used. The first kind attempts to construct the solution from scratch

(called constructive heuristics) and the second kind attempts to improve an exist-

ing solution. This work will compare results obtained by a constructive heuristic

method, Beam Search, with those obtained by an improving method, Ant Colony

Optimization.
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Chapter 3

Heuristic Strategies

3.1 Beam Search

Beam Search is a constructive heuristic method, used for solving large optimiza-

tion and combinatorial problems. The method is based on the exploration of a

search tree.

Each tree node generates a number of child nodes, however, only a specified

number of these is considered for the next generation. This number is defined by

a parameter called beam width. All alternatives are explored within this width and

each path of the tree, from root to leaf, defines a complete solution for the problem

(Figure 3.1).

A Beam Search tree for the example given on chapter 2 is represented in Figure

3.2.
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Figure 3.1: Generic Beam Search Tree
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Figure 3.2: An example of a Beam Search Tree (width=2)
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3.1.1 Details of Beam Search

3.1.1.1 High level heuristic algorithm

The high level Beam Search heuristic (Algorithm 1) builds the search tree by us-

ing the intuitive concept of father beam node generating child nodes. The specific

structure State, which has father, level and cost attributes, is used in the formula-

tion of the algorithm.

3.1.1.2 Implementation Notes

Method addNextChildren in Algorithm 1 is responsible for generating all possi-

ble child nodes from each beam tree father node. All yard-bays containing the

container group being processed are included on a separate tree and, by covering

this tree in-depth, we obtain every possible route. One child is generated for each

route.

In the Beam Search heuristic the distance between two container locations,

determined by block and yard-bay, is defined as the shortest linear path between

the locations (Figure 3.3). Therefore the distance, or cost, to move a straddle

carrier from block-1/yard-bay2 to block-2/yard-bay1 is 11m, considering that the

distance between adjacent blocks is 10m and between adjacent yard-bays is 1m.

A solution is considered complete after the last work schedule item is commit-

ted, what means when the beam tree level reaches the work schedule size. Method

25



Algorithm 1 Beam Search High Level Algorithm

p u b l i c S t a t e doBeamSearch ( Problem problem , i n t BeamWidth ) {

S t a t e c u r r e n t S t a t e = n u l l ;

S t a t e s o l u t i o n S t a t e = n u l l ;
Vec to r o p e n L i s t = new Vec to r ( ) ;

Vec to r b e s t L i s t = new Vec to r ( ) ;
Vec to r b e x t C h i l d r e n = new Vec to r ( ) ;

o p e n L i s t . addElement ( problem . g e t F i r s t S t a t e ( ) ) ;

w h i l e ( o p e n L i s t . s i z e ( ) > 0 ) {
b e s t L i s t = s e l e c t B e s t S t a t e s ( o p e n L i s t , beamWidth ) ;
o p e n L i s t . r emoveAl lE lemen t s ( ) ;

w h i l e ( b e s t L i s t . s i z e ( ) > 0 ) {
c u r r e n t S t a t e = ( S t a t e ) b e s t L i s t . f i r s t E l e m e n t ( ) ;

i f ( c u r r e n t S t a t e . i s S o l u t i o n C o m p l e t e ( problem ) ) {
s o l u t i o n S t a t e = g e t T h e B e s t S t a t e ( b e s t L i s t ) ;
b e s t L i s t . r emoveAl lE lemen t s ( ) ;

}
e l s e {

c h i l d r e n L i s t . r emoveAl lE lemen t s ( ) ;

c h i l d r e n L i s t = c u r r e n t S t a t e . a d d N e x t C h i l d r e n ( problem ) ;
f o r ( i n t i = 0 ; i < c h i l d r e n L i s t . s i z e ( ) ; i ++)

o p e n L i s t . addElement ( c h i l d r e n L i s t . e l emen tAt ( i ) ) ;
b e s t L i s t . removeElement ( c u r r e n t S t a t e ) ;

}

}
}

r e t u r n s o l u t i o n S t a t e ;
}
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Figure 3.3: Distance calculation from yard-bay 2 to yard-bay 5
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isSolutionComplete in Algorithm 1 is responsible for verifying whether the beam

search can be halted or not.

The list of the unexplored nodes (the “openlist”) is ordered using a Bubble Sort

procedure and the beam width best candidates in terms of cost are selected from

this ordered list. Method selectBestStates in Algorithm 1 returns a list containing

the selected nodes.

3.2 Ant Colony Optimization

Ant Colony Optimization is a heuristic method which simulates the behavior of

natural ants finding their path from nest to food.

In nature, ants are able to find the shorter path between nest and food even

when an obstacle exists on their way, as represented in Figure 3.4. They release
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a certain constant amount of a substance called pheromone while moving along

the way. Pheromone attracts other ants because they have a preference for paths

with a large level of this substance accumulated. Therefore when their path is

blocked, ants have to find their way out by getting around the obstacle. In this

situation, it is expected that half of ants will choose one direction and the other

half of ants will choose the opposite direction. Along the shortest way alternative,

pheromone will accumulate quicker because ants, at a constant movement rate,

will reach their food goal first and start their way back before than ants along the

longest way alternative.

Ants’ capacity to find the shortest way has been translated into artificial ant

colony systems [3, 4] applied to optimization in real life problems. Artificial ants

inherited two basic concepts from natural ants’ behavior:

1. an amount of pheromone is deposited by each ant along its visited edges

(defined by two points), what is is called Local Pheromone Update, accord-

ing to Formula 3.1;

2. the shortest ant path is granted with a differential extra amount of pheromone,

called Global Pheromone Update, according to Formula 3.2.

� � � � � � �!� � � � "  � � � � � ��� ��� � � � � � � � � � � � "  � � % � ��� � (3.1)
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Figure 3.4: Representation of ants in nature
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� � � �

� ����� � ������� � �  � �
�

(3.2)

In Formulas 3.1 and 3.2, � represents an evaporation factor;
� � represents a con-

stant heuristic value and � represents a pheromone decay parameter value.

3.2.1 Details of Ant Colony Optimization

3.2.1.1 High level heuristic algorithm

The high level Ant Colony heuristic Algorithm 2 considers that each ant builds its

solution during each iteration. The structure AntSolution in the algorithm plays a

similar role as the structure State in Beam Search algorithm.

3.2.1.2 Implementation notes

The Ant Colony heuristic has a probabilistic parameter � for choosing between

exploration or exploitation methods when determining an ant next location. If the

current parameter value �-4 � � ��� � is less than or equal to the given � �14 � � ��� � then

the exploration procedure will be used, otherwise exploitation will be used.

Under exploitation, the candidate location with higher probability is chosen.

The probability is calculated as in Formula 3.3.
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Algorithm 2 Ant Colony High Level Algorithm

p u b l i c A n t S o l u t i o n doAntSearch ( ) {

i n t i t e r a t i o n C o u n t = 1 ;
i n t b e s t C o s t = I n t e g e r .MAX_VALUE;

i n t a n t C o s t ;
A n t S o l u t i o n a n t S o l u t i o n ;

w h i l e ( i t e r a t i o n C o u n t < = m a x I t e r a t i o n s ) {

f o r ( i n t i = 1 ; i <= nAnts ; i + + ) {
a n t S o l u t i o n = a n t . b u i l d S o l u t i o n ( problem , a l p h a , b e t a , q0 , t a u 0 , ro ) ;

a n t C o s t = a n t S o l u t i o n . g e t C o s t V a l u e ( ) ;
a n t . p r in tMe ( i t e r a t i o n C o u n t , i , a n t S o l u t i o n , a n t C o s t , b e s t C o s t ) ;
i f ( a n t C o s t < = b e s t C o s t ) {

b e s t S o l u t i o n = a n t S o l u t i o n . u p d a t e B e s t S o l u t i o n ( ) ;
b e s t C o s t = a n t C o s t ;

b e s t S o l u t i o n A n t = a n t ;
}

}

problem . g l o b a l T r a i l U p d a t i n g ( b e s t S o l u t i o n , a l p h a , t a u 0 ) ;
i t e r a t i o n C o u n t + + ;

}
r e t u r n b e s t S o l u t i o n ;

}
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(3.3)

Under exploration, a roulette wheel is constructed with one slot for each can-

didate and with its size determined by probability as in Formula 3.3.

Ants build their own complete solution by following the given work schedule.

Ants are initially placed on the starting point and then move to a next location de-

termined by either exploration or exploitation methods. The quantity of contain-

ers collected at each location visited by the ant depends on the collection strategy

adopted which can be the Greedy or the Random collection strategy, described

in subsection 3.3.1. Method buildSolution in Algorithm 2 returns a complete ant

solution.

Every time an ant moves from location A to location B, pheromone is de-

posited on the edge AB, according to Formula 3.1.

The best solution encountered so far is updated each time an ant builds a so-

lution with cost smaller than the current best cost. After each iteration the best

ant solution receives an extra amount of pheromone along its edges, according to

Formula 3.2. Method updateBestSolution in Algorithm 2 is responsible for this

update.
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Figure 3.5: High level SSCRP Model
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3.3 Solving the Routing Problem

The port environment for the single routing problem has been modeled as depicted

in Figure 3.5.

Figure 3.6 shows the approach chosen to resolve the single SC routing problem

using Beam Search and Ant Colony strategies.

The principal elements of the model include:

� The class Port contains port environment settings;

� The class Vehicle Problem forms an interface between the problem and the
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Figure 3.6: The model of SSCRP strategies
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port environment classes;

� The class Build Port Environment uses the port settings, the problem it-

self and the respective strategy in order to provide a tour solution, which is

nothing more than a chain of partial tours.

3.3.1 Container collection strategies

Two strategies have been developed in this thesis for collecting containers at the

yard bays.
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The first one refers to a greedy approach (Algorithm 3) and the second one

refers to a random approach (Algorithm 4) for container collection.

The variables stockQuant and reqQuant (Algorithms 3 and 4) refer to the

stored and required quantities of containers, respectively.

Algorithm 3 Greedy collection algorithm

i f ( s t o c k Q u a n t > 0 ) {
i f ( r eqQuan t >= s t o c k Q u a n t ) {

/ / g e t s e v e r y t h i n g a v a i l a b l e

c l u s t e r s . addElement ( new C l u s t e r ( yBay , c o n t a i n e r G , s t o c k Q u a n t ) ) ;
c o l l e c t Q u a n t + = s t o c k Q u a n t ;

r eqQuan t � = s t o c k Q u a n t ;
}
e l s e {

/ / g e t s e v e r y t h i n g needed
c l u s t e r s . addElement ( new C l u s t e r ( yBay , c o n t a i n e r G , r eqQuan t ) ) ;

c o l l e c t Q u a n t + = reqQuan t ;
r eqQuan t = 0 ;

}

}

The variables randQuant and totChoice (Algorithm 4) refer to a randomly

generated quantity of containers and to the total quantity still stored at yard-bays,

respectively.

The Greedy collection strategy collects the maximum quantity of containers

available at a determined location.

The Random collection strategy collects a random quantity of containers with-
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Algorithm 4 Random collection algorithm

i f ( s t o c k Q u a n t > 0 ) {

i f ( r eqQuan t >= s t o c k Q u a n t ) {
randQuan t =0;

w h i l e ( r andQuan t = = 0 | | ( r eqQuan t � r andQuan t � t o t C h o i c e ) > 0 )
r andQuan t = ( i n t ) ( Math . random ( ) � 1 . 2 � s t o c k Q u a n t ) ;

i f ( r andQuan t >= s t o c k Q u a n t ) {

/ / g e t s e v e r y t h i n g a v a i l a b l e
c l u s t e r s . addElement ( new C l u s t e r ( yBay , c o n t a i n e r G , s t o c k Q u a n t ) ) ;

c o l l e c t Q u a n t + = s t o c k Q u a n t ;
r eqQuan t � = s t o c k Q u a n t ;

}

e l s e {
/ / g e t s random q u a n t i t y
c l u s t e r s . addElement ( new C l u s t e r ( yBay , c o n t a i n e r G , r andQuan t ) ) ;

c o l l e c t Q u a n t + = randQuan t ;
r eqQuan t � = randQuan t ;

}
}
e l s e {

/ / g e t s e v e r y t h i n g needed
c l u s t e r s . addElement ( new C l u s t e r ( yBay , c o n t a i n e r G , r eqQuan t ) ) ;

c o l l e c t Q u a n t + = reqQuan t ;
r eqQuan t = 0 ;

}

}
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out leaving behind containers needed to complete a work schedule partial tour.

For example, suppose the work schedule first item demands that 10 containers of

group A should be picked up. In yard-bay 1 you have 7 containers of group A

and in yard-bay 2 you have 5 containers of group A. In this case, only random

numbers � 4 {
� ���	��� } can be selected for the first yard-bay collection in order to

accomplish the partial tour quantity requirement.
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Chapter 4

Numerical Tests

This chapter will present comparative test results for the single straddle carrier

routing problem.

Four sets of numerical tests have been performed over the implemented strate-

gies Beam Search and Ant Colony Optimization. The first one, Preliminary Tests,

analyzes the behavior of the parameters and their impact on the solution and it

also makes a comparison between the Greedy and the Random container collec-

tion strategies. The second one, Random Tests, analyzes solutions quality and

execution time trends. The third and the forth ones, Benchmark Tests and Practi-

cal Tests, compares the obtained results with published results.

All tests have been performed using a Linux workstation (512MB RAM and

1GHz processor).
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Table 4.1: PT - Block Distances Matrix

Blocks block-1 block-2 block-3

block-1 0 100 190

block-2 100 0 100

block-3 190 100 0

Table 4.2: PT - Work Schedule

ContainerGroup CG1 CG2 CG1 CG2 CG1 CG2

Quantity 10 8 15 10 20 12

4.1 Preliminary Tests (PT)

4.1.1 Input

The input used in the Preliminary Tests (PT) have been retrieved from [11]. They

are defined in the following way:

There are three yard-bays and each yard-bay is located in a separate block. So

yard-bay 1 is located on block-1, yard-bay 2 is located on block-2 and yard-bay

3 is located on block-3. The distances between the blocks can be found in Table

4.1, the work schedule is given by Table 4.2 and the distribution of containers is

given by Table 4.3.

It is assumed that initially the SC is located at block-1/yard-bay 1.
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Table 4.3: PT - The Distribution of the Containers

ContainerGroup CG1 CG2

yard-bay 1 18 15

yard-bay 2 11 7

yard-bay 3 16 8

4.1.2 Parameter values

The Beam Search heuristic has only one parameter to be set which can impact

solutions quality. This parameter is the width of the search tree to be explored,

called beam width. The Ant Colony heuristic has several parameters to be set and

therefore a variety of parameter combinations. These preliminary tests have the

purpose of analyzing the Beam Search problem solutions upon a variety of beam

widths and the Ant Colony results against different parameter sets.

The results returned by the Beam Search and Ant Colony heuristics will be

compared with the optimal solutions provided in [11].

4.1.2.1 Beam Search Results - Greedy container collection strategy

Table 4.4 contains the cost and time response returned by the Beam Search heuris-

tic, against the optimal cost. Table 4.5 contains the visiting routes returned by the

Beam Search heuristic, against the optimal route.

By analyzing the results in tables 4.4 and 4.5, a few remarks can be considered:

1. The Beam width up to 50 resulted in the same cost and the same solution
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Table 4.4: PT - Beam Search results: costs and processing times

Beam Width Optimal 1 2 10 50 100 500 1000 5000 10000

Cost 400 550 550 550 550 500 500 500 500 500
Time (sec) 0.02 0.02 0.05 0.3 1 22 93 1117 2778

Table 4.5: PT - Beam Search results: visiting routes

Cost ContainerGroups CG1 CG2 CG1 CG2 CG1 CG2

WORK SCHEDULE 10 8 15 10 20 12
400 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0
550 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb3, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (7)0, (3)5 (16)0, (4)0 (5)0, (7)0
500 Visiting Sequence yb3 yb3 yb3, yb1 yb1 yb1, yb2 yb2, yb1

Quantity* (10)6 (8)0 (6)0, (9)9 (10)5 (9)0, (11)0 (7)0, (5)0

* A number within parenthesis represents the collected quantity and a number without

parenthesis represents the remaining quantity to be collected later.
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route as the beam width equal to 1, which corresponds to a greedy search

where the best alternative is always selected. In those cases, only a small

amount of best solutions has been kept under consideration and the search

space has not been well explored. Better solutions were found with the

Beam width equal to 100 or greater because more alternatives were ex-

plored, however the processing time increased considerably.

2. Beam Search did not find the optimal solution or a solution close to it, even

with large beam widths such as 5K or 10K. The implemented heuristic looks

for the best route but applies the greedy approach when deciding about how

many containers to collect at each yard bay. The optimal solution has cho-

sen (for the fourth partial tour) to collect just 2 containers at yard-bay 2,

instead of collecting all 7 containers available, and has chosen to collect

all 8 containers available when visiting yard-bay 3. In practice, this route

has not even been considered by the Beam Search heuristic method, with

the Greedy container collection approach, since this search method always

looks for the maximum number of containers which can be picked up at

each yard-bay.
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Table 4.6: PT - Beam Search with Random collection strategy: cost and process-
ing times

Beam Width Optimal 1 2 10 50 100 500 1000 5000 10000

Cost 400 700 550 550 550 500 500 500 400 550
Time (sec) 0,004 0,006 0,03 0,3 1 17 74 989 2451
Solution # 1 2 2 2 3 4 4 5 6

4.1.2.2 Beam Search Results - Random container collection strategy

As discussed at the end of the previous subsection we realized that the Greedy

collection strategy is very limited. For the problem under investigation the opti-

mal solution will never be reached, no matter how much the beam width is ex-

panded. Therefore the Random container collection strategy, described in the

previous chapter, is tested.

Table 4.6 contains the cost and time responses returned by the Beam Search

with the Random collection approach, as well as the optimal cost. Table 4.7 con-

tains the visiting routes returned by Beam Search heuristic against the optimal

route.

By analyzing the results given in tables 4.6 and 4.7, a few remarks can be

made:

1. The Random collection approach allowed Beam Search to find the opti-

mal solution, what was impossible using the Greedy container collection

approach.
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Table
4.7:
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routes

Cost CGroups Solution # CG1 CG2 CG1 CG2 CG1 CG2

WSCHEDULE 10 8 15 10 20 12

400 Vis.Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0

700 Vis.Sequence 1 yb1 yb1 yb3 yb3, yb2 yb2, yb3, yb1 yb1, yb2, yb3

Quantity* (10)8 (8)7 (15)1 (6)2, (4)3 (11)0, (1)0, (8)0 (7)0, (3)0, (2)0

550 Vis.Sequence 2 yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb3, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (4)3, (6)2 (16)0, (4)0 (3)0, (2)0, (7)0

550 Vis.Sequence 6 yb2 yb2, yb1 yb1 yb1 yb1, yb2, yb3 yb3, yb1

Quantity* (10)1 (7)0, (1)14 (15)3 (10)4 (3)0, (1)0, (16)0 (8)0, (4)0

500 Vis.Sequence 3 yb1 yb1 yb1, yb2 yb2, yb1 yb1, yb3 yb3, yb1

Quantity* (10)8 (8)7 (4)4, (11)0 (7)0, (3)4 (4)0, (16)0 (8)0, (4)0

500 Vis.Sequence 4 yb3 yb3 yb3, yb1 yb1 yb1, yb2 yb2, yb1

Quantity* (10)6 (8)0 (6)0, (9)9 (10)5 (9)0, (11)0 (7)0, (5)0

400 Vis.Sequence 5 yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0

*
A

num
ber

w
ithin

parenthesis
represents

the
collected

quantity
and

a
num

berw
ithout

parenthesis
represents

the
rem

aining
quantity

to
be

collected
later.
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2. The optimal solution, however, has not always been reached because the

search tree only deals with route alternatives and not with quantity alterna-

tives. So, at each selected route alternative, a random “possible” quantity is

chosen, what does not necessarily lead to a good solution. In terms of route

alternatives, the solution should have been reached with beam width greater

than or equal to 1000 but the quantity alternatives leaves us on an absolutely

random situation, with no guarantees. Although the random container col-

lection strategy has allowed the optimal solution to be reached, quantity al-

ternatives are not explored, due to the structure of the selected Beam Search

method.

4.1.2.3 Ant Colony Optimization Results

Four sets of tests were performed in order to find out a good combination of the

parameter values. In each set, the value of only one parameter was varied while

the other values were kept fixed.

FIRST SET

In this set of tests, the parameter to be varied is the number of ants. The

following fixed values were selected for other parameters:

� ��� ��� � � � % �!� � � � �

� � � � " � , � � � , � � � � "�� ,
� � � � " � � � , � � � � " �
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Table 4.8: PT - Ant Colony Optimization with the Greedy collection strategy:
costs and processing times (different numbers of ants)

Ants # Optimal 1 2 10 50 100

Cost 400 550 550 500 500 500
Time (sec) 0,05 0,2 4,8 153 619

Solution found at i=1;a=1 i=1;a=1 i=11;a=1 i=14;a=19 i=8;a=12

Table 4.9: PT - Ant Colony Optimization with the Random collection strategy:
costs and processing times (different numbers of ants)

Ants # Optimal 1 2 10 50 100 150

Cost 400 500 500 400 450 400 400
Time (sec) 0,06 0,2 5,8 183 722 1658

Solution found at i=3;a=1 i=11;a=1 i=6;a=4 i=3;a=18 i=15;a=14 i=3;a=123

Table 4.8 contains the cost and time responses returned by the Ant Colony heuris-

tic with the Greedy container collection strategy in addition to the optimal cost.

Table 4.9 contains the same results obtained by the Ant Colony Optimization with

the Random container collection strategy.

Table 4.10 contains the visiting routes returned by the Ant Colony heuristic

with both collection strategies, as well as the optimal route.

By analyzing the results in tables 4.8, 4.9 and 4.10 the following remarks can

be made:

1. Ant Colony Optimization using the Random collection strategy demon-

strated to return solutions of better quality than with the Greedy collection
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Table 4.10: PT - Ant Colony Optimization with Greedy and Random collection
strategies: visiting routes

Cost ContainerGroups CG1 CG2 CG1 CG2 CG1 CG2

WORK SCHEDULE 10 8 15 10 20 12

400 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0

550 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb1 yb2, yb3 yb3, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (7)0, (3)4 (4)0, (16)0 (8)0, (4)0

500 Visiting Sequence yb1 yb1 yb1, yb2 yb1, yb2 yb2, yb3 yb3, yb2

Quantity* (10)8 (8)7 (8)0, (7)4 (7)0, (3)4 (4)0, (16)0 (8)0, (4)0

450 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb1 yb1, yb3 yb3, yb2

Quantity* (10)8 (8)7 (4)4, (11)0 (3)4, (7)0 (4)0, (16)0 (8)0, (4)4

400 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0

* A number within parenthesis represents the collected quantity and a number without parenthesis

represents the remaining quantity to be collected later.

approach, within the same range of the processing time.

2. Due to the random nature of this heuristic method, allowing more ants to

look for solutions does not necessarily guarantee that a better solution will

be reached. As observed in table 4.9, 10 ants found a better quality solution

than 50 ants.

3. By looking at tables 4.6 and 4.9, we notice that Ant Colony Optimization

worked better than Beam Search with the Random collection strategy since

it found the optimal solution more often. In fact, it also found alternative

solutions such as a route with cost 450. It can be explained by the fact that

the Ant Colony Optimization selects the next location based on clusters,
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i.e. both the yard-bay and the quantity of containers are taken into account,

while the Beam Search selects the next location based on the yard-bays only.

After this selection it applies the random collection strategy (see Remark 2

in the previous subsection).

4. From now on no tests will be performed using the greedy collection strategy

because of the poor results obtained with it.

SECOND SET

In this case, the effect of the number of iterations is studied. The following

fixed parameter values were used:

� � ) � � � � ���

� � � � " � , � � � , � � � � "�� ,
� � � � " � � � , � � � � " �

Table 4.11 contains cost and time responses returned by the Ant Colony heuristic

with the Random container collection strategy in addition to the optimal cost.

Table 4.12 contains the visiting routes returned by the Ant Colony heuristic using

the same collection strategy, as well as the optimal route.

By analyzing result tables 4.11 and 4.12, the following remark can be made:

1. It seems that increasing the number of iterations has the same effect as in-

creasing the number of ants looking for solutions but, in fact, there is a
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Table 4.11: PT - Ant Colony Optimization with Random collection strategy: costs
and processing times (different numbers of iterations)

nIterations Optimal 10 15 20 50 100 150

Cost 400 450 450 450 450 400 400
Time (sec) 2 6 10 76 317 743

Solution found at i=2;a=5 i=9;a=1 i=3;a=7 i=13;a=2 i=16;a=5 i=9;a=1

Table 4.12: PT - Ant Colony Optimization with Random collection strategy: vis-
iting routes (different numbers of iterations)

Cost ContainerGroups CG1 CG2 CG1 CG2 CG1 CG2

WORK SCHEDULE 10 8 15 10 20 12
400 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0
450 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb1 yb1, yb3 yb3, yb2

Quantity* (10)8 (8)7 (4)4, (11)0 (3)4, (7)0 (4)0, (16)0 (8)0, (4)4
400 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0

* A number within parenthesis represents the collected quantity and a number without parenthesis

represents the remaining quantity to be collected later.
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difference which did not come out for this small size problem. At each iter-

ation, a global pheromone update occurs and the pheromone is deposited on

the edges of the best solution. At each ant solution built, a local pheromone

update happens and the pheromone is deposited on the edges of the ant so-

lution. So more ants means more local pheromone updates and therefore

the search space is expanded since lots of edges receive pheromone. By fix-

ing the number of ants and increasing the number of iterations, the search

space is reduced since only the current best solution is granted with ex-

tra pheromone. So, in theory, increasing the number of ants should be more

promising than increasing the number of iterations. However there are other

parameters, such as the control parameter � , which also contribute.

THIRD SET

Under this third set of preliminary test all parameters will be kept constant,

except the parameter � . The following values were used:

� � ) � � � � � � ; � � ��� � � � % � � � � � �

� � � � " �$� � � � � "�� � � � � � " � � � � � � � � " �

As explained in section 3, the parameter � weights the importance of selecting

short edges in relation to selecting edges with a large amount of pheromone. Thus

it measures how much diversity will be allowed in the search space and is used

for determining a candidate yard-bay probability, defined as in Formula 4.1.
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� � � � � � % � %�� � � � � � � �!� � � � � � ��� " % ��� � � � � � � ��� � � � � ���!� � � % �!� � � � � " % " � ��� ���!� � � % �!� �.� �

(4.1)

In the first and second test sets � value was set equal to � . Now we will study

the following cases and track the quality if the solutions:

� � 4�� �	���$���  

� � � 4 {
����3������� � #
	 ��� � ���� ���
��� � #
	 ��� }. At each run, ��� � %�� �

� � � � for the first run and � 4 { ����� } for all other runs

Table 4.13 contains cost and time responses returned by the Ant Colony heuristic

with the Random container collection strategy upon the variation of the value of

� . Table 4.14 contains the corresponding visiting routes.

An analysis of the results in tables 4.13 and 4.14, leads us to make the follow-

ing remarks:

1. According to Formula 4.1, if � is zero, only the pheromone is consid-

ered and the yard-bay distances are ignored. That is the reason why a

worse solution has been reached with the value � � � for the problem

under analysis, even though no real difference has been observed in the

processing time. If � is greater than zero, the pheromone and the inverse
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Table 4.13: PT - Ant Colony Optimization with Random collection strategy: costs
and processing times (different � )

Beta Optimal ����� � =1 ����� �	����
 �	�����
Cost 400 500 400 400 400 400

Time (sec) 1984 2000 2028 2063 2008
Solution found at i=5;a=29 i=10;a=25 i=1;a=39 i=11;a=2 i=15;a=26

Beta Optimal �	����� ������
 �	��
 ������
 ����� ������
 �����
Cost 400 400 400 400 400

Time (sec) 2036 2153 2004 2000
Solution found at i=3;a=48 i=7;a=26 i=5;a=18 i=39;a=29

Table 4.14: PT - Ant Colony Optimization with Random collection strategy: vis-
iting routes (different � )

Cost ContainerGroups CG1 CG2 CG1 CG2 CG1 CG2

WSCHEDULE 10 8 15 10 20 12
400 Vis.Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0
500 Vis.Sequence yb1 yb1 yb1, yb2 yb1, yb2 yb2, yb3 yb3, yb2

Quantity* (10)8 (8)7 (8)0, (7)4 (7)0, (3)4 (4)0, (16)0 (8)0, (4)0
400 Visiting Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0

* A number within parenthesis represents the collected quantity and a number without

parenthesis represents the remaining quantity to be collected later.
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of the distance will be taken into account. So, considering that the value

��� " % ��� � � � � � � ��� � � � � ���!� � � % �!� � � � � " % " � ��� ���!� � � % �!� � is greater than zero and

at most equal to one, we observe that in increasing � the probability re-

duces. The same happens for large distances which also have a reducing

effect on probability. Having in mind that the Ant Colony algorithm re-

wards larger probabilities and, considering � unchanged, distance will be

the factor which will really make the difference. All remaining tests will be

performed with � set to 2.

2. No visible difference was observed for this small size problem, when using

the three different � strategies, i.e. single � strategy, � � strategy and � zero

in the start and one of the values � or � later strategy.

FOURTH SET

Under this third set of preliminary test all parameters will be kept constant,

except the value of the exploration/exploitation control parameter � � . The fixed

values are now:

� � ) � � � � � � ; � � ��� � � � % � � � � � �

� � � � " �$� � � �	� � � � � "#� � � � � � � � " �

As explained in section 3, the parameter � � defines the chance a search method

(exploration or exploitation) will have, when choosing the next yard-bay to visit.
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Table 4.15: PT - Ant Colony Optimization with Random collection strategy: costs
and processing times (different ��� )

q0 Optimal � � ����� 
 � � ������� � � �������
Cost 400 400 400 400

Time (sec) 2125 2078 2146
Solution found at i=1;a=34 i=1;a=16 i=25;a=17

Table 4.16: PT - Ant Colony Optimization with Random collection strategy: vis-
iting routes (different ��� )

Cost ContainerGroups CG1 CG2 CG1 CG2 CG1 CG2

WSCHEDULE 10 8 15 10 20 12
400 Vis.Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0
400 Vis.Sequence yb1 yb1 yb1, yb2 yb2, yb3 yb3, yb2 yb2, yb1

Quantity* (10)8 (8)7 (8)0, (7)4 (2)5, (8)0 (16)0, (4)0 (5)0, (7)0

* A number within parenthesis represents the collected quantity and a number without

parenthesis represents the remaining quantity to be collected later.

If the random number � 4 � � ��� � is less than or equal to � � , the next yard-bay is

selected through exploration, i.e. the largest probability value calculated with For-

mula 4.1 is chosen, otherwise the next yard-bay is selected through exploitation,

i.e. the random probability value calculated with Formula 4.1 is chosen.

Table 4.15 contains cost and time responses returned by the Ant Colony heuris-

tic with the Random container collection strategy upon � � variation. Table 4.16

contains the corresponding visiting routes.

By analyzing result tables 4.15 and 4.16, the following remark can be made:
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1. In our tests preferring the random selection
� � � � � " � � in favor of ex-

ploitation or giving equal chances to deterministic and random selection

� � � � � " � � , we observed that the optimal solution was reached much earlier

than in the case of preferring the deterministic selection in favor of explo-

ration
� � � � � "�� � . In the first two cases the optimal solution was found

during the first iteration, while in the third case 25 iterations were needed

for this. All remaining tests will be performed with � � set to � " � .

4.2 Random Tests (RT)

4.2.1 Overview

The second series of our tests is organized as presented in [9]. In it, the number

of blocks used (NBU) is varied and, for each number, a random distribution at

containers is created.

The approach consists of randomly generating the distribution of containers

under NBU (number of blocks used) blocks. That is, the containers from each

container group are dispersed over the port yard according to another parameter

varied in the tests, MNBAG, the maximum number of blocks allocated for each

container group. Eighteen combinations of NBU and MNBAG values are used, as

described below.
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� NBU = 2; MNBAG = 1: container groups are randomly distributed on two

blocks but each group is concentrated on a single block. This means that

only the distribution of containers within each group inside a block is ran-

domly generated.

An example:

10 containers belong to container group A and 7 belong to group B

1. 10 containers from container group A are located at a randomly se-

lected unique block, say block-1

2. 7 containers from container group B are located at a randomly selected

unique block, say block-2

� NBU = 2; MNBAG = 2: container groups are randomly distributed on two

blocks and each group is necessarily dispersed over two blocks.

An example:

10 containers belong to container group A and 7 belong to group B

1. A randomly selected number of containers, say 6 containers from

group A, are located on block-1

2. A randomly selected number of containers, say 4 containers from

group A, are located on block-2
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3. A randomly selected number of containers, say 2 containers from

group B, are located on block-1

4. A randomly selected number of containers, say 5 containers from

group B, are located on block-2

� NBU = 2; MNBAG = random: container groups are randomly distributed

on two blocks and each group is randomly dispersed over one or two blocks.

An example:

10 containers belong to container group A and 7 belong to group B

1. A randomly selected number of containers, say 10 containers from

group A, are located at a randomly selected number of blocks, say

block-1

2. A randomly selected number of containers, say 3 containers from

group B, are located at a randomly selected number of blocks, say

block-1

3. A randomly selected number of containers, say 4 containers from

group B, are located at a randomly selected number of blocks, say

block-2

� NBU = 3; MNBAG = 1, 2, 3, random: basically the same process as de-

scribed for NBU = 2;
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Table 4.17: RT - Container Groups

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

Quantity 22 13 31 11 27 9 37 15

Table 4.18: RT - Work Schedule

CG CG3 CG5 CG7 CG2 CG6 CG1 CG8 CG7 CG8 CG2 CG4 CG1 CG3

Quant 12 27 23 4 9 8 12 14 3 9 11 14 19

� NBU = 4; MNBAG = 1, 2, 3, 4, random: basically the same process as

described for NBU = 2;

� NBU = 5; MNBAG = 1, 2, 3, 4, 5, random: basically the same process as

described for NBU = 2.

4.2.2 Input

The overall task of the straddle carrier consists of moving 165 containers that

belong to eight different container groups (Table 4.17).

This unique SC is assigned to a unique quay crane. The SC Work Schedule,

to be followed exactly, is given in Table 4.18.

Each block contains 22 yard-bays and the distance between two side-by-side

yard-bays is equal to 3 meters. The distances between the blocks in meters are

defined in Table 4.19.
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Table 4.19: RT - Distances between the blocks

Blocks block-1 block-2 block-3 block-4 block-5

block-1 0 100 190 280 370

block-2 100 0 100 190 280

block-3 190 100 0 100 190

block-4 280 190 100 0 100

block-5 370 280 190 100 0

The SC starting point is assumed to be block-1/yard-bay 11.

4.2.3 Beam Search and Ant Colony Results

The parameter values for the Ant Colony heuristic used in these tests were selected

on the basis of the preliminary test described in Section 4.2. Thus it was selected

ant parameters: � � ��� � � � % � � � � � ��� � � � " � � � � � � ��� � � " ��� � � � � "#� � ��� � � �

� " � .
Each of the eighteen combinations of NBU and MNBAG were run 20 times.

For both heuristics, the MNBAG x cost values were plotted for different values

of NBU (Figures 4.1 and 4.2) using beam width and the number of ants equal

to 10, respectively . The last point of each curve, for which MNBAG=NBU+1,

corresponds to the case MNBAG=random.

On the basis of the graphics in Figures 4.1 and 4.2 we can consider that:

� The cost increases with increasing MNBAG for all NBU values, i.e. the

more scattered containers are within a yard the higher is the route cost. In

59



Figure 4.1: RT - Beam Search MNBAG x cost
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Figure 4.2: RT - Ant Colony heuristic MNBAG x cost
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average, MNBAG=random cases showed costs lower than the case MN-

BAG=NBU.

� Ant Colony heuristic tends to find, in average, solutions of lower cost than

Beam Search heuristic.

Figures 4.3 and 4.4 represent the average processing times and costs obtained by

the two heuristics with values NBU=MNBAG=5.

Analyzing graphics in Figures 4.3 and 4.4 we can consider that:

� With respect to the processing times, Ant Colony heuristic is worse than

Beam Search heuristic. We can observe that the time is approximately an

exponential function of the number of ants.

� Ant Colony heuristic returns better solutions. If ignoring the cases in which

the number of ants and the beam widths were below or equal to 5, we can say

that the Beam Search found solutions with costs oscillating between 4250

and 4450 while the Ant Colony heuristic found costs oscillating between

3900 and 4100.

� Larger beam widths, i.e. 25 and 30, returned poorer quality solutions than

beam widths 15 and 20. An opposite behavior was observed with Ant

Colony heuristic, since 10 or 15 ants found worse or equal solution costs

comparing to 25 and 30. So as the number of ants increased, Ant Colony
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Figure 4.3: RT - Beam Search and Ant Colony heuristic: processing times
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Figure 4.4: RT - Beam Search and Ant Colony: costs of the best solutions
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heuristic tended to produce better results however its average processing

time became really high (around 2000min = 33h), compared to Beam Search

(around 200min = 3.3h).

4.3 Benchmark Tests (BT)

4.3.1 Overview

The benchmark tests described in [11] were recreated. They consist of eight small-

size problems each having a container distribution pattern as shown in Tables 4.20,

4.21, 4.22, 4.23, 4.24, 4.25, 4.26 and 4.27.

These problems assume that the containers are located on the central yard-bay

of each block. Therefore, since the blocks have 22 yard-bays each, the containers

are located on yard-bay 11 for block-1, on yard-bay 33 for block-2 and on yard-

bay 55 for block-3.

Results returned by Beam Search and Ant Colony heuristics will be compared

with solutions provided in [11]. These were computed using Mixed Integer Pro-

gramming.
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Table 4.20: BT - Problem #1 Distribution of Containers

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

block-1 16 10 7 6

block-2 12 10 4 10 5 24 3

block-3 6 1 11 17 4 13 6

Table 4.21: BT - Problem #2 Distribution of Containers

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

block-1 7 13 17 5

block-2 12 4 26 4 10

block-3 10 6 18 7 1 5 20

Table 4.22: BT - Problem #3 Distribution of Containers

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

block-1 13 6 7 22 5

block-2 9 5 7 4 26 2 15 10

block-3 8 18 7 1

Table 4.23: BT - Problem #4 Distribution of Containers

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

block-1 7 14 3 9 3 14

block-2 10 6 11 8 6 17 8

block-3 5 7 6 8 10 6 7

Table 4.24: BT - Problem #5 Distribution of Containers

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

block-1 15 2 13 16 9

block-2 3 5 11 4 4 13 4

block-3 4 6 7 7 11 5 15 11
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Table 4.25: BT - Problem #6 Distribution of Containers

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

block-1 12 2 10 4 10 10 5

block-2 6 5 11 7 11 4 13 4

block-3 4 6 10 6 5 14 6

Table 4.26: BT - Problem #7 Distribution of Containers

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

block-1 10 2 8 4 10 2 13 4

block-2 6 9 14 4 11 2 9 5

block-3 6 2 9 3 6 5 15 6

Table 4.27: BT - Problem #8 Distribution of Containers

Container Group CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

block-1 12 2 2 4 6 3 10 1

block-2 3 5 19 2 11 4 13 8

block-3 7 6 10 5 10 2 14 6
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4.3.2 Input

The quantities of the containers in each group are the same used for the Random

Tests (Table 4.17).

Again there is one SC assigned to one QC and the Work Schedule already

presented for Random Tests (Table 4.18) is assumed.

Table 4.1 indicates the distances between the blocks. There are three blocks.

The side-by-side yard-bays are 3 meters apart.

The SC starting point is assumed to be block-1/yard-bay 1.

4.3.3 Beam Search and Ant Colony Results

Tables 4.28 and 4.29 show the route costs taken from [11] and the results obtained

with the Beam Search and Ant Colony heuristics using the Random collection

strategy. Average, best and worse colums refer to results from 5 runs for each

parameter set.

Upon the number of ants variation, the constant parameter values will be set

as follows:

� ��� ��� � � � % �!� � � � � � � � � " � � � � � � � � � � " ��� � � � � "#� � ��� � � � � " �

The following observations can be made:

1. The Ant Colony heuristic returned lower route costs than Beam Search.
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Table 4.28: BT Beam Search processing time x cost

problems # Mixed Integer beam search

Programming 30 100 500

from [11] average best worse average best worse average best worse

problem 1 1931 2292 2166 2419 2238 1930 2419 2175 2033 2346

problem 2 1961 2263 2093 2466 2225 2020 2466 2109 1960 2526

problem 3 1841 2058 1853 2179 2179 2179 2179 2046 1853 2179

problem 4 2347 2492 2492 2492 2542 2492 2745 2552 2419 2685

problem 5 2420 2918 2745 3071 2751 2672 2925 2889 2745 2925

problem 6 2330 2928 2745 3144 2800 2655 3071 2771 2672 2938

problem 7 2656 3141 3071 3337 3037 3011 3084 3052 3011 3084

problem 8 not solved 2948 2818 3071 2918 2758 3161 2951 2758 3264

Table 4.29: BT Ant Colony heuristic processing time x cost

problems # Mixed Integer ant colony

Programming 30 50 100

from [11] average best worse average best worse average best worse

problem 1 1931 2100 2003 2166 2075 1930 2166 2009 1930 2093

problem 2 1961 2020 2020 2020 1996 1960 2020 1996 1960 2020

problem 3 1841 1922 1853 2020 1854 1840 1913 1854 1840 1913

problem 4 2347 2462 2419 2492 2448 2419 2492 2433 2419 2492

problem 5 2420 2535 2492 2565 2542 2492 2672 2477 2419 2492

problem 6 2330 2733 2685 2745 2629 2419 2745 2596 2492 2745

problem 7 2656 3027 2908 3161 3053 2981 3071 2951 2908 2981

problem 8 not solved 2792 2582 2908 2738 2655 2818 2687 2655 2818
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2. By increasing the number of ants we obtain better lower cost solutions be-

cause the search space is better explored. This behavior confirmed the ten-

dency observed in previous tests.

3. Reaching the optimal solution is not guaranteed even for medium size prob-

lems. The difference of one between the results obtained by Mixed Integer

Programming from [11] and the results obtained with the Beam Search and

Ant Colony heuristic for problems #1, #2, #3 and #5 was considered irrele-

vant.

4. Heuristic methods Beam Search and Ant Colony reached a solution for

problem #8, not obtained by Mixed Integer Programming.

4.4 Practical Tests (RT)

4.4.1 Overview

Two practical problems defined in [11] have been reproduced. Next two sub-

sections present the inputs and results of each problem.
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Table 4.30: RT1 - Work Schedule

C.Group HAM40 HAM20 RTM20 HAM20 SOU20 JED20 SOU20

Quantity 6 9 10 4 28 7 6

Table 4.31: RT1 - Containers Distribution Table

blocks yard-bay ContainerGroup Quantity

block-1 2 SOU20 10

block-1 3 SOU20 9

block-1 4 SOU20 5

block-1 4 JED20 4

block-1 7 HAM40 4

block-1 8 HAM40 2

block-2 2 SOU20 10

block-2 6 JED20 3

block-3 1 RTM20 5

block-3 2 RTM20 5

block-3 4 HAM20 9

block-3 6 HAM20 4

4.4.2 Practical problem #1 (RT1)

4.4.2.1 Input

A straddle carrier (SC1) is assigned to a Quay Crane (QC1) in this problem. It

has the overall task to load 70 containers classified under five container groups.

The work schedule is given by Table 4.30 and the distribution of the containers is

given by Table 4.31.

The distance between adjacent yard-bays is 3m and between adjacent blocks

is 100m. The container yard is divided into three blocks, each one containing 8

yard-bays. The starting point of SC1 is block-1/ yard-bay 1.
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4.4.2.2 Results

The SC1 route identified by [11] is the one provided by the Greedy collection

strategy and has a cost 614.

The Ant Colony heuristic, using the Random collection strategy, found other

routes with smaller costs (514, 511 and 505). The Beam Search, also using the

Random collection strategy, returned routes with costs 520 and 517, thus greater

than the Ant Colony routes but better than the Greedy collection strategy results.

Table 4.33 shows the results.

In the Beam Search, the beam width was equal to
� � .

The Ant Colony Optimization parameters were: � ) � � � � � � � ��� ��� � � � % �!� � �

� ��� � � � " � � � � � � � � � � " ��� � � � � " � � ��� � � � � " � .

4.4.3 Practical problem #2 (RT2)

4.4.3.1 Input

One straddle carrier (SC1) is assigned to one quay crane (QC1) in this problem.

The overall task was to load 146 containers classified under five container groups.

The work schedule is given by Table 4.34 and the distribution of the containers is

given by Table 4.35.

The distance between adjacent yard-bays is 3m and between adjacent blocks

is 100m. The container yard is divided into three blocks: block-1 contains 7 yard-
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Table
4.33:

R
T

1
-

B
eam

Search
and

A
ntC

olony
heuristics:

visiting
routes

Cost CG HAM40 HAM20 RTM20 HAM20 SOU20 JED20 SOU20

WS 6 9 10 4 28 7 6

614 VSeq b1/y7, b1/y8 b3/y6, b3/y4 b3/y2, b3/y1 b3/y4 b2/y2, b1/y2, b1/y3 b1/y4, b2/y6 b1/y4, b1/y3

Qty* (4) 0, (2) 0 (4) 0, (5) 4 (5) 0, (5) 0 (4) 0 (10) 0, (10) 0, (8) 1 (4) 0, (3) 0 (5) 0, (1) 0

520 VSeq beam b1/y7, b1/y8 b3/y6, b3/y4 b3/y2, b3/y1 b3/y4, y3/y6 b1/y2, b1/y3, b2/y2 b2/y6, b1/y4 b1/y4, b1/y3

Qty* rand (4) 0, (2) 0 (3)1, (6)3 (5) 0, (5) 0 (3)0, (1)0 (10)0, (8)1, (10)0 (3)0, (4)0 (5) 0, (1) 0

517 VSeq beam b1/y7, b1/y8 b3/y6, b3/y4 b3/y1, b3/y2 b3/y4, y3/y6 b2/y2, b1/y2, b1/y3, b1/y4 b1/y4, b2/y6 b2/y2

Qty* rand (4) 0, (2) 0 (1)3, (8)1 (5) 0, (5) 0 (1)0, (3)0 (4) 6, (10) 0, (9) 0, (5) 0 (4) 0, (3) 0 (6) 0

514 VSeq ant b1/y7, b1/y8 b3/y6, b3/y4 b3/y2, b3/y1 b3/y4 b1/y4, b1/y3, b1/y2, b2/y2 b2/y6, b1/y4 b1/y4, b1/y3

Qty* rand (4) 0, (2) 0 (4) 0, (5) 4 (5) 0, (5) 0 (4) 0 (2) 3, (6) 3, (10) 0, (10) 0 (3) 0, (4) 0 (3) 0, (3) 0

511 VSeq ant b1/y7, b1/y8 b3/y6, b3/y4 b3/y2, b3/y1 b3/y4 b2/y2, b1/y2, b1/y4, b1/y3 b1/y4, b2/y6 b2/y2

Qty* rand (4) 0, (2) 0 (4) 0, (5) 4 (5) 0, (5) 0 (4) 0 (4) 6, (10) 0, (5) 0, (9) 0 (4) 0, (3) 0 (6) 0

505 VSeq ant b1/y7, b1/y8 b3/y6, b3/y4 b3/y2, b3/y1 b3/y4 b2/y2, b1/y2, b1/y3, b1/y4 b1/y4, b2/y6 b2/y2

Qty* rand (4) 0, (2) 0 (4) 0, (5) 4 (5) 0, (5) 0 (4) 0 (4) 6, (10) 0, (9) 0, (5) 0 (4) 0, (3) 0 (6) 0

*A number within parenthesis represents the collected quantity and a number without parenthesis represents the remaining quantity to be collected later
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Table 4.34: RT2 - Work Schedule

C.Group A B C A D B A E C

Quantity 15 15 13 7 21 19 16 17 23

bays; block-2 contains 6 yard-bays and block-3 contains 5 yard-bays. SC1 starting

point is block-1/ yard-bay 1.

4.4.3.2 Results

In [11], the SC1 route with cost equal to 1314 was identified. The Ant Colony

heuristic using the Random container collection strategy of this thesis, found other

routes with smaller costs: 853 and 844, as shown in Table 4.36. However, in

this particular case, the Greedy collection strategy returned a slightly better route

(832). Beam Search returned a better result using the Random collection strategy

(cost=841), when compared with the result obtained by the Greedy collection

strategy (cost=1044). Table 4.36 shows the results.

In the Beam Search, the beam width was equal to
� � .

The Ant Colony Optimization parameters were: � ) � � � � � � � ��� ��� � � � % �!� � �

� ��� � � � " � � � � � � � � � � " ��� � � � � " � � ��� � � � � " � .
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Table 4.35: RT2 - Distribution of the Containers

blocks yard-bay ContainerGroup Quantity

block-1 1 C 9

block-1 2 A 8

block-1 3 A 10

block-1 4 E 4

block-1 5 E 7

block-1 6 B 4

block-1 7 C 10

block-2 8 B 7

block-2 9 A 8

block-2 10 C 7

block-2 10 D 3

block-2 11 B 8

block-2 12 C 10

block-2 13 E 6

block-3 14 A 12

block-3 15 B 6

block-3 16 D 10

block-3 17 B 9

block-3 18 D 8
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Table
4.36:

R
T

2
-

B
eam

Search
and

A
ntC

olony
heuristics:

visiting
routes

Cost CG A B C A D B A E C

WS 15 15 13 7 21 19 16 17 23

1314 VS y2, y3 y6, y8, y11 y1, y7 y3, y9 y10, y16, y18 y11, y15, y17 y9, y14 y4, y5, y13 y7, y10, y12

Q* 8(0), 7(3) 4(0), 7(0), 4(4) 9(0), 4(6) 3(4), 4(4) 3(0), 10(0), 8(0) 4(0), 6(0), 9(0) 4( 0), 12(0) 4(0), 7(0), 6(0) 6(0), 7(0), 10(0)

1044 VS bg y2, y14 y15, y17 y12, y10 y9 y10, y18, y16 y8, y11, y6 y3, y14, y9 y13, y5, y4 y7, y1, y10

Q* (8)0, (7)5 (6)0, (9)0 (10)0, (3)4 (7)1 (3)0, (8)0, (10)0 (7)0, (8)0, (4)0 (10)0, (5)0, (1)0 (6)0, (7)0, (4)0 (10)0, (9)0, (4)0

853 VS ar y2, y3 y6, y8, y11 y10, y12 y9 y10, y18, y16 y15, y17, y8, y11 y9, y14, y3 y4, y5, y13 y12, y7, y1

Q* (8)0, (7)3 (4)0, (5)2, (6)2 (7)0, (6)4 (7)1 (3)0, (8)0, (10)0 (6)0, (9)0, (2)0, (2)0 (1)0, (12)0, (3)0 (4)0, (7)0, (6)0 (4)0, (10)0, (9)0

862 VS ar y2, y3 y6, y8, y11 y10, y12 y9 y10, y18, y16 y17, y15, y8, y11 y9, y14, y2 y4, y5, y13 y10, y1, y7

Q* (5)3, (10)0 (4)0, (5)2, (6)2 (3)4, (10)0) (7)1 (3)0, (8)0, (10)0 (9)0, (6)0, (2)0, (2)0 (1)0, (12)0, (3)0 (4)0, (7)0, (6)0 (4)0, (9)0, (10)0

844 VS ar y2, y3 y6, y8, y11 y10, y12 y9 y10, y18, y16 y15, y17, y11 y9, y14, y3 y4, y5, y13 y12, y7, y1

Q* (8)0, (7)3 (4)0, (7)0, (4)4 (7)0, (6)4 (7)1 (3)0, (8)0, (10)0 (6)0, (9)0, (4)0 (1)0, (12)0, (3)0 (4)0, (7)0, (6)0 (4)0, (10)0, (9)0

841 VS br y2, y3 y8, y11 y12, y10 y9 y10, y18, y16 y15, y17, y6 y2, y14, y9 y13, y5, y4 y1, y7, y12, y10

Q* (5)3, (10)0 (7)0, (8)0 (9)1, (4)3 (7)1 (3)0, (8)0, (10)0 (6)0, (9)0, (4)0 (3)0, (12)0, (1)0 (6)0, (7)0, (4)0 (9(0), (10)0, (1)0, (3)0

832 VS ag y2, y3 y6, y11, y8 y10, y12 y9 y10, y18, y16 y17, y15, y8 y9, y14, y3 y4, y5, y13 y12, y7, y1

Q* (8)0, (7)3 (4)0, (8)0, (3)4 (7)0, (6)4 (7)1 (3)0, (8)0, (10)0 (9)0, (6)0, (4)3 (1)0, (12)0, (3)0 (4)0, (7)0, (6)0 (4)0, (10)0, (9)0

*A number within parenthesis represents the collected quantity and a number without parenthesis represents the remaining quantity to be collected later

** bg = beam/greedy; ; br = beam/random; ag = ant/greedy; ar = ant/random
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Chapter 5

Multiple Straddle Carrier Routing

Problem

This thesis focused on a single straddle carrier routing problem. However a real

container terminal has more than one quay crane, with their respective work

schedules, and more than one straddle carrier, each one assigned to one quay

crane. Several SCs must complete their routing, by sharing the same container

yard-map. This new scenario introduces a few complications to the single SC

routing problem, increasing significantly the routing problem complexity.

The present chapter aims to present a discussion about the multiple straddle

carrier routing problem in a container terminal environment.

The Multiple SC routing problem has the following constraints to be satisfied:

77



1. The given work schedules of all QCs must be accomplished;

2. Each SC is assigned to a single QC;

3. The total number of containers from a container group picked up at each

yard-bay must be equal to the total number of containers from the same

container group initially located at the container terminal yard;

4. Conflicts between SCs must be resolved;

5. Several SC equipments can be working simultaneously;

6. The objective is to minimize each SC total completion time or total travel

distance.

A conflict between SCs can be of different types, such as:

� Travel conflict: a SC tries to cross another SC. For example, SC1 is at yard-

bay 3 and must pick up containers at yard-bay 1 next. SC2 is picking up

containers at yard-bay 2.

� Space conflict: a SC tries to move to the same location where another SC

is already placed. For example, SC1 is at yard-bay 1 and must pick up

containers at yard-bay 3 next. SC2 is collecting containers at yard-bay 3.

Apart from those two types of conflicts, there is also another important aspect to

be considered under the multiple SC routing problem. The container stock at the
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container terminal yard must be shared between all SC equipments. It means that

if there was initially 10 containers of group A at yard-bay 1 and SC1 picked up

3, SC2 must know in real time that there are only 7 containers of group A left at

yard-bay 1.

Kim [11] proposed a job scheduling solution for routing problem of two SCs

where containers were located on a single block. The following conflict resolution

strategies were considered.

� Travel conflict

– waiting strategy: SC1, which wants to cross SC2’s way, waits until

SC2 completes its task and then performs the crossing.

– exchanging roles between SCs’ strategy: SC2’s current task is inter-

rupted and 1) SC1 resumes SC2’s previously interrupted task and 2)

SC2 assumes SC1’s task. It means that roles between SCs are ex-

changed after a job interruption.

� Space conflict

– waiting strategy: SC1, which wants to move to SC2 location, waits

until SC2 finishes its task and then performs the move.

– substitutive strategy: SC2’s current task is interrupted and SC2 as-

sumes SC1’s task before resuming its preciously interrupted task.
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The routing problem of more than two SCs was also considered in [11] but, this

time, the containers were located in one or multiple blocks, according to the as-

sumptions below.

� a pseudo work schedule would be constructed by appending the work sched-

ules of all SCs ;

� no interference between equipments would be considered.

The multiple routing problem has therefore been reduced to a single routing prob-

lem. By solving the single SC problem for the pseudo work schedule would, in

theory, resolve the overall problem. However assumptions made turn the problem

scenario completely artificial, since each SC route will have to be selected manu-

ally from the output and each SC routing will have to occur in sequence and never

in parallel. So why not using a single SC?

I solved some multiple routing problem, using the single SC routing proce-

dure, by providing (through manual work) the container distribution table for each

SC separately. However, this procedure seems inappropriate since the potential

parallelism of multiple SCs is ignored.
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Chapter 6

Conclusion

The Ant Colony heuristic proved to be more promising than the Beam Search

heuristic in spite of the excessive processing times of the former. For example a

problem with five container groups, each one dispersed into five yard-bays, took

in average 33 hours to be resolved with Ant Colony heuristic against 3.3 hours

with Beam Search. Considering that in practice the number of yard-bays where

container groups are scattered do not exceed five, according to [11], the heuristic

could in fact be used for planning single straddle carrier routes in real container

terminals. In case larger problems do need to be solved, more investigation would

be required to improve the efficiency of the Ant Colony heuristic.

The proposed Random collection strategy increased the number of alterna-

tives considered within the search space and turned out to improve the quality of

solutions. The Beam Search did not react so well as Ant Colony heuristic with
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this strategy because it builds its search tree over yard-bay choices making its

decisions on the basis of the route costs. Therefore, the list of open states only

contains different route choices that is, the beam search does not take account of

container quantities. Consequently, it offers no alternatives for a quantity pick-up

which turns out to be a bad choice. In contrast, two ants may make the same yard-

bay choice with different quantity pick-ups. This means that a larger number of

different solutions will be considered during the search.

Solving a single straddle carrier problem does not correspond to real scenarios

encountered in container terminals. Thus multiple SC routing problem would be

the next natural step for a future work in order to attend to the demands of a

port environment. More research in this direction is needed but one promising

approach might be the application of parallel programming. The search for a

solution should consider the container stock without any separate preallocation of

containers to each SC.
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