
Franqueira, Virginia Nunes Leal Franqueira (2009) Finding Multi-step Attacks
in Computer Networks Using Heuristic Search and Mobile Ambients. Doctor
of Philosophy (PhD) thesis, University of Twente.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/77205/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.3990/1.9789036529235

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/77205/
https://doi.org/10.3990/1.9789036529235
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

FINDING MULTI-STEP ATTACKS IN COMPUTER
NETWORKS USING HEURISTIC SEARCH AND

MOBILE AMBIENTS

Virginia Nunes Leal Franqueira

Ph.D. dissertation committee:

Chairman and Secretary
Prof. dr. ir. A. J. Mouthaan University of Twente, the Netherlands

Promotor
Prof. dr. R. J. Wieringa University of Twente, the Netherlands

Assistant promotor
Dr. P. A. T. van Eck University of Twente, the Netherlands

Members
Prof. dr. Frances M. T. Brazier Delft University of Technology, the Netherlands
Prof. dr. Pieter H. Hartel University of Twente, the Netherlands
Prof. dr. Sandro Etalle University of Twente, the Netherlands
Dr. Siv Hilde Houmb Telenor, Norway
Dr. Jurjen Bos Equens SE, the Netherlands

CTIT Ph.D. Thesis Series No. 09-154
Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE
Enschede, the Netherlands

SIKS Dissertation Series No. 2009-43
The research reported in this thesis has been carried
out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems.

The research reported in this thesis has been supported
by the research program (www.sentinels.nl) of the
Technology Foundation STW, under the contract
No. 06679.

Typeset with LATEX. Printed and bound by Ipskamp Drukkers B.V.
Cover design by the author.
Cover images from http://www.dreamstime.com (photographer Sergey Llin).
ISSN: 1381-3617
ISBN: 978-90-365-2923-5
http://dx.doi.org/10.3990/1.9789036529235

Copyright c© 2009, Virginia Nunes Leal Franqueira, Enschede, The Netherlands.
All rights reserved. No part of this book may be reproduced or transmitted in any form

or by any means, electronic or mechanical, including photography, recording, or any in-

formation storage and retrieval system, without prior written permission of the author.

FINDING MULTI-STEP ATTACKS IN COMPUTER
NETWORKS USING HEURISTIC SEARCH AND

MOBILE AMBIENTS

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Friday 13 November, 2009 at 15.00

by

Virginia Nunes Leal Franqueira

born on October 2, 1963
in Santos, state of São Paulo, Brazil

This dissertation has been approved by:

Prof. dr. R. J. Wieringa (promotor)
Dr. P. A. T. van Eck (assistant promotor)

Summary

An important aspect of IT security governance is the proactive and continuous
identification of possible attacks in computer networks. This is complicated due
to the complexity and size of networks, and due to the fact that usually net-
work attacks are performed in several steps. This thesis proposes an approach
called MsAMS (Multi-step Attack Modelling an Simulation), demonstrated by a
proof-of-concept tool, to automatically find such multi-step attacks. The novelty
of MsAMS is the fact that it applies Mobile Ambients and Combinatorial Opti-
mization, more specifically Heuristic Search, to the domain of multi-step network
attacks. A variant of ambient calculus is used to model networks, and heuristic
search is used to simulate attackers searching for possible attacks in the modelled
network. Additionally, and in support to these two aspects, MsAMS uses algo-
rithms from the domain of Link Analysis Ranking, traditionally applied to the
domain of Web search.

Mobile Ambients allow us to fully represent the hierarchical topology of a net-
work as part of the network model itself. This is essential to relate insights gained
from the model to the real network. Furthermore, we can represent dynamics of
attacks such as credential theft, what increases the spectrum of possibilities avail-
able for attackers since it allows considering non-vulnerable as well as vulnerable
hosts as attack steps.

Optimization allows managing the complexity of the problem of finding multi-
step attacks involving credentials without compromising the scalability of the
approach for practical use. Therefore, the MsAMS approach comprises: (i) a
formal representation of the solution which allows its automatic computation,
in our case, the representation of an attack step in a notation based on Mobile
Ambients, (ii) a search engine which implements a heuristic method for compos-
ing attack steps into multi-step attacks, and (iii) fitness functions used by the
search engine for the selection of attack steps among alternatives, according to
automatically computed metrics.

Similar to search engines that use the structure of the World Wide Web to
score webpages, the MsAMS approach proposes the use of the structure of a
network to score network assets. In particular, MsAMS uses PageRank and HITS
ranking schemes as sources of scalable metrics to:

1. assign asset value automatically to all ambients represented in the network,
based on network connectivity rather than on financial value, providing an
absolute and comparable view of asset value. Those values support the
network administrator in the process of selecting a target.

2. assign a cost value automatically to all ambients represented in the network,
also based on network connectivity rather than on financial value, providing
an absolute and comparable view of cost for attack steps. Such a measure
of cost allows the incorporation of rationality to the ambient-attacker which
simulates a strategy of a real-attacker.

v

Samenvatting

Een belangrijk aspect van de besturing van IT-beveiliging is de pro-actieve en
continue identificatie van mogelijke aanvallen op computernetwerken. Dit is ge-
compliceerd vanwege de complexiteit en omvang van dergelijke netwerken, en
als gevolg van het feit dat netwerkaanvallen gewoonlijk worden uitgevoerd in
meerdere stappen. Dit proefschrift stelt een aanpak voor genaamd MsAMS
(Multi-stap Attack Modelleren een Simulatie), gedemonstreerd met een proof-
of-concept tool om dergelijke meerstapsaanvallen automatisch te vinden. Het
orginele aspect van MsAMS is het feit dat het mobile ambients en combina-
torische optimizatie, meer specifiek heuristisch zoeken, toepast in het domein van
meerstaps-netwerkaanvallen. Een variant van ambient calculus wordt gebruikt
om netwerken te modelleren, en heuristische zoeken wordt gebruikt om aanvallers
te simuleren die zoeken naar mogelijke aanvallen in het gemodelleerde netwerk.
Daarnaast en ter ondersteuning van deze twee aspecten gebruikt MsAMS algorit-
men uit het domein van link analyse ranking, die traditioneel toegepast worden
in het domein van zoekmachines voor het Web.

Mobiele ambients stellen ons in staat om de hiërarchische topologie van een
netwerk volledig te representeren als onderdeel van het netwerkmodel zelf. Dit is
essentieel om inzichten uit het model te relateren aan het echte netwerk. Boven-
dien kunnen wij dynamiek van aanvallen representeren, zoals diefstal van creden-
tials, wat het spectrum van mogelijkheden verhoogt voor aanvallers omdat op
deze manier zowel niet-kwetsbare als kwetsbare hosts als aanvalsstappen over-
wogen kunnen worden.

Optimalisatie voorziet in beheersing van de complexiteit van het probleem van
het vinden van meerstapsaanvallen met credentials zonder schaalbaarheid van de
aanpak voor praktisch gebruik tekort te doen. Daarom bestaat de MsAMS-
aanpak uit: (i) een formele representatie van de oplossing, zodanig dat automa-
tische berekening van de oplossing mogelijk is: in ons geval de representatie
van een aanvalsstap in een notatie gebaseerd op Mobile ambients, (ii) een zoek-
machine die een heuristische methode implementeert voor het samenstellen van
meerstaps-aanvallen uit aanvalsstappen, en (iii) fitness-functies die de zoekma-
chine gebruikt voor de selectie van de aanvalsstappen uit alternatieven, volgens
automatisch berekende metrieken.

Net zoals bij zoekmachines die gebruik maken van de structuur van het World
Wide Web om webpagina’s te scoren, stelt de MsAMS-aanpak voor om gebruik
te maken van de structuur van het netwerk om netwerk-assets te scoren. In het
bijzonder maakt MsAMS gebruik van PageRank en het HITS ranking scheme als
bronnen van schaalbare metrieken voor:

1. automatische toewijzing van asset-waardes aan alle ambients in het netwerk,
gebaseerd op netwerkconnectiviteit en niet op financiële waarde, die voorzien
in een absoluut en vergelijkbaar overzicht van asset-waarde. Deze waarden
ondersteunen de netwerkbeheerder in het proces van het kiezen van een
aanvalsdoel.

vii

2. automatische toewijzen van kosten aan alle ambients in het netwerk, ook
gebaseerd op netwerkconnectiviteit in plaats van op financiële waarde. Hier-
mee wordt voorzien in een absoluut en vergelijkbaar overzicht van de kosten
van de aanvalsstappen. Een dergelijke inschatting van de kosten maakt het
mogelijk om rationaliteit in acht te nemen van de ambient-aanvaller die een
strategie van een werkelijke aanvaller simuleert.

viii

Preface

It has been a long, but enriching, marathon (using Roel’s words) that concretely
started when I left both husband and daughter behind and landed in Enschede,
completely alone, on a rainy day, in the summer 2005. My first thoughts are for
them; you were the most affected by my decision but were unconditionally there
for me, even if only virtually! Without your love, faith and “push” I would never
have reached this stage.

But, on the other side of the Atlantic, I had a good surprise! I encountered
many great people that contributed positively in one way or another with my
PhD journey. I want to express my gratitude to them here.

First, I want to thank Roel Wieringa. More than a promotor, he has always
been an “enthusiastic” supporter of my research throughout the marathon. His
support even intensified towards the end of the race, when he kept encouraging
me with contagious optimism, and numerous thorough feedbacks (even while on
holiday); they were really essential. Thank you!

Second, I want to thank Pascal van Eck. He also played an important role
during my PhD providing “daily” support, tips and guidance not only about
work-related matters, but also about everyday life in the Netherlands. Pascal
has welcomed me from the very first interview, always open-minded for any type
of discussion. Thank you for teaching me the “arts of the craft”.

Third, I want to thank Peter Hobson for accepting me as a visiting researcher
at Brunel University in the summer 2006. But, specially, I want to thank Raul
Lopes for a collaboration that lasted much longer than my stay in London. This
collaboration involved not only endless discussions about ELAS and MsAMS,
but also his programming expertise with functional languages; it represented a
turning point in my research. Thank you so much!

Moreover, I want to take the opportunity to thank all the members of my
committee for donating their time to read my long manuscript. Particularly, I
want to thank Jurjen Bos for his careful examination of the text, and constructive
comments to improve the final version of this book. I also want to thank Siv
Houmb for really insightful feedbacks. Thank you.

Next, I want to explicitly thank Chen Li for the time and energy consumed
with discussions about a chapter that never ended in this book (!!!), and Maurice
van Keulen for his collaboration on the NVD investigation. Thank you.

Further, I want to thank Roberto Santana. Life in the Netherlands would
have been much harder without the support of Roberto, who became a dear
friend. I miss already our conversations in the train from Deventer to Hengelo...
He represented my connection with the Dutch world although sharing a real
understanding of my background. Cheers!

Still, I want to thank Ben Elsinga for many interesting pointers at the be-
ginning of my research, and Manfred Reichert for numerous exchanges of ideas
related to work, or not, during the period he spent with us at the IS group. I
also want to thank many more people I was lucky to find on my way: Jelena
Marincic, Wouter Kuijper, Xiaomeng Su, Zlatko Zlatev, among others. Their

ix

friendship filled gaps of an absolutely lonely period and made me feel “at home”
in the Netherlands. Not to mention Suse Engbers, Ida den Hamer, and Elvira
Dijkhuis who had always true interest in helping on whatever needed. Thank you
all.

Finally, I want to thank determined women that are extraordinary examples
for me: Angela, Maria de Lourdes, Beth, Rosa and, of course, Amanda! But I
also want to thank some amazing men: Silvio, Mauricio, and Cardoso. Love you!

Last, but not least, well... I want to thank Amanda just for being who she is:
strong minded and dedicated but optimistic and funny (!), and for the fantastic
moments we spent together in our “nomadic life” across Brazil, England, and the
Netherlands. Kisses and hugs!

Virginia
Hilversum, October 2009

x

The following song was very much part of my PhD. I dedicate it
“back” to the one who shares my unusual journeys, accommodates
my crazy changes in plan (or even my complete lack of a plan!),
copes with my intrinsic dark side but, still, never gave up on me...

Everything I Own

You sheltered me from harm,
kept me warm, kept me warm.
You gave my life to me,
set me free, set me free.
The finest years I ever knew,
were all the years I had with you.

I would give anything I own,
give up my life, my heart, my home.
I would give everything I own,
just to have you back again.

You taught me how to love,
what its of, what its of.
You never said too much,
but still you showed the way,
and I knew from watching you.
Nobody else could ever know,
the part of me that can’t let go.

I would give anything I own,
give up my life, my heart, my home.
I would give everything I own,
just to have you back again.

Is there someone you know,
you’re loving them so,
but taking them all for granted?
You may lose them one day,
someone takes them away,
and they don’t hear the words you long to say.

I would give anything I own,
give up my life, my heart, my home.
I would give everything I own,
just to have you back again.

Lyrics by David Gates
(Preferred performance by Rod Stewart!)

Contents

I Motivation and Research Context 1

1 Introduction 3
1.1 Background . 4
1.2 Research Scope and Goal . 7

1.2.1 Non-objectives . 8
1.3 Research questions . 8
1.4 Thesis outline . 9
1.5 Contributions . 11

1.5.1 About the MsAMS Solution 11
1.5.2 Cross Analysis of Contributions 11

2 Background and Related Work 15
2.1 Security Terms . 15
2.2 Related work . 21

2.2.1 Penetration Testing . 21
2.2.2 Attack Trees . 23
2.2.3 Attack Graphs . 27

2.2.3.1 State Enumeration-based Attack Graphs 28
2.2.3.2 Exploit-based Attack Graphs 29
2.2.3.3 Addressing Visual Attack Graphs Complexity . . 31
2.2.3.4 Optimization Perspective of Attack Graphs 34
2.2.3.5 What-if Analysis in Attack Graphs 36
2.2.3.6 Credentials in Attack Graphs 36

2.2.4 Overlap between IDS/IPS and Attack Graphs 38
2.3 Summary . 40

3 Understanding Network Attacks 43
3.1 Computer Networks . 43
3.2 Network Attacks . 47

3.2.1 Single-step Attacks . 47
3.2.2 Multi-step Attacks . 49

3.2.2.1 Definition and Purpose of Multi-step Attacks . . 50
3.2.2.2 Main types of Single-steps 51

3.3 Attackers Strategies and Types of Multi-step Attack 55
3.3.1 Classes of Attackers . 56
3.3.2 Attacker Strategy: Best Cost-benefit from an Attack . . . 56

3.3.2.1 Server-side and Client-side Attacks 57
3.3.3 Attacker Strategy: Best Coverage of a Network 57

3.3.3.1 Botnet Attacks 58
3.3.3.2 Distributed Denial of Services Attacks 60

3.4 Economics of Network Multi-step Attacks 61

xiii

CONTENTS

4 Solution Requirements 67
4.1 Gaps Analysis . 67
4.2 Requirements for the Solution . 70
4.3 Solution Direction . 73

II Proposed Solution 75
Background on Heuristic Search . 77
Why Using Heuristic Search? . 78

5 Gaining Insights about Vulnerabilities from the NVD 79
5.1 Motivation for Empirical Investigation of NVD 79
5.2 NIST Initiatives towards Standardized and Measurable Informa-

tion Security . 82
5.3 Data Set and Analysis Approach 85
5.4 Analysis of Single NVD Attributes 89
5.5 Analysis of Relationships between NVD Attributes 92
5.6 Evaluation:

from Access-to-Effect toward Access-to-Impact 98
5.7 Classification of Vulnerabilities by Impact on Defender 101

6 Finding Network Attacks as an Optimization Problem 103
6.1 ELAS: Evolutionary Learning of Attack Scenarios 104
6.2 Our Evolutionary Approach . 105

6.2.1 Cost and Value Metrics . 106
6.2.2 Solution Representation . 107
6.2.3 Edition Operations . 110
6.2.4 The Evolutionary Algorithm 111

6.3 Motivating Example: Denial of Services by E-mail Worm 113
6.3.1 Representation of the DoS Attack 113
6.3.2 Running ELAS to Find the DoS Attack 114

6.4 Summary . 116

7 The MsAMS Solution:
Multi-step Attack Modelling and Simulation 119
7.1 Proposed Solution . 120

7.1.1 Comparison between ELAS and MsAMS 121
7.2 Running Example . 122
7.3 Modelling a Network . 123
7.4 Overview of MsAMS . 123
7.5 Method followed by MsAMS . 124
7.6 Modelling with MsAMS . 125
7.7 Simulation of Attackers . 134
7.8 Processing Virtual Links . 139
7.9 Computing Ranks using the Matrix of Network Links 140

xiv

CONTENTS

7.9.1 Notions of Inlink, Outlink & Importance in Ambients . . . 141
7.9.2 Ranking Scheme from PageRank 143
7.9.3 Ranking Scheme from HITS 145

7.10 Further Modelling . 148
7.10.1 Modelling Vulnerabilities, Services and Protocols 148

7.10.1.1 Vulnerabilities . 148
7.10.1.2 Services and Protocols 152

7.10.2 Modelling Credentials . 153
7.11 Search for Attacks . 158
7.12 Summary . 164

7.12.1 Network topology . 165
7.12.2 Fully connected subnets . 165
7.12.3 Reachability . 166
7.12.4 Access Control . 166
7.12.5 Attackers and Legitimate Users 166
7.12.6 Attackers’ Target & Asset Values 167

7.13 Related Work . 167
7.13.1 Mobile Ambients . 167
7.13.2 Link Analysis Ranking . 169

III Solution Validation 173
Methodology . 175

8 Testing the MsAMS Approach 177
8.1 Reuse of Ambients Specification . 178
8.2 Computing Grid Network Example 180

8.2.1 Specification of the Computing Grid Network Example . . 182
8.2.2 Blocking Firewall Outbound Traffic 188

8.3 Power Grid Network Example . 188
8.3.1 Baseline Specification of the Power Grid Network Example 191
8.3.2 Version One: Adding Credentials 198
8.3.3 Version Two: Hypothesizing about a Vulnerable Workstation202
8.3.4 Version Three: Adding Kerberos Authentication to the

Data Historian Server . 204
8.3.4.1 Kerberos Authentication 204
8.3.4.2 Modelling the Interface with Kerberos 205

8.3.5 Version Four: Adding Kerberos Authentication to the Cit-
rix Server . 208

8.4 Summary . 209
8.A Chapter Appendix: Complete Specifications 211
8.B Chapter Appendix: PageRank and HITS Scores 219

xv

CONTENTS

9 Scalability of the MsAMS Approach 225
9.1 Overview of the MsAMS Tool . 225
9.2 Scalability of the MsAMS Tool . 227

9.2.1 Time Performance with Increasing Number of Ambients . . 227
9.2.1.1 Evaluation . 230

9.2.2 Time Performance with Increasing Number of Firewall Rules233
9.2.2.1 Evaluation . 234

9.2.3 Space Performance with Increasing Number of Ambients . 235
9.2.3.1 Evaluation . 237

9.3 Summary of Scalability Results . 239

IV Final Remarks 241

10 Conclusion 243
10.1 Discussion . 245
10.2 Opportunities for Future Work . 250

10.2.1 Further Academic Research 250
10.2.2 Further Industrial Development 253

Appendices 257

A Formalization of the MsAMS Approach 257
A.1 Preliminary Concepts . 257
A.2 The MsAMS Reduction Rules . 258

A.2.1 Reduction which handles ambients movement 259
A.2.2 Reduction which handles ambients communication 260
A.2.3 Reduction which handles ambients resource-acquisition . . 261

A.3 The MsAMS Structural Congruence Rules 261

B Gathering Defense Requirements using Attack Trees 263
B.1 Introduction . 264
B.2 A framework for gathering defense requirements 265

B.2.1 Supporting deliverable: attack strategies organized in at-
tack trees . 267

B.2.2 Supporting deliverable: a matrix of attack versus defense
strategies . 269

B.2.3 Method for gathering defense requirements 274
B.2.3.1 Step 1: Identify critical assets and processes . . . 274
B.2.3.2 Step 2: Select one critical asset/process 275
B.2.3.3 Step 3: Identify potential attacks related to insid-

ers . 275
B.2.3.4 Step 4: Assess risk level of each potential attack

from defense level 275

xvi

CONTENTS

B.2.3.5 Step 5: Select defense strategies which counter
the potential attacks with high risk 276

B.3 The framework applied: an example 277
B.4 Discussion . 278
B.5 Related work . 279
B.6 Summary . 279

Publications by the Author 283

References 285

SIKS Dissertation Series 299

xvii

List of Figures

1.1 Security governance cycle . 3
1.2 Total of published vulnerabilities per year (2003-2007) 5
1.3 Total of published vulnerabilities per month (2008) 6
1.4 Thesis outline . 10
1.5 Method followed by the MsAMS Approach 12

2.1 Relation between threat, vulnerability and risk from [99] 17
2.2 Relationship between reviewed security terms 21
2.3 Basic penetration test cycle (adapted from [217, 220]) 23
2.4 An example attack tree adapted from [186] 24
2.5 An example fault tree, on the left, and its logically equivalent, on

the right (adapted from [172]) . 25
2.6 An Attack Graph can contain numerous Attack Trees; inductive

and deductive reasoning are possible 27
2.7 Aggregation applied to a network with 16 hosts and 4 subnets

(adapted from [156]) . 33
2.8 Visual clustering applied to the same network as the one shown in

Figure 2.7 (adapted from [156]) . 34
2.9 Two displays of network topology 35
2.10 Memoryless pre- and postcondition scheme for dealing with cre-

dentials . 37

3.1 An example network topology . 48
3.2 Relationship between classes of attackers, objectives and strategies,

with types of attack . 55
3.3 A schematic representation of a sequential attack launched by

target-driven attackers . 58
3.4 A generic IRC-based botnet . 59
3.5 A generic DDoS attack (adapted from [88]) 60

4.1 Constructive and improving methods in heuristic search 77

5.1 CVSS metrics (adapted from [136]) 85
5.2 Understanding the reclassification of CVEs resulting in “admin” . 93
5.3 Understanding isolated CVEs with partial CIA impact 97
5.4 Representation of CVEs in effect view from [126] 99
5.5 Representation of CVEs in impact view derived from NVD inves-

tigation . 100

6.1 Life-cycle of a solution (a potential multi-step attack) 106
6.2 Main algorithm . 112
6.3 Reproduction phase algorithm . 112
6.4 Retirement phase algorithm . 113

xix

LIST OF FIGURES

6.5 Denial of Services by E-mail Worm 114
6.6 Representation of the multi-step attack shown in Figure 6.5 114
6.7 Default network topology adapted from Suehring [204] 115
6.8 ELAS Output: multi-step attack 116

7.1 An example network, adapted from Ingols et al. [105] 122
7.2 Method followed by the MsAMS approach, reflected in its proof-

of-concept tool . 125
7.3 Modelling the example network as Ambients 126
7.4 The running example locality tree 129
7.5 Illustration of synchronous, inter-ambient movement 132
7.6 The arrows indicate possible directions the ambient-attacker can

take from its initial location in sv A 136
7.7 The arrows indicate possible directions an attacker can take from

host D until the target sv E is reached 138
7.8 Simplified pseudocode of the computation of links algorithm; refer

to Appendix A for definition of pathTo (Definition 43, in Appendix A)141
7.9 Webpages hyperlink structure represented on a graph 142
7.10 Inlinks and outlinks for v E from the running example ambient . . 143
7.11 Mutual relationship between authorities and hubs in HITS (adapted

from [120, Figure 3.3]) . 147
7.12 Compromise according to service 154
7.13 Tree showing a successful search task (according to search task in

Example 24) for the running example with stamped ambients . . . 159
7.14 Simplified pseudocode of the search algorithm 161
7.15 Illustration of forward-search and backward-search 162
7.16aAmbient-attacker encounters an ambient which requires a creden-

tial it does not have . 163
7.16bAmbient-attacker looks for credential needed 163
7.16cInitial search task resumed . 163
7.17 Simplified pseudocode of the taskExpand method used by the

search algorithm (Figure 7.14) . 164
7.18 Simplified pseudocode of the selectBestCandidate method used by

taskExpand (Figure 7.17) . 164

8.1 Modified running example with 10 copies of host B 181
8.2 Computing grid network example motivated from practice 182
8.3 The partitioned network shown in Figure 8.2 as Ambients: internet 183
8.4 The partitioned network shown in Figure 8.2 as Ambients: firewall

FW2 . 183
8.5 Visual representation of traces 1, 2, and 3 (Example 39) 187
8.6 Power grid network (CORPnet) example from [181, 98] 189
8.7 Power grid network example as Ambients 190
8.8 Locality tree corresponding to Figure 8.7 191

xx

LIST OF FIGURES

8.9 Complete locality tree corresponding to the ambients diagram in
Figure 8.10 . 192

8.10 Added ambient world within internet, containing an ehome host . 193
8.11 Visual representation of the trace produced by MsAMS 198
8.12 Visual representation of the trace produced by MsAMS 201
8.13 Visual representation of the trace produced by MsAMS 204
8.14 Kerberos authentication simplified to 5 steps, adapted from [200, 187]205
8.15 Kerberos infrastructure added to the original example scenario

shown in Figure 8.6 . 206

9.1 Performance of modules with varied number of ambients 230
9.2 Hermite interpolation plot of computing time T of performance-

demanding modules, compared to a n2 shape curve where n is the
number of ambients . 231

9.3 Linear regression plot with line of best fit between time measured
T and n2 and line of best fit between T and n3 232

9.4 Log-log plot for computing time T of different modules and number
of ambients n . 233

9.5 Performance of modules with varied number of firewall rules 235
9.6 Hermite interpolation plot of total computation T , compared to a

r2 shape curve where r is the number of firewall rules 236
9.7 Linear regression plot with line of best fit between time measured

T and r2 and line of best fit between T and r3, where r is the
number of firewall rules . 237

9.8 Consumption of RAM memory with varied number of ambients . . 238
9.9 Hermite interpolation of memory consumedM by memory-demanding

modules, compared to a 2n2 shape curve 238
9.10 Linear regression plot with line of best fit between memory con-

sumed M and n2, and line of best fit between M and n3 239

A.1 Scope of methods DenyFromTo and AllowFromTo used to test if
there is a pathTo from ambient x to ambient y 258

A.2 Simplified pseudocode of the DenyFromTo method 258
A.3 Simplified pseudocode of the AllowFromTo method 259

B.1 Framework composed by a method and supporting attack and de-
fense strategies . 266

B.2 Tree structure of attack strategies involved with “Pre-attack” . . . 268
B.3 Tree structure for attack strategies involved with “Gain access” . . 268
B.4 Tree structure for attack strategies involved with “Abuse access” . 269
B.5 Attack strategies involved with “Abuse permission” 270
B.6 Attack trees as states and possible transitions between them. . . . 271
B.7 Method for gathering requirements for defense against insiders . . 274
B.8 Example from a fictitious financial institution (from Chinchani et

al. [38]) . 277

xxi

List of Tables

1.1 Summary of contributions . 13

5.1 Classification of vulnerabilities based on access and effect from [126] 81
5.2 Overview of the SCAP initiative from NIST 83
5.3 CVE attributes, as stored in the NVD, that required no preprocessing 86
5.4 CVE attributes, as stored in the NVD, that required preprocessing 87
5.5 Types of impact according to CIA configurations found in the NVD 89
5.6 Distribution of CVEs by single attributes: exploitability of CVEs

and resulting privilege from the exploitation of CVEs 90
5.7 Distribution of CVEs by single attributes: impact and attributes

derived from CVEs descriptions . 91
5.8 Distribution of CVEs in terms of privilege gained by their exploita-

tion against type of impact caused by their exploitation 92
5.9 Distribution of CVEs with expressions in their descriptions that

indicate gainAdmin effect resulting from their exploitation 93
5.10 Privilege gained by the exploitation of CVEs and type of impact

caused, against access required to exploit CVEs 94
5.11 Distribution of CVEs in terms of effects DoS and runCode (derived

from CVEs description) resulting from their exploitation 95
5.12 Complete clustering of CVEs based on impact and privilege result-

ing from their exploitation . 98

7.1 Scores produced by PageRank for the running example (α = 0.85) 146
7.2 Authority and hub scores produced by HITS for the running ex-

ample (ξ = 0.85) . 148
7.3 Schematic overview of types of vulnerabilities against modelling

abstraction . 150

8.1 Summary of network access allowed 190
8.2 PageRank scores, power grid example, Section 8.3.1 (α = 0.85) . . 220
8.3 HITS scores, power grid example, Section 8.3.1 (ξ = 0.85) 221
8.4 PageRank scores, power grid example, Section 8.3.2 (α = 0.85) . . 222
8.5 HITS scores, power grid example, Section 8.3.2 (ξ = 0.85) 223

9.1 Performance of modules with varied number of ambients 229
9.2 Performance of modules with varied number of firewall rules 234
9.3 Percentage of RAM memory consumed by each module 236

B.1 Extract from a matrix which correlates attack strategies, defense
strategies and control principles . 273

B.2 Potential attacks and derived risk level (from defense level) for the
critical process “business account transactions” 281

B.3 Defense goals for the critical process “business account transactions”282

xxiii

Part I

Motivation and Research
Context

1

1
Introduction

“Comparing the exploit vs the patch performance, one observes that
the speed of insecurity exceeds the speed of security. It is harder to
produce a patch than to produce an exploit.” [78]

Organizations face nowadays an overwhelming amount of network security
events reported by security mechanisms or devices such as vulnerability scanning
tools, Intrusion Detection Systems (IDS), firewalls. Reducing this overload of
information becomes crucial to manage and extract useful knowledge for decision
making related to security. Therefore, correlation and aggregation of security
events is needed both for proactive security, which deals with preventing possible
attacks, and for reactive security, which deals with detecting actual intrusions.
These two perspectives complement each other and fit into the security gover-
nance cycle illustrated in Figure 1.1.

strategic level

reactiveproactive

security security

vulnerability scanning tools,

intrusion detection systems,

firewalls

requirements

incident response

plans

security

investmentspolicies

security

legal and regulatory

events

check

security

feedback

events

for decision

making

drivers

for security

enforcement

operational level

MsAMS solution

Figure 1.1: Security governance cycle

3

CHAPTER 1. INTRODUCTION

In this thesis, we focus on the proactive aspect of finding possible network
attacks before they become incidents. Traditionally, organizations have applied
the principle of Defense in Depth to protect their networks and safeguard their
most valuable assets with several layers of defense. The idea was that even if
the first layers were bypassed, other layers would still be able to maintain the
inner network secure. However, we learn from practice that this idea is mistaken
because attackers can exploit vulnerable hosts as stepping stones to bypass all lay-
ers of defense or can even skip some layers and progress from there step-by-step
to reach valuable assets deeper in the network. Furthermore, a computer net-
work is an ever-changing environment. New business agreements trigger changes
in firewall rules. New network functionalities trigger the configuration of new
servers, new network services, and new users increasing the chance of introducing
mis-configurations in the network. Additionally, patches are not always available
and, even when they are, it may not be cost-effective to patch all vulnerabilities
present in a network. Besides, when they are cost-effective, applying patches
require a cycle of testing since they may cause side-effects, and therefore patches
may not be immediately applied. Hence, no network is free from opportunities for
attackers, and the security of all networks need to be assessed constantly. Finding
steps of possible attacks turns out to be a rather challenging problem due to the
complexity and size of networks, and the high number of possible combinations
among steps which represent opportunities for potential attackers. To address the
problem of proactively finding possible multi-step attacks in networks, this thesis
proposes the MsAMS (Multi-step Attack Modelling and Simulation) solution: (i)
an approach that uses a variation of Mobile Ambients as modelling paradigm, and
Heuristic Search as simulation paradigm, supported by Link Analysis Ranking1

algorithms as a source of metrics. As an evidence of feasibility of this approach in
networks of realistic size, this thesis introduces the (ii) MsAMS proof-of-concept
tool, and shows that this is scalable to realistic networks.

1.1 Background

The Internet brought many benefits to organizations and individuals in the last
few decades. Access anytime from anywhere is the (very) convenient new paradigm.
Nevertheless, it also enhanced the risks of having hosts compromised without the
need of physical access. This reality is reflected on the number of published
vulnerabilities reported for Commercial-Off-The-Shelf (COTS) and open source
software components [161], as illustrated in Figure 1.2 2. We see that from 2003
to 2006 we had a sharp increase in the number of vulnerabilities, and from 2006
to 2007, an insignificant decrease of 1.4%. Nevertheless, in 2007 alone, a total of
6515 vulnerabilities were published. Zooming in on 2008, as shown in Figure 1.3,
we observe that, although we have an oscillation along the months with August

1This field of research deals with the prioritization of search results using the link structure
of webpages.

2The data was collected from the statistics page of NIST [161] on 08-Jan-2009

4

1.1. BACKGROUND

as the lowest score (367 vulnerabilities) and October as the peak (535 vulner-
abilities), on average 470 vulnerabilities were reported per month, bringing us
to an average of 16 vulnerabilities per day. This situation is unlikely to change.
One reason is that information security is an externality [188] since the cost of
insecurity is mostly paid by those who buy software components instead of those
who produce them. A second reason is that there is time-to-market pressure and,
in the end, software components are often initially released with little security
and improved later on via patches or new versions [8].

2003 2004 2005 2006 2007

Year of publication (Jan/2003 − Dec/2007)

N
u

m
b

e
r

o
f

v
u

ln
e

ra
b

ili
ti
e

s

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0

Figure 1.2: Total of published vulnerabilities per year (2003-2007) (Source:
NVD [161])

Therefore, this volume of vulnerabilities requires management from organi-
zations to determine which of the daily reported vulnerabilities apply to their
environment according to the software they have installed, their version and con-
figuration. At first sight, this appears to be a manageable problem in network
administration, because the filtering of vulnerabilities that apply to a specific or-
ganization can be provided on a daily basis by contracted companies, as a service.
However, a number of factors may turn this into a rather challenging management
problem.

First, there is a timelag between vulnerability discovery and patch release [78].
Besides, network administrators are usually very slow in applying fixes [177]
(e.g. apply patches, perform upgrades, or disable services) to vulnerable systems.
Therefore, there will be always a time-window of opportunities for attackers.

5

CHAPTER 1. INTRODUCTION

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month of publication (Jan/2008 − Dec/2008)

N
u

m
b

e
r

o
f

v
u

ln
e

ra
b

ili
ti
e

s

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Figure 1.3: Total of published vulnerabilities per month (2008) (Source:
NVD [161])

Second, even in well managed networks with strict security policies, entry
points to attackers may be completely unknown to network administrators. In
such networks, the absolute majority of hosts tend to have the same configuration,
and their users are only allowed to use corporate-supported software; these hosts
are automatically patched. However, there is always a small percentage of hosts
used by users with administrative rights. This means they can install software
themselves, and maintaining these hosts up-to-date depends on user initiative.

Third, vulnerabilities are not only exploited in isolation. Once an attacker
has found a way in a network she, as a rational being, will try to maximize her
return on investment, as reported by the media (e.g. [194, 67]) and reflected in
several research works (e.g. [49, 38, 185]). Therefore, network administrators
have to manage not only isolated vulnerabilities but the risk of vulnerabilities
composed in multi-step attacks. Furthermore, not only vulnerable hosts can be
used to compose attack steps. Having access to a credential may allow attackers
to also exploit non-vulnerable hosts. All in all, solving every isolated vulnerability,
for example by patching, deactivating services and hosts, is never a solution for
multi-step attacks.

Finally, the road map of potential multi-step attacks is a very sensitive piece
of information [126] since it would put a potential attacker who has access to it
in an extremely advantageous position. As a consequence, organizations either

6

1.2. RESEARCH SCOPE AND GOAL

tend to do this management internally or not at all.
The above factors motivate the need for support in managing network vul-

nerabilities in the face of possible multi-step attacks. The major problem to be
solved to improve manageability is to find out which multi-step attacks are pos-
sible in a network, for later analysis of which ones are worth defending against.
The goal of this thesis is to provide a methodology for doing this, supported by a
tool. Three main streams of research deal with multi-step attacks in a proactive
way: Attack Graphs, Attack Trees, and Penetration Testing. These streams will
be further discussed in Chapter 2, but our research is primarily related to the
first stream.

The first stream is the research field of Attack Graphs [105, 4, 111, 157, 206,
125, 164, 87, 192]. Vulnerabilities in COTS (Commercial-Off-The-Shelf) compo-
nents, usually output of vulnerability scanning tools, represent attack steps which
are organized in a graph structure that can support the search for several possible
attack goals. The second stream is the research field of Attack Trees [186]. Attack
steps are organized in a tree structure with an attack goal as the root of the tree.
Therefore, an attack tree allows reasoning about one specific, known goal. Fi-
nally, the third stream is the research field of Penetration Testing [220, 94]. This
is an empirical method where authorized professionals mimic attackers bypassing
layers of defense.

1.2 Research Scope and Goal

The driving overall goal of this research is to Provide decision making support to
improve network security. This goal comprehends several sub-goals and we chose
to approach the aspect of possible network attacks, which represent, in fact, a risk
to be addressed, and about which decisions must be made in order to improve
network security. However, before we can attempt to improve network security
against possible attacks, by assessing the risk that possible network attacks rep-
resent and by addressing this risk, we have to Identify possible network attacks.
It means that we have to address two sub-goals. First, we need to Understand
network attacks. For this we have to investigate further what the causes and con-
sequences of network vulnerability are and how the problem has been approached
so far. This sub-goal motivates the research questions RQ1, RQ2 and RQ3, pre-
sented in the next section, which aim, in broad sense, at increasing knowledge
about network attacks. Second, we need to Design a way to find possible network
attacks. This sub-goal motivates the research questions RQ4, RQ5 and RQ6 (see
next section). They aim, in broad sense, at addressing design issues of a solution
to find attacks. The outcome of this research brings us closer to achieve the
overall goal.

The following breakdown of goals positions the scope of this thesis with respect
to the broader perspective of the security governance cycle of Figure 1.1. The
scope of this thesis is goal G1.1.1, understanding and finding possible network
attacks. Risk assessment and management is left for future research.

7

CHAPTER 1. INTRODUCTION

G1 Provide decision making support to improve network security

G1.1 Manage risk of possible network attacks

G1.1.1 Identify possible network attacks
G1.1.1.1 Understand network attacks
G1.1.1.2 Design a way to find possible network attacks

G1.1.2 Assess risk that possible network attacks represent
G1.1.3 Treat risk of possible network attacks

G1.2 Manage risk of network intrusions

G1.2.1 Detect network intrusions
G1.2.2 Assess risk that network intrusions represent
G1.2.3 Treat risk of network intrusions

We take the approach of simulation3 for finding possible attacks in a modelled
network.

1.2.1 Non-objectives

The focus of this thesis is to address goal G1.1.1 but isolated from real-time issues.
The solution proposed aims at improving the state-of-the-art in the active field
of Attack Graphs from where the requirements of the solution were obtained.
The solution proposed is not meant to be a proactive monitoring tool, therefore,
it is not intended to be used live in a network. Rather, the solution is meant
to be used off-line for diagnosis and exploration of a real network via its model,
represented in the formalism proposed, with the objective of uncovering possible
multi-steps which represent possible attacks.

This thesis also does not deal with issues related to automatic import of
input or export of output. Those issues have been extensively treated by the
Attack Graph community. Nevertheless, we take into consideration the possibility
of automatic import, when applicable, such as it happened for the selection of
the conceptual model of vulnerabilities we adopt in our solution (presented in
Chapter 5).

1.3 Research questions

Our research goal is translated into the following research questions (RQ).

• RQ1 Which properties and attributes of a network turn it susceptible to
attacks?

3Simulation, according to Merriam-Wester [137], is the imitative representation of the func-
tioning of one system or process [the real system] by means of the functioning of another [the
system model].

8

1.4. THESIS OUTLINE

• RQ2 Which attackers’ objectives turn a network susceptible to attacks?
Which strategies are used by attackers to achieve those objectives?

• RQ3 What are possible attack steps?

• RQ4 How to model a network in a simplified but realistic way?

• RQ5 How can multi-step attacks be represented considering the type of
steps uncovered in RQ3?

• RQ6 How to find attacks in a way that serves attackers’ objectives and
strategies mentioned in RQ2 and that uses the answers to questions RQ4
and RQ5?

We view these questions from the perspective of knowledge and design prob-
lems, a terminology introduced by Wieringa et al. [226, 227]. Research questions
1-3 are knowledge problems. It means that their answers enhance the knowledge
of stakeholders about a subject, i.e. the answers fulfil the gap between what
stakeholders know and what they would like to know. Typically, to solve these
problems one has to perform literature review, ask experts, or perform empirical
research. While research questions 4-6 are design problems. It means that there
is creativity involved to build something useful, therefore, reaching a practical
goal. Their answers close the gap between what is perceived by stakeholders (i.e.
phenomena) and is the desired state of the World. It is very much likely that
different individuals will address a design problem differently although achieving
the same goal.

1.4 Thesis outline

Despite the fact that some of the research questions that guided this research are
knowledge problems and others are design problems, the research involved with
this thesis, as a whole, was treated as a design problem [226, 225]. Therefore, its
outline reflects the main stages of the engineering cycle: Part I presents knowl-
edge gained about the problem, part II presents the proposed solution, part III
describes the solution validation, and finally part IV concludes the thesis. Fig-
ure 1.4 shows the partition of chapters within those parts.

More specifically, Chapter 2 presents the terminology used throughout the
thesis and reviews related work. Chapter 3 discusses the elements which make a
network susceptible to attacks. Besides, it explains the idea of attack steps, and
discusses attackers strategies and corresponding types of attack. Chapter 4 in-
troduces the requirements for the solution derived from both literature, reviewed
in Chapter 2, and from aspects of network attacks, reviewed in Chapter 3.

The next three chapters present different aspects of the solution. In Chapter 5
we investigate the NVD4, a publicly available database of vulnerabilities from

4National Vulnerability Database [161]

9

CHAPTER 1. INTRODUCTION

Chapter 2:

Background and

Related Work

Chapter 3:

Understanding

Network Attacks Requirements

Chapter 4:

Solution

Part II − Proposed Solution: MsAMS

Att.Modelling & Simul.

MsAMS: Multi−step

Chapter 7:

Part III − Solution Validation

Chapter 8:

Testing the

MsAMS Approach

Chapter 9:

Scalability of the

MsAMS Approach

Appendices

Appendix B:

Gathering Defense

Req. w/ Attack Trees

Chapter 5: Chapter 6:

Finding Network Att.Gaining Insights about

Vuln. from the NVD as Optimization Prob.

MsAMS Approach

Formalization of the

Appendix A:

Part I − Motivation and Research Context

Introduction

Chapter 1:

Part IV − Final Remarks

Chapter 10:

Conclusion

Figure 1.4: Thesis outline

NIST5, to validate a classification of vulnerabilities found in the literature, and
propose a variation of such classification, adopted in our solution, that is feasible
for automatic import. Chapter 6 introduces the perspective of finding multi-step
attacks in network as an optimization problem. We describe how we formalize
attack steps in such a way that they can evolve into multi-step attacks by means
of an evolutionary algorithm. However, this first approach did not meet the
requirements we set for the solution in Chapter 4, therefore, another approach is
introduced in the following chapter. Chapter 7 presents the MsAMS solution. It
describes the method followed by the MsAMS approach, and different aspects of
the solution, such as how we model a network in terms of a variation of Mobile
Ambients, how we obtain multi-step attacks using Heuristic Search, and for which
purposes we use Link Analysis Ranking algorithms to support the process of
searching for attacks.

Chapters 8 and 9 validate the MsAMS solution. In Chapter 8 we, first, rea-
son about the scalability of modelling networks with MsAMS. Then, we test the
MsAMS approach using example scenarios that demonstrate its use, and advan-

5National Institute of Standards and Technology [152].

10

1.5. CONTRIBUTIONS

tages over attack graph approaches found in the literature. All traces of possible
multi-step attacks and scores from Link Analysis Ranking algorithms reported
throughout this chapter were produced by the MsAMS proof-of-concept tool.
In Chapter 9 we analyze the complexity of the algorithms used in the tool and
report results of empirical tests to evaluate the scalability of the tool itself. Chap-
ter 10 concludes this thesis revisiting the research questions and requirements set
in Chapter 4, and discussing achievements. Moreover, it presents opportunities
for future work in terms of further research and industrial development of the
MsAMS solution.

Finally, Appendix A formalizes the reduction rules and structural congruence
rules relevant to the MsAMS solution. Appendix B exemplifies the use of Attack
Trees in a method for gathering requirements for defense against possible insider
multi-step attacks.

1.5 Contributions

This section provides a brief overview of the main contribution of this thesis, in
Section 1.5.1, and a more detailed view of contributions, including a traceability
matrix of publications, in Section 1.5.2.

1.5.1 About the MsAMS Solution

The MsAMS (Multi-step Attack Modelling and Simulation) solution proposed by
this thesis to address goal G1.1.1 (presented in Section 1.2) comprehends an ap-
proach to model networks and simulate attackers, and a tool that implements this
approach as a proof-of-concept. The method followed by the MsAMS approach
is illustrated in Figure 1.5. It provides basically three functionalities highlighted
in the figure:

(i) modelling of a network in terms of ambients6,

(ii) ranking of ambients that feeds the next functionality and delivers connectivity-
based asset values and cost metrics for the network modelled, and

(iii) simulation of ambient-attackers which is, in fact, a search for possible multi-
step attacks in the network modelled.

1.5.2 Cross Analysis of Contributions

The contributions (CT) of this thesis are listed next.

• CT1 Two heuristic search algorithms to find possible attacks on a modelled
network. Each of them uses a different representation of attack steps, but

6Ambients are the central abstraction of Mobile Ambients, introduced by Cardelli and Gor-
don [35].

11

CHAPTER 1. INTRODUCTION

Network

Model as

Ambients

Network

Model as

Ambients

Cost

Metrics
Connectivity−based

Asset Values

and Metrics

Target

for Search

Complete set

Modelling of the Network

Simulation of

Ambient−Attackers

Ranking of Network Ambients

Processing of Virtual Links

and attributes

VulnerabilitiesNetwork

Configuration
(Credentials)

methods

Authentication

of Links

Subset

of Links
2

3

1

4

Multi−step

Attacks

Ambient−attacker

Initial Location

Figure 1.5: Method followed by the MsAMS Approach

both use the concept of a pool of possible multi-step attacks. The search
used in the MsAMS solution is able to mimic an attacker behavior when
dealing with credentials needed to access non-vulnerable hosts in the net-
work, a strength of MsAMS compared to existing attack graphs.

• CT2 Two representations of attack steps that allow their manipulation by
the heuristic search algorithms in a rich way, e.g. in terms of different com-
positions of attack steps. Particularly, the representation used in MsAMS
allows the representation of movement, resource-acquisition, iteration, and
communication steps, and allows taking into account location of ambients.
Therefore, they have the potential to represent not only sequential attacks,
as the other attack graph approaches do too, but can also represent attacks
involving parallel attack steps.

• CT3 Network models in a Mobile Ambients-based formalism that allows
the representation of nesting and capabilities of ambients. It allows us to
address gaps found in the literature of Attack Graphs, such as to fully
represent the topology of networks in an abstract way.

• CT4 A classification of known vulnerabilities by access and impact, that
allows to classify almost 100% of vulnerabilities stored in the National Vul-
nerability Database (NVD [161]). That improves significantly the currently
used access-to-effect classification, which covers only 65% of the NVD. This
means that using our access-to-impact classification, all NVD entries can be
automatically processed and fed into our MsAMS too (see also Figure 1.5).

12

1.5. CONTRIBUTIONS

Contribution Goal
Research
Question

Chapter

CT1 G1.1.1.2 RQ6 Chapters 6 and 7
CT2 G1.1.1.2 RQ5 Chapters 6 and 7,

and Appendix A
CT3 G1.1.1.2 RQ4 Chapter 7
CT4 G1.1.1.2 RQ2 Chapter 5
CT5 G1.1.1.2 RQ4 Chapter 7
CT6 G1.1.1.2 RQ6 Chapter 7
CT7 G1.1.1.1 RQ1 Chapter 3
CT8 G1.1.1.1 RQ2 and

RQ3
Chapter 3 and Appendix B

Table 1.1: Summary of contributions

• CT5 The use of the Link Analysis Ranking algorithm HITS7 allows the
calculation of connectivity-based scores used to search for possible attacks
using the MsAMS solution. These scores allow incorporating a rationale to
the selection of alternative steps, using a HITS-based metric that indicates
cost of an attack step, thus avoiding the need for manual input of attack
step cost.

• CT6 The use of Link Analysis Ranking algorithms HITS and PageRank [27]
allows the calculation of connectivity-based asset value automatically, used
to indicate potential targets. This allows MsAMS to search for attacks that
reach valuable targets.

• CT7 A list of network properties that make them susceptible to attacks.

• CT8 A review of attackers’ goals and strategies, and of possible attack steps,
reflected in the MsAMS solution.

Table 1.1 summarizes contributions against goals (presented in Section 1.2),
research questions (presented in Section 1.3) and chapters (presented in Sec-
tion 1.4).

7Hypertext Induced Topic Search [116]

13

2
Background and Related Work

In this chapter we recap security terms relevant for the remaining of this thesis.
Additionally, we review related work which will be useful for extracting require-
ments for the solution in Chapter 4.

2.1 Security Terms

An Information System is a set of interrelated components that collect (or
retrieve), process, store, and distribute information to support decision making,
coordination, and control in an organization [121].

where:
Information is data [streams of raw facts representing events] that have been

shaped into a form that is meaningful and useful to human beings [121].
Examples of information systems are business applications, databases, net-

work services, and file systems. Most often (but not necessarily) information
system components are implemented via software, which execute over an Oper-
ating System, and operate in computers.

Information Security is the preservation and protection of confidentiality,
integrity and availability of information; in addition, other properties such as
authenticity, accountability, non-repudiation and reliability can also be involved
(adapted from [107]).

where:
Confidentiality is the property that ensures information is not made avail-

able or disclosed to unauthorized individuals or processes (adapted from [107]).
Integrity is the property that ensures information and the methods used to

process and manage it are accurate and complete (adapted from [107]).
Availability is the property that ensures assets are accessible and usable to

authorized users when needed (adapted from [107]).

where:

15

CHAPTER 2. BACKGROUND AND RELATED WORK

An Asset is anything that has value to the organization, its business opera-
tions and its continuity [66].

Reliability is the property that ensures the continuity of correct service or
information over time (adapted from [12]).

Note that the difference between Security and Safety comes from the field of
Dependable Computing [12]. While the former refers to the concurrent existence
of confidentiality, integrity and availability, the latter refers to the absence of
catastrophic consequences on the users and the environment (which, for example,
endanger human lives). Thus, safety is an extension of reliability.

Authenticity is the property that ensures the integrity of a message content
and origin, and possibly of some other information, such as the time of emis-
sion [12]. It guarantees that information exchange is genuine, and trustful [153].

Accountability is the property that ensures the availability and integrity of
information about the identity of the person who performed an operation [12]). It
ensures that actions performed by an entity involving manipulation of information
can be traced uniquely to that entity [153].

Non-repudiation is the property that ensures the availability and integrity
of the identity of the sender of a message (non-repudiation of the origin), or of
the receiver of a message (non-repudiation of reception) [12]. Neither sender nor
receiver can later deny having processed the information [153].

Accountability supports non-repudiation [153] in the sense that the latter
involves accountability of identity of the sender of a message and accountability
of identity of its receiver.

The concept of Attack is directly or indirectly related to many other security
concepts, such as threat, vulnerability, risk, asset (already defined), and security
controls.

An Attack is a specific sequence of events1 indicative of an unauthorized
access attempt [153].

An attack becomes an incident if it is successful [201], resulting in a compro-
mise of information security. Note that the term attack is rather fuzzy and its
distinction from incident is not always made, specially by the media. This terms
become even harder to distinguish when intrusions are considered. Attack, for
the context of this thesis, are compositions of events (i.e. attack steps that com-
posed represent possible attacks), observable in a network model. Therefore, we
do not deal with incidents. Attack in the context of reactive security, such as
in the IDS (Intrusion Detection Systems) field, are compositions of actual events
(called intrusions), observable in a network or host. These intrusions may rep-
resent attacks (i.e. attempts of compromise), or may represent incidents (i.e.
successful attempts of compromise).

Since we deal with possible attacks, and an attack is an attempt, i.e. it may
be successful or not, possible attacks represent a risk to organizations, more

1Any observable occurrence in a network or system [153].

16

2.1. SECURITY TERMS

specifically, to organizations’ assets.

IT-related Risk is a function of (adapted from [202]):

(i) the likelihood that a given threat agent (defined next) will exploit or trigger
a particular information system vulnerability

(ii) the resulting impact of this exploitation for an organization, if successful

Therefore, risk of attack is only present if both elements threat and vulnera-
bility exist, as illustrated in Figure 2.1.

K

S

I

R

vulnerability
threat

Figure 2.1: Relation between threat, vulnerability and risk from [99]

A threat is a potential for a threat-source to successfully exploit a particular
information system vulnerability [153].

A threat source can be of many types, such as natural, environmental and
human-related [202]. However, in this context, we are specifically interested in
the last category, from now on called threat agent or simply attacker2.

Threat agent is an agent which actively exploits a vulnerability while per-
forming an attack.

A threat-agent can be automated or manual (i.e. can be a human being),
and it may intentionally exploit a vulnerability or accidentally trigger a vulnera-
bility [153]. An agent can be automated to different degrees, for example it can
be completely autonomous as it happens in worm and virus attacks, or it can be
controlled as it happens in botnet attacks. However, there are always motivations
and abilities behind a threat-agent. Motivation is related to attackers’ goals, and
strategies which will be further discussed in Chapter 3. The aspect of ability
is related, for example, to attackers’ expertise, and resources [66], also further
discussed in Chapter 3.

Vulnerability3 is a very broad concept and is defined as a weakness in an infor-
mation system, system security procedures, internal controls, or implementation
that could be exploited or triggered by a threat agent[153].

2Hacker is also used as a synonym.
3also called flaw

17

CHAPTER 2. BACKGROUND AND RELATED WORK

This definition makes explicit that vulnerabilities can reside in the social,
physical and information systems domains. Besides, even within this last domain,
it can exist in a software implementation or in internal controls. Hence, we
use a narrower definition of vulnerability, and an explicit definition of exposure,
borrowed from the “Common Vulnerabilities and Exposures” initiative [52]. For
most of the thesis (e.g. parts II and III), we use the definition of vulnerability
provided next. However, we also deal, in Appendix B, with vulnerabilities in
security controls (defined below). Therefore, when confusion may arise, we make
this context clear using terms “vulnerability in COTS” and “vulnerability in
security controls”.

A vulnerability is a mistake in software which hackers can use directly to
access protected data [131].

Vulnerabilities are exploited, therefore, an exploit is the application of a
threat against a vulnerability [201] to breach the security of an information sys-
tem. An exploit can be manual or automated. For example, it can take the form
of a specially crafted input, or an exploit code4, as we will see in Chapter 3.

An exposure provides information or capabilities that can indirectly provide
access to protected data [131].

An example of vulnerability is a buffer overflow5 since its exploitation by an
attacker allows direct access to data within the host containing the vulnerability.
An exposure can be a mechanism which allows an attack to recover credentials
within a vulnerable host, e.g. by using tools that decrypt passwords saved in
the host hard drive, therefore, acquiring capabilities that can indirectly provide
access to data in further non-vulnerable hosts.

In summary, both vulnerabilities and exposures can function as stepping-
stones for attackers, and represent an important component of a successful attack.
These two concepts will be further discussed in Chapter 3.

Controls are the policies, procedures, practices and organizational structures
designed to provide reasonable assurance that business objectives will be achieved
and undesired events will be prevented or detected and corrected [109].

Security Controls are controls prescribed for an information system to pro-
tect the confidentiality, integrity, and availability of the system and its informa-
tion [153].

Although each organization implements specific controls according to their
goal(s)/business mission they are based on common control principles which apply
to any organization.

Examples of common control principles are: (i) Separation of Duties (SoD),
(ii) Dual Control, (iii) Delegation and Revocation, (iv) Audit, (v) Least Privilege,
and (vi) Non-repudiation.

A security control can be effective in two ways, by reducing the impact of

4A program that allows attackers to automatically break into a system[153].
5A condition at an interface under which more input can be placed into a buffer or data

holding area than the capacity allocated, overwriting other information [153].

18

2.1. SECURITY TERMS

a threat, and consequently of an attack, on an asset value or by reducing the
probability of occurrence (i.e., likelihood) of a threat/attack [66].

It is interesting to note that, on the one hand, security controls are enforced
by the organization, i.e. by defenders, to assure a certain level of security, and,
on the other hand, they are exploited by threat agents, i.e. by attackers, due
to weaknesses in processes, applications, infrastructure, etc. These weaknesses
are also vulnerabilities, but in much broader sense. This view is discussed in
Appendix B.

Therefore, vulnerabilities in security controls also represent opportunities, i.e.
“open doors”, available for attackers to gain access to assets, defined previously.

Asset value represents the relative value and importance of an asset, per-
ceived by its stakeholders (adapted from [107, 66]).

It is interesting to realize that not all stakeholders perceive the same value for
a specific asset, due to different assumptions, needs and concerns. That is why
asset value is relative.

We adapt the Requirements Engineering view of stakeholders [82] to the con-
text of our interest, as stated next.

Stakeholder is a person or organization who influences an information sys-
tem (e.g. by making decisions about it) or who is impacted by it (e.g. by the
compromise of its security).

Note, therefore, that attackers are also stakeholders since they can also in-
fluence an information system by compromising its confidentiality, integrity and
availability, i.e. its security.

As mentioned above, stakeholders may perceive different values for a same
asset. On the one hand, asset owners and legitimate stakeholders perceive a
value relative to the impact of losing the asset, reflected e.g. on expected loss
of revenues, affected reputation, rebuilt of the asset, and effect on business-as-
usual. On the other hand, attackers perceive a value relative to the financial
gain they can obtain by trading the asset on the black market, by the indirect
benefit the compromise of the asset may represent, in terms of new opportunities
it may bring, or by the disruption it may cause to legitimate stakeholders. As
an example, a stolen credit card number can be negotiated on the black market
for US$10 [230] (perceived value for attackers), while legitimate stakeholders may
attribute a value well above that for it. We resume this discussion in Chapter 3.

A target (of an attack) is an asset which has high value as perceived by a
threat agent, i.e. by an attacker (adapted from [66]).

Assets associated with Information Systems can be of many types (adapted
from [107, 66]):

(i) information, such as data files and databases

(ii) software, such as application software and firewall software

19

CHAPTER 2. BACKGROUND AND RELATED WORK

(iii) physical, such as computer equipments (laptops, desktops and servers, gener-
ically called hosts in this thesis), and other equipments (routers, printers)

(iv) services, such as network services

(v) human, such as end-users

(vi) logical, such as login ID and credentials

(vii) intangibles, such as reputation, mission and image

We only consider targets which are relevant for the solution proposed, as
explained in Chapters 6 and 7. For example, human and intangible assets are
out of the scope of potential targets for us.

An attacker strategy is an adverse action or actions (i.e. a plan of actions)
performed by a threat agent on an asset to achieve a goal (adapted from [37]).
Also referred to as Attack strategy.

We can talk about strategies at different levels of abstraction. For example,
in Appendix B we consider attack strategies as a plan of actions derived from
four high level attack steps (Pre-attack, Gain Access, Abuse Access and Abuse
Privilege). However, for our solution, as introduced in Section 3.3 on page 55,
we consider attack strategies at an even higher level of abstraction. In any case,
anticipating attack strategies allows the defender to plan for countermeasures,
although a detailed plan of actions of the attacker is always unknown for the
defender.

Countermeasures are actions, devices, procedures, techniques, or other
measures that reduce the vulnerability of an information system [153]. Syn-
onymous with safeguards, and to some extent with security controls.

Therefore, countermeasures reduce, i.e. mitigate, threat. In this sense, they
can be considered as counterpart for attacker strategies, from now on called de-
fender strategy or defense strategy.

Security requirements are a translation of security objectives into security
functional requirements (adapted from [37]).

where:
A security objective is a statement of intent to counter identified threats

that satisfy identified organization security policies and/or assumptions, to ensure
the confidentiality, integrity, and availability of the information being processed,
stored, or transmitted (adapted from [37, 153]).

It is worth emphasizing that a source of security requirements is the desire
to counter identified threats. Hence, security requirements are also derived from
defenders’ strategies which address identified attackers’ strategies.

Figure 2.2 summarizes the relationship between the most relevant terms re-
viewed in this section.

20

2.2. RELATED WORK

attacks

controls

security

measures

counter−

risk

threat

cause

exploit

manage

enforce

contain

estimate

value

estimate value

increase

likelihood of

assets

represent (increase)

assets value impacts

in COTS

controls

in security

vulnerabilities

vulnerabilities

exposures

reduce

cause impact on

is realized in

threat legitimate

(defenders)(attackers)

agents stakeholders

Figure 2.2: Relationship between reviewed security terms

2.2 Related work

In the remaining of this chapter, we provide an overview on how the problem
of finding potential multi-step network attacks has been approached in the lit-
erature. As mentioned in Chapter 1, there are three main streams of work, di-
rectly related to this topic: Penetration Testing, reviewed in Section 2.2.1, Attack
Trees, reviewed in Section 2.2.2, and Attack Graphs, reviewed in Section 2.2.3.
Furthermore, indirectly related work comes from the research field of Intrusion
Detection/Prevention Systems (IDS/IPS), reviewed in Section 2.2.4.

2.2.1 Penetration Testing

Penetration Testing, often called Pen Testing, is a method to check security
strength [220] of a target under evaluation, either for attesting compliance to
regulations or for quality assurance purposes. It is performed by authorized
professionals which actually mimic a threat agent, employing the same set of tools
and strategies, to circumvent security controls in place. Targets of evaluation can
be an organization network, or partitions of it, and in this case, the goal usually
is to assess the network against the risk of gaining access to sensitive information.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

Other targets of evaluation can be specific like a host, a web application, or any
other target of particular interest, for example, assess an organization against the
risk of outsiders installing and later exploiting a wireless point to get access to
the inner network.

Unlike most of assurance methods, this type of test is holistic [220]. It means
that rather than analyzing a target under one specific aspect, pen testers consider
vulnerabilities from several domains, for example, the physical, telecommunica-
tions (wireless communications networked communication), and humans [94].

Pen tests can be conducted in several ways: they can be executed in a black
or white box manner, overt or covert.

A black-box type of test is more appropriate to simulate attacks from out-
siders of an organization. In this case, testers are provided with a minimum,
publicly available, set of information about the target under evaluation, and need
to acquire the remaining information needed to launch attacks the same ways as
remote, non-employees do [81]. The first stage testers have to bridge is to identify
a way-in the network firewall and then, if successful, they can attempt to reach,
interactively, other hosts within the network [217]. Alternatively, a white-box
type of test is more appropriate to simulate attackers from insiders. In this case,
testers are given the level of information and access equivalent to an employee,
and the aim is to find paths to reach information the employee is not authorized
to reach.

On the one hand, an overt pen test happens when the organization staff has
full knowledge about the testing. It is usually performed internally, by employees
organized on a so called Blue Team [217]. On the other hand, a covert pen test
happens when only the upper management responsible for the initiative has full
knowledge about the testing. It is usually performed by teams called Red Teams6

from trusted third parties, with or without warnings. Either way has advantages
and disadvantages. Red Teams have advantages related to specialization such
as speed, expertise, and methodology. Beside, separation of duties among who
is responsible for the target under evaluation and who actually performs the
evaluation is also important [81]. Blue Teams have advantages related to secrecy,
and cost since outsourced pen tests are expensive. Furthermore, they have more
knowledge about the target under evaluation and, therefore, tend to be more
likely to find extra attack paths.

A pen test has basically four stages and is usually supported by the Flaw7

Hypothesis Methodology (FHM) [220], as illustrated in Figure 2.3:

1. a planning phase where scope of the testing, conditions for completion and
threat sources to be considered (e.g. social engineering) should be agreed.

2. a discovery phase for information gathering about the target under evalua-
tion and flaw discovery where vulnerabilities are detected. This phase can
be supported by tools for identification of network topology and configura-
tion, and for vulnerability scanning [91].

6Red Teams are often used in the military domain to play the enemy role [213].
7Flaw is equivalent to the broad view of vulnerability described in Section 2.1.

22

2.2. RELATED WORK

3. an attack phase where actually the ethical hackers confirm and generalize
flaws by exploiting them to identify the risk they pose if exploited by real
attackers. There is a feedback loop between Attack and Discovery, since
exploitation leads to more discovery. Besides, the attack phase itself can also
be iterative because one successful exploitation might open opportunities for
further exploitations [217]. Hackers toolkits and detailed instructions about
exploitations found in specialized forums like www.securityfocus.com play
an important role at this stage.

4. a reporting phase where findings and recommendations for flaw elimination
are drawn, supported by considerations about risk. The planning is also
documented in this phase.

confirmation &
generalization)

(Flaw
Discovery
(Flaw
generation)

Reporting
(Flaw
elimination)

Planning
(Testing goals,

evaluated, etc)
target to be

additional discovery

documented

Attack

further

opportunities

documented

Figure 2.3: Basic penetration test cycle (adapted from [217, 220])

Penetration Testing is an empirical method which aims at checking security
by uncovering flaws [220]. Nothing guarantees its completeness and, therefore,
it is an assessment exercise which is part of the security governance cycle shown
in Figure 1.1, and should be performed regularly. As with program testing, Pen
Tests can be quite effective in showing the presence of vulnerabilities, but they are
inadequate to show their absence [62]. Pen tests are expensive, labor-intensive
and totally dependent on the skills (i.e. creativity, diligence, discipline) and
technical expertise of testers [81]. Besides, they are constrained in time or funds
unlike the attacker who might, e.g., leave a process running long after testers
budget has expired [232].

Attack Trees [79], and manually generated Attack Graphs as reported by
Sheyner and Wing [192], and discussed next, are used as support for Red Teams.
Additionally, researchers have proposed the use of Petri Nets [132] and host-based
attack chaining [4] to automate some aspects of pen tests.

2.2.2 Attack Trees

We have already seen in our discussion of Penetration Testing (in the previous
section) that the Attack Phase, shown in Figure 2.3, is iterative i.e. one successful
exploitation might open opportunities for further exploitations. Besides, this

23

CHAPTER 2. BACKGROUND AND RELATED WORK

figure also shows a feedback loop between Attack and Discovery Phases, since
one exploitation may lead to more discovery. Both loops bring the attacker closer
to achieving a goal. Attack Trees provide a structured, top-down way to organize
sub-goals (maybe obtained via Penetration Testing) which represent means to
achieve a goal. Therefore, the root of the tree is an attacker goal, and the leaves
are sub-goals which contribute towards their parent’s goal. An attack is a path
from a leaf to the root, and as it happens in any tree structure by definition, any
sub-goal (i.e. node) in an attack tree can only have one parent-goal [19].

Open Safe

Find Written

Combo

Get Combo

from Target

Threaten Blackmail Eavesdrop Bribe

Cut Open SafeLearn ComboPick Lock
Install

Improperly

Get Target to

Conversation State Combo

AND

Listen to

Figure 2.4: An example attack tree adapted from [186]

Figure 2.4 shows an example attack tree where leaf nodes are alternatives
(OR-gates), i.e. only one sub-goal is sufficient to achieve its parent goal, unless
explicit AND-gates indicate that all sub-goals are needed to achieve their parent
goal.

Attack Trees (AT) are in fact a variation of Fault Trees (FT) applied to the
domain of Information Security by Bruce Schneier [186]. The root of a Fault Tree
represents a failure, i.e. an undesired event, and leaves represent causes which
contribute to the parent failure, i.e. basic observable failures. The construction
of both types of tree (AT and FT) requires deductive reasoning8, which means
thinking backwards looking for means or causes of a phenomenon to be avoided.

Figure 2.5 (on the left) shows an example FT which is a graphical represen-
tation of the following Boolean expression.

TOP = V F ∪ [(FP1 ∪ EF) ∩ (FP2 ∪ EF)]

A FT can be analyzed in two aspects: qualitative and quantitative.
Qualitative analysis of a FT involves reducing the tree into an equivalent one

containing only minimum cut sets9. By translating the FT into a Boolean ex-
8Deduction constitutes reasoning from the general to the specific [199].
9A minimum cut set is a set of leaves such that if they all occur then the root occurs; it is

minimum if the root will no longer occur if any node is eliminated [198].

24

2.2. RELATED WORK

No water from
fire pump system

Valve blocked or
failed to open

No water from
the two pumps

Valve blocked or
failed to open

Failure of
engine

Failure of
pump 1

No water from
pump 2

No water from
pump 1

No water from
fire pump system

Failure of
engine

Failure of
pump 2

No water from
the two pumps

Failure of
engine

Failure of
pump 2

Failure of
pump 1

OR-gate

AND-gate

basic event

TOP

G1

G2 G3

VF

EF FP2FP1 EF

TOP

VF G1 EF

FP1 FP2

Figure 2.5: An example fault tree, on the left, and its logically equivalent, on the
right (adapted from [172])

pression, top-down substitutions are possible, reducing the tree into an equivalent
one containing only minimum cut sets. For example, the reduction of the FT on
the left side of Figure 2.5 is shown on the right side, and is represented by the
expression:

TOP = V F ∪ (FP1 ∩ FP2) ∪ EF

Therefore, the minimum cut sets of the original FT are: MCS1 = V F ,
MCS2 = FP1 ∩ FP2 and MCS3 = EF . It means that if any of the MCSi
happens, the top event happens, and it also means that to prevent the top event
to happen, all MCSi have to be prevented.

As we can see, minimum cut sets relate basic events (leaves) to the top event
(root), and do not provide complete paths through the tree, from leaves to root.
This always works fine for Dependable Systems10, however, it might or not work
for analysis where Security rather than Safety is relevant; it will depend on the
intended application. For example, Helmer et al. [93] use FT to identify and
analyze security requirements for IDS11. The minimum cut set in this case pro-
vides “what components of a distributed system [modelled as leaves] must be
monitored to detect the intrusion [modelled as root]” [93].

Quantitative analysis of a FT involves determining the probability of the top
event to happen, based on given probabilities of the basic events (i.e. leaves) to
happen. Hence, leaves contain faults that are observable events associated e.g.
with component hardware failures, human errors, software errors, or any other

10Dependable systems are systems that have the “ability to avoid service failures that are
more frequent and more severe than is acceptable” [12].

11Intrusion Detection Systems

25

CHAPTER 2. BACKGROUND AND RELATED WORK

pertinent events which can lead to the undesired top event [199], but for which
failure data exist [172]. Also the top event should be unambiguous and clear
enough to answer 3W questions like what (e.g. fire), where (e.g. in the process
oxidation reactor), and when (e.g. during normal operation) [172]. In the domain
of network security, quantitative data about leaves of an AT are hard to obtain
but, when available, FT techniques also apply to propagate values to the root of
the tree.

In summary, although AT are FT, analysis techniques and construction guide-
lines of the latter do not necessarily apply to the former, since AT tend to contain
more subjective nodes, as illustrated in Figure 2.4. In fact, while in Attack Trees
(leaf) nodes usually result from brainstorming, leaf nodes in Fault Trees nodes
result from observable faults in the system being analyzed.

Fault Tree Analysis is a technique which belong to the category of Probabilis-
tic Risk Assessment (PRA). Tree-based PRA techniques such as, for example
Event Tree Analysis (ETA)12, are all scenario-based approaches for risk evalua-
tion. Therefore, the effectiveness of results depend on the identification of signif-
icant scenarios [224]. In the domain of Dependable Systems it is easier to work
in the failure space because usually a few fault tree covers all significant scenar-
ios [224]. However, in the domain of Information Security, and more specifically
in Network Security, this assumption does not always hold. The spectrum of
attackers’ goals is usually very large in part because there are several potential
targets which can be reached via different paths. As a consequence, Attack Trees
are useful to assess specific scenarios, not the network as a whole.

Tree-based deductive analysis, such as Fault Tree Analysis (FTA), is intrinsi-
cally a static technique which is often used for investigating accidents [224], since
it allows the reconstruction of events which led to the accident in a logic and
methodological way. The same happens for the static investigation of ways to
achieve an attacker goal using Attack Trees.

In the domain of security, attack trees have been used, e.g., to reason about
countermeasures [21], assess risk, such as the commercial tool SecurlTree [3] from
Amenaza Technologies, and to elicit requirements. This last application of At-
tack Trees is used by the SQUARE (System Quality Requirements Engineering)
methodology [134, 83] to provide a high level picture of the nature of potential
attacks on a system to-build, and has also been used by us. We organize, in
Attack Trees, high-level means to achieve insiders’ sub-goals used to gather goal-
based (security) requirements for the defense against insiders [75]. This work is
reported in Appendix B.

SecurlTree determines the risk of attack scenarios to happen using Attack
Trees. Experts have to: (i) build the tree representing an attack scenario, (ii)
determine the attacker profile in terms of technical ability, expected effort and
level of risk the attacker is willing to take, and (iii) estimate impact indicators
such as expected damage from the attack to the organization, and expected gain

12Event Tree is an inductive reasoning method to analyze consequences of an initiating event,
for example, an incident (root of the tree).

26

2.2. RELATED WORK

for the attacker. Based on this input, the tool calculates risk and determines the
least cost path to achieve the goal. The drawback of the tool is the amount of
information it requires [222] which is not available in practice, therefore, making
it totally expert-specific, and its limitation to completely known scenarios.

2.2.3 Attack Graphs

An Attack Graph can be viewed as a structure which contains numerous Attack
Trees. This means that (i) one node can have more than one parent, (ii) more
than one attacker and more than one goal can be represented, and (iii) both
inductive reasoning13 (more common), forward from means to consequences, i.e.
from an attacker initial location to a goal, and deductive reasoning, backward
from consequences to means, i.e. from an attacker goal to an initial location, are
possible. Figure 2.6 illustrates these observations.

attacker

attacker

inductive reasoning

deductive reasoning

goal

goal

Figure 2.6: An Attack Graph can contain numerous Attack Trees; inductive and
deductive reasoning are possible

Attack Graphs are used to uncover attack paths in a network which allows
attackers to reach goals, i.e. allows attackers to compromise the network security.
Attack Graphs have two main characteristics. First, network vulnerabilities are
always represented. This is motivated by the recognition that “combinations of
exploits [vulnerabilities] are the typical means by which an attacker breaks into
a network” [5]. Second, and derived from the first, traversing the graph provides
attack paths. Furthermore, graphs are a data structure that accommodate dy-
namics to different extents, such as pre- and postconditions attached to its nodes,
very much used in the domain of Attack Graphs as we will see in this section.

13Induction involves reasoning from individual cases to a general conclusion [199].

27

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.3.1 State Enumeration-based Attack Graphs

Early approaches relied on state enumeration (i.e. state of the attacker and the
network) to generate Attack Graphs. Model checker graphs are one example of
such approach.

Sheyner and Wing [192, 193], from Carnegie Mellon University, use a symbolic
model checker (NuSMV) to build Attack Graphs. The approach requires as input
a model of the network in a finite state machine representation and a property
(system invariant) to be checked against the model. The model checker builds
the model using information related to connectivity among hosts and a library
of attack actions specifying details about vulnerabilities in terms of (1) intruder
and network preconditions and (2) intruder and network effects. The security
property indicates an attacker state, i.e. a goal or target, never to be reached. The
model checker searches the entire state space defined by the model and returns
all possible counter-examples, i.e. an attack graph containing all possibilities
which lead to the attacker goal/target, if the property is not satisfied by the
model. Results from their performance tests [191] show that the attack graph
for a network with 3 hosts and 4 vulnerabilities was build in about 5 minutes.
However, when the network increased to 5 hosts and 8 vulnerabilities, it took the
model checker 2 hours to build a graph which had 5948 nodes and 68364 arcs. An
evolution of their tool [135] relies on prioritization as a way to overcome attack
graph complexity, as mentioned in Section 2.2.3.3.

Model checker approaches in general tend to suffer from the drawback of the
state explosion problem [214]. It means the complexity of the graph generated
grows exponentially O(2n), in terms of the size of the state space n, in this case,
in the number of hosts and vulnerabilities.

Other examples are the tools by Swiler and Phillips [167, 206] and Dacier et
al. [57, 162]. The former tool requires detailed information about the network in
configuration files, attacker profiles establishing initial capabilities based on at-
tacker skill levels, and attack templates representing a generic state of an attack
(pre- and postconditions of an attack step organized in a customized database).
These three kinds of information are matched to generate the Attack Graph,
reaching a goal state. Arcs represent transitions from one attack state to an-
other, and an attack path is obtained via a near-optimal shortest path algorithm.
They improve scalability with algorithms to eliminate redundant arcs and nodes
and eliminate self-loops by means of templates, therefore, reducing the state
space. Additionally, they suggest (i) aggregating machines with similar config-
urations to be represented as a single node in the graph, and (ii) decomposing
the network hierarchically for analysis. However, despite interesting scalability
measures (explored further by other researchers later), their graph remains fun-
damentally exponential in terms of the number of hosts. Examples provided are
very small, e.g. with 2 hosts and 5 vulnerabilities [167] and with 3 hosts and 2
vulnerabilities [206].

The tool by Dacier et al. is based on privilege graphs where nodes are possible
attack initiators and possible targets, i.e. nodes are a set of privileges owned by

28

2.2. RELATED WORK

users or group of users. Arcs are vulnerabilities which allow the acquisition of
privileges of a node-target by a node-initiator, if a transition occurs. The authors
transform a privilege graph to a Stochastic Petri Net obtaining a state graph which
eliminates initial duplication of states. Nevertheless, to estimate the probabilistic
METF (Mean Effort To Failure), i.e. mean effort for an attacker to reach a target,
they have to enumerate all possible paths to this target. Experiments with a
file system containing 13 vulnerabilities, reported in [162], failed to successfully
compute “due to the complexity of the algorithm” , showing that the METF “can
only be computed when the number of paths between the attacker and the target
is relatively small”14.

Therefore, state enumeration-based attack graphs (e.g. [192, 178, 170, 206,
57]), also called full graphs, do not scale to real networks. An important aspect
of these graphs is the presence of state repetition since states are enumerated in
every possible order. In practice it means that the attacker would visit the same
state more than once to reacquire capabilities. The next generation of attack
graphs assume that attacks are monotonic, as described next.

2.2.3.2 Exploit-based Attack Graphs

The monotonic assumption in the domain of network attacks was introduced by
Ammann et al. [5]. It means that the attacker never has to backtrack, i.e. the
attacker does not loose capabilities acquired previously in the course of an at-
tack. This assumption is reasonable at the level of details required by attack
graphs. As noted by Noel and Jajodia [157], “when non-monotonic attack be-
havior does occur, it is usually at a very detailed level”. This assumption allowed
researchers to explore dependencies among vulnerabilities and other security at-
tributes (generically called exploits) since, under the monotonic assumption, an
exploit precondition is never invalidated by another exploit postcondition, i.e.
once a precondition is satisfied it remains satisfied. Therefore, a new generation of
Exploit-based Attack Graphs began, opposed to the previous State Enumeration-
based Attack Graphs generation.

Exploit-based graphs rely on pre- and postconditions to find attack paths on
a network. Although scalability is no longer the main issue in this graph gener-
ation because instead of scaling to few hosts/vulnerabilities, as in the previous
generation, they now scale to tens or hundreds of hosts (e.g. [111, 196]), or even
to thousands of hosts (e.g. [105, 164]), it remains, along with other aspects, an
important requirement for new approaches in the field of attack graphs.

Ammann et al. [5] propose a graph where nodes represent generic pre- and
postconditions of exploits and arcs represent exploits. Exploits can be vulner-
abilities, or attacker and network attributes (e.g. a service running, a buffer

14This result was obtained with the “Total memory (TM) assumption: at each step of the
attack process, all the possibilities of attacks are considered (i.e. those from the newly visited
node of the privilege graph and those from the already visited nodes that he did not apply
previously, in a breadth-first fashion). At each step, the attacker may choose one attack among
the set of possible attacks” [162].

29

CHAPTER 2. BACKGROUND AND RELATED WORK

overflow, the fact the attacker has FTP access) and are associated with two or
three host variables, which are instantiated when initial attacker conditions are
given. Therefore, if an exploit e has 3 preconditions and 2 postconditions, there
will be 6 arcs labeled e in the graph. As a consequence, it becomes difficult to
follow attack steps from the graph [157] because the number of arcs with the same
label tend to become high. Ammann et al. compute attack paths using breadth
first search to find the shortest path, in terms of number of exploit, between the
attacker and a goal/target.

CAULDRON (Combinatorial Analysis Utilizing Logical Dependencies Resid-
ing On Networks) tool, from George Mason University (GMU), first introduced
as TVA (Topological Vulnerability Analysis) tool [111], generates attack graphs
based on the following input: (i) network configuration retrieved automatically
from the Nessus scanning tool [149], (ii) a database of vulnerabilities provided
with the tool and updated periodically by GMU researchers [50] specifying de-
tailed pre- and postconditions of each vulnerability, and (iii) information about
initial capabilities of the attacker and the goal/target. They build a type of graph
which is the opposite of the one from Ammann et al. [5]. Exploits are nodes while
pre- and postconditions are arcs, therefore, the exploit e above would be a node
with 3 incoming and 2 outgoing arcs. They show, in [111], a backwards analysis
of the graph, i.e. from the goal, using algebraic substitution. This way, they
derive the minimum set of (pre/post)conditions that allow the attacker to reach
the goal. The network administrator can, then, make choices to what conditions
to tackle. However, as the number of exploits grow, “an attack graph with 100
exploits could have up to 1002 = 10, 000 edges [arcs] in the exploit dependency
graph”, as observed by CAULDRON creators [157]. As a consequence, these
graphs become too complex for humans to understand. To reduce this visual
complexity several techniques have been proposed, as reviewed in Section 2.2.3.3.

NetSPA (NETwork Security and Planning Architecture) tool, from MIT, has
evolved from the generation of a full graph [10] to more efficient graph repre-
sentations such as the predictive graph [126] and the multi-prerequisite (MP)
graph [105]. The MP graph has 3 types of nodes (i) state, i.e. the attacker level
of access on a host, (ii) prerequisite, i.e. reachability or a credential needed for ex-
ploiting a vulnerability, and (iii) vulnerability instance. This tool uses a different,
more simplistic, approach to model vulnerabilities which can be populated with
publicly available information such as the National Vulnerability Database [161]
from NIST. It uses an access-to-effect paradigm, also used by other researchers
(e.g. [125]). This paradigm adopts the type of access required for the exploitation
of vulnerabilities (e.g. the attacker needs remote or local access) as precondition,
and the resulting effect of the successful exploitation of vulnerabilities (e.g. the
attacker gains admin privilege) as postcondition. Reachability between hosts ob-
tained from firewall rules is pre-computed and used to create prerequisite nodes
and their incoming and outgoing arcs. Although the tool scales to thousands of
hosts, as reported in [105], the MP graph is abstract and difficult to convey to
reality because the hierarchy of the network is not reflected in the graph. To
overcome this problem, a solution based on treemaps is proposed in [228]. This

30

2.2. RELATED WORK

solution is reviewed in the next sub-section.
Ou et al. [165] use Datalog rules in the MulVAL (Multihost, multistage Vulner-

ability Analysis) tool for modelling the input required for the generation of Attack
Graphs. All the input (including firewall rules as a so-called “hacl” rules) and pos-
sible state transitions are captured in Horn clauses of the type L0 := L1, ..., Ln,
where L0 is true if L1, ..., Ln is true. Although they use public databases and the
output of scanning tools to populate these rules, the rules themselves need to be
stored in a private database. The Prolog reasoning engine has been adapted to
produce a derivation trace used to generate a logical attack graph [164]. Perfor-
mance tests with up to 2000 hosts [165] show that MulVAL escalates to thousands
of hosts. However, the attack graph generated is large and difficult to understand,
as reported in [180]. For example, for a network with 6 hosts and 2 firewall rules,
“hacl” nodes appear 12 times in the graph generated. To overcome the size
problem, they use node ranking [180], as mentioned in Section 2.2.3.3.

At least two commercial tools generate a sort of Attack Graph to identify
critical vulnerabilities to be patched: Skybox [196] and RedSeal [174]. The former
relies on real-time data collected by monitoring and aggregation host-based agents
scattered in the network [50]; it is unclear the consequences that this live analysis
might cause on network performance, and the security scheme used to make
sure that this information does not end up in the hands of attackers. According
to [228], Skybox generates the shortest path between a given starting point and
a target. The latter uses given asset values for the entire network to provide
vulnerability metrics taking into account, e.g., access paths from a vulnerability.
Both have their own database of vulnerabilities.

From this first analysis of the second-generation of attack graphs, the main
point that strikes is the fact that the graphs themselves are still large and in-
comprehensible. In the next section, we see how current approaches deal with
this complexity a-posteriori, i.e. after the graph is generated. Besides, there are
other aspects observable from the above review. Many approaches require private,
customized databases of vulnerabilities because they rely on a set of attributes
not available in public databases, such as the NVD [161]. We use vulnerability
attributes based on the access-to-effect paradigm to avoid this problem15. Ap-
proaches that use asset value assume they are provided (we will see in Chapter 4
that this aspect motivates requirement R3), and attack graphs typically consider
only steps from one vulnerability to another, we come back to this aspect in
Section 2.2.3.6.

2.2.3.3 Addressing Visual Attack Graphs Complexity

Several researchers have recognized attack graph visual complexity, e.g. [157,
228, 135, 206], even with simplifications such as the access-to-effect paradigm to
model vulnerabilities. Attack graphs are difficult for humans to understand for
two main reasons. First, they do not fully represent the topology of the network,

15In fact, we will see in Chapter 5 that we use an improved classification of vulnerabilities
based on an access-to-impact paradigm.

31

CHAPTER 2. BACKGROUND AND RELATED WORK

i.e. firewalls, network hierarchy, logical grouping of hosts such as subnet, LAN
(Local Area Network) and VLAN (Virtual LAN) are not represented in the graph
itself. As a consequence, it is difficult to relate attack graphs to the network
itself. Second, the overload of information is above humans capacity even for
small networks due to number of arcs and the absence of logical constructs for
“zooming in” or “zooming out”. Solutions for the problem rely on: (i) grouping,
(ii) aggregation, (iii) clustering, (iv) treemaps, and (v) prioritization, applied
after the attack graph is built, as reviewed next.

Swiler et al. [206] suggest grouping of nodes with similar configurations into
one single node in the graph. They reason that such hosts may have similar
vulnerabilities as well. They leave as a challenge to “determine how to group
these subsets in an efficient way so that there is little overlap and redundancy in
the paths”. Other researchers (e.g. [105] in NetSPA tool) apply grouping method
to reduce reachability computation.

Noel and Jajodia apply aggregation rules [157], visual clustering [156], and
adjacency matrix clustering [158] to overcome the complexity of attack graphs
generated by CAULDRON tool.

In their first approach, the computation of aggregated nodes uses a hierarchy
of rules which guarantee that aggregations are not formed on an ad hoc basis but
are rather semantically correct. They aggregate, for example: (i) conditions (pre-
and postconditions) related to a same host into single host nodes by computing
common attributes, (ii) exploits (i.e. vulnerabilities) between pairs of hosts into
single exploit nodes by computing graph cliques, i.e. fully connected subgraphs,
and (iii) fully connected hosts into single subnet nodes by computing subnet
mask and IP addresses. Additionally, subnets can be aggregated, e.g. into LAN
(Local Area Network) and VLAN (Virtual LAN), depending on input from users,
provided that sets obtained form a connected subgraph. Figure 2.7 illustrates this
technique.

Their second approach, is similar to the first but the visualization is improved.
For example, subnets are more explicitly represented, as shown in Figure 2.8.

In their third approach, each arc of the attack graph becomes an element
of an adjacent matrix. If there is at least one arc between hosts h1 and h2, it
means there is at least one exploit between them. In this case, element Aij of the
matrix is filled with a 1 (visually black), otherwise with a 0 (visually white). The
clustering algorithm finds blocks denoting similar patterns among attack graph
arcs, as shown in Figure 2.9(a). While the adjacency matrix shows single attack
steps, multiple attack steps are obtained by matrix multiplication. Therefore,
the matrix resulting from the computation A2 represents all 2-step attacks, and
so on. A multi-step reachability matrix calculated by A + A2 + A3 + ... + An−1

provides the minimum number of steps to reach each pair of nodes. Instead, if a
boolean sum A∨A2∨A3∨ ...∨An−1 is calculated, i.e. the transition closure of A,
it is possible to know if a host can be reached by the attacker independent on the
number of steps. The authors claim [158] that “there are improved algorithms,...,
that come closer to O(n2)” for computing the transitive closure.

Williams et al. [228] use treemaps, as well as RedSeal commercial tool [174],

32

2.2. RELATED WORK

1 exploit

Subnet 1

1 exploit

Attack

m13
4 exploits

2 exploits

m3
1 exploit

m2
6 exploits

m1
6 exploits

4 exploits

2 exploits

2 exploits 4 exploits 1 exploit

m5
3 exploits

m6
3 exploits

m7
2 exploits

m4
3 exploits

m12
1 exploit

m8
2 exploits

m10
2 exploits

m9
2 exploits

m11
2 exploits

Subnet 2 Subnet 3

Subnet 4

m16
4 exploits

m15
1 exploit

m14
4 exploits

Figure 2.7: Aggregation applied to a network with 16 hosts and 4 subnets
(adapted from [156])

to improve readability of attack graphs generated by the NetSPA tool. Hosts are
grouped automatically depending on reachability into subnets, and vulnerabilities
are grouped per host. The size of displayed subnets is proportional with the
number of hosts it contains; arcs are hidden by default. It is up to users to
position subnet treemaps into a meaningful hierarchy which represents the real
network. They show the attacker’s ability to penetrate the network by means
of arcs which indicate the shortest, worst-case, path between sets of nodes, as
illustrated in Figure 2.9(b).

Other approaches address attack graph complexity via prioritization. Both
Sawilla and Ou [180] and Mehta et al. [135] use Link Analysis Ranking16 algo-
rithms, such as Google’s PageRank [27], to achieve that. The former approach
prioritizes configurations and conditions (e.g. vulnerabilities) which lead the at-
tacker to achieve a determined goal/target in attack graphs generated by Mul-
VAL. The latter approach has similar aim to prioritize states of the attack graph
which are more relevant for the attacker to reach a goal.

As we have seen in this section, current attack graph approaches address com-
plexity by processing the graphs after they have been generated. Some complexity
is decreased automatically by applying algorithms that compute subgraphs via

16This field of research deals with the prioritization of search results using the link structure
of web pages.

33

CHAPTER 2. BACKGROUND AND RELATED WORK

1 exploit

Attack

m3
1 exploit

m2
6 exploits

m1
6 exploits

2 exploits

2 exploits 1 exploit m5
3 exploits

m6
3 exploits

m7
2 exploits

m4
3 exploits

m12
1 exploit

m8
2 exploits

m10
2 exploits

m9
2 exploits

m11
2 exploits

Subnet 1

m15
1 exploit

m14
4 exploits

m13
4 exploits

Subnet 2

Subnet 3

Subnet 4

m16
4 exploits

Figure 2.8: Visual clustering applied to the same network as the one shown in
Figure 2.7 (adapted from [156])

ranks or graph cliques, subnets via reachability, or that hide arcs, and group vul-
nerabilities per host. However, other aspects of the topology of a network such
as logical groups, e.g. LANs, and the hierarchy itself depends on users manual
positioning. However, even with those automatic and manual structuring of a
network, Figures 2.7 to 2.9 do not show networks that are easy to relate with
the real network topology since we cannot identify, e.g., firewalls that are an im-
portant component of the topology. We will see in Chapter 4 that this aspect
motivates requirement R1. Furthermore, we also acknowledge that there are hosts
with similar configurations in large organizational networks, and this similarity
makes the network manageable. However, instead of taking the perspective of
grouping nodes for the effect of graph processing or display, we take the perspec-
tive of copying configurations for the effect of network modelling, as we will see
in Chapter 8.

2.2.3.4 Optimization Perspective of Attack Graphs

Optimization problems have to rely on at least one metric to guide the search
process, as we can see next. Metrics can be the distance between two nodes, e.g.
in terms of arcs, with the objective of finding the shortest path between them, or
incorporate other metrics to achieve other objectives.

Attackers do not necessarily choose the shortest path in terms of number
of arcs (i.e. number of attack steps) between an initial location and a target,
as some tools assume. This is simply because the attacker most probably do
not have full knowledge about the network topology and of vulnerabilities it

34

2.2. RELATED WORK

To
Subnet 1

To
Subnet 4

To
Subnet 2

To
Subnet 3

To
Subnet 5

From
Subnet 1

From
Subnet 2

From
Subnet 3
From
Subnet 4

From
Subnet 5

A1,1

A2,2

A3,3

A4,4

A5,5

10

30

50

40

20

60

70

(a) Adjacency matrix for network with 75 hosts
(adapted from [156])

enclaveDMZ

enclaveINT

lansubnet

EXTLAN

(b) Treemap for network with 4 subnets and
80 hosts collapsed into 25 nodes (adapted
from [228])

Figure 2.9: Two displays of network topology

contains [162, 167]. Besides, the attacker when faced with alternatives from a
current location (e.g. identified via a port scan), may give preference to less
difficult-to-exploit vulnerabilities, or to alternatives which match with certain
resources (e.g. a password or a toolkit). Furthermore, automated “attackers”
may make choices based on conditions to be met (e.g. vulnerabilities which
result in the ability to run code). Therefore, there is a heuristic component in
attacks, recognized by other researchers. For this reason, efficient algorithms to
find the shortest path between two nodes in a graph (e.g. Dijkstra’s [61]) may
not good enough to find attack paths. Therefore, we need to incorporate other
optimization criteria than the length of the attack path, such as a measure of
cost of attack.

Swiler et al. [206] assume that low cost paths for the attacker are the most
exploitable. In their approach, costs or other type of weights, such as likelihood,
average time to succeed and effort, are assigned to arcs and provided by users.
Since they realize attackers are not likely to choose the shortest path, they opt
for the ε-optimal shortest path to find attacks in their attack graph, where ε
is is “large enough to account for uncertainty in individual edge metrics and
uncertainty in the actual path the attacker will choose” [206]. More about their
attack graphs have been discussed in Section 2.2.3.1.

Chinchani et al. [38, 87], from Buffalo University, proposed a target-centric
approach which allows not only the modelling but also the simulation of an at-
tacker searching through the graph. Nodes are associated with tokens, e.g. cre-
dentials, and arcs associated with communication channels and cost. They use

35

CHAPTER 2. BACKGROUND AND RELATED WORK

a greedy heuristic to search for attack paths. During the search, the attacker
may acquire tokens at nodes, and if he has a token he incurs minimum cost
to traverse an arc that requires that token, otherwise he incurs maximum cost.
Their token is abstract enough to represent any information such as “mother
maiden name” and “privilege acquired”, and their graph can represent a broad
range of connections like telephone links. However, their computation of cost
requires a two-layer classification of attributes related to the supposed attacker,
vulnerability data, and asset information. The numeric values associates with
those attributes are organized in a custom database, and the minimum and max-
imum costs are obtained via database queries. Their complicated scheme of cost
assignment requires information that is either dependent on expert assignment,
therefore is stakeholder-specific and subjective, or is dependent on information
that is difficult to retrieve or automate. It means that this information is not
available in large scale in practice.

We share the opinion that finding attacks in a network is an optimization
problem. However, we realize that this perspective is constrained by the lack
of metrics which scales. We will see in Chapter 4 that this aspect motivates
requirement R5.

2.2.3.5 What-if Analysis in Attack Graphs

What-if analysis allows the validation of hypotheses against an attack graph. It
means that one wants to validate the consequence, in terms of attacks, of an
hypothesis made. In literature, we find hypotheses about:

• attackers location (all attack graph approaches allow this type of hypothe-
sis)

• attackers goal, e.g. [165, 111, 191]

• zero-day vulnerabilities (refer to Section 3.2.2.2 in page 51 for an explana-
tion about this topic), e.g. [228]

What-if analysis is an important aspect to be considered by new approaches
to find attacks. However, apart from those type of hypotheses mentioned above,
there are others not currently contemplated. For example, “what-if an attacker
acquires a credential somehow, such as via social engineering?”. Furthermore,
there are what-if hypotheses that are related to the dynamic aspect of networks,
such as “what-if a firewall rule is changed?”, “what-if a certain vulnerability is
patched?”, or “what-if a new firewall is deployed?”. We will see in Chapter 4
that this aspect motivates requirement R4, and in part requirement R2.

2.2.3.6 Credentials in Attack Graphs

Some attack graph approaches incorporate the concept of credentials for access
control, as e.g. NetSPA [228], MulVAL [163], and Chinchani et al. [38].

36

2.2. RELATED WORK

The first (i.e. NetSPA) uses pre- and postconditions, where a state (specific
host plus access level) may provide a credential to an attacker. If an attacker
acquires root privilege on such a host which has a credential as postcondition, it
is automatically assumed that the attacker acquires the credential and can use it
later on hosts which have this credential as precondition. However, since states
are memoryless, this approach does not allow a credential acquired in a current
step to be used a few steps further. This is illustrated in Figure 2.10, where we
see hosts B and C reachable from host A and hosts D and E reachable from host
C. Since host A has credential c as postcondition and hosts B and C, reachable
from A, have credential c as precondition then a step can occur between A and B
or A and C. However, a step between C and D or C and E cannot occur because
credential c is not postcondition of C. In summary, they use preconditions and
postconditions to model trust relationships between hosts which share credentials.

reachability

A

B

C

D

E

c as postcondition

c as precondition c as precondition

Figure 2.10: Memoryless pre- and postcondition scheme for dealing with creden-
tials

The second (i.e. MulVAL), similar to the first, assumes a quite static, worse-
case approach to the acquisition of credentials. A victim’s credential is acquired
by an attacker in two circumstances. First, if the victim has an account, and the
attacker obtains full control (root access) over the victim’s host; in this case it
is assumed that the “Victims credential will be compromised by Attacker” [163].
Second, if the victim is labelled as “security incompetent”, as in a what-if hy-
pothesis; in this case also the attacker will get hold of the victim’s credential
automatically. This approach does not allow to model any dynamic which re-
flects uncertainty in the process of acquiring a credential. Besides, there is no
distinction about which credential is acquired. In fact, credential is not part of the
Horn clauses used for modelling acquisition of credential (refer to Section 2.2.3.2
for an overview of MulVAL), as we can see in the extract below [163]:

principalCompromised(Victim, Attacker) :- hasAccount(Victim, H, User),

execCode(Attacker, H, root),

malicious(Attacker).

principalCompromised(Victim, Attacker) :- incompetent(Victim),

malicious(Attacker).

Therefore, modelling at the level of host and principal is rather a limited ap-
proach to the acquisition of credentials, it is important to model at the granularity
of credential.

37

CHAPTER 2. BACKGROUND AND RELATED WORK

The third (i.e. Chinchani’s) does not deal with credentials explicitly, but with
tokens which may represent credentials. Their algorithm to find attacks incor-
porate some degree of uncertainty reflected on the cost (minimum or maximum)
of the attacker step. Hence, credentials are not used to model authentication to
hosts which require them but may not be vulnerable.

As we have seen in this section, credentials have been addressed only by a
few attack graph approaches. When addressed, it has been in a limited way in
the sense that credentials are not entities of their own, their acquisition is auto-
matic under certain conditions, and the acquisition of credentials is memoryless
in all approaches reviewed (although this aspect ha only been discussed for the
first). We have the view that credentials are an important aspect to be modelled
more thoroughly because they allow expanding the underlying motivation behind
attack graphs which is the recognition that “combinations of exploits [vulnera-
bilities] are the typical means by which an attacker breaks into a network” [5].
However, credential theft, e.g., can also be used in multi-step attacks since it
opens opportunities to compromise non-vulnerable hosts as well. In addition to
that, we have a dynamic perspective to credential acquisition. We will see in
Chapter 4 that these aspects motivate requirement R2.

2.2.4 Overlap between IDS/IPS and Attack Graphs

Although the source of information used by Intrusion Detection Systems (IDS)
and Intrusion Prevention Systems (IPS) fundamentally diverge from information
used by Attack Graphs there are points of intersection between these research
areas.

First we start by providing a little background information on IDS/IPS, es-
sential for understanding the relation between them and Attack Graphs.

An IDS is a software sensor which detects malicious activities, which happened
or are happening, based on signatures, i.e. patterns of known attacks, or based on
unusual or abnormal user behavior. The former is referred to as a signature-based
IDS and the latter as an anomaly-based IDS.

There are two main sources of data for an IDS: data collected from a single
host or single application, or from network traffic. An IDS that uses the former
is called a Host IDS (HIDS); an IDS that uses the latter is called a Network IDS
(NIDS). A hybrid IDS combines both approaches and can also combine different
detection methods. IDSs scan network traffic or also incoming and outgoing host
traffic to find potentially malicious packets. Thus, traditionally they analyze
packets at OSI layers 3 (Network) and 4 (Transport) (see [14] for a survey).
Along the years, several types of application-based IDS have emerged [223]. In
the first type, the IDS uses intercepted traffic going in and out of the application.
In the second type, the IDS relies on third-party logs from Operating Systems,
databases and firewalls [42, 208]. Finally, in the last type, the IDS directly uses
internal application messages and library calls [112, 2]. However, only recently,
IDSs started to analyze the semantics of application protocols (OSI layer 7), like
FTP [64] and HTTP [22], for example. Nevertheless, IDSs consider events at

38

2.2. RELATED WORK

much lower level of abstraction compared to the ones dealt by Attack Graphs.
IPS (Intrusion Prevention Systems) differs from IDS because, while the latter

analyzes traffic that “passes by” (more or less like an intelligent sniffer) the (IDS)
system, the former analyzes traffic that flows through the (IPS) system. There-
fore, an IPS gains the ability to react and block intrusions in real-time. As a
consequence, IPS becomes proactive (such as Attack Graphs) instead of reactive
(such as IDS).

The overlap between these research areas are reviewed next.

• Correlation of events: the same way as attack steps are correlated to provide
a higher-level view of possible attacks, via Attack Graphs, alerts are also cor-
related with the same objective. Kruegel et al. [118] discuss approaches to
alert correlation and their challenges. The correlation of alerts uses informa-
tion such as source or destination IP address associated with network pack-
ets, and timestamp, or known scenarios (i.e. signatures). Attack description
languages based on complex sets of pre- and postconditions are also used
to correlate alerts (e.g. [207, 51, 139, 65]), similar to some approaches used
to correlate attack steps on Attack Graphs (e.g. [111, 60, 167]).

• Aggregation of alerts and vulnerabilities: the aggregation of these sources
of information can be useful for many purposes, using Attack Graphs or
isolated vulnerabilities. First, to reduce the rate of false negatives, i.e.
missed attacks. With that purpose, Noel et al. [160] use an Attack Graph
to calculate the distance (i.e. the shortest path) between exploits, later
used to analyze alerts produced by an IDS. Second, to correlate, predict
and hypothesize. Wang et al. [219] propose such approach. They use an
Attack Graph as support to correlate alerts which are arbitrarily far away,
to hypothesize about missing alerts (false negatives) traversing edges of the
Attack Graph in reverse order, and to predict future attacks (i.e. alerts
not yet observed) by looking steps ahead into the Attack Graph. Third, to
provide a holistic view and centralize management of assets. Tenable Net-
work Security provide a tool for that, where vulnerabilities are considered
in isolation.

• Ideal placement of IDS: Attack Graphs are also used to resolve the problem
of covering all paths to critical assets with a minimum number of sensors, an
instance of the Minimum Set Cover Problem [80]. Noel and Jajodia [159]
find those paths by means of an Attack Graph and then use a Greedy
algorithm to determine placement of IDS. Modelo-Howard et al. [144] use
Attack Graph to build a Bayesian Network and infer the likelihood that
an attacker goal is achieved, therefore evaluating accuracy and precision of
different placements of IDS. They also use a Greedy algorithm to determine
the best placement using data collected from the inference.

39

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Summary

In this chapter we have seen three streams of research directly related to the prob-
lem of finding potential multi-step network attacks. Here we provide a helicopter
view of the conclusions we derive from this literature review.

Penetration Testing

Pros Cons

• very useful, if performed regularly • expensive
• effective in uncovering attack paths • labor-intensive
• precise in paths reported • totally dependent on skills and

technical expertise of testers
• constrained by time and budget

Attack Trees
Pros Cons

• structured and top-down way to
organize means to achieve an attack
goal/target (root of the tree)

• analysis techniques and construc-
tion guidelines of Fault Trees (from
which Attack Trees are derived) do
not necessarily apply to attack trees,
since attack trees tend to contain
more subjective (and ambiguous)
nodes

• very useful methodology for brain-
storming specific scenarios

• do not scale when numerous sce-
narios may arise or when depth and
breadth of the tree grow beyond a
certain limit, e.g. for analysis of a
whole network

• intrinsically a deductive reasoning
method that allows logic connection
between a node and its parent node

• intrinsically a static technique, so it
is not possible to represent any sort
of attack dynamic, e.g. compose at-
tack steps under certain conditions or
represent acquisition of credentials
• a path from each leaf to the root
represents an attack, however in re-
ality from a current location (e.g.
a leaf) an attacker may have more
than one alternative to follow; this is
not possible to represent with attack
trees since, by definition, each node
in a tree structure has an unique par-
ent node

40

2.3. SUMMARY

Attack Graphs

Pros Cons

• allows inductive and deductive
reasoning about attacks, from
an attacker initial location to a
goal/target and vice-versa, respec-
tively
• allows representing several possi-
ble goals/targets, and several initial
locations; traversing the graph pro-
vides an attack path

• graphs become large and incompre-
hensible, and it becomes difficult for
humans to recognize in the graph the
topology of the real network

• network vulnerabilities are always
represented; pre- and postconditions
allow composing attack steps

• non-vulnerable hosts are not the fo-
cus of attack graphs; attack and net-
work dynamics are not represented;
credentials are not distinct entities in
attack graphs, thus, credential theft
cannot happen

• what-if hypotheses are provided by
attack graphs to some extent

• what-if related to dynamics (e.g.
with credentials) not present

• metrics used, such as asset value
and measures of cost of attack steps,
are assumed given

• in practice these metrics are
stakeholder-specific, time-consuming
and difficult to be evaluated; not
available for large networks

Those gaps found in the field of Attack Graphs are discussed further in Chap-
ter 4, where requirements for a better solution are specified. This thesis shifts
the paradigm of Attack Graphs to Mobile Ambients.

41

3
Understanding Network Attacks

“Unfortunately, even with industry-best defenses, a sufficiently moti-
vated attacker can penetrate the network [210].”

In the previous chapter, we reviewed literature related to the problem of find-
ing potential multi-step network attacks. In this chapter, we focus on networks,
particularly we review aspects of computer networks, attacks and attackers that
help in understanding why a network is susceptible to attacks, and what are
possible attack steps. From this understanding, and also from related work, re-
viewed in the previous chapter, we derive our solution requirements presented in
Chapter 4.

3.1 Computer Networks

For several reasons, listed below, computer networks are more and more vulner-
able to attacks.

1. Dedicated communication channels are replaced by standard protocols1.

Even safety and mission critical systems, such as the ones responsible for
control of power plants, electricity grids, and oil platforms, are becom-
ing more vulnerable to publicly known vulnerabilities. In the past, they
used dedicated communication channels owned by the organization or leased
from a trusted third party (such as dedicated phone lines) for data transfer.
However, due to cost constraints, this situation is changing [102]. Nowa-
days, these systems are getting connected to the Internet via dial-up or
broadband connections using the TCP/IP protocol. As a consequence, all
parts of the communication, i.e. data in transit and end-points, become
more and more susceptible to remotely exploitable and known vulnerabili-
ties.

1It does not mean that networks were safe before and are unsafe now, it means that networks
were already vulnerable in the past and are even more vulnerable nowadays. The same is true
for the next item.

43

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

2. Proprietary software is replaced by standard software.

An example of this phenomenon is observable in SCADA (Supervisory Con-
trol and Data Acquisition2) systems. In the past, they used proprietary soft-
ware while, nowadays, SCADA systems are built using standard operating
systems such as Windows and Linux [69], and rely on other standard compo-
nents such as Web browsers. Therefore, SCADA systems and SCADA net-
works (which are linked to corporate networks) are now exposed to vulner-
abilities in Commercial-Off-The-Shelf (COTS) software [166], which arise
everyday, as seen in Figures 1.2 and 1.3, and are publicly known.

3. Time-to-market pressure contributes to less secure software.

As time-to-market requirements shorten to guarantee advantage over the
competition, software producers are shipping not-so-well-tested products,
relying on fixing vulnerabilities in later versions or via patches [8]. This
becomes an option for them because, all-in-all, security is an external-
ity [188, 7], since the risks caused by these vulnerabilities are paid by
software consumers, not software producers. Bad reputation which might
result from this strategy may always be overcome by marketing initiatives.
Nevertheless, although time-to-market contributes to aggravating the secu-
rity problem, the underlying cause is software complexity. Considering that
building software to be deployed on a network only adds to the complexity
of building software which resides on a stand-alone computer [187], the way
to assure software security is to proof its correctness afterwards or proof its
correctness at design time [63], which is still far away from being achieved
in practice [17] (in part due to the economics of security, briefly discussed
in this item).

4. Networks are dynamic environments.

Networks are enablers of business opportunities, therefore, as organizations
engage in new partnerships, joint ventures, outsourcing and subcontracting
activities, organizations have to allow access from third parties to their net-
works. Not only that, this process is dynamic, meaning that configurations
of firewalls have to be eventually changed, opening up opportunities of mis-
configuration. Besides, nowadays it is often the case that employees need
to access a corporate network from their computer at home, or in transit
from laptops and PDAs, and again networks should allow their traffic in.
However, this need for reachability represents new threats since there is
no way to distinguish legitimate from malicious access, if the latter uses
legitimate ways to get in the network.

5. Networks are never vulnerability-free.

2SCADA systems are used to control and monitor industrial processes, and vital infrastruc-
ture components.

44

3.1. COMPUTER NETWORKS

Studies show that: (i) there is a time-window of opportunity between vul-
nerability discovery and patch release [78]; (ii) even when patches are re-
leased quickly, administrators are usually slow in applying fixes (patches,
upgrades and disabling services), in spite of the announcement of exploits
(i.e. malicious code) which take advantage of the vulnerability [177]. A
possible explanation for this slowness is the fact that patches may have
unforeseen consequences, raising other vulnerabilities [133] in the system or
elsewhere in the network. Therefore, unless the patch is trivial, patching
requires testing prior to deployment in production.

Additional studies, like the one on Data Breach by Verizon [16], which an-
alyzed 500 cases of insider attack between 2004 and 2007, uncovered what
they called “unknown unknowns”. They found that nine out of ten cases
analyzed involved some sort of unknown to the organization: unknown
systems, unknown data, unknown connections/pathways, or unknown ac-
counts/privileges. Therefore, even if fixes are available and have been apply-
ing to the majority of the network, it may as well happen that organizations
have forgotten systems which contain easily exploitable vulnerabilities.

These facts lead us to conclude that it is unlikely that a network, as a whole,
will ever be free from (known) vulnerabilities.

6. Humans contribute to making networks even more vulnerable.

Even in a hypothetical world where a network is 100% secure, there is a
high chance that humans will make it insecure [187]. We perceive threats
from the physical domain much easier than threats from the digital domain.
It means that we try to avoid going into a bad neighborhood, protect our
wallet, and refuse to give personal details to a stranger in the street, just
because threat here is obvious and visible. However, we have a different
attitude when visiting web sites, choosing the same password for several
applications, and filling forms with personal details, e.g. to register for a
conference or to obtain a brochure. In this case, threat is not obvious at all
because it can come from the other side of the globe.

Furthermore, there is always a trade-off between usability and security. If
this is apparent, e.g. if it requires manual intervention, people tend to
choose the former in spite of the latter. In addition, humans are easily
convinced and faithful, that is why social engineering3 to obtain something
from another person, and personalized spam are often effective. Therefore,
humans are a source of exposures (as defined in Chapter 2), which indirectly
makes networks vulnerable.

7. Threats are increasingly endangering networks.

The assessment of threats is usually performed based on the following fac-
tors (see e.g. [37, 66]): (i) threat agent motivation, (ii) threat agent skills,

3An attempt to trick someone into revealing information (e.g., a password) that can be used
to attack systems or networks [153].

45

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

expertise or knowledge, (iii) time, effort or resources a threat agent needs to
execute a type of attack, and (iv) opportunity for a threat agent to launch
a type of attack. However, the increasing use of automation in attacks, and
the advent of the Internet, have put at least factors (ii) and (iii) under a
different perspective, difficult to reason about. Let’s consider four examples
of resources, i.e. tools publically available, that threat agents can nowadays
take advantage of:

(a) Backdoor tools: these are programs that allow attackers to gain re-
mote access to a system, bypassing authentication measures, such as
login and password. They listen on a pre-configured port (e.g. DNS
port 53, allowed by external firewalls) for connections coming from the
attacker located on the Internet. Netcat4 is such a tool; it creates a
root-level shell able to listen on any TCP or UDP port of Unix-based
systems. For Windows-based systems, backdoors can be created with
other tools, such as Black Orifice.

(b) Kernel-level rootkits: these are a set of Trojan horse5 programs that
replace or modify entire kernel modules by trojan modules. They
allow attackers to keep elevated access to a system (i.e. come and go
as they wish), and actually control every aspect of the host, such as its
hardware and software, with a high chance of remaining undetectable.
One of such trojans can be, e.g., a key logger that collects user key
strokes in a file, later retrieved by the attacker. These rootkits are
an evolution from traditional rootkits which targeted application-level
programs like ls and ipconfig. Example tools are Knark for Linux, and
RootKit for Windows.

(c) Distributed password crackers: these are tools which distribute the
password cracking load across several systems, and coordinate the col-
lection of results. They represent an improvement compared to tra-
ditional crackers because distribution significantly speeds the cracking
process. Password cracking consists of an automated loop of guess-
ing a password, encrypting it, and comparing the guessed (and en-
crypted) password with stolen (encrypted) passwords. They assume
that usually users use passwords that are easy to remember, therefore,
composed of dictionary words (or userID) appended or prepended with
different characters, and combinations of these, like reverse words, and
some capitalized letters. Traditional crackers include John-the-Ripper,
which focus on cracking Unix passwords, and L0phtCrack, focused on
Windows NT passwords, while examples of distributed crackers are
Mio-Star and Saltine Cracker.

(d) War driving tools: these are tools used to identify wireless access
points. Using a laptop, a wireless card, an antenna and such a tool,

4Netcat is also used by network administrators to administer systems remotely.
5Trojan horse programs “appear to have some useful function, but in reality are just dis-

guising some malicious activity [210].”

46

3.2. NETWORK ATTACKS

which has a GPS module, attackers can pinpoint geographically wire-
less access points, later used to penetrate a network. Example tools
are NetStembler (for Windows) and Mini-Stumbler (for Unix).

For more information about the mentioned tools, including URLs, refer
to [210, 97].

This selection of ready-to-use tools for different purposes shows that these
tools can be used by attackers with low-to-moderate expertise, skills and
knowledge, at least a lot less than what was needed to build these tools.
Hence, there is an army of attackers out there, with basic expertise, skills
and knowledge, able to follow step-by-step procedures on how to use them.
Besides, automation also puts effort and time under a different dimension.
Does it matter if a password cracking tool takes a day to crack 1000 pass-
words (as reported in [187])? It seems not, because the attacker is not co-
ordinating or executing the cracking process manually. If, at the end of the
day, the tool reports one password cracked, the attacker attempt resulted
in success, and the attacker can possibly penetrate or proceed penetrating
a network. Therefore, the most important factors determining threat seem
to be motivation and opportunity. Motivation will determine the strategy
chosen by a threat agent, and the goal/target of the attack. Since strategy
and target are unknown, defenders require tools to reason about network
attacks. This thesis contributes to the provision of such tools (refer to
Section 3.3 for discussion about attackers objectives and strategies, and
to Section 3.4 for discussion about asset value and targets). We assume
the worse-case scenario that there will always be motivated threat agents
willing to take opportunities to reach targets deeper on a network. It is
up to organizations to track such opportunities, it means to track possible
multi-step attacks.

3.2 Network Attacks

In the previous section we have seen factors which contribute for making networks
vulnerable. In this section, we discuss network attacks in terms of single and
multi-step attacks (in Sections 3.2.1 and 3.2.2, respectively).

3.2.1 Single-step Attacks

Some attacks can be launched in one single step. Let’s consider that an organi-
zation has the network topology shown in Figure 3.1.

The network shown in the figure is divided in three zones: internet, DMZ6,
and internal (LAN). The internal network is further segmented into three subnets:
sales, production, and administration.

6Demilitarized zone, term borrowed from military usage, is a logical or physical subnet which
intermediates the external world (i.e. it provides external services) and the organizational LAN.

47

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

file server

web
pages

10.16.100.20
2049

administration
server

10.16.100.30

database

10.16.100.10

1433 customer
data

web server

mail server

internet

200.30.0.x

200.30.0.1

10.16.0.1

200.30.0.2 – www.example.com

200.30.0.3

10.16.200.x

10.16.0.2

NIDS 80

25

internal
mail server

10.16.100.40
25

DNS server

53 200.30.0.4

internal
DNS server

10.16.100.50

53

DMZ

subnet
administration

subnet
production

10.16.300.x

subnet
sales

Figure 3.1: An example network topology

Hypothetically, an attacker located in the internet can cause a Denial of Ser-
vices by exploiting a remotely exploitable buffer overflow7 on the Web server,
protected by the external firewall of the organization, as illustrated in Figure 3.1.
The attacker will have high chance of success, if the request is not detectable by
defense mechanisms such as a NIDS (Network Intrusion Detection System), also
shown in the example network. Let’s consider that the Web server is an Apache
Web Server (part of the Oracle WebLogic 10.3 platform) and contains the follow-
ing high-severity vulnerability, published in the NVD [161] (see Section 3.2.2.2)
on 22 July 20088.

CVE-2008-3257 description [53]:
Stack-based buffer overflow in the Apache Connector (mod wl) in Ora-
cle WebLogic Server (formerly BEA WebLogic Server) 10.3 and earlier
allows remote attackers to execute arbitrary code via a long HTTP ver-
sion string, as demonstrated by a string after ”POST /.jsp” in an HTTP
request.

The exploit occurs when a client (i.e. a remote attacker) sends a HTTP

7A condition at an interface under which more input can be placed into a buffer or data
holding area than the capacity allocated, overwriting other information [153].

8Oracle released a patch for this vulnerability on 04 August 2008.

48

3.2. NETWORK ATTACKS

request containing a long, specially crafted, POST command to submit data to
be processed by the server. If the input is crafted successfully, this input will
exceed a fixed-size string buffer allocated by an Apache plug-in module called
mod weblogic on the execution call stack. This allows the attacker to change
the return address of mod weblogic. Therefore, if the input contains embedded
exploit code, when the return address (provided by the attacker) pointing to the
code is reached, the exploit code is executed. This is a classical stack buffer
overflow (for more information refer to [97]) which allows attackers to actually
execute arbitrary code on a target. Depending on the code executed, it may cause
the server to crash (i.e. Denial of Services) or get further compromised [54], e.g.
the attacker may gain root access to the server if the shellcode executes with
elevated privilege.

3.2.2 Multi-step Attacks

In the attack described above, the attacker will probably be willing to progress
beyond the Web server, if opportunity to do so exists. In such cases, the attacker
may try further steps to reach more valuable assets deeper into the network.

Let’s consider that the database, illustrated in Figure 3.1, is a Microsoft SQL
Server 2005, and that the Web server is able to authenticate to the database
to retrieve customer details. The database contains the following vulnerability,
published in the NVD [161] on 10 Dec 20089.

CVE-2008-5416 description [55]:
Heap-based buffer overflow in Microsoft SQL Server 2000 8.00.2050,
8.00.2039, and earlier allows remote authenticated users to cause a de-
nial of service (access violation exception) or execute arbitrary code by
calling the sp replwritetovarbin extended stored procedure with a set of
crafted parameters that trigger memory overwrite. NOTE: it was later
reported that SQL Server 2005 9.00.1399.06 is also vulnerable.

Because the Web server is able to authenticate to the database, the attacker
could take advantage of its vulnerability CVE-2008-3257 to submit a query to be
parsed and executed by the SQL server [68]. The code injected through the query
has to be crafted in a way to trigger the heap buffer overflow (i.e. CVE-2008-5416)
on the procedure sp replwritetovarbin. Heap memory is dynamically allocated
and released by programmers using e.g. functions like “malloc()” and “free()”. If
this is not properly done, in this case the sp replwritetovarbin procedure, becomes
subject to this kind of buffer overflow, and the attacker can divert the flow to
a memory area which contain malicious code. Similar to what happens with
the stack buffer overflow, the attacker acquires the ability to actually execute
arbitrary code on the target, e.g. a script to compromise the database integrity.

9No patch was available at the time of writing (January 2009); solution was either upgrade
the SQL server or workarounds such as disable the sp replwritetovarbin procedure or run a
script to deny public execute permission on the procedure.

49

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

In the way we just described, attackers can progress step-by-step into a net-
work. If there is any vulnerable host in the DMZ zone, this is natural way-in.
However, even if there is none, an attacker can penetrate in a network via vul-
nerabilities in client applications (refer to Section 3.3.2.1) or via exposures. This
is the reason why there is a common sense among security practitioners that the
network is as weak as its weakest “point”, meaning that any point of entry for
an attacker can endanger a network as a whole. Before we review the main types
of single-steps that an attacker can take advantage of to penetrate and progress
in a network (in Section 3.2.2.2), we define and review the purpose of multi-step
attacks next.

3.2.2.1 Definition and Purpose of Multi-step Attacks

An accepted definition of multi-step attack (also called an attack path), among
the community of Attack Graphs is:

Definition 1 “An attack path [i.e. a multi-step attack] is then a sequence of
exploits [here used as synonym for vulnerabilities] sj1, sj2, ..., sjl that leads to
agoal [goal] becoming true” [111].

However, a multi-step attack is not necessarily only a sequence of vulnerability-
steps towards a target, but it may have other purposes, as defined next.

Definition 2 “Multi-stage [i.e. multi-step] attacks can be orchestrated
[i] to strike highly protected targets,
[ii] to coordinate waves of scripted exploits and/or
[iii] to conceal the true origin of an attack” [209].

The first two purposes of multi-step attacks, relevant in the context of this
thesis, drive attacker strategies we review in Section 3.3. Matching Definitions 1
and 2, we see that the Attack Graphs community deals only with the first pur-
pose (as reviewed in Chapter 2). It means that this community aims at uncov-
ering sequences of vulnerability-steps to reach a goal/target. The second aim of
multi-step attacks is addressed by other research communities dealing with the
propagation of malware such as botnets, worms, and virus10. As we will see in
Parts II and III, this thesis do not extend the scope of the field of Attack Graphs
in this particular respect. The thesis contributes in other ways, e.g. by consid-
ering the acquisition of credentials as attack step (as we will see next), and by
addressing gaps in this research area collected in requirements listed in Chap-
ter 4. Nevertheless, we identify an attacker strategy that, if incorporated to the
current solution MsAMS, would allow finding possible attacks with the second
purpose, as described in Section 3.3; this is left as an opportunity for future work,
described in Chapter 10.

10Botnets are explained in Section 3.3.3.1.

50

3.2. NETWORK ATTACKS

3.2.2.2 Main types of Single-steps

After a high-level view on how steps can be composed in multi-step attacks in
the previous section, we switch the focus to what actually can represent a single
step. This is a difficult question since it depends on the level of abstraction one
is considering. A step is an action that an attacker can potentially take from a
current location. As we have seen above, the main type of action modelled in the
area of Attack Graphs is the action of exploiting vulnerabilities. We have seen in
Chapter 2 that vulnerability-steps can be modelled in detailed sets of precondi-
tions, involving both the network and the attacker, which must hold for a step to
happen, triggering a set of postconditions, as e.g. [111, 60, 167]. In the example
multi-step attack discussed previously, the attacker sends the code to be executed
in both the Web server and the database embedded in the HTTP request and the
SQL query, respectively. However, there are several other options the attacker
could use. For example, the attacker could first download a backdoor tool (e.g.
netcat), then execute it to establish the backdoor and further compromise the
servers. Therefore, modelling vulnerability-steps in low-level of details is error-
prone, time-consuming, and not practical because this level of information, when
available in public vulnerability databases, requires manual analysis later stored
in private databases. This approach of pre- and postconditions have also been
approached with a lighter model of vulnerability-steps based on two attributes:
access required and effect resulting from exploitation. We come back to this sub-
ject in Chapter 5. For now, we concentrate not on how vulnerability-steps are
represented but on which types of vulnerabilities and exposures can potentially
be considered as attack steps. The purpose of the following review is to set up
the stage for discussion about requirements for the solution in Chapter 4.

1. Vulnerabilities in COTS (Commercial-Off-The-Shelf) and Open Source soft-
ware components.

Known vulnerabilities are the main source of opportunities available for at-
tackers. They are cataloged in public databases, such as the National Vul-
nerability Databased (NVD) hosted by the NIST11, in an effort to provide a
centralized source of reference information. As part of this NIST initiative,
each known vulnerability receives a standard name, called CVE12, as we
have seen before with CVE-2008-3257 and CVE-2008-5416, where 2008 is
the year the vulnerability was published (i.e. cataloged) and the four dig-
its which follows form a sequential number. CVE is recognized worldwide
and used as reference by security bulletins (e.g. www.securityfocus.com,
http://xforce.iss.net, and www.readhat.com), specialized forums (e.g.
http://isc.sans.org, and www.modsecurity.org/blog), media (e.g. www.
darkreading.com) and security tools (e.g. Nessus [149] and many more [222]);
refer to Chapter 5 for an overview of related NIST initiatives.

2. Vulnerabilities in custom software components.
11National Institute of Standards and Vulnerabilities
12Common Vulnerabilities and Exposures [52]

51

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

Another source of opportunities for attackers are software components, or
entire applications developed in-house. We have seen how attackers can ex-
ploit stack and heap buffer overflows in procedures of commercial products
such as the Apache Web Server (by Oracle) and Microsoft SQL Server, as it
happens with vulnerabilities cataloged in the NVD as CVE-2008-3257 and
CVE-2008-5416, respectively. However, the same type of vulnerabilities can
occur e.g. in PHP13 code written by web developers, or not-so-experienced
programmers, employed by the organization.

Although these vulnerabilities are not, and cannot be, cataloged in the
NVD, known vulnerabilities in commercial and open source components
are a good source of easy-to-find vulnerabilities that can be used as inspira-
tion to find similar vulnerabilities often present on in-house built software
as well. For example, according to recent trend analysis of CVEs [41],
PHP remote file inclusion (RFI) vulnerabilities skyrocketed almost 1000%
in 2006 compared to previous years. These remotely exploitable vulnera-
bilities usually derive from “the use of variables in include() or require()
statements” [40], which allow an attacker to run arbitrary PHP code on
Web servers.

3. Zero-day vulnerabilities.

As we have seen in Chapter 1, in average 16 vulnerabilities are published
in the NVD every day, according to data from (and including) 2003 to
2008. Although attackers make use of those off-the-shelf vulnerabilities (for
which workarounds and/or patches already exist) to launch attacks, e.g.
to build botnets, as discussed in Section 3.3.3.1, they are constantly and
actively trying to spot new vulnerabilities (for which workarounds and/or
patches do not exist). These brand-new vulnerabilities are called zero-day
vulnerabilities because the affected vendor/supplier has zero days to deliver
a patch for the flaw which is already operational, i.e. for which evidence of
successful compromise has been acknowledged.

Zero-day vulnerabilities represent an effective source of attack steps, as hap-
pened with the Microsoft Internet Explorer [233] flaw discovered as being
in use on December 10, 2008 and affecting all versions of IE. It allowed at-
tackers to execute arbitrary code when the victim visited a specific compro-
mised web page. At this point the code self-executed, without any further
intervention from the victim. A patch was released on December 17, 2008
(CVE-2008-4844).

4. Exposures allowing the acquisition of credentials.

As seen in Chapter 2, an exposure does not imply direct compromise of a
host, such as a vulnerability. However, it may represent an important step
towards a successful attack because it provides capabilities and information

13Scripting language used to build dynamic web pages. PHP is a free, easy-to-learn, language
which has become very popular over the years.

52

3.2. NETWORK ATTACKS

which allow the attacker to, e.g., reach non-vulnerable hosts. For example,
the acquisition of credentials (i.e. any sort of information used for authen-
tication, such as passwords, tickets, or session keys), via an exposure, opens
further opportunities for attackers. Next we review some example methods
that are possible because of exposures, most of them result in credential
theft.

• Acquire encrypted credentials saved locally
Authentication agents may be instructed to keep pass phrases or pass-
words in memory to discharge users from the need of retyping those at
each authentication instance. For example, current browsers, such as
Internet Explorer and Mozilla Firefox, (and web applications) provide
“remember me” features which automatically fill-in passwords when
a user revisits a Web page from the same computer [148]. However,
even when passwords are stored encrypted (the password and the web
site are encrypted together in this case), there are free tools to de-
crypt them, like IE PassView [104] which shows passwords saved in
the computer hard drive in plaintext, if the corresponding Web sites,
accessed via Microsoft Internet Explorer, are found in the history file.
Similarly, it is possible to retrieve credentials saved locally by authen-
tication agents in SSH clients, if an attacker has privileged access to
the host [184]. This way, attackers can acquire credentials and access
further (non-vulnerable) hosts or applications.
• Steal plaintext passwords

For example, as the SSH server decrypts a user password into plaintext
before checking it against the password file, an attacker with sufficient
privilege may collect these passwords (as reported by Schechter et
al. [184]), and authenticate to other, non-vulnerable, hosts.
• Obtain passwords using cracking tools

This method allows authentication to one or more hosts or applica-
tions; e.g. if an attacker with privileged access to a Unix-based host,
gets hold of the shadow file where passwords are kept encrypted, there
is a high probability that the attacker will obtain a weak password
using password cracking tools (discussed in Section 3.1), if sufficient
time is available. Also, if an attacker with privileged access to a host
can install a rootkit which contains a key-logger tool, there is a good
chance that the attacker will retrieve credentials to access further (non-
vulnerable) hosts or applications.
• Guess obvious passwords shipped by default

Obvious passwords shipped by default is not an uncommon type of
exposure. For example, CVE-2008-4296, published in the NVD [161]
on 27 September 2008, reports “The Cisco Linksys WRT350N [wire-
less router] with firmware 1.0.3.7 has ”admin” as its default password
for the ”admin” account, which makes it easier for remote attackers

53

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

to obtain access.”. Another example is CVE-2008-6588, published in
the NVD on 04 March 2009, that reports “Aztech ADSL2/2+ 4-port
router has a default ”isp” account with a default ”isp” password, which
allows remote attackers to obtain access if this default is not changed.”.
Guessing may also be enough to retrieve obvious weak passwords used
by users and administrators to access other hosts in the network, e.g.,
via SSH once an attacker has compromised their hosts. This knowledge
may allow an attacker to penetrate or progress in a network.

• Exploit trust relationships among hosts

For example, SSH allows rhosts (also used by insecure protocols rlogin
and rsh) and shosts (SSH-specific) authentication. In both cases, the
SSH server accepts connections from clients listed in its files /.rhosts
or /.shosts without requiring the password of the target user account.
It allows an attacker who has compromised the client host an easy-to-
exploit opportunity to access the non-vulnerable server. Trust among
hosts may also happen when one credential allows access to more than
one host in the network. Single sign-on technologies, such as Microsoft
Active Directory, may be an example since authentication on it allows
access to services provided by different hosts.

• Insert or replace credentials

This method can be used if an attacker gains the ability to overwrite
a password file. For example, a more secure mode of SSH authenti-
cation (compared to the trust mode described above), used in more
recent versions, rely on public and private key pairs. After an user (on
client Y) has created such a key pair, he can insert the public part on
a file called authorized keys (along with the DNS name of Y), and
transfer such file to a SSH server X. From this moment on, the user
can authenticate on X using only the private part of his key, and does
not need to provide an account password. The server SSH relies on
the file to determine which keys can be used from an user on Y. If an
attacker, maybe through social engineering, convince a user from Y to
upload his authorized key file to server X, he acquires the ability to
log to X with his private key only.

• Obtain credentials via social engineering

As mentioned in Section 3.1, this is an efficient method to obtain per-
sonal details, specially if the attacker is an insider or an outsider col-
luding with an(other) insider. The attacker is then able to impersonate
legitimate users and gain access to non-vulnerable hosts via some of
the methods listed above, for example. Besides, since people tend to
see no problem in sharing passwords (in and out of the organization),
e.g. “to get work done” [187], obtaining credentials sometimes does
not even require social engineering.

54

3.3. ATTACKERS STRATEGIES AND TYPES OF MULTI-STEP ATTACK

Per our review of existing attack graph approaches in Chapter 2: the main fo-
cus of the Attack Graph community is on single steps represented by the exploita-
tion of vulnerabilities in COTS and Open Source software components. Zero-days
vulnerabilities can also become single-steps if they are considered via hypothe-
ses in what-if analysis. However, the acquisition of credentials (via exposures or
not) is not considered as single steps of an attack. As seen in Section 2.2.3.6 on
page 36, credentials are not represented as a separate entity by current attack
graphs and, as a consequence, they are not acquired but automatically given. We
consider this as an over-simplification of the reality. In fact this acquisition is an
important part of the dynamics of attacks and may result in success or not. This
aspect motivates requirement R2, as we will see in Chapter 4.

The reader should keep in mind that the steps reviewed here are main types
of single step. We will see in Chapter 7 that an attack may perform other steps
in between (e.g. access a service).

3.3 Attackers Strategies and Types of Multi-step At-
tack

In this section, we identify classes of attackers, and strategies they can use to
achieve the first two purposes of multi-step attacks uncovered in Section 3.2.2.1:

[i] to strike highly protected targets,
[ii] to coordinate waves of scripted exploits.

It is interesting to notice that those multi-step attack purposes can also be re-
garded as attackers objectives. In fact, different attackers objectives and strate-
gies14 motivate different types of attack, also reviewed in this section.

The relationship between attackers classes, objectives and strategies, with
types of attack is illustrated in Figure 3.2.

objective

main

main

strategy

class of

attacker

uses

determines

specific

types of

attack

to launch

is motivated by

Figure 3.2: Relationship between classes of attackers, objectives and strategies,
with types of attack

14This term has been introduced in Section 2.1 on page 15.

55

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

3.3.1 Classes of Attackers

We assume, like many other researchers [49, 185, 129], that attackers are ratio-
nal. It means they do not take random actions, instead they follow a strategy
when launching an attack (i.e. when choosing among alternative steps during
an attack), which depends on an objective. We identify two classes of attackers:
target-driven and fame-driven, discussed next.

Target-driven attackers are a generalization of profit-driven attackers, as de-
scribed by Leeson and Coyne [122]. The latter is a class of attackers motivated
by greed of financial benefit. Typically, they perform server-side attacks (see
Section 3.3.2.1 below) toward targets which are assets with high perceived value,
such as a database or a file server.

Fame-driven attackers are motivated by notoriety, and “fame” is a function
of inventiveness and severity [122], which raises peer recognition and media at-
tention. Instead of acquiring direct benefit from targets, most of the time, this
class of attackers gain indirect benefit from the magnitude of disruption caused
to the defender. Therefore, they aim at recruiting the maximum number of as-
sets to launch attacks. Note that with this main objective of maximum number
of assets, this class of attacker can also reach direct benefit from the structure
recruited. Typically, they perform attacks involving botnets (see Section 3.3.3.1)
or worms15. As mentioned already, although botnets can be used for profit, e.g.
they can be rented per hour [113] or used for identity theft [15], the primary
objective of attackers in this case is to recruit the maximum botnet structure
they possibly can.

Each of these two classes will choose different strategies, and will be able
to launch different types of attack, explained next. The reader should keep in
mind that, since we take the approach that finding attacks in a modelled network
is an optimization problem, we need metrics (as mentioned in Section 2.2.3.4
on page 34) to find attacks. These strategies put metrics into perspective and
determine the type of attacks that can be found.

3.3.2 Attacker Strategy: Best Cost-benefit from an Attack

Target-driven attackers seek for the optimal net benefit from an attack, i.e. the
best expected value gained with the less cost. Using this strategy, defenders
can proactively uncover possible sequential attacks (server-side and client-side
attacks, discussed in the next section). Recall from Section 2.2.3.4 on page 34
that only a few attack graph approaches take metrics into account to find attacks
that reach a target, and that these metrics are assumed given (we come back
to this point in Chapter 4). However, we believe that considering these metrics
better captures the economic aspect of network attacks, discussed in the next
section.

15A computer worm is a self-replicating computer attack tool that propagates across a net-
work, spreading from vulnerable to vulnerable system [210].

56

3.3. ATTACKERS STRATEGIES AND TYPES OF MULTI-STEP ATTACK

Note that attackers do not know the exact topology of the network, prior to an
attack attempt. Therefore, from each actual position, an attacker has to estimate
the cost that each alternative step available represents against an expected gain.
Only then the attacker can choose for the best option(s).

3.3.2.1 Server-side and Client-side Attacks

Server software listens, i.e. waits for requests, on specific ports on the network,
and provides services or interfaces to remote users, while client software issues
those requests from remote or local users, and waits for a response from the
server [97].

Client software, embedded in several applications such as Web browsers, media
applications, word processors and spreadsheets, is able to execute code received
as input from servers. Similarly, server software receives input requests from
clients to query databases, perform system calls and file manipulation. Hence,
servers respond to and control client software. As a result, attackers behind a
client software (or directly through backdoors tools, mentioned previously) can
send requests which exploit vulnerabilities in the server software and benefit from
their effect, or they can send requests directly to another client software such as in
P2P16 networks (e.g. via instant messaging, VoIP and file sharing applications).
It means that an attacker, from a remote client, can gain access to a network either
via a vulnerability in a server, called server-side attack, or via a vulnerability in
a client, called client-side attack.

Figure 3.3 illustrates schematically the server- and the client-side attack men-
tioned17.

In Figure 3.3(a) we see an attacker located outside a network, and how hy-
pothetically s/he could exploit a vulnerability in a server (e.g. a Web server)
bypassing the firewall to finally reach a target (e.g. a SQL database) via multiple
sequential steps.

In Figure 3.3(b) we see an attacker located outside a network, and how hy-
pothetically s/he could exploit a vulnerability in a client (e.g. a workstation)
directly from outside the network to finally reach a target (e.g. a SQL database)
via multiple sequential steps.

The best cost-benefit strategy allows a defender to proactively find possible
server- and client-side attacks that reaches a target, provided that vulnerabilities
in servers and clients of the network are represented.

3.3.3 Attacker Strategy: Best Coverage of a Network

Fame-driven attackers seek for the best coverage of the network, i.e. the maximum
number of compromised hosts (which allow the execution of code) per unit of time.

16peer-to-peer
17Note that the expression “client-side attack” can also refer to the propagation of an infected

server to clients that access it, such as the mass exploit attack by SQL Injection published in
January 2008 [234]

57

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

firewall

target
attacker

LAN

Network

server

(a) Server-side attack: point of entry is a
remote server vulnerability reachable via
the firewall

firewall

target
attacker

LAN

Network

client

(b) Client-side attack: point of entry is a remote
client vulnerability reachable directly from the
internet

Figure 3.3: A schematic representation of a sequential attack launched by target-
driven attackers

This strategy mimics attackers in the process of building a botnet in the defenders’
network, but also allows defenders to anticipate and discover the susceptibility
of their network to botnet. Actually this strategy allows finding several types of
attack, not only botnets, where network coverage is the primarily objective, such
as propagation of malware like worms. However, botnet is a representative type
of attack for this strategy, and is well studied in terms of metrics.

Two botnet metrics, borrowed from Dagon et al.[58], determine the best cov-
erage of a network:

• Botnet effectiveness measures the botnet size, i.e. the largest connected
portion of bots (i.e. recruited nodes) in the network graph which can par-
ticipate in a botnet attack.

• Botnet efficiency measures the botnet diameter, i.e. the average length of
the shortest path connecting any two pair of bots in the network.

Effectiveness is an indication of the magnitude of disruption (or damage)
which can be caused by the botnet. While efficiency is an indication of how well
the communication between the attacker and the bots will be. The larger the
botnet diameter, the slower is this communication, i.e. the flow of command-
and-control messages, update of botnet code and the feedback of information
gathering.

3.3.3.1 Botnet Attacks

Botnets are a network of autonomous agents (i.e. robots or bots) controlled by an
attacker. They are autonomous in the sense that they (re)act with minimum hu-
man interference. Traditional botnets use “Command and Control” mechanisms,

58

3.3. ATTACKERS STRATEGIES AND TYPES OF MULTI-STEP ATTACK

such as IRC channels18), to scan (i.e. recruit), exploit and infect a network, and
later for their usage for different purposes [15]. Thus, in this case, the attacker
performs the setup of IRC servers or uses already available ones to act as botnet
controllers. Malware is installed on these controllers to scan for reachable and
vulnerable hosts. Usually botnets exploit known vulnerabilities which allow the
execution of code. This process of recruit-exploit-infect is recursively repeated
(according to instructions contained in the malware) creating a network of vulner-
able hosts acting as bots19. Each bot has either a dynamic DNS name of the IRC
server or its hard coded IP address. After been infected, the bots authenticate
themselves to an IRC channel on an IRC server and wait for control commands.
The attacker remotely authenticates himself to the IRC servers (i.e. the bot con-
trollers) to actually control the botnet. In the end, the attacker has the control
of a tree or a forest of infected hosts where each leaf becomes an attacking host,
i.s. a bot. Refer to Zou and Cunningham [236] for advances on botnet structure
from centralized IRC-based to distributed P2P-based botnets.

attacker

IRC servers

LAN

Network
bots

bots

Figure 3.4: A generic IRC-based botnet

Although researchers (e.g. [113, 58]) and the media report large-size botnet
of tens of thousands of nodes, there is evidence [45] that botnets are shrinking
in size. The reason is twofold. First, smaller botnets are harder to detect and
easier to trade. Second, because even a few hundreds of nodes with broadband
connection of 1Mbps can saturate high speed connections (155Mbps) used by large
organizations. Thus, botnets used to attack organizational targets can be formed
inside the organization itself and having a view of the potential of botnet infection
becomes valuable for planning defense strategies. Thus, botnet threat can affect
an organization in two ways because the attacker can recruit bots inside a LAN to
attack somewhere else, involving litigation issues to the organization, and because

18Internet Relay Chat channels allow real-time communication from one host to another or
to many.

19The propagation process of botnets, i.e. recruit-exploit-infect, is similar to the process used
by worms and virus [15]. However, botnets are more flexible because they serve for a larger set
of purposes.

59

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

the target can be inside the organization itself. Figure 3.4 represents a botnet
schematically. In this figure we see the three elements involved in botnets: an
attacker, IRC servers under the control of the attacker, and bots under the control
of IRC servers.

There are 3 basic methods for dealing with botnet threat [45]: (1) prevent
systems from being infected, (2) detect “command and control” traffic, or (3)
detect secondary evidences such as propagation and attack behavior. Therefore,
even better than investing on detective measures (approaches 2 and 3), is to
proactively identify the structural susceptibility of a network to botnet attacks,
the first approach.

3.3.3.2 Distributed Denial of Services Attacks

DDoS (Distributed Denial of Services) attacks can render a target unavailable
for legitimate users, sometimes bringing it to crash. In fact, DDoS (an evolution
from the traditional Denial of Services (DoS) attack) is composed of two stages.
The first stage is responsible for infection of the networks. Botnet is the most
used [15, 113] way of infection. In this case, botnets controllers are called “mas-
ters” and bots are called “zombies”. The second stage is responsible for reaching a
target from the zombies, a kind of server-side attack. However, specific to DDoS
is the synchronization required in the launch stage, responsible for consuming
the resources of the target. It means that the volume of simultaneous requests
reaching a server software (called attack rate [142]) needs to exceed the target’s
capacity of response, otherwise the (D)DoS attack is not successful. Figure 3.5
illustrates a generic DDoS attack, where the infection phase (Figure 3.5(a)) is
achieved via botnet. The IRC servers are called “masters” in the DDoS termi-
nology and the bots are called “zombies”. The launch phase (Figure 3.5(b)) is
the actual use of the botnet which, in this case, has the specific purpose of com-
promising the availability of the target. Therefore, as we can see, DDoS is an
example application of botnets.

LAN

attacker

masters

zombies

target

zombies
Network

(a) Infection phase (via botnet)

LAN

attacker

target

zombies

masters

zombies Network

(b) Launch phase

Figure 3.5: A generic DDoS attack (adapted from [88])

60

3.4. ECONOMICS OF NETWORK MULTI-STEP ATTACKS

Note that DDoS attacks mix both strategies, i.e. best cost-benefit and best
coverage. For the first stage of infection, the best coverage strategy applies, while
for the second stage of launch, the best cost-benefit strategy applies. It means that,
after recruiting the more effective and efficient botnet, the aim of the attacker is
to reach a target perceived as valuable, therefore, there are types of attack that
specifically involve one strategy, and there are others that involve more than one
strategy.

In summary, in this thesis we focus on:
→ target-driven attackers, as seen in Section 3.3.1
→ that have as main objective “to strike highly protected targets”,

as seen in Section 3.3
→ therefore, use best cost-benefit strategy, as seen in Section 3.3.2
→ to find sequential (either server-side or client-side) attacks,

as seen in Section 3.3.2.1
However, other strategies can be incorporated to the proposed solution, such as
the best coverage. This will remain as opportunity for future work, discussed in
Chapter 10.

3.4 Economics of Network Multi-step Attacks

Network attacks do not only involve the risk of attacks, i.e. the simultaneous
presence of vulnerability and threat, as illustrated in Figure 2.1. It also involves
economic-related aspects, such as the ones listed next.

1. Asset value.

In Section 2.1 on page 15 we mentioned that asset value represents the
relative value and importance of an asset. Besides that, we emphasized that
it is stakeholder-specific. Legitimate stakeholders (including asset owners)
perceive this value relative to the impact of loosing or damaging the asset,
while attackers perceive this value as relative to how much the asset is
worth on the black market, the indirect benefit of new opportunities the
compromise of the asset may bring (e.g. in terms of alternatives of attack
steps), or the indirect benefit gained from the disruption that compromise
may cause to legitimate stakeholders. The perception of asset value for these
two disparate categories of stakeholder, i.e. legitimate and illegitimate,
are different. However, because the gain an attacker can obtain from the
compromise of an asset is unknown, we will assume in this thesis, quite
reasonably, that a high value asset from the perspective of the organization,
will also be a high value asset for the attacker because the latter is able to
recognize potential market value of the asset and magnitude of disruption
the compromise of the asset may cause to the former. Therefore, assets
with high value for the organization are potential targets for attackers.

However, determining asset values from the perspective of the organization

61

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

is also a challenge. For example, according to CRAMM20 User Guide [218],
physical assets (such as a host) should be valuated in terms of replacement
and reconstruction costs. However, their value is affected by the asset value
of data and software application assets that depend or are stored on them.
Therefore, CRAMM suggests interviews with asset owners to: (i) identify
and understand the nature and function of each of those assets, and (ii)
to determine possible worst case scenarios that could impact the asset,
in terms of the information security properties mentioned in Section 2.1
on page 15. The next stage involves translating those scenarios into a
scale 1-10 that reflect the consequences, for the organization, if the asset
is really impacted. This last stage is supported by guidelines determining
which factors (in total 14) should be taken into account to analyze the
scenarios, e.g., personal safety, legal and regulatory obligations, financial
loss, commercial and economic interests. CRAMM tool, then, consolidates
the intrinsic asset value of a physical asset with the asset values implied
by data and software assets related to it to derive a single financially-based
asset value for the physical asset.

As we can see, the valuation of assets depends on expert judgement and
involves several stakeholders (at least asset owners, and evaluators). There-
fore, disagreements and inconsistencies among them are inevitable, despite
the use of guidelines and best practices. A way to overcome this problem
is the aggregation of disparate expert opinions such as the one proposed
by Houmb [99]. Furthermore, not only the valuation of assets is difficult
to determine because it involves either tangible and intangible variables,
hard to quantify, but also the identification of the constituent assets for
valuation is also a complex task. Last, but not least, valuation of assets is
context-specific, as we can see by looking at the stages involved and, hence,
no cross-organizational reuse of valuation is possible. As a consequence, as-
set values at the scale of a network are hardly readily available. We will see
in Chapter 4 that this aspect motivates requirement R3 with the purpose
of determining targets.

2. Cost of attack step.

Cremonini and Martini define cost of an attack as “the perceived cost sus-
tained by the attacker to succeed [i.e. to successfully perform each attack
step]” [49]. It is a very broad concept which may involve a large spectrum of
costs, e.g., material costs such as computers, Internet connection, and tools.
However, this cost is unknown, and may even be irrelevant nowadays, such
as the cost with computers and Internet. In terms of tools, we are back
to the discussion we had in item 7 on Section 3.1 about “time, effort or
resources a threat agent needs to execute an attack”. There, we discussed
that the high availability of ready-to-use tools and attack automation put

20Risk Analysis and Management Method developed by the UK Government, and currently
operated and maintained by Siemens Enterprise Communications Limited (www.cramm.com).

62

3.4. ECONOMICS OF NETWORK MULTI-STEP ATTACKS

these attributes into a different dimension. Therefore, a quantitative es-
timation of cost based on expected time, effort and resources needed to
launch an attack step can only be obtained via expert judgement and, as a
consequence, is stakeholder-specific and subjective.

Some researchers adopt a relative approach for cost estimation. Chinchani
et al. [38] use cost metrics as a relative quantity defining the amount of
deterrence offered by one security measure compared to another. Howard
et al. [103, page 12] also take a relative expert approach to assign weights
to channel types. Similarly, we considered in [70] cost as a measure of diffi-
culty that an attacker encounters to bypass channels implementing different
protocols (e.g., FTP, SMTP, SSH, VPN) to progress across network nodes,
as described in Chapter 6. Therefore, the cost of each of these channels are
assigned based on a relative approach by comparing protocols in terms of
the level of security they provide, determined e.g. by their encryption algo-
rithms and authentication methods. However, again, any of these relative
approaches depends on manual evaluation by experts and, consequently,
subjectivity becomes a major issue. Besides, a relative approach works
fine when the set to be evaluated is rather small since it requires pairwise
analysis, hence, scalability and consistency may also become an issue.

Other researchers consider cost in absolute terms, but consider attributes
to cost that are simply not available in large scale. For example, Liu et
al. [129] consider the risk of an attacker being traced or arrested as part of
the cost of attack. We neglect this aspect because, in our view, it is attacker-
specific and difficult to generalize. Other researchers [87], mentioned in
Section 2.2.3.4 on page 34, rely on complicated schemes to assign cost based
on several attributes of vulnerabilities, attackers and attacks. Again, they
do not scale, are stakeholder-specific and subjective.

Despite these differences in approaches to estimate cost of an attack step,
it is important to recognize cost as a measure that allows reasoning about
attackers trade-off when selecting among alternatives of attack steps, as
mentioned in item 4 below. In summary, cost measures should scale, should
be absolute, consistent and comparable, i.e. should not be stakeholder-
specific and subjective. We will see in Chapter 4 that this aspect motivates
requirement R5.

3. Risk of attack.

Risk of attack is the potential that a given threat agent will exploit one or a
set of vulnerabilities of an asset or group of assets and thereby cause harm
to the organization. It is measured as a function of the likelihood (or fre-
quency) of exploitation and impact resulting from a successful exploitation
(adapted from [108, 202]).

The analysis of identified risks can be qualitative or quantitative. On the
one hand, the former, usually adopted by standards used to evaluate secu-
rity such as the Common Criteria [37], and the ISO 27k series (e.g. [107]),

63

CHAPTER 3. UNDERSTANDING NETWORK ATTACKS

is more descriptive and therefore more intuitive and flexible. However, it
requires a clear definition of syntax (i.e. of scales, e.g. “high”, “medium”,
“low”) and semantics (what does level “high” mean for impact of an attack?;
what does level “high” mean for likelihood of an attack step?). Addition-
ally, qualitative analysis works at the level of order of magnitude, and is
subjective, biased by the interpretation of standards by the evaluators, plus
their own experiences. On the other hand, the latter requires only the def-
inition of semantics (what does 0.8 likelihood for an attack step mean?).
Nevertheless, “the quality of the analysis depends on the accuracy and com-
pleteness of the numerical values and the validity of the models used” [11].
In addition, quantitative analysis of risk faces a major challenge which is
the scarce availability of historical data to derive e.g. likelihood21. Despite
this challenge, “risks cannot be managed better until they can be measured
better” [8]. Therefore, quantitative risk analysis is preferred compared to
qualitative analysis because it allows reasoning about trade-offs (discussed
in the next item). Although we share this vision, recall that the goal we
aim to address in this thesis, mentioned in Chapter 1, is goal G1.1.1: Iden-
tify possible network attacks, and that assess the risk derived from these
possible attacks (G1.1.2) is out of the scope of this thesis.

4. Attacker and Defender Trade-offs.

Security is about trade-offs. We assume that not only defenders are rational
but attackers are rational too, as mentioned in Section 3.3. Under this
assumption, both aim at the highest possible return of their investments
in the presence of alternatives. It means that attackers when faced with
alternatives that result in the same benefit, will choose for the lower cost
option. Similarly, defenders will try to balance the benefits derived from
countermeasures with the cost of adopting them. Therefore, attackers and
defenders perform cost/benefit analysis for decision making.

Attackers’ trade-off involve the gain from a successful attack, i.e. the per-
ceived asset value of a target (for target-driven attackers) or the perceived
magnitude of disruption caused (for fame-driven attackers), versus the per-
ceived cost for performing an attack step. Since these gain and cost are
not available for defenders, as discussed previously, the trade-off for the at-
tacker can be restated as: asset value of a target, as perceived by defender
(approximating the notion of gain from attack), versus the cost of attack
steps for attackers, as perceived by the defender. This approach allows the
defenders to get awareness about risk of possible attacks.

Defenders’ trade-off involves evaluating the risk of attacks versus the cost
of implementing and maintaining countermeasures to mitigate those risks,
both as perceived by the defender.

21An initiative to reverse this lack of metrics is the CVSS (Common Vulnerability Scoring
System), funded by the U.S. Department of Homeland Security and maintained by FIRST22

(www.first.org). We explored this initiative to derive the risk level of a system in [102, 100].

64

3.4. ECONOMICS OF NETWORK MULTI-STEP ATTACKS

As just mentioned in the previous item, in this thesis we focus on goal G1.1.1
(Identify possible network attacks) using attackers’ trade-off, as perceived
by the defenders and emphasized above, to search for possible attacks in
the network. Not part of this thesis is the next stage related to actually as-
sessing the risk they represent. This assessment allows defenders to perform
trade-off analysis and develop business cases when applying for budget to
hardening network security [84].

65

4
Solution Requirements

At this point we have reviewed related work, in Chapter 2. We have also reviewed,
in Chapter 3, what makes networks vulnerable to attacks, main types of single-
steps, classes of attackers (i.e. threat agents), their main objective, and strategy
to launch different types of attack and, finally, economic-related aspects which
play an important role in network attacks. From both reviews, we identify existing
gaps, described in Section 4.1, and derive a list of requirements for the solution,
described in Section 4.2.

4.1 Gaps Analysis

Despite all progress in the field of Attack Graphs, there are areas where improve-
ment is still needed (summary in page 41).

1. As we seen in Section 2.2.3.3 on page 31, attack graphs are still difficult to
understand by people since they do not fully represent the network topology
(i.e. entities relevant for the domain of network attacks and network hierar-
chy) needed to relate the model to the real network. Current approaches to
this problem rely on techniques such as grouping, aggregation, clustering,
treemaps, and prioritization of graph nodes, but nevertheless the network
topology remains not completely represented. We identify next two aspects
which are lacking from current approaches.

• Firewalls are not clearly represented. They are considered only for
the calculation of (inbound) reachability. As a consequence it becomes
difficult to relate paths identified in the graph to the network itself, and
to support decisions about countermeasures. For example, if several
firewalls are traversed by an attacker it may be difficult, e.g., to identify
which ones should be changed, since they are not explicitly represented
in the graph.

• Network topology (to some extent) is added to the model a-posteriori
and is not part of the modelling activity itself. As a consequence, the
hierarchy is not viewed as a top-down, refinement process, where a

67

CHAPTER 4. SOLUTION REQUIREMENTS

subnet contains hosts, a host contains services, and so on. Instead,
the network is considered as flat, and the hierarchy is added bottom-
up as an afterthought. For example, in current approaches, after the
attack graph is generated, hierarchy can be incorporated based on
rules and context information that provide semantics or based on visual
positioning of subnets (e.g. treemaps) which aim to guarantee that the
hierarchy is not added ad-hoc but is rather meaningful and represents
the real network.

Therefore, there is a need for improving the representation of net-
work topology.

2. As discussed in Section 3.2.2.2 on page 51, the acquisition of credentials is
a type of single step an attacker can take advantage of. Current approaches
which deal with this aspect, reviewed in Section 2.2.3.6 on page 36, remain
rather static and worse-case based, i.e. those approaches do not incorporate
any uncertainty. They basically rely on pre- and postconditions. Hence, if
an attacker reaches a specific level of access on a host which has a credential
as postcondition, it is considered that the attacker automatically fulfills this
credential postcondition, and can access any reachable host which has this
credential as precondition. However, pre/postcondition pairs are memory-
less and, therefore, an acquired credential must be used in the next attack
step. An alternative approach found in the literature uses the same concept
of pre- and postconditions but incorporates the notion of exposure: if the
user of a host meets some condition (e.g. is labelled as “security incom-
petent”), again, it is assumed that an attacker which gains access to the
host, automatically fulfills the credential condition. Nevertheless, in none
of these approaches, credentials are distinct entities, thus, is not possible
to:

• represent that an attacker may gain access to a host due to credentials
acquired more than one step ago, i.e. these approaches are unable
to represent credential theft, but can only represent trust relationship
between two hosts

• represent uncertainty that an attacker may or may not acquire a cre-
dential even when an exposure which allows this acquisition exists;
maybe because the attacker overlooked and did not find the exposure,
therefore, if an attacker reaches a host that requires a credential, and if
this credential is not already known to the attacker, she has to search
for this credential

• perform what-if analysis related to credentials and their dynamics

Therefore, there is a need to simulate attack dynamics.

68

4.1. GAPS ANALYSIS

3. As we seen in Section 2.2.3 on page 27, some algorithms to generate attack
graphs consider (i) all possible attack paths. Hence, it is as if every node
in the network would be a potential target [105, 229]. Other algorithms
require (ii) the direct assignment of a target, assuming that potential targets
are common knowledge [164, 196], or the indirect indication of targets,
assuming that (iii) asset values are given [70].

The first type of approach is advantageous for analysis of the network as
a whole. However, it finds attacks reaching irrelevant hosts. Therefore,
asset values (assumed given) are needed a-posteriori to assign priorities to
attacks found.

The second type of approach is fine, assuming that the network adminis-
trator has complete knowledge about potential targets on the network.

The third type of approach has the drawback that it is dependent on given
asset values, the same way as the first approach turned out to be as well. As
we have seen in Section 3.4 on page 61, financially-based asset values are not
available for an entire network for many reasons. All in all, asset valuation
is a complex, time-consuming and subjective process. Besides, even when
using guidelines and best practices, different legitimate stakeholders tend
to diverge in valuation, and inconsistencies may then arise. Furthermore,
the valuation of assets is also context-specific, hence, no cross-organizational
reuse of valuation is possible. What happens in practice, in the end, is clear
in the following statement from authors of NetSPA (refer to Chapter 2),
recently turned into the commercial tool GARNET1 [229], “Asset values
currently default to 10 for all hosts and are typically hand-assigned to higher
values for critical hosts, such as key servers or hosts containing confidential
information”. Therefore, this type of approach in fact assumes, as the
second type of approach does, that potential targets are always known.

Therefore, there is a need for objective, consistent and comparable
asset values that are computed automatically, and can be useful
for the assignment of potential targets.

4. As we have seen in Section 2.2.3 on page 27, the majority of attack graphs
do not consider cost metrics to find possible attacks. Only a few approaches
that follow the stream of optimization consider cost metrics a-priori. How-
ever, cost metrics incorporated to the process of search itself capture eco-
nomic aspects and allow considering different strategies, to find different
types of attack, as discussed in Section 3.3 on page 55. For example, the
strategy of best cost-benefit can incorporate the trade-off of the target-
driven class of attackers with information available for the defender, by
considering asset value of a target, as perceived by defender (approximat-
ing the notion of gain from attacker), versus the cost of attack steps for

1Graphical Attack Graph and Reachability Network Evaluation Tool.

69

CHAPTER 4. SOLUTION REQUIREMENTS

attackers, as perceived by the defender. This strategy allows uncovering
sequential attacks, and is the focus of this thesis.

However, we have also discussed in Section 3.4, on page 61, that metrics
of cost are not available in large scale, since they are usually dependent
on information that is difficult to obtain, and cannot be automatically re-
trieved. As a consequence, the estimation of cost rely on expert judgement,
e.g., based on a relative approach involving pairwise comparisons. It means
that, unless the same stakeholder evaluates the costs involved with all en-
tities represented in the network model, values most probably will not be
comparable and consistent, and will not be useful for implementing the best
cost-benefit strategy.

Therefore, there is a need for a cost metric that scales, is ob-
jective, consistently and automatically calculated following a ra-
tionale, and is absolute allowing comparison between alternative
attack steps.

4.2 Requirements for the Solution

From the above gaps, and additional information from Chapters 2 and 3, we
identify the following solution requirements.

R1 The solution should permit full representation of the network
topology.

This is reflected in two aspects.

First, there are a number of entities, either physical (e.g. hardware) or
logical entities (e.g. subnets), which need to be represented to model the
network the closest as possible to the real network.

Second, the model should represent the hierarchy of the network deter-
mined by firewalls, as well as by logical grouping of hosts. This is required
to better relate the model with the real network. As a consequence, net-
work administrators can recognize the real network via the model, e.g. for
executing what-if analysis, maintaining the model up-to-date, and relating
attack paths identified in the model to the network itself.

Therefore, we should be able to represent:

– firewalls

– subnets, LANs (Local Area Network) and VLANs (Virtual LAN)

– hosts

– network services

– TCP & UDP ports and protocols

70

4.2. REQUIREMENTS FOR THE SOLUTION

– vulnerabilities

– vulnerability attributes

– attackers

– credentials

R2 The solution should permit the representation of attack dynamics
and network dynamics.

These dynamics involve the ability to represent acquisition, movement or
replication of resources, and the ability to use these resources at any step
of the attack, as seen in the previous section. Besides, a network is to some
extent a reactive system since it reacts to requests initiated by actors, either
users or threat agents, from inside or outside its outer perimeter. Since the
spectrum of possible behaviors, from attackers, is vast and unknown, we
have to execute the model in different ways, i.e. we have to perform simula-
tions2, using metrics available for the organization (treated in requirements
R3 and R5) in an attempt to anticipate possible attacks.

Concrete examples of attack and network dynamics:

– change in firewall rules, e.g. expand connectivity due to new business
demands

– change in network security policies, e.g. restrict connectivity due to
past attacks

– movement of assets, e.g. due to relocation of hosts

– deployment of new assets, e.g. new firewalls, new hosts or new network
services

– mobile code, e.g. malicious code which travel across a network

– credential theft allowing the exploitation of non-vulnerable hosts, e.g.
by means of credentials acquired not necessarily in the previous step

– patch of vulnerabilities

R3 The solution should allow for reasonable automatic estimation of
asset values, useful for assignment of potential targets.

As discussed in the previous section, asset value is hardly available for an
entire network. However, they can be a useful instrument to assign potential
targets, if they are consistent, objective, and comparable. Therefore, the
solution should provide an alternative, large-scale approach to calculate
asset values to support the selection of targets.

2Simulation, according to Merriam-Webster [137], is the imitative representation of the func-
tioning of one system or process [the real system] by means of the functioning of another [the
system model].

71

CHAPTER 4. SOLUTION REQUIREMENTS

R4 The solution should allow the investigation of hypotheses, via
what-if scenarios.

What-if scenarios allow network administrators to make hypotheses and
investigate new opportunities they may bring to attackers. For example,
these hypotheses may relate to changes in the network topology or network
configuration, to hypotheses about attackers or about vulnerabilities.

What-if scenarios should involve minimum effort to be considered practical,
therefore, not requiring to re-process the whole attack graph or re-build the
network model.

We take as example the following what-if scenarios:

– hypotheses about initial attacker location and resources, e.g. the at-
tacker can initially be located inside or outside the network, and can
have previous knowledge of a credential

– hypotheses about exposures which disclosure a credential if the at-
tacker finds it during an attack; as a consequence, the attacker is able
to penetrate non-vulnerable hosts via services protected by the cre-
dential

– hypotheses about zero-day vulnerabilities, e.g., the network adminis-
trator learns that a vulnerability of a certain type is in use in the wild,
as described in Section 3.2.2.2 on page 51, and s/he knows it poten-
tially affects a server in the network, the question is which attacks can
arise from this hypothesis

– hypotheses about vulnerabilities in custom software components with
similar objective as the previous item

– hypotheses related to attackers strategies like the ones identified in
Chapter 3, e.g. best cost-benefit from an attack or best-coverage of a
network; hypothesizing about strategies allows the defender to antic-
ipate the susceptibility of the modelled network to different types of
attack.

R5 The solution should provide automatic estimation of expected
cost of an attack step.

As discussed in the previous section, a cost metric is essential for repre-
senting the best cost-benefit strategy, used by the target-driven class of
attackers, focus of this thesis. However, there are no large-scale metrics
available which fulfils this need. Therefore, the solution should provide an
alternative cost metric, automatically computed, that is objective, consis-
tent and comparable, and allows automatic reasoning about the selection
of attack steps among feasible alternatives.

72

4.3. SOLUTION DIRECTION

4.3 Solution Direction

From the requirements of the solution listed in the previous section, we envision
the following solution direction: Mobile Ambients with Optimization. This di-
rection is supported by algorithms from the domain of Link Analysis Ranking.

Mobile Ambients as modelling paradigm.

Ambients are a place with a perimeter, or a closed box, where processes run [36].
An ambient can recursively contain other ambients, defining a nesting of am-
bients. The concept of Ambients is central to the so-called Mobile Ambients,
introduced by Cardelli and Gordon [35]. Mobile Ambients is a process calculus
(i.e. Ambient Calculus) which allows the modelling of all aspects of mobility, i.e.
mobile computing (mobility of devices or system components) and mobile com-
putation (mobility of agents, i.e. processes, across devices). We use the hierarchy
of ambients to represent network topology, and mobility to model network and
attack dynamics.

Optimization as simulation paradigm.

Combinatorial Optimization is used for finding good solutions for problems where
exact solutions would be unfeasible or too demanding in terms of time or space
required for computation [44]. A typical optimization process involves: (i) a for-
mal representation of the solution which allows its automatic computation, i.e.
the representation of an attack step in a variant of Mobile Ambients, (ii) a search
engine which implements a heuristic method for expanding a solution according
to a fitness function, i.e. the computation of attack steps that can reduce to com-
pose multi-step attacks, and (iii) fitness functions which measure the quality of a
solution, i.e. functions for the selection of best candidate attack steps, according
to metrics.

Link Analysis Ranking as support.

Link Analysis Ranking is used for providing metrics for the optimization process.
Basically it fulfills two purposes. First, to automatically calculate asset values
useful for the assignment of targets that feed the search for possible attacks.
Second, to automatically calculate a measure of cost for each attack step, useful
for determining fitness functions. Google’s PageRank [27] and authority scores
from HITS (Hypertext Induced Topic Search) [116] algorithms provide two views
of connectivity-based asset values, while HITS hub scores provide connectivity-
based cost metrics.

73

Part II

Proposed Solution

75

Background on Heuristic Search

The field of Combinatorial Optimization in Mathematics aims at finding the best
discrete element, or solution to a problem, from a set of alternatives. It is largely
employed in Computer Science (e.g. in Artificial Intelligence) to find solutions
to problems for which no exact optimal solution exists or to find good solutions
when the exhaustive search for the optimal solution is prohibitive in terms of
computational resources (e.g. computing time and/or space) [44]. The process of
searching for a good, non-exact solution (called heuristic search), can be either
uninformed or informed.

Uninformed search is a blind and mechanical process which does not take into
account any problem-specific information for the selection of alternatives. For
example, it can consider always the first option, or all options. While informed
search depends on an evaluation of possible options, taking into account context
information. This evaluation follows an heuristic, i.e. an educated guess, based
on a function or metrics used to eliminate options considered not promising. For
example, it can consider the best or a set of n best options.

A search can be a constructive method or an improving method. The former
explores the search space building up the solution from an initial state, that does
not represent a solution but is a “seed” from which the solution is constructed,
to a final state, that represents a solution, as illustrated in Figure 4.1. At each
iteration or cycle of the method, an element is incorporated to the solution. The
latter explores the solution space from an initial solution, also illustrated in Fig-
ure 4.1. At each iteration or cycle of the method, the quality of a slightly changed
solution is checked using an evaluation function. Optimization methods like Sim-
ulated Annealing and Genetic Algorithm [175] perform heuristic and improving
search.

methods

constructive

improving methods

improved

solution

solution

initial

se
ar

ch
 s

p
ac

e

solution space

Figure 4.1: Constructive and improving methods in heuristic search

Evolutionary algorithms form a special class of heuristic search. They mimic
the evolution of species (e.g. Genetic Algorithm) or the behavior of some species
(e.g. Ant Colony Optimization) to improve a set of initial solutions. The term

77

fitness function comes from this class of search algorithms, where solutions are
evaluated according to how fit they are, in analogy to species. This term may
be extended for any evaluation function in optimization methods; we adopt this
broader interpretation in this thesis.

Why using Heuristic Search

Exhaustive search when used to build attack graphs with model checkers has
demonstrated to be prohibitively expensive, as reported by early state enumeration-
based approaches reviewed in Section 2.2.3.1 on page 28. This first generation of
attack graphs have proven unfeasible for practical use, e.g., it can take 2 hours to
generate an attack graph for a network with 5 hosts and 8 vulnerabilities using
model checkers.

The alternative found by researchers in this area was the exploit-based graph
which explores dependencies among vulnerabilities and other security attributes
in terms of pre- and postconditions3, as described in Section 2.2.3.2 on page 29.
This basically restricts the search to vulnerable hosts. Therefore, this second
generation of attack graphs was able to overcome the scalability barrier of the
first generation, making them more suitable for practical use. However, this
approach is still limited because it cannot use metrics in the process of search
for attacks and, as a consequence, cannot incorporate attacker strategies, like the
best-cost benefit strategy used in this thesis. In addition, this approach cannot
deal with attack dynamics, like credential theft and, as a consequence, misses
attacks derived from such dynamics in well managed networks. From those and
other gaps (analyzed in Section 4.1) we have set requirements for our solution in
Chapter 4.

We explore an alternative approach, since we take the perspective that finding
attacks in a modelled network is an optimization problem. This way we can have
a richer representation of the network (adapted from Mobile Ambients), e.g., with
credentials, firewalls, and use context information in terms of metrics, without
loosing control of scalability. Therefore, we take this perspective, i.e. constructive
heuristic search, in both our preliminary solution ELAS (Evolutionary Learning
of Attack Scenarios), described in Chapter 6, and in our solution MsAMS (Multi-
step Attack Modelling and Simulation), described in Chapter 7.

3As seen in Chapter 2, there are attack graph approaches (e.g. [111]) that use a very precise
set of pre- and postconditions and require manual analysis of vulnerabilities collected in cus-
tomized vulnerability databases, and there compact representations of pre- and postconditions
based on an access-to-effect paradigm (e.g. [105]), that use public vulnerability databases. Nev-
ertheless, both streams are exploit-based attack graphs, what means that multi-step attacks
they find are chains of vulnerabilities.

78

5
Gaining Insights about Vulnerabilities

from the NVD 1

Vulnerabilities are central components of multi-step attacks in networks, as we
have seen in related work reviewed in Chapter 2, and as further discussed in
Chapter 3. Therefore, it becomes important to evaluate how to represent them in
our proposed solution MsAMS, described in Chapter 7, in a way that corresponds
to real vulnerabilities, stored in public databases.

In this chapter we report the result of an empirical investigation of the Na-
tional Vulnerability Database (NVD) motivated by an existing access-to-effect
classification of vulnerabilities. Our empirical investigation shows that with the
existing access-to-effect paradigm 65% of the vulnerabilities stored in the database
can be classified. This means that 65% of known vulnerabilities (over 27000,
by the time of this investigation) could be automatically classified and used to
search for multi-step attacks, therefore, the search would miss attacks involving
the remaining 35%. In this chapter we analyze the database and propose an
improvement, called access-to-impact classification, that allowed us to classify
96% of known vulnerabilities, stored in the database. This makes it possible in
principle to make almost the complete contents of the NVD available to an at-
tack search tool, and therefore we will use the access-to-impact paradigm in the
MsAMS approach.

5.1 Motivation for Empirical Investigation of NVD

As we have seen in Sections 2.2.3 and 3.2.2, attack graph approaches use databases
with information about vulnerabilities as their source of single attack steps. These
single attack steps are then combined: the exploitation of one vulnerability allows
the exploitation of others. This composition of vulnerabilities has traditionally
been performed based on detailed pre- and postconditions of each attack step
(e.g. [192, 167, 165, 111, 151, 119]). To illustrate this approach, let’s consider two
examples found in the literature:

1An early version of this chapter has been published as a technical report [77].

79

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

(i) Example 1 is taken from Sheyner and Wing [192]. It shows the attributes
of an IIS2 buffer overflow vulnerability.

Example 1 IIS Buffer Overflow. This remote-to-root action immediately
gives a remote user a root shell on the target machine.

action IIS-buffer-overflow is

intruder preconditions

plvl(S) >= user % user-level privileges on host S

plvl(T) < root % no root-level privileges on host T

network preconditions

w3svc_T % host T is running vulnerable IIS server

R(S,T,80) % host T is reachable from S on port 80

intruder effects

plvl(T):=root % root-level privileges on host T

network effects

not(w3svc_T) % host T is not running IIS

(ii) Example 2 is taken from Jajodia et al. [111]. It shows the attributes of
an exposure3: a rpc (remote copy) program installed by default in some
versions of Windows.

Example 2 RCPDOWNLOAD. Binds rsh [remote shell] access to the abil-
ity to transfer programs (e.g. rootkits) from victim machine using the rcp
program.

preconditions

1. Execute access on attack machine

2. rcp program on attack machine

3. Attack machine has connectivity to victim’s rsh service

postconditions

Copies victim machine’s programs to attack machine

Those two examples show that vulnerabilities and exposures are modelled in
such approaches using a number of detailed attributes, as if they were scripts
of attack steps. Although very precise, this approach is dependent on human
analysis of vulnerability databases, therefore, is error-prone, time consuming, and
often not scalable (see [127] for an overview). But we need a scalable approach,
because the number of known vulnerabilities is large (over 27000 by the time of
the investigation) and fastly growing (see graphs in Chapter 1). Therefore, we
do not follow this detailed pre-postcondition approach in our proposed solution
MsAMS, although some of the preconditions listed are taken into account, such
as reachability between hosts and services running.

2Internet Information Services, a set of Web services for Microsoft servers.
3A capability that can indirectly provide access to protected data, as defined in Chapter 2

80

5.1. MOTIVATION FOR EMPIRICAL INVESTIGATION OF NVD

Access (or locality)
Local Exploit only from the the vulnerable machine itself
Remote (or
network)

Exploit remotely over the network

Effect
Administrator
(or admin)

Administrator- or Root-level access to vulnerable host

User User- or guest-level access to vulnerable host
Other Confidentiality andor integrity loss, e.g. read files, corrupt

limited files, learn about software versions running on a host
DoS Target service or host disabled with no access to host

Table 5.1: Classification of vulnerabilities based on access and effect from [126]

An alternative approach, also used by the Attack Graph community, relies on
simplified pre- and postconditions (e.g. [126, 128, 125]) to compose attack steps
from vulnerabilities. This approach classifies vulnerabilities always in terms of
two attributes: access (or locality) and effect. To illustrate this approach let’s
consider the classification of vulnerabilities by Lippmann et al. [126] shown in
Table 5.1.

In this approach, access refers to the type of access an attacker needs to exploit
a vulnerability, i.e. this is a simplified precondition of the vulnerability, and
effect refers to the result an attacker obtains from the successful exploitation of a
vulnerability, i.e. this is a simplified postcondition of the vulnerability. However,
if we check the attributes of vulnerabilities as stored in the NVD, we notice that
there are no attributes in the database which map directly to the classification
presented in Table 5.1. In fact, Lippmann et al. [126] mention that they have to
use a pattern classifier to populate their vulnerability model using free-form text
from Nessus [149] and from the NVD. Based on these considerations we started
our empirical analysis of the NVD with the following research questions:

NVD RQ1 What is the percentage of vulnerabilities that can be classified ac-
cording to the access-to-effect paradigm presented in Table 5.1?

NVD RQ2 Is there a possible alternative classification scheme that allows the
classification of a higher percentage of vulnerabilities than the access-to-
effect paradigm presented in Table 5.1?

NVD RQ3 Is the quality of the NVD on its own (regardless of Nessus) sufficient
to classify vulnerabilities according to both classification schemes, i.e. the
access-to-effect paradigm presented in Table 5.1 and the alternative scheme
resulting from NVD RQ2?

Previous work in this area also motivated two additional research questions
to be investigated:

81

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

The statement “the administrator privilege category can be indicated by
phrases including execute arbitrary code” [128, Page 11]. In practice, gaining
admin privilege (admin effect, according to Table 5.1) on a host provides an
attacker with the ability to execute arbitrary code. However, the opposite is
not necessarily true, i.e. gaining the ability to execute arbitrary code does
not imply in gaining privilege resulting in admin (e.g., an attacker may gain
the ability to execute code at user level only). This triggers the following
research question that may affect the classification of vulnerabilities we adopt
in MsAMS:

NVD RQ4 What is the percentage of vulnerabilities that results in runCode effect
and also result in admin privilege gained by an attacker that exploits them?

As discussed in Section 2.2.3.6, it is assumed by the Attack Graph commu-
nity that credentials can be obtained as an (automatic) consequence of the
successful exploitation of a vulnerability, i.e. obtaining a credential is treated
as a vulnerability effect. We would like to know whether the set of vulnera-
bilities that explicitly results in an effect of the type “obtainCred” is relevant
or not. If relevant, it is important to consider this type of vulnerability in
the MsAMS approach, since we model credential theft. Note that we are
talking about obtaining credentials as an effect of exploiting a vulnerability;
a different case is, e.g., the existence of an easily-guessable credential that
allows the compromise of a host, and represents a vulnerability per se, such
as CVE-2008-4296 and CVE-2008-6588 mentioned in Chapter 3. This triggers
the following research question:

NVD RQ5 What is the percentage of vulnerabilities that results in obtainCred
effect4?

Before we set the stage for this analysis, we review the three NIST initiatives
that are relevant for its scope.

5.2 NIST Initiatives towards Standardized and Mea-
surable Information Security

The NIST [152], sponsored by the U.S. Department of Homeland Security, has
launched several initiatives towards standardizing terminology and format of in-
formation related to security management, i.e. related to vulnerabilities and
configurations of Information Systems. The overall goal is to facilitate interop-
erability among security tools and practitioners so every one speaks the same
language when talking about the same things. NITS tackles interoperability not
only at the level of terminology and format but also at the level of reference
data, and automation. Therefore, NIST has a set of initiatives to address those

4Refer to Table 5.4 (page 87) for the interpretation of our effects obtainCred and runCode
in terms of CVE attributes.

82

5.2. NIST INITIATIVES TOWARDS STANDARDIZED AND
MEASURABLE INFORMATION SECURITY

SCAP components

CPE Common Platform Enumeration
Naming scheme for IT systems, platforms and packages

CVE Common Vulnerabilities and Exposure
Naming scheme for known vulnerabilities in COTS (Commercial-
Off-The-Shelf) and open source components

CCE Common Configuration Enumeration
Naming scheme for known configuration issues related to cata-
logued common platforms (CPEs)

XCCDF Extensible Configuration Checklist Description Format
XML schema for documentation of checklists and benchmark of
settings related to CPEs

OVAL
Language

Open Vulnerability and Assessment Language
XML schema for assessing presence of CVEs (vulnerabilities) and
CCEs (configuration issues) on a CPE

CVSS Common Vulnerability Scoring System
Method and calculator for measurement and scoring of CVEs

SCAP content

NVD National Vulnerability Database
Repository of CVEs

OVAL
Database

OVAL Database
Repository of OVAL queries

NCP National Checklist Program
Repository of XCCDF checklists

Table 5.2: Overview of the SCAP initiative from NIST

areas, currently assembled in what is called SCAP (Security Content Automation
Protocol, http://scap.nist.gov/).

SCAP consists of a set of six component initiatives, that are interconnected,
and its content consists of three databases. An overview of the SCAP as a whole
is given in Table 5.2, while the initiatives relevant for this thesis, i.e. CVE, NVD,
and CVSS, are described next. Note that an understanding of the CVSS initiative
is essential for the remainder of this chapter.

CVE: Common Vulnerabilities and Exposure

As already mentioned in Chapter 3, CVE is a naming scheme assigned
to known vulnerabilities in COTS (Commercial-Off-The-Shelf) and open
source components. It is managed by the Mitre Corporation (http://cve.
mitre.org/) and is adopted in large scale by many CVE-compatible se-
curity products and services that, this way, avoid the problem of several
identifiers for the same vulnerability. Vulnerabilities identified by the com-
munity are reported to Mitre and analyzed by a CVE Editorial Board which
assigns them a permanent CVE identifier on the format: CVE-yyyy-xxxx,

83

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

where yyyy is the year when the vulnerability was discovered and xxxx is a
sequential number. A CVE has several attributes and relates to other ini-
tiatives, e.g. a CVE contains CVSS attributes (refer to item below), relates
to one or more CPEs, and belongs to a CWE (Common Weakness Enumer-
ation)5, a dictionary of software weakness types such as Cross-Site Scripting
(CWE-79) or Authentication Issues (CWE-287); there is a hierarchy of such
weaknesses.

An example CVE presented in Chapter 3, and reproduced below is:

CVE-2008-3257 description [53]:
Stack-based buffer overflow in the Apache Connector (mod wl) in Ora-
cle WebLogic Server (formerly BEA WebLogic Server) 10.3 and earlier
allows remote attackers to execute arbitrary code via a long HTTP ver-
sion string, as demonstrated by a string after ”POST /.jsp” in an HTTP
request.

CVEs are described in XML format and are stored in the NVD database.

NVD: National Vulnerability Database

The NVD is a comprehensive repository of CVEs freely available to the
public at http://nvd.nist.gov/. It is in its second version and is currently
in XML format. It collects CVEs since 1999.

CVSS: Common Vulnerability Scoring System

This is an initiative towards vulnerability (CVE) measurement and scor-
ing. The CVSS calculator [56], maintained by FIRST (Forum of Incident
Response and Security Teams) (http://www.first.org), was launched in
2004 and is currently on its second version. The CVSS is composed of three
metrics groups: base, temporal and environmental [136] that together pro-
duces a CVSS score as a decimal number according to the quantitative scale
[0.0,10.0]. Figure 5.1 illustrates the attributes of each of the metrics group.
Relevant to this chapter is only the base metrics group, described next.

The base metrics group quantifies the intrinsic characteristics of a vulner-
ability in terms of exploitability and impact, determined by a CVE Edi-
torial Board. The following characteristics are relevant to determine how
exploitable a vulnerability is: access required to exploit the vulnerability,
access complexity involved in exploiting the vulnerability and authentica-
tion instances required to exploit the vulnerability. Relevant to determine
the impact resulting from the exploitation of a vulnerability is the degree
of impact the exploitation of a vulnerability potentially causes in respect
to confidentiality, integrity and availability.

Access required is evaluated in terms of local, adjacent network or network;
access complexity in terms of high, medium or low; authentication instances

5CWE is an initiative from Mitre Corporation (http://cwe.mitre.org/).

84

5.3. DATA SET AND ANALYSIS APPROACH

Temporal
Metric Group Metric Group

Environmental
Base Metric Group

Impact

Confidentiality

Impact

Integrity

Availability

Impact Confidence

Report

Level

Remediation

Exploitability
Potential
Damage
Collateral

Distribution

Target

Requirement

Confidentiality

Requirement

Integrity

Vector

Access

Access

Complexity

Authentication
Requirement

Availability

Figure 5.1: CVSS metrics (adapted from [136])

in terms of multiple, single or none. While the base impact attributes (i.e.
confidentiality, integrity and availability) are all assessed in terms of degree
of impact: none, partial or complete. More information about the CVSS
attributes and the CVSS equation sets used to derive the CVSS score can
be found in the CVSS guide and the online calculator [136, 56].

The NVD provides the base vector for each CVE published, i.e. it provides
the assessment of the attributes that compose the base metrics group, as
described. We use this vector in the investigation reported in this chapter,
as summarized in Table 5.3.

5.3 Data Set and Analysis Approach

The NVD database, downloaded on November 08, 2007, contained 27909 CVEs
from 1999-2007. We skipped CVEs marked as “REJECT” and CVEs not ana-
lyzed, i.e. CVEs with just the field “description” filled6, bringing the final num-
ber of CVEs used in this NVD investigation to 27273. The data collected from
the NVD, i.e. an XML file containing CVEs, was converted to CSV (Comma-
Separated Value) format using XML queries (XQueries) from MonetDB [23]. All
required preprocessing of NVD data were performed directly over the XML by
those queries.

The analysis reported in this chapter consists of grouping CVEs according to
attribute values related to impact, exploitability, privilege, type of vulnerability
and information derived from CVEs plain-text descriptions, and finding relation-
ships between those attributes, as described in the following7. Table 5.3 contains
the list of attributes used in the analysis that required no preprocessing; refer
to the description of CVSS in Section 5.2 for a better understanding of those
attributes. Column “our nomenclature” in Table 5.3 contains the terms we use
to refer to each CVE attribute in this chapter. Column “CVE attribute” de-

6A total of 407 CVEs were not analyzed.
7For analysis we used Python scripts [168] and the Weka mining tool [221], and for the plots

we used the package R [48].

85

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

our nomen-
clature

CVE at-
tributes

description content of CVE at-
tributes

name CVE →
name

CVE identifier CVE-yyyy-xxxx

cvss AC CVE →
CVSS vector

exploitability: access complex-
ity; level of complexity encoun-
tered by an attacker to exploit the
CVE

possible values: L (low),
M (medium) or H (high)

cvss AV CVE →
CVSS vector

exploitability: access vector; ac-
cess needed for an attacker to ex-
ploit the CVE

possible values: N (net-
work), L (local) or A (ad-
jacent network)

cvss Au CVE →
CVSS vector

exploitability: authentication
required; authentication needed
for an attacker to exploit the CVE

possible values: N (none),
S (single) or M (multiple)

cvss C CVE →
CVSS vector

degree of impact on confidential-
ity (for the defender) caused by
the successful exploitation of the
CVE

possible values: N (none),
P (partial) or C (com-
plete)

cvss I CVE →
CVSS vector

degree of impact on integrity (for
the defender) caused by the suc-
cessful exploitation of the CVE

possible values: N (none),
P (partial) or C (com-
plete)

cvss A CVE →
CVSS vector

degree of impact on availability
(for the defender) caused by the
successful exploitation of the CVE

possible values: N (none),
P (partial) or C (com-
plete)

Table 5.3: CVE attributes, as stored in the NVD, that required no preprocessing
(refer to the CVSS description in Section 5.2)

scribes the XML tags from the original NVD XML database. Finally, columns
“description” and “content” contain a brief description of each CVE attribute,
and the values it can assume in the NVD, respectively. Table 5.4 contains the
list of attributes used in the analysis that required preprocessing.

Column “preprocessing” in Table 5.4 describes the contents of the attributes
and the processing performed prior to our analysis. Note that the first item
of this table, which we called privilege, although not a free-text field, requires
preprocessing to transform the content of the XML tag sec prot into the format
used in our investigation. The content of this tag complies with the CVE XML
1.2 Schema (http://nvd.nist.gov/schema/nvdcve.xsd) described in terms of
xs:annotation tags, reproduced next.

<xs:element name="sec_prot" minOccurs="0">

<xs:annotation/>

<xs:documentation>

Security Protection tag with one attribute for each security

protection type. Potential security protection types are: "admin" =>

gain administrative access "user" => gain user access "other" => other

</xs:documentation>

</xs:annotation/>

Examples of prot sec as they appear in the NVD are: < sec prot user = ‘1′/ >

86

5.3. DATA SET AND ANALYSIS APPROACH

our nomen-
clature

CVE
attributes

description content & preprocessing of
CVE attributes

privilege CVE →
loss types
→
sec prot

privilege acquired by an at-
tacker via successful exploita-
tion of the CVE
?? note that prot sec is not a
free-text field, although it re-
quires processing

can contain a single privilege such
as ’admin’, ’user’, ’other’, can
be empty (i.e. have no privi-
lege assigned), or can contain mul-
tiple privileges. In this case,
an unique privilege was derived
as follows: ’other,admin’ replaced
by ’admin’; ’other,user’ replaced
by ’user’; ’user,admin’ replaced
by ’admin’; ’other,user,admin’ re-
placed by ’admin’

runCode CVE →
desc →
descript

possible effect (for an at-
tacker) that results from the
successful exploitation of the
CVE: the ability to run code

field processed to contain y or n:
“y” if the CVE description con-
tains the following key expressions:
’execute arbitrary code’ or ’execute
arbitrary programs’

obtainCred CVE →
desc →
descript

possible effect (for an at-
tacker) that results from the
successful exploitation of the
CVE: the ability to obtain
credentials

field processed to contain y or
n: “y” if the description con-
tains the following key expres-
sions: ’intercept transmission’, ’in-
tercept communication’, ’obtain
plaintext’, ’obtain cleartext’, ’read
network traffic’, ’unencrypted’ or
’sniff’

gainAdmin CVE →
desc →
descript

possible effect (for an at-
tacker) that results from the
successful exploitation of the
CVE: ability to gain admin
level of access

field processed to contain y or n:
“y” if the description contains the
following key expressions: ’gain
root’ or ’gain access to root’

DoS CVE →
desc →
descript

possible effect (for an at-
tacker) that results from the
successful exploitation of the
CVE: ability to cause a denial
of service in the host

field processed to contain y or n:
“y” if the description contains the
following key expression: ’denial of
service’

Table 5.4: CVE attributes, as stored in the NVD, that required preprocessing

and < sec prot other = ‘1′ admin = ‘1′/ >. As mentioned in Section 5.2, Mitre
manages CVEs. New CVEs can be submitted by the community to Mitre, which
creates a so-called candidate CVE entry in the NVD and submits this entry to
the CVE Editorial Board for analysis8. We only used CVEs reviewed by the
Board, and have checked the content of this field: no spelling mistakes such as
“ohter” instead of “other” were found. As stated at the beginning of this section,
we skipped CVEs in the full database that are currently under review.

Unlike the first item, the last 4 items described on Table 5.4 are not present
in the original NVD; they are completely processed attributes created in our
CVS-format NVD by mining expressions contained in the free-text description of

8For more information, access http://cve.mitre.org/cve/cna.html\#researcher\

_responsibilities

87

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

each CVE. The expressions used were learnt from a manual inspection of CVE’s
descriptions. From this inspection we observed that:

(i) the expressions mined are used in affirmatives; when negative constructions
are used they tend to be of the type: “does not validate...”, “does not
handle...”, “does not support...”, “does not reset...”, followed by affirmative
sentences describing how attackers can take advantage of the vulnerability
described

(ii) descriptions do not contain if-statement-like constructs

(iii) some straightforward expressions, e.g., expressions as “gain privilege”, “gain
administrator” or “gain administrative”, do not necessarily mean that the
attacker gains privileged access to the Operating System. In fact, there
are examples CVEs, such as CVE-2001-0382, CVE-2007-5700, CVE-2008-
0174 and CVE-2008-1614, that contain the expression “gain privilege” in
their description but related to cases where the attacker gains or increases
privilege on an application level or obtains privileges of other users; that is
why these expressions were not discarded for ’gainAdmin’ effect

(iv) there are very mature expressions used in CVE descriptions such as the
expressions used to determine the attributes runCode and DoS

It is relevant to realize that the expressions used are not exhaustive and oth-
ers could be incorporated in follow-up studies. Changes in the expressions mined
from plain-text descriptions may affect conclusions 1, 4 and 5 to some extent,
and may have affected the percentage of CVEs resulting in DoS effect in the
effect view. However, all this represents small changes in percentages and does
not invalidate the other analyses based on attributes not derived from CVE de-
scriptions. Most important, it does not affect at all the access-to-impact view of
CVEs adopted by our solution MsAMS, which is the main result of this chapter.
If important for the results, statistical validation of the expressions mined would
be necessary.

The metrics and analysis provided in this chapter cannot be obtained from the
NVD statistics webpage http://web.nvd.nist.gov/view/vuln/statistics, al-
though it might look otherwise at first glance. For example, metrics either related
to the privilege resulting from the exploitation of vulnerabilities or related to ef-
fects derived from CVEs’ descriptions cannot be obtained via the NVD statistics
webpage. In addition, it does not provide means for the analysis and discovery
of relations between attributes.

We used the following approach to answer the research questions that motivate
our empirical analysis of the NVD, presented at the beginning of the chapter.

(i) Analysis of single CVE attributes, reported in Section 5.4. This analy-
sis represents a baseline for the following investigation, and enabled us to
answer NVD RQ5.

88

5.4. ANALYSIS OF SINGLE NVD ATTRIBUTES

(ii) Analysis of relationships between attributes, reported in Section 5.5. This
analysis enabled us to answer NVD RQ1 to NVD RQ4.

Before reporting about our first stage of the NVD analysis, we introduce
impact types that facilitate future reference, shown in the first column of Table 5.5
(page 89), where C refers to Confidentiality, I to Integrity and A to Availability,
hereafter called CIA. The second column of this table shows the combinations of
attribute values found during our investigation of the NVD.

Type of impact
(our
nomenclature)

Impact configurations as found in the NVD
cvss C:
Confidentiality

cvss I:
Integrity

cvss A:
Availability

Complete CIA C C C
Partial CIA P P P
No CIA N N N
Only-C C or P N N
Only-I N C or P N
Only-A N N C or P
C & I C or P C or P N
A & C C or P N C or P
A & I N C or P C or P

Table 5.5: Types of impact according to CIA configurations found in the NVD,
where C stands for Complete impact, P for Partial, and N for None (refer to the
description of CVSS, Section 5.2, for a better understanding of those attributes)

In the next sections, for brevity, rather than talking about “common vulnera-
bility or exposure the exploitation of which allows an attacker to acquire privilege
P”, we simply talk about “CVE resulting in P”. For example, a CVE resulting
in admin is a CVE of which the exploitation allows an attacker to gain admin
privilege over the host containing the CVE.

In the next section, we analyze the NVD attributes listed in Tables 5.3 and 5.4
in isolation.

5.4 Analysis of Single NVD Attributes

As indicated in the previous section, the total number of CVEs used in this
section is 27273, which is the total number of CVEs of our investigation database
in CVS format.

Table 5.6 (page 90) shows the distribution of CVEs in terms of access re-
quired for their exploitation. This table shows that the vast majority of CVEs
can be exploited remotely, i.e. via network access to the host that contains the
vulnerability. The distribution of privilege gained by exploiting a vulnerability or
exposure is also interesting as almost 80% of the CVEs are not clearly classified
(i.e. they result in privilege “other” or in no privilege).

89

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

exploitability #CVEs

access
network 22885 83.9%
local 4329 15.9%

adjacent
network

59 0.2%

complexity
low 20762 76.1%
medium 4824 17.7%
high 1687 6.2%

authenti-
cation

none 26480 97.1%
single 787 2.9%
multiple 6 0.02%

privilege #CVEs
admin 3462 12.7%
user 2233 8.2%
other 7292 26.7%
no privilege 14286 52.4%

Table 5.6: Distribution of CVEs by single attributes: exploitability of CVEs and
resulting privilege from the exploitation of CVEs

It may cause confusion that the term effect, present in the vulnerability classi-
fication shown in Table 5.1 (page 81), seems to correspond to the term privilege,
in the terminology adopted by NVD. However, effect has a larger scope than
privilege. For example, admin, user and other are privileges gained by the at-
tacker from the successful exploitation of a CVE; they are also effects resulting
from gaining such privileges. However, other effects such as DoS, runCode, ob-
tainCred are not privileges gained but rather abilities gained by an attacker as a
result of the successful exploitation of a CVE.

Table 5.6 also shows that 93.8% of CVEs involve “low” or “medium” levels
of complexity, while 97.1% of CVEs require no authentication. This confirms the
expectation that the need for authentication increases complexity of exploitation.

Table 5.7 (page 91) shows percentages of CVEs in terms of level of impact.
For example, 16.3% of all CVEs under investigation cause complete impact on
confidentiality to the defender, if successfully exploited by an attacker. This
means that a host containing such a CVE can have its confidentiality completely
compromised. But what really strikes about this table is the similarity among
the percentages related to impact: partial impact on C, I and A are around
55%, complete are around 15% and none are around 25%. This similarity will be
confirmed in the next section where we analyze cross-attribute relations.

Table 5.7 also shows some effects resulting from the exploitation of CVEs we
would like to get insights about. First the table demonstrates that there are 406
CVEs with effect “gainAdmin” (remember that this attribute was processed from
the description of CVEs, as opposed to the admin privilege shown in Table 5.6).
But we have seen in Table 5.6 that there are 3462 CVEs the exploitation of which
leads to privilege “admin”. We would like to determine if there is an inconsistency
between these two pieces of information or not. Two cases are possible: (i) the

90

5.4. ANALYSIS OF SINGLE NVD ATTRIBUTES

impact #CVEs

confidentiality
none 8168 29.9%
partial 14646 53.7%
complete 4459 16.3%

integrity
none 7344 26.9%
partial 15635 57.3%
complete 4294 15.7%

availability
none 7890 28.9%
partial 14429 52.9%
complete 4954 18.2%

processed effects #CVEs

gainAdmin yes 406 1.5%
no 26867 98.5%

runCode yes 3839 14.1%
no 23434 85.9%

obtainCred yes 131 0.5%
no 27142 99.5%

DoS yes 4933 18.1%
no 22340 81.9%

Table 5.7: Distribution of CVEs by single attributes: impact and attributes
derived from CVEs descriptions

set of CVEs with gainAdmin effect is a subset of the set of CVEs resulting in
admin privilege. This would simply mean that the description of this subset of
CVEs contain expressions that confirm their privilege classification; or (ii) the
set of CVEs with gainAdmin is not a subset of admin. In the cross-attributes
analysis of the next section we will see that the second possibility holds but can
be resolved easily.

Table 5.7 enables us to answer NVD RQ5 assuming that the expressions used
to process the effect obtainCred from the CVEs description are representative
and reasonably complete:

Conclusion 1: Only 0.5% (per Table 5.7) of CVEs allow obtaining
credentials, according to processed effect obtainCred derived from CVEs
descriptions, answering NVD RQ5.

Let’s now revisit Table 5.1 (page 81) with the percentages we have obtained
so far from Tables 5.6 and 5.7:

• Access (or locality)

Local 15.9%

Remote (or network) 83.9%

• Effect

Administrator (or admin) 12.7%

91

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

impact
privilege

admin user other no privilege
only-C 0 0 0 3232
only-I 0 0 0 3931
only-A 0 0 0 3965
complete CIA 3462 0 0 787
unknown CIA configuration 0 2233 7292 2371
total 3462 2233 7292 14286

Table 5.8: Distribution of CVEs in terms of privilege gained by their exploitation
against type of impact caused by their exploitation

User 8.2%

Other 26.7%

DoS 18.1%

In terms of access, the vulnerability classification is totally representative,
since local and network sets in the NVD are disjoint and, together, add up to
98% of CVEs. In terms of effects admin, user and other they also correspond to
disjoint sets belonging to the same attribute in the NVD and represent together
47.6% of CVEs. However, the set of CVEs with effect DoS may overlap with
those resulting in the privileges admin, user and other since it is processed from
a different attribute, CVEs descriptions. Therefore, to evaluate how representa-
tive this vulnerability classification is, we have to study relationships among those
attributes. We do so in the next section. Another aspect to consider is the fact
that it is not clear at this point if the effect “other”, interpreted as causing con-
fidentiality or integrity impact in the classification shown in Table 5.1 (page 81),
corresponds to the privilege “other” of the NVD. We will be able to answer this
later on in this chapter.

5.5 Analysis of Relationships between NVD Attributes

The total set of 27273 CVEs retrieved from the NVD is now used for the analysis
of multiple attributes. Table 5.8 shows the distribution of CVEs in terms of
gained privilege against type of impact, according to the types defined in Table 5.5
(page 89).

The distribution of CVEs shown in Table 5.8 leads us to the following remarks:

(i) 100% of CVEs classified with privilege admin have complete impact on
CIA9. This relationship is to be expected and makes total sense since when
an attacker gains root or administrative access to the Operating System of
a host, she acquires the potential to cause impact on all three aspects of

9Refer to Table 5.5 for the types of impact and their corresponding configuration in terms
of NVD attributes

92

5.5. ANALYSIS OF RELATIONSHIPS BETWEEN NVD ATTRIBUTES

impact
privilege

admin user other no privilege
only-C 0 0 0 1
only-I 0 0 0 2
only-A 0 0 0 1
complete CIA 395 0 0 1

Table 5.9: Distribution of CVEs with expressions in their descriptions that indi-
cate gainAdmin effect resulting from their exploitation

395 1
gainAdmin:

406

admin:

3462

“no privilege”

but complete

impact CIA:

787

Figure 5.2: Understanding the reclassification of CVEs resulting in “admin”: Sets
of admin-related CVEs

CIA. For the same reason, it does not make sense to have CVEs that result
in no privilege cause complete CIA impact, such as the small set of 787
CVEs shown in this table. Therefore, we consider this as an inconsistency
in the database. We analyze this further below with the help of Table 5.9.

(ii) So far, the set of CVEs resulting in no privilege can be split into five subsets.
Four of these subsets contain specific impact configurations, i.e. only-C,
only-I, only-A, or complete CIA. The fifth set could not be parsed with this
preliminary analysis, therefore, is refer to as having an unknown impact.

Conclusion 2: 100% of CVEs that result in the acquisition of privilege
admin for the attacker that successfully exploits them, cause complete
impact on C, I, A for the defender.

If we consider Tables 5.7, 5.8 and 5.9, we realize that: there is an overlap of
395 CVEs between the sets resulting in admin and gainAdmin and an overlap of
1 CVE between the set resulting in gainAdmin and the set of CVEs that result in
complete impact on CIA but are classified resulting in no privilege, as illustrated
in Figure 5.2. Thus, a small set of 10 CVEs (from 406-395-1) represents outliers10.

Conclusion 3: We detected 797 CVEs in the NVD that were misclas-
sified: they should have been classified as resulting in admin privilege.

Therefore, we reclassified 797 CVEs11 in our CVS-format NVD, changing the
10Refer to [77] for details.
11Reclassified: 787 CVEs cause complete impact but are classified as resulting in no privi-

93

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

privilege impact
access required

network local adjacent
network

total

reclass.
admin

2676 1574 9 4259

user 1857 366 6 2229
other 6724 558 8 7290

no
privilege

only-C 2725 502 4 3231
only-I 3517 411 1 3929
only-A 3387 553 24 3964
unknown CIA
configurations

1999 365 7 2371

total 22885 4329 59 27273

Table 5.10: Privilege gained by the exploitation of CVEs and type of impact
caused, against access required to exploit CVEs

representation of the set of CVEs resulting in admin privilege from 12.7% (3462
CVEs out of 27273) to 15.6% (4259 CVEs out of 27273). This reflects on the
representation of the vulnerability classification presented in Table 5.1 (page 81),
related to NVD RQ1.

So far in this section we have performed cross analysis of the NVD in terms of
the relationship between resulting privilege for an attacker (from the successful
exploitation of CVEs) and resulting impact for the defender (from the successful
exploitation of CVEs). We now proceed by adding one dimension to this analysis:
access (i.e. locality) required for an attacker, for successful exploitation of CVEs;
results are reported in Table 5.10.

The following conclusions can be drawn from this table:

(i) 23.7% of CVEs can be classified under the following access-to-effect pat-
terns:

– network-to-admin (9.8%)

– network-to-user (6.8%)

– local-to-admin (5.8%)

– local-to-user (1.3%)

However, it is still unclear for the the majority of CVEs (76.3%), including
those resulting in privilege “other” and those resulting in no privilege what
privilege and impact they produce.

(ii) no conclusions can be drawn for the access “adjacent network”, since it
covers several sets of privilege and impact. However, it is interesting to

lege, and 10 CVEs cause complete impact and contain indication of gainAdmin effect in their
descriptions but are not classified as resulting in admin privilege.

94

5.5. ANALYSIS OF RELATIONSHIPS BETWEEN NVD ATTRIBUTES

observe that 40.7% of these are related to CVEs that cause only-A impact.
Further analysis of this issue is out of the scope of this chapter; refer to [77]
for further details.

We look next at all classes of CVEs identified so far (including our reclassifica-
tion of a number of them as resulting in admin privilege) from the perspective of
runCode and DoS, processed effect gathered from CVEs descriptions, as defined
in Table 5.4 (page 87).

The total of CVEs which causes DoS effect in Table 5.11 matches the total
presented in Table 5.7 (page 91). However, there is a difference of 1 CVE between
these two tables in respect to CVEs that result in runCode effect. It refers to
the outlier CVE-2007-4060 which does not match any of the classes identified
(summarized in Table 5.5, page 89), since it causes partial impact on confiden-
tiality and integrity but complete impact on availability. From the table we find
that the sets of DoS and runCode overlap by 9.8% (859 out of 4933+3838). This
overlap could be explained by the fact that the ability to run code is a way to
perform automated DoS attacks.

privilege impact
effect overlap

DoS runCode
reclass.

admin
complete CIA 359 1296 206

user partial CIA 332 1292 278
other partial CIA 295 834 218

no
privilege

partial CIA 113 198 38
only-C 6 3 0
only-I 9 49 1
only-A 3695 112 98
A & I 58 32 16
A & C 63 4 3
C & I 1 17 0
no CIA 2 1 1

total 4933 3838 859

Table 5.11: Distribution of CVEs in terms of effects DoS and runCode (derived
from CVEs description) resulting from their exploitation

From Table 5.10 and 5.11, we observe that:

(i) 93.2% (3695 out of 3965) of CVEs that cause only-A impact for the defender
result in DoS effect; this was to be expected, of course, and this evidence
of correlation just confirmed it

(ii) 7.3% (359 out of 4933) of CVEs causing DoS effect result in admin privilege

(iii) 33.7% (1296 out of 3838) of CVEs causing runCode effect result in admin
privilege

95

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

(iv) in Table 5.7, we have seen that 18.1% of CVEs have expressions in their
descriptions indicative of effect DoS gained by an attacker who exploits
them. However, we have discussed this percentage at the end of Section 5.4,
and have been left with a big question mark about whether this set of CVEs
overlapped with the sets of CVEs with privileges admin, user and other.
Table 5.11 allow us to see that 80% (4933-359-332-285 out of 4933) of the
CVEs with effect DoS (derived from expressions in their descriptions) do
not overlap with the privileges mentioned. Considering CVEs with DoS
effect in relation to the total of CVEs (3947 out of 27273), we realize that
the disjoint set of CVEs that result in effect DoS when exploited represents
14.5% of CVEs.

Conclusion 4: 93% of CVEs that cause only-A impact for the defender
result in DoS effect for the attacker that exploits them.

Conclusion 5: The exploitation of 7.3% of CVEs that result in runCode
effect also result in admin privilege gained by attackers that exploit them,
answering NVD RQ4.

A natural next step is to narrow down the investigation to understand which
CIA configurations there are in the set of CVEs resulting in privilege “other”,
“user” and CVEs resulting in no privilege (curiosity triggered by Table 5.8,
page 92). Weka [221] visualization facilities provided insights for this next step,
as illustrated in Figure 5.3.

Figure 5.3 shows: (i) CVEs resulting in no privilege, represented in the first
column, have varied impact on confidentiality since this column contains 3 seg-
ments corresponding to the percentage of complete (C), none (N), and partial
(P) impact on confidentiality; (ii) CVEs resulting in privilege “other” (second
column) and “user” (third column) have only partial (P) impact on confidential-
ity12. The same pattern is observed when we plot CVEs resulting in user, other
and resulting in no privilege in terms of integrity and availability.

Table 5.12 confirms the above remarks, and shows the complete set of CIA
impact configurations present in the set of CVEs resulting in no privilege. There-
fore, if we analyze both Tables 5.8 (page 92) and 5.12 (page 98) together we see
that, at the beginning, we could identify some relations between specific privi-
leges and a few configurations of impact for CVEs but there was a large slice of
CVEs whose relations between those two attributes were not clear. Furthermore,
we did not know which privileges existed among CVEs that caused partial im-
pact on CIA. At the end, as shown in Table 5.12, we could completely establish
the relationship between attributes privilege and impact, therefore, being able to
almost completely cluster the CVEs (apart from 3 outliers).

12Attribute cvss C in Table 5.5, page 89, set to ’P’, the same for attributes cvss I and cvss A.

96

5.5. ANALYSIS OF RELATIONSHIPS BETWEEN NVD ATTRIBUTES

Privilege

Im
p

a
c
t

o
n

 C
o

n
fi
d

e
n

ti
a

lit
y

other user

C
N

P

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5.3: Understanding isolated CVEs with partial CIA impact: Privilege
against impact on C (Confidentiality)

Conclusion 6: 100% of CVEs that result in the acquisition of privileges
user or other, for an attacker that successfully exploits them, cause par-
tial impact on C, I, A for the defender.

In Section 5.4, we found curious that impact configurations seemed to match
when analyzing C, I, A attributes in isolation with Table 5.7 (page 91). In fact,
Table 5.12 shows 3 configurations of CVEs where this happens; if we recall from
Table 5.5, complete CIA means complete impact for confidentiality, integrity and
availability, the same way partial CIA means partial impact also for C, I, A, and
no CIA means none impact again for C, I, A. Therefore, 55.6% of CVEs have
impact where C, I, A have the same value.

At this point we can revisit Table 5.1 (page 81) with updated percentages
from the analysis of relationships among CVEs attributes in the NVD, i.e. from
our reclassification of admin privilege, and from our analysis of overlap between
the set of CVEs with DoS effect and the sets of CVEs with privilege admin, user
and other.

• Access (or locality)

Local 15.9%

97

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

impact
privilege total

admin user other no privilege
complete CIA 4259 0 0 0 4259
partial CIA 0 2229 7290 1340 10859
no CIA 0 0 0 59 59
only-C 0 0 0 3232 3232
only-I 0 0 0 3931 3931
only-A 0 0 0 3965 3965
A & I 0 0 0 213 213
A & C 0 0 0 88 88
C & I 0 0 0 668 668
total 4259 2229 7290 13492 27270

Table 5.12: Complete clustering of CVEs based on impact and privilege resulting
from their exploitation

Remote (or network) 83.9%

• Effect

Administrator (or admin) 15.6%
User 8.2%
Other 26.7%
DoS 14.5%

Another unanswered question from Section 5.4 was related to the interpreta-
tion given to privilege other in NVD and the effect other from the classification
of vulnerabilities we considered as baseline for our investigation; do they match?
The effect other refers to confidentiality and integrity loss; refer to Table 5.1.
According to the impact configurations we found in the NVD, this corresponds
to only-C, only-I or impact C & I, according to Table 5.5 (page 89). However,
from our analysis we learnt that CVEs resulting in other privilege always cause
partial CIA impact (partial CIA on Table 5.5), therefore, the semantics of the
other effect do not match with those of the other privilege.

5.6 Evaluation:
from Access-to-Effect toward Access-to-Impact

From the analysis of CVEs, reported in Sections 5.4 and 5.5, we can answer the
research questions which guided our investigation of the NVD.

NVD RQ1 What is the percentage of vulnerabilities that can be classified ac-
cording to the access-to-effect paradigm presented in Table 5.1?

This paradigm of classification involves access required by an attacker to
exploit a vulnerability and effect resulting from its exploitation for the

98

5.6. EVALUATION:
FROM ACCESS-TO-EFFECT TOWARD ACCESS-TO-IMPACT

admin (15.6%)

user (8.2%)

other (26.7%)

DoS (14.5%)

Figure 5.4: Representation of CVEs in effect view from [126]

attacker. In terms of access required the classification is almost 100% rep-
resentative. Therefore, there is no reason to investigate this further. In
terms of effect, our analysis of CVEs showed the percentages illustrated in
Figure 5.4.

As the figure shows, the total representation of the effect view is 65% from
a total of 27273 CVEs.

NVD RQ2 Is there a possible alternative classification scheme that allows the
classification of a higher percentage of vulnerabilities than the access-to-
effect paradigm presented in Table 5.1?

Our investigation revealed an alternative classification of CVEs that is more
representative in the NVD and shifts the effect view to an impact view. It
takes the approach of impact resulting from the successful exploitation of
a CVE for the defender, rather than the effect view also resulting from its
exploitation but for an attacker. Therefore:

– the effect of an attacker acquiring privilege admin (representing the
administrator- or root-level access to a vulnerable host) is viewed as
the complete impact on C, I and A it potentially represents (per Con-
clusion 2)

– the effect of an attacker acquiring the privilege of user (representing
user- or guest-level access to vulnerable a host) is viewed as the partial
impact on C, I and A it potentially represents (per Conclusion 6)

– the effect other is in fact viewed as part of the class of CVEs resulting
in partial CIA impact (also per Conclusion 6)

– the DoS effect is viewed as the only-A impact (per Conclusion 4)

99

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

complete CIA (15.6%)

partial CIA (40.0%)

only−C (11.8%)

only−I (14.4%)

only−A (14.5%)

Figure 5.5: Representation of CVEs in impact view derived from NVD
investigation

In addition, other impacts not visible in the effect view, but relevant in
terms of representation of CVEs in the NVD, appear in the impact view. It
is interesting to observe that the effect admin and the impact complete CIA
correspond to each other and are used interchangeably in the remainder of
the thesis; the same happening between the effect user and the impact
partial CIA.

As the pie char in Figure 5.5 shows, the total representation of the impact
view is 96% from a total of 27273 CVEs.

NVD RQ3 Is the quality of the NVD on its own (regardless of Nessus) sufficient
to classify vulnerabilities according to both classification schemes, i.e. the
access-to-effect paradigm presented in Table 5.1 and the alternative scheme
resulting from NVD RQ2?

In our investigation we found a few outliers and detected an inconsistency
in the classification of privilege resulting in admin that we fixed in our
CVS-format NVD before proceeding with our analysis. This inconsistency
accounted for 2.9% of misclassified CVEs (see Conclusion 3). Therefore, we
consider the quality of the NVD appropriate for automatically classifying
CVEs according to both, effect and impact, views.

Note that one can always argue that the expressions we mined from CVEs
descriptions, i.e. gainAdmin, runCode, obtainCred and DoS effects listed
in Table 5.4, are not complete or are not representative of the effects we
intended to evaluate. However, judging from our manual pre-inspection of
CVEs, we believe that, although other expressions could be incorporated
in follow-up studies, the expressions we mined are representative of the
effects we intended to evaluate. We realize that this manual preliminary

100

5.7. CLASSIFICATION OF VULNERABILITIES BY IMPACT ON
DEFENDER

inspection would not be enough, and statistic methods would be needed, if
results obtained were highly influenced by these expressions, but this is not
the case. Changes in the expressions mined may affect Conclusions 1, 4 and
5 to some extent, and may have affected the percentage of CVEs resulting
in DoS effect in the effect view. Still, all this represents small changes
in percentages and does not at all invalidate the other analysis based on
attributes not derived from CVE descriptions such as the impact view of
CVEs, our main result.

NVD RQ4 What is the percentage of vulnerabilities that results in runCode effect
and also result in admin privilege gained by an attacker that exploits them?

Our investigation revealed that only 7.3% of CVEs that result in runCode
effect also result in admin privilege gained by attackers that exploit them
(per Conclusion 5). Therefore, we find it questionable to consider that ex-
pressions of the type “execute arbitrary code” in CVEs descriptions indicate
a resulting admin privilege. This finding has no implications in the MsAMS
solution.

NVD RQ5 What is the percentage of vulnerabilities that results in obtainCred
effect?

We found an insignificant percentage of vulnerabilities that explicitly results
in obtaining credentials as an effect of their exploitation, considering the
expressions mined from the CVEs descriptions (per Conclusion 1). There-
fore, this finding has no implications either for the MsAMS solution that
adopts the access-to-impact paradigm, summarized next.

5.7 Classification of Vulnerabilities by Impact on De-
fender

We carry forward from this analysis a vulnerability classification that takes the
perspective of impact on defender instead of effect on attacker, i.e. from access-
to-effect to access-to-impact. The different classes of impact are interpreted as
follows.

1. complete-CIA: vulnerabilities in this class result in complete C I A impact
on a host; it means that the successful exploitation of a vulnerability of
this type allows an attacker to acquire privileged and unrestricted access to
data and resources (e.g. programs) of the host. Therefore, the attacker can
read and write OS data (e.g. modify configurations) and user-level data,
or can execute privileged OS programs (e.g. installation commands) and
user-level programs.

2. partial-CIA: vulnerabilities in this class result in partial C I A impact on
a host; it means that the successful exploitation of a vulnerability of this

101

CHAPTER 5. GAINING INSIGHTS ABOUT VULNERABILITIES FROM
THE NVD

type allows an attacker to acquire non-privileged and restricted access to
data and resources (e.g. programs) of the host. Therefore, the attacker
can read and write user-level data, or can execute user-level non-privileged
programs.

3. only-C: vulnerabilities in this class result in impact restricted to the confi-
dentiality of data contained in a host; it means that the successful exploita-
tion of a vulnerability of this type allows an attacker to acquire the ability
to read data, but not to write. Therefore, the attacker gains restricted
access to data and no ability to execute programs.

4. only-I: vulnerabilities in this class result in impact restricted to the integrity
of data contained in a host; it means that the successful exploitation of a
vulnerability of this type allows an attacker to acquire the ability to read
and write data. Therefore, the attacker gains unrestricted access to data
and no ability to execute programs.

5. only-A: vulnerabilities in this class result in impact restricted to the avail-
ability of the host; it means that the successful exploitation of a vulnera-
bility of this type allows an attacker to make this host unavailable.

102

6
Finding Network Attacks as an

Optimization Problem1

This chapter presents a preliminary solution to the problem of finding multi-steps
that attackers could take advantage of to compromise targets deep in a network.
It adopts the first design decision we make: to frame the problem of finding multi-
step attacks in a network as an optimization problem. This perspective requires
us to develop:

1. A formal notation to represent a multi-step attack, regarded as a solution,
in the field of Combinatorial Optimization.

2. Formal operations to evolve a solution, i.e., to compose attack steps in
multi-step attacks. In this chapter, called edition operations.

3. A fitness function, i.e., an objective expressed mathematically which drives
the searching process. For example, a function which represents generically
a class of attackers’ objective.

4. A stopping criterion to decide when a solution is considered complete; in
our case we consider that a multi-step attack is complete when targets are
reached.

5. Starting point(s) from which each solution is built, considering a forward
search. In our case, these are network nodes under suspicion or a probable
location of an attacker, such as the Internet.

6. A search engine that incorporates, to one or more current solutions, the best
candidate solutions (composed of an attack step or a set of attack steps),
according to the fitness function.

This preliminary solution also frames a design decision that is consequence of
R2 (representation of attack and network dynamics): the formal notation used to

1Early versions of this chapter have been published at IAS’07 [70], and as a technical re-
port [71].

103

CHAPTER 6. FINDING NETWORK ATTACKS AS AN OPTIMIZATION
PROBLEM

represent multi-step attacks should be able to express concurrency, i.e., sequence
and parallel compositions of attack steps. This is required because, as we have
seen in Section 3.3.1 on page 56, there are attacks that typically involve sequences
of attack steps, such as the ones related to the best-cost-benefit strategy, and
there are attacks that typically involve parallel attack steps, such as the ones
related to the best-coverage-of-the-network strategy (e.g., botnets). Furthermore,
there are attacks that involve synchronism of attack steps, such as Denial of
Services (DoS) and Distributed DoS (DDoS); they involve both strategies but
require synchronism in the launch stage of the attack (refer to Section 3.3.3.2 on
page 60). Note that in this preliminary solution we not use the best-coverage
strategy, instead we use what we call added value to emulate the infection phase.

The preliminary solution described in this chapter does not focus on the re-
quirements we set in Chapter 4 but rather on the parallelism and synchronization
aspects of attacks like DoS and DDoS. In fact, the network is represented in a
very simple way, i.e., only vulnerable hosts (workstations or servers) and their
connectivity are represented, but we do not represent other entities like services or
the vulnerabilities themselves; and we do not represent hierarchy of the networks
such as nesting of assets or firewalls. However, although network topology is not
explicitly represented, it is reflected in the connectivity between hosts. There-
fore, we experiment with the optimization and solution representation aspects,
and propose the ELAS approach.

6.1 ELAS: Evolutionary Learning of Attack Scenarios

In this chapter, we present ELAS (Evolutionary Learning of Attack Scenarios),
an approach (comprehending an algorithm and a solution representation) that
allows finding, i.e., learning, attack scenarios from a graph representing the net-
work. Central to this approach is a novel evolutionary algorithm which relies on
the analogy of the evolution of species that allows a population to grow until its
individuals start to compete for resources and unfit individuals die. The algo-
rithm works with a system of pools in which promising individuals (i.e., candidate
solutions) can improve in complexity while still in reproduction phase. A system
of credits avoids search space explosion despite a large number of candidate solu-
tions is allowed to mature. Most important, the algorithm potentially applies to
other optimization problems, like the Travel Salesman Problem, as well, provided
an appropriate representation of the solution, and a fitness function.

ELAS takes the perspective of concurrent systems that “these systems [com-
posed of processes] can be readily decomposed into subsystems [i.e., sub-processes]
which operate concurrently and interact with each other” [96]. We use an ap-
proach inspired by Hoare’s Communicating Sequential Processes (CSP) [95, 96]
with a syntax that resembles the occam programming language [106] to repre-
sent a solution (i.e., a multi-step attack, called simply attack in the remaining

104

6.2. OUR EVOLUTIONARY APPROACH

of this chapter) composed of single-steps. Therefore, an atomic construct Atm,
analogous to a process, represents a step from one host to another and is an arc
in the network graph. There are three types of compositions possible in attacks:
parallel, sequential and choice. The searching space defined by the graph is ex-
plored by means of edition operations which create new generations of multi-step
attacks from existing ones.

The output attack scenarios returned by ELAS can be used by network ad-
ministrators to gain awareness of the structural susceptibility of the network to
potential multi-step attacks that reach valuable targets, where those potential at-
tacks exist due to the connectivity in the network only. The scenarios returned are
expressive enough for representing parallelism, synchronization, and sequencing,
found in attacks.

6.2 Our Evolutionary Approach

We use a system of pools and credits to simulate the evolutionary process of
species, where species are allowed to grow until their individuals start to compete
for resources to survive. Our approach has the following characteristics which
represent a benefit over traditional heuristic search optimization methods, such
as Genetic Algorithm, Simulated Annealing and Ant Colony Optimization [175]:

(i) the size of the solution population is flexible and depends on the number of
credits which are consumed in the reproduction process

(ii) a solution (i.e., a potential multi-step attack) is not discharged after it
has reproduced, increasing the chances of producing future good quality
offsprings (i.e., to become a real multi-step attack

(iii) individual potential multi-step attacks (i.e., solutions) have second chances
of survival, if they have proved themselves worthy, i.e., multi-step attacks
receive recharges of credits if they have value and, therefore, have reached
a target

Thus, the algorithm uses three pools, named Speculation Pool (SP), At-
tack Pool (AP) and Dying Pool (DP). Figure 6.1 shows the life-cycle of a
potential multi-step attack based on these pools. After a potential attack is cre-
ated, it receives credits and is allowed to mature in the SP. Each time a potential
attack is edited, its amount of credit either decreases, if the generated offspring
has fitness (Definition 14) worse than its father, or remains unchanged, in the
opposite case. This decrease is proportional to the complexity of generation of
the offspring, involving the update of the offspring head set and tail set (refer
to Definition 6). The potential attack remains in the SP until its credits have
finished. When this happens, there are two possibilities. Either the potential
attack has reached a target (i.e., becoming a real attack with value different than
zero), and in this case it is moved to the AP, or it has not reached a target,

105

CHAPTER 6. FINDING NETWORK ATTACKS AS AN OPTIMIZATION
PROBLEM

solution is
created

solution generates
offsprings

solution consumes
credit

solution is close to
a target node

solution has
value > 0

solution generates
offsprings

solution is
deleted

solution consumes
credit

solution for
output

+credit

-credit

credit ≥ 0

credit < 0 SP

DPAP

yes no

no

-credit

credit ≥ 0

credit < 0

yes+credit

SP: Speculation Pool
AP: Attack Pool
DP: Dying Pool

Figure 6.1: Life-cycle of a solution (a potential multi-step attack)

and in this case it is moved to the DP. In the AP, the (real) attack is allowed
more credit to improve its complexity (i.e., to incorporate more attack steps).
When its AP credits finish, the attack is sent to output. In the DP, the potential
attack is checked to see whether it is within a distance (according to a threshold
parameter) to a target. In affirmative case, its SP credits are restored and it is
sent back to the SP. In negative case, the attack is deleted. A potential attack is
only allowed to return once to SP from DP.

6.2.1 Cost and Value Metrics

Before we proceed with our solution representation, in Section 6.2.2, we discuss
the notions of cost and values adopted by ELAS. In our modelling, the cost rep-
resents the security level, i.e., the difficulty that an attacker encounters to bypass
message-passing channels between pairs of network nodes. These channels imple-
ment protocols like FTP, SMTP, SSH, VPN, etc. Thus, these costs are limited
to a set of arc types (protocols) used by the organization. The best way to assign
these costs seems to be to compare the protocols in terms of encryption algorithms
and authentication methods. In fact, this relative view for the quantification of

106

6.2. OUR EVOLUTIONARY APPROACH

costs has been used elsewhere, as already mentioned in Section 3.4 on page 61.
Chinchani et al. [38] use cost metrics as a relative quantity defining the amount
of deterrence offered by one security measure over another. Howard et al. [103,
page 12] also take a relative expert approach to assign weights to channel types.
Furthermore, methods from Requirements Engineering, such as the 100-Dollar
Test [18], can also facilitate this quantification of costs.

Value represents financially-based asset value, as perceived by legitimate stake-
holders, in respect to the impact of loosing or damaging a host, as discussed in
Section 3.4. Such values are associated with each host represented as a node in
the network graph, as we will see in the next section. However, beyond value,
ELAS incorporates a notion of added value. Intuitively, it is easy to imagine that
the impact of a multi-step attack increases as the number of high value hosts
compromised by the attack increases. For example, if a Web server (WS) has
asset value 10, and a File Server (FS) has also asset value 10, the impact of hav-
ing both compromised at once is higher for defenders than the impact of having
each compromised in isolation, e.g., within days or months. This can be repre-
sented using the following tuples: (10,WS), (10,FS), (100,WS,FS), where 100 is
the added value of having WS and FS compromised at once. Now, let’s consider
the case of (D)DoS attacks (discussed in Section 3.3.3.2). Their launch phase
requires that a host (with high value) receives requests at a rate that exceeds the
target’s capacity of response. The notion of added value also applies to emulate
this case, via the tuples: (10,WS) means the WS has value 10 when answering
requests from another host, but (1000,WS,WS,WS) has value 1000 when its ca-
pacity of request handling is exceeded (symbolically represented by answering
requests from 3 other hosts).

Now that we have introduced the notions of cost and value assumed in ELAS,
we carry on introducing how a solution (i.e., a potential multi-step attack) is
represented.

6.2.2 Solution Representation

A solution for the evolutionary algorithm is a composition of atomic attack steps,
where each atomic attack step is the traversal of one direct network link in the
network.

Definition 3 (A network graph.) A network graph is a tuple:

G = (N,A, I, α, β),

where N is a nonempty set of nodes, representing hosts, and A ⊆ N × N is a
nonempty and irreflexive set of arcs, representing communication channels (and
thus possible atomic attack steps), I ⊆ N is a nonempty set of nodes under
suspicion as the initial location of an attacker, α : A → N is a function that
assigns cost to arcs (i.e., cost that an attacker encounters to traverse an arc),
and β : 2N → N (where 2N is the set of all sub-sets of N) a function that assigns

107

CHAPTER 6. FINDING NETWORK ATTACKS AS AN OPTIMIZATION
PROBLEM

value to sets of nodes (i.e., value associated with a host). We call this β function
Added Value.

Definition 4 (Arc Head and Arc Tail.) Let (a, b) ∈ A be an arc over the
network graph G = (N,A, I, α, β). The arc head of (a, b) is a and the arc tail is
b.

Definition 5 (Potential Multi-step Attacks.) Let G = (N,A, I, α, β) be a
network graph. The set of all potential multi-step attacks MAG over G is defined
as follows:

1. For every (a, b) ∈ A, there is an atomic term Atm(a, b) in MAG,

2. For every P1, P2 ∈ MAG, there are terms Π[P1, P2] in MAG, for Π ∈
{Seq,Par,Alt}. These terms need to comply with Defintions 7, 8 and 9.

3. Any potential multi-step attack P ∈ MAG is formed by (possibly multiple
applications of) rules 1 and/or 2.

A term Seq[P1,Seq[P2, P3]] or a term Seq[Seq[P1, P2], P3] is abbreviated:
Seq[P1, P2, P3]. Likewise, a term Par[P1,Par[P2, P3]] or a term Par[Par[P1, P2], P3]
is abbreviated: Par[P1, P2, P3]. And a term Alt[P1,Par[P2, P3]] or a term
Alt[Alt[P1, P2], P3] is abbreviated: Alt[P1, P2, P3].

Example 3 The following is an example of a potential multi-step attack:

Par[Seq[Atm(n61,ms2),Atm(ms2,n62)],Seq[Atm(n61,ms2),Atm(ms2,n63)]]

Definition 6 (Head Set and Tail Set of a Potential Multi-step Attack.)
Let G = (N,A, I, α, β) be a network graph and let P ∈ MAG be a potential multi-
step attack in G.

1. If P is of the form Atm(a, b), then
Headset(P) = {a} and Tailset(P) = {b}.

2. If P is of the form Seq(P1, P2) for arbitrary P1, P2 ∈ MAG, then
Headset(P) = (Headset(P1) ∪Headset(P2))− Tailset(P1)2

and Tailset(P) = (Tailset(P1) ∪ Tailset(P2))−Headset(P2).

3. If P is of the form Π(P1, P2) for Π ∈ {Par,Alt} and arbitrary P1, P2 ∈
MAG, then
Headset(P) = Headset(P1) ∪Headset(P2)
and Tailset(P) = Tailset(P1) ∪ Tailset(P2).

Example 4 The Headset and Tailset of the potential multi-step attack presented
in Example 3 is: Headset = {n61} and Tailset = {n62, n63}

2Minus represents set difference.

108

6.2. OUR EVOLUTIONARY APPROACH

We define next the syntax and informal semantics of the sequential, parallel
and choice compositions as used by ELAS.

Definition 7 (Sequential composition.) Two potential multi-step attacks
P1, P2 ∈ MAG can be composed in sequence, denoted Seq[P1, P2], when:
Tailset(P1) ⊆ Headset(P2).

The informal semantics of this composition is: P1 happens and, when com-
pleted, P2 follows.

Definition 8 (Parallel composition.) Any pair of potential multi-step attacks
P1, P2 ∈ MAG can be composed in parallel, denoted Par[P1, P2].

The informal semantics of this composition is: P1 and P2 start simultaneously.

Definition 9 (Choice composition.) Any pair of potential multi-step attacks
P1, P2 ∈ MAG can be composed in parallel, denoted Alt[P1, P2].

The informal semantics of this composition is: P1 or P2, but not both, happens
non-deterministically.

Definition 10 (Value of a Potential Multi-step Attack.) Let
G = (N, A, I, α, β) be a network graph, let P ∈ MAG be a potential multi-step
attack in G, and let β be the function that assigns added value to Tailset(P). The
value of P is defined as follows:

• V alue(P) is given by β, if Tailset(P) has added value or

• V alue(P) = 0, if Tailset(P) has no added value

Definition 11 (Target.) Let G = (N,A, I, α, β) be a network graph and let
P ∈ MAG be a potential multi-step attack in G. Target is a set T , where T ⊆
Tailset(P) that has added value given by function β greater than a given threshold
δ.

Definition 12 (Attack.) Let
G = (N,A, I, α, β) be a network graph and let P ∈ MAG be a potential multi-
step attack in G. P is considered as an attack when Headset(P) ⊆ I and T ⊆
Tailset(P) (see Definition 11).

Definition 13 (Cost of a Potential Multi-step Attack.) Let
G = (N, A, I, α, β) be a network graph, let P ∈ MAG be a potential multi-step
attack in G, and let alpha be the function that assigns cost to arcs (a, b) ∈ A.
The cost of P is defined as follows:

Cost(P) =
|Atm|P∑
i=1

Cost(Atm(a, b)i),

where |Atm|P is the number of atomic constructs in P.

109

CHAPTER 6. FINDING NETWORK ATTACKS AS AN OPTIMIZATION
PROBLEM

Definition 14 (Fitness of a Potential Multi-step Attack.) Let
G = (N, A, I, α, β) be a network graph, let P ∈ MAG be a potential multi-step
attack in G. The fitness of P is defined as follows:

Fitness(P) = V alue(P)− Cost(P)

6.2.3 Edition Operations

Edition operations are operations executed by the evolutionary algorithm to
evolve a candidate solution (a father solution) into new candidate solution (off-
spring solutions). Our algorithm selects edition operations based on a probabilis-
tic distribution function, among the following six possible operations.

Editions always generate new offsprings P ′, i.e., the original potential multi-
step attack P remains as it is.

1. New atomic: This edition operation involves no previous solution, it cre-
ates a new solution consisting of an atomic construct, according to three
different options:

The first option is: the created Atm(a, b) has node a ∈ I (see Definition 3).
In this case, the solution will grow towards nodes with added value
(forward search).

The second option is: the created Atm(a, b) has node b with added value.
In this case, the solution will grow towards a node ∈ I (backward
search).

The third option is: the created Atm(a, b) has node a 6∈ I and node b with
no added value. In this case, the solution will grow both towards a
node ∈ I and towards a nodes with added value (both forward and
backward search).

2. Atomic extension: This edition operation involves two steps, and one
solution P .

Step 1: Selection of a solution P to be extended.
This selection happens according to one of the following criteria: (i)
smallest cost, (ii) highest value, (iii) highest fitness, or (iv) random.
Which criterion the algorithm will use is determined via input param-
eter.

Step 2: Selection of an arc (a, b) ∈ A to be added as an atomic construct
to solution P .
Among all the arcs (a, b) ∈ A, and depending on the type of solution
(i.e., if it grows forwards, backwards or both), an arc that can be
composed with Headset(P) or Tailset(P) is selected following the four
criteria described in Step 1. The result is either Seq[P,Atm(a, b)] or
Seq[Atm(a, b), P]

110

6.2. OUR EVOLUTIONARY APPROACH

3. Seq composition: This edition operation involves a pair of solutions P1

and P2.

Assuming that P1 is selected first, as described in Step 1 of edition “Atomic
extension”. Then a list of candidates C for P2 is generated using the follow-
ing criterion: the Tailset(P1) ⊆ Headset(P2). Next, one Pi ∈ C is selected
randomly from this list of candidates. Finally, the sequential composition
Seq[P1, P2] is generated with selected P1 and P2.

4. Par composition: This edition operation involves a pair of solutions: P1

and P2.

In this case, both solutions are selected as described in Step 1 of edi-
tion “Atomic extension”. The only restriction imposed in this case is: if
both V (P1) > 0 and V (P2) > 0 (see Definition 10), then Tailset(P1) ∩
Tailset(P2) = ∅. A parallel composition Par[P1, P2] is generated with the
selected P1 and P2.

5. New Par: This edition operation creates a solution P1 which is the “Par
composition” of several arcs (a, b) ∈ A with tail ∈ T .

This selection can be either: (i) random, by (ii) best value (i.e., the highest
value is selected), or by (iii) preference for best value (i.e., the higher values
have more chance to be selected). Which criterion the algorithm will use is
determined via input parameter.

6. Par join: This edition operation extends an existing solution P1 with a
new solution P2.

A solution P2 with Headset(P2) equal to Tailset(P1) is created, if P1 grows
forwards. The sequential composition Seq[P1, P2] is generated in this case.

Alternatively, a solution P2 with Tailset(P2) equal to Headset(P1) is created,
if P1 grows backwards (or both forwards and backwards). The sequential
composition Seq[P2, P1] is generated in this case.

All the edition operations enumerated above apply to solutions in SP. How-
ever, only the “Atomic extension” edition operation also applies to solutions in
AP.

6.2.4 The Evolutionary Algorithm

The evolutionary algorithm consists of two main phases: the reproduction phase
and the retirement phase. In the former, edition operations occur creating new
generations of solutions. In the latter, solutions are selected for deletion, for
output or for a new stage of reproduction. An algorithm iteration, called cycle,
also has credits (provided as parameter) which decreases each time a solution
is edited. A cycle can generate several possible solutions as output (from the
AP). Figure 6.2 presents the main algorithm, where cycle credits sums credits
consumed in the reproduction phase and MAX credits is a parameter. Figure 6.3

111

CHAPTER 6. FINDING NETWORK ATTACKS AS AN OPTIMIZATION
PROBLEM

presents the algorithm for the reproduction phase and Figure 6.4 presents the
algorithm for the retirement phase.

SP = {}, AP = {}, DP = {}

cycle_credits = MAX_credits

FOR c cycles

WHILE cycle_credits > 0

reproduction phase

retirement phase

cycle_credits = MAX_credits

Figure 6.2: Main algorithm

WHILE SP has credits and cycle_credits > 0

select edition operation

select solution to edit

perform edition

update credit solution

decrease credit SP

decrease cycle_credits

WHILE AP has credits and cycle_credits > 0

select solution to edit

select arc from G to be extended

perform edition: atomic extension

update credit solution

decrease credit AP

decrease cycle_credits

Figure 6.3: Reproduction phase algorithm

Proposition 1 The complexity of the evolutionary algorithm (Figure 6.2) is
O(cm + n2), where c is the number of cycles, m is the maximum of credits a
cycle can have, and n is the number of nodes in the graph.

Proof. The running time of the algorithm is the sum of the time for setting
up the input graph which takes O(n2) and the time for pool editions. Since there
are c cycles of pool editions and each cycle spends at most m credits, where
m is MAX credits as mentioned in Figure 6.2, then the time for pool editions
takes O(m), independent of the credits of pools SP and AT and of the credits of
individual solutions.

112

6.3. MOTIVATING EXAMPLE: DENIAL OF SERVICES BY E-MAIL
WORM

FOR each solution in SP without credits

IF value of solution > 0

restore credit solution

move solution to AP

ELSE move solution to DP

FOR each solution in AP without credits

output solution

FOR each solution in DP

IF tailset of solution is close to target based threshold

restore credit solution

move solution to SP

ELSE delete solution

Figure 6.4: Retirement phase algorithm

6.3 Motivating Example: Denial of Services by E-
mail Worm

This example of a Denial of Services (DoS) attack by an e-mail worm was collected
and adapted from Chinchani et al. [39, Section 4.2]. Figure 6.5 shows a graph
representation of the attack in four stages.

In the first stage, an insider (node i denoting the insider computer) sends an
e-mail to a coworker (node n52) containing an attachment, for example requesting
review of an attached document. When the coworker opens the attachment, her
computer gets contaminated, causing the original e-mail (worm) to be replicated
and sent to e-mails contained in her address book. Thus, the e-mail worm from
node n52 contaminates node n61 connected to a different mail server inside the
Local Area Network (LAN), in stage 2. The same process happens on stage
3, where node n61 contaminates nodes n62 and n63. Stages 1-3 represent a
DoS infection-phase similar to the one mentioned in Section 3.3.3.2 on page 60,
however, instead of propagation via botnet (with centralized control of bots),
here we have propagation via an address book worm. In stage 4, we see the DoS
taking place with nodes n61, n62 and n63 flooding the mail server’s capacity (e.g.
bandwidth) (node ms2) with e-mails arriving within a short period of time, i.e.,
synchronized e-mails.

6.3.1 Representation of the DoS Attack

Figure 6.6 shows the DoS attack example represented in ELAS.
The DoS on the target happens because Atm(n61,ms2), Atm(n62,ms2) and

Atm(n63,ms2) are triggered together due to the semantics of the parallel com-
position. Thus, this attack involves one point of synchronization in its last stage.

113

CHAPTER 6. FINDING NETWORK ATTACKS AS AN OPTIMIZATION
PROBLEM

i

insider

n53

n54
n52

mail server

ms1

n61

n62

ms2

n63

n64

n65

mail server

i

insider

n53

n54
n52

mail server

ms1

n61

n62

ms2

n63

n64

n65

mail server

i

insider

n53

n54
n52

mail server

ms1

n61

n62

ms2

n63

n64

n65

mail server

i

insider

n53

n54
n52

mail server

ms1

n61

n62

ms2

n63

n64

n65

mail server

point of
synchronization

1st stage: insider sends e-mail with worm 2nd stage: worm reproduces

3rd stage: worm reproduces 4th stage: contaminated nodes cause DoS

Figure 6.5: Denial of Services by E-mail Worm

This point is represented in the specification by the last Par inside a Seq. It
means that Par[Atm(n61,ms2), Atm(n62,ms2), Atm(n63,ms2)] will only start
after the previous Par has completed, and that Atm(n61,ms2), Atm(n62,ms2),
and Atm(n63,ms2) will start simultaneously.

attack = Seq[

Seq[Atm(i,ms1),Atm(ms1,n52)], (stage 1)

Seq[Atm(n52,ms1),Atm(ms1,ms2),Atm(ms2,n61)], (stage 2)

Par[Seq[Atm(n61,ms2),Atm(ms2,n62)],Seq[Atm(n61,ms2),Atm(ms2,n63)]], (stage 3)

Par[Atm(n61,ms2),Atm(n62,ms2),Atm(n63,ms2)] (stage 4)

]

Figure 6.6: Representation of the multi-step attack shown in Figure 6.5

6.3.2 Running ELAS to Find the DoS Attack

We consider a default network topology, adapted from Suehring [204] and illus-
trated in Figure 6.7, to construct a network graph to be used as input to ELAS.
The network topology represents an organizational network that has a router
which interfaces internal and external traffic, and is connected to four firewalls.
Firewalls 1 and 2 interface with LANs 1 and 2 respectively, and firewalls 3 and 4
interface with servers 1 and 2 respectively.

114

6.3. MOTIVATING EXAMPLE: DENIAL OF SERVICES BY E-MAIL
WORM

router

firewall2firewall1
mail server1

web server1

pc

mac

linux

printer

INTERNET

pc

mac

linux

printer

firewall3 firewall4
mail server2

web server2

SERVERS1LAN1

LAN2 SERVERS2

communication

channel
backbone

Figure 6.7: Default network topology adapted from Suehring [204]

We have implemented the algorithm in Haskell and performed a number of
tests. We found that the algorithm is able to generate DoS scenarios with ELAS
similar to the one shown in Figure 6.6, using the following input.

• An input network graph with up to 2000 nodes: we used a graph with 3
LANs (LAN1, LAN2 and LAN3). Nodes in LAN1 (nodes starting with 1)
are connected to mail server represented by node 91, nodes in LAN2 (nodes
starting with 2) are connected to mail server 92 and nodes in LAN3 (nodes
starting with 3) are connected to mail server 933.

• The cost of each type of communication channel: this cost represents the
difficulty the attacker will have to traverse the channel, thus it represents
its level of protection implemented by a protocol. For example, a SSH con-
nection is more secure than a SMTP connection and, consequently, the cost
associated with a SSH connection should be higher than the cost associated
with a SMTP connection. In this case, the cost of the SMTP connection
for the example is set to 10.

• The initial set: our initial set is node 12 in LAN1.

• The added value of targets: our target is node 93. To simulate three at-
tacking nodes (representing the limit of simultaneous connections that mail
server 93 can handle) to node 93, we set the added value to (1000, 93, 93, 93).

The algorithm found DoS-like attacks with cycles ranging from 1000 for a
network with 50 or 100 nodes, to 5000 for networks of up 2000 nodes. When

3We use name convention as a way to group logically hosts in subnets since, as mentioned
at the beginning of the chapter, ELAS uses a simple representation of the network.

115

CHAPTER 6. FINDING NETWORK ATTACKS AS AN OPTIMIZATION
PROBLEM

using a 2000 nodes network, more complex DoS scenarios have been reproduced
within a maximum of 30 minutes in a Pentium 4 machine (2.8 GHz) with 512MB
RAM, running Linux Ubuntu. These networks were all randomly generated and
nodes were distributed among one to five LANs.

Figure 6.8 shows a sample output generated by ELAS in 1000 cycles using
a network of 20 nodes. In this case, the attacking node 12 contaminates node
21, located in another LAN. Node 21 has node 39 in its address book, thus, the
worm is propagated from node 39 to nodes 311, 312 and 313, yet in another LAN.
These last nodes mount the DoS attack on the mail server, node 93. The final
attributes of the output multi-step attack that represents the DoS attack were:
(i) head set = [12], (ii) tail set = [93], (iii) cost = 130 (13 arcs of 10), (iv) value
= 1000, and (v) fitness = 870.

attack = Seq[Seq[Atm(12,91),Atm(91,92],Atm(92,21)], (stage 1)

Seq[Atm(21,92),Atm(92,93),Atm(93,39),Atm(39,93)],(stage 2)

Par[Atm(93,311),Atm(93,312),Atm(93,313)], (stage 3)

Par[Atm(311,93),Atm(312,93),Atm(313,93)]] (stage 4)

Figure 6.8: ELAS Output: multi-step attack

6.4 Summary

In terms of applicability, we have presented ELAS (Evolutionary Learning of
Attack Scenarios), an evolutionary-based algorithm that learns attack specifica-
tions representing attack scenarios from a network graph. We took the approach
of validating the algorithm by modelling a known attack that is especially hard to
represent because it requires synchronization. Thus, we used a Denial of Services
by Email Worm attack as a motivating example. The algorithm was able to learn
this type of attack from networks up to 2000 nodes. We believe that this type of
tool can be valuable for administrators to acknowledge potential attack scenarios
towards valuable assets.

In terms of the algorithm itself, we have presented an evolutionary-based
approach that represents an improvement compared to traditional local search
optimization heuristics. In our approach, the search space is explored by many
alternative solutions at the same time, like it happens with Genetic Algorithm
for example, but the parent solutions remain active in the system of pools. Thus,
a same parent solution has several opportunities to improve by generating more
than one offspring, turning it potentially powerful in exploring the search space.

In the ELAS approach, cost, value and added value are assumed given and are
dependent on expert judgment. Apart from being a manual process, subjective
and prone to inconsistencies since they are stakeholder-specific, the notion of
added value allows uncovering the structural susceptibility of a network to (D)DoS
attacks. However, this added-value approach do not scale well, and a much better

116

6.4. SUMMARY

approach would be to use combination of strategies to achieve it, as described in
Chapter 3. MsAMS, the solution described in the next chapter, can potentially
work with different strategies although in this thesis we just explored the best
cost-benefit strategy. Nevertheless, MsAMS has a big advantage (among many
others) compared to ELAS since it uses automatically calculated costs and values,
and allows a richer representation of the network.

117

7
The MsAMS Solution: Multi-step Attack

Modelling and Simulation1

Attack graphs are an important support for the assessment and subsequent im-
provement of network security. They reveal possible paths an attacker can take
to break through security perimeters and traverse a network to reach valuable
assets deep inside the network. Despite significant progress made in this area,
we identified some gaps that motivates our solution requirements, described in
Section 4.2 on page 70, and summarized next.

R1 The solution should permit full representation of the network topology.

R2 The solution should permit the representation of attack dynamics and net-
work dynamics, e.g., involved with the acquisition of credentials.

R3 The solution should allow for reasonable automatic estimation of asset val-
ues, useful for assignment of potential targets.

R4 The solution should allow the investigation of hypotheses, via what-if sce-
narios.

R5 The solution should provide automatic estimation of expected cost of an
attack step.

As seen in the previous chapter, we take the approach that finding network
attacks is an optimization problem. Additionally, we also realize that there are
different types of multi-step attacks, as seen in Chapter 3, and they may involve
not only sequence of steps but also parallel steps or even synchronization of attack
steps. As a consequence, we need to use formalisms not only able to represent
single attack steps which can be composed into multi-step attacks, but also able
to represent concurrency. Although the formalism used in ELAS (Evolutionary
Learning of Attack Scenarios) allows the automatic manipulation of attack steps
by heuristic methods, and allows for various types of single step compositions,

1Early versions of this chapter have been published at SAC’09 [73], ARES’09 [76], and as a
technical report [72].

119

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

it has drawbacks. The ELAS formalism does neither provide means to express
nesting or hierarchy of entities, nor provides meanings for expressing mobility.
Furthermore, it is very limited in the entities that can be used to represent a
network. Besides, in the ELAS approach, asset values to determine targets and
a measure of cost for attack steps are considered given. Therefore, ELAS does
not meet the solution requirements we pursue and that are listed above.

In this chapter we describe an improved approach to find multi-step attacks
in a modelled network. We formalize attack steps based on concepts of Mobile
Ambients, incorporated in our proof-of-concept MsAMS (Multi-step Attack Mod-
elling and Simulation) tool. In summary, the main components of our solution
are Mobile Ambients (MA) and Combinatorial Optimization applied to the do-
main of multi-step network attacks. The former is used (i) to model a network,
(ii) to model attackers, and (iii) to allow composition of attack steps. The latter
is used to search, actually composing attack steps, allowed by the modelled net-
work. Additionally, and in support to these two aspects, we use algorithms from
the domain of Link Analysis Ranking2 to rank ambients, providing metrics used
in the search process, and to determine targets.

More specifically, in this chapter, we introduce the syntax of MsAMS and its
informal semantics through a series of definitions and examples. Furthermore,
we introduce the method followed by the MsAMS approach, and details reflected
in its proof-of-concept tool. Appendix A formalizes the reduction rules and rules
of structural congruence used by MsAMS.

7.1 Proposed Solution

As seen above, we address the requirements described in Section 4.2 with MsAMS,
an approach for modelling and simulation of network attacks, the design of which
draws heavily on Cardelli and Gordon’s work on Mobile Ambients (MA) [35, 33],
some of its variants i.e. Safe Ambients [124] and Boxed Ambients [29] and some
of its applications i.e. formal biology [34, 176]. Specifically, we address R1, R2

and R4 by applying the concept of Mobile Ambients and Combinatorial Opti-
mization techniques to the domain of network attacks, and R3 and R5 with Link
Analysis Ranking algorithms, namely Google’s PageRank [27] and Kleinberg’s
HITS (Hypertext Induced Topic Search) [116].

We have chosen Ambients because they allow the representation of a network
as a graph of nested nodes. They also allow the representation of a variety of
resources, such as firewalls, hosts, services, vulnerabilities, attackers, and creden-
tials. This way, we are able to fully represent the topology of a network since
hierarchy and grouping are intrinsic to Mobile Ambients. Ambients have capabil-
ities which allow them to move. Furthermore, ambients can interact with other
ambients depending on their capabilities. These two features, and additional ca-
pabilities specific to the domain of multi-step attacks, allow the representation of

2This field of research deals with the ranking of search results using the link structure of
web pages.

120

7.1. PROPOSED SOLUTION

attack dynamics.

Finally, and in support to these two basic ingredients (Mobile Ambients
and Optimization techniques), we replace the notion of financially-based as-
set value (refer to Section 3.4 on page 61), manually computed, by the no-
tion of connectivity-based asset value, automatically computed by the algorithm
HITS. This allows the network administrator to have an absolute and comparable
view of asset value, where higher values indicate potential targets for attackers.
PageRank provides another view of asset values that may support the adminis-
trator in determining targets as well. Additionally, HITS provides metrics used
as a measure of cost of an attack step useful for the selection among alternatives.
Recall that, because the gain from an attack and the cost of an attack as per-
ceived by attackers is not available for defenders, we assume that asset value of
targets and cost of an attack step, as perceived by defenders, is an approximation
that allows defenders to gain awareness about the risk of attacks (as discussed in
Section 3.4 on page 61). Defenders in this case are represented by the stakeholder
“network administrator” that has full knowledge about the network, i.e. its topol-
ogy, and authentication methods used. The ultimate goal of the administrator
is to improve security of the network and to do that she can take advantage of
the output of the MsAMS approach (via its proof-of-concept tool), i.e. possible
attacks and the scores it produces.

7.1.1 Comparison between ELAS and MsAMS

The following table compares the approach presented in the previous chapter, i.e.
ELAS, the approach presented in Chapter 6, and the one presented in this chap-
ter, i.e. MsAMS. The comparison takes into account the six essential elements
found in any optimization problems, listed at the beginning of Chapter 6.

121

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

ELAS MsAMS
• solution representation inspired by
Hoare’s Communicating Sequential
Processes [96]; an atomic solution is
an arc

• solution representation inspired by
Cardelli and Gordon’s Mobile Am-
bients [35]; an atomic solution is an
ambient action

• edition operations (described in
Section 6.2.3) to evolve an initial
atomic solution into a multi-step at-
tack; editions evolve a solution in
terms of attack scenarios

• reduction rules involving ambient-
attacker actions and ambients’ ac-
tions from the network; reductions
necessarily evolve a solution step-
by-step

• fitness function based on asset
value (added value of a solution tail
set) and cost to traverse arcs (cost
based on security level of protocols),
both assumed given

• fitness function based on scores
returned by HITS algorithm calcu-
lated for each ambient; asset value
used to determine targets based
on the connectivity of the network
(Link Analysis Ranking algorithms)

• stopping criterion based on added
value of a solution tail set, above a
threshold

• stopping criterion based on tar-
gets selected from scores returned by
Link Analysis Ranking algorithms

• starting nodes are given probable
locations of attackers

• starting point is the location of the
ambient-attacker

• search performed by an evolution-
ary algorithm based on pools of so-
lutions; can perform forward and
backward; search evolves a popula-
tion of solutions

• search performed by an algorithm
adapted from the original idea of
pools; can perform forward, back-
ward and credential search; search
evolves one solution at a time

7.2 Running Example

As the basis for introducing core concepts and the method followed by MsAMS,
we use the network illustrated in Figure 7.1 adapted from Ingols et al. [105], and
used as example by other Attack Graph researchers (e.g. [180]).

A EDCB F

Allow C > E
Allow D > E

Figure 7.1: An example network, adapted from Ingols et al. [105]

In this example network the attacker is initially located in host A and wants
to reach either host E or F which are protected by a firewall. The firewall only
allows traffic from host C or D to host E. Additionally, all hosts have a remote-to-

122

7.3. MODELLING A NETWORK

admin vulnerability in the single service they provide. As seen in Chapter 5, such
vulnerabilities are remotely exploitable and their successful exploitation allow an
attacker to gain full access to the data and resources of the host, potentially
causing a complete impact on its confidentiality (C), integrity (I) and availability
(A).

7.3 Modelling a Network

The term modelling is overloaded and may have different meanings depending on
the purpose and domain it relates to. In the field of engineering, a distinction
is made between to-build and as-built models. To-build models involve technical
drawings, such as structural design and architectural plans, of something one
would like to build. The builder then executes the building process from scratch
guided by these drawings. As-built models, in contrast, usually involve 3D CAD
(Computer-Aided Design) models [92] of something one would like to adapt,
restore, or assess [117]. Instead of representing an artifact as it should be built, it
represents the artifact as it actually is which, most of the times, does not match
exactly with the way it has been designed.

In the field of Computer Science (CS), prescriptive models, i.e. to-build mod-
els, have received most of the attention of the research community [31]. For exam-
ple, they are the focus of “Formal Methods”, such as Petri Nets [215], CSP [95],
CCS [140]3 and many others, including Mobile Ambients [35]. They aim spe-
cially at the design, and analysis of systems or protocols not yet deployed. On
the contrary, descriptive models, i.e. as-built models of existing systems, remain
a research challenge in CS, as pointed by Calder [31]. However, complex and
evolving systems are becoming more and more common. As-built models have
to be as close as possible to actual systems in production to be useful. This way,
results from analysis and reasoning on the model have higher chance to be valid
and accurate on the systems they reflect in reality. Networks are overly complex,
and the live analysis of their behavior in terms of the many facets of security,
can overload the network itself. A live assessment of a network against possible
multi-step attacks, e.g., typically requires data collectors spread over network
segments or individual hosts and a central data analyzer, such as it happens with
commercial product Skybox [197] (refer to Chapter 2). A less disruptive option
is to use an as-built model of the network and perform analysis offline; this is the
approach we take in MsAMS.

7.4 Overview of MsAMS

MsAMS uses an as-built model of the network to simulate the dynamics of possible
attacks allowed by the network modelled, i.e. by the specified network ambients
and their capabilities. Therefore, MsAMS produces, as output, a specification

3CSP: Communicating Sequential Processes; CCS: Calculus of Communicating Systems.

123

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

for an ambient-attacker that represents a multi-step attack. It is important to
keep in mind that MsAMS supports the defender, i.e. the network administrator
who assumes that the real attacker has a strategy (e.g. best cost-benefit from the
attack) which allows him to anticipate attacks performed by a simulated attacker
(an ambient-attacker).

In this thesis, it is assumed that the network administrator models the network
by gathering information from the various sources, listed below. However, it is
possible to import these input to specify the model automatically; this will remain
as future work.

1. the network configuration, including filtering rules from firewalls, and ser-
vices running in each host, which can be obtained from firewall rule sets
and security scanners like NMAP [154]

2. vulnerabilities in COTS present in the network, which can be obtained
automatically from vulnerability scanning tools e.g. Nessus [149]

3. vulnerabilities attributes, in the format access-to-impact, which can be
obtained from vulnerability databases such as the National Vulnerability
Database (NVD) [161], as seen in Chapter 5

4. authentication methods (e.g. Kerberos [200]) used by network services and
credentials involved in an abstract level; this information is useful to assess
potential attacks that involve credential theft

7.5 Method followed by MsAMS

The method followed by MsAMS is illustrated in Figure 7.2, and is composed of
three visible stages (highlighted in the figure): (i) modelling of the network, (ii)
ranking, and (iii) simulation of ambient-attackers, and one internal stage that
feeds the stages of ranking and simulation.

In the stage “Modelling of the network” a model of the network as Ambients
is produced using the input mentioned in previous section. The specification of
the model uses an adapted MA-like notation and allows representing ambients
nesting, i.e their locality, and capabilities of ambients. This stage is described in
Section 7.6.

The stage “Processing of Virtual Links” uses the model of the network, output
from the previous stage, and computes links between pair of ambients. This stage
is described in Section 7.8, and the links generated feed the next two stages.

The stage “Ranking of Network Ambients” uses the complete set of links from
the previous stage arranged in a matrix, and computes ranks. These ranks are
useful for determining potential targets and for providing metrics which guide
the next stage. Ranking is explained in Section 7.9.

124

7.6. MODELLING WITH MSAMS

Network

Model as

Ambients

Network

Model as

Ambients

Cost

Metrics
Connectivity−based

Asset Values

and Metrics

Target

for Search

Complete set

Modelling of the Network

Simulation of

Ambient−Attackers

Ranking of Network Ambients

Processing of Virtual Links

and attributes

VulnerabilitiesNetwork

Configuration
(Credentials)

methods

Authentication

of Links

Subset

of Links
2

3

1

4

Multi−step

Attacks

Ambient−attacker

Initial Location

Figure 7.2: Method followed by the MsAMS approach, reflected in its proof-of-
concept tool

The stage “Simulation of Ambient-Attackers” uses a subset of links produced
by the processing of virtual links stage (stage 2)4, a target and metrics from the
previous stage (stage 3), and the network model from the modelling stage (stage
1), to simulate attacks which allow an ambient-attacker to reach a target from
an initial location. This stage is described in Section 7.7.

We proceed describing the first and last stages, i.e. Modelling and Simulation
in the next two sections before describing the other stages related to links and
ranking.

7.6 Modelling with MsAMS

MsAMS uses concepts and a notation inspired on ambient calculus [35]. Central
to MA is the concept of Ambient which can be viewed as a place with a perimeter,
or a closed box, explicitly enabling the distinction of what is inside from what is
outside it. Ambients can be nested and are places where computation happens,
i.e. processes run. Also central to MA is the notion of movement which allows
ambients to enter other ambients, i.e. allows the interaction between ambients.

To represent MsAMS conceptual models, we have developed a variant of the
MA original syntax that is less concise and, therefore, in our opinion, more read-
able. Moreover, the original syntax has been adapted to the domain of multi-step

4We will see later on in this chapter that the complete set of links are derived from Accept
and In ambients actions, and the subset of links are only the Accept links.

125

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

network attacks. Hence, new operators were introduced to facilitate modelling in
this domain, in a similar way as Regev et al. [176] adapted MA to the domain
of formal biology. We present its syntax and informal semantics (i.e. intended
meaning of this variant in terms of attacks) in this chapter, and its reduction rules
and rules of structural congruence in Appendix A, where we also discuss some
basic differences between our variant of MA and Cardelli and Gordon’s ambient
calculus.

In MsAMS, a network is represented as an Ambient which contains other
Ambients, e.g., hosts, subnets and firewalls, which recursively may contain other
Ambients. Therefore, a subnet is an ambient that contains several other ambients
representing hosts. A firewall is an ambient that protects ambients contained
inside it by filtering interaction between outside and inside ambients. A host is
an ambient that contains e.g. services, Operating Systems5, and vulnerabilities.

This nesting of ambients in the running example is illustrated in Figures 7.3(a)
and 7.3(b). Figure 7.3(a) shows ambient net, containing five ambients A ,B, C,
D and FW , which represent hosts A to D and firewall FW , respectively. The
firewall is an ambient containing hosts E and F . Figure 7.3(b) provides a zoom
view of host A, which contains three ambients representing a service sv A, a
vulnerability v A, and the host Operating System OS A. Since all the other
hosts are identical to host A in this example, their content is similar to the one
represented in this figure.

B D E FA C

FW

net

(a) The example network

v_A

OS_A

sv_A

A

(b) Zoom in host A

Figure 7.3: Modelling the example network as Ambients

So far we have seen that a network is a nesting of ambients, and that ambients
can represent networks, hosts, firewalls, services, vulnerabilities, and OS6. Now we
introduce some concepts and syntax that will allow us to specify, i.e. to model,
a network in the notation used by MsAMS. We also introduce the concept of
Locality Tree, the structure that actually represents the hierarchy of a network,
as illustrated in Figures 7.3(a) and 7.3(b).

An ambient has a name, and may contain processes running inside it. Each
process can itself be an ambient (i.e. a sub-ambient), an action-rule which pro-
vides capabilities to the ambient, can be inactive, or a replicate. This is reflected

5We view Operating System as an abstraction of the kernel and services of Operating Systems
like Windows and Linux; via an OS one can access the data and resources of a host.

6Operating System

126

7.6. MODELLING WITH MSAMS

in the following syntax definitions.

Definition 15 (An Ambient.) An ambient is a term x[Px], where x is the
name that uniquely identifies the ambient, and Px is a possibly empty composition
of parallel processes7; the composition of two parallel processes P and Q being
denoted P |Q.

Definition 16 (A Process.) A process is one of:
• an ambient
• an inactive process8, denoted 0
• Replicate(x), where x is a process (see Definition 27)
• an action rule

Definition 17 (An Action Rule.) An action rule is either:
• sequential composition of an action A and an action rule R, denoted A.R (see
Definition 30)
• an action

Note that in MsAMS, parallel composition is more restricted compared to
the original Mobile Ambients [35]: parallel composition only appears within an
ambient, not for arbitrary processes. This is sufficient in the domain of network
attacks.

Definition 18 (An Action.) An action is one of:
• Enter n (synchronized entry in ambient n)
• Accept n (synchronized accept from ambient n)
• AllowIn n m (allowed interaction from ambient n to ambient m)
• DenyUp n (denied interaction from ambient n)
• Out n (synchronized issue of requests to ambient n)
• In n (synchronized answer of requests from ambient n)
• AcquireCred (synchronized acquisition of credential)
• ReleaseCred c (synchronized release of credential represented by ambient c)

The actions Enter and Accept are useful to represent synchronous movement,
AllowIn and DenyUp are useful to represent filtering, Out and In are useful to rep-
resent synchronous communication, and AcquireCred and ReleaseCred are useful
to represent synchronous acquisition of credentials. These actions are defined
more precisely along this section and are defined formally in terms of reduction
rules in Appendix A.

Now, we assume the background of Graph Theory, as presented in [19], and
from there we borrow the concepts of rooted tree (which we call simply tree),
node, parent of a node, and children of a node.

7An ambient with no processes running inside it is denoted x[λ]; for convenience simplified
to x[].

8an inactive process is a process composed of no other ambients and no action-rules

127

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

Definition 19 (A Place Graph.) A Place Graph associated with a set of am-
bients is a forest of labelled rooted trees, whose nodes are labelled by ambient
names, and x is the parent of y if and only if x is the name of an ambient x[Px]
and y is an ambient in Px.

The concept of Place Graph is borrowed from Milner’s pure bigraphs [141]. In
this thesis, however, we deal only with networks whose place graphs have only one
tree. As such we simplify the concept of Place Graph to the concept of Locality
Tree.

Definition 20 (A Locality Tree.) The Locality Tree associated with a network
is identified with the only tree in its Place Graph.

Definition 21 (Concept of Ancestor.) Given a model of a network n, x is
an ancestor of y in n if and only if x is either parent of y or x is the parent of z
and z is an ancestor of y in the locality tree associated with n.

Definition 22 (Concept of Inside and Outside.) An ambient y is inside an
ambient x if, and only if, x is an ancestor of y. Otherwise, y is outside x.

The locality tree for the running example network viewed as ambients (Fig-
ure 7.3) is illustrated in Figure 7.4.

With some concepts and MsAMS syntax in mind, we start the specification
of the running example network.

Example 5 The network of the running example is represented by the following
ambient term9:

net[A|B|C|D|FW]

The ambient which represents the network is called net and it contains five
processes running in parallel inside it: A, B, C, D and FW . Each of these
processes is an ambient (sub-ambient of net), and represents either a host or a
firewall. The processes contained on each of these sub-ambients are specified in
separate lines because it would become unreadable to specify them all at once.
However, a prerequisite for their specification is the action AllowIn, introduced
next.

Definition 23 (Action AllowIn.) An ambient x[Px], where Px contains an
action AllowIn n y, allows interactions, i.e., movement, communication, or ac-
quisition of credentials from any ambient (n′ inside) n10 to any ambient (y′ in-
side) y. These interactions are only allowed if, and only if, ambient y is inside x
and ambient n is outside x.

9In MsAMS, ambient names can contain letters a-z (either in upper or lower case), digits
0-9, and characters and $. However, an ambient name cannot start with a digit. Terms Enter,
Accept, AllowIn, DenyUp, Out, In, AcquireCred, ReleaseCred and Replicate (either in upper or
lower case, or mixed) are reserved and cannot be used as ambient names.

10We have chosen to simplify “n or any other ambient n′ inside n” by “(n′ inside) n” to
facilitate readability. We keep this simplified format for the remaining definitions of actions.

128

7.6. MODELLING WITH MSAMS

n
e
t

a

b
c

d

fw
sv
_a

o
s_
a

v
_a

sv
_b

o
s_
b

v
_b

sv
_c

o
s_
c

v
_c

sv
_d

o
s_
d

v
_d

e
f

sv
_e

o
s_
e

v
_e

sv
_f

o
s_
f

v
_f

Figure 7.4: The running example locality tree

129

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

Example 6 Hosts A, B, C and D from Example 5 are defined in ambient terms
as follows:

A[sv_A|v_A|OS_A|AllowIn net v_A]

B[sv_B|v_B|OS_B|AllowIn net v_B]

C[sv_C|v_C|OS_C|AllowIn net v_C]

D[sv_D|v_D|OS_D|AllowIn net v_D]

The ambient which represents host A contains four processes running in par-
allel in it: three of them are ambients (sub-ambients of A) namely sv A, v A, and
OS A, and one is an action AllowIn net v A. This action defines a capability
that ambient A has. In this case, it is if host A had a kind of “hole” on its
perimeter letting ambients from within the ambient net to access, i.e. exploit,
vulnerability v A. Recap that, as defined in Chapter 2, vulnerabilities allow di-
rect access to protected data, i.e. they represent opportunities for attackers to
enter a host despite protections it may have.

Example 6 shows that hosts B to D also have “holes” giving access to vulnera-
bilities. In MsMAS semantics, it is assumed that, on the one hand, all interactions
from ambients outside to ambients inside an ambient are by default denied, that
is why AllowIn is required to determine what is allowed inside an ambient. On
the other hand, all interactions from ambients inside to ambients outside an am-
bient are by default allowed; we use another action (DenyUp) to block it, when
appropriated.

Definition 24 (Action DenyUp.) An ambient x[Px], where Px contains an
action DenyUp y, denies interactions from (y′ inside) y to any ambient outside
x. These interactions are denied if, and only if, ambient y is inside x.

The actions AllowIn and DenyUp are used to model firewall rules. In the
running example, however, only the former action is used as shown in Example 7.

Example 7 The firewall FW and hosts E and F of the running example are
specified in the following ambient terms:

FW[E|F|AllowIn sv_C E|AllowIn sv_D E]

E[sv_E|v_E|OS_E|AllowIn net v_E]

F[sv_F|v_F|OS_F|AllowIn net v_F]

This example shows that the ambient FW has four processes running in it:
two ambients representing hosts E and F (similar to hosts A-D in Example 6),
and two actions AllowIn. These actions restrict interactions originated from
ambients outside FW to ambient inside it, allowing only interaction coming either
from the services in C (sv C) or D (sv D) to host E. Therefore, without the
firewall FW , hosts E and F would be accessible to the whole network, i.e. from
any ambient located inside the ambient net.

Service is regarded in a broad sense in MsAMS. Thus, not only services pro-
vided by server software listening on a network, such as HTTP services, file

130

7.6. MODELLING WITH MSAMS

services or mail services, but also client applications, such as browsers or login
interfaces, are also considered services.

We have seen in Example 6 and 7 that hosts A-F contain vulnerabilities that
are remotely exploitable. To specify access required to exploit them we use action
Accept, defined next.

Definition 25 (Action Accept.) An ambient x[Px], where Px contains an ac-
tion Accept y and ambient y is outside x, accepts that (y′ inside) y enters x.

The action Accept introduces the concept of movement. In MsAMS, move-
ment (and communication) like in Safe Ambients [124], Boxed Ambients [29] and
in BioAmbient [176], is synchronous. It means that a movement only happens
if both parties (ambients) agree on it. Let’s illustrate this movement concept
with an example. One can issue a Secure Shell (SSH) request but the connection
will only be established if the SSH server running on the other end accepts this
entry request. When this happens, it works as if this someone has actually moved
from the ambient where the entry request has been issued to the ambient which
accepted the request. Similarly, a connection is not established by just having an
“accept request” ready, if there are no entry requests been issued. For movement,
Enter and Accept must synchronize. As we have seen in the Web server example
in Section 3.2 on page 47, the same happens when an attacker gains remote access
to a host inside a network via a remotely accessible vulnerability; it works as if the
attacker actually moved into the network. Figure 7.5(a) illustrates exactly this.
In terms of ambients, if an ambient-attacker, inside ambient n (e.g. n represents
the internet), issues an Enter y (where y is e.g. a host), it will only move if (i)
all barriers on the way to reach y allow it, and if ambient y accepts (i.e. agrees)
with the movement. The situation after-movement is illustrated in Figure 7.5(b),
and is obtained via a reduction rule11. The details of such movement reduction is
presented in Appendix A, more specifically in Section A.2.1. An ambient moves
as a whole, therefore, it carries all the processes running inside it, and can later
perform further actions according to its capabilities after the move is complete.
For completeness, we define action Enter next.

Definition 26 (Action Enter.) An ambient x[Px], where Px contains an ac-
tion Enter y and ambient y is outside x, has the capability to enter y.

Example 8 The vulnerabilities present in the hosts of the running example are
specified in the following ambient rules:

v_A[Accept net]

v_B[Accept net]

v_C[Accept net]

v_D[Accept net]

v_E[Accept net]

v_F[Accept net]

11A reduction rule P → Q describes the evolution of process P into a new process Q [35].

131

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

z[AllowIn n y]

y[Accept n]

t[Enter y]

(t is inside n)

(a) Before-movement of ambient attacker

z[AllowIn n y]

y[]

t[]

(b) After-movement of ambient attacker

Figure 7.5: Illustration of synchronous, inter-ambient movement

These vulnerabilities are exploitable remotely, i.e. from any ambient within
net. Since in the running example the attacker launching pad is host A, there
is no need to represent the Internet containing the network net. Therefore, the
concept of remote in this case extends to the network net itself. Note that in
fact, although vulnerabilities v E and v F can be exploited from hosts A-D, as
shown in the example, the firewall restricts this possibility to hosts C and D.

As seen in Chapter 5, we model vulnerabilities not only in terms of the access
required for their exploitation, but also in terms of their resulting impact. Since
all vulnerabilities in the running example are of the type remote-to-admin (refer
to the description of the running example in Section 7.2), they result potentially
in complete impact on the confidentiality, integrity and availability (C I A) of
the hosts containing them. It means that an attacker can enter the OS of these
hosts acquiring access to the host data and resources.

Example 9 The service and OS of each host allows the representation of com-
plete impact on C I A in ambient terms as:

sv_A[Accept v_A]

OS_A[Accept sv_A]

... specification of sv and OS for hosts B, C, D, and E

sv_F[Accept v_F]

OS_F[Accept sv_F]

These rules mean that through the exploitation of v A (e.g. an ambient
attacker located in net can enter in v A since v A[Accept net]), the ambient OS
can be entered, i.e. it is possible for the attacker to gain full access to OS A
via the vulnerable service sv A. This is possible since the vulnerable service
accepts the vulnerability sv A[Accept v A] and the OS accepts the vulnerable
service OS A[Accept sv A]. The fact that an attacker can enter the OS is an
abstract representation of potential complete impact on the host C I A. Since all
vulnerabilities are of the same type, v B to v F are modelled the same way as
v A.

The remaining actions In, Out, AcquireCred and ReleaseCred are defined in
Sections 7.8 and 7.10.2, respectively.

132

7.6. MODELLING WITH MSAMS

Up to now, we modelled the network of the running example in terms of
nesting and capabilities of each ambient involved. However, we omitted two
details. First, the complete specification of the running example contains the
process Replicate to represent iteration, defined as follows.

Definition 27 (Replication Process.) The replication process produces one
replica of a process Px, and is denoted Replicate(Px), structurally congruent to
Px|Replicate(Px).

The replicate is used, in this thesis, to guarantee that process Px is not con-
sumed after reduced, i.e. after it is executed. For example, after a vulnerability
is exploited it can, in principle, be exploited again. Refer to Section A.3 in
Appendix A for the equivalent congruence rule that apply to Replicate.

Second, the outermost ambient of a network is indicated with the reserved
term network, as defined next.

Definition 28 (A Complete Network Specification.) A complete network
specification is a network root definition followed by a sequence of ambient
specifications.

A network root definition is expressed using the syntax: network root-
Name, where rootName is the name of an ambient that is the root of the net-
work and network is a reserved term.
A sequence of ambient specifications is an ambient specification or an
ambient specification followed by a sequence of ambient specifications,
where an ambient specification is an ambient definition compliant with Defi-
nition 15.

The following constraints apply to a complete network specification:
• any ambient in the network specification is inside the ambient that is the root
of the network
• each ambient name occurring in the network specification has an unique ambi-
ent specification
• an ambient can be a process of only one ambient in the network specification

Example 10 The complete specification of the running example in ambient terms
is:

network net

net[A|B|C|D|FW]

FW[E|F|AllowIn sv_C E|AllowIn sv_D E]

A[sv_A|v_A|OS_A|AllowIn net v_A]

v_A[Replicate(Accept net)]

sv_A[Replicate(Accept v_A)]

OS_A[Replicate(Accept sv_A)]

... specification of hosts B, C, D, and E

133

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

F[sv_F|v_F|OS_F|AllowIn net v_F]

v_F[Replicate(Accept net)]

sv_F[Replicate(Accept v_F)]

OS_F[Replicate(Accept sv_F)]

The specification of hosts B-E have been omitted on the example because, as
we have seen along this section, they are similar to the specification of hosts A
and F .

7.7 Simulation of Attackers

So far, we have fully specified the running example network, but we have not
specified any attacker. In fact, an attacker is also represented as an Ambient,
called ambient-attacker, and its specification is the output the defender, i.e. the
network administrator, is looking for. The specification of an ambient-attacker
is a process that shows a possible multi-step attack. This process is obtained
via simulation, in the sense that, given the information available to the defender,
i.e. the network model, the calculated scores, a supposed initial location for the
ambient-attacker and a potential target, it uses a real-attacker strategy to search
for steps which compose a multi-step attack, output of MsAMS. Therefore, an
ambient-attacker has a particularity: its process is initially unknown (the opposite
to what happens with the network ambients) and it has to be computed; its final
process is an attack trace.

Definition 29 (An Attack Trace.) An attack trace is a composition of pro-
cesses Patt of an ambient-attacker att that allows att to move via successive
reductions from its initial location in ambient y, inside ambient x (root of the
network, Definition 28), to a target location represented by ambient z, also inside
x. Process Patt becomes fully known when the target is reached.

What the search basically does is to find, according to the current location
of ambient-attacker, which alternative steps, also called candidate steps, better
fit a real-attacker strategy. For now we assume that there is always one best
alternative to be chosen, we come back to this aspect later in this section. In the
ambient calculus and also in the variant we use, to take a step is to reduce two
action terms, and so the search process consists of testing which action pairs can
reduce successfully, and selecting the most promising pair of all pairs that can
reduce successfully. The search engine considers options for moving an ambient
(the attacker) from one location to another, starting in a given source and ending
in the target. As such, to find a next ambient the ambient-attacker could move to,
the search engine considers, based on its current location, the following aspects:

1. which actions the ambient-attacker could really perform, according to the
network locality tree and the actions Accept and AllowIn on the network;
possible kind of actions for an ambient-attacker are Enter and AcquireCred
(this latter is introduced in Section 7.10.2)

134

7.7. SIMULATION OF ATTACKERS

2. which pair of actions can reduce successfully. Note that reductions do not
actually need to be performed, it is enough to verify if they are possible,
according to the reduction rules described in Appendix A

3. which steps represent the best cost-benefit for the ambient-attacker by
means of HITS hub scores

We now explain the search process described above using the running example
as illustration.

When the running example was introduced in Section 7.2, it was given that
the attacker was supposedly located initially in host A. Therefore, we assume for
the effect of simulation that the ambient-attacker is actually initially located in
service sv A. This fact is reflected in the specification of this service12 and as
such sv A is actually seen as:

sv_A[att|Replicate(Accept v_A)]

In the end of the search, we will see that att is defined as:
att[Enter v D.Enter sv D.Enter v E.Enter sv E]; this can be explained as
follows.

The possible actions that ambient-attacker att can potentially perform are
either invest further in host A or find other vulnerabilities accessible from host
A. What determines possible actions is the existence of links (see Definition 33)
between ambientes derived from ambients capabilities. Assume for now that
there is a link sv A → OS A and a link between sv A and the vulnerabilities;
the processing of links will be described later in Section 7.8.

Hence, the following actions are possible from sv A:

(i) Enter OS A

(ii) Enter v B

(iii) Enter v C

(iv) Enter v D

(v) Enter v E

(vi) Enter v F

(vii) Enter v A

Possibilities (v) and (vi) cannot reduce successfully because the firewall FW
blocks the path between host A and host E and F (refer to Definition 43 on
Appendix A; in this case there is no “pathTo” from sv A to v E and v F).
Furthermore, possibility (vii) is discarded because it would represent a cycle
v A → sv A → v A. The reader can find more on this aspect in Section 7.11.
Thus, the feasible candidate steps are (i)-(iv), as we will see next.

12Refer to the specification of sv A in Example 10.

135

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

net

B C D FW

E F

A

v_E

OS_Asv_Av_A

sv_E OS_E

Figure 7.6: The arrows indicate possible directions the ambient-attacker can take
from its initial location in sv A

As an illustration, let’s consider the possibility (i) and see the successful re-
duction sv A|OS A next.

sv_A[att[Enter OS_A]|Replicate(Accept v_A)]|

OS_A[Replicate(Accept sv_A)]

According to the structural congruence that applies to the replication process
(Definition 27), the above specification of ambient OS A is structurally congruent
to the following specification of ambient OS A.

sv_A[att[Enter OS_A]|Replicate(Accept v_A)]|

OS_A[Accept sv_A|Replicate(Accept sv_A)]

In sv A, there is a Replicate in Accept v A to represent that even when re-
duced, this service remains vulnerable, i.e. accepting interactions with ambients
coming from v A; an ambient entering v A means that the vulnerability is ex-
ploited. This only stops when the vulnerability is removed, e.g., via patching.
The replicate in OS A has similar intent, and without it, the process Accept sv A
would disappear with a successful reduction, as shown next.

The reduction between Enter OS A and Accept sv A results in:

sv_A[Replicate(Accept v_A)]|

OS_A[att|Replicate(Accept sv_A)]

As stated in the previous section, reductions do not actually happen since it
is enough that the search engine checks if they are feasible. Therefore, we have
seen how the possible action (i) Enter OS A is really confirmed as a candidate
step.

Next, we illustrate why the action (iv) can also be considered as candidate
step by examining the successful reduction between sv A|v D.

sv_A[att[Enter v_D]|Replicate(Accept v_A)]

v_D[Replicate(Accept net)]

136

7.7. SIMULATION OF ATTACKERS

Per the structural congruence that applies to replication (Definition 27), the
above ambientes in fact are:

sv_A[att[Enter v_D]|Replicate(Accept v_A)]

v_D[Accept net|Replicate(Accept net)]

The reduction between Enter v D and Accept net is possible because if the
vulnerability accepts net, it accepts any ambient contained within net. The
reduction results in:

sv_A[Replicate(Accept v_A)]

v_D[att|Replicate(Accept net)]

In a similar way actions (ii) Enter v B, (iii) Enter v C are analyzed, and
these are confirmed as candidate steps for the ambient-attacker att.

However, even when feasible it may be advantageous for the ambient-attacker
to take a certain step rather than another, because of its strategy. Therefore,
the search engine checks whether the target has been reached. If not, it selects
the candidates with the highest hub scores among all the candidates; refer to
Section 7.9 for an explanation about how hub scores are calculated using HITS
algorithm, and to Section 7.11 for an explanation about the search itself.

The search engine uses hub scores returned by HITS to select the most promis-
ing actions. Eventually, it also uses HITS authority scores depending on the
fitness function selected, as mentioned further ahead in this section. PageRank
scores and HITS authority scores are useful to provide insights about possible
targets. The one using the MsAMS tool, a network administrator, has to select
(i.e. to name) a target to execute the search, as we have seen in the previous sec-
tion, and to do that scores calculated either by PageRank and by HITS can be of
value to show, e.g., unexpected targets. Therefore, for the running example, the
options for target are sv E or sv F (both with HITS authority score 0.06617166,
see Table 7.2). In fact, these targets allow entering OS E and OS F which have
authority score slightly lower (0.06523421), and could be regarded at first glance
as more natural targets. However, the way to reach the OS is via the service in
hosts E and F , therefore, it is understandable that the primary target are the
services. We consider sv E as the target unless otherwise stated. In this case,
the search shall continue since none of the candidate steps, i.e. actions (i)-(iv)
above, reach the target sv E.

In terms of hubs, OS A has score 0.010745351 and all vulnerabilities v B, v C
and v D have score 0.18099977. Therefore, exploiting vulnerabilities in other
hosts is more advantageous for the ambient-attacker than investing on further
compromise of host A. Among the vulnerabilities themselves there is appar-
ently no real difference (i.e. they are equally feasible and represent the same
cost-benefit for the ambient-attacker). However, by looking one step ahead, it
becomes evident that vulnerabilities v C and v D are more promising than v B
because they permit crossing the firewall, where it is more likely that targets are
located. HITS scores make this look-ahead feasible, because of a mutual relation-
ship between hubs and authorities (see Section 7.9.3). Nevertheless, there is still

137

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

net

B C D FW

E F

OS_A

OS_E

A

sv_A

v_E sv_E

v_A

TARGET

Figure 7.7: The arrows indicate possible directions an attacker can take from
host D until the target sv E is reached

a draw between v C and v D, hence the choice among them is non-deterministic.
The search, as explained in Section 7.11, can either select the next candidate for
a move based on the hubbiest-node fitness function or based on the look-ahead
fitness function.

Let’s suppose that the candidate step chosen is Enter sv D (remember that
each selection must be allowed by reduction and that each selection is recorded
in a trace). In this case, it opens up new opportunities to the ambient-attacker
since from hosts C or D it is possible to traverse the firewall and reach host E
where the target sv E is, as illustrated in Figure 7.7.

By repeating the computation above, the following trace representing the
process which allows the ambient-ambient att initially located in ambient sv A
to reach the target, ambient sv E.

Enter v_D.Enter sv_D.Enter v_E.Enter sv_E

This process shows the possible attack ADE for the ambient-attacker att; it
represents, in this case, a sequential composition of actions. The search could
return only this possible attack, representing the best-cost benefit attack, or all
possible attacks, i.e. several possible processes for the ambient-attacker att.

Definition 30 (Sequential Composition.) A sequential composition of actions
A and B, denoted A.B, establishes that A is executed first and then, when com-
pleted, B is executed13.

Note that internally the MsAMS implementation uses a hierarchical nam-
ing convention, a DNS-like (Domain Name System) approach to name ambients.
However, in the Internet the namespace follows a descending hierarchy of admin-
istrative domains (separated by dot) from right-to-left, e.g. in is.ewi.utwente.nl

13In MA, this composite is called path [33].

138

7.8. PROCESSING VIRTUAL LINKS

nl is a top-level domain, and is is a low-level domain. In the expanded name
of an ambient, we have the opposite, i.e. a descending order of hierarchy from
left-to-right (separated by $), e.g. netFWEv E. Therefore, this expanded
naming scheme indicates if a firewall is traversed, which allows us to relate the
output path to the actual network path. Another interesting point of this naming
convention is the reuse of ambient specification, discussed in Chapter 8.

Now that we have an overview about how MsAMS works and about its output,
the next sections aim to fill the gaps left as assumptions in this section.

7.8 Processing Virtual Links

Virtual links define the connectivity of the network in terms of possible movement
and communication.

In the previous section we have seen that the possible actions (i.e. steps)
the ambient-attacker can take from its current location are determined by the
existence of links between ambients. For example, ambient OS A is specified as
OS A[Accept sv A] meaning that it accepts the service sv A and any of its sub-
ambients. If an ambient-attacker enters sv A it potentially can enter OS A by
issuing an Enter OS A. Thus, there is in fact a link sv A → OS A. The same
way, there is a link between sv A → v B because v B is a remotely exploitable
vulnerability and, therefore, accepts the network v B[Accept net]. However, there
is no link between s A and v E because the firewall does not allow it, as we will
see below.

For now, it is important to understand that not only the action Accept es-
tablishes links but also the action In, defined next. The reason being that both
increase the importance (i.e. authority) of an ambient, as we discuss in Sec-
tion 7.9.1.

Definition 31 (Action In.) An ambient x[Px], where Px contains an action
In y and ambient y is outside x, is able to answer requests issued by (y′ inside)
y.

For completeness, we introduce the counterpart of action In, i.e. action Out.

Definition 32 (Action Out.) An ambient x[Px], where Px contains an action
Out y and ambient y is outside x, is able to issue requests to y.

A reduction between actions In and Out allows communication between ambi-
ents. The details of such reduction is presented in Section A.2.2 on Appendix A.

A virtual link is defined as follows.

Definition 33 (Concept of Link.) There is a link from ambient x[Px] to am-
bient y[Py] if and only if Py contains an action Accept z or In z, such that
ambient x is inside ambient z, and pathTo(z,y) is True (Definition 43 in Ap-
pendix A).

139

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

Intuitively, a pathTo letting ambient x into ambient y is a path that would
allow x to exit from ambient z to the Least Common Ancestor of x and y (defined
next) and let it enter through successive firewalls into y.

Definition 34 (Concept of Least Common Ancestor.) The Least Common
Ancestor of ambients x and y, denoted lca(x, y), is an ambient z such that:
• z is ancestor of both x and y, and
• for any other ambient z′, such that z′ is ancestor of both x and y, then z′ is
ancestor of z

Example 11 Considering the running example locality tree illustrated in Fig-
ure 7.4, we have the following lca:

lca(sv E, F)⇒ FW

lca(v A,OS A)⇒ A

lca(sv B, net)⇒ net

As already mentioned, a link from ambient x to ambient y is created if x
can actually move into y or communicate with y. Let’s take as an example the
firewall FW . Although v E accepts net, meaning that potentially any ambient
located inside net can reach v E, the firewall restricts this possibility to ambients
coming from hosts C or D. Hence, we have in fact two virtual links sv C → v E
and sv D → v E.

The computation of links is performed according to the simplified pseudocode
procedure, presented in Figure 7.8, and the output of this computation is:

(i) A set of links derived from actions Accept and In, used to generate an
adjacency matrix of network links L where Lij is one, if there is a link from
ambient i to ambient j, where j ∈ [1, n] and n is the number of ambients
modelled, and zero, otherwise. This n× n matrix is sparse since not every
ambient links to every other ambient. More about these links is discussed
in Section 7.9.1.

(ii) A table of Accept links derived only from action Accept. This table is used
to search for attacks as explained in Section 7.11. We assume that, in terms
of search, entering ambients made feasible by Accept actions represent an
attack step while answering requests made feasible by In actions do not
represent an attack step.

7.9 Computing Ranks using the Matrix of Network
Links

As mentioned before, we borrow from Link Analysis Ranking, more specifically
from HITS (Hypertext Induced Topic Search) algorithm [116] and PageRank [27],

140

7.9. COMPUTING RANKS USING THE MATRIX OF NETWORK LINKS

computeLinks(ambients)

FOR all pairs of ambients x,y:

L[x,y] = 0

FOR each ambient y[Py]:

FOR each (Accept x) or (In x) in Py:

FOR each z[Pz] inside x:

IF there is a pathTo from z to y

L[z,y] = 1

Figure 7.8: Simplified pseudocode of the computation of links algorithm; refer to
Appendix A for definition of pathTo (Definition 43, in Appendix A)

for two tasks which support the simulation of attacks, already discussed in Sec-
tion 7.7:

1. To assign asset value automatically to all ambients represented in the net-
work, based on network connectivity rather than on financial value, provid-
ing an absolute and comparable view of asset value. Those values support
the network administrator using the MsAMS tool in the process of selecting
a target

2. To assign a cost measure automatically to all ambients represented in the
network, also based on network connectivity rather than on financial value,
providing an absolute and comparable view of cost for attack steps. Such
a measure of cost allows the incorporation of rationality to the ambient-
attacker which simulates a strategy of a real-attacker; in the case of cost-
benefit strategy, preference can be given for alternative attack steps either
that represent lower cost (i.e. the hubbiest ambients among alternatives)
or that represent lower cost looking at one step ahead (i.e. the authoritiest
ambients among one-step-ahead alternatives).

More details about HITS and PageRank can be found in Sections 7.9.3 and 7.9.2,
respectively.

7.9.1 Notions of Inlink, Outlink & Importance in Ambients

In the World-Wide-Web domain, the structure of webpages represents a graph
where each node is a webpage, and a direct arc between webpages 1 and 2 means
that webpage 1 contains a hyperlink to webpage 2, as illustrated in Figure 7.9.
In this figure, webpage 2 has 2 inlinks and 3 outlinks.

Borrowed from social network analysis [190], the underlying assumptions of
Link Analysis Ranking algorithms, such as PageRank and HITS, are related to
the notion of importance or authority :

1. The more citations, i.e. inlinks, a webpage has, the more important (au-
thoritative) it becomes.

141

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

5

6

1

4

2

3

Figure 7.9: Webpages hyperlink structure represented on a graph

2. A citation from an important webpage, i.e. with a high rank, has more
weight than a citation from a non-important webpage, i.e. with a lower
rank. It means that ranks propagate authority from one webpage to an-
other. Note that inlinks and outlinks are regarded differently by HITS and
PageRank, as we will see in the next sections. As a consequence, the list of
resulting top authority webpages they produce are different. For example,
the search “automobile makers” with HITS, using search engine Ask.com,
results in the actual car manufacturers websites (e.g. Honda, Ford, Toyota)
as authorities, while the same search with Google.com lists Automotive
Makers in the Yahoo! Directory webpage, Wikipedia automotive indus-
try page, and Automobile Manufacturers Index by IndexOfTheWeb.com as
the top most authoritative webpages14. How inlinks (and outlinks) affect
PageRank and HITS scores is not a trivial problem, and has motivated
many studies (e.g. [13, 216]).

The notions of inlink, outlink and importance are also present in the domain of
network attacks. As we have seen in Section 7.8, actions Accept and In determine
network virtual links:

• An ambient m specified as m[In n] answers requests from any ambient
inside n. Therefore, there is an inlink from n to m, i.e., m has an inlink
from n and n has an outlink to m. In fact, there is an inlink from any
ambient x inside n to m. The more ambients are served by m, the more it
becomes important.

• An ambient m specified as m[Accept n] allows ambients x inside n (or n
as a whole) to move to m potentially having access to its content. Similar
to the previous case, there is an inlink from any ambient x inside n to m.
The more ambients can move to m, the more it gains importance. Actually,
although In and Accept contribute to the importance of an ambient, the
latter is much more dangerous than the former from the point of view of
attacks.

14These searches were performed in May 2009.

142

7.9. COMPUTING RANKS USING THE MATRIX OF NETWORK LINKS

v_E

sv_C

OS_F

v_A

v_B

v_C

sv_E

OS_E

sv_D

sv_F

v_F

v_F

sv_E

v_D

Figure 7.10: Inlinks and outlinks for v E from the running example ambient

For the purpose of illustration, we show in Figure 7.10 inlinks and outlinks for
ambient sv F of the running example, specified in Section 7.6. They have been
processed according to the procedure described in Section 7.8.

Recall that v E[Accept net], therefore, in this case we only have inlinks and
outlinks derived from the action Accept. Therefore, the figure shows inlinks al-
lowed from firewall FW , i.e. sv C → v E and sv D → v E, and inlinks from
within the firewall, i.e. sv E → v E, OS E → v E, OS F → v E, sv F → v E
and v F → v E. The same way, the figure also shows outlinks to ambients inside
the firewall. i.e. v E → v F and v E → sv E, and outlinks to ambients located
outside the firewall, i.e. v E → v A, v E → v B, v E → v C, and v E → v D.

It is important to keep in mind that HITS scores are the ones used in the
process of searching for attacks. PageRank scores are used to provide a different
perspective on authorities which might be useful for the network administrator
in the process of selecting a target, required for simulation of attacks, as seen in
Section 7.7.

7.9.2 Ranking Scheme from PageRank

PageRank is a ranking algorithm developed by Brin and Page [27]. It is the basis
of Google search engine, the best known search engine nowadays. As already
mentioned in Section 7.9.1, we use HITS as our main source of scores to search
for attacks, and to select targets based on its authority scores as a measure of asset
value. PageRank scores provide a different perspective of authorities (we have
seen that different ranking algorithms provide different results) for the ambients
modelled, which might give the network administrator interesting insights about
possible targets.

PageRank is a measure of importance of webpages which allows comparing
and, therefore, ranking them in decreasing order. As we have seen by the first
underlying assumption of Link Analysis Ranking algorithms, mentioned in the
previous section, the PageRank value π of a webpage depends on the π of its
inlinks. If we consider the small webgraph from Figure 7.9, the π of webpage P2

143

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

is given by:

π(P2) =
π(P1)
|OUTP1 |

+
π(P3)
|OUTP3 |

, where |OUTPj | is the number of outlinks of Pj

The formula complies with the second underlying assumption mentioned above
since π(P1) is directly proportional to π(P2) and π(P3). Therefore, webpages P1

and P3 propagate importance to webpage P2, and P2 depends not only on the
number of its inlinks but also on their importance. It also shows that each term
π(Pj)
|OUTPj

| is affected by the number of outlinks of webpage Pj . Hence, the more
outlinks a webpage has, the more diluted is the amount of importance that it
propagates to each webpage it points to. The formula also shows for Figure 7.9
that π(P5) depends on π(P2) which depends on π(P1) which depends on the π of
its inlinks and so on, turning this formula unfeasible to be resolved. To overcome
this problem, Brin and Page proposed to calculate π in iterations. Basically, ini-
tially all webpages have π equal to 1

n , where n is the total number of webpages
indexed by Google, and each iteration k + 1 depends on the values obtained on
the previous iteration k, as shown in the following formula [120]:

πk+1(Pi) =
∑

Pj∈INPi

πk(Pj)
|OUTPj

|
,

�� ��7.1

where INPi is the set of inlinks of Pi and
|OUTPj | is the number of outlinks of Pj

After a number of iterations, the π for all webpages converge and become
stable. It is important to notice that even for a matrix with billions of nodes, the
PageRank algorithm tends to converge in less than a hundred iterations [120].

The summation Equation 7.1 is resolved efficiently via power method [120,
Chapter 4]. Brin and Page made adjustments to the matrix used to compute a
vector of π from a matrix akin to the matrix of network links L (described in
Section 7.8) to a matrix G described next.

Therefore, similar to a webpage, the π of an ambient Ambi is proportional to
the sum of π values of its inlinking ambients Ambj . The ~π is obtained through
Equation 7.2.

~π(k+1)T = ~π(k)TG, where G = αH + (α~a+ (1− α)~e)1/n ~eT
�� ��7.2

Thus, matrix G is computed by means of the sparse matrix |n| × |n| of links
H where Hij is 1

|Ambi| if there is a link from ambient i to ambient j and zero,
otherwise. Note that matrix H has the same structure as matrix L (as seen
above), but non-zero values are different; in L non-zero elements are ones, while
in H non-zero elements are 1

|Ambi| . The parameter α ∈ [0, 1] is the damping
factor, which conveys the idea of random walk. The damping factor α for an
ambient-based graph still represents this notion but it is constrained by ambients

144

7.9. COMPUTING RANKS USING THE MATRIX OF NETWORK LINKS

capabilities. Thus, the attacker follows the flow of forward links with priority α
and can jump to a random, but still feasible, ambient with priority 1−α. Vector
~a contains one if ambient i is a dangling node, i.e. if it contains no outlinks,
and zero otherwise. It corrects dangling ambients (nodes) by giving 1

|n| equal
probability that any ambient is selected from them. Vector ~e is a column vector
of ones, ~eT is the transpose of vector e, n is the number of ambients while πT is
a row vector containing the PageRank scores, after convergence.

The PageRank vector for the running example (Section 7.6) is obtained after
12 iterations (α = 0.85), and is shown in Table 7.1. The highest scores returned by
PageRank in this case are the vulnerabilities in hosts A-D (0.11489447). Roughly
they have the better rate inlinks

outlinks , however this analysis is not trivial because of
the propagation of importance mentioned above. Therefore, PageRanks showed
disappointing in providing insights about targets for the running example, instead
they showed top priority vulnerabilities to patch with the highest scores, an also
interesting insight for the network administrator. This will also be observed in
examples in Chapter 8.

7.9.3 Ranking Scheme from HITS

Hyperlink Induced Topic Search (HITS) is a ranking algorithm developed by
Kleinberg [116]. It is the basis of Teoma search engine (by IBM), now incorpo-
rated to Ask.com (www.ask.com) search engine.

Although HITS also complies with both underlying assumptions of Link Anal-
ysis Ranking algorithms mentioned in Section 7.9.1, it treats outlinks differently.
Instead of diluting authority, outlinks produce a completely separate score. As
already mentioned in Section 7.9, HITS produces two types of score: authority
and hub. Webpages with high authority score are important webpages deter-
mined by their number of inlinks, and webpages with high hub score are web-
pages that contain hyperlink to authorities, i.e. determined by their number of
outlinks. Therefore, here again there is a kind of propagation reinforcing a mu-
tual relationship between authorities and hubs, i.e. “good” hubs point to “good”
authorities, and “good” authorities are pointed by “good” hubs, as illustrated
in Figure 7.11. It is exactly this feature of HITS that is appealing for finding
attacks as an optimization problem because, in principle, giving preference to
the hubbiest ambients in the neighborhood will represent a better cost-benefit to
attackers since these ambients will lead to the highest authorities.

The word topic in Hyperlink Induced Topic Search (HITS) indicates another
difference between PageRank and HITS. While the former only produces π values
relative to the entire universe of webpages indexed, the latter can produce scores
relative to a specific topic. Therefore, HITS is called query-dependent since from
a set of hints (i.e. keywords) provided by a user, HITS selects a sub-graph in
their neighborhood and produces scores, i.e. search results, relative to it.

Authority ~xk and hub ~yk scores are calculated with Equations 7.3 and 7.4,
respectively, where IN is the set of inlinks of ambient Ambi, OUT is the set of
outlinks of Ambi, and k is the iteration counter.

145

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

ambient pagerank value
net 0.018867925
A 0.018867925
sv A 0.03610209
v A 0.11489447
OS A 0.023200173
B 0.018867925
sv B 0.03610209
v B 0.11489447
OS B 0.023200173
C 0.018867925
sv C 0.03610209
v C 0.11489447
OS C 0.022478132
D 0.018867925
sv D 0.03610209
v D 0.11489447
OS D 0.022478132
FW 0.018867925
E 0.018867925
sv E 0.022579204
v E 0.03711272
OS E 0.02080329
F 0.018867925
sv F 0.021922804
v F 0.030548707
OS F 0.020747026

Table 7.1: Scores produced by PageRank for the running example (α = 0.85)

~xk(Ambi) =
∑

Ambj∈INAmbi

~y(k−1)(Ambj)
�� ��7.3

~yk(Ambi) =
∑

Ambj∈OUTAmbi

~xk(Ambj)
�� ��7.4

The summation Equations 7.3 and 7.4 are resolved efficiently by means of
power method [120, Chapter 11] applied to the matrix resulting from the mul-
tiplication of matrix L and its transpose LT : LTL (called authority matrix) or
LLT (called hub matrix). In this thesis we use the independent query HITS in-
troduced in [120]. Authority scores are obtained resolving Equation 7.5 and hub
scores are obtained resolving Equation 7.6, where L is the matrix of zeros and

146

7.9. COMPUTING RANKS USING THE MATRIX OF NETWORK LINKS

H

A

H: Hub

A: Authority

Figure 7.11: Mutual relationship between authorities and hubs in HITS (adapted
from [120, Figure 3.3])

ones containing the virtual links between every pair of ambients Ambi and Ambj ,
as described in Section 7.8.

~xk = ξLTL~xk−1 +
(1− ξ)
en

�� ��7.5

~yk = ξLLT~yk−1 +
(1− ξ)
en

�� ��7.6

In Equations 7.5 and 7.6, ξ ∈ [0, 1] is a parameter equivalent to the damping
factor in PageRank (i.e. a probability to not follow direct links), e is a column
vector of ones, and n is the number of nodes in the graph. Note that ~x0 and
~y0 are initialized with 1

n . The standard query-dependent HITS authority vector
is obtained by the equation ~xk = LTL~xk−1 and the hub vector by the equation
~yk = LLT~yk−1.

The scores produced by HITS for the running example are shown in Table 7.2.
The scores converged after 9 iterations with ξ = 0.85. This table shows that the
hubbiest ambients are the vulnerabilities in hosts A-D (0.18099977), represent-
ing the lower cost alternatives for the ambient-attacker. Interesting to see that
the highest hubs from HITS match with the highest PageRank scores for this
example. These vulnerabilities allow access to the authoritiest ambients which
are the services, specially sv E and sv F (0.06617166), therefore, they represent
targets. These results illustrate the underlying assumption of HITS that “good
hubs point to good authorities”, since vulnerabilities (high hubs) point to services
(high authorities).

In Table 7.2 we observe that the authority scores of ambient net and ambients
A-F appear as zero. In fact, those values are extremely low, so low that the
precision of output used by the HITS implementation in MsAMS tool was not
enough to make them visible. Those values are low because virtual links do not
point directly to hosts since they do not contain Accept or In actions, but rather
point to assets in the host, e.g., to services. In reality also host boxes per se are
not assets, however, the services they provide, and the data they contain might
be.

147

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

ambient authority score hub score
net 0.0 3.6234493e-4
A 0.0 3.6234493e-4
sv A 0.055106666 0.008150898
v A 0.04133 0.18099977
OS A 0.054325968 0.010745351
B 0.0 3.6234493e-4
sv B 0.055106666 0.008150898
v B 0.04133 0.18099977
OS B 0.054325968 0.010745351
C 0.0 3.6234493e-4
sv C 0.06153637 0.008150898
v C 0.04133 0.18099977
OS C 0.054325968 0.011959211
D 0.0 3.6234493e-4
sv D 0.06153637 0.008150898
v D 0.04133 0.18099977
OS D 0.054325968 0.011959211
FW 0.0 3.6234493e-4
E 0.0 3.6234493e-4
sv E 0.06617166 0.011621917
v E 0.059741955 0.084683895
OS E 0.06523421 0.012835776
F 0.0 3.6234493e-4
sv F 0.06617166 0.011959211
v F 0.06153637 0.061152868
OS F 0.06523421 0.012835776

Table 7.2: Authority and hub scores produced by HITS for the running example
(ξ = 0.85)

7.10 Further Modelling

In this section, the modelling of vulnerabilities, services and protocols is fur-
ther discussed in Section 7.10.1. Besides, the modelling of credentials and the
dynamics involved in their acquisition is introduced in Section 7.10.2.

7.10.1 Modelling Vulnerabilities, Services and Protocols

7.10.1.1 Vulnerabilities

As seen in Chapter 5, we model a vulnerability in terms of access required for its
exploitation and impact that potentially results from its successful exploitation.

148

7.10. FURTHER MODELLING

In the modelling of the running example, in Section 7.6, we have discussed the
modelling of vulnerabilities which require remote access and result in complete
impact on the C I A15 of the vulnerable host16. It is important to keep in mind
that we use the abstraction of entering a vulnerability ambient to represent the
exploitation of a vulnerability in reality. In this section, we present the modelling
of different types of vulnerabilities based on the access-to-impact paradigm.

We assume in this thesis that a list of vulnerabilities present in the services
running on each host17 of the network is available to the network administra-
tor because this list can be obtained from vulnerability scanning tools such as
Nessus [149].

Example 12 A vulnerability v which requires remote access to be exploited is
specified in ambient terms as follows, where net is the root of the network.

v[Accept net]

Example 13 A vulnerability v which requires local access to be exploited is spec-
ified in ambient terms as follows, where x is an ambient representing a host.

v[Accept x]

In the running example we represented complete impact of the vulnerabilities
using the following modelling construct:

Example 14 A vulnerability remotely exploitable which results in complete im-
pact on the host C I A has been modelled for the running example (see Example 10)
in ambient terms as follows.

h[v|s|OS|AllowIn net v]

v[Accept net]

s[Accept v]

OS[Accept s]

This modelling indicates that the service s is vulnerable because it accepts
the vulnerability v and any ambient inside v. Hence, by entering v, an ambient-
attacker can ultimately enter the OS acquiring privileged and unrestricted access
to data and resources (e.g. programs) of the host. In this section we show the
comparative modelling of 4 types of vulnerabilities which we encountered in our
analysis of the NVD, reported in Chapter 5. To do so, we revisit our modelling
of complete C I A impact shown in the example above and used to model the
vulnerabilities of the running example.

From the NVD analysis we derived the following impact-based classification
of vulnerabilities (refer to Chapter 5) that can result from their successful ex-
ploitation.

15confidentiality, integrity and availability
16This type of vulnerability is also called remote-to-admin.
17Recall from Section 7.6 that we have a broad view of services which includes not only server

software listening on a network but also client applications, such as browsers or login interfaces.

149

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

1. complete-CIA: vulnerabilities in this class result in complete C I A impact on a
host; it means that the successful exploitation of a vulnerability of this type allows
an attacker to acquire privileged and unrestricted access to data and resources
(e.g. programs) of the host. Therefore, the attacker can read and write OS data
(e.g. modify configurations) and user-level data, or can execute privileged OS
programs (e.g. installation commands) and user-level programs.

2. partial-CIA: vulnerabilities in this class result in partial C I A impact on a host;
it means that the successful exploitation of a vulnerability of this type allows an
attacker to acquire non-privileged and restricted access to data and resources (e.g.
programs) of the host. Therefore, the attacker can read and write user-level data,
or can execute user-level non-privileged programs.

3. only-C: vulnerabilities in this class result in impact restricted to the confiden-
tiality of data contained in a host; it means that the successful exploitation of a
vulnerability of this type allows an attacker to acquire the ability to read data,
but not to write. Therefore, the attacker gains restricted access to data and no
ability to execute programs.

4. only-I: vulnerabilities in this class result in impact restricted to the integrity of
data contained in a host; it means that the successful exploitation of a vulnera-
bility of this type allows an attacker to acquire the ability to read and write data.
Therefore, the attacker gains unrestricted access to data and no ability to execute
programs.

5. only-A: vulnerabilities in this class result in impact restricted to the availability
of the host; it means that the successful exploitation of a vulnerability of this
type allows an attacker to make this host unavailable.

To make the difference between vulnerability types 1-4 instead of simply using
ambient OS, as in the running example, we use two ambients: DT representing
generically data (OS data and user-level data) and PR representing generically
the ability to execute programs (OS programs and user-level programs). The
distinction between restricted and unrestricted is made using actions Accept and
In, respectively. Table 7.3 provides an overview of these types of vulnerability
against their modelling.

Vulnerability
Type

Data DT Programs PR
restricted unrestricted restricted unrestricted

complete-CIA X X
partial-CIA X X
only-C X
only-I X

Table 7.3: Schematic overview of types of vulnerabilities against modelling ab-
straction

Example 15 A vulnerability remotely exploitable which results in complete im-
pact on the host C I A is modelled in ambient terms as follows.

150

7.10. FURTHER MODELLING

h[v|s|DT|PR|AllowIn net v]

v[Accept net]

s[Accept v]

DT[Accept s]

PR[Accept s]

In this example the vulnerable service s provides unrestricted access to data
and execution of programs represented by the Accept s.

Example 16 A vulnerability remotely exploitable which results in partial impact
on the host C I A is modelled in ambient terms as follows.

h[v|s|DT|PR|AllowIn net v]

v[Accept net]

s[Accept v]

DT[In s]

PR[In s]

In this example the vulnerable service s provides restricted access to data and
execution of programs represented by In s.

Example 17 A vulnerability remotely exploitable which results in impact on the
host confidentiality is modelled in ambient terms as follows.

h[v|s|DT|PR|AllowIn net v]

v[Accept net]

s[Accept v]

DT[In s]

PR[]

In this example the vulnerable service s provides restricted access to data and
no execution of programs represented by DT [In s] and PR[]18, respectively.

Example 18 A vulnerability remotely exploitable which results in impact on the
host integrity is modelled in ambient terms as follows.

h[v|s|DT|PR|AllowIn net v]

v[Accept net]

s[Accept v]

DT[Accept s]

PR[]

In this example the vulnerable service s provides unrestricted access to data
and no execution of programs represented by DT [Accept s].

Note that either with restricted or unrestricted access to data and programs
encapsulated by a host OS, we assume that the attacker can proceed with an
attack, i.e. it is not required that an ambient-attacker reaches (enters) the host
OS before it can move to another host. The reason is that entering the vulnerable

18It means that ambient PR has no processes running inside it (according to Definition 15).

151

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

service s can be enough to allow the attacker e.g. to acquire a credential, as we will
see in Section 7.10.2. We only make the distinction among the above mentioned
different types of vulnerabilities using ambients DT and PR when necessary,
otherwise we use ambient OS.

The last type of vulnerabilities listed earlier which result in only-A (only
availability) impact cannot be modelled by the current version of MsAMS. It
would require changes such as the introduction of action “open” or dynamics
of the network itself. However, the open action, e.g., has security implications
discussed in Section 7.13.1. Therefore, this will remain as future work discussed
in Chapter 10.

7.10.1.2 Services and Protocols

In contrast with the vulnerable services presented for the running example, let’s
now consider a host h with a non-vulnerable service s.

Example 19 A non-vulnerable service is typically modelled in ambient terms as
follows.

h[s|DT|PR|AllowIn net s]

s[In net]

DT[In s]

PR[In s]

or simply

h[s|OS|AllowIn net s]

s[In net]

OS[In s]

Two other entities, mentioned in requirement R1 (Chapter 4), are TCP/UDP
ports and protocols. Let’s consider an example Web server WS. It provides
http service (http s) listening on port TCP/80. This service answers requests
that comply with the HTTP protocol, and the WS Operating System answers
requests coming from the service.

Example 20 Web server WS is modelled in ambient terms as follows.

WS[http_s|HTTP|OS|AllowIn internet HTTP]

HTTP[Accept internet]

http_s[In HTTP]

OS[In http_s]

This example specification shows the normal behavior of a WS with action
AllowIn representing, in this case, the TCP/80 port. This port allows access
to ambient http s through the ambient HTTP; it means that the service only
recognizes requests coming from HTTP ambient.

Let’s now assume that the WS is vulnerable, i.e. it contains vulnerability
CVE-2008-3257 as described in Chapter 3. In fact, the http service is vulnerable

152

7.10. FURTHER MODELLING

and accepts specially crafted HTTP requests coming from the Internet that may
give root access to data and resources encapsulated by the OS for a remote
attacker.

Example 21 A Web server WS with a vulnerable http service may be modelled
as follows.

WS[http_s|HTTP|OS|v|AllowIn internet HTTP]

HTTP[Accept internet]

v[Accept HTTP]

http_s[Accept v]

OS[Accept http_s]

This example specification shows service http s as vulnerable since it accepts
vulnerability v. A specially crafted HTTP request, entry point to the host via port
TCP/80, may allow an ambient-attacker to enter vulnerability v representing its
exploitation and, via the service, to enter the OS. This is represented by the fact
that the OS ambient not only answers requests from the service but also accepts
entry from ambient http s or from ambients within http s. This level of details,
however, obfuscates the fact that vulnerability v represents an “open door” to
the host since it is remotely accessible, similar to vulnerabilities in the running
example and in some examples in Section 7.10.1.1. Furthermore, it increases the
number of ambients without adding any real benefit to the model. Therefore,
although it is possible to represent protocols as shown, it is our choice not to do
so in the remaining models presented in this thesis.

The examples presented in this section can be viewed as building blocks that
may guide the network administrator when modelling a network.

7.10.2 Modelling Credentials

In the modelling of the running example (Section 7.6), we have seen that all
hosts contained vulnerable services not protected by credentials19. In fact, these
services could even be protected by credentials because a vulnerability, as defined
in Chapter 2, circumvents protections such as credentials. Therefore, in both
cases (service protected or not by credentials), there is no real need to represent
credentials explicitly because what counts in the end is the fact that services are
vulnerable. Figure 7.12 illustrates this distinction between services vulnerable
or non-vulnerable and protected or not-protected, and shows the focus of the
Attack Graph community which typically uncovers attacks represented by chains
of vulnerabilities, although some approaches (mentioned in Section 2.2.3.6 on
page 36) consider the case where to exploit a vulnerability a credential is required.
We assume that credentials may be require to access services, and not to exploit
vulnerabilities.

19A credential is anything used for authentication such as a password, a private session key,
a passphrase, etc.

153

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

protected
by credential by credential

not protected

non

vulnerable

SERVICE

no

compromise

vulnerable

theft or

via vulnerability

in credential

compromise

via credential

A
tt

ac
k
 G

ra
p
h

compromise

via vulnerability

in service

Figure 7.12: Compromise according to service

Figure 7.12 also illustrates at the bottom left corner the case of non-vulnerable
and protected by credentials services. In this case, compromise can happen either
via credential theft or via a vulnerability of the credential itself, such as a vul-
nerability in the SHA (Secure Hash Algorithm) used to encrypt the credential.
Credential theft occurs when the credential required by a service is stolen from
elsewhere, and used to impersonate a legitimate user of that service. A typical
authentication used by services to verify users identity involves two parties: the
client/user (wants to use the service) and the server/service itself. For example,
a user located in host h1 who wants to use a SSH (Secure Shell) service to access
another host h2 is required to provide a password to do so. If this password
is acquired by an attacker by any means (e.g. via social engineering, password
guessing, password cracking) she can use it to authenticate to the non-vulnerable
host h2 via SSH.

In MsAMS, we are able to model the elements necessary to represent authen-
tication, and consequently find attacks involving credential theft. These basic
elements are:

1. credentials themselves

2. services protected by credentials: they require a specific credential and
accept requests coming from a specific location; e.g. to access the file service
of the university, a user needs to be located inside the university network
and present a credential (e.g. username and password)

3. mechanism to release credentials: this is a capability of some ambients with
either legitimate purpose, such as the case of a kerberos, or illegitimate
purpose, such as an exposure. An exposure represents an abstraction of
several methods that result in the disclosure of credentials, e.g. disclos-
ing credentials saved locally by authentication agents, stealing, guessing,

154

7.10. FURTHER MODELLING

and replacing or inserting methods, social engineering, etc, mentioned in
Section 3.2.1 on page 47

4. mechanism to acquire credentials: this is a capability that allows legitimate
users or attackers to acquire a credential released from other ambients

5. mechanism to show knowledge of credentials: it is via this capability that
non-vulnerable services protected by credential can be reached

In MsAMS, a credential is an ambient as well, and there are two actions
ReleaseCred and AcquireCred, defined as follows, that provide ambients with
the capabilities to release and acquire credentials.

Definition 35 (Action AcquireCred.) An ambient x[Px], where Px contains
an action AcquireCred is able to acquire non-deterministically a credential when
it enters into another ambient that releases credentials, i.e. an ambient with a
ReleaseCred action.

Definition 36 (Action ReleaseCred.) An ambient x[Px], where Px contains
an action ReleaseCred c and ambient c is inside x, is able to release credential
c to an ambient with an AcquireCred capability that enters in x.

The result of the match between AcquireCred and ReleaseCred is regulated
by a reduction rule described in Section A.2.3 on Appendix A.

Example 22 Authentication can be represented as follows, where host h1 con-
tains a vulnerable service s1 (remotely exploitable) and an exposure exp which
releases credential pw2; and host h2 contains a non-vulnerable service s2 pro-
tected by pw2.

h1[exp|pw1|v|s1|AllowIn net pw1|AllowIn net v]

pw1[Accept net]

v[Accept net]

s1[Accept pw1|Accept v]

exp[Accept s1|ReleaseCred pw2]

h2[pw2|s2|AllowIn net pw2]

pw2[Accept net]

s2[Accept pw2]

Host h1 can be entered either with an Enter pw1 or with an Enter v. In the
former case, the attacker trace would be:
Enter pw1.Enter s1.Enter exp.AcquireCred
and as a result the attacker would gain capability Enter pw2. In the latter case,
the attacker trace would be:
Enter v.Enter s1.Enter exp.AcquireCred
and the result would be the same, i.e. the ambient-attacker acquires the capability
to enter pw2. When arriving at host h2, the attacker has to show credential pw2.

155

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

If the attacker has it already, i.e. has an Enter pw2 acquired somewhere, e.g.
via host h1 as shown, then the trace after h2 becomes:
Enter pw1.Enter s1.Enter exp.AcquireCred.Enter pw2.Enter s2
If not, the attacker (mimicking a real-life attacker) will try to find pw2 in the
ambients she can reach in the network.

An ambient representing a credential is distinguished from any other ambient
by means of input. This distinction is really important at simulation time. As
described in Section 7.7, the ambient-attacker “gains” enter actions which are
possible from its current location. However, the attacker can never “gain” an
enter action to a credential ambient because this capability needs to be acquired.

Let’s see the dynamics of the example 22 scenario in terms of reduction rules:

• Ambient-attacker att arrives at host h2 and cannot enter it because it lacks
an Enter pw2, and pw2 is an ambient which represents a credential. There-
fore, ambient-attacker has to acquire credential pw2.

• To acquire credential pw2 ambient attacker has to initiate a new search for
an ambient which releases pw2; more about this new search in Section 7.11.

• Ambient-attacker arrives at host h1 and has no capability to Enter pw1
(remember the search engine knows that pw1 represents a credential). How-
ever, h1 can also be entered via vulnerability v, and therefore the following
reductions are possible:

att[Enter v] reduces with v[Accept net]

att[Enter s1] reduces with s[Accept v]

att[Enter exp] reduces with exp[Accept s1]

att[AcquireCred] reduces with exp[ReleaseCred pw2]

resulting in att[Replicate(Enter pw2)]

The trace of search for credential pw2:
Enter v.Enter s1.Enter exp.AcquireCred

• After the ambient-attacker acquired the capability to enter pw2, the initial
search can be resumed. The following reductions are possible at this point:

att[Enter pw2] reduces with pw2[Accept net]

att[Enter s2] reduces with s2[Accept pw2]

Trace of resumed initial search where target is s2:
Enter pw2.Enter s2

A modified version of the running example, presented in Section 7.2, is shown
in Example 23. Now, host C is used to administer host E, therefore, only the
specification of those two hosts are different compared to the original running
example. Hosts C and E contain services protected by credentials, i.e. pass-
words pw C and pw E respectively; pw C can be used to either access service
sv C and to access service sv E (e.g. suppose that sv E is a SSH). However,

156

7.10. FURTHER MODELLING

while host C remains vulnerable since it contains vulnerability v C, host E is no
longer vulnerable. It means that access to sv E is only possible via pw C or via
pw E. Although sv C requires password pw C, it also accepts vulnerability v C,
meaning that the exploitation of this vulnerability allows access to this service
without credentials. As a consequence, it potentially allows access to OS C and
to the exposure exp which releases password pw C. As explained above, enter-
ing this exposure allows an ambient-attacker to acquire pw C, giving it further
possibilities to enter in sv E.

Example 23 The modified running example with credentials is specified in am-
bient terms as:

network net

net[A|B|C|D|FW]

FW[E|F|AllowIn sv_C E|AllowIn sv_D E]

A[sv_A|OS_A|v_A|AllowIn net v_A]

v_A[Accept net]

sv_A[Accept v_A]

OS_A[Accept sv_A]

B[sv_B|OS_B|v_B|AllowIn net v_B]

v_B[Accept net]

sv_B[Accept v_B]

OS_B[Accept sv_B]

C[sv_C|OS_C|v_C|pw_C|exp|AllowIn net pw_C|AllowIn net v_C]

pw_C[Accept net]

v_C[Accept net]

sv_C[Accept pw_C|Accept v_C]

OS_C[Accept sv_C]

exp[Accept sv_C|ReleaseKey pw_C]

D[sv_D|OS_D|v_D|AllowIn net v_D]

v_D[Accept net]

sv_D[Accept v_D]

OS_D[Accept sv_D]

E[sv_E|OS_E|pw_E|AllowIn net pw_E|AllowIn net sv_E]

pw_E[Accept net]

sv_E[Accept pw_E|Accept pw_C]

OS_E[Accept sv_E]

F[sv_F|OS_F|v_F|AllowIn net v_F]

v_F[Accept net]

sv_F[Accept v_F]

OS_F[Accept sv_F]

The trace of the search for credential pw C is:

157

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

Enter v_C.Enter sv_C.Enter exp.AcquireCred

The trace produced by Example 23, considering the target as sv E and the
initial location of the ambient-attacker as sv A is:

Enter pw_C.Enter sv_E

In the next section this type of search involving credential is further explained.

7.11 Search for Attacks

This section describes the types of search available in MsAMS and some aspects
involved in the search process such as avoiding cycles, backtracking, and the
fitness functions that can be used for the selection of the best candidate ambients
to move to.

Definition 37 (Concept of Search Run.) A search run defines a search pool;
it requires the following input.

• The network specification (refer to Section 7.6)

• A table with Accept links (refer to Section 7.8)

• The scores produced by HITS (refer to Section 7.9.3)

• A list of ambients that represent credentials (refer to Section 7.10.2)

• Initial capabilities of the ambient-attacker (refer to Section 7.7)

• A maximum number of cycles

Definition 38 (Concept of Search Pool.) A search pool contains a set of one
or more search tasks ti, i.e. pool = {t0, t1, ...}.

Definition 39 (Concept of Search Task.) A search task ti defines a stack of
goals, i.e. ti = {g0, g1, ...}; it uses the following input.

• A source ambient representing the initial location of the ambient-attacker

• A target ambient representing a final location for the ambient-attacker

• A search type (Definition 42)

• A fitness function (Definition 41)

We give next an example of search task and of search pool, before introducing
the concept of goals.

Example 24 An example search task for the running example is:

158

7.11. SEARCH FOR ATTACKS

task(source=sv_A, target=sv_E, type=forward-search, fitness=look-ahead)

Example 25 An example search pool for the running example is:

task(source=sv_A, target=sv_E, type=forward-search, fitness=hubbiest-node)

task(source=sv_A, target=sv_E, type=forward-search, fitness=look-ahead)

task(source=sv_A, target=sv_E, type=backward-search, fitness=look-ahead)

task(source=sv_A, target=OS_E, type=forward-search, fitness=look-ahead)

Definition 40 (Concept of Search Goal.) A goal g is a tuple p = (V,C,M),
where V is a set of visited ambients V = {v0, v1, ..., vn}, C is the set of neighbors
C = {c0, c1, ...} of vn which defines candidate moves (i.e. vn can successfully
reduce with ci and ci is not stamped), and M is a set of ambients stamped by vn
(the concept of stamp is explained below).

We use a concept of stamp to mark ambients. The last ambient visited in
a goal (Definition 40) stamps the unmarked candidates with its own stamp plus
1. Figure 7.13 shows the progress of the search task from Example 24 for the
running example with stamped ambients. Example 26 illustrates the stack of
paths for this task.

v_B

v_C

OS_A

v_A

v_D

sv_A

v_C

v_A

v_B

v_B

OS_D

v_A

v_C

v_D

sv_E

v_A

v_D

v_F

v_B

v_C

0

1

1

1

1

1

2

1

1

1

sv_D

1

1

1

1

3

3

v_E

1

1

1

1

4

4

TARGET

Figure 7.13: Tree showing a successful search task (according to search task in
Example 24) for the running example with stamped ambients

Example 26 Evolution of the stack of goals for the search task from Example 24,

159

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

illustrated in Figure 7.13 (considering forward-search, see Definition 42).

Goal g0 = (V = {sv A},
C = {OS A, v B, v C, v D, v A},
M = {OS A, v B, v C, v D, v A})

Stack of goals = {g0}
Goal g1 = (V = {sv A, v D},

C = {sv D, v A, v B, v C, v D},
M = {sv D})

Stack of goals = {g0, g1}
Goal g2 = (V = {sv A, v D, sv D},

C = {OS D, v A, v B, v C, v D, v E},
M = {OS D, v E})

Stack of goals = {g0, g1, g2}
Goal g3 = (V = {sv A, v D, sv D, v E},

C = {sv E, v A, v B, v C, v D, v F},
M = {sv E, v F})

Stack of goals = {g0, g1, g2, g3}

This scheme of stamps avoids cycles since the stamp cannot decrease when a
candidate ambient is selected. In combination with a fitness function (see below)
the best candidates are selected.

Definition 41 (Fitness Functions.) The following fitness functions can be se-
lected for a search task:

• hubbiest-node

The candidates with best hub scores are selected from the set C.

• look-ahead

The candidates with best authority scores considering one step ahead in the
search (i.e. the next goal) are selected from the set C.

where:
C is the set of candidates moves from the current visited ambient (refer to Defi-
nition 40).

When the set of candidates C is empty, the search task performs a backtrack.
It involves: unstack goal gn and roll-back the stamps of ambients contained in
set M for goal gn. The top goal in stack becomes goal gn−1.

A search run follows the pseudocode algorithm presented in Figure 7.14.
Search tasks in a pool are executed in a round-robin scheduling fashion. It

means that one move in each task is performed before the next move, in a circular

160

7.11. SEARCH FOR ATTACKS

search(pool,maxCycles)

REPEAT maxCycles

IF pool is empty

% all tasks failed in finding attack

return fail

ELSE

task = round-robin selection from pool

task’ = taskExpand(task)

CASE success task’

% task found attack

return task’

CASE fail task’

% task did not find attack

remove task from pool

CASE wait task’

% a credential is needed to proceed with task

let k = credential that task’ is waiting for

insert task’ in queue for k

CASE task’ found credential k

% task found the credential it was looking for

move tasks from queue for k

give each task the capability ’Replicate(Enter k)’

ELSE

% on-going search

remove task from pool

insert task’ into pool

Figure 7.14: Simplified pseudocode of the search algorithm

way. The task returned when an attack is found (case success task’ in Figure 7.14)
has associated with it the stack of goals. The set V of the goal on the top of
the stack produces the trace of the ambient-attacker according to Definition 29,
when a target is reached.

The taskExpand method is instantiated according to the type of search (see
Definition 42) of the task it receives.

Definition 42 (Types of Search.) A search type can be:

• forward-search

This search uses the table of Accept links derived from actions Accept, as
mentioned in Section 7.8. Therefore, the forward search selects candidate
ambients from the set of outlinks of the ambient where the ambient-attacker
is currently located, starting from the source ambient (i.e. initial location
of ambient-attacker).

• backward-search

161

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

This search also uses the table of Accept links derived from actions Accept,
as mentioned in Section 7.8. However, the backward search selects candidate
ambients from the set of inlinks of the ambient where the ambient-attacker
is currently located, starting from the selected target. Figure 7.15 illustrates
forward and backward searches.

• credential-search

This search has a credential as target, and it can either be initiated man-
ually or automatically. In the former case a task is created as shown in
Example 24. The latter case happens when another task encounters an am-
bient which requires a credential not available for the ambient-attacker. In
fact, this search is a backward search where the target is the ambient that
releases the credential. Figures 7.16a to 7.16c illustrate this case (explained
below).

v_B

v_C

OS_A

v_A

v_D

v_C

v_A

v_B

v_B

OS_D

v_A

v_C

v_D

sv_E

v_D

v_F

v_B

v_C

v_A

sv_D

v_E

TARGET

forward−search backward−search

SOURCE

sv_A

Figure 7.15: Illustration of forward-search and backward-search

Figure 7.16a shows a forward-search with source as ambient A and target as
ambient B. However, when the ambient-attacker gets to ambient X it cannot
progress further because a credential is needed and it has not such capability (i.e.
an enter for this credential). Therefore, another search task is initiated to see
if a real attacker could get hold of such credential from the initial location A.
This new task′ is a backward-search with source as ambient A and target as the
ambient which releases this credential (as part of the processing of links described
in Section 7.8, MsAMS tool makes a map of credentials which are released in the
network specification), as shown in Figure 7.16b. It is important to keep in mind
that the network administrator wants to know if the initial search returns an
attack from A to B. Hence, if task′ returns success, the initial search task can be

162

7.11. SEARCH FOR ATTACKS

TARGET

SOURCE

A

B

task(source=A, target=B, type=forward−search, fitness=look−ahead)

X

requires credential

Figure 7.16a: Ambient-attacker encounters an ambient which requires a credential
it does not have

SOURCE

A

B

task’(source=A, target=ambient which releases pw, type=backward−search, fitness=look−ahead)

X

releases credential

TARGET

Figure 7.16b: Ambient-attacker looks for credential needed

TARGET

SOURCE

A

B

task(source=A, target=B, type=forward−search, fitness=look−ahead)

X

Figure 7.16c: Initial search task resumed

163

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

taskExpand(task)

goal = top of the stack of goals

candidates = set C of nodes not yet visited from goal

IF candidates is empty

backtrack: remove goal from stack

ELSE

nextAmbient = selectBestCandidate(candidates)

goal’ = create new goal with nextAmbient

push goal’ onto stack of goals

Figure 7.17: Simplified pseudocode of the taskExpand method used by the search
algorithm (Figure 7.14)

selectBestCandidate(candidates)

IF target is in candidates

return target

ELSE

CASE fitness function = hubbiest-node

return candidate with best hub among candidates

CASE fitness funtion = look-ahead

compute candidates’ from candidates

return candidate with best authority among candidates’

Figure 7.18: Simplified pseudocode of the selectBestCandidate method used by
taskExpand (Figure 7.17)

resumed, as illustrated in Figure 7.16c. Each task maintains a stack of goals. In a
forward search, e.g., the bottom of the stack contains the source of the attack and
the top of the stack contains the current location of the ambient-attacker. The
task expand method explores a search tree in a depth-first manner. Its simplified
pseudocode is presented in Figure 7.17.

The simplified pseudocode of the selectBestCandidate method used by taskEx-
pand (Figure 7.17) is presented in Figure 7.18

7.12 Summary

We have seen in this chapter the method used by MsAMS. This section provides
a summary parallel between aspects of a real network and how they are modelled
using MsAMS.

164

7.12. SUMMARY

7.12.1 Network topology

Reality MsAMS
• several entities play a role in net-
works, the most important for the
area of attack graphs and to repre-
sent either vulnerable as well as non-
vulnerable hosts are firewalls, sub-
nets (LANs and VLANs), hosts, net-
work services, TCP & UDP ports and
protocols, vulnerabilities, vulnerabil-
ity attributes, attackers, and creden-
tials (listed in R1 on Chapter 4) ap-
pear in networks

• all of these entities can be repre-
sented as ambients

• entities may contain other entities,
e.g. a network contains firewalls,
hosts and subnets; a host contains ser-
vices, vulnerabilities and so on

• ambients may contain or may not
other ambients, recursively; the net-
work Locality Tree represents this
nesting

• a firewall is a network device, im-
plemented via hardware or software,
designed to intercept computer traffic
between security domains

• a firewall is also an ambient as well
as the environments it interfaces

• a firewall filters traffic from one secu-
rity domain to another, permitting or
denying inbound and outbound access
between them

• a firewall filters the interaction be-
tween ambients outside and inside
its protection; by default interactions
from outside to inside is denied and
action AllowIn can be used to explic-
itly specify what is allowed in, and by
default interactions from inside to out-
side is allowed and action DenyUp is
used to explicitly specify what is not
allowed out

7.12.2 Fully connected subnets

Reality MsAMS
• a subnet (e.g. LAN, VLAN) is a
logical group of hosts; hosts within a
subnet are fully connected since there
is no filtering between them

• a subnet is an ambient contain-
ing other ambients representing hosts;
connectivity among hosts is not visu-
ally represented, connectivity is com-
puted as part of the processing of vir-
tual links

165

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

7.12.3 Reachability

Reality MsAMS
• a host x is potentially reachable from
a host y if there are no firewalls be-
tween them or if the existing firewalls
allow it; however, host x can have an-
other layer of filtering implemented by
its personal firewall rule set

• nesting of ambients and ambients’
actions provide as many levels of filter-
ing as needed, establishing the reach-
ability among ambients

7.12.4 Access Control

Reality MsAMS
• access control is performed by means
of authentication and authorization;
the former checks whether a subject
(e.g. legitimate users) is authentic
upon the presentation of a credential,
i.e. something the user has, knows
or is (e.g. password, session key,
passphrase), while the latter provides
access for an authenticated subject to
resources of the network

• authentication and authorization are
modelled using ambients and actions,
therefore, if an ambient-attacker is
able to enter an ambient representing
a credential c by means of a Enter c
(refer to Section 7.10.2) then it can
authenticate; the authentication oc-
curs when the ambient-attacker actu-
ally enters the credential ambient, giv-
ing it access to any ambient which has
an Accept c

7.12.5 Attackers and Legitimate Users

Reality MsAMS
• the way legitimate and illegitimate
users (i.e. attackers) use a network is
not particularly different in a broad
sense, e.g. they issue requests, they
use resources, they manipulate data;
however the resources they use and the
purpose they have may certainly differ

• attackers and legitimate users can be
represented as ambients the same way.
At modelling time, legitimate use of
the network may be taken into ac-
count, influencing the ranks produced
by the Link Analysis Ranking algo-
rithms. However, at simulation time,
the search engine, as it is built, only
works with attackers because the cur-
rent choice among alternative steps is
tailored to optimize the cost-benefit
from an attack, and legitimate users
do not share this objective

166

7.13. RELATED WORK

7.12.6 Attackers’ Target & Asset Values

Reality MsAMS
• as discussed in Section 3.4 on
page 61, any asset with high asset
value for the organization is a po-
tential target for attackers; asset val-
ues are financially-based and manually
computed

• targets are established by author-
ity or importance, and connectivity-
based asset values are automatically
computed; we provide scores from
PageRank and authority scores from
HITS which can be used to sup-
port the selection of targets and hub
scores from HITS to simulate attack-
ers searching for attacks

• a target can be of many types, e.g.
information, software, physical, ser-
vices, human, logical and intangibles
(reviewed in Section 2.1 on page 15)

• a target can be of the types rep-
resented in MsAMS models, i.e. it
can be in principle hosts, firewalls, ser-
vices, subnets, credentials, vulnerabil-
ities, data and resources encapsulated
by OS

7.13 Related Work

MsAMS is related to three research domains, namely Mobile Ambients, Combi-
natorial Optimization and Link Analysis Ranking The second domain applied to
attack graphs has been reviewed in Section 2.2.3.4 on page 34. The other two are
reviewed next.

7.13.1 Mobile Ambients

Since Cardelli and Gordon first introduced Mobile Ambients (MA) in 1998 [35],
defining the ambient calculus, several researchers have proposed extensions and
improvements building on it. The MA authors themselves expanded the calculus
introducing types [36] associated, e.g., with variables and capabilities to avoid
some kinds of faults (e.g. the syntactic anomaly described in [33, page 17])
which may have security implications. Two relevant calculi derived from the
ambient calculus are the (typed) Mobile Safe Ambients (SA) proposed by Levi
and Sangiorgi [124], and the (typed) Boxed Ambients (BA) proposed by Bugliesi
et al. [29].

The authors of SA identified interferences in the ambient calculus that could
result in damaged or corrupted processes resulting from reductions20. Addi-
tionally, ambients in MA can exercise capabilities, such as an in to enter other
ambients, without their control. To address unrestricted movements they define
counterpart capabilities (in, out, and open) establishing that movement only hap-
pens upon agreement of both parties involved. On a computer network this is

20Some of these interferences are reviewed on Section A.2.1 of Appendix A

167

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

actually what happens and ambients can impose permissions that protect them-
selves, e.g., against arbitrary entries. This is the case of a firewall which filters
the access to the hosts it protects, or a personal firewall which filters access to a
host. Therefore, like in SA, MsAMS also provides counterpart capabilities. How-
ever, in SA, a movement occurs if the source ambient has a capability of the form
in < destination ambient >21, and the destination ambient has a capability of
the form in < destination ambient > as well. This approach would be very
strange for the network domain because it makes no sense for an ambient, e.g.
a service or a host, to protect against itself. In MsAMS, capabilities Enter and
Accept do not require a shared ambient, refer to Appendix A for details.

An extension of SA which is related to MsAMS, is the Safe Ambients with
Passwords (SAP) [138]. Their authors extend SA introducing the concept of
password attached to ambients. Therefore, an ambient has not only a name but
has also a password associated with it. Movements may occur if an ambient, e.g.,
capable of entering a second ambient with a password is allowed in by the second
given this password, and by means of labelling transitions, their calculus requires
the specification of residual processes which remain in the first ambient. MsAMS
adopts a simpler, but nevertheless powerful, approach to passwords (called in
this thesis credentials) to represent authentication. Passwords are also ambients,
therefore, on the one hand, an ambient able to enter a password is viewed as
an ambient which knows it. On the other hand, a third ambient protected by a
password makes it explicit by accepting the password ambient.

The authors of BA had the specific purpose of expressing Mandatory Access
Control (MAC) policies. BA drops the open capability from MA to avoid security
problems identified in [29]. Therefore, an ambient is viewed as a closed box.
It also expands the original ambient calculus with capabilities for synchronous
communication between parent and child ambients. Although MsAMS does not
use BA capabilities specifically, it also does not provide open capability and its
model of communication is also synchronous and only inter-ambients (refer to
Appendix A for details about reduction rules used by MsAMS). Other MA-based
developments on security include the modified (typed) ambient calculus proposed
recently by Compagnoni et al.[43] to deal with Role-Based Access Control. They
incorporate aspects from BA and from SA, as done in MsAMS, and introduce
the types role and user associated with ambients which allow security checks.

MA has mainly been used for the specification of complex systems, or some
of their parts, where mobility plays an important role and/or for their verifica-
tion against some properties, such as security properties. For example, control
flow analysis22 with MA has allowed the validation of protocols, such as fire-
walls [150], and the detection of information leakage [26]. A firewall is viewed as
an ambient protected by passwords (k,k’, and k”) that can only be crossed (i.e.
be entered) by computing ambients which know these passwords. Hence, Cardelli
and Gordon [35] specify a firewall (w) and an agent, explained in details by Niel-

21Capability in is called Enter in MsAMS.
22this analysis checks “for each ambient: (i) which ambients may be immediately contained

within it, and (ii) which transitions may it perform” [150].

168

7.13. RELATED WORK

son et al. [150], where they prove that an agent which knows the passwords,
therefore specified as k′[open k.k′′[Q]], can really cross the firewall, specified as
w[k[out w.in k′.in w]|openk′.open k′′.P]. This is done via calculus manipulation
where the program Firewall|Agent reduces after 7 steps to w[P |Q], meaning
that, in the end, the agent process Q ends up inside the firewall w, the intended
behavior. Nielson et al. [150] developed a system to check, given the specification
of a firewall, if agents who know the necessary passwords can actually enter it,
while agents who do not know the necessary passwords cannot. Braghin et al. [26]
use the original MA with a labelling scheme to classify ambients into high and
low security levels or boundary ambients. They then use a tool [25] to analyze
if a high level security data/ambient moves only along boundaries between high
level security sites/ambients. Therefore, in these approaches the specification of
all the ambients involved, their processes and capabilities, are fully known. MA-
based MsAMS is not designed to verify any properties, instead it is designed to
simulate the specification of an ambient which represents an attacker reacting
(via reduction rules) with a specified network. The specification of the attacker
is the resulting trace, as we have seen in Section 7.7, and represents steps the
attacker may follow to reach targets.

MsAMS uses simulation to infer possible capabilities of an attacker moving
along a modelled network, according to capabilities and reductions described in
Appendix A. Regev et al. [176] also use simulation with their modified MA-
based calculus, called BioAmbients, to specify complex biomolecular systems.
However, they fully specify a system to verify, via simulations (where in each
iteration a reduction occurs), if the system operational behavior, as described
in their BioAmbients model, matches with its expected behavior, as described
in the literature. For example, they want to study molecular functioning (i.e.
neurons, nuclei, hormones and interactions among them) involved with weight
control [176, Section 5]. Therefore, in principle, they are modelling a complex
molecular functioning which is hard to fully understand and abstract; they are
representing a to-build model. However, when we want to model a network we
want to represent it as implemented in reality. Hence, if a firewall deployed
contains inconsistencies, these have to be present in the model as well; we want
to represent a as-built model of the network, and hopefully gain knowledge with
it, as discussed in Section 7.3.

7.13.2 Link Analysis Ranking

Link Analysis Ranking algorithms are used by World Wide Web search engines
to sort search results, i.e. to rank webpages. Probably the best known of these
algorithms is the PageRank algorithm [27], used by Google. However, there
are many others, such as the HITS (Hypertext Induced Topic Search) algorithm
developed in IBM by Kleinberg [116]. For the best of our knowledge, the HITS
algorithm has not yet been applied to the domain of attack graphs or network
security. Nevertheless, as mentioned in Section 2.2.3.3 on page 31, Google’s
algorithm has recently been used on this domain [135, 180] as a way to prioritize

169

CHAPTER 7. THE MSAMS SOLUTION:
MULTI-STEP ATTACK MODELLING AND SIMULATION

sub-graphs and overcome problems of size and complexity which make human
analysis and visualization of attack graphs difficult. The final objective of these
approaches is to emphasize areas of the graph where the security practitioners
should concentrate their attention on.

Mehta et al. [135] use the PageRank algorithm for prioritizing attack states
(equivalent to attack steps) of an Attack Graph, generated by a Model Checker.
For each node a rank is calculated, denoting the probability of an attacker reach-
ing it. They use the algorithm to rank states of the graph, and a high rank
in states which violate a security policy (i.e. goal states) means the network is
insecure. Therefore, their PageRank scores are more a measure of likelihood of
an attacker to be in a determined state in respect to the network initial state,
while PageRank scores in MsAMS relates more to potential impact, from the
perspective of defenders, based on the connectivity of the network. In our case,
the higher the number of virtual incoming links to a node (and the authorities of
these incoming nodes), the higher its authority and, consequently, its potential
to be a target.

Sawilla and Ou [180] use the PageRank algorithm with the purpose of as-
signing AssetRank to a dependency Attack Graph. Their ranks are based on
the importance an asset represents for a potential attacker in respect to a specific
attacker goal. In MsAMS, PageRank scores reflect the importance an asset repre-
sents for defenders. Therefore, a high rank node in MsAMS identifies a potential
target because if compromised it will affect potentially all nodes which depend
on it or other nodes with also high ranks since authority flows from one node
to another. A high AssetRank identifies configurations and vulnerabilities that
enable an attacker to reach a goal. The authors modified the original PageRank
and, instead of considering that all outlinks from a node i have equal probabil-
ity 1

|outlinksi| of being selected, they use two additional metrics when calculating
their scores: (i) a given intrinsic value for assigning inherent value to nodes e.g.
a goal node is initialized with a higher value compared to the remaining nodes,
and (ii) a calculated arc weight. They use those weight to represent attackers
preference for shortest paths to reach a goal, what is somehow equivalent to using
HITS hub scores to represent attackers preference for lower-cost paths to reach a
target. However, the advantage of our approach is the fact scores are calculated
automatically, i.e. there is no need to input weights or intrinsic values.

PageRank has also been applied to a broader context within network security.
For example, it has been used as part of the process to generate customized black-
lists by Zhang et al. [235]. They adapt PageRank to calculate how relevant is an
attacker, i.e. a specific source IP address, for a victim organization, i.e. a spe-
cific IP destination address. The relevance takes into account whether the source
has or not attacked the victim in the past, obtained from historical data. Their
adjacency matrix models the correlation between victims based on the number
of shared sources among them. Such as it happens with the propagation of au-
thority in the original PageRank algorithm, their relevance propagates from one
victim to another as a measure of how likely it is for a victim to be attacked

170

7.13. RELATED WORK

by a new source already identified by other victims. In MsAMS, we adapt the
adjacency matrix to model the structure of links among network nodes, i.e. reach-
ability among ambients. Otherwise, we keep PageRank calculation, as described
in Section 7.9.2.

Furthermore, in the broader sense of network security, PageRank has also been
used to rank, e.g., vulnerabilities to patch [143], and IDS alarms [212]. Miura-
Ko and Bambos [143] propose SecureRank, a modified version of PageRank, for
assigning scores to vulnerabilities. Instead of representing the relative importance
of a node in respect to the other nodes based on the link structure of a graph, as
it happens in the latter, SecureRank represents the relative amount of time an
attacker would spend on a vulnerable node relative to the remaining nodes of a
network. According to the authors, “the more time it [an attacker] spends at a
node, the more vulnerable the latter [the node] is to being compromised”. Their
calculation assumes that the severity of vulnerabilities are given; this is not really
a problem since it is possible to retrieve such information from the NVD [161].
However, as discussed in item 7 on Section 3.1, the increasing use of automation
in attacks and the advent of the Internet, have put factors like attackers skills
and time, or resources an attacker needs to execute an attack under a different
perspective. As a consequence, it is not necessarily true that the more time an
attacker spends on a vulnerable host, the more vulnerable the host is because it
depends on the skills and resources available for the attacker, and it also depends
on the complexity of exploitation of a vulnerability rather than on its severity.

171

Part III

Solution Validation

173

Methodology

The third part of this thesis is about internal validity of the MsAMS solution.
Internal validity aims at establishing to which extent a solution solves the problem
that is intended to solve [225]. We justify the validity of our solution in two
chapters.

First, in Chapter 8, we validate the MsAMS approach itself. Therefore we
want to see if MsAMS fulfils its purpose of finding multi-step attack in a way that
one can relate results obtained at the level of model back to the real network it
represents, and the other way round. Most importantly we want to see whether
the model allows reasoning via hypotheses about phenomena found in reality. We
demonstrate the usefulness of the MsAMS approach via examples.

Second, in Chapter 9, we validate the feasibility of the MsAMS approach. We
do that by testing the scalability of the proof-of-concept tool that implements the
approach. Therefore, we use a benchmark of experiments and statistical analysis
that indicate the feasibility of the MsAMS approach.

175

8
Testing the MsAMS Approach

In Chapter 7 we presented the MsAMS (Multi-step Attack Modelling and Sim-
ulation) approach, using examples and definitions. We introduced its syntax as
a variant of ambient calculus that facilitates the modelling of multi-step attacks
and allows the representation of important aspects in this domain, such as the
hierarchical topology of networks and attack dynamics. We also discussed that
the notions of inlinks, outlinks and importance apply to ambient models repre-
senting networks, the same way as they apply to webpages. Furthermore, we
presented how the scores produced by Link Analysis Ranking algorithms, namely
PageRank and HITS, could be used to support the search for attacks using a net-
work model. As mentioned before, the MsAMS approach has been implemented
in a proof-of-concept tool. In this chapter, we validate the MsAMS approach
using this tool. Therefore, we use example scenarios to show some interesting
aspects and the potential of the MsAMS approach.

First, in Section 8.1, we approach scalability of modelling with the MsAMS
approach in terms of reuse of ambients specification. Then, in Section 8.2, we use
a computing grid network example inpired in a real setting. We use this example
to show the applicability of deny actions in a network model that correspond to
actions we encounter in firewall rule sets in practice. Finally, in Section 8.3, we
use a power grid network example from the literature to show the use of MsAMS
tool and discuss scores returned by PageRank and HITS. We start from a model
of the network with many vulnerable hosts and no representation of credentials,
as modelled by Attack Graph approaches. From this baseline version we remodel
a more realistic version with only a few vulnerable hosts and non-vulnerable hosts
protected by credentials. We show how a network administrator can gain insights
and check hypotheses about the real network via several rounds of reasoning
with the modelled network, i.e. testing hypotheses, checking attacks returned
by the MsAMS tool and mitigating those attacks by means of countermeasures
introduced in the model.

The complete specification of the computing grid network example, and all
version of the power grid network example discussed in this chapter can be found
in chapter appendix 8.A. In addition, the tables with PageRank and HITS scores
of some of the versions, can be found in chapter appendix 8.B.

177

CHAPTER 8. TESTING THE MSAMS APPROACH

8.1 Reuse of Ambients Specification

We have mentioned in Section 7.7 on page 134 that the implementation of MsAMS
uses a DNS-like naming convention for ambients. We have pointed out then that
this naming scheme has two advantages: (i) it indicates firewalls, which facilitates
relating the output path with the actual network path, and (ii) it allows reuse
of ambients specification. The latter advantage is the focus of this section. We
revisit the complete specification of the running example presented in Example 10,
reproduced below in Example 27.

Example 27 The complete specification of the original running example in am-
bient terms:

network net

net[A|B|C|D|FW]

FW[E|F|AllowIn sv_C E|AllowIn sv_D E]

A[sv_A|v_A|OS_A|AllowIn net v_A]

v_A[Replicate(Accept net)]

sv_A[Replicate(Accept v_A)]

OS_A[Replicate(Accept sv_A)]

B[sv_B|v_B|OS_B|AllowIn net v_B]

v_B[Replicate(Accept net)]

sv_B[Replicate(Accept v_B)]

OS_B[Replicate(Accept sv_B)]

C[sv_C|v_C|OS_C|AllowIn net v_C]

v_C[Replicate(Accept net)]

sv_C[Replicate(Accept v_C)]

OS_C[Replicate(Accept sv_C)]

D[sv_D|v_D|OS_D|AllowIn net v_D]

v_D[Replicate(Accept net)]

sv_D[Replicate(Accept v_D)]

OS_D[Replicate(Accept sv_D)]

E[sv_E|v_E|OS_E|AllowIn net v_E]

v_E[Replicate(Accept net)]

sv_E[Replicate(Accept v_E)]

OS_E[Replicate(Accept sv_E)]

F[sv_F|v_F|OS_F|AllowIn net v_F]

v_F[Replicate(Accept net)]

sv_F[Replicate(Accept v_F)]

OS_F[Replicate(Accept sv_F)]

We now take advantage that all hosts are configured alike and reuse the speci-
fication of ambients v, s and OS for all of them. Example 28 shows this collapsed

178

8.1. REUSE OF AMBIENTS SPECIFICATION

version.

Example 28 A collapsed version of the specification of the original running ex-
ample in ambients terms:

network net

net[A|B|C|D|FW]

FW[E|F|AllowIn C E|AllowIn D E]

v[Accept net]

s[Accept v]

OS[Accept s]

A[s|OS|v|AllowIn net v]

B[s|OS|v|AllowIn net v]

C[s|OS|v|AllowIn net v]

D[s|OS|v|AllowIn net v]

E[s|OS|v|AllowIn net v]

F[s|OS|v|AllowIn net v]

Internally, in the MsAMS tool, this collapsed specification is translated auto-
matically, via computation, to an expanded DNS-like naming scheme mentioned
before (page 138), using a dollar sign to indicate transition to a lower level in the
containment hierarchy of ambients. Next, we exemplify this expanded notation
just for the specification of host F .

Example 29 The specification of host F from Example 28 processed by MsAMS
tool to an expanded naming scheme used internally:

netFW$F[$netFWF$s|$netFWF$OS|$netFWF$v|AllowIn $net netFWFv]

netFWFv[Replicate(Accept $net)]

netFWFs[Replicate(Accept netFWFv)]

netFWFOS[Replicate(Accept netFWFs)]

For the original running example it was feasible to collapse the specification
by naming hosts A− F explicitly, as shown in Example 29. It means that what
has been reused was the specification of v, s, and OS. However, depending on
the size of the network and context, reuse of entire host specifications would be
preferred. Let’s consider what happens in practice and what we mean by context.

On one extreme, there are businesses where control over the network is not
so strict, such as universities. In this context, the vast majority of users have
administrative rights, and can install any software they want or need in what we
call extended workstations. Hosts (i.e. desktops and laptops) in such networks
tend to be heterogeneous since the installation of security patches for corporate-
supported software made available at login time can usually be postponed and
user installed software depends on user initiative to be patched. On another
extreme, there are businesses where control over the network is very strict, such
as financial institutions. In this context, only a small percentage of users have

179

CHAPTER 8. TESTING THE MSAMS APPROACH

administrative rights to install software, and hosts are homogeneous, i.e. they
contain only corporate-supported software that is patched automatically at login
time, which cannot be postponed. We call them standard workstations and reuse
is specially convenient for their modelling. Two typical examples from industry
are:

(i) 50 out of 11000 users (0.45%) have administrative rights, i.e. 99.55% of
users use standard workstations1

(ii) 3600 out of 58000 users (6.21%) have administrative rights, i.e. 93.79% of
users use standard2 workstations

The MsAMS tool provides a copy command to allow a scalable reuse of am-
bients specification for modelling ambients that are alike, such as the standard
hosts mentioned. The syntax of this command is shown in Example 30.

Example 30 The specification of the original running example in the collapsed
form shown in Example 28 is re-specified in ambient terms with 10 copies of host
B as follows.

network net

net[A|copy B B_ 10|C|D|FW]

FW[E|F|AllowIn C E|AllowIn D E]

v[Accept net]

s[Accept v]

OS[Accept s]

A[s|OS|v|AllowIn net v]

B[s|OS|v|AllowIn net v]

C[s|OS|v|AllowIn net v]

D[s|OS|v|AllowIn net v]

E[s|OS|v|AllowIn net v]

F[s|OS|v|AllowIn net v]

The copy command generates 10 copies of host B named B 0 till B 9, as
illustrated in Figure 8.1.

We use reuse of specification, especially via copy, in the examples presented
in the remainder of this chapter.

8.2 Computing Grid Network Example

This example network, illustrated in Figure 8.2, shows a computing grid network
inspired by the setup of a site part of the WLCG project. The Worldwide LHC
Computing Grid (WLCG) is a project “to build and maintain a data storage

1Obtained from a company in the chemical sector.
2Obtained from a company in the financial sector.

180

8.2. COMPUTING GRID NETWORK EXAMPLE

D E FC

FW

net

...

B_9B_0A

Figure 8.1: Modified running example with 10 copies of host B

and analysis infrastructure for the entire high energy physics community that
will use the LHC [Large Hadron Collider] at CERN [in Geneva]” from http:
//lcg.web.cern.ch/LCG/public/3.

As shown in Figure 8.2, the computing grid structure is actually the one pro-
tected by firewall FW3. It is embedded in the network of several institutions,
e.g., across the UK (http://www.gridpp.ac.uk/). Subnets sub3 and sub4 con-
tain workstations and servers of the institution. Subnet sub1 contains a cluster of
processing nodes, representing the computing power of the grid at this particular
site, while subnet sub2 contains the grid storage nodes. Host C is the comput-
ing element of the grid, meaning that jobs submitted by physicists from around
the World are routed to be computed in sub1 via this host. In this example,
we assume jobs are only submitted through Web interface when submitted from
the Internet; in reality they can also be submitted using scripts via command
line. Submission can request jobs to be processed in parallel using MPI (Message
Passing Interface) service [145]. This service enables the execution of parallel
jobs on the top of a set of physically distributed processors. Thus, in this case,
the execution of a job can take advantage of the processing capacity of hosts A
and B together.

Firewalls FW1-FW34 filter access from the internet to the network as follows:

FW1: allows internet to access the Web Server (WS) and the Mail Server (MS)

FW2: allows DMZ access to sub3 and WS access to host C (for job submission)

FW3: allows WS access to host C, it also allows access from sub3 and sub4 to C
(also for job submission)

The WS and host C contain a remotely exploitable vulnerability. The re-
maining hosts and servers are not vulnerable (in this example we abstract from
credentials). Usually the grid environment embedded into the institution network
is administered by different administrators. One usual concern of the institution
network administrator is to avoid that the grid becomes a way to attack the in-
stitution network, specially because of its computing power. For example, subnet

3More information about the grid architecture can be found e.g. at https://twiki.cern.

ch/twiki/bin/view/LCG/DpmAdminGuide\#DPM_Architecture.
4They are also routers.

181

CHAPTER 8. TESTING THE MSAMS APPROACH

Web
Server (WS)

Mail
Server (MS)

FW1

FW3

FW2

DMZ

sub1

A B
C

D

sub2

E

GF
sub3

Workstations and servers

Processing nodes
Computing element

Storage nodes

I

sub4

H

Figure 8.2: Computing grid network example motivated from practice

sub4 can only be reached from the Internet via sub3 (since, as we said earlier,
FW2 only allows traffic from DMZ to sub3 or from WS to host C), and, in this
case, sub3 contains no vulnerable hosts, therefore, sub4 at first glance seems
protected, from the institution network administrator’s point-of-view. However,
sub4 is also indirectly accessible from the grid and the institution administrator
is not sure how the grid can affect the security of sub4. Hence, the administrator
wants to check the following what-if scenario:

what attack is possible,
if there is a zero-day vulnerability in server H,
and H is the target?

In the following section, we model this example network and execute the
MsAMS tool to find possible attacks.

8.2.1 Specification of the Computing Grid Network Exam-
ple

The network illustrated in Figure 8.2 is viewed in terms of ambients as shown in
Figures 8.3 and 8.4. These figures, in fact, represent a more user-friendly version

182

8.2. COMPUTING GRID NETWORK EXAMPLE

of the Locality Tree corresponding to this example that represents the nesting of
ambients in a tree format, as described in Chapter 7.

FW2WS MS

DMZ

attHost

FW1

internet

Figure 8.3: The partitioned network shown in Figure 8.2 as Ambients: internet

sub2

D EA B

sub1

C

sub3

F G

FW3

FW2

sub4

H I

Figure 8.4: The partitioned network shown in Figure 8.2 as Ambients: firewall
FW2

Figure 8.3 shows an additional host in the Internet, not present in the diagram
of the example network in Figure 8.2. This host (attHost) represents the attacker
host, starting point for the search for attacks. This figure shows that there are
two ambients inside the ambient internet: attHost and the outer firewall of the
network FW1. Firewall FW1 protects ambients DMZ and the inner firewall
FW2. Let’s consider the specification of those ambients in parts.

Example 31 The specification of ambients internet and FW1 follows.

network internet

internet[attHost|FW1]

FW1[DMZ|FW2|AllowIn internet DMZ]

The ambient DMZ contains the Web Server WS, and the Mail Server MS.
The Web service web s provided by the WS is vulnerable represented by the
fact that it can accept the remotely exploitable vulnerability v WS. A com-
promise of this vulnerability potentially causes complete impact on data and
programs encapsulated by this host Operating System OS WS, represented by
action Accept web s.

Example 32 The specification of ambients DMZ and WS follows.

183

CHAPTER 8. TESTING THE MSAMS APPROACH

DMZ[MS|WS|AllowIn internet WS|AllowIn internet MS]

--- web server

WS[v_WS|web_s|OS_WS|AllowIn internet v_WS]

v_WS[Replicate(Accept internet)]

web_s[Replicate(Accept v_WS)]

OS_WS[Replcate(Accept web_s)]

The Mail service mail s is not vulnerable, therefore, it answers requests from
ambients inside the Internet and the mail server Operating System OS MS an-
swers requested originated from the mail service.

Example 33 The specification of the ambient MS follows.

--- mail server

MS[s_MS|OS_MS|AllowIn internet mail_s]

mail_s[Replicate(In internet)]

OS_MS[In mail_s]

As illustrated in Figure 8.4, firewall FW2 protects firewall FW3 and subnets
sub3 and sub4. In fact, FW2 protects the computing grid network, i.e. subnets
sub1, sub2 and the computing node, host C. Furthermore, those firewalls filter
traffic to the institution network and the computing grid network, as already
described.

Example 34 The specification of ambients FW2 and FW3 follows.

FW2[FW3|sub3|sub4|AllowIn web_s C|AllowIn DMZ sub3]

FW3[sub1|C|sub2|AllowIn web_s C|AllowIn sub3 C|AllowIn sub4 C]

In this example we model three types of hosts, i.e. hosts like host C that are
vulnerable, hosts like host D that are not vulnerable, and hosts like host A that
are not vulnerable but allow the execution of jobs.

Host C contains a remotely-exploitable vulnerability v that allows an ambient-
attacker to enter its service sv and even reach resources encapsulated by its OS.
The specification of host C represents a typical vulnerable host in this example,
thus, we reuse the specification of host C to specify server H, hypothetically
considered to contain a zero-day vulnerability later on.

Example 35 The specification of ambient C, a vulnerable host, follows. The
same ambients are later reused to specify server H.

--- host C (vulnerable host)

C[sv|v|OS|AllowIn internet v]

v[Replicate(Accept internet)]

sv[Replicate(Accept v)]

OS[Replicate(Accept sv)]

184

8.2. COMPUTING GRID NETWORK EXAMPLE

Host D is not vulnerable, its service only answers requests coming from am-
bients within ambient internet. We have chosen, in this example, to name this
service rsv which stands for “restricted service”5 for the specification of all non-
vulnerable hosts. The same way, the Operating System of this host, called rOS
that stands for “restricted OS”, only answers requests from the service rsv. The
specification of host D represents a typical vulnerable host in this example, there-
fore, we reuse later its ambients to specify hosts E, F , G, I and the attacker host
attHost.

Example 36 The specification of host D, a non-vulnerable host, follows. The
same ambients are later reused to specify hosts E, F, G, I, and attHost.

--- host D (non-vulnerable host)

D[rsv|rOS|AllowIn internet rsv]

rsv[Replicate(In internet)]

rOS[Replicate(In rsv)]

Host A contains a MPI service mpi s that accepts jobs from host C to be
processed by prOS (processing OS). Since jobs actually enter those hosts to be
executed, although not vulnerable, the MPI service does not only answer requests
from C, it accepts ambients from C (to be executed). Host B is similar to A,
therefore, we reuse the specification of host A to specify host B.

Example 37 The specification of host A, a computing grid processing node, fol-
lows. The same ambients are later reused to specify host B.

--- host A (processing node)

A[mpi_s|prOS|AllowIn C mpi_s]

mpi_s[Replicate(Accept C)]

prOS[Replicate(In mpi_s)]

Now, we can specify the subnets and the attacker host reusing ambients dis-
cussed, via the copy command introduced in Section 8.1. For example, subnet
sub1 contains hosts A and B; host B is specified in terms of A with the term
copy A B 1 that is interpreted as “make 1 copy of ambient A and call it ambient
B”6.

Example 38 The specification of subnets sub1 to sub4 and of the attacker host
follows.

sub1[A|copy A B 1|AllowIn internet sub1]

sub2[D|copy D E 1|AllowIn internet sub2]

sub3[copy D F 1|copy D G 1|AllowIn internet sub3]

sub4[copy C H 1|copy D I 1|AllowIn internet sub4]

--- attacker host

attHost[rsv|AllowIn internet rsv]

5Note that we could as well have used this service for the specification of the mail service
presented before.

6In reality instead of B is B0, but we refer simply to B in this example; the same happens
for the other copies.

185

CHAPTER 8. TESTING THE MSAMS APPROACH

The complete specification of this example can be found in the chapter ap-
pendix 8.A.

Having modelled the example network using the MsAMS formalism, we can
now execute the MsAMS tool with the following input. As a result we obtain the
traces shown in Example 39.

• source ambient: attHost$rsv

• target ambient: H$sv

• search type: forward-search

• fitness function: hubbiest-node

Example 39 The following traces are produced by the MsAMS tool for the net-
work example (these traces are illustrated in Figure 8.5):

>>> trace 1:

Enter $INTERNET$FW1DMZWS$V_WS.

Enter $INTERNET$FW1DMZWS$WEB_S.

Enter $INTERNET$FW1$FW2$FW3CV.

Enter $INTERNET$FW1$FW2$FW3CSV.

Enter $INTERNET$FW1$FW2$SUB4HV.

Enter $INTERNET$FW1$FW2$SUB4HSV

>>> trace 2:

Enter $INTERNET$FW1DMZWS$V_WS.

Enter $INTERNET$FW1DMZWS$WEB_S.

Enter $INTERNET$FW1$FW2$FW3CV.

Enter $INTERNET$FW1$FW2$FW3$SUB1$A$MPI_S.

Enter $INTERNET$FW1$FW2$SUB4HV.

Enter $INTERNET$FW1$FW2$SUB4HSV

>>> trace 3:

Enter $INTERNET$FW1DMZWS$V_WS.

Enter $INTERNET$FW1DMZWS$WEB_S.

Enter $INTERNET$FW1$FW2$FW3CV.

Enter $INTERNET$FW1$FW2$FW3CSV.

Enter $INTERNET$FW1$FW2$FW3$SUB1$B$MPI_S.

Enter $INTERNET$FW1$FW2$SUB4HV.

Enter $INTERNET$FW1$FW2$SUB4HSV

Those attacks are possible because host C can communicate not only with
sub1 and sub2 but also with sub3 and sub4 because no restrictions apply to
communications initiated in C. Therefore, as feared by the institution network
administrator, the computing grid can actually represent a stepping stone for an
attacker to reach most protected subnets like ambient sub4. As shown by trace 1,
server H can be reached by the ambient-attacker directly from the grid computing
element, host C. However, this host is typically not a powerful computer since
its primarily purpose is to schedule jobs received, thus, balancing the workload of
jobs among the processing nodes (i.e. hosts A and B), and to report processing

186

8.2. COMPUTING GRID NETWORK EXAMPLE

Web
Server (WS)

Mail
Server (MS)

FW1

FW3

FW2

DMZ

sub1

A B
C

D

sub2

E

GF
sub3

Workstations and servers

Processing nodes
Computing element

Storage nodes

I

sub4

H

Web
Server (WS)

Mail
Server (MS)

FW1

FW3

FW2

DMZ

sub1

A B
C

D

sub2

E

GF
sub3

Workstations and servers

Processing nodes
Computing element

Storage nodes

I

sub4

H

Web
Server (WS)

Mail
Server (MS)

FW1

FW3

FW2

DMZ

sub1

A B
C

D

sub2

E

GF
sub3

Workstations and servers

Processing nodes
Computing element

Storage nodes

I

sub4

H

Figure 8.5: Visual representation of traces 1, 2, and 3 (Example 39)
187

CHAPTER 8. TESTING THE MSAMS APPROACH

results. Much more dangerous attacks are the ones shown by traces 2 and 3
since they reach H using the computing power of the cluster of processing nodes.
Therefore, their severity and consequent potential impact are considerably higher
compared to trace 1.

8.2.2 Blocking Firewall Outbound Traffic

As we have seen, traces 2 and 3 (i.e. WS → C → A or B) are the most
worrying attacks from the Internet to server H in sub4. One action the network
administrator from the institution could demand from the grid administrator is to
block communication from sub1 to the institution network, i.e. to sub3 and sub4.
This can be achieved by changing the rules of firewall FW3 to deny outbound
flow from sub1. In real settings this involves the addition of a deny rule to the
firewall rule set, similar to what happens in MsAMS, where we add an action
DenyUp sub1 in ambient FW3.

Example 40 The specification of ambient FW3 with a deny rule follows.

FW3[sub1|C|sub2|AllowIn web_s C|AllowIn sub3 C|AllowIn sub4 C|DenyUp sub1]

Refer to the chapter appendix 8.A for the complete specification of this new
version of the example network.

If we execute MsAMS search for attacks again (with the same input), we
obtain the following trace, i.e. traces 2 and 3 are no longer possible.

Example 41 The following trace is produced by MsAMS tool with the modified
FW3; using the same input used to produce traces in Example 39.

Enter $INTERNET$FW1DMZWS$V_WS.

Enter $INTERNET$FW1DMZWS$WEB_S.

Enter $INTERNET$FW1$FW2$FW3CV.

Enter $INTERNET$FW1$FW2$FW3CSV.

Enter $INTERNET$FW1$FW2$SUB4HV.

Enter $INTERNET$FW1$FW2$SUB4HSV

Therefore, the model allowed the institution network to check consequences
in terms of possible multi-step attacks of an action in the model (the use of action
DenyUp in a firewall ambient) that corresponds to an action in a real network
(a deny rule in a deployed firewall). This type of reasoning is not possible with
current attack graph approaches, reviewed in Chapter 2.

In the next section, we use a power grid network example to perform similar
reasoning but, this time, involving credentials and authentication.

8.3 Power Grid Network Example

Throughout this section we use a power grid network example introduced by
other researchers [181, 98] of attack graphs. We illustrate the power of what-if

188

8.3. POWER GRID NETWORK EXAMPLE

reasoning at the level of access control on a standard example (the power grid
example) and show how attack dynamics can create multi-step attacks missed by
current attack graph approaches.

The example shows an enterprise network that has a typical topology, i.e. a
DMZ (demilitarized zone) that interfaces with the Internet and an internal net-
work with subnets, as illustrated in Figure 8.7. One of such subnets, the EMS
(Energy Management System) subnet, is a control-system network responsible
for controlling and monitoring a physical power transmission and generation in-
frastructure.

Web
Server (WS)

VPN
Server (VS)

File Server
(FS)

Citrix
 Server

` `

User Workstations
(UW)

Data
Historian (DH)

Operating
Station (OP)

Communication Servers (CS)

DMZ

`

fEXT

fEMS

CORPint

Figure 8.6: Power grid network (CORPnet) example from [181, 98]

The network CORPnet has two firewalls: fEXT that filters traffic from the
DMZ to the internal network, i.e. CORPint, and fEMS that filters traffic from
CORPint to the EMS network. The web server (WS) and the VPN server (VS),
located in the DMZ, are directly accessible from the Internet. The VPN service
allows employees access to CORPint from outside the enterprise network. The
Web service retrieves webpages from the file system (FSYS) via RPC (Remote
Procedure Calls) requests to the NFS7 service running on the file server. All
user workstations within CORPnet can access the file system (FSYS). Access to
the EMS network is only possible from the Citrix server8 to the Data Historian
(DH) server. This DH server is, in fact, a database that stores power-grid-data

7The Network File System is a service that provides network accessible file systems for client
machines [173].

8Citrix is an American corporation that provides products and services with special focus

189

CHAPTER 8. TESTING THE MSAMS APPROACH

and provides statistics. The Operating Station (OP) collects such data from the
Communication Servers (CS) that actually receive them in real-time from the
physical infrastructure. Table 8.1 summarizes the network access allowed.

from to network access allowed
Internet DMZ all to Web Server (WS)

all to VPN Server (VS)
DMZ CORPint Web Server to File Server (FS)

VPN Server to all
CORPint EMS Citrix server to Data Historian (DH)

Table 8.1: Summary of network access allowed

As seen in Chapter 7, we model this scenario in two stages. First, we capture
the topology of those networks in terms of Ambients as illustrated in Figure 8.7.
This is an user-friendly representation of the Locality Tree shown in Figure 8.8.

FS

CITRIX

UW_0

UW_1

DH

OP

CS_1

CS_2

CS_0

VSWS

DMZ

WS: Web Server

VS: Vpn Server

FS: File Server

CITRIX: CITRIX server

UW_n: User Workstations

DH: Data Historian server

OP: OPerating station

CS_n: Communication Servers

CORPnet

CORPint

fEXT

fEMS

internet

Figure 8.7: Power grid network example as Ambients

Figure 8.7 shows that ambient internet contains CORPnet, itself containing
ambients DMZ and fEXT , representing the most external firewall. The DMZ
contains ambients representing the web server WS and the VPN server V S,
while firewall fEXT contains (i.e. protects) ambients CORPint and fEMS.
This inner firewall fEMS9 protects the EMS network, i.e. the data historian
DH server, the operating station OP , and communication servers represented

on virtualization and central management of distributed IT infrastructure (www.citrix.com);
in this case the Citrix server is an application server that provides remote access to other
applications.

9The firewalls in this example are also routers.

190

8.3. POWER GRID NETWORK EXAMPLE

internet

fEXT

fEMS

UW_1UW_0CITRIXFS

DMZ

VSWS

DH OP

CORPint

CORPnet

CS_0 CS_1 CS_2

Figure 8.8: Locality tree corresponding to Figure 8.7

by ambients CS 0, CS 1, and CS 2. Subnet CORPnet contains the file server
FS, the citrix server, and user workstations represented by ambients UW 0 and
UW 1.

The authors of the example mention that there are plenty of vulnerabilities
in the network [98], e.g., the web and the VPN servers are vulnerable, as well as
other hosts and servers in CORPint and in the power grid network. In fact, power
grids are often controlled and monitored by legacy systems that incorporate little
security [115] and are hard to patch. Therefore, numerous attack paths among
those vulnerable hosts are found with attack graphs. We model this example
and consider this original version as our baseline for modelling a more realistic
version with the majority of hosts non-vulnerable, protected by credentials, and
then for reasoning about attacks (returned by MsAMS tool) and countermeasures,
reflected in new versions of the network specification, in Sections 8.3.2-8.3.5. The
complete specification of all the versions, including the baseline version, can be
found at the end of this chapter, in Section 8.A.

8.3.1 Baseline Specification of the Power Grid Network Ex-
ample

In this section we specify the original example in parts but, first, we introduce
an extra entity not present in the original example: the host of an employee at
home. The modified setting is illustrated, as Ambients, in Figure 8.10, and its
corresponding complete Locality Tree is shown in Figure 8.9.

Note that we abstract from details of services and protocols, like RPC, and of
technologies, like different implementations of VPN, the same way as the attack
graph community does. Along this section, however, we introduce some details,
e.g., related to authentication methods.

As we have seen in Figure 8.7, there are two ambients within ambient internet,
the enterprise network CORPnet and the rest of the World connected to the
Internet, represented by ambient world.

191

CHAPTER 8. TESTING THE MSAMS APPROACH

in
te
rn
et

co
rp
ne
t

w
or
ld

dm
z

fe
xt

eh
om

e

w
s

vs

co
rp
in
t

fe
m
s

s_
w
s

os
_w

s
v_
w
s

s_
vs

os
_v
s

v_
vs

fs
uw

_0
uw

_1
ci
tr
ix

op
dh

cs
_0

cs
_1

cs
_2

nf
s

fs
ys

v_
fs

br
ow

se
r_
uw

os
_u
w

br
ow

se
r_
uw

os
_u
w

s_
ci
tr
ix

os
_c
it
ri
x

v_
ci
tr
ix

s_
op

os
_o
p

v_
op

s_
dh

os
_d
h

v_
dh

s_
cs

v_
cs

os
_c
s

s_
cs

v_
cs

os
_c
s

s_
cs

v_
cs

os
_c
s

v_
eh
om

e

Figure 8.9: Complete locality tree corresponding to the ambients diagram in
Figure 8.10

192

8.3. POWER GRID NETWORK EXAMPLE

FS

CITRIX

UW_0

UW_1

DH

OP

CS_1

CS_2

CS_0

VSWS

DMZ

ehome

CORPnet

CORPint

fEXT

fEMS

internet

world

Figure 8.10: Added ambient world within internet, containing an ehome (em-
ployee at home) host to the Ambients representation of the example shown in
Figure 8.7

Example 42 Ambients internet, world and CORPnet are specified as follows.

network internet

internet[CORPnet|world]

CORPnet[DMZ|fEXT|AllowIn internet CORPnet]

Ambient world contains a host ehome that itself contains a vulnerability
v ehome, accessible from the Internet.

Example 43 The specification of ambient world follows.

--- ehome (employee at home) host

world[ehome|AllowIn internet world]

ehome[v_ehome|AllowIn internet v_ehome]

v_ehome[Replicate(Accept internet)]

The web server WS provides web service s WS, but a remotely accessible
vulnerability v WS in this service may potentially result in complete impact on
data and programs encapsulated by the host Operating System OS WS, repre-
sented by the fact that it is possible to enter in this ambient. The VPN server
V S has a similar ambient specification since it also contains a vulnerable VPN
service.

Example 44 The specification of ambient DMZ follows.

DMZ[WS|VS|AllowIn internet DMZ]

--- web server

WS[s_WS|OS_WS|v_WS|AllowIn internet v_WS]

v_WS[Replicate(Accept internet)]

s_WS[Replicate(Accept v_WS)]

OS_WS[Replicate(Accept s_WS)]

--- VPN server

193

CHAPTER 8. TESTING THE MSAMS APPROACH

VS[s_VS|OS_VS|v_VS|AllowIn internet v_VS]

v_VS[Replicate(Accept internet)]

s_VS[Replicate(Accept v_VS)]

OS_VS[Replicate(Accept s_VS)]

The external firewall fEXT allows access from the web service s WS to the
file server FS and from the VPN service s V S to all CORPint hosts, in accor-
dance with Table 8.1. To specify the internal subnet CORPint we use the copy
command, described in Section 8.1, to generate two copies of the ambient UW
(user workstation), namely UW 0 and UW 1. All sub-ambients of CORPint,
i.e. FS, citrix and both UW are vulnerable. Their specification is similar to the
specification of the web and VPN servers, although constrained by the filtering
of fEXT . It means that, although they contain a vulnerability that can be ex-
ploitable from the Internet, the firewall fEXT only allows traffic coming via VPN
service, or Web service. Each user workstation contains a browser service that
can make requests to other web servers in the Internet, via an Out action; this is
always possible since there is no outbound filtering applied in CORPnet. Using
the VPN service provided by the VPN server, an employee located physically
outside CORPnet can access the resources of CORPint.

Example 45 The specification of ambients fEXT and CORPint follows.

fEXT[CORPint|fEMS|AllowIn s_WS FS|AllowIn s_VS CORPint]

CORPint[FS|copy UW UW_ 2|citrix|AllowIn internet CORPint]

--- file server

FS[NFS|FSYS|v_FS|AllowIn internet v_FS]

v_FS[Replicate(Accept internet)]

NFS[Replicate(Accept v_FS)]

FSYS[Replicate(Accept NFS)]

--- citrix server

citrix[s_citrix|OS_citrix|v_citrix|AllowIn internet v_citrix]

v_citrix[Replicate(Accept internet)]

s_citrix[Replicate(Accept v_citrix)]

OS_citrix[Replicate(Accept s_citrix)]

--- user workstation

UW[browser_UW|OS_UW|AllowIn s_VS OS_UW]

v_UW[Replicate(Accept internet)]

browser_UW[Out internet]

OS_UW[Replicate(Accept s_VS)|Replicate(In browser_UW)]

The fEMS firewall allows only access from the citrix service s citrix to the
data historian DH. While the DH host has a remotely accessible vulnerability
v DH on service s DH that allows full access to, i.e. potential complete impact
on the data and programs encapsulated by the OS, the OP and the CS hosts
have a locally accessible vulnerability that allows the same access to the OS as
the one in DH but do not represent an open door to those hosts, i.e. they require
that local access, e.g., via service is acquired first. The OP answers requests from
the CS n, and vice-versa, represented by the In action in both end points.

194

8.3. POWER GRID NETWORK EXAMPLE

Example 46 The specification of the ambients part of the EMS network follows.

fEMS[OP|DH|copy CS CS_ 3|AllowIn s_citrix DH]

--- data historian server

DH[s_DH|OS_DH|v_DH|AllowIn s_citrix s_DH|AllowIn internet v_DH]

v_DH[Replicate(Accept internet)]

s_DH[Replicate(Accept v_DH)|Replicate(In s_citrix)]

OS_DH[Replicate(Accept s_DH)]

--- operating station

OP[s_OP|OS_OP|v_OP|AllowIn s_DH s_OP]

s_OP[Replicate(Accept s_DH)]

v_OP[Replicate(Accept s_OP)]

OS_OP[Replicate(Accept v_OP)|Replicate(In CS_0$s_CS)|

Replicate(In CS_1$s_CS)|

Replicate(In CS_2$s_CS)]

--- communication server

CS[s_CS|v_CS|OS_CS|AllowIn s_OP s_CS]

s_CS[Replicate(Accept s_OP)]

v_CS[Replicate(Accept s_CS)]

OS_CS[Replicate(Accept v_CS)|Replicate(In s_OP)]

Having modelled the example, we use MsAMS tool to obtain PageRank and
HITS scores, and to find possible attacks in the example network.

The scores returned by PageRank and HITS for the example modelled above
are shown in Tables 8.2 and 8.3, respectively. Those tables can be found in
Section 8.B, at the end of the chapter.

According to PageRank, the top three most authoritative ambients are:

1. the web server vulnerability v WS and the VPN server vulnerability v V S
with the same score: 0.18751004

2. the ehome vulnerability v ehome: 0.16886869

Therefore, instead of indicating potential targets, PageRank indicates the top
priority vulnerabilities that affect the security of the modelled network. This
order of priority matches our intuition of vulnerabilities to patch, since those
hosts represent entry points to CORPnet from the Internet. We reason why we
obtained such results next.

Firewalls fEXT and fEMS do not restrict outbound traffic from CORPnet
to the Internet, i.e. they do not block interactions from ambients inside fEXT to
ambient DMZ and to internet. It means that there is a link from all ambients
inside fEXT to the ambients inside DMZ and inside world that either have
actions In internet or Accept internet. This is the case of ambients v home, v WS
and v V S which represent vulnerabilities inside DMZ and world. Therefore,
those vulnerabilities have the most inlinks of all ambients inside internet and
their number of inlinks is the same. Let’s now have a look at outlinks of those
ambients (refer to Equation 7.1).

195

CHAPTER 8. TESTING THE MSAMS APPROACH

Let’s assume that the PageRank score for ambients v ehome, v WS and v V S
equal x because all of them have potentially the same number of inlinks.
At iteration k=1, we have:
• πk(v ehome) = x
• πk(v WS) = x
• πk(v V S) = x

At the next iteration, on the one hand, ambient v ehome propagates its im-
portance x to 2 outlinks: v WS and v V S (other outlinks are not possible be-
cause fEXT does not allow interactions from internet directly to ambients inside
fEXT), therefore, v WS and v V S receive a share of importance equal to x

2 each
from v ehome. On the other hand, ambient v WS propagates its importance x to
3 oulinks: s WS, v ehome, v V S (other outlinks are not possible because fEXT
only allows interactions from s WS and s V S to ambients inside fEXT), there-
fore, s WS, v ehome, v V S receive a share of importance equal to x

3 each from
v WS. The same happens for v V S. In summary, this means that v ehome
gains less importance than v WS and v V S gain, at each interaction. As a con-
sequence, the resulting PageRank score π(v WS) and π(v V S) are higher than
the score π(v ehome).

The highest three authority scores returned by HITS are:

1. the operating station service s OP : 0.03718147

2. the data historian service s DH: 0.03666337

3. the citrix service s citrix, the services in the communication servers s CS 0,
s CS 1, s CS 2, the vulnerabilities v CS 0, v CS 1, v CS 2, and the vul-
nerability in the operating station v OP with the same authority score:
0.036409695

Unlike PageRank, HITS authorities show ambients closer to our intuition of
target with higher scores. The final target we have in mind is any communication
server, since it is the most valuable for the corporation and for attackers, therefore,
the most protected. HITS produced high authority scores for ambients within or
closer to this intuitive target, all in the EMS network or representing the entry
point to EMS (i.e. s citrix). Since the difference between those scores is very
small, any of those are potential targets. We set the target as OS CS 1 for the
remainder of this example.

Note that for HITS scores a reasoning, like we did for PageRank, about why we
obtained the results we did is far more complex because of the mutual relationship
between authority and hub scores. This means that hub scores propagate to
authority scores and vice-versa. Therefore, such analysis would demand a huge
amount of experiments dedicated to this purpose to find patterns that would
explain why we obtained such results.

In terms of hubs, the four highest scores are:

1. the ehome vulnerability v ehome: 0.16294982

196

8.3. POWER GRID NETWORK EXAMPLE

2. the VPN vulnerability v V S and in the WS v WS: 0.16293405

3. the FS vulnerability v FS: 0.14735377

4. the citrix vulnerability v citrix: 0.14292207

The top ambients in terms of hub scores returned by HITS are quite similar
to the ambients with highest pagerank scores. Both indicate vulnerabilities in
the DMZ or world at the top of the list. However, all PageRank top ambients
are related to entry points to CORPnet, while top hub scores do not relate
necessarily with network entry points but with ambients inside CORPint that
represent low cost passageways to reach several other ambients like the FS and
citrix.

Having analyzed the scores returned by PageRank and HITS, we now use
MsAMS tool to find attacks and reason about a possible countermeasure. There-
fore, we run the MsAMS search for attacks with the following input:

• source ambient: v ehome

• target ambient: OS CS 1

• search type: forward-search

• fitness function: hubbiest-node

The best cost-benefit attack path reported by MsAMS is presented next.

Example 47 A trace produced by MsAMS tool for the network specified in Sec-
tion 8.3.1 with the input listed above (this trace is illustrated in Figure 8.11):

Enter $INTERNET$CORPNETDMZVS$V_VS.

Enter $INTERNET$CORPNETDMZVS$S_VS.

Enter $INTERNET$CORPNET$FEXT$CORPINT$CITRIX$V_CITRIX.

Enter $INTERNET$CORPNET$FEXT$CORPINT$CITRIX$S_CITRIX.

Enter $INTERNET$CORPNET$FEXT$FEMSDHV_DH.

Enter $INTERNET$CORPNET$FEXT$FEMSDHS_DH.

Enter $INTERNET$CORPNET$FEXT$FEMSOPS_OP.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1S_CS

Although the authors of the example do not show in their papers [181, 98] the
attack graph corresponding to the example graphically, they report [98] that the
attack graph produced for the example has 150 nodes and 173 arcs, and a trimmed
version has 99 nodes and 106 arcs. After this trimming, they find the attack
above returned by the MsAMS tool, and others most costly attacks reaching the
citrix server. However, the example as modelled by attack graph approaches
has two main problems. First, most probably, a network administrator will not
leave the network so vulnerable, specially entry points like the Web server and
the VPN server. Let’s assume that the administrator follows the priority of
vulnerabilities to patch returned by PageRank, i.e. patch v WS and v V S, since
the vulnerability on the employee’s host at home v ehome is out of her control.
Second, only a few attack graph approaches [228, 163, 38] incorporate the concept

197

CHAPTER 8. TESTING THE MSAMS APPROACH

Web
Server (WS)

VPN
Server (VS)

File Server
(FS)

Citrix
 Server

` `

User Workstations
(UW)

Data
Historian (DH)

Operating
Station (OP)

Communication Servers (CS)

DMZ

`

fEXT

fEMS

CORPint

ehome

`

World

Figure 8.11: Visual representation of the trace (in Example 47) produced by
MsAMS

of credentials for access control (as seen in Chapter 2), and even though are unable
to represent credential theft and to perform what-if analysis related to credentials,
as discussed in Section 4.1 (page 67). All in all, attack graphs cannot be used
for reasoning about more subtle attacks that involve not only vulnerable hosts,
or trust relationship between two hosts, but also non-vulnerable services, and
consequently hosts, protected by credentials. Therefore, next we model a more
realistic version of this example with credentials.

8.3.2 Version One: Adding Credentials

In this new version of the example specification, our network administrator ap-
plied some patches and the web service is no longer vulnerable, i.e. it contains no
vulnerabilities. It means that it reacts to service requests in a controlled way, and
it is no longer possible to cause any impact on data and programs encapsulated
by the Operating System running on the web server. Thus, the web service now
answers requests from the Internet and its Operating System answers requests
from the web service.

Example 48 The Web Server is specified in ambients terms as follows.

--- web server

WS[s_WS|OS_WS|Allow internet s_WS]

s_WS[Replicate(In internet)]

OS_WS[Replicate(In s_WS)]

198

8.3. POWER GRID NETWORK EXAMPLE

The VPN server is also not vulnerable anymore and its service now requires
a valid user credential (e.g. a password) represented by ambient valid cred that
in this model contains: cred 0 and cred 110.

Example 49 The VPN server is specified in ambients terms as follows.

--- VPN server

VS[s_VS|OS_VS|AllowIn internet s_VS]

s_VS[Replicate(Accept valid_cred)]

OS_VS[Replicate(In s_VS)]

--- users valid credentials

valid_cred[copy cred cred_ 2|AllowIn internet valid_cred]

cred[Replicate(Accept internet)]

Once successfully authenticated via the VPN service, a user externally located
can access CORPint, e.g. the file system FSY S, the citrix server without the
need to authenticate again. Therefore, the citrix service now only accepts au-
thenticated connections from VPN or from users logged-in on workstations UW
inside CORPint.

Ambients UW n model extended workstations. It means that users authen-
ticated via VPN or via login have privileged access to the resources and data
encapsulated by their workstations OS. This is reflected in the model since am-
bients UW 0$OS UW and UW 1$OS UW accept s V S and login UW .

Example 50 The specification of subnet CORPint follows.

fEXT[CORPint|fEMS|AllowIn s_WS FS|AllowIn s_VS CORPint]

CORPint[FS|copy UW UW_ 2|citrix|AllowIn internet CORPint]

--- file server

FS[NFS|FSYS|AllowIn s_WS NFS|AllowIn s_VS NFS|AllowIn login_UW NFS]

NFS[Replicate(In s_WS)|Replicate(Accept s_VS)|Replicate(Accept login_UW)]

FSYS[Replicate(Accept NFS)|Replicate(In NFS)]

--- citrix server

citrix[s_citrix|OS_citrix|AllowIn s_VS s_citrix|AllowIn login_UW s_citrix]

s_citrix[Replicate(Accept s_VS)|Replicate(Accept login_UW)]

OS_citrix[Replicate(In s_citrix)]

--- user workstation

UW[browser_UW|login_UW|OS_UW|AllowIn s_VS OS_UW|AllowIn CORPint login_UW]

browser_UW[Replicate(Out internet)]

login_UW[Replicate(Accept valid_cred)]

OS_UW[Replicate(Accept s_VS)|Replicate(Accept login_UW)|

Replicate(In browser_UW)]

Hosts within the EMS network remain vulnerable since, as mentioned before,
they are legacy systems, difficult to patch and, therefore, highly vulnerable. How-
ever, the only entry point to the power grid is secured since access to citrix is
now restrict to authenticated users.

10Note that, although we provide a more realistic modelling of VPN server, compared to
attack graphs, since we make explicit that authentication is required to use a VPN connection,
we abstract from VPN technologies, and protocols used (e.g. IPsec, SSL) by different VPN
implementations. It is not our goal here to model further details of VPN architecture.

199

CHAPTER 8. TESTING THE MSAMS APPROACH

Example 51 The power grid network is specified as follows.

fEMS[OP|DH|copy CS CS_ 3|AllowIn s_citrix DH]

--- data historian

DH[s_DH|OS_DH|v_DH|AllowIn s_citrix s_DH|AllowIn internet v_DH]

v_DH[Replicate(Accept internet)]

s_DH[Replicate(Accept v_DH)|Replicate(In s_citrix)]

OS_DH[Replicate(Accept s_DH)]

--- operation station

OP[s_OP|OS_OP|v_OP|AllowIn s_DH s_OP]

s_OP[Replicate(Accept s_DH)]

v_OP[Replicate(Accept s_OP)]

OS_OP[Replicate(Accept v_OP)|Replicate(In CS_0$s_CS)|

Replicate(In CS_1$s_CS)|

Replicate(In CS_2$s_CS)]

--- communication servers

CS[s_CS|v_CS|OS_CS|AllowIn s_OP s_CS]

s_CS[Replicate(Accept s_OP)]

v_CS[Replicate(Accept s_CS)]

OS_CS[Replicate(Accept v_CS)|Replicate(In s_OP)]

If we execute MsAMS tool to find attacks with the network modelled above,
using the same input as before (reproduced below), the search returns no attack
because a valid credential cannot be acquired in the network.

• source ambient: v ehome

• target ambient: OS CS 1

• search type: forward-search

• fitness function: hubbiest-node

• credential ambients: valid cred$cred 0 and valid cred$cred 1

We then make the following update on ambient ehome and execute the search
again, i.e. re-run MsAMS tool.

Example 52 The specification of the re-modelled ehome follows.

ehome[v_ehome|exp_ehome|AllowIn internet v_ehome]

v_ehome[Replicate(Accept internet)]

exp_ehome[Replicate(Accept v_ehome)|ReleaseCred valid_cred$cred_0]

The employee at home host contains not only a vulnerability but also an
exposure that allows ambient-attacker to acquire the valid credential cred 0.

Example 53 A trace produced by the MsAMS tool for the example with the am-
bient ehome modified is (this trace is illustrated in Figure 8.12):

--- trace of search task for acquisition of credential

Enter $INTERNET$WORLD$EHOME$EXP_EHOME.

AcquireCred

200

8.3. POWER GRID NETWORK EXAMPLE

--- trace of search task for target

Enter $INTERNET$CORPNET$VALID_CRED$CRED_0.

Enter $INTERNET$CORPNETDMZVS$S_VS.

Enter $INTERNET$CORPNET$FEXT$CORPINT$CITRIX$S_CITRIX.

Enter $INTERNET$CORPNET$FEXT$FEMSDHV_DH.

Enter $INTERNET$CORPNET$FEXT$FEMSDHS_DH.

Enter $INTERNET$CORPNET$FEXT$FEMSOPS_OP.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1S_CS.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1V_CS.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1OS_CS

Web
Server (WS)

VPN
Server (VS)

File Server
(FS)

Citrix
 Server

` `

User Workstations
(UW)

Data
Historian (DH)

Operating
Station (OP)

Communication Servers (CS)

DMZ

`
fEXT fEMS

CORPint

World
ehome

`

Figure 8.12: Visual representation of the trace (in Example 53) produced by
MsAMS

Therefore, a compromised host used by an employee to access the internal
network via VPN may reach the power grid communication servers. What the
network administrator can do in this case is to block VPN access to citrix and
permit only access for authenticated connections from user workstations UW
within CORPint. We make this change in the next version of the specification of
CORPnet, in Section 8.3.3, and execute the MsAMS search for attacks again to
check that this countermeasure solves the problem identified.

The scores returned by PageRank and HITS for the example modelled above
are shown in Tables 8.4 and 8.5, respectively. They can be found in Section 8.B,
at the end of the chapter.

According to PageRank, the top four most authoritative ambients are:

1. the credentials cred 0, cred 1, and the ehome vulnerability v ehome:
0.18106595

201

CHAPTER 8. TESTING THE MSAMS APPROACH

2. the VPN service s V S: 0.1068714

The PageRank scores for this version of the example show credentials and
the vulnerability in ehome as the most important ambients. It makes complete
sense since those allow penetrating the network towards the target. Therefore,
again PageRank do not provide direct indication of target but provides interesting
insight about what to protect or to patch.

The highest three authority scores returned by HITS are:

1. the operating station service s OP : 0.036112405

2. the data historian service s DH: 0.035374995

3. the operating station vulnerability v OP , the services in the communication
servers s CS 0 and s CS 1, and the vulnerabilities v CS 0 and v CS 1 with
the same authority score: 0.3501747

Again, the authority scores returned by HITS show ambients closer to our
intuition of target, such as the services in the operating station, the data historian,
and the communication servers in the power grid.

The ambients with the highest hubs returned by HITS are:

1. the ehome vulnerability v ehome: 0.2313004

2. the credential cred 0 and cred 1: 0.2312522

3. the DH vulnerability v DH: 0.12381217

Hubs again return an ordering close to the one returned by PageRank. But
instead of only entry points, such as it happens with PageRank, it shows pas-
sageways like the vulnerability in the data historian that allows reaching high
authority ambients like the data historian service s DH, itself leading to the top
high authority ambient, the service in the operating station.

8.3.3 Version Two: Hypothesizing about a Vulnerable Work-
station

To avoid the type of attack discussed in the previous section, we restrict access to
citrix only for users authenticated via user workstation login. Therefore, in this
new version of the specification, we make the following change in the modelling
presented in Section 8.3.2.

Example 54 Updated specification of Citrix:

--- citrix server

citrix[s_citrix|OS_citrix|AllowIn login_UW s_citrix]

s_citrix[Replicate(Accept login_UW)]

OS_citrix[Replicate(In s_citrix)]

202

8.3. POWER GRID NETWORK EXAMPLE

If we run the MsAMS search again with this change in the specification11, no
attacks are found (same input as the previous run).

This level of protection would be enough for an ideal environment where 100%
of workstations were standard (as mentioned in Section 8.1). However, in prac-
tice, at least a small percentage of workstations are extended and user installed
software follows outside corporate patch management. For example, such users
could use a browser of their preference, not necessarily the one supported by the
organization. As a result, such workstations are likely to contain vulnerabilities,
since the burden of keeping them up-to-date is up to users. Therefore, we hy-
pothesize that user workstation UW 1 contains a browser vulnerability and, since
outbound is not restricted, it is reasonable to think that an user will make a re-
quest to a malicious website via Out (action) and, because of the vulnerability in
the browser, the answer to this request will infect the host, allowing an attacker
to bypass the login of an UW without presenting any valid credential. Therefore,
in this case we execute the MsAMS search again with the following input.

• source ambient: UWgroup$login UW

• target ambient: OS CS 1

• search type: forward-search

• fitness function: hubbiest-node

• credential ambients: valid cred$cred 0 and valid cred$cred 1

As a result, the search returns the following attack.

Example 55 The following attack trace, illustrated in Figure 8.13, is produced
by the MsAMS tool.

Enter $INTERNET$CORPNET$FEXT$CORPINT$CITRIX$S_CITRIX.

Enter $INTERNET$CORPNET$FEXT$FEMSDHV_DH.

Enter $INTERNET$CORPNET$FEXT$FEMSDHS_DH.

Enter $INTERNET$CORPNET$FEXT$FEMSOPS_OP.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1S_CS.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1V_CS.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1OS_CS

This trace shows that even with citrix accepting connections from users logged
via UW and not from users logged via VPN, a compromised extended workstation
allows an attacker to reach the power grid communication servers.

A next level of protection that the network administrator could consider is to
introduce another level of authentication in the data historian server. We model
this change next.

11The complete specification of the example network can be found in the chapter ap-
pendix 8.A.

203

CHAPTER 8. TESTING THE MSAMS APPROACH

Web
Server (WS)

VPN
Server (VS)

File Server
(FS)

Citrix
 Server

` `

User Workstations
(UW)

Data
Historian (DH)

Operating
Station (OP)

Communication Servers (CS)

DMZ

`

fEXT

fEMS

CORPint

World

Kerberos

Authentication
Server (AS)

Ticket Granting
Server (TGS)

fEXT

ehome

`

Figure 8.13: Visual representation of the trace (in Example 55) produced by
MsAMS

8.3.4 Version Three: Adding Kerberos Authentication to
the Data Historian Server

First, in the next section, we review the Kerberos protocol and present how it is
modelled, before we execute again the search for attacks with MsAMS tool.

8.3.4.1 Kerberos Authentication

Kerberos is an authentication service hosted in a trusted third-party and used
to verify users’ identity in non-secure distributed environments, such as across
the Internet. The Kerberos protocol was developed by MIT in the context of the
Athena project [200] in the late 80s. Since then, kerberos-based authentication
has been incorporated in several operating systems and platforms such as to the
Active Directory technology by Microsoft, widely used in enterprise networks for
reduced sign-on for active-directory-aware services.

Kerberos protocol is based on symmetric encryption. Both (network) ser-
vices that require authentication and users/clients that want to use such services
have to register with Kerberos, and have to share a long-term (private) key with
Kerberos. A simplified version of this authentication protocol is illustrated in
Figure 8.14.

The steps depicted in this figure are:

1- the user requests permission for kerberos to use a service (in a server) ,
providing username and password

204

8.3. POWER GRID NETWORK EXAMPLE

2− TGT

AS

client 1− pw

4− key

3− TGT’

5− key server

service

TGS

TGT = Ticket−Granting Ticket

kerberos infrastruture

TGS = Ticket−Granting Server/Service

pw = user password

key = encrypted key with a timestamp

AS = Authentication Server/Service

Figure 8.14: Kerberos authentication simplified to 5 steps, adapted from [200,
187]

2- kerberos Authentication Server (AS) checks the password and generates
an encrypted key in the client private key containing: a session key, a
timestamp, information about the client and the Ticket-Granting Server
(TGS) name in the form of a Ticket-Granting Ticket (TGT) sent back to
the client

3- the client decrypts the TGT and uses the session key to create an authen-
ticator, and then repacks authenticator and original TGT in the form of a
TGT′ and sends it to the TGS

4- the TGS creates an encrypted key in the service private key with the TGT′
and further information about the service requested; this key is sent to the
client

5- the client sends the key received from the TGS to the service server that
decrypts it, and checks its validity; communication between client and server
starts

Without loss of generality, we assume TGT and TGT′ are the same for the
effect of modelling and use the simplified scheme from Figure 8.14 to model the
Kerberos authentication in the next version of our CORPnet.

8.3.4.2 Modelling the Interface with Kerberos

The example corporate network CORPnet now interfaces with a Kerberos in-
frastructure available on the Internet. The update example scenario is illustrated
in Figure 8.15.

In this next version of the specification, access to the data historian service
s DH requires a keyDH obtained via Kerberos authentication.

205

CHAPTER 8. TESTING THE MSAMS APPROACH

Web
Server (WS)

VPN
Server (VS)

File Server
(FS)

Citrix
 Server

` `

User Workstations
(UW)

Data
Historian (DH)

Operating
Station (OP)

Communication Servers (CS)

DMZ

`

fEXT

fEMS

CORPint

World

Kerberos

Authentication
Server (AS)

Ticket Granting
Server (TGS)

fEXT

ehome

`

Figure 8.15: Kerberos infrastructure added to the original example scenario
shown in Figure 8.6

Example 56 The updated specification of the data historian follows.

--- data historian

DH[s_DH|OS_DH|v_DH|AllowIn s_citrix s_DH|AllowIn internet v_DH]

v_DH[Accept internet]

s_DH[Accept v_DH|Accept keyDH]

OS_DH[Accept s_DH]

Service kerb interface in citrix provides this interface to Kerberos. It means
that now the citrix server provides two services: one s citrix that allows access
to the server (e.g. it is a SSH service), and one kerb interface that allows au-
thentication via Kerberos infrastructure. In this version we distinguish extended
and standard workstations group. The service s citrix accepts any of them,
i.e. UWgroup as a whole, as long as users are logged meaning that they have
provided a valid cred. Therefore, in principle, all logged users can use service
kerb interface. We used copy to model 10 standard workstations, 2 extended
workstations and 2 credentials of the type cred kerb for extended workstation
users. Populating the model to reflect real networks is a matter of increasing
those number of copies.

Example 57 The specification of the re-modelled citrix, of user workstations
and users groups follows.

206

8.3. POWER GRID NETWORK EXAMPLE

--- citrix

citrix[s_citrix|OS_citrix|kerb_interface|AllowIn UWgroup$login_UW s_citrix]

s_citrix[Accept UWgroup$login_UW]

kerb_interface[Accept s_citrix]

OS_citrix[In s_citrix]

--- user workstations group

UWgroup[UWSgroup|UWEgroup|login_UW|AllowIn s_VS UWgroup|

AllowIn CORPint login_UW]

login_UW[Accept valid_cred]

--- standard workstations group

UWSgroup[copy UWS UWS_ 10|Allow s_VS UWSgroup]

--- extended workstations group

UWEgroup[copy UWE UWE_ 2|cred_kerb|AllowIn s_VS UWEgroup]

cred_kerb[copy credKB credKB_ 2|AllowIn CORPint cred_kerb]

credKB[Accept internet]

--- standard workstation

UWS[browser_UWS|OS_UWS|AllowIn s_VS OS_UWS|AllowIn CORPint login_UW]

browser_UWS[Out internet]

OS_UWS[In s_VS|In UWgroup$login_UW|In browser_UWS].

--- extended workstation

UWE[browser_UWE|OS_UWE|AllowIn s_VS OS_UWE|AllowIn CORPint login_UW]

browser_UWE[Out internet]

OS_UWE[Accept s_VS|Accept login_UW|In browser_UWE]

Although it seemed by the specification of service kerb interface in citrix
that any logged user could authenticate to kerberos, we see next that only users
from group UWEgroup (users from extended workstations) can do so, provided
a credential of type cred kerb, e.g. credKB 0 or credKB 1. In the specification
of the kerberos infrastructure the five steps described in Section 8.3.4.1 become
visible: (step 1) a user authenticates to the Authentication Server AS using the
interface kerb interface from citrix, providing a cred kerb credential, (step 2)
AS releases a TGT credential used to authenticate to the Ticket-Granting Server
TGS, (step 3) TGS accepts a TGT credential and (step 4) releases a credential
keyDH to the user using interface kerb interface from citrix. The user can
then (step 5) access the data historian server DH with this key, as shown in the
reviewed specification of the data historian in Example 56.

Example 58 The specification of the kerberos infrastructure follows.

--- kerberos infrastructure

kerberos[AS|TGS|AllowIn kerb_interface AS]

AS[TGT|Accept UWEgroup$cred_kerb|ReleaseCred TGT]

TGT[Accept internet]

TGS[keyDH|Accept TGT|ReleaseKey keyDH]

keyDH[Accept internet]

Considering as a what-if hypothesis that an attacker has exploited a browser
vulnerability on an extended workstation, we assume in this version, as we did

207

CHAPTER 8. TESTING THE MSAMS APPROACH

in the previous version, that the attacker has already bypassed the login process.
We run the MsAMS tool again with the following input:

• source ambient: UWgroup$login UW

• target ambient: OS CS 1

• search type: forward-search

• fitness function: hubbiest-node

• credential ambients: valid cred$cred 0, valid cred$cred 1,
uwgroup$uwegroup$cred kerb$credkb 0, uwgroup$uwegroup$cred kerb$credkb 1,
keyDH, TGT

Example 59 Attack trace produced by MsAMS (illustrated in Figure 8.13):

Enter $INTERNET$CORPNET$FEXT$CORPINT$CITRIX$S_CITRIX.

Enter $INTERNET$CORPNET$FEXT$FEMSDHV_DH.

Enter $INTERNET$CORPNET$FEXT$FEMSDHS_DH.

Enter $INTERNET$CORPNET$FEXT$FEMSOPS_OP.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1S_CS.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1V_CS.

Enter $INTERNET$CORPNET$FEXT$FEMSCS_1OS_CS

This trace shows that, even with Kerberos authentication to obtain a key for
access to the data historian, access to the communication servers is still possi-
ble. The reason is the remotely exploitable vulnerability v DH in the service
s DH. However, as mentioned before, hosts in the EMS network contain legacy
systems, difficult to patch. Therefore, the network administrator should find a
solution that involves securing the entry point to this network regardless of the
vulnerabilities it contains. One option is to use Kerberos authentication, not
for authentication to the data historian server directly, but as another layer of
protection before that, i.e. in citrix. This is reflected in the next version of the
specification of CORPnet.

8.3.5 Version Four: Adding Kerberos Authentication to
the Citrix Server

In this version, citrix provides three services: s citrix, and two interface services,
i.e. kerb interface and dh interface. As in the previous version, service s citrix
is the entry point and accepts connections from users logged in CORPint work-
stations. Furthermore, service kerb interface provides an interface to Kerberos
that allows users from group UWEgroup (users from extended workstations) to
obtain a valid keyDH, provided a cred kerb is presented to kerberos authentica-
tion server AS. However, the DH server no longer accepts connections coming
directly from service kerb interface, but now accepts connections originated from
service dh interface, also provided by citrix. The service dh interface, intro-
duced in the present version, is an interface with the data historian, and can only
be used if keyDH is presented.

208

8.4. SUMMARY

Example 60 The updated specification of citrix and DH follows (refer to the
chapter appendix 8.A for the complete specification of this version).

--- citrix

citrix[s_citrix|OS_citrix|kerb_interface|dh_interface|

AllowIn UWgroup$login_UW s_citrix]

s_citrix[Accept UWgroup$login_UW]

kerb_interface[Accept s_citrix]

dh_interface[Accept kerberostgskeyDH]

OS_citrix[In s_citrix]

--- data historian

DH[s_DH|OS_DH|v_DH|AllowIn dh_interface s_DH|AllowIn internet v_DH]

v_DH[Accept internet]

s_DH[Accept v_DH|Accept dh_interface]

OS_DH[Accept s_DH]

If we run the same search as the one used for the previous version (i.e. with
the same input), the MsAMS tool returns no attacks. Hence, even though the
EMS network is still vulnerable, it is safer now than it was before. Using MsAMS,
our hypothetical network administrator was able to reason at the level of access
control, something not possible with attack graphs. In fact, in this power grid
example we started in Section 8.3.1 from a baseline modelling where hosts and
servers were not protected by credentials and contained vulnerabilities. This
modelling reflects the typical attack graph perspective of the example scenario.
From this initial version we modelled a more realistic perspective with credentials
in Section 8.3.2, and used the MsAMS tool to find possible attacks and validate
solutions that avoids them, in Sections 8.3.3 to 8.3.5. This reasoning shows the
applicability of the tool for a network administrator for gaining insights about
the real network through the network model and, as a consequence, improve the
level of protection of the real power grid network.

8.4 Summary

In this chapter, we have used the MsAMS proof-of-concept tool to show the po-
tential of the MsAMS approach (i) for modelling networks in a way that relates
model to the real network, (ii) for finding possible multi-step attacks in the mod-
elled network, and (iii) for providing metrics not only used internally to guide the
search (i.e. HITS hubs) but also for the network administrator to make decisions.
For example, PageRank scores have provided indication of most valuable entities
to protect (such as credentials that allow access to the network) or high priority
vulnerabilities to patch at entry points of the network. And HITS authorities
have provided indication of asset value in the sense that they indicate potential
targets.

We have modelled a computing grid network example and used what-if anal-
ysis involving a zero-day vulnerability. However, the most interesting aspect of
this example, is the ability provided by the MsAMS approach to reason about

209

CHAPTER 8. TESTING THE MSAMS APPROACH

firewall outbound rules. In this case, the network administrator could check in
the model if blocking requests initiated within a subnet would avoid two of the
most potentially damaging traces reported. The possibility to allow this kind of
reasoning and the isomorphy between actions in the model and actions in a real
network are an advantage of MsAMS over current attack graph approaches. As
discussed in Section 4.1 (page 67), in those approaches firewall are not explicitly
represented and only inbound reachability is considered. Therefore, with MsAMS
we are able not only to represent explicitly firewalls in network models, but also to
represent both types of actions they perform: allow inbound and deny outbound
traffic in the network.

We have also modelled a power grid network example initially in the same way
as the Attack Graph community does, that represents essentially only vulnerable
hosts. We have then introduced a more realistic model of the network, where hosts
protected by credentials also represent attack steps. Incrementally, we mimicked
a network administrator reasoning about the security of the real network in terms
of possible attacks found in the network model. This reasoning involved what-
if hypothesis, and Kerberos authentication introduced on different hosts of the
network. In addition, we have discussed scores produced by PageRank and HITS
for two versions of the example.

210

8.A. CHAPTER APPENDIX: COMPLETE SPECIFICATIONS

8.A Chapter Appendix: Complete Specifications

Example 61 Specification of the computing grid network example as in Sec-
tion 8.2.1; traces of attacks found presented in Example 39.

network internet

internet[attHost|FW1]

attHost[rsv|AllowIn internet rsv]

FW1[DMZ|FW2|AllowIn internet DMZ]

DMZ[MS|WS|AllowIn internet WS|AllowIn internet MS]

WS[v_WS|web_s|OS_WS|AllowIn internet v_WS]

v_WS[Replicate(Accept internet)]

web_s[Replicate(Accept v_WS)]

OS_WS[Replcate(Accept web_s)]

MS[s_MS|OS_MS|AllowIn internet mail_s]

mail_s[Replicate(In internet)]

OS_MS[In mail_s]

FW2[FW3|sub3|sub4|AllowIn web_s C|AllowIn DMZ sub3]

FW3[sub1|C|sub2|AllowIn web_s C|AllowIn sub3 C|AllowIn sub4 C]

sub1[A|copy A B 1|AllowIn internet sub1]

sub2[D|copy D E 1|AllowIn internet sub2]

sub3[copy D F 1|copy D G 1|AllowIn internet sub3]

sub4[copy C H 1|copy D I 1|AllowIn internet sub4]

--- host C (vulnerable host)

C[sv|v|OS|AllowIn internet v]

v[Replicate(Accept internet)]

sv[Replicate(Accept v)]

OS[Replicate(Accept sv)]

--- host D (non-vulnerable host)

D[rsv|rOS|AllowIn internet rsv]

rsv[Replicate(In internet)]

rOS[Replicate(In rsv)]

--- host A (processing node)

A[mpi_s|prOS|AllowIn C mpi_s]

mpi_s[Replicate(Accept C)]

prOS[Replicate(In mpi_s)]

Example 62 Specification of the computing grid network example as in Sec-
tion 8.2.2; traces of attacks found presented in Example 41.

network internet

internet[attHost|FW1]

attHost[rsv|AllowIn internet rsv]

FW1[DMZ|FW2|AllowIn internet DMZ]

DMZ[MS|WS|AllowIn internet WS|AllowIn internet MS]

WS[v_WS|web_s|OS_WS|AllowIn internet v_WS]

v_WS[Replicate(Accept internet)]

web_s[Replicate(Accept v_WS)]

OS_WS[Replcate(Accept web_s)]

211

CHAPTER 8. TESTING THE MSAMS APPROACH

MS[s_MS|OS_MS|AllowIn internet mail_s]

mail_s[Replicate(In internet)]

OS_MS[In mail_s]

FW2[FW3|sub3|sub4|AllowIn web_s C|AllowIn DMZ sub3]

FW3[sub1|C|sub2|AllowIn web_s C|AllowIn sub3 C|AllowIn sub4 C|DenyUp sub1]

sub1[A|copy A B 1|AllowIn internet sub1]

sub2[D|copy D E 1|AllowIn internet sub2]

sub3[copy D F 1|copy D G 1|AllowIn internet sub3]

sub4[copy C H 1|copy D I 1|AllowIn internet sub4]

--- host C (vulnerable host)

C[sv|v|OS|AllowIn internet v]

v[Replicate(Accept internet)]

sv[Replicate(Accept v)]

OS[Replicate(Accept sv)]

--- host D (non-vulnerable host)

D[rsv|rOS|AllowIn internet rsv]

rsv[Replicate(In internet)]

rOS[Replicate(In rsv)]

--- host A (processing node)

A[mpi_s|prOS|AllowIn C mpi_s]

mpi_s[Replicate(Accept C)]

prOS[Replicate(In mpi_s)]

Example 63 Specification of the power grid network example as in Section 8.3.1;
trace of attack found presented in Example 47.

network internet

internet[CORPnet|world]

world[ehome|AllowIn internet world]

--- ehome (employee at home) host

ehome[v_ehome|AllowIn internet v_ehome]

v_ehome[Replicate(Accept internet)]

--- corporate network

CORPnet[DMZ|fEXT|AllowIn internet CORPnet]

DMZ[WS|VS|AllowIn internet DMZ]

--- web server

WS[s_WS|OS_WS|v_WS|AllowIn internet v_WS]

v_WS[Replicate(Accept internet)]

s_WS[Replicate(Accept v_WS)]

OS_WS[Replicate(Accept s_WS)]

--- VPN server

VS[s_VS|OS_VS|v_VS|AllowIn internet v_VS]

v_VS[Replicate(Accept internet)]

s_VS[Replicate(Accept v_VS)]

OS_VS[Replicate(Accept s_VS)]

--- CORPint subnet

fEXT[CORPint|fEMS|AllowIn s_WS FS|AllowIn s_VS CORPint]

CORPint[FS|copy UW UW_ 2|citrix|AllowIn internet CORPint]

--- file server

212

8.A. CHAPTER APPENDIX: COMPLETE SPECIFICATIONS

FS[NFS|FSYS|v_FS|AllowIn internet v_FS]

v_FS[Replicate(Accept internet)]

NFS[Replicate(Accept v_FS)]

FSYS[Replicate(Accept NFS)]

--- citrix server

citrix[s_citrix|OS_citrix|v_citrix|AllowIn internet v_citrix]

v_citrix[Replicate(Accept internet)]

s_citrix[Replicate(Accept v_citrix)]

OS_citrix[Replicate(Accept s_citrix)]

--- user workstation

UW[browser_UW|OS_UW|AllowIn s_VS OS_UW]

v_UW[Replicate(Accept internet)]

browser_UW[Out internet]

OS_UW[Replicate(Accept s_VS)|Replicate(In browser_UW)]

--- EMS network

fEMS[OP|DH|copy CS CS_ 3|AllowIn s_citrix DH]

--- data historian server

DH[s_DH|OS_DH|v_DH|AllowIn s_citrix s_DH|AllowIn internet v_DH].

v_DH[Replicate(Accept internet)]

s_DH[Replicate(Accept v_DH)|Replicate(In s_citrix)]

OS_DH[Replicate(Accept s_DH)]

--- operating station

OP[s_OP|OS_OP|v_OP|AllowIn s_DH s_OP]

s_OP[Replicate(Accept s_DH)]

v_OP[Replicate(Accept s_OP)]

OS_OP[Replicate(Accept v_OP)|Replicate(In CS_0$s_CS)|

Replicate(In CS_1$s_CS)|

Replicate(In CS_2$s_CS)]

--- communication server

CS[s_CS|v_CS|OS_CS|AllowIn s_OP s_CS]

s_CS[Replicate(Accept s_OP)]

v_CS[Replicate(Accept s_CS)]

OS_CS[Replicate(Accept v_CS)|Replicate(In s_OP)]

Example 64 Specification of the power grid network example as in Section 8.3.2;
trace of attack found presented in Example 53.

network internet

internet[CORPnet|world]

world[ehome|Allow internet world]

--- ehome (employee at home) host

ehome[v_ehome|exp_ehome|AllowIn internet v_ehome]

v_ehome[Replicate(Accept internet)]

exp_ehome[Replicate(Accept v_ehome)|ReleaseCred valid_cred$cred_0]

--- corporate network

CORPnet[DMZ|fEXT|valid_cred|AllowIn internet CORPnet]

DMZ[WS|VS|Allow internet DMZ]

--- web server

WS[s_WS|OS_WS|Allow internet s_WS]

213

CHAPTER 8. TESTING THE MSAMS APPROACH

s_WS[Replicate(In internet)]

OS_WS[Replicate(In s_WS)]

--- VPN server

VS[s_VS|OS_VS|AllowIn internet s_VS]

s_VS[Replicate(Accept valid_cred)]

OS_VS[Replicate(In s_VS)]

--- users valid credentials

valid_cred[copy cred cred_ 2|AllowIn internet valid_cred]

cred[Replicate(Accept internet)]

--- CORPint subnet

fEXT[CORPint|fEMS|AllowIn s_WS FS|AllowIn s_VS CORPint]

CORPint[FS|copy UW UW_ 2|citrix|AllowIn internet CORPint]

--- file server

FS[NFS|FSYS|AllowIn s_WS NFS|AllowIn s_VS NFS|AllowIn login_UW NFS]

NFS[Replicate(In s_WS)|Replicate(Accept s_VS)|Replicate(Accept login_UW)]

FSYS[Replicate(Accept NFS)|Replicate(In NFS)]

--- citrix server

citrix[s_citrix|OS_citrix|AllowIn s_VS s_citrix|AllowIn login_UW s_citrix]

s_citrix[Replicate(Accept s_VS)|Replicate(Accept login_UW)]

OS_citrix[Replicate(In s_citrix)]

--- user workstation

UW[browser_UW|login_UW|OS_UW|AllowIn s_VS OS_UW|AllowIn CORPint login_UW]

browser_UW[Replicate(Out internet)]

login_UW[Replicate(Accept valid_cred)]

OS_UW[Replicate(Accept s_VS)|Replicate(Accept login_UW)|

Replicate(In browser_UW)]

--- EMS network

fEMS[OP|DH|copy CS CS_ 3|AllowIn s_citrix DH]

--- data historian

DH[s_DH|OS_DH|v_DH|AllowIn s_citrix s_DH|AllowIn internet v_DH]

v_DH[Replicate(Accept internet)]

s_DH[Replicate(Accept v_DH)|Replicate(In s_citrix)]

OS_DH[Replicate(Accept s_DH)]

--- operation station

OP[s_OP|OS_OP|v_OP|AllowIn s_DH s_OP]

s_OP[Replicate(Accept s_DH)]

v_OP[Replicate(Accept s_OP)]

OS_OP[Replicate(Accept v_OP)|Replicate(In CS_0$s_CS)|

Replicate(In CS_1$s_CS)|

Replicate(In CS_2$s_CS)]

--- communication servers

CS[s_CS|v_CS|OS_CS|AllowIn s_OP s_CS]

s_CS[Replicate(Accept s_OP)]

v_CS[Replicate(Accept s_CS)]

OS_CS[Replicate(Accept v_CS)|Replicate(In s_OP)]

Example 65 Specification of the power grid network example as in Section 8.3.3;
trace of attack found presented in Example 55.

214

8.A. CHAPTER APPENDIX: COMPLETE SPECIFICATIONS

network internet

internet[CORPnet|world]

world[ehome|Allow internet world]

--- ehome (employee at home) host

ehome[v_ehome|exp_ehome|AllowIn internet v_ehome]

v_ehome[Replicate(Accept internet)]

exp_ehome[Replicate(Accept v_ehome)|ReleaseCred valid_cred$cred_0]

--- corporate network

CORPnet[DMZ|fEXT|valid_cred|AllowIn internet CORPnet]

DMZ[WS|VS|Allow internet DMZ]

--- web server

WS[s_WS|OS_WS|Allow internet s_WS]

s_WS[Replicate(In internet)]

OS_WS[Replicate(In s_WS)]

--- VPN server

VS[s_VS|OS_VS|AllowIn internet s_VS]

s_VS[Replicate(Accept valid_cred)]

OS_VS[Replicate(In s_VS)]

--- users valid credentials

valid_cred[copy cred cred_ 2|AllowIn internet valid_cred]

cred[Replicate(Accept internet)]

--- CORPint subnet

fEXT[CORPint|fEMS|AllowIn s_WS FS|AllowIn s_VS CORPint]

CORPint[FS|copy UW UW_ 2|citrix|AllowIn internet CORPint]

--- file server

FS[NFS|FSYS|AllowIn s_WS NFS|AllowIn s_VS NFS|AllowIn login_UW NFS]

NFS[Replicate(In s_WS)|Replicate(Accept s_VS)|Replicate(Accept login_UW)]

FSYS[Replicate(Accept NFS)|Replicate(In NFS)]

--- citrix server

citrix[s_citrix|OS_citrix|AllowIn login_UW s_citrix]

s_citrix[Replicate(Accept login_UW)]

OS_citrix[Replicate(In s_citrix)]

--- user workstation

UW[browser_UW|login_UW|OS_UW|AllowIn s_VS OS_UW|AllowIn CORPint login_UW]

browser_UW[Replicate(Out internet)]

login_UW[Replicate(Accept valid_cred)]

OS_UW[Replicate(Accept s_VS)|Replicate(Accept login_UW)|

Replicate(In browser_UW)]

--- EMS network

fEMS[OP|DH|copy CS CS_ 3|AllowIn s_citrix DH]

--- data historian

DH[s_DH|OS_DH|v_DH|AllowIn s_citrix s_DH|AllowIn internet v_DH]

v_DH[Replicate(Accept internet)]

s_DH[Replicate(Accept v_DH)|Replicate(In s_citrix)]

OS_DH[Replicate(Accept s_DH)]

--- operation station

OP[s_OP|OS_OP|v_OP|AllowIn s_DH s_OP]

s_OP[Replicate(Accept s_DH)]

v_OP[Replicate(Accept s_OP)]

215

CHAPTER 8. TESTING THE MSAMS APPROACH

OS_OP[Replicate(Accept v_OP)|Replicate(In CS_0$s_CS)|

Replicate(In CS_1$s_CS)|

Replicate(In CS_2$s_CS)]

--- communication servers

CS[s_CS|v_CS|OS_CS|AllowIn s_OP s_CS]

s_CS[Replicate(Accept s_OP)]

v_CS[Replicate(Accept s_CS)]

OS_CS[Replicate(Accept v_CS)|Replicate(In s_OP)]

Example 66 Specification of the power grid network example as in Section 8.3.4;
trace of attack found presented in Example 59.

network internet

internet[CORPnet|world|kerberos]

world[ehome|AllowIn internet world]

--- CORPnet network

CORPnet[DMZ|fEXT|valid_cred|Allow internet CORPnet]

--- employee at home host

ehome[v_ehome|exp_ehome|AllowIn internet v_ehome]

v_ehome[Replicate(Accept internet)]

exp_ehome[Replicate(Accept v_ehome)|ReleaseCred valid_cred$cred_0]

--- DMZ subnet

DMZ[WS|VS|Allow internet DMZ]

--- web server

WS[s_WS|OS_WS|AllowIn internet s_WS]

s_WS[In internet]

OS_WS[In s_WS]

--- VPN server

VS[s_VS|OS_VS|AllowIn internet s_VS]

s_VS[Accept valid_cred]

OS_VS[In s_VS]

--- valid users credentials

valid_cred[copy cred cred_ 2|AllowIn internet valid_cred]

cred[Accept internet]

--- external firewall

fEXT[CORPint|fEMS|AllowIn s_WS FS|AllowIn s_VS CORPint]

--- CORPint subnet

CORPint[FS|UWgroup|citrix|AllowIn internet CORPint]

--- file server

FS[NFS|FSYS|AllowIn s_WS NFS|AllowIn s_VS NFS|AllowIn UWgroup$login_UW NFS]

NFS[In s_WS|Accept s_VS|Accept UWgroup$login_UW]

FSYS[Accept NFS|In NFS]

--- citrix

citrix[s_citrix|OS_citrix|kerb_interface|AllowIn UWgroup$login_UW s_citrix]

s_citrix[Accept UWgroup$login_UW]

kerb_interface[Accept s_citrix]

OS_citrix[In s_citrix]

--- user workstations group

UWgroup[UWSgroup|UWEgroup|login_UW|AllowIn s_VS UWgroup|

216

8.A. CHAPTER APPENDIX: COMPLETE SPECIFICATIONS

AllowIn CORPint login_UW]

login_UW[Accept valid_cred]

--- standard workstations group

UWSgroup[copy UWS UWS_ 10|Allow s_VS UWSgroup]

--- extended workstations group

UWEgroup[copy UWE UWE_ 2|cred_kerb|AllowIn s_VS UWEgroup]

cred_kerb[copy credKB credKB_ 2|AllowIn CORPint cred_kerb]

credKB[Accept internet]

--- standard workstation

UWS[browser_UWS|OS_UWS|AllowIn s_VS OS_UWS|AllowIn CORPint login_UW]

browser_UWS[Out internet]

OS_UWS[In s_VS|In UWgroup$login_UW|In browser_UWS].

--- extended workstation

UWE[browser_UWE|OS_UWE|AllowIn s_VS OS_UWE|AllowIn CORPint login_UW]

browser_UWE[Out internet]

OS_UWE[Accept s_VS|Accept login_UW|In browser_UWE]

--- EMS network

fEMS[OP|DH|copy CS CS_ 3|AllowIn dh_interface DH]

--- data historian

DH[s_DH|OS_DH|v_DH|AllowIn s_citrix s_DH|AllowIn internet v_DH]

v_DH[Accept internet]

s_DH[Accept v_DH|Accept keyDH]

OS_DH[Accept s_DH]

--- operation station

OP[s_OP|OS_OP|v_OP|AllowIn s_DH s_OP]

s_OP[Accept s_DH]

v_OP[Accept s_OP]

OS_OP[Accept v_OP|In CS_0$s_CS|In CS_1$s_CS|In CS_2$s_CS]

--- communication servers

CS[s_CS|v_CS|OS_CS|AllowIn s_OP s_CS]

s_CS[Accept s_OP]

v_CS[Accept s_CS]

OS_CS[Accept v_CS|In s_OP]

--- kerberos infrastructure

kerberos[AS|TGS|AllowIn kerb_interface AS]

AS[TGT|Accept UWEgroup$cred_kerb|ReleaseCred TGT]

TGT[Accept internet]

TGS[keyDH|Accept TGT|ReleaseKey keyDH]

keyDH[Accept internet]

Example 67 Specification of the power grid network example as in Section 8.3.5;
no attack found.

network internet

internet[CORPnet|world|kerberos]

world[ehome|AllowIn internet world]

--- CORPnet network

CORPnet[DMZ|fEXT|valid_cred|Allow internet CORPnet]

--- employee at home host

217

CHAPTER 8. TESTING THE MSAMS APPROACH

ehome[v_ehome|AllowIn internet v_ehome]

v_ehome[Accept internet]

--- DMZ subnet

DMZ[WS|VS|Allow internet DMZ]

--- web server

WS[s_WS|OS_WS|AllowIn internet s_WS]

s_WS[In internet]

OS_WS[In s_WS]

--- VPN server

VS[s_VS|OS_VS|AllowIn internet s_VS]

s_VS[Accept valid_cred]

OS_VS[In s_VS]

--- valid users credentials

valid_cred[copy cred cred_ 2|AllowIn internet valid_cred]

cred[Accept internet]

--- external firewall

fEXT[CORPint|fEMS|AllowIn s_WS FS|AllowIn s_VS CORPint]

--- CORPint subnet

CORPint[FS|UWgroup|citrix|AllowIn internet CORPint]

--- file server

FS[NFS|FSYS|AllowIn s_WS NFS|AllowIn s_VS NFS|AllowIn UWgroup$login_UW NFS]

NFS[In s_WS|Accept s_VS|Accept UWgroup$login_UW]

FSYS[Accept NFS|In NFS]

--- citrix

citrix[s_citrix|OS_citrix|kerb_interface|dh_interface|

AllowIn UWgroup$login_UW s_citrix]

s_citrix[Accept UWgroup$login_UW]

kerb_interface[Accept s_citrix]

dh_interface[Accept kerberostgskeyDH]

OS_citrix[In s_citrix]

--- user workstations group

UWgroup[UWSgroup|UWEgroup|login_UW|AllowIn s_VS UWgroup|

AllowIn CORPint login_UW]

login_UW[Accept valid_cred]

--- standard workstations group

UWSgroup[copy UWS UWS_ 10|Allow s_VS UWSgroup]

--- extended workstations group

UWEgroup[copy UWE UWE_ 2|cred_kerb|AllowIn s_VS UWEgroup]

cred_kerb[copy credKB credKB_ 2|AllowIn CORPint cred_kerb]

credKB[Accept internet]

--- standard workstation

UWS[browser_UWS|OS_UWS|AllowIn s_VS OS_UWS|AllowIn CORPint login_UW]

browser_UWS[Out internet]

OS_UWS[In s_VS|In UWgroup$login_UW|In browser_UWS].

--- extended workstation

UWE[browser_UWE|OS_UWE|AllowIn s_VS OS_UWE|AllowIn CORPint login_UW]

browser_UWE[Out internet]

OS_UWE[Accept s_VS|Accept login_UW|In browser_UWE]

--- EMS network

218

8.B. CHAPTER APPENDIX: PAGERANK AND HITS SCORES

fEMS[OP|DH|copy CS CS_ 3|AllowIn dh_interface DH]

--- datahistorian

DH[s_DH|OS_DH|v_DH|AllowIn dh_interface s_DH|AllowIn internet v_DH]

v_DH[Accept internet]

s_DH[Accept v_DH|Accept dh_interface]

OS_DH[Accept s_DH]

--- operation station

OP[s_OP|OS_OP|v_OP|AllowIn s_DH s_OP]

s_OP[Accept s_DH]

v_OP[Accept s_OP]

OS_OP[Accept v_OP|In CS_0$s_CS|In CS_1$s_CS|In CS_2$s_CS]

--- communication servers

CS[s_CS|v_CS|OS_CS|AllowIn s_OP s_CS]

s_CS[Accept s_OP]

v_CS[Accept s_CS]

OS_CS[Accept v_CS|In s_OP]

--- kerberos infrastructure

kerberos[AS|TGS|AllowIn kerb_interface AS]

AS[TGT|Accept UWEgroup$cred_kerb|ReleaseCred TGT]

TGT[Accept internet]

TGS[keyDH|Accept TGT|ReleaseKey keyDH]

keyDH[Accept internet]

8.B Chapter Appendix: PageRank and HITS Scores

219

CHAPTER 8. TESTING THE MSAMS APPROACH

ambient pagerank value
$INTERNET$WORLD$EHOME 0.004304162
$INTERNET$CORPNET$FEXT$FEMS$DH 0.004304162
$INTERNET$CORPNET$FEXT$FEMSOPS OP 0.0049764668
$INTERNET$CORPNET$FEXT$CORPINT 0.004304162
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX 0.004304162
$INTERNET$WORLD 0.004304162
$INTERNET$WORLD$EHOME$V EHOME 0.16886869
$INTERNET$CORPNET$FEXT$FEMS$CS 0$S CS 0.0047271634
$INTERNET$CORPNET$FEXT$FEMSDHV DH 0.014282447
$INTERNET$CORPNETDMZVS$OS VS 0.010406292
$INTERNET$CORPNET$FEXT$FEMS$CS 1$V CS 0.004878176
$INTERNET$CORPNET$FEXT$FEMS$OP 0.004304162
$INTERNET$CORPNET$FEXT$CORPINT$UW 0$OS UW 0.010406292
$INTERNET$CORPNET$FEXT$CORPINT$FS 0.004304162
$INTERNET$CORPNET$FEXT$CORPINTFSV FS 0.047588766
$INTERNET$CORPNET$FEXT$CORPINTFSFSYS 0.0060600317
$INTERNET$CORPNET 0.004304162
$INTERNET$CORPNET$FEXT$FEMS$CS 2 0.004304162
$INTERNET$CORPNET$FEXT$FEMS$CS 0$V CS 0.004878176
$INTERNET$CORPNET$FEXT$FEMSDHOS DH 0.0049764668
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$OS CITRIX 0.005636937
$INTERNET$CORPNET$FEXT$CORPINT$UW 1$OS UW 0.010406292
$INTERNET$CORPNET$FEXT$CORPINTFSNFS 0.012394282
$INTERNET$CORPNETDMZVS 0.004304162
$INTERNET$CORPNETDMZVS$V VS 0.18751004
$INTERNET$CORPNETDMZWS 0.004304162
$INTERNET 0.004304162
$INTERNET$CORPNET$FEXT$FEMS$CS 2$S CS 0.0047271634
$INTERNET$CORPNET$FEXT$FEMS$CS 1 0.004304162
$INTERNET$CORPNET$FEXT$FEMS$CS 1$OS CS 0.004896513
$INTERNET$CORPNET$FEXT$FEMS$CS 1$S CS 0.0047271634
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$S CITRIX 0.010975675
$INTERNET$CORPNETDMZWS$OS WS 0.01406757
$INTERNET$CORPNET$FEXT$FEMS$CS 0 0.004304162
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$V CITRIX 0.039243966
$INTERNET$CORPNET$FEXT$CORPINT$UW 0$BROWSER UW 0.004304162
$INTERNET$CORPNETDMZVS$S VS 0.057431955
$INTERNET$CORPNET$FEXT 0.004304162
$INTERNET$CORPNET$FEXT$FEMS$CS 2$OS CS 0.004896513
$INTERNET$CORPNET$FEXT$FEMS$CS 2$V CS 0.004878176
$INTERNET$CORPNET$FEXT$FEMS$CS 0$OS CS 0.004896513
$INTERNET$CORPNET$FEXT$FEMSDHS DH 0.0063275234
$INTERNET$CORPNET$FEXT$CORPINT$UW 1 0.004304162
$INTERNET$CORPNET$DMZ 0.004304162
$INTERNET$CORPNETDMZWS$V WS 0.18751004
$INTERNET$CORPNET$FEXT$FEMS 0.004304162
$INTERNET$CORPNET$FEXT$FEMSOPV OP 0.0047271634
$INTERNET$CORPNET$FEXT$FEMSOPOS OP 0.004878176
$INTERNET$CORPNET$FEXT$CORPINT$UW 1$BROWSER UW 0.004304162
$INTERNET$CORPNET$FEXT$CORPINT$UW 0 0.004304162
$INTERNET$CORPNETDMZWS$S WS 0.057431955

Table 8.2: PageRank scores, power grid example, Section 8.3.1 (α = 0.85)

220

8.B. CHAPTER APPENDIX: PAGERANK AND HITS SCORES

ambient authority hub
$INTERNET$WORLD$EHOME 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$FEMS$DH 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$FEMSOPS OP 0.03718147 0.0060794866
$INTERNET$CORPNET$FEXT$CORPINT 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX 0.0 2.3772389e-5
$INTERNET$WORLD 0.0 2.3772389e-5
$INTERNET$WORLD$EHOME$V EHOME 0.01355535 0.16294982
$INTERNET$CORPNET$FEXT$FEMS$CS 0$S CS 0.036409695 0.006165382
$INTERNET$CORPNET$FEXT$FEMSDHV DH 0.032632466 0.09019126
$INTERNET$CORPNETDMZVS$OS VS 0.020333674 0.0054894593
$INTERNET$CORPNET$FEXT$FEMS$CS 1$V CS 0.036409695 0.0060374304
$INTERNET$CORPNET$FEXT$FEMS$OP 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$CORPINT$UW 0$OS UW 0.032408234 0.0054894593
$INTERNET$CORPNET$FEXT$CORPINT$FS 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$CORPINTFSV FS 0.02646059 0.14735377
$INTERNET$CORPNET$FEXT$CORPINTFSFSYS 0.032408234 0.00541351
$INTERNET$CORPNET 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 2 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 0$V CS 0.036409695 0.0060374304
$INTERNET$CORPNET$FEXT$FEMSDHOS DH 0.036159508 0.0060794866
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$OS CITRIX 0.032408234 0.0060374304
$INTERNET$CORPNET$FEXT$CORPINT$UW 1$OS UW 0.032408234 0.0054894593
$INTERNET$CORPNET$FEXT$CORPINTFSNFS 0.032632466 0.0043941536
$INTERNET$CORPNETDMZVS 0.0 2.3772389e-5
$INTERNET$CORPNETDMZVS$V VS 0.013649792 0.16293405
$INTERNET$CORPNETDMZWS 0.0 2.3772389e-5
$INTERNET 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 2$S CS 0.036409695 0.006165382
$INTERNET$CORPNET$FEXT$FEMS$CS 1 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 1$OS CS 0.036159508 0.0060374304
$INTERNET$CORPNET$FEXT$FEMS$CS 1$S CS 0.036409695 0.006165382
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$S CITRIX 0.036409695 0.004424811
$INTERNET$CORPNETDMZWS$OS WS 0.020333674 0.004424811
$INTERNET$CORPNET$FEXT$FEMS$CS 0 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$V CITRIX 0.02664624 0.14292207
$INTERNET$CORPNET$FEXT$CORPINT$UW 0$BROWSER UW 0.032408234 2.3772389e-5
$INTERNET$CORPNETDMZVS$S VS 0.03309037 0.0022783186
$INTERNET$CORPNET$FEXT 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 2$OS CS 0.036159508 0.0060374304
$INTERNET$CORPNET$FEXT$FEMS$CS 2$V CS 0.036409695 0.0060374304
$INTERNET$CORPNET$FEXT$FEMS$CS 0$OS CS 0.036159508 0.0060374304
$INTERNET$CORPNET$FEXT$FEMSDHS DH 0.03666337 0.00541351
$INTERNET$CORPNET$FEXT$CORPINT$UW 1 0.0 2.3772389e-5
$INTERNET$CORPNET$DMZ 0.0 2.3772389e-5
$INTERNET$CORPNETDMZWS$V WS 0.013649792 0.16293405
$INTERNET$CORPNET$FEXT$FEMS 0.0 2.3772389e-5
$INTERNET$CORPNET$FEXT$FEMSOPV OP 0.036409695 0.006165382
$INTERNET$CORPNET$FEXT$FEMSOPOS OP 0.036159508 0.0060374304
$INTERNET$CORPNET$FEXT$CORPINT$UW 1$BROWSER UW 0.032408234 2.3772389e-5
$INTERNET$CORPNET$FEXT$CORPINT$UW 0 0.0 2.3772389e-5
$INTERNET$CORPNETDMZWS$S WS 0.02664624 0.0022783186

Table 8.3: HITS scores, power grid example, Section 8.3.1 (ξ = 0.85)

221

CHAPTER 8. TESTING THE MSAMS APPROACH

ambient pagerank value
$INTERNET$WORLD$EHOME 0.004267429
$INTERNET$CORPNET$VALID CRED$CRED 0 0.18106595
$INTERNET$CORPNET$FEXT$FEMS$DH 0.004267429
$INTERNET$CORPNET$FEXT$FEMSOPS OP 0.0055145174
$INTERNET$CORPNET$FEXT$CORPINT 0.004267429
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX 0.004267429
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$LOGIN UW 0.004267429
$INTERNET$WORLD 0.004267429
$INTERNET$WORLD$EHOME$EXP EHOME 0.055569414
$INTERNET$WORLD$EHOME$V EHOME 0.18106595
$INTERNET$CORPNET$FEXT$FEMS$CS 0$S CS 0.0048533524
$INTERNET$CORPNET$FEXT$FEMSDHV DH 0.021342969
$INTERNET$CORPNETDMZVS$OS VS 0.004267429
$INTERNET$CORPNET$FEXT$FEMS$CS 1$V CS 0.005092503
$INTERNET$CORPNET$FEXT$FEMS$OP 0.004267429
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 0$OS UW 0.017244648
$INTERNET$CORPNET$FEXT$CORPINT$FS 0.004267429
$INTERNET$CORPNET$FEXT$CORPINTFSFSYS 0.008086067
$INTERNET$CORPNET 0.004267429
$INTERNET$CORPNET$FEXT$FEMS$CS 2 0.004267429
$INTERNET$CORPNET$FEXT$FEMS$CS 0$V CS 0.005092503
$INTERNET$CORPNET$FEXT$FEMSDHOS DH 0.0055145174
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$OS CITRIX 0.004267429
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP 0.004267429
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 1 0.004267429
$INTERNET$CORPNET$FEXT$CORPINTFSNFS 0.017970113
$INTERNET$CORPNETDMZVS 0.004267429
$INTERNET$CORPNETDMZWS 0.004267429
$INTERNET 0.004267429
$INTERNET$CORPNET$FEXT$FEMS$CS 2$S CS 0.0048533524
$INTERNET$CORPNET$FEXT$FEMS$CS 1 0.004267429
$INTERNET$CORPNET$FEXT$FEMS$CS 1$OS CS 0.0051331576
$INTERNET$CORPNET$FEXT$FEMS$CS 1$S CS 0.0048533524
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$S CITRIX 0.017970113
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 0 0.004267429
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 0$BROWSER UW 0.004267429
$INTERNET$CORPNETDMZWS$OS WS 0.004267429
$INTERNET$CORPNET$VALID CRED 0.004267429
$INTERNET$CORPNET$FEXT$FEMS$CS 0 0.004267429
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 1$OS UW 0.017244648
$INTERNET$CORPNETDMZVS$S VS 0.1068714
$INTERNET$CORPNET$FEXT 0.004267429
$INTERNET$CORPNET$FEXT$FEMS$CS 2$OS CS 0.0051331576
$INTERNET$CORPNET$FEXT$FEMS$CS 2$V CS 0.005092503
$INTERNET$CORPNET$FEXT$FEMS$CS 0$OS CS 0.0051331576
$INTERNET$CORPNET$FEXT$FEMSDHS DH 0.008802851
$INTERNET$CORPNET$DMZ 0.004267429
$INTERNET$CORPNET$VALID CRED$CRED 1 0.18106595
$INTERNET$CORPNET$FEXT$FEMS 0.004267429
$INTERNET$CORPNET$FEXT$FEMSOPV OP 0.0048533524
$INTERNET$CORPNET$FEXT$FEMSOPOS OP 0.005092503
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 1$BROWSER UW 0.004267429
$INTERNET$CORPNETDMZWS$S WS 0.004267429

Table 8.4: PageRank scores, power grid example, Section 8.3.2 (α = 0.85)

222

8.B. CHAPTER APPENDIX: PAGERANK AND HITS SCORES

ambient authority hub
$INTERNET$WORLD$EHOME 0.0 3.3308672e-5
$INTERNET$CORPNET$VALID CRED$CRED 0 0.020013204 0.2312522
$INTERNET$CORPNET$FEXT$FEMS$DH 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMSOPS OP 0.036112405 0.008380173
$INTERNET$CORPNET$FEXT$CORPINT 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$LOGIN UW 0.030657565 3.3308672e-5
$INTERNET$WORLD 0.0 3.3308672e-5
$INTERNET$WORLD$EHOME$EXP EHOME 0.029418051 0.004707155
$INTERNET$WORLD$EHOME$V EHOME 0.01980887 0.2313004
$INTERNET$CORPNET$FEXT$FEMS$CS 0$S CS 0.03501747 0.0085548265
$INTERNET$CORPNET$FEXT$FEMSDHV DH 0.02971537 0.12381217
$INTERNET$CORPNETDMZVS$OS VS 0.029418051 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 1$V CS 0.03501747 0.008295492
$INTERNET$CORPNET$FEXT$FEMS$OP 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 0$OS UW 0.029418051 0.0074153794
$INTERNET$CORPNET$FEXT$CORPINT$FS 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINTFSFSYS 0.029418051 0.007044397
$INTERNET$CORPNET 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 2 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 0$V CS 0.03501747 0.008295492
$INTERNET$CORPNET$FEXT$FEMSDHOS DH 0.0346671 0.008380173
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$OS CITRIX 0.029418051 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 1 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINTFSNFS 0.02971537 0.014649088
$INTERNET$CORPNETDMZVS 0.0 3.3308672e-5
$INTERNET$CORPNETDMZWS 0.0 3.3308672e-5
$INTERNET 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 2$S CS 0.03501747 0.0085548265
$INTERNET$CORPNET$FEXT$FEMS$CS 1 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 1$OS CS 0.0346671 0.008295492
$INTERNET$CORPNET$FEXT$FEMS$CS 1$S CS 0.03501747 0.0085548265
$INTERNET$CORPNET$FEXT$CORPINT$CITRIX$S CITRIX 0.0346671 0.014649088
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 0 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 0$BROWSER UW 0.029418051 3.3308672e-5
$INTERNET$CORPNETDMZWS$OS WS 0.029418051 3.3308672e-5
$INTERNET$CORPNET$VALID CRED 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 0 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 1$OS UW 0.029418051 0.0074153794
$INTERNET$CORPNETDMZVS$S VS 0.031283587 0.009477406
$INTERNET$CORPNET$FEXT 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMS$CS 2$OS CS 0.0346671 0.008295492
$INTERNET$CORPNET$FEXT$FEMS$CS 2$V CS 0.03501747 0.008295492
$INTERNET$CORPNET$FEXT$FEMS$CS 0$OS CS 0.0346671 0.008295492
$INTERNET$CORPNET$FEXT$FEMSDHS DH 0.035374995 0.007044397
$INTERNET$CORPNET$DMZ 0.0 3.3308672e-5
$INTERNET$CORPNET$VALID CRED$CRED 1 0.020013204 0.2312522
$INTERNET$CORPNET$FEXT$FEMS 0.0 3.3308672e-5
$INTERNET$CORPNET$FEXT$FEMSOPV OP 0.03501747 0.0085548265
$INTERNET$CORPNET$FEXT$FEMSOPOS OP 0.0346671 0.008295492
$INTERNET$CORPNET$FEXT$CORPINT$UWGROUP$UW 1$BROWSER UW 0.029418051 3.3308672e-5
$INTERNET$CORPNETDMZWS$S WS 0.029418051 3.3308672e-5

Table 8.5: HITS scores, power grid example, Section 8.3.2 (ξ = 0.85)

223

9
Scalability of the MsAMS Approach

In the previous chapter we have validated the MsAMS approach using two exam-
ple scenarios, one of them in several versions. We have shown how the approach
allows network administrators to reason and gain insights about a real network
through a model of the network.

In this chapter, we validate the scalability of the MsAMS approach. In this
respect, we use the proof-of-concept tool to show that the approach is feasible
in practice. First, we provide a bird’s eye view of the implemented modules in
Section 9.1. Then, we evaluate their performance and memory consumption under
an increasing number of ambients and number of firewall rules, in Section 9.2.
With a benchmark of tests we use statistical analysis to produce evidence showing
that the overall performance of the tool is quadratic, therefore, comparable to
the best attack graphs available. Throughout this chapter, and in Chapter 10,
we also identify possible improvements.

9.1 Overview of the MsAMS Tool

The implementation of the proof-of-concept MsAMS tool is composed of the
following modules:

1. Network Expansion

This module transforms collapsed ambient names contained in a network
model to DNS-like, i.e. hierarchically expanded names, as mentioned in
Sections 7.7 and 8.1. It also expands the copy command, mentioned in
Section 8.1, a facility made available to duplicate ambient specifications.

2. Network Compilation

This module converts ambient terms from a network model to an internal
representation of the network recognized by the remaining modules1. This

1This conversion involves, e.g., the creation of a table of symbols containing (internal) ef-
ficient ambient names, the mapping between (external) expanded ambient names (generated
by the previous module) and their internal representation as in the table of symbols, and a
compact representation of ambients actions.

225

CHAPTER 9. SCALABILITY OF THE MSAMS APPROACH

modules returns a compilation error if an ambient model is not complete,
according to Definition 28, if the model has any ambiguity (e.g. if two
ambients A and B contain a sub-ambient named v, the distinction between
A$v and B$v must be explicit in the model), or if there is a syntax error
such that an ambient action not belonging to the set of possible actions
as in Definition 18 or an ambient name not complying with the naming
convention mentioned in Example 5 (page 128).

3. Links Computation

This module computes links as described in Section 7.8 (page 139). There-
fore, it computes all possible links derived from Accept and In actions,
according to the reduction rules described in Appendix A, for ambients of a
network. As a result, it creates a sparse matrix L of zeros and ones, and a
table of Accept links (i.e. inlinks and outlinks of each ambient) specifically
prepared for the search module.

4. PageRank Computation

This module computes PageRank scores, as described in Section 7.9.2 (page
143). It reads the sparse matrix of links generated by the previous module,
but (in its current version) uses a dense representation of this matrix to
calculate the vector of PageRank scores according to Equation 7.2. In fact,
it reuses an implementation in C for operations with (dense) matrix, i.e.,
matrix transpose, and multiplication between matrix and vector.

5. HITS Computation

This module computes HITS scores, as described in Section 7.9.3 (page 145).
Similar to what happens with the PageRank module, it also reuses the same
implementation for matrix operations to calculate authority and hub vectors
according to Equations 7.5 and 7.6, respectively.

6. Attack Search

This module performs the search for attacks, as described in Section 7.11
(page 158). The list of candidate ambients from a current ambient is ob-
tained from the table of Accept links, pre-processed by the “Links Compu-
tation” module.

Early versions of those modules were implemented in Python. However, the
Python versions were too slow for any serious testing of scalability, something that
we should have expected given the results in http://shootout.alioth.debian.
org/u32q/2. Therefore, using the experience of the HEP (High Energy Physics)
group at Brunel University (http://www.gridpp.ac.uk/tier2/london/) with
grid and distributed computing, and with functional languages programming,
a partnership was established, resulting in the current version of the MsAMS

2For a simple example, see http://shootout.alioth.debian.org/u32q/benchmark.php?

test=binarytrees&lang=all

226

9.2. SCALABILITY OF THE MSAMS TOOL

implementation, evaluated in the next section. Therefore, modules “Network
Expansion” (428 lines of code - LOC), “Network Compilation” (385 LOC), and
“Links Computation” (366 LOC) were implemented in Haskell3, and “Attack
Search” (1453 LOC) in Lisp4. As mentioned above, “PageRank Computation”
(478 LOC) and “HITS Computation” (433 LOC) were implemented in C5 reusing
code for matrix manipulation (246 LOC); additionally, 4 of the modules enumer-
ated above use an I/O routine in C (246 LOC). The choice for Haskell relies on
the fact that this is a good option for prototyping; code tends to be much shorter
than equivalent in C. Furthermore, because of its strong type system, a lot of
errors are either not possible (e.g., segmentation fault errors) or are caught by
the compiler itself. Additionally, it provides recursive types (not available in C),
very useful for the expand and compile modules. The choice for Lisp is moti-
vated by the fact that it allows changes in code at execution time, as it happens
with Python, an useful feature for prototyping the search module, but without
compromising performance, as we will see in the following section.

9.2 Scalability of the MsAMS Tool

Next, we analyze the performance of the modules introduced in the previous
section in terms of (i) increasing number of ambients, and (ii) increasing number
of firewall rules. In addition, we analyze RAM memory consumed by the most
relevant modules under varied number of ambients.

All the tests reported in this section were performed in a machine running
GNU/Linux distribution Ubuntu 9.04 64 bits, kernel 2.6.28-13-generic #45-Ubuntu
SMP, with the following hardware configuration:

processor: Intel(R) Xeon(R) CPU

model: E5345

CPU: 2.33 GHz

cache size: 4096 KB

8 cores (only 1 core used for running tests)

total RAM memory: 8078448 KB

total swap: 5831552 KB

9.2.1 Time Performance with Increasing Number of Am-
bients

We use for this set of tests the running example from Chapter 7, slightly modified.
Here, we have several copies of host A, host C and host D, not protected by the
firewall, and host E, and 2 copies of host F, under the protection of the firewall,
i.e. contained in the ambient FW. The firewall allows interaction between hosts

3GHC 6.10.2: Glasgow Haskell Compiler, http://haskell.org/ghc
4Steel Bank Common Lisp: SBCL 1.0.29, http://www.sbcl.org/
5Gnu C Compiler: gcc 4.3.3, http://gcc.gnu.org/

227

CHAPTER 9. SCALABILITY OF THE MSAMS APPROACH

C or D to host E, as specified in Example 68. We use this model with a varying
number of copies of ambient A; the initial configuration uses 500 copies of A,
bringing the total of ambients to 2022, and the final configuration uses 5000
copies of host A, bringing the total of ambients to 20022.

Example 68 Specification of the network used for running the performance tests,
reported in Table 9.1.

network net

net[copy A A_ 500|C|D|FW]

A[v|s|OS|AllowIn net v]

C[s|v|OS|AllowIn net v]

D[s|v|OS|AllowIn net v]

s[Accept v]

v[Accept net]

OS[In s]

FW[E|copy F F_ 2|AllowIn C$s E$v|AllowIn D$s E$v]

E[s|v|OS|AllowIn net v]

F[s|v|OS|AllowIn net v]

Table 9.1 shows the performance data collected with an increasing number of
ambients6. Note that the total computation times were also measured, therefore,
they do not correspond exactly to the sum of time spent by each module for a
certain number of ambients; this difference is expected since there is an uncer-
tainty involved with the time measures collected, i.e. they are not 100% accurate.
We executed the MsAMS tool with the following input, and obtained the attack
trace C$v.C$s.E$v.E$s, independent from the number of ambients used.

• source ambient: A 3$s

• target ambient: E$s

• search type: forward-search

• fitness function: hubbiest-node

Figure 9.1 (page 230) shows a plot with the performance data presented in
Table 9.1. This plot makes it visually clear that the computation of links is the
most demanding module in terms of time performance. Then, there is a consid-
erable gap between this and the next 3 demanding modules, i.e. the module that
computes HITS, the search module and the module that computes PageRank.
We analyze the complexity of those modules in theory next.

Proposition 2 The complexity of the computation of both PageRank and HITS
is O(n2) [120], where n is the number of ambients in the network model.

Proof. Each iteration of PageRank involves one vector-matrix multiplication
(Equation 7.2) that typically requires O(n2) computations, while each iteration of

6We obtained execution time with the command: /usr/bin/time−−format =′′ %C : %Us′′,
that captures the time spent in user mode by the evaluated program.

228

9.2. SCALABILITY OF THE MSAMS TOOL

Ambients
Expand Compile Links PageRank HITS Search Total

Times in seconds
2022 0.04 0.11 1.32 0.33 0.54 0.55 2.96
4022 0.15 0.23 5.82 1.28 2.28 1.50 11.35
6022 0.32 0.35 13.08 2.66 5.23 3.17 24.94
8022 0.60 0.50 24.45 4.70 9.13 5.00 44.40
10022 0.96 0.66 39.82 7.28 14.90 7.21 71.58
12022 1.44 0.79 60.85 10.49 21.54 11.32 106.35
14022 2.06 0.97 82.30 14.37 29.56 16.21 145.40
16022 2.84 1.12 110.00 18.60 40.69 23.79 197.22
18022 3.74 1.23 145.98 23.52 53.05 31.87 261.52
20022 4.78 1.41 179.53 29.20 69.28 42.24 326.04

Table 9.1: Performance of modules with varied number of ambients

HITS involves two vector-matrix multiplication for the computation of authori-
ties (Equation 7.5)7 and two more for the computation of hubs (Equation 7.6).
Therefore, HITS processing time is more demanding compared to PageRank (this
is visible in Figure 9.1, page 230) although its complexity remains O(n2).

Proposition 3 The complexity of the computation of links is O(drn2), where:

d: is the depth of the locality tree, i.e. the maximum nesting of ambients
representing the hierarchy of a network

r: is the maximum number of firewall rules in the network model

n: is the number of ambients in the network model

Proof. For each pair of ambients (x, y), the computation of links involves
determining if there is a link between x and y. In the worst-case it involves n2

tests. Determining if there is a link between x and y involves traversing the lo-
cality tree from x to the lca(x, y) and from y to the lca(x, y) (see Definition 43
in Appendix A), demanding as such comparisons against the firewall rules of the
most 2d ambients. The comparison against the firewall rules of each ambient
demands O(r) because r is the maximum number of firewall rules in any ambient
in the network.

In practice, d and r are limited. The hierarchy of a network, from the Internet
to a host located in the most inner subnet of a network is limited by a 32-bits
addressing scheme in IPv4 networks, and by a 64-bits addressing scheme in IPv6
networks. It means that, in practice, d is bound by those limits and is a small
constant. According to study by Wool [231], networks in practice have in average

7Note that the authority equation ~xk = ξLTL~xk−1 +
(1−ξ)
en

is resolved via a vector-matrix

multiplication L~xk−1 first, resulting in a vector that is then multiplied by matrix LT , that is
why it involves two vector-matrix multiplications; the same happens for hubs.

229

CHAPTER 9. SCALABILITY OF THE MSAMS APPROACH

5000 10000 15000 20000

0
5

0
1

0
0

1
5

0
2

0
0

Number of Ambients

P
e

rf
o

rm
a

n
c
e

 (
s
e

c
)

Expand Network

Compile Network

Compute Links

Compute PageRank

Compute HITS

Search Attacks

Figure 9.1: Performance of modules with varied number of ambients

144 firewall rules. We will study how this affects the performance of the MsAMS
tool under an increasing r, up to 2200. Results are reported in Section 9.2.2.

The complexity of the attack search, in the absence of credentials and with
all ambients static, can be solved with O(n2nlog(n)) using a variation of Dijk-
stra’s algorithm [61] for finding the shortest path between two nodes in a graph.
However, the acquisition and use of credentials, and the possibility of movement
increase this complexity, and evaluating it becomes not trivial. As such, we will
evaluate the complexity of the MsAMS tool with scalability tests reported in the
next sections.

9.2.1.1 Evaluation

We have seen that, in theory, the overall complexity of the MsAMS tool is O(n2),
where n is the number of ambients in the network model, since none of its modules
has complexity above it. In this section, we evaluate this complexity using our
benchmark of tests with practical values of n, similar to other authors in the field
of Attack Graphs, e.g. [155, 164].

We use the Hermite Interpolation [90]8 to plot T measured for different mod-
ules, as reported in Table 9.1 (in microseconds), against n2. This interpolation
connects given points smoothly, showing the shape of the resulting curve between,

8Also known as cspline.

230

9.2. SCALABILITY OF THE MSAMS TOOL

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
er

fo
rm

an
ce

 (
m

ic
ro

se
co

n
d
s)

Number of ambients (n)

n*n
Compute PageRank and HITS

Compute Links
Search Attacks

Total Computation

Figure 9.2: Hermite interpolation plot of computing time T of performance-
demanding modules, compared to a n2 shape curve where n is the number of
ambients

in this case, T and n2. We also plot the curve n ∗n to allow comparison with the
other curves resulting from the interpolation.

The plot in Figure 9.2 gives an indication that the overall performance of the
MsAMS tool is quadratic, i.e. its overall performance is O(n2). This conclusion
is based on the fact that in the plot the total computation curve is below the
n ∗ n curve, following a same trend as the number of ambients grow.

To further study the relationship between T and n, we use linear regression
provided by the package R [48]9. The plot in Figure 9.3 shows the linear regression
fit between T and n2 (solid line); R returns coefficients showing that the equation
of the resulting line is y = 0.8132x − 64440000. Hence, we see this as evidence
that T is increasing linearly with n2, and it is increasing slowly due to the slope
of the line (= 0.8132). This figure also shows the linear best fit between T and
n3 (dashed line). In this case the slope of the line is really small (= 0.00004),
resulting in an almost horizontal line. This indicates that there is no relationship
between T and n3.

Additionally, we use log-log plot as yet another method for studying the re-
lationship between T and n, for the different modules of the MsAMS implemen-
tation. This type of plot shows the relationship between log(y) and log(x) in an

9Package R is a software for statistical computing and graphics; all plots and empirical
analysis reported in this chapter used R.

231

CHAPTER 9. SCALABILITY OF THE MSAMS APPROACH

0e+00 1e+08 2e+08 3e+08 4e+08

0
.0

e
+

0
0

5
.0

e
+

0
7

1
.0

e
+

0
8

1
.5

e
+

0
8

2
.0

e
+

0
8

2
.5

e
+

0
8

3
.0

e
+

0
8

Number of ambients (n)

P
e

rf
o

rm
a

n
c
e

 T
 (

m
ic

ro
s
e

c
o

n
d

s
)

best fit: T~n*n

best fit: T~n*n*n

Figure 9.3: Linear regression plot with line of best fit between time measured T
and n2 and line of best fit between T and n3

equation of the form log(y) = log(a) + b ∗ log(x) that corresponds to the curve
y = axb.

According to the log-log plot in Figure 9.4, the benchmark data for the overall
computing time T lies on the curve y = 0.4466n2.0549. This might be an indica-
tion that T is varying in fact with n2.0549, and not exactly with n2 and, therefore,
the performance of MsAMS would be in fact slightly slower than O(n2). If con-
firmed, this distortion is probably caused by the module that computes links since
the equation of its curve is y = ax2.146. Such distortion might be explained by
garbage collection (GC) in the Haskell used to compile and execute this module.
Nevertheless, using parallel GC would most probably eliminate this distortion
since tests (e.g., by Marlow et al. [130]) indicate that this type of GC may po-
tentially reduce processing time by half. Parallel GC was already available in
Haskell GHC 6.10.2 used to generate the benchmark, but at that time it seemed
not stable enough.

Interesting to note, however, that if we plot the curve n2 against n and the
curve T against n, where T = 0.4466n2.0549 (curve obtained via log-log), e.g.,
for n[10000, 20000], we see that the former curve actually grows quicker that the
latter curve.

232

9.2. SCALABILITY OF THE MSAMS TOOL

8.0 8.5 9.0 9.5

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

Number of ambients (n)

P
e

rf
o

rm
a

n
c
e

 T
 (

m
ic

ro
s
e

c
o

n
d

s
)

Total Computation

Compute Links

Compute PageRank and HITS

Search Attacks

Figure 9.4: Log-log plot for computing time T of different modules and number
of ambients n

9.2.2 Time Performance with Increasing Number of Fire-
wall Rules

The purpose of this set of tests is to analyze time performance of the modules
introduced in Section 9.1, not under an increasing number of ambients, as in the
previous section, but under an increasing number of firewall rules. Therefore,
here we keep the number of ambients constant (equal to 8194 ambients).

We use another version of the running example introduced in Chapter 7, as
specified in Example 69. The firewall now protects 1024 copies of host F , and
outside the firewall there are also 1024 copies of host A. This specification shows
3 firewall rules just for demonstration purposes. In fact, a number of firewall
rules from 200 to 2200 was used, and firewall rules, i.e. AllowIn actions, were
generated randomly allowing communication from one copy of A to one copy of
F , without repetition of rules.

Example 69 Specification of the network used for running the performance tests,
reported in Table 9.2, here with just 3 firewall rules as a demonstration.

network net

net[FW|copy A A_ 1024]

A[OS|s|v|AllowIn net v]

v[Accept net]

sv[Accept v]

233

CHAPTER 9. SCALABILITY OF THE MSAMS APPROACH

Firewall
Rules

Expand Compile Links PageRank HITS Search Total
Times in seconds

200 0.36 0.54 68.16 4.83 10.00 4.78 88.65
400 0.36 0.56 111.91 4.80 9.80 4.75 132.23
600 0.38 0.56 155.11 4.78 9.70 4.78 175.35
800 0.39 0.56 198.32 4.79 9.72 4.79 218.63
1000 0.38 0.57 241.96 4.84 9.87 4.79 262.31
1200 0.40 0.57 284.86 4.82 10.04 4.79 305.41
1400 0.40 0.58 328.53 4.73 10.13 4.79 349.10
1600 0.40 0.58 371.73 4.83 10.06 4.79 392.32
1800 0.41 0.60 415.44 4.77 10.11 4.79 436.01
2000 0.42 0.60 459.45 4.85 10.04 4.79 480.10
2200 0.42 0.60 501.88 4.78 9.72 4.79 522.25

Table 9.2: Performance of modules with varied number of firewall rules; 8194
ambients

OS[In sv]

FW[copy A F_ 1024|

AllowIn A_0$s F_2$v|

AllowIn A_1$s F_1$v|

AllowIn A_2$s F_0$v]

Table 9.2 shows the performance data collected with an increasing number
of firewall rules10. We executed the MsAMS tool with the following input, and
obtained the attack trace F 0$v.F 0$s, independent on the number of firewall
rules used.

• source ambient: A 0$s

• target ambient: F 0$s

• search type: forward-search

• fitness function: hubbiest-node

Figure 9.5 shows a plot with the performance data presented in Table 9.2.
It demonstrates that the only affected module under these circumstances is the
computation of links, since the performance of the other modules remained con-
stant. This was expected because more firewall rules increase the computation
of links, basically for the same reason as this module is affected by an increasing
number of ambients. However, once the matrix of links and the table of Accept
links is generated, nothing changes in the computation of rankings and the search
since the number of ambients is the same.

9.2.2.1 Evaluation

Let’s apply Hermite Interpolation again to visualize the relationship between
total computing time T (in milliseconds) and increasing number of firewall rules

10We used the same command as reported in the previous section to collect execution time.

234

9.2. SCALABILITY OF THE MSAMS TOOL

500 1000 1500 2000

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Number of Firewall Rules

P
e

rf
o

rm
a

n
c
e

 (
s
e

c
)

Expand Network

Compile Network

Compute Links

Compute PageRank

Compute HITS

Search Attacks

Figure 9.5: Performance of modules with varied number of firewall rules

r using our benchmark, shown in Table 9.2.
The interpolation plot, in Figure 9.6, indicates that the total computation

time curve is below the curve r ∗ r. We see this as an evidence that increasing
the number of firewall rules for practical values, the overall T grows with r2.

Linear regression confirms this result, as shown the plot in Figure 9.7 (page 237).
The line of best fit of T in respect to the squared number of firewall rules r2 (solid
line) corresponds to the equation y = 0.08581x+ 147800. It means that T is in-
creasing linearly with r2. Compared to the behavior of T under an increasing
number of ambients, as seen in the previous section, we observe that the slope
of the line is even smaller (= 0.08581), indicating a slower increase. This figure
also shows the linear best fit between T and n3 (dashed line). The horizontal line
indicates there is no relationship between T and n3.

9.2.3 Space Performance with Increasing Number of Am-
bients

Finally, in this section we analyze the behavior of the MsAMS tool in terms
of percentage of memory consumed by the performance-relevant modules, under
a varied number of ambients. Table 9.3 shows the memory data collected (in
percentage) with an increasing number of ambients11.

11We logged memory consumption with the command: pidstat− pALL− r110000; this com-
mand captures a snapshot of memory used by all processes once per second. Note that there is

235

CHAPTER 9. SCALABILITY OF THE MSAMS APPROACH

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 500 1000 1500 2000

P
er

fo
rm

an
ce

 (
m

il
li

se
co

n
d
s)

Number of firewall rules (r)

r*r
Total Computation

Figure 9.6: Hermite interpolation plot of total computation T , compared to a r2

shape curve where r is the number of firewall rules

Ambients
Links PageRank HITS Search
percentage of RAM memory consumed

2022 0.32 0.80 0.80
4022 0.32 3.14 3.14 1.90
6022 0.44 7.02 7.02 3.41
8022 0.60 12.46 12.46 8.03
10022 0.78 19.44 19.44 9.74
12022 0.82 27.97 27.97 13.84
14022 0.90 38.04 38.04 19.51
16022 1.16 49.66 49.66 21.96
18022 1.20 62.83 62.83 37.07
20022 1.28 77.55 77.55 56.57

Table 9.3: Percentage of RAM memory consumed by each module (total RAM:
8GB)

236

9.2. SCALABILITY OF THE MSAMS TOOL

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

1
e

+
0

5
2

e
+

0
5

3
e

+
0

5
4

e
+

0
5

5
e

+
0

5

Number of firewall rules (r)

P
e

rf
o

rm
a

n
c
e

 T
 (

m
ic

ro
s
e

c
o

n
d

s
)

best fit: T~r*r

best fit: T~r*r*r

Figure 9.7: Linear regression plot with line of best fit between time measured T
and r2 and line of best fit between T and r3, where r is the number of firewall
rules

The plot of data presented in Table 9.3, shown in Figure 9.8, makes it evident
that the computation of PageRank and HITS (their lines overlap in the plot) are
the most crucial modules in terms of memory consumption. However, this was
expected since, as mentioned before, the current version of those modules uses a
dense representation of the matrix of links. Therefore, a significant improvement
would be to change the representation of this matrix to sparse. We evaluate those
modules further next.

9.2.3.1 Evaluation

The Hermite interpolation of memory consumed M (in KB) by the most de-
manding modules (i.e. search and PageRank or HITS) is shown in Figure 9.9. It
indicates that both modules have a performance in terms of memory below the
line 2 ∗ n ∗ n. Linear regression permits the refinement of this analysis.

Figure 9.10 (page 239) shows the line of best fit of M for the most memory
demanding modules against the squared number of ambients n2. The fit line
for the search module corresponds to the equation y = 1.034x − 22600000, and
the best fit line for the other two modules (i.e. PageRank and HITS that behave

a trade-off between heavy instrumentation and precision, thus, snapshots at smaller intervals
tend to interfere with the performance of the module under test [86].

237

CHAPTER 9. SCALABILITY OF THE MSAMS APPROACH

5000 10000 15000 20000

0
2

0
4

0
6

0
8

0

Number of Ambients

%
 o

f
M

e
m

o
ry

 C
o

n
s
u

m
e

d
 (

to
ta

l
8

G
B

)
Compute Links

Compute PageRank

Compute HITS

Search Attacks

Figure 9.8: Consumption of RAM memory with varied number of ambients

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
em

o
ry

 C
o

n
su

m
ed

 (
M

)
in

 K
B

Number of ambients (n)

2*n*n
Search Attacks

Compute PageRank or Compute HITS

Figure 9.9: Hermite interpolation of memory consumedM by memory-demanding
modules, compared to a 2n2 shape curve

238

9.3. SUMMARY OF SCALABILITY RESULTS

0e+00 1e+08 2e+08 3e+08 4e+08

0
e

+
0

0
1

e
+

0
8

2
e

+
0

8
3

e
+

0
8

4
e

+
0

8

Number of ambients (n)

M
e

m
o

ry
 c

o
n

s
u

m
e

d
 (

M
)

in
 K

B

best fit search: M~n*n

best fit PR or HITS: M~n*n

best fit PR or HITS: M~n*n*n

Figure 9.10: Linear regression plot with line of best fit between memory consumed
M and n2, and line of best fit between M and n3

exactly the same in terms of memory) correspond to equation y = 1.563x+85574.
These lines show that M is increasing linearly with n2 although with different
slopes of increase. This figure also shows the linear best fit between M and n3

(dashed line). The horizontal line indicates that M is independent of n3.
Memory consumed could be improved, as already mentioned, with a sparse

representation of the matrix of links for the PageRank and HITS computation.
In addition, the memory performance of the attack search module could be im-
proved, e.g., with a more compact representation of the table of Accept links that
needs to be kept in the RAM memory during the search process.

9.3 Summary of Scalability Results

Along this section we have analyzed the scalability of the MsAMS proof-of-
concept tool in respect to time and space performance. We have reported ex-
periments showing evidence that its overall time performance, with up to 20022
ambients or with up to 2200 firewall rules, is quadratic based on the benchmark
used. This performance is similar to the best worst-case performance reported by
the Attack Graph community. Note that to represent a network with n hosts, we
need O(n) ambients. Therefore, the overall complexity of the approach in terms
of hosts remains O(n2).

239

CHAPTER 9. SCALABILITY OF THE MSAMS APPROACH

1. Noel et at. [155] report a worst-case complexity of O(n2) for their most
recent version of CAULDRON, turned into a commercial product, where n
is the number of hosts in the network model.

2. Ou et al. [164] report a graph generation running time of O(n2log(n)) for
MulVAL, where n is the number of hosts.

3. Ingols et al. [105] assume a network with V vulnerability instances, T ports,
C credentials, I interfaces (i.e. services), and R reachability groups. How-
ever, it is hard to compare our performance with theirs because they present
an expected worst-case performance of O(max(V, T)RC), leaving out I in
the evaluation of complexity.

4. the commercial product Skybox [196] has a complexity O(n3), according
to [105].

In summary, results presented in this section indicate the feasibility of the tool
for use in practice, since it performs on a par with the current best attack graph
tools. Considering other criteria, collected in the form of requirements presented
in Chapter 4, such as the ability to fully represent the topological hierarchy of a
network and the ability to model and reason about credentials and authentication
methods, we believe that the MsAMS approach scores better.

240

Part IV

Final Remarks

241

10
Conclusion

This thesis has introduced the MsAMS (Multi-step Attack Modelling and Simu-
lation) solution that comprehends an (i) approach based on the theory of Mobile
Ambients that applies heuristic search with ranking algorithms to find possible
multi-step attacks on a modelled network, and (ii) a proof-of-concept tool that
demonstrates the feasibility of the approach. This solution contributes to the
field of Attack Graphs in many ways, but specially by the rich expressiveness of
the formalism it uses for modelling networks and updating those models, and for
finding multi-step attacks that involve credential theft. It allows network admin-
istrators to gain insights and test hypotheses on a modelled network that can be
used to improve security of the real network it represents, as shown in Chapter 8.
MsAMS contributes to the field of Attack Graphs, an active area of research and
development. For example, very recently two prominent approaches reviewed in
Chapter 2 have turned commercial: NetSPA that became GARNET[229], and
CAULDRON [155]. This is an indication that Attack Graphs, although not a
silver bullet for information security, raise market as well as academic interest.

The research carried out, and reported in this thesis, has been driven by the
following six research questions:

• RQ1 Which properties and attributes of a network turn it susceptible to
attacks?

• RQ2 Which attackers’ objectives turn a network susceptible to attacks?
Which strategies are used by attackers to achieve those objectives?

• RQ3 What are possible attack steps?

• RQ4 How to model a network in a simplified but realistic way?

• RQ5 How can multi-step attacks be represented considering the type of
steps uncovered in RQ3?

• RQ6 How to find attacks in a way that serves attackers’ objectives and
strategies mentioned in RQ2 and that uses the answers to questions RQ4
and RQ5?

243

CHAPTER 10. CONCLUSION

They aimed to fulfil two sub-goals: understand network attacks (G1.1.1.1)
and design a way to find possible network attacks (G1.1.1.2), which contribute
towards achieving the overall goal of providing decision making support to im-
prove network security (G1), as shown in the breakdown of goals reproduced next
from page 7.

G1 Provide decision making support to improve network security

G1.1 Manage risk of possible network attacks

G1.1.1 Identify possible network attacks
G1.1.1.1 Understand network attacks
G1.1.1.2 Design a way to find possible network attacks

G1.1.2 Assess risk that possible network attacks represent
G1.1.3 Treat risk of possible network attacks

G1.2 Manage risk of network intrusions

G1.2.1 Detect network intrusions
G1.2.2 Assess risk that network intrusions represent
G1.2.3 Treat risk of network intrusions

We viewed the research process itself as a design problem in the sense that the
output from the research questions RQ1-RQ3, related to goal G1.1.1.1, provided
input to the research questions RQ4-RQ6, related to G1.1.1.2, in the form of
the following requirements for the solution. These requirements were not only
derived from answers to RQ1-RQ3, but also from gaps found in the literature of
Attack Graphs.

R1 The solution should permit full representation of the network topology.

R2 The solution should permit the representation of attack dynamics and net-
work dynamics.

R3 The solution should allow for reasonable automatic estimation of asset val-
ues, useful for assignment of potential targets.

R4 The solution should allow the investigation of hypotheses, via what-if sce-
narios.

R5 The solution should provide automatic estimation of expected cost of an
attack step.

The thesis has been organized as follows. In Part I we reviewed related work
in Chapter 2, reviewed the context of networks, attackers, and multi-step attacks,
in Chapter 3, and set the requirements for the solution in Chapter 4. In Part II we
investigated the NVD, in Chapter 5, and obtained the vulnerability classification
later adopted by the solution, framed the solution direction as an Optimization

244

10.1. DISCUSSION

Problem with the preliminary approach ELAS (Evolutionary Learning of Attack
Scenarios), presented in Chapter 6, and described the MsAMS (Multi-step Attack
Modelling and Simulation) approach and the methodology it follows, in Chap-
ter 7. In Part III we validated the MsAMS approach in two aspects. In Chapter 8,
we addressed (i) scalability of modelling; in this respect we discussed and exem-
plified reuse and copy of ambients specification, and (ii) use of the tool for finding
attacks and reasoning about countermeasures; in this respect; we used examples
to mimic a network administrator performing what-if analysis and checking for
possible attacks before taking a decision about a security improvement reflected
in the network model. Most importantly, the MsAMS allowed us to reason about
credential theft and find more subtle attacks than currently possible by other
approaches found in the Attack Graph community. Additionally, it also allowed
to reason about outbound network reachability, another advantage compared to
the same community. In Chapter 9 we validated the feasibility of the MsAMS
approach via scalability tests using statistical analysis. Results indicated that the
MsAMS approach is feasible since the proof-of-concept tool that implements the
approach scales as good as the best attack graph tools reported in the literature.

All in all, from the validation of MsAMS we learned that it is possible to reason
and use the tool to get insights about possible targets, and possible attacks dealing
with credentials at a high level of abstraction. Even if the model so far has no
automatic input from scanning tools that report individual vulnerabilities found
in the network, MsAMS can still be very useful as a way to extract knowledge
from what-if analysis, and validate security improvements via cycles of changed
specification and re-execution of the tool.

10.1 Discussion

This section revisits the requirements detailed in Chapter 4, and listed in the
previous section, against the proposed solution MsAMS.

R1 The network topology should be fully represented in the attack graph.

This requirement involves two aspects: the representation of relevant enti-
ties, and the representation of hierarchy of entities. Both are fulfilled by
MsAMS, since we can model in abstract terms the set of entities from real
networks which are relevant to represent vulnerable and non-vulnerable
hosts, the topology of networks, attackers and logical groupings. This is
achieved because MsAMS is based on Mobile Ambients and nesting is in-
trinsic to the concept of Ambients.

A parallel between the entities listed in this requirement, as described in
Chapter 4, and pointers to examples in which they appear in MsAMS mod-
els is provided next.

245

CHAPTER 10. CONCLUSION

Real Entities MsAMS Models
• Firewalls • Examples in Chapters 7 and 8 show firewalls en-

capsulating hosts and subnet they protect; allow
and deny filtering rules take the form of AllowIn
and DenyUp actions.

• Subnets, LANs,
VLANs

• Example in Sections 8.2 and 8.3 show subnets en-
capsulating hosts; for the effect of modelling with
MsAMS, there is no different between subnet, LAN
and VLAN.

• Hosts • Examples in Chapters 7 and 8 show hosts pro-
viding services, containing e.g. vulnerabilities, ex-
posures, credentials.

• Network ser-
vices

• Not only server software that provides a func-
tionality to clients is regarded as a service, but also
client applications, such as browsers or login inter-
faces; several examples in Chapters 7 and 8.

• TCP & UDP
ports and proto-
cols

• Ports are represented by the action AllowIn on
an ambient representing a host, while protocols
are also ambients as shown in examples in Sec-
tion 7.10.1.2.

• Vulnerabilities Examples in Chapters 7 and 8 show vulnerabilities
as ambients encapsulated by hosts.

• Vulnerability
attributes

• Access required and possible impact resulting
from the exploitation are vulnerability attributes;
examples in Section 7.10.1 show vulnerabilities of
several types.

• Attackers • Explanation in Section 7.7 reveals an attacker as
an ambient that moves across a network.

• Credentials • A credential is also an ambient; examples in Sec-
tions 7.10.2 and 8.3.

R2 The solution should permit the representation of attack and network dy-
namics.

Attack dynamic is the progress of an attack according to a strategy (cur-
rently MsAMS only deals with the best cost-benefit strategy, refer to Sec-
tion 3.3), and involving acquisition of credentials. In this thesis we have
addressed attack dynamics involved in composing multiple steps until a tar-
get is reached, taking into account credential theft. The fact that MsAMS
can model credential theft is a novelty in the field of Attack Graphs since
none of the other attack graph approaches reviewed in Chapter 2 can do
this. In fact, we have already discussed this gap in Section 4.1 on page 67;
current attack graphs are only able to represent trust relationship between
two hosts, and no uncertainty is involved in the process. Therefore, in
MsAMS the ambient-attacker may or may not be able to acquire the needed
credential, but credentials once gained can be used along an entire attack.

246

10.1. DISCUSSION

In addition, this requirement, as described in Chapter 4, also mentions
network dynamics such as change in firewall rules, change in network secu-
rity policies, movement of assets, deployment of new assets, and patch of
vulnerabilities. Network dynamics influence security, e.g., if a firewall rule
changes maybe a vulnerable service not accessible for a real attacker before
becomes accessible, or if a vulnerability is patched an opportunity for a
real attacker to penetrate a network that was available before disappears,
and so on. However, these examples are treated statically by the current
version of the MsAMS tool. When changes as mentioned happen, MsAMS
allows them to be incorporated to the network model in a practical way by
means of changes in the capabilities and locality of ambients. In this case,
a simulation (search for attacks) executed again will have those changes in-
corporated. So, currently in our approach network dynamics are treated as
what-if hypotheses1. A further improvement would be to allow a network
model to change while a simulation is taking place. For example, instead
of only the ambient-attacker be able to issue an Enter action, ambients of
the network should be able to issue such action as well. Alternatively, an
action from an attacker could have implications in the model of the net-
work itself. An example could be the case where an attacker by exploiting
a vulnerability in a host renders the host unavailable2. The formalism used
in MsAMS allows such dynamics, so this is not a problem, the problem is
to balance the cost-benefit it would bring to the outcome of the tool. For
example, what would be the benefit of modelling the dynamics of this type
of vulnerability? Maybe if we consider collusion of attackers this would be
an advantage. In summary, further analysis is needed to determine if the
benefit of modelling network dynamics is larger than the cost it represents
in terms of modelling and simulation.

Another example given in this requirement, as described in Chapter 4, is
the dynamics of mobile code. Again the formalism itself allows the repre-
sentation of the dynamics involved by means of the replication process (that
could be used for parallel composition of attack steps), and a different fit-
ness function to implement the best-coverage attacker strategy, described in
Section 3.3.3 on page 57. These dynamics are required to find the suscepti-
bility of a network to attack involving propagation of malware via botnets
and even server-side attacks that propagate to clients. However, this will
remain as future work as discussed in Section 10.2.

R3 The solution should allow for reasonable automatic estimation of asset val-
ues, useful for assignment of potential targets.

The solution assumes that targets can be selected from connectivity-based
1The community of Attack Graphs does not discuss this aspect, but it is seems that such

changes involve updating input and re-generating the graph itself, what can be considered
practical depending on the performance of the graph building process.

2Please refer to Section 7.10.1 on page 148 for a description of this type of vulnerability,
called only-A meaning only-Availability compromise.

247

CHAPTER 10. CONCLUSION

asset values computed automatically, rather than from financially-based
asset values computed manually. MsAMS experimented with two views
of authority (or importance) scores calculated via the schemas used by
HITS and PageRank algorithms. In the examples studied in Chapters 7
and 8, the highest authority scores returned by HITS matched with our
intuition of targets, as ambients with higher asset value. Furthermore,
although PageRank scores did not really provide insights about targets,
they indicated higher priority vulnerabilities to patch or important assets
to be protected such as credentials. PageRank showed results similar to hub
scores from HITS, but instead of only related to entry points as pageranks,
hubs also corresponded to our intuition of well connected ambients inside
the network that represent low cost passages for attackers to reach targets.
Nevertheless, as mentioned in Section 7.9.1 on page 141, the analysis of how
inlinks and outlinks affect PageRank and HITS scores is not trivial, and has
motivated many studies (e.g. [13, 216]).

However, it is important to keep in mind that MsAMS does not use the
score of the target selected but rather the target itself for finding attacks.
MsAMS tool provides scores to support the network administrator in se-
lecting a target manually. Therefore, one can argue that the methodology
proposed in this thesis for determining which network nodes are targets has
limitations in the sense that connectivity-based scores do not capture spe-
cial cases such as almost isolated hosts that have high financial asset value.
This represents no problem, since the tool itself is not limited in the sense
that one can use other methodologies to determine target and the tool will
work the same because it only requires that a target is provided, no matter
how it is determined. Therefore, if financially-based asset values become
available or if the network administrator wants to use qualitative methods
or simply intuition to determine targets3, MsAMS can still be used. Nev-
ertheless, authority scores from HITS provide very interesting insights for
the network administrator about targets since these scores are objective,
consistent, scalable and allow comparison.

R4 The solution should allow the investigation of hypotheses, via what-if sce-
narios

All the types of hypotheses listed in this requirement, as described in Chap-
ter 4, are possible using MsAMS, they are:

– hypotheses about initial attacker location and resources,

– hypotheses about exposures which disclosure credentials

– hypotheses about zero-day vulnerabilities

– hypotheses about vulnerabilities in custom software components with
similar objective as the previous item

3For example, in the scenario presented in Section 8.2 we set the target as part of a what-if
hypothesis.

248

10.1. DISCUSSION

– hypotheses related to attackers strategies like the ones identified in
Chapter 3, i.e. best cost-benefit from an attack or best-coverage of a
network. A current limitation of MsAMS in this respect is the avail-
ability of just one attacker strategy, namely the best cost-benefit from
an attack, described in Section 3.3.2, and used in examples through-
out Chapters 7, 8, and 9. Therefore, the best-coverage of a network
strategy will remain as future work and is discussed in Section 10.2.1.

Furthermore, the what-if resulting from the dynamics of the network, as
discussed above, are also possible since all of them involve changes in locality
or capabilities of existing ambients, and the specification of new ambients ,
they are:

– change in firewall rules, e.g. expand connectivity due to new business
demands

– change in network security policies, e.g. restrict connectivity due to
past attacks

– movement of assets, e.g. due to relocation of hosts

– deployment of new assets, e.g. new firewalls, new hosts or new network
services

Besides, MsAMS provides the possibility of extra what-if analysis related
to credentials, not mentioned in the original requirement. This has been
demonstrated in the example scenario in Section 8.3, and is not available
in any other attack graph approach since they do not deal with credential
theft.

R5 The solution should provide automatic estimation of expected cost of an
attack step.

Cost is a metric that allows the selection among possible alternative steps
during the simulation of an attack, according to an attacker strategy. Ex-
amples in Chapters 7, 8 and 9 have shown that MsAMS successfully uses
scores, automatically produced by HITS (i.e. hub scores) for all ambients
represented in the network model, as an indication of most promising (i.e.
less costly) attack steps (for the hubbiest-node fitness function, described
in Section 7.11 on page 7.11) for a potential attacker to reach targets. Hub
scores are then an estimation of expected cost.

Therefore, we meet this requirement completely since we provide a cost
metric that scales, is objective, consistently and automatically calculated
following a rationale, and is absolute allowing comparison between alterna-
tive attack steps. All other attack graphs that use metrics of cost rely either
on information that cannot be automatically retrieved or rely on estimation
from expert judgement.

249

CHAPTER 10. CONCLUSION

10.2 Opportunities for Future Work

Along the research reported in this thesis, several opportunities for future work
were identified. Some involve further research and are described in Section 10.2.1,
while some involve further development of the current version of MsAMS towards
a more industrial standard, described in Section 10.2.2.

10.2.1 Further Academic Research

1. Assessing risk identified

In this thesis we aimed at the identification of risks of multi-step attacks in
a network (G1.1.1), but have not addressed the assessment of those risks
(G1.1.2). However, the usefulness of the current MsAMS would greatly
improve by the estimation of the risk of each possible attack. We have
already started work in this direction [102, 100, 101] using the Common
Vulnerability Scoring System (CVSS) (refer to Section 5.2 on page 84 for
an overview of CVSS). CVSS provides a schema of attributes, rating and
rating values used to derive an unique score for each vulnerability (i.e.
CVE [52]) present in the NVD [161]. We rearranged these attributes and
determined dependencies among them, although keeping CVSS rating and
rating values, to derive, via a BBN (Bayesian Belief Network), two scores
reflecting frequency (as the chance of a vulnerability being exploited) and
impact related to each vulnerability. The aggregation of estimates of im-
pact and frequency from several vulnerabilities currently is performed by
the aggregation algorithm provided by the BBN implementation used. This
means that the frequency and impact estimates of a particular vulnerability
become the prior distribution for the following vulnerability and so forth.
This way, the risk level of an asset containing several vulnerabilities is de-
termined. As an example dependency among attributes, we established a
dependency between the potential impact on C I A4 that the vulnerability
may cause with the requirements of the asset affected by the vulnerability,
also in terms of C I A. Therefore, if the vulnerability causes a confidentiality
impact but the asset has no confidentiality requirements, confidentiality has
no effect on the impact score. Note that we considered dependencies among
attributes to determine frequency and impact related to a vulnerability but
no dependencies between the vulnerabilities themselves. This work could
be extended to determine frequency based on the vulnerabilities used in
an attack path and their impact applied to the C I A requirements of the
target.

2. Other attacker strategies

The more attacker strategies are provided, the more useful MsAMS be-
comes to the network administrator because a larger diversity of attacks

4Confidentiality, Integrity and Availability

250

10.2. OPPORTUNITIES FOR FUTURE WORK

can be uncovered. This aspect is in the border line between research and
development since, specifically for the best coverage strategy (explained in
Section 3.3.3 on page 57) to find the susceptibility of the network to be-
come a botnet, the supporting research has already been done, as reported
in the mentioned section. Incorporating this strategy to MsAMS involves
addressing the following:

• A new fitness function to determine best candidates which maximizes
botnet effectiveness, i.e. its size. It means that the largest set of can-
didates which comply to a certain criteria (that could be the presence
of a specific type of vulnerability) would be selected at the same time.
Therefore, it would be as if the ambient-attacker had initially a script
that would be replicated for each candidate selected.

• Currently, the stopping criterion for the search is either the number of
cycles or the fact that the ambient-attacker reached the target, what
comes first. In the best coverage of the network strategy, the stopping
criterion would be based on the number of cycles, in the sense that the
search would stop after the maximum number of nodes were recruited
within the minimum number of cycles. This would indirectly minimize
botnet diameter, which indicates botnet efficiency.

We have also identified in Section 3.3.3 on page 57 that a typical DDoS
involves two stages, i.e. an infection and a launch phases. The former fits
with the best coverage strategy and the latter with the best cost-benefit
strategy. Therefore, combining these two strategies is useful for anticipating
the susceptibility of a modelled network to DDoS5. Although, in principle,
all the elements needed for finding this type of attack are present in MsAMS,
it involves more research, e.g., in terms of the search algorithm, and in terms
of ambients capabilities.

Apart from the best coverage strategy to find botnet-like attacks, and the
combination of best coverage and best cost-benefit strategies to find DDoS-
like attacks, MsAMS has the potential to incorporate other strategies pro-
vided that they are represented in terms of metrics available and there is
an objective stopping criterion.

3. Improved metrics

MsAMS uses links processed from actions In and Accept, as explained in
Section 7.8 on page 139. Authority scores are derived from these links
via PageRank and HITS algorithms, but all links have the same weight.
Intuitively, let’s think about two ambients placed in a same subnet, both
accepting any ambient from the subnet. In principle6, they would have

5As we have seen in Chapter 6, we have been able to uncover DoS attacks from a graph
using ELAS, the MsAMS predecessor approach, not using strategies but rather using an added
value input, not readily available.

6In principle because these ambients may have other capabilities.

251

CHAPTER 10. CONCLUSION

similar authority scores from HITS. However, suppose the first is used oc-
casionally and the second is used constantly. Therefore, it seems reasonable
to think that the second is more authoritative than the first. Based on this
rationale, Tomlin [211] has proposed TrafficRank. His ranking scheme uses
the number of accesses to a webpage to assign weight to links. It would be
interesting to use network traffic to annotate links and derive scores to am-
bients in MsAMS. Our expectation is that authority scores would become
more accurate over time giving a better indication of targets.

Another alternative to improve metrics would be to use another algorithm
to calculate scores. Recent studies (e.g. by Najork [147]) reveals that yet
another link analysis ranking algorithm, called Stochastic Approach to Link
Structure Analysis (SALSA) [123], outperforms HITS. SALSA incorporates
features from both HITS and PageRank and, like HITS, produces two sets
of scores: authority and hubs. However, SALSA does not use mutual rein-
forcement between hubs and authorities as HITS does. Since it is difficult
to anticipate which algorithm will adapt better to the domain of network
attacks, it would be worth to experiment with how well SALSA scores per-
forms to indicate targets and as a measure of cost of attack steps. It should
be noted that the SALSA algorithm is query-dependent, and therefore it
needs to be modified to generate scores for the entire set of ambients.

4. Distinction of credential ambients

The current version of MsAMS makes no distinction among ambients. There-
fore, all entities listed in requirement R1 are modelled the same. However,
at simulation time, a distinction needs to be made between ambients rep-
resenting credentials and the remaining ambients. This is required because
an ambient-attacker can never “gain” a credential, i.e. it can never gain an
Enter c where c represents a credential, instead credentials must be “ac-
quired”. This is not the same for the remaining ambients. Therefore, this
distinction is made via input to the search (as described in Section 7.11
on page 158) because it can be the case that a credential is not released in
the network, therefore, we cannot determine which ambients are credentials
automatically. A better way to deal with this distinction is to use typed
ambients [36] to determine credentials at modelling time.

5. Specifics of insiders

Another possible extension that would probably also benefit from a typed-
MsAMS is to consider elements specific to insiders that would allow finding
attacks particular to this group. For example, instead of only representing
entities related to authentication as we do now in terms of credentials,
we would have to represent authorization as well, i.e. which subjects can
perform which actions on which objects. Additionally, roles or job functions
and, probably, a more refined approach to cope with social engineering
methods to acquire access to objects or roles would also be required.

252

10.2. OPPORTUNITIES FOR FUTURE WORK

6. Possibility of querying network models

The current version of MsAMS uses the query-independent version of HITS
to calculate authority and hub scores (as presented in Section 7.9.3 on
page 145). It means that scores are calculated using the whole matrix of
links. However, originally HITS is query-dependent [120], therefore, first
a sub-matrix is processed using the query provided by a user via a search
engine, then the scores are calculated just for this sub-matrix. This func-
tionality, in theory, seems interesting for querying large network models.
For example, the network administrator may want to know what is the
best cost-benefit attack from a source to a target via a specific host, or that
depends on the exploitation of a specific vulnerability, or depends on the
acquisition of a specific credential.

10.2.2 Further Industrial Development

1. Import of input

As we have seen in Chapter 7, the current version of MsAMS relies on
manual specification of ambients, although scalability of modelling is al-
ready achieved by means of duplication of ambient specification, as shown
in Chapter 8. However, the ideal situation would be to have the specifi-
cation populated as much as possible automatically. We have indicated in
Section 7.4 on page 123 the possible sources of information for modelling, all
of them are readily available, except one: the item related to authentication
methods used in the network and credentials involved depend on input from
the network administrator. However, the administrator has this knowledge
and the level of abstraction about credentials required by MsAMS is coarse
grained. Therefore, this should not be a problem specially if the visualiza-
tion aspect of the tool is improved, as discussed in the next item.

2. Visualization of network and attacks

The visual complexity of attack graphs is a major issue in the field of At-
tack Graphs. Although many researchers have addressed it in different
ways, we identified significant gaps discussed in Chapter 4 that motivated
requirement R1 (The solution should permit full representation of the net-
work topology). Since MsAMS satisfied this requirement by adopting a
Mobile Ambients-based formalism (as discussed in the previous section),
we contributed towards reducing the overall problem. However, to com-
pletely address it and also to improve significantly the usability of MsAMS,
a graphical interface is required. This interface would show ambients as
illustrated in Figure 7.3, allowing zoom-in and out in the nesting of ambi-
ents (i.e. in the network locality tree) and showing the specification of each
ambient upon request of the network administrator. The output, currently
purely symbolic as shown in Section 7.7 on page 126, would also benefit
immensely from a graphical interface showing animated attack paths.

253

CHAPTER 10. CONCLUSION

3. Improvements in scalability

Although empirical tests reported in Chapter 8 have shown that the scala-
bility of the MsAMS proof-of-concept tool is comparable to the best attack
graph approaches found in the literature, they revealed areas for improve-
ments. For example, space performance of both PageRank and HITS could
improve significantly by using sparse representation of the matrix of links
for calculations. Similarly, the search module could improve in terms of
space and time performance with a compact representation of the table of
links. In addition, the overall processing time of the tool would improve
if all its modules were coded in C, and if they took advantage of parallel
programming [169]. For example, (i) different search tasks (as described in
Section 7.11 on page 158) could be computed in parallel, (ii) the calculation
of scores could take advantage of parallel matrix-vector multiplication, and
(iii) the computation of links could use a shared pool and as many parallel
processes as possible taking link-processing-tasks from the pool.

254

Appendices

255

A
Formalization of the MsAMS Approach

In Chapter 7 we have introduced the syntax and informal semantics of our variant
of the ambient calculus by Cardelli and Gordon [35, 36, 34], applied to the domain
of multi-step network attacks. Therefore, we have introduced new operators to
facilitate modelling in this domain and use a modified set of reduction rules and
of structural congruence rules to search for attacks. This chapter introduces pre-
liminary concepts in Section A.1, formalizes such reduction rules in Section A.2,
and the rules of structural congruence in Section A.3.

Along this appendix, we discussion differences between the original ambient
calculus and the modified version used by MsAMS.

A.1 Preliminary Concepts

Four concepts are essential for the formalization of the movement and communi-
cation reduction rules. These are:

(i) the concept of an ambient inside another ambient (Chapter 7, Definition 22)

(ii) the concept of Least Common Ancestor (lca) (Chapter 7, Definition 34)

(iii) the concept of parent of an ambient (Chapter 7, Definition 19)

(iv) the concept of pathTo, defined next

Definition 43 (Concept of pathTo.) There is a path from ambient x to am-
bient y, denoted pathTo(x,y) is True, if and only if:
• the path from the parent of ambient x to the lca(x, y) is not blocked, i.e. if
DenyFromTo(x,parent x,lca(x,y)) = False, and
• the path from the lca(x, y) to the parent of ambient y is permitted, i.e. if Al-
lowFromTo(x,y,lca(x,y),parent y) = True,
where the methods DenyFromTo and AllowFromTo are presented in Figure A.2
and A.3, respectively.

Figure A.1 illustrates the scope of methods DenyFromTo and AllowFromTo in
terms of a network locality tree. Thus, while DenyFromTo tests if ambient x can

257

APPENDIX A. FORMALIZATION OF THE MSAMS APPROACH

move from its parent to the lca(x, y) (upwards the tree), the AllowFromTo tests if
ambient x can move from the lca(x, y) until the parent of ambient y (downwards
the tree).

DenyFromTo

method

x

y

lca(x,y)

method

AllowFromTo

Figure A.1: Scope of methods DenyFromTo and AllowFromTo used to test if
there is a pathTo from ambient x to ambient y

% The method DenyFromTo returns True if ambient x cannot move from

% inside ’from’ until inside ’to’

DenyFromTo(x,from,to)

CASE from = to

% ambient x reached ’to’ without any deny

return False

CASE exist action (DenyUp n) belonging to actions of ’from’ and

x is inside n

% x could not exit ’from’

return True

ELSE

% x could exit ’from’, let’s see if x can exit the parent of ’from’

DenyFromTo(x,parent ’from’,’to’)

Figure A.2: Simplified pseudocode of the DenyFromTo method

A.2 The MsAMS Reduction Rules

This section presents reduction rules that actually result in movement (Sec-
tion A.2.1), communication (Section A.2.2), and resource-acquisition (Section A.2.3).

A reduction rule P → Q describes the evolution of process P into a new
process Q [35].

258

A.2. THE MSAMS REDUCTION RULES

% The method AllowFromTo returns True if ambient x can move from

% inside ’from’ until inside ’to’ which contains ambient y.

% The allowed entry inside ambient y requires an Accept x or

% an Accept n, where x is inside n

AllowFromTo(x,y,from,to)

CASE from = to

% x was allowed to reach ’to’

return True

CASE exist action (AllowIn n y) belonging to actions of ’to’ and

x is inside n

% x could enter ’to’, let’s see if x can enter the parent of ’to’

AllowFromTo(x,y,’from’,parent ’to’)

ELSE

% x could not penetrate ’to’

return False

Figure A.3: Simplified pseudocode of the AllowFromTo method

A.2.1 Reduction which handles ambients movement

MsAMS only allows inter-ambient movements. When an ambient moves, all its
processes move with it. Note that in the original ambient calculus [35], it is
possible to have a process not contained within an ambient, while in MsAMS a
process is always contained within an ambient.

Reduction 1 Reduction between Enter and Accept.
This reduction only happens if ambient x is inside ambient n and pathTo(x, y)
is True:

x[Enter y.ActRulex | Px] | y[Accept n.ActRuley | Py]
→ y[x[ActRulex | Px] | ActRuley | Py]

As mentioned in Chapter 7, our action Enter is equivalent to Cardelli’s primi-
tive in [35]. However, movement in the original ambient calculus is asynchronous;
as explained by Cardelli “An entry capability, in m, can be used in the action
in m.P, which instructs the ambient surrounding in m.P to enter a sibling am-
bient named m”. Therefore, movement is unilateral and depends only on the
initiative of the ambient willing to move, so called active ambients [35]; the
reduction happens with any sibling, if more than one m sibling exists. This
behavior can raise anomalies, called interferences by Levi and Sangiorgi [124].
For example, in the original ambient calculus, the result of n[in m.P]|m[Q]|m[R]
can be either m[Q|n[P]]|m[R] or m[Q]|m[R|n[P]]. In this case, process P can
perform the same interaction with two different parties. Furthermore, more se-
rious anomalies can also happen in the original ambient calculus, e.g., the result
of h[n[in m.P |out h.R]|m[Q]] can be either n[P |R]|h[m[Q]] or h[m[Q|n[P |R]]],

259

APPENDIX A. FORMALIZATION OF THE MSAMS APPROACH

what means that ambient n can end up outside ambient h or inside a child of
h, ambient m. To avoid these anomalies Levi and Sangiorgi [124] propose the
Mobile Safe Ambient (SA) where movement capabilities such as in (enter) needs
a counterpart in (allow enter) to reduce. We take the SA approach to movements
in MsAMS.

Movement is synchronous in MsAMS and requires bilateral agreement between
the ambient willing to move and the ambient willing to accept the movement to
happen. However, the movement will only succeed, and therefore reduce, if there
are no ambient along the path which block the movement (through DenyUp
actions). The exit of ambients involved in our reduction enter-accept is implicit,
i.e. permitted by default. Thus, there is no explicit equivalent to the capability
exit from the ambient calculus in MsAMS, as well as no equivalent to capability
open. The action open is used in the original calculus to dissolve an ambient
perimeter, revealing its contents to its parent ambient. However, it may cause
security problems, as discussed by Buglisi et al. [29], which proposed the Boxed
Ambients where the open is dropped. Furthermore, open is used in MA to allow
intra-ambient communication between processes. Therefore, to avoid anomalies
and, since communication in MsAMS is inter-ambients, we also do not have the
capability open.

An advantage of synchronous movement is that the name of an ambient is not
so important as it happens in Mobile Ambients (MA). In MA, ambients’ names
should “be guarded very closely” [35] because knowing or revealing an ambient
name is enough to allow entering this ambient. Therefore, an ambient name
represents a permission on itself, what is not true in MsAMS where permission
(in the form of an Accept) is explicit.

A.2.2 Reduction which handles ambients communication

MsAMS allows inter-ambients communication, regulated by the following reduc-
tion rule.

Reduction 2 Reduction between In and Out.
This reduction only happens if ambients x is inside ambient n and pathTo(x, y)
is True:

x[Out y.ActRulex | Px] | y[In n.ActRuley | Py]
→ x[ActRulex | Px] | y[ActRuley | Py]

In the original ambient calculus [35], communication happens in terms of input
(x).P , where variable x can be instantiated with names (e.g an ambient name
m) or capabilities (e.g. in m), and in terms of output < M >. Communication
is asynchronous, channel-based and “works locally within a single ambient” [35].
An output releases a message M representing a capability within an ambient

260

A.3. THE MSAMS STRUCTURAL CONGRUENCE RULES

and, if a binding occurs between this capability M and any input variable x
(e.g. ambient names or capabilities), then there is a reduction. As a result of
the reduction we have Px←M , meaning that all possible x in P are replaced
by M . Therefore, in MA, it is assumed that asynchronous communication works
only locally and that non-local communication is restricted by capabilities [33]. In
MsAMS, input/output is not channel-based and abstracts from content exchange,
hence, it is less powerful than in ambient calculus. Communication is only a way
to synchronize information, inspired by input/output as in Milner’s CCS [140]
and Hoare’s CSP [95]. Therefore, communication is synchronous, i.e. depends
on agreement between the parties involved, and inter-ambients instead of intra-
ambient; two ambients willing to communicate, can only do so if there is a pathTo
from the source ambient to the destination ambient, e.g., if there is no firewall
blocking their communication.

A.2.3 Reduction which handles ambients resource-acquisition

Resource-acquisition in MsAMS, such as for the acquisition of credentials, is reg-
ulated by the following reduction rule.

Reduction 3 Reduction between AcquireCred and ReleaseCred.
In this reduction, c is an ambient that represents a credential:

x[AcquireCred.ActRulex | Px] | y[ReleaseCred c.ActRuley | Py]
→ x[ActRulex | Replicate(Enter c) | Px] | y[ActRuley | Py]

To acquire a credential c, an ambient x has to enter an ambient y, which re-
leases credentials in the form of actions ReleaseCred c1, ..., ReleaseCred cn, and
issue an action AcquireCred. A non-deterministic match between AcquireCred
and ReleaseCred ci results in ambient x acquiring the capability of entering
ambient ci, i.e, x acquires Enter ci.

In the original ambient calculus [35], Cardelli and Gordon consider acquire n.P
as equivalent to open n.P , and releasen.P as equivalent to n[]|P . Therefore,
theirs acquire has the problems of the open, mentioned in Section A.2.1.

A.3 The MsAMS Structural Congruence Rules

The structural congruence rules defining equivalence relations (denoted by ≡)
allowed by the MsAMS syntax are listed next.

1. Replication.

x[Replicate(Px)] ≡ x[Px | Replicate(Px)]

261

APPENDIX A. FORMALIZATION OF THE MSAMS APPROACH

Replication in MsAMS is a way to represent iteration and recursion, such
as in ambient calculus [33]. In the original calculus a replicate !P produces
“as many parallel replicas of P as needed” [33]; therefore replication in am-
bient calculus is unbound. In MsAMS, replication of a process Px produces
only one replica of Px, where Px complies with Definition 16. Note that
since parallel composition only appears within an ambient, as mentioned in
Chapter 7, constructs like !(P |Q) possible in the original MA do not happen
in MsAMS.

2. Permutation.

x[Px] ≡ x[π(Px)],
where:
π(Px) is a permutation of Px

For example, this permutation rule makes it possible to apply the En-
ter/Accept reduction as below:

x[z|u|w|Enter y] |
y[a|Accept n|b|c|d]
→ y[a|b|c|d|x[z|u|w]]

In this case, the permutations π(Px) and π(Py) guarantee that the Enter
and the Accept will be placed at the beginning of each of these ambients’
process list, therefore, potentially allowing a reduction as described in Sec-
tion A.2.1. Implicit to the structural permutation is the structural commu-
tativity, also present in the original ambient calculus, that guarantees:

x[ActRulex1.ActRulex2 | Px] ≡ x[ActRulex2.ActRulex1 | Px]

262

B
Gathering Defense Requirements using

Attack Trees 1

This chapter discusses how Attack Trees, reviewed in Section 2.2.2 on page 23,
can be applied to raise awareness about possible attacks from insiders. We illus-
trate their use by proposing a method to facilitate the elicitation of goal-based
(security) requirements for the defense against insiders. Each tree contains a
brainstorming of means to achieve the following sub-goals:“Pre-attack”, “Gain
access”, “Abuse access” and “Abuse permission”. Such sub-goals represent in
fact high-level steps, and a sequence of those steps represent a multi-step at-
tack which can be performed by an insider to compromise an asset. Traversing
each tree from leaf to root provides a plan of actions for the attacker, which the
defender wants to anticipate to proactively identify gaps in defense. Hence, as
defined in Chapter 2, those attack trees are viewed as attack strategies and their
possible countermeasures as defense strategies.

Insider threat is becoming comparable to outsider threat in frequency of secu-
rity events. This is a worrying situation, since insider attacks have a high prob-
ability of success because insiders have authorized access (i.e. they are allowed
to get in the network) and legitimate privileges (i.e. they are allowed to perform
actions while in the network). Despite their importance, insider threats are still
not properly addressed by organizations, and remains a challenge. We contribute
to reverse this situation by introducing, in this chapter, a framework composed
of a method for identification and assessment of potential insider attacks and
of two supporting deliverables for awareness of insider threat. The deliverables
are: (i) attack strategies structured in four attack trees, and (ii) a matrix which
correlates defense strategies, attack strategies and control principles.

1An early version of this chapter has been published at EMMSAD0́7 [75], itself derived from
a technical report [74].

263

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

B.1 Introduction

According to recent surveys [205, 85] and reports from studies [114, 171] carried
out by the U.S. Secret Services and the CERT (http://www.cert.org/insider_
threat/), insiders are responsible for major financial losses, damages and disrup-
tions to organizations. Worse, incidents2 originated from insiders are tending to
rise and to become comparable in frequency to incidents originated by outsiders.
We consider an insider, as defined by Bishop [20], as “a trusted entity that is given
the power to violate one or more rules in a given security policy... the insider
threat occurs when a trusted entity abuses that power”. The CERT categorizes
insider crime in three major groups: fraud, theft of information and IT sabotage.
The first one occurs when someone obtains unjustifiable services or property from
the organization. The second one occurs when someone steals confidential or pro-
prietary information from the organization. The third one occurs when someone
harms, in any sense, the organization or individual(s) within the organization.
CERT found that: (i) there is no conclusive evidence that a general profile of
insiders exists, and (ii) in more than half of the cases studied, insiders exploited
vulnerabilities in applications, processes and procedures/policies, not necessarily
known by outsiders. Thus, insiders do not only take advantage of technical ex-
pertise but they also take advantage of details specific to the organization and of
social engineering in an environment based on trust. Additionally, insiders tend
to have more opportunities, when compared to outsiders, caused e.g. by the dete-
rioration of access and permission management which may cause accumulation of
privileges. In summary, the combination of power, trust and knowledge turn in-
siders particularly dangerous and, as a consequence, their malicious actions have
high probability to be successful and to remain undetected.

Therefore, the insiders problem is even more complex than the outsiders prob-
lem because it may involve multiple steps not only at the network level but also
at the application level [179], related to subtle violations of control principles.
To reduce the insider problem, many challenges have yet to be overcome. One
challenge is the identification and assessment of risk that insiders represent to
an organization proactively. Risk management frameworks (e.g. OCTAVE [1]
and NIST SP 800-30 [202]) are not focused on particularities of insiders, and
the wide spectrum of insiders goals may turn low-level approaches using, e.g.,
misuse cases [195] and defense trees [21] unusable. Yet another challenge is the
lack of tool support for the identification and assessment of those risks. Com-
mercial products have approached the risk of insider incidents mainly from the
perspective of anomaly-based detection (e.g. LogRhythm (www.logrythm.com),
ArcSight (www.arcsight.com), and IBM IRIS [6] (Identity Risk and Investiga-
tion Solution). Therefore, they alert on suspicious behavior of users or even
known patterns of insider misuse (e.g. off-hours access to data and encrypted
file uploads) taking into account context information and prior or peer behaviors.
Although very useful, their assumption that insider malicious activity always in-

2Remember from Chapter 2 that incidents are successful attacks.

264

B.2. A FRAMEWORK FOR GATHERING DEFENSE REQUIREMENTS

volve visible behavior change may be very effective for the detection of fraud, but
there is a lot more to the insider problem not covered by such approach.

The contribution of this chapter is a framework that addresses the first chal-
lenge mentioned above. It consists of a method for identification and assessment
of insiders attacks (i.e. attacker strategies), and of two deliverables. We assess
potential attacks and identify the risk level of an asset indirectly via its defense
level. Therefore, from identified threats and vulnerabilities (treated together) we
derive potential attacks, from which we derive defense level and then risk level,
which allows prioritization of security requirements for defense against insiders.
The deliverables are: (i) insider attack strategies structured in four (high level)
attack trees (reviewed in Chapter 2), and (ii) a matrix that relates control prin-
ciples to attack and defense strategies. The purpose of these two deliverables is
to increase awareness about the insider problem in general for a more efficient
and effective application of the method in an organizational context. They take
the perspective of control principles, which are exploited by attack strategies and
enforced by defense strategies. This perspective enables us to look at the insider
problem as a whole and gather requirements against all insiders categories, i.e.
fraud, theft of information and IT sabotage.

This chapter is organized as follows. Section B.2 briefly (i) introduces the
notion of control principles, (ii) organizes insiders attack strategies in four attack
trees, (iii) presents a matrix for matching defense strategies, attack strategies and
control principles, and (iv) introduces the actual method, core of the framework.
Section B.3 describes an example application of the framework. In Section B.4
the framework is discussed, in Sections B.5 related work is reviewed, and finally,
in Section B.6, we conclude and point to future work.

B.2 A framework for gathering defense requirements

The proposed framework is composed of a method and of supporting deliverables.
Its goal is to help organizations to identify requirements that enable defense
against insiders.

As shown in Figure B.1, control principles are our starting point and this
choice is twofold. First, insiders exploit vulnerabilities which can be achieved by
exploiting control principles. Second, control principles provide mechanisms for
organizations to prevent and detect insiders activities. Thus, control principles
are, on the one hand, exploited by attack strategies, due to flaws or weaknesses
in processes, applications, infrastructure, etc, and, on the other hand, enforced
by defense strategies to assure a certain level of security.

Cobit [109] defines controls as “the policies, procedures, practices and or-
ganizational structures designed to provide reasonable assurance that business
objectives will be achieved and undesired events will be prevented or detected
and corrected.” Although each organization implements specific controls accord-
ing to their goal(s)/business mission they are based on common control principles
which apply to any organization.

265

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

Framework

Control

Principles

Method for gathering

requirements for
defense against insider

Attack

Strategies

Defense

Strategies

supports supports

exploited by enforced by

Past insider

cases

Available

defenses

insights insights

Figure B.1: Framework composed by a method and supporting attack and defense
strategies

A taxonomy of control principles related to IT, composed from the litera-
ture [182, 46, 110, 28], is presented next.

1. Separation of Duty (SoD): from [110] ”[SoD aims to ensure that] no
employee or group should be in a position both to perpetrate and to con-
ceal errors or fraud in the normal course of their duties”. This principle
can be enforced in a static way, by not permitting one person to assume
incompatible functions/permissions (i.e. exclusive roles), and in a dynamic
way, by not permitting the activation of exclusive roles in the same session.
Dynamic SoD can come in three flavors: (i) object SoD - same person pro-
hibited to perform critical operations on a same object, (ii) operation SoD
- same person prohibited to perform critical functions in a workflow, and
(iii) history SoD - same person prohibited to perform all his authorizations
on the same object over time. This principle can be difficult to achieve in
small organizations. In this case, other principles [47] like reconciliation,
review, audit and supervision can be used.

2. Dual Control (also called Two-Person Rule or Four-eye Principle): this
principle aims to make sure that sensitive tasks require two individuals,
usually with identical roles and hierarchical position, to perform.

3. Delegation and Revocation: delegation refers to a change in the as-
signment of authorization from one person to another. Revocation cancels
delegation.

4. Supervision, Review and Audit: supervision [183] aims to make sure
that subordinates execute assigned obligations. Review aims to control the
execution of delegated obligations. Audit aims to allow tracing and analysis
of events collected in audit logs.

266

B.2. A FRAMEWORK FOR GATHERING DEFENSE REQUIREMENTS

5. Accountability: refer to Section 2.1 on page 15.

6. Least Privilege and Need-to-know: least privilege aims to ensure that
individuals are only assigned to the minimum set of privileges needed to
perform their duties. Need-to-know is a special case of least privilege used
on military environments. It rely on labels for individuals and objects to
restrict access to information.

7. Non-repudiation: refer to Section 2.1 on page 15.

8. Reconciliation: control based on totals, balancing sheets, i.e. on cross-
information checking.

9. Classification of Assets: classification of assets ensures C-I-A via levels
of security depending on the protection required. It is prescribed by security
standards like ISO 27002 [107] as a means to maintain control over assets.
It is important to have in mind that humans are also assets and thus the
classification of users in roles, clearance levels or groups is also instrument
of control.

B.2.1 Supporting deliverable: attack strategies organized
in attack trees

We structure attack strategies usually exploited by insiders in four attack trees.
The tree “Pre-attack”, shown in Figure B.2, contains alternatives to achieve the
goal of preparing for an attack. It shows get password and social engineering as
two of the possible means of achieving such goal; each one is further decomposed
into means to achieve them, and so on. The tree “Gain access” is illustrated in
Figure B.3, the tree “Abuse access” in Figure B.4, and the tree “Abuse permis-
sion” in Figure B.5.

These trees have been derived from possible exploitations of control princi-
ples (listed in the previous section) and from past insider cases documented in the
literature [89, 114, 171, 24]. From the latter we acknowledge insights about pos-
sible exploitations on applications, infrastructure and organizational structure.
Although these trees cannot be considered as exhaustive, they provide a solid
basis for out-of-the-box reasoning about insiders strategies.

As discussed in Section 2.2.2 on page 23, attack trees provide an structured
top-down way to brainstorm means to achieve a goal, represented by the root
of the tree. Since all trees in this chapter have only OR relations, achieving
any sub-goal represented by child nodes, brings an attacker closer to achieve the
parent goal, represented by their parent node. A path from a leave to the root
of the tree represents multi-steps to achieve the goal which may not be enough
to launch an attack. For example, pre-attack steps need to be followed by other
steps to allow an insider to gain access to a specific asset, addressed by another
tree. The aim of such trees is the exploration of broadness, instead of deepness.
Hence, the main idea of these trees is to provide a wide spectrum of strategies

267

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

Pre-attack

social

engineering

get physical

possession of

backups

convince the

sharing of

passwords

shoulder

surfing

use brute-force

methods

use pw

guessing

strategies

use pw

cracking

software

use pw sniffing

methods

exploit weak

hash alg. for

encrypted pw

use default

passwords

guess obvious

passwords

use keyboard

stroke hw/ sw

get password

search for pw

(e.g. e-mails,

post-it, etc)

steal password
social

engineering

abuse of

authority to get

password

build up

relationship to

get info

Infiltrate to the

organization

replace

password

use unclosed

browser for pw

protected url(s)

1312

11109876

543

21

2120

1817161514 19

Figure B.2: Tree structure of attack strategies involved with “Pre-attack”

Gain access

advantage of
unlocked

machines

remote access
to shared

accounts

use backdoor
accounts

gain physical
access to

machines

 exploit
vulnerability on

applications

social

engineering

use password
obtained on

pre-attack

exploit account
management

deficiencies

gain physical
access to a

machine

use accounts
not disabled on

job termination

use still valid
but not in use

accounts

gain privileged
access

use access
paths unknown

by organization

use shared
password with
someone else

on different
OS, systems,

applications

use access
paths known

by organization

use own
legitimate

account

1

1110

987

65432

15141312

1716

Figure B.3: Tree structure for attack strategies involved with “Gain access”

268

B.2. A FRAMEWORK FOR GATHERING DEFENSE REQUIREMENTS

Abuse access

use wireless

connection to

transmit info

deploy

password

cracking sw

deploy Trojan

Horses, etc

deploy

hackers’

toolkits

use portable

devices to

copy/record

modify/delete

configuration

files

modify/delete

critical data

modify/delete

log files

compromise

data

exploit

attempts w/

wrong pw

lock admin

accounts

disclose

confidential

information

create

backdoor

accounts

take away info

upon job

termination

deploy

keyboard

stroke hw & sw

abuse

permission

(separate tree)

insert trap

doors in

applications

Install / insert/

execute

malicious code

deploy logic/

time bombs

reconnaissance

browse

documents

search for

publicly known

vulnerabilities

learn info like

accounts not in

use but active

discover

vulnerabilities

specific to org.

1 432 5 6 7

8 9 10 11

1312 14

15 16 17

242322212019

18

Figure B.4: Tree structure for attack strategies involved with “Abuse access”

used by insiders to launch attacks instead of providing a step-by-step breakdown
of a specific attack from an attacker goal.

Each of these trees can be viewed as a high-level step that can be composed,
in several ways, by insiders to launch attacks. The statechart in Figure B.6
illustrates those possibilities.

We can see in the figure that, from the initial state, an insider may or not need
to perform pre-attack activities, e.g., related to the acquisition of a password or
information not already in her possession. The next stage, gain access, involves
basically using access the insider holds for the normal course of her duties or gain
an additional form of access. It can be followed by activities related to abuse of
access and/or abuse of permissions.

B.2.2 Supporting deliverable: a matrix of attack versus
defense strategies

We present, in this section, a list of defense strategies derived from (i) the anal-
ysis of attack strategies which can be exploited by insiders, as discussed in Sec-
tion B.2.1, (ii) the taxonomy of control principles provided in Section B.2, and
(iii) a literature review [89, 114, 171, 24, 32]. The defense strategies are organized
in three lists, the first corresponds to the attack strategy trees “Pre-attack” and
“Gain access”, the second corresponds to the tree “Abuse access” and the third
corresponds to the tree “Abuse permission”. These defense strategies have been
composed with the same objective of broadness instead of deepness as we did for

269

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

exploit least

privilege
breaches

abuse

separation of
duties

at the
functional level

at the business
process level

abuse

privileged
access

benefit from

lack of two-
person rule

abuse hold of
secret details
e.g. admin pw

abuse overlap
authorization/

approval

abuse overlap
execution/

supervision

abuse custody
of assets

abuse overlap
recording/

reporting

abuse
conflicting

concerns/goals

abuse overlap
request/grant

abuse lack of
sharing e.g. to

sign checks

exploit asset
management
deficiencies

abuse role
permissions

conflicts on
role hierarchy

assignment

accumulate
privileges

bypass object-

based SoD

exploit

delegation/
revocation

conflicts on
direct role

assignment

via delegation
via conflicts
among roles

change of job
functions not

reflected

bypass objects

classification

bypass users

classification

via role
management

deficiencies

exploit
delegation

bypass static

SoD

Abuse
permission

use of shared
passwords

bypass static

SoD

11

1918

1716151413

12

313029282726

252423222120

10

98
76

54321

Figure B.5: Attack strategies involved with “Abuse permission”

the attack strategies. They will be useful as a reference when eliciting require-
ments for the defense against insider risks, in step 5 (see Section B.2.3.5) of the
method.

Defense strategies against Pre-attack and Gain access attack strategies:

1. review all access paths to assets periodically to ensure actual paths match
expected paths

2. ensure that only access paths needed for an individual’s job function are
activated

3. ensure the deactivation of all paths available for an individual upon job
termination

4. enforce tight password management: (i) adopt strong password, (ii) change
passwords periodically, and (iii) check periodically all information systems
administration passwords to identify out-of-box unchanged passwords

5. enforce strong authentication

6. ensure security patches are applied in a regular basis on every node of the
inner network area

270

B.2. A FRAMEWORK FOR GATHERING DEFENSE REQUIREMENTS

Pre−Attack

Gain Access

Abuse Access

Permission

Abuse

Figure B.6: Attack trees as states and possible transitions between them.

7. support security policies by education, i.e. organization-wide security aware-
ness and training initiatives for potential insiders

8. watch for behavioral precursors like disruption, dissatisfaction, level of ex-
pectations

Defense strategies against Abuse access attack strategies:

1. adopt inventory and configuration management to audit whether hardware
and software installed in desktops and servers comply with what is expected

2. use periodical data integrity checks on critical information

3. enforce physical measures for access to information

4. inspect code (e.g. via peer review) with the specific purpose of identifying
trap doors (from CWE3 “a feature intentionally placed in a program that
facilitates remote debugging or system maintenance which can compromise
the security of an application”), buffer overflows (from CWE “this condi-
tion exists when a program attempts to put more data in a buffer than
it can hold”; it permits unauthorized access to memory area adjacent to
the allocated buffer), logic/time bombs, validation errors, error handling
failure, etc, left by developers intentionally or not

3Common Weakness Enumeration, refer to Chapter 5.

271

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

5. ensure audit data cannot be modified by anyone in the organization

6. analyze audit logs to track critical transactions and to track access, modi-
fication and deletion of critical information

Defense strategies against Abuse permission attack strategies:

1. review objects classification periodically

2. check periodically expected users permissions, based on job function, and
actual permissions, based on actions performed. However, individuals usu-
ally perform several roles within his/her job function. Thus, the set of
expected permissions for an individual is the sum of all permissions ac-
quired through (i) direct role assignment, (ii) indirect role assignment, i.e.
role hierarchy, (iii) delegation, i.e. temporary permissions, and (iv) role
management deficiencies, for example, an employee has been promoted to
another function and his/her previous roles have not been disabled. Two
controls are important. First, if the set of all actual permissions an individ-
ual has exceeds the expected permissions the organization defined for the
job function. Second, if the set of permissions violates separation of duties,
in this case a detailed analysis of critical assets and processes dealt by this
individual is necessary

3. check if delegated permissions conflict with permissions an individual had
at the time of delegation; in this case, static separation of duties are violated

4. check delegations followed by revocations; this scenario can be exploited to
overcome object separation of duties [183]. A same object can be accessed
by two exclusive roles, assuming delegation causes a temporary loss of the
delegated permissions, which is then reacquired by revocation. Because this
violation is dynamic, it can only be detected by the analysis of audit logs

5. review periodically execution of tasks which require two peers for comple-
tion

6. ensure that critical data, such as passwords to critical assets, are not exclu-
sively handled by an uniquely privileged individual

7. review separation of duties at the functional level; a matrix with job func-
tions both on columns and lines and a cross on conflicting intersections can
help identifying SoD among job functions

8. review separation of duties at the process level through auditing. However,
it is pre-requisite to have strong role management because, otherwise, even
if the separation of operations is checked, it can happen that two critical
operations are logged as being performed by different roles but, in practice,
the same individual executed both. Critical operations can also span several
applications and in this case a cross-application audit is necessary, and a
manual mapping between roles from these applications is a pre-requisite for
detecting violations of SoD

272

B.2. A FRAMEWORK FOR GATHERING DEFENSE REQUIREMENTS

Review periodically hardware inventory and software
configuration

Check data integrity on critical information

Enforce physical measures for access to information

Inspect code to identify trap doors, buffer overflow

conditions, suspicious calls, validation errors, etc

Ensure audit data cannot be modified by anyone

Review assets classification and role structure

periodically

Review periodically actual users permissions against

expected users permissions

Ensure that critical operations, transactions and data

are not handled by an unique individual

G
et

 a
nd

 u
se

 s
om

eb
od

y
el
se

’s
 p

as
sw

or
d

(P
A-1

 &

G
A-6

) a
nd

 u
se

 o
f s

ha
re

d
pa

ss
w
or

d
(A

P-2
)

Soc
ia
l e

ng
in
ee

rin
g

fo
r p

re
-a

tta
ck

 a
nd

 to
 g

ai
n

ac
ce

ss

(P
A-2

 &
 G

A-5
)

U
se

 o
w
n

le
gi
tim

at
e

ac
ce

ss
 (G

A-1
)

Tak
e

ad
va

nt
ag

e
of

 u
nl
oc

ke
d

m
ac

hi
ne

 (G
A-2

)

Exp
lo
it
ac

co
un

t m
an

ag
em

en
t d

ef
ic
ie
nc

ie
s
(G

A-3
)

Exp
lo
it
vu

ln
er

ab
ilit

ie
s
on

 a
pp

lic
at

io
ns

 (G
A-4

)

Review periodically actual access paths against
expected paths

Ensure only paths needed for job function are

activated for an individual

Ensure deactivation of paths upon job termination

Enforce tight password management: (i) strong

password, (ii) periodic changes, (iii) none out-of-box

passwords

Enforce strong authentication

Ensure security patches are applied as soon as

possible after they are available

Support security policies by education, i.e.
awareness and training

Watch for individual behavioral changes like

disruption and dissatisfaction

LP

AU
NR

X

AU
NR

Enforce management of privileged actions

R
ec

on
na

is
sa

nc
e

(A
A-1

)

C
re

at
e

ba
ck

do
or

 a
cc

ou
nt

s
(A

A-2
)

C
om

pr
om

is
e

da
ta

 (A

Exp
lo
it

(A
A

AU
RC
LP

AU
RC
LP

AU
RC
LP

AU
RC
LP

AU
RC
LP

AU
RC
NR

AU
RC

LP

AU

AU

X

AU
RC
NR

X

X

DEFENSE STRATEGIES ATTAC
K S

TR
ATEG

IE
S

CONTROL PRINCIPLES AT INTERSECTIONS

SD: Separation of Duties

DC: Dual Control
D/R: Delegation/Revocation

AU: Audit

CC: aCCountability

LP: Least Privilege

NR: Non-Repudiation

RC: ReConciliation
CL: CLassification of Assets

X: other forms of control

X

AU
NR

AU
LP

AU

AU

LP

AU
RC

LP, D/R

AU
NR

X

AU
LP

AU
LP

AU

AU
LP

X

AU

RC

X

X

AU

AU

LP

AU

NR

AU

Table B.1: Extract from a matrix which correlates attack strategies, defense
strategies and control principles (PA: Pre-attack, GA: Gain access; AA: Abuse
access, AP: Abuse privilege)

9. ensure non-repudiation of privileged actions: (i) set formal mechanisms for
requesting services to administrators and establish a link between requests
and actions performed by administrators can be checked via auditing; (ii) a
profile of actions expected to be performed to resolve most common types
of requests for administrators can be created to allow matching between
expected and actual actions

Now, we match control principles, attack strategies, and defense strategies in
a matrix, as shown in Table B.1.

This table shows an extract (the full matrix has 15 columns and 17 rows [74])
of such a matrix, where (i) the horizontal axis contains a list of defense strate-
gies, (ii) the vertical axis contains the first level of nodes from the attack trees
(where e.g. PA refers to “Pre-attack”, GA to “Gain access” and so on), and
(iii) the intersections provide insights on which control principles enforces the
defense strategy and protects against the attack strategy. Defense strategies, de-
rived from the literature [114, 171, 24] and from control principles, have been
composed with the same objective of broadness instead of deepness as we did for
the attack strategies. This matrix is an example and needs to be customized by
organizations according to the controls they use. Furthermore, it can be refined
to a more concrete level by replacing a control by tools, policies and procedures
that implement that control. If kept up-to-date, this matrix can provide insights
about weaknesses in controls applied to some defenses against attack strategies.
Thus, the matrix is useful when deriving requirements for the defense against
insiders. The next problem is which of all possible defense strategies should ac-
tually be chosen by an organization to mitigate identified attack strategies. We

273

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

Step 1

Identify critical assets

and processes

Step 2

Select one critical asset

or process

Step 3

Identify potential

attacks related to

insider threat

Step 4

Assess risk level of

each potential attack

from defense level

Step 5

Select defense strategies

against potential attacks

with high risk level

Organization
goal(s)/

business
mission

Set of assets/
processes

List of critical
assets/processes

One critical

asset/process
selected

List of potential attacks

identified for the
asset/process

Prioritized list of
potential attacks

Based on risk level

Organization
architecture

Attack
strategies
from trees

Defense
strategies

Asset/process
defenses
In place

List of goal-based defense
requirements for

the asset/process to be elicited
Matrix of attack
versus defense

strategies

Figure B.7: Method for gathering requirements for defense against insiders

present a method for deciding this in the next section.

B.2.3 Method for gathering defense requirements

The method, shown in IDEF0 notation in Figure B.7, consists of 5 steps. The
boxes represent steps of the method. Horizontal arrows coming into the boxes
are inputs which are transformed by the steps into outputs and vertical arrows
are inputs not transformed by the steps. Outputs are represented by horizontal
arrows coming out of the boxes.

B.2.3.1 Step 1: Identify critical assets and processes

The main goal of the first step is to narrow the scope of the investigation about
insider threat to the core business of the organization by identifying critical as-
sets and processes. Critical assets may include data, information systems and
services as well as processes concentrated on one application or spanning several
applications.

Two elements are input for this step: (i) the organization goal(s)/business
mission, and (ii) the set of all assets and processes of the organization. We do
not prescribe any method for determining the criticality of assets but Critical
Impact Factors [203], e.g., may be used to determine critical assets while keeping
a straight alignment with the organization goal(s)/business mission. The list of
critical assets and processes should be a consensus among stakeholders.

Output: list of critical assets/processes

274

B.2. A FRAMEWORK FOR GATHERING DEFENSE REQUIREMENTS

B.2.3.2 Step 2: Select one critical asset/process

From the previous step we acquire knowledge about the organization main targets
of control. The goal of the second step is to narrow the scope of the insider threat
investigation even further by prioritizing the critical assets/processes. The advan-
tage of doing this is two-fold. The first advantage follows the known Divide and
Conquer strategy. It helps providing a short-term estimation for the number of
identification/assessment sessions and a longer-term estimation for the number of
iterations necessary to cover the whole set of critical assets/processes. The second
advantage is the re-use of defense requirements among critical assets/processes.

No specific method for prioritization, allowing selection of one critical as-
set/process, is prescribed. It remains up to the organization to decide which
criteria to use for the selection.

Output: one critical asset/process selected

B.2.3.3 Step 3: Identify potential attacks related to insiders

The previous step provides an unique focus for the remaining three steps. The
objective of step 3 is to identify potential attacks which turn the critical as-
set/process vulnerable to insider threat. We divide this step in two stages. In
the first stage, a representative of security is nominated the champion. This per-
son will use system architecture diagrams, options of insider attacks illustrated
in Figure B.6, and the attack strategy trees (discussed in Section B.2.1) to list
risks he believes are relevant for the critical asset/process. In the second stage,
stakeholders will get together to discuss potential attacks represented by insiders
and it will be more effective if they have spent some time to build a short list of
the top options in their view, using the attack strategy trees as reference. The
session(s), conducted by the champion, aims to get agreement about the potential
attacks.

As discussed in Chapter 3, the attack strategy trees can be used either to
identify single-step attacks or multi-steps attacks, according to combinations il-
lustrated in Figure B.6. As an example of the former case, stakeholders can think
about “accumulate privileges” (Abuse permission tree - node 14) as a risk to a
loan process. As an example of the latter case, stakeholders can think about the
attack steps “use legitimate access (developer), insert trap door in application”
(Gain access tree - node 1, Abuse access tree - node 19) and then “exploit vul-
nerability on application , modify/delete critical data” (Gain access tree - node
4, Abuse access tree - node 13) as a risk to a human resource database.

Output: list of potential attacks identified for the asset/process

B.2.3.4 Step 4: Assess risk level of each potential attack from defense
level

This step aims to prioritize the potential attacks which threatens a particular
asset/process that have been identified in the previous step. One input for this
assessment phase is the critical asset/process defense specification, i.e. defense

275

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

mechanisms and methods already implemented. The defense specification allows
for the determination of a defense level as a countermeasure in respect to the
potential attack under consideration. This defense level may either be considered
“high” or “low” and consequently the corresponding risk level is derived as the op-
posite. Determining the defense level can be straightforward. For example, if the
human resource database uses strong authentication methods and the potential
attack being analyzed is “get password” then the defense level will probably be
considered as “high”, and consequently the risk as “low”. As another example,
for the “accumulate privileges” potential attack, determining the defense level
would involve auditing a structure of role assignments, which might be compli-
cated at this point. In this case, considering the defense level as “low” would be
the most appropriate decision because the risk would then be forwarded to the
next step as “high” priority. We acknowledge that this defense classification is a
weak point of the method because it relies completely on the subjective judgment
of the champion, or any security specialist, and agreement among stakeholders.
Tool support for the evaluation of defense levels would be an advantage. Never-
theless, we also believe this weakness does not invalidate the method since the
determination of the defense level follows a clear rationale.

The process of risk assessment described should be followed for each potential
attack identified for the asset/process. It remains open to organizations to set
limits in terms of the number of attacks analyzed, carried over or postponed to
a new round of the method.

Output: prioritized list of potential attacks identified for the asset/process
based on risk level

B.2.3.5 Step 5: Select defense strategies which counter the potential
attacks with high risk

From the previous step the organization acquires awareness about which potential
attacks have high risks and therefore are top priority for the asset/process. In
this step the focus is to look at which defense strategies can be used to bring the
asset/process to a level of defense which avoids/mitigates those potential attacks.
The defense strategies listed in Section B.2.2 are elaborated in the format of
defense goals, which match Anton’s [9] definition of goals: “goals are high level
objectives of the business, organization, or system. They capture the reasons why
a system is needed and guide decisions at various levels within the enterprise”.
Thus, we aim in this step to identify, for each potential attack with high risk, a
list of defense goals using as reference the defense strategies provided.

After applying the method to all critical assets/processes, overlapping defense
goals among several assets/processes should be identified and the priority of de-
fense goals should be determined. Therefore, the complete list of defense goals
needs to be analyzed, refined and decomposed into requirements to be later elicit
and implemented in the organization. Several researchers have proposed methods
and tools for the elicitation of goal-based requirements (e.g. [9, 59, 146]) but this
task is out of the scope of the method.

276

B.3. THE FRAMEWORK APPLIED: AN EXAMPLE

Personal

account

database

Business

account

database

PKI

server

Manager’s

computer

Teller’s

computer
firewall

firewall

credentials

session key
session key

communication channel

information flow

Figure B.8: Example from a fictitious financial institution (from Chinchani et
al. [38])

Output: list of goal-based defense requirements for the asset/process to be
elicit

B.3 The framework applied: an example

Figure B.8 shows an example, adapted from Chinchani et al. [38], based on a
fictitious financial institution. In the example, a teller can complete any per-
sonal account transaction involving up to $5,000, through the personal account
database, but only a manager can complete transactions, above this limit. Trans-
actions on business accounts are limited to managers upon the presentation of
credentials to a Kerberos-like server . Successful authentication generates a ses-
sion key to access the business account database. Both databases are protected
by firewalls to prevent external attacks.

Example - step 1 A standard business mission for financial institutions is usually
in the line of “provide high quality banking services & financial solutions”.
Thus, it implies on the high criticality of assets and processes related to
monetary transactions. In step 1, management identifies the critical as-
sets/processes. In this very simple example, we assume that this results
in the following list: (i) asset: personal account database, (ii) process: en-
dorsement of personal account transactions over $5,000, (iii) asset: business
account database, and (iv) process: business account transactions.

Example - step 2 We select the process “business account transactions” because,
although this process seems already well protected, the board of directors
wants re-assurance.

Example - step 3 and 4 We simulate the role of stakeholders to identify potential
attacks using as reference the four attack strategy trees. They look at
each path from the trees and the combination of those trees, as shown

277

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

in Figure B.6 and decide if it is relevant for the process or if it suggests
another relevant attack scenario (i.e. sequence of steps). Table B.2 shows
the potential attacks identified and assessed.

Example - step 5 In this step we identify the defense strategies which seem ap-
propriate as countermeasures for the five potential attacks with high risks
(marked in bold in Table B.2). In a real situation, the defense strategies
need to be adapted and refined. Table B.3 contains the output of the
method, i.e. goal-based requirements for defense against the organizations’
insiders in respect to the process analyzed.

This example demonstrates the potential applicability of the framework for the
identification of potential attacks by insiders and corresponding defense strategies
as defense goals. We have seen that the process analyzed, which seemed already
well protected, is in fact subject to potential attacks which might not be evident.

B.4 Discussion

In this section, we discuss the proposed framework around three topics which,
we believe, turn it interesting: (i) merging of access-oriented with permission-
oriented approaches, (ii) abstraction from asset-specific, organization-specific or
class of attackers-specific goals, and (iii) shift from risk-based to defense-based
assessment of insider threat.

First, the management of access control may deteriorate over time, opening
security breaches for abuse from insiders. These breaches are related not only
to the authorization of access to assets but also to more subtle permissions and
control principles, such as prohibition of access, delegation of authorization, sep-
aration of duties, membership to roles, etc. When assessing insider risk, it is
important to consider these permission-related risks in addition to access-related
risks.

Second, our approach to the modeling of insider threat concentrates not on
detailed and specific goals of an insider or class of insiders but on the spectrum
of alternatives he can exploit to reach high-level goals. This makes our approach
more scalable than approaches that consider low-level attacker goals. The attack
trees (“Pre-attack”, “Gain access”, “Abuse access” and “Abuse permission”) we
propose reflect this approach and represent attack steps which combined in differ-
ent manners increase awareness of the insider threat problem. Other researchers
(e.g. [24, 30]) tend to model insider threat in a detailed manner that is not as
scalable.

Third, the most frequently used approach to prioritize risk of attacks rely on
measures of attack likelihood and impact. However, these attributes are difficult
to quantify in a meaningful way, specially the likelihood corresponding to a spe-
cific potential attack. To get around this problem, we prioritize risks of insiders
using the level of defense of the asset/process under analysis for a specific po-
tential attack. This shift allows the classification of the risk of a same potential

278

B.5. RELATED WORK

attack differently according to the level of defense or degree of resistance of the
asset/process under consideration.

The deliverables of our framework aim to decrease the dependency on expert
judgment for the assessment of risk from insiders. We believe that stakeholders
can participate more effectively and efficiently in the process of identification and
assessment of risks if they have knowledge about means exploitable by insiders
and defenses useful against them.

B.5 Related work

The framework presented in this chapter is related to insider threat modeling
and risk management, the main ingredients of our approach. With respect to
the latter, we review briefly two risk management frameworks, OCTAVE [1] and
NIST SP 800-30 [202], as well as risk assessment patterns [189], considered of
relevance for our work. With respect to the former, we already reviewed, along
the chapter, relevant related work [195, 21, 24, 30].

Three points from OCTAVE are of interest for our work: (i) threats are
gathered from enterprise knowledge. We believe our deliverables decrease this
dependence; (ii) assets are prioritized based on threats, opposed to our approach
where prioritization is aligned to organization goal(s)/business mission; (iii) vul-
nerabilities are identified based on catalogs of known attacks, however threats
related to “accumulation of privileges” (AP-13) e.g. are hardly found in catalogs.

Two points from the NIST SP 800-30 standard are worth emphasizing in
respect to our work: (i) threats are derived from threat-sources. Thus, in terms
of insiders, the focus would be on human threats. We believe our approach of
attack strategies induces a broader vision of the insider problem, since it provides
insights not commonly explored, as for example, separation of duty scenarios,
which are unlikely to be considered in threat-source reasoning; (ii) vulnerabilities
and controls have to be analyzed. We have a more focused approach when we
evaluate defense level for one specific potential attack, indirectly combining the
two.

Risk assessment patterns provide the basics of the method proposed in this
chapter. However, two points are worth mentioning. First, the proposed frame-
work applies the general pattern specifically to the Insider Threat domain, by
means of supporting deliverables. Thus, it adds value to the patters in that sense.
Second, it fills some gaps left to the implementer of the risk assessment pattern.
For example, we define a simple rationale for the qualitative prioritization of risks
based on the protection level in place for an asset/process.

B.6 Summary

We address the assessment of potential attacks with a focus on insider threat
by proposing a framework that consists of (i) a method for gathering goal-based

279

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

(security) requirements for defense against insiders, and of (ii) two deliverables:
insider attack strategies organized in four attack trees, and a matrix structure
for matching attack and defense strategies with control principles. The method
itself is not specifically tailored to insider threat and could be used for analyz-
ing outsider threat as well. However, the framework as a whole is tailored to
provide awareness to organizations towards e.g. abuse of permissions related to
SoD and accumulation of roles, specific to insiders. This is valuable because it
allows systematic analysis of possible multi-step attacks by insiders. Even though
it remains at a high level, it allows reasoning about defenses in place and iden-
tification of defense gaps which are, in fact, goal-based requirements to be later
elicited. Besides, it allows reasoning out-of-the-box, i.e. reasoning not only about
abuse of access (a common type of abuse) but also about abuse of permissions.
Note however that, just as other risk assessment methods, it depends on expert
judgement and the results of applying it are as reliable as this judgement.

280

B.6. SUMMARY

Potential attacks Defense
level

Risk
level

At1 terminated manager uses his account/credentials
after his termination to perform fraudulent busi-
ness transactions

high low

At2 terminated manager uses a backdoor account and
his “old” credentials to perform business transac-
tions

low high

At3 insider gains physical access to a manager’s
authenticated computer and performs business
transactions

high low

At4 teller learns a vulnerability specific to the organi-
zation, e.g. the manager does not apply security
patches on a regular basis, to acquire credentials
to perform business transactions

low high

At5 manager deploys a logic/time bomb in the busi-
ness account database

low high

At6 manager performs fraudulent business transac-
tions applied to, e.g., wife or boyfriend accounts
(as beneficiaries)

high low

At7 insider discloses information about business
transactions to competitors or press

low high

At8 member of application X developers team inserts
a trap door in the application code which enables
business transactions

low high

At9 manager shares password/credentials with a teller
or another manager (e.g. in case of emergency),
enabling them to impersonate the manager to
perform business transactions

high low

Table B.2: Potential attacks and derived risk level (from defense level) for the
critical process “business account transactions”

281

APPENDIX B. GATHERING DEFENSE REQUIREMENTS USING
ATTACK TREES

Defense goal
DG1 review all access paths to assets periodically to ensure actual

paths match expected paths
DG2 ensure security patches are applied in a regular basis on every

node of the inner network area
DG3 adopt inventory and configuration management to audit if

hardware and software installed in desktops and servers com-
ply with expected

DG4 analyze audit logs to track critical transactions and to track
access, modification and deletion of critical information

DG5 inspect code (e.g. via peer review)
DG6 support security policies by education, i.e. organization-wide

security awareness and training initiatives for potential insiders

Table B.3: Defense goals for the critical process “business account transactions”

282

Publications by the Author

S. H. Houmb, V. N. L. Franqueira, and E. A. Engum. Quantifying Se-
curity Risk Level from CVSS Estimates of Frequency and Impact. In
Press: Journal of Systems and Software, Available online 23 August 2009:
http://dx.doi.org/10.1016/j.jss.2009.08.023. Elsevier.

V. N. L. Franqueira, R. H. C. Lopes, and P. A. T. van Eck. Multi-step
Attack Modelling and Simulation (MsAMS) Framework based on Mobile
Ambients. In SAC 2009: Proc. of the 24th Annual ACM Symposium on
Applied Computing, pages 66-73, US, Mar 2009. ACM Press.

V. N. L. Franqueira, P. A. T. van Eck, R. J. Wieringa, and R. H. C. Lopes. A
Mobile Ambients-based Approach for Network Attack Modelling and Simu-
lation. In ARES 2009: Proc. of the Forth Int. Conference on Availability,
Reliability and Security, pages 546-553, Japan, Mar 2009. IEEE Press.

S. H. Houmb and V. N. L. Franqueira. Estimating ToE Risk Level using
CVSS. In ARES 2009: Proc. of the Fourth Int. Conference on Availability,
Reliability and Security, pages 718-725, Japan, Mar 2009. IEEE Press.

S. H. Houmb, V. N. L. Franqueira, and E. Erlend. Estimating Impact and
Frequency of Risks to Safety and Mission Critical Systems Using CVSS.
In ISSRE 2008 Supplemental Proceedings: 1st Workshop on Dependable
Software Engineering, US, Nov 2008. IEEE Press.

V. N. L. Franqueira, R. H. C. Lopes, and P. van Eck. Multi-step Attack
Modelling and Simulation (MsAMS) Framework based on Mobile Ambients.
Technical Report TR-CTIT-08-44, University of Twente, Jun 2008.

V.N.L. Franqueira and M. van Keulen, Analysis of the NIST database to-
wards the composition of vulnerabilities in attack scenarios. Technical Re-
port TR-CTIT-08-08, University of Twente, Feb 2008.

V. N. L. Franqueira and R. H. C. Lopes. Vulnerability Assessment by
Learning Attack Specifications in Graphs. In IAS07: Proc. of the 3rd
Int. Symposium on Information Assurance and Security, pages 161-164,
England, Aug 2007, IEEE Press.

V.N.L. Franqueira, P.A.T. van Eck. Defense against insider threat: a frame-
work for gathering goal-based requirements. In EMMSAD’07: Proc. of the
12th Int. Workshop on Exploring Modeling Methods in Systems Analysis
and Design, Norway, pages 193-202, Jun 2007.

V. N. L. Franqueira, R. H. C. Lopes, and P. van Eck. An Evolutionary
Approach for Learning Attack Specifications in Network Graphs. Technical
Report TR-CTIT-07-40, University of Twente, Jun 2007.

283

Publications by the Author

V.N.L. Franqueira and P. van Eck. Defense against insider threat: a frame-
work for gathering goal-based requirements. Technical Report TR-CTIT-
06-75, University of Twente, Dec 2006.

V.N.L. Franqueira and P. van Eck. Towards alignment of architectural
domains in security policy specifications. In Proccedings of the 8th Interna-
tional Symposium on System and Information Security, Brazil, Nov 2006.

V.N.L. Franqueira. Evolution of security policies. In: Doctoral Symposium
Proceedings of the 14th IEEE International Requirements Engineering Con-
ference (RE06), USA, Sep 2006. IEEE Press.

V.N.L. Franqueira and P. van Eck. Towards alignment of architectural
domains in security policy specifications.0 Technical Report TR-CTIT-06-
31, University of Twente, Jun 2006.

V.N.L. Franqueira. Access Control from an Intrusion Detection Perspective.
Technical Report TR-CTIT-06-10, University of Twente, Jun 2006.

284

References

[1] C. Alberts and A. Dorofee. Managing Information Security Risks: The OCTAVE
Approach. Addison-Wesley, Boston, MA, USA, first edition, 2002.

[2] M. Almgren and U. Lindqvist. Application-integrated data collection for security
monitoring. In Recent Advances in Intrusion Detection (RAID 2001), LNCS 2212,
pages 22–36, Davis, California, October 2001. Springer.

[3] Amenaza. The SecurlTree BurgleHouse Tutorial, Version 2.5, August 2006. http:
//www.amenaza.com/downloads/docs/Tutorial.pdf, accessed Jan 2008.

[4] P. Ammann, J. Pamula, J. Street, and R. Ritchey. A host-based approach to
network attack chaining analysis. In ACSAC ’05: Proc. of the 21st Annual
Computer Security Applications Conference, pages 72–84, Washington, DC, USA,
2005. IEEE Computer Society.

[5] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network
vulnerability analysis. In CCS ’02: Proceedings of the 9th ACM conference on
Computer and communications security, pages 217–224, New York, NY, USA,
2002. ACM.

[6] G. F. Anderson, D. A. Selby, and M. Ramsey. Insider attack and real-time data
mining of user behavior. IBM Journal Research and Development, 51(3):465–475,
2007.

[7] R. Anderson. Why Information Security is Hard - An Economic Perspective.
In ACSAC’01: Proc. 17th Annual Computer Security Applications Conference,
pages 358–365. IEEE Computer Society Press, December 2001.

[8] R. Anderson and T. Moore. Information Security Economics - and Beyond. In
CRYPTO’07: 27th Annual International Cryptology Conference, pages 68–91,
August 2007.

[9] A. I. Anton. Goal-Based Requirements Analysis. In ICRE ’96: Proc. 2nd Int.
Conference on Requirements Engineering (ICRE ’96), pages 136–144, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[10] M. L. Artz. NetSPA : a Network Security Planning Architecture. Master’s thesis,
MIT - Massachusetts Institute of Technology, May 2002.

[11] AS/NZS-4360:2004. Australian/New Zealand Standards, Risk Management,
2004.

[12] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, January-March 2004.

[13] K. Avrachenkov and N. Litvak. The effect of new links on google pagerank.
Stochastic Models, 22(2):319–331, December 2006.

[14] S. Axelsson. Research in intrusion-detection systems: A survey and taxonomy.
Technical Report 99-15, Department of Computer Engineering, Chalmers Uni-
versity of Technology, Goteborg, Sweden, March 2000.

[15] P. Bacher, T. Holz, M. Kotter, and G. Wicherski. Know your
Enemy: Tracking Botnets. The Honeypot Projet, March 2005.
http://www.honeynet.org/papers/bots/, last visited 15 Jan 2009.

[16] W. H. Baker, C. D. Hylender, and J. A. Valentine. 2008 data breach investigations
report. Verizon Business Security Solutions, June 2008. www.verizonbusiness.

com/resources/security/databreachreport.pdf, Visited on Sep 2008.
[17] S. M. Bellovin. Computer security - an end state? Communications of the ACM,

44(3):131–132, 2001.

285

REFERENCES

[18] P. Berander and A. Andrews. Requirements prioritization. In A. Aurum and
C. Wohlin, editors, Engineering and Managing Software Requirements, pages 69–
94. Springer Verlag, Berlin, Germany, 2005.

[19] C. Berge. Graphs and Hypergraphs, volume 6 of North-Holland Mathematical
Library. American Elsevier Pub. Co, second edition, 1975.

[20] M. Bishop. Position: Insider is relative. In NSPW ’05: Proceedings of the 2005
workshop on New security paradigms, pages 77–78, New York, NY, USA, 2005.
ACM Press.

[21] S. Bistarelli, F. Fioravanti, and P. Peretti. Defense trees for economic evaluation
of security investments. In ARES’06: Proc. of the The 1st Int. Conference on
Availability, Reliability and Security, pages 416–423, Washington, DC, USA, April
2006. IEEE Computer Society.

[22] D. Bolzoni and S. Etalle. Boosting Web Intrusion Detection Systems by Inferring
Positive Signatures. In OTM’08: Proc. of Confederated International Confer-
ences, volume 5332 of LNCS, pages 938–955, Berlin, 2008. Springer Verlag.

[23] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In
Proc. of the 2006 ACM SIGMOD Int’l conf. on Management of data, Chicago,
IL, USA, pages 479–490, 2006.

[24] R. C. Brackney and R. H. Anderson. Undersatanding the insider threat: Pro-
ceedings of a march 2004 workshop, 2004.

[25] C. Braghin, A. Cortesi, S. Filippone, R. Focardi, F. L. Luccio, and C. Piazza.
BANANA - A Tool for Boundary Ambients Nesting ANAlysis. In TACAS’03:
Proc. 9th Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems, pages 437–441. Springer-Verlag, 2003.

[26] C. Braghin, A. Cortesi, and R. Focardi. Security Boundaries in Mobile Ambients.
Computer Languages, 28(1):101–127, April 2002.

[27] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. Comput. Netw. ISDN Syst., 30(1-7):107–117, 1998.

[28] BS. ISO 17799: Information technology. Security techniques. Code of practice for
information security management, 2000.

[29] M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about Security in Mobile
Ambients. In CONCUR’01: Proc. of the 12th Int. Conf. on Concurrency Theory,
pages 102–120, London, UK, 2001. Springer-Verlag.

[30] J. W. Butts, R. F. Mills, and R. O. Baldwin. Developing an insider threat
model using functional decomposition. In MMM-ACNS: 3rd Int. Workshop on
Mathematical Methods, Models, and Architectures for Computer Network Secu-
rity, volume 3685 of LNCS, pages 412–417. Springer, September 2005.

[31] M. Calder. A Grand Challenge for Computer Science: As Built Models of Com-
puting Systems. National e-Science Centre, e-Science Institute, Workshop on
Grand Challenges for Computer Research, UK, November 2002. www.nesc.ac.

uk/esi/events/Grand_Challenges/panelb/b17.pdf.
[32] D. M. Cappelli, A. G. Desai, A. P. Moore, T. J. Shimeall, E. A. Weaver, and B. J.

Willke. Management and Education of the Risk of Insider Threat (MERIT). In
Proc. 24th Int. Conference of the System Dynamics Society, The Netherlands,
July 2006. Radboud University of Nijmegen.

[33] L. Cardelli. Mobility and security. In F. L. Bauer and R. Steinbrggen, editors,
Proc. of the NATO Advanced Study Institute on Foundations of Secure Compu-
tation, NATO Science Series, pages 3–37, Marktoberdorf, Germany, 27 July - 8
August 2000. IOS Press. Lecture notes for Marktoberdorf Summer School 1999.

286

REFERENCES

[34] L. Cardelli. Bioware Languages, pages 59–65. Monographs in Computer Science.
Springer, New York, 2004.

[35] L. Cardelli and A. D. Gordon. Mobile Ambients. In Foundations of Software Sci-
ence and Computation Structures: First International Conference, FOSSACS’98,
volume 1378 of LNCS, pages 140–155, Berlin Germany, 1998. Springer-Verlag.

[36] L. Cardelli and A. D. Gordon. Types for Mobile Ambients. In POPL’99: Proc.
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 79–92, New York, NY, USA, 1999. ACM.

[37] Common criteria for information technology security evaluation, part 1: Intro-
duction and general model, September 2006. Version 3.1, Revision 1, CCMB-
2006-09-001.

[38] R. Chinchani, A. Iyer, H. Q. Ngo, and S. Upadhyaya. Towards a Theory of
Insider Threat Assessment. In DSN 2005: Int. Conf. on Dependable Systems and
Networks, pages 108–117. IEEE Computer Society Press, July 2005.

[39] R. Chinchani, A. Iyer, H. N. Q., and S. Upadhyaya. A Target-Centric Formal
Model For Insider Threat and More. Technical Report 2004-16, University of
Buffalo, US, October 2004.

[40] S. Christey. Unforgivable Vulnerabilities. MITRE Corporation, August 2007.
Presented as a “Turbo-Talk” at the Black Hat Briefings 2007 held in Las Vegas,
Nevada, USA.

[41] S. Christey and R. A. Martin. Vulnerability Type Distributions in CVE, version
1.1. MITRE Corporation, May 2007.

[42] C. Y. Chung, M. Gertz, and K. N. Levitt. DEMIDS: A misuse detection system
for database systems. In Proc. 3rd Int. IFIP TC-11 WG11.5 Working Conf. on
Integrity and Internal Control in Information Systems, pages 159–178. Kluwer
Academic Publishers, 1999.

[43] A. Compagnoni, E. L. Gunter, and P. Bidinger. Role-based Access Control for
Boxed Ambients. Theoretical Computer Science, 398(1-3):203–216, 2008.

[44] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combi-
natorial Optimization. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[45] E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup: Understand-
ing, Detecting, and Disrupting Botnets. In SRUTI’05: Proc. of the Steps to
Reducing Unwanted Traffic on the Internet on Steps to Reducing Unwanted Traf-
fic on the Internet Workshop, pages 39–44, Berkeley, CA, USA, 2005. USENIX
Association.

[46] COSO. Internal Control - Integrated Framework by Committee on Sponsoring
Organizations of the Treadway Commission, 1994.

[47] COSO. Internal Control over Financial Reporting - Guidance for Smaller Public
Companies, 2006.

[48] M. J. Crawley. The R Book. Wiley Blackwell, 2007.

[49] M. Cremonini and D. Nizovtsev. Understanding and Influencing Attackers Deci-
sions: Implications for Security Investment Strategies. In WEIS06: 5th Workshop
on the Economics of Information Security, June 2006.

[50] J. Cullum, C. E. Irvine, and T. E. Levin. Performance impact of connectiv-
ity restrictions and increased vulnerability presence on automated attack graph
generation. In ICIW 2007: 2nd Int. Conf. on i-Warfare and Security Naval
Postgraduate School, pages 33–46, England, March 2007. Academic Conferences
Limited.

287

REFERENCES

[51] F. Cuppens and R. Ortalo. Lambda: A language to model a database for detection
of attacks. In RAID’00: Proc. of the Third Int. Workshop on Recent Advances
in Intrusion Detection, pages 197–216, London, UK, 2000. Springer-Verlag.

[52] Common Vulnerabilities and Exposures. http://cve.mitre.org/, visited 10-
July-2008.

[53] CVE-2008-3257. Stack Buffer Overflow, Published in the National Vulnerability
Database (NVD) on 22 Jul 2008. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2008-3257.

[54] CVE-2008-3257. Secunia Advisory. http://secunia.com/advisories/31146.
Visited 23-Jan-2009.

[55] CVE-2008-5416. Published in the National Vulnerability Database (NVD)
on 10 Dec 2008. http://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2008-5416.
[56] CVSS calculator. CVSS: Common Vulnerability Scoring System Support v2.

NIST homepage: National Institute of Standardard and Technology, 2004. http:
//nvd.nist.gov/cvss.cfm (last visited October 2008).

[57] M. Dacier, Y. Deswarte, and M. Kaaniche. Models and Tools for Quantitative
Assessment of Operational Security. In IFIP SEC’96, pages 177–186, May 1996.

[58] D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of Botnet Structures. In
Proc. of the 23 Annual Computer Security Applications Conference (ACSAC’07),
pages 325–339, Washington, DC, USA, December 2007. IEEE Computer Society.

[59] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements
acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.

[60] J. Dawkins and J. Hale. A Systematic Approach to Multi-Stage Network At-
tack Analysis. In IWIA ’04: Proc. of the 2nd IEEE Int. Information Assurance
Workshop, pages 48–56, Washington, DC, USA, 2004. IEEE Computer Society.

[61] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[62] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Upper Saddle River,
NJ, USA, 1976.

[63] E. W. Dijkstra and W. H. J. Feijen. A Method of Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[64] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer. Dynamic
application-layer protocol analysis for network intrusion detection. In USENIX-
SS’06: Proc. of the 15th Conf. on USENIX Security Symposium, pages 257–272,
Berkeley, CA, USA, 2006. USENIX Association.

[65] S. T. Eckmann, G. Vigna, and R. A. Kemmerer. STATL: An Attack Language for
State-based Intrusion Detection. Journal of Computer Security, 10(1/2):71–104,
2002.

[66] ETSI-TS-102-165-1. Part 1: Method and proforma for Threat, Risk, Vulnerability
Analysis. European Telecommunication Standardisation Institute (ETSI), v4.2.1,
2006.

[67] J. Evers. Hacking for Dollars. ZDNet online news, posted on 6 July 2005. http:
//news.zdnet.com/2100-1009_22-5772238.html, accessed Jun 2006.

[68] Exploit. Microsoft SQL Server sp replwritetovarbin limited mem-
ory overwrite vulnerability. SecurityFocus Symantec Corporation,
2008. http://www.sec-consult.com/files/20081209_mssql-2000-sp_

replwritetovarbin_memwrite.txt, Visited on 24 Jan 2009.
[69] J. D. Fernandez and A. E. Fernandez. Scada systems: vulnerabilities and reme-

diation. Journal of Computing Sciences in Colleges, 20(4):160–168, 2005.

288

REFERENCES

[70] V. N. L. Franqueira and R. H. C. Lopes. Vulnerability Assessment by Learning
Attack Specifications in Graphs. In IAS’07: Proc. of the 3rd Int. Symposium on
Information Assurance and Security), pages 161–164, Los Alamitos, CA, USA,
August 2007. IEEE Computer Society.

[71] V. N. L. Franqueira, R. H. C. Lopes, and P. van Eck. An Evolutionary Ap-
proach for Learning Attack Specifications in Network Graphs. Technical Report
TR-CTIT-07-40, Centre for Telematics and Information Technology (CTIT), Uni-
versity of Twente, Enschede, The Netherlands, June 2007.

[72] V. N. L. Franqueira, R. H. C. Lopes, and P. van Eck. Multi-step Attack Modelling
and Simulation (MsAMS) Framework based on Mobile Ambients. Technical Re-
port TR-CTIT-08-44, Centre for Telematics and Information Technology (CTIT),
University of Twente, Enschede, The Netherlands, June 2008.

[73] V. N. L. Franqueira, R. H. C. Lopes, and P. A. T. van Eck. Multi-step Attack
Modelling and Simulation (MsAMS) Framework based on Mobile Ambients. In
SAC’2009: Proc. of the 24th Annual ACM Symposium on Applied Computing,
pages 66–77, New York, March 2009. ACM Press.

[74] V. N. L. Franqueira and P. van Eck. Defense against insider threat: a frame-
work for gathering goal-based requirements. Technical Report TR-CTIT-06-75,
University of Twente, December 2006.

[75] V. N. L. Franqueira and P. A. T. van Eck. Defense against insider threat: a
framework for gathering goal-based requirements. In EMMSAD’07: Proc. of
the 12th Int. Workshop on Exploring Modeling Methods in Systems Analysis and
Design, pages 193–202, June 2007.

[76] V. N. L. Franqueira, P. A. T. van Eck, R. J. Wieringa, and R. H. C. Lopes. A
Mobile Ambients-based Approach for Network Attack Modelling and Simulation.
In ARES’2009: Proc. of the Forth Int. Conference on Availability, Reliability
and Security, pages 546–553, Los Alamitos, March 2009. IEEE Computer Society
Press.

[77] V. N. L. Franqueira and M. van Keulen. Analysis of the NIST database towards
the composition of vulnerabilities in attack scenarios. Technical Report TR-CTIT-
08-08, Centre for Telematics and Information Technology (CTIT), University of
Twente, Enschede, The Netherlands, Feb. 2008.

[78] S. Frei, M. May, U. Fiedler, and B. Plattner. Large-Scale Vulnerability Analysis.
In LSAD ’06: Proceedings of the 2006 SIGCOMM workshop on Large-scale attack
defense, pages 131–138, New York, NY, USA, September 2006. ACM.

[79] F. Gallegos. Red teams: An audit tool, technique and methodology for informa-
tion assurance. Information Systems Control, 2, 2006. Issue: Advanced Audit
Technologies and Emerging Audit Techniques.

[80] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Mathematical Sciences. W. H. Freeman, January
1979.

[81] D. Geer and J. Harthorne. Penetration Testing: A Duet. In ACSAC’02: Proc.
of the 18th Annual Computer Security Applications Conference, page 185, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[82] M. Glinz and R. J. Wieringa. Stakeholders in Requirements Engineering. IEEE
Software, published by IEEE Computer Society, 24(2):18–20, March/April 2007.

[83] D. Gordon, T. R. Stehney, N. Wattas, and E. Yu. Security quality requirements
engineering (square): Case study on asset management system, phase ii. Tech-
nical Report CMU/SEI-SR-005, Carnegie Mellon Software Engineering Institute,
Pittsburgh, PA, USA, May 2005.

289

REFERENCES

[84] L. A. Gordon and M. P. Loeb. Managing Cybersecurity Resources: A Cost-Benefit
Analysis. McGraw-Hill, first edition, 2006.

[85] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson. 2006 CSI/FBI
Computer Crime and Security Survey, 2006. http://i.cmpnet.com/gocsi/db_

area/pdfs/fbi/FBI2006.pdf, accessed Jan 2008.
[86] N. J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning

for Highly Scalable Applications and Services. Springer, 2006.
[87] D. Ha, S. Upadhyaya, H. Q. Ngo, S. Pramanik, R. Chinchani, and S. Mathew.

Insider threat analysis using information-centric modeling. In Advances in Digital
Forensics III, IFIP International Federation for Information Processing, pages 55–
73. Springer, Boston, 2007.

[88] S. Hansman. A Taxonomy of Netwrok and Computer Attack Methodolo-
gies. B.Sc. Honours Report, University of Canterbury, New Zealand, Novem-
ber 2003. http://www.cosc.canterbury.ac.nz/research/reports/HonsReps/

2003/hons_0306.pdf, accessed 18 Dec 2008.
[89] M. V. Hayden. The Insider Threat to U.S. Government Information Systems,

July 1999. Advisory Memoranda NSTISSAM INFOSEC 1-99.
[90] R. L. Hays and W. L. Winkler. Statistics: Probability, Inference, and Decision.

Thomson Learning, second edition, 1975.
[91] L. He and N. Bode. Network Penetration Testing. In EC2ND 2005: Proc. of the

First European Conference on Computer Network Defence, pages 3–12, London,
2006. Springer-Verlag.

[92] I. Heinz, F. Hartl, and C. Frohlich. Semi-Automatic 3D CAD Model Generation
of As Built Conditions of Real Environments using a Visual Laser Radar. In
In the Proc. of the 10th IEEE Int. Workshop on Robot and Human Interactive
Communication, pages 400–406, Washington, DC, USA, 2001. IEEE Computer
Society Press.

[93] G. Helmer, J. Wonga, M. Slagell, V. Honavar, L. Miller, and R. Lutz. A Software
Fault Tree Approach to Requirements Analysis of an Intrusion Detection System.
Requirements Engineering, 7(4):207–220, November 2002.

[94] P. Herzog. Open Source Security Testing Methodology Manual. ISECOM: Insti-
tute for Security and Open Methodologies, August 2008. version 3 Lite.

[95] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM,
21(8):666–677, 1978.

[96] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-
tional, second edition, June 2004. Online version updated by Jim Davies of the
Oxford University Computing Laboratory, available at http://www.usingcsp.

com/cspbook.pdf.
[97] G. Hoglund and G. McGraw. Exploiting Software: How to Break Code. Addison-

Wesley, Pearson Education Inc., 2004.
[98] J. Homer, A. Varikuti, X. Ou, and M. A. Mcqueen. Improving Attack Graph

Visualization through Data Reduction and Attack Grouping. In VizSec’08: Proc.
of the 5th Int. Workshop on Visualization for Computer Security, pages 68–79,
Berlin, Heidelberg, 2008. Springer-Verlag.

[99] S. H. Houmb. Decision Support for Choice of Security Solution: The Aspect-
Oriented Risk Driven Development (AORDD) Framework. PhD thesis, Norwe-
gian University of Science and Technology, Trondheim, November 2007.

[100] S. H. Houmb and V. N. L. Franqueira. Estimating ToE Risk Level using CVSS.
In ARES’2009: Proc. of the Fourth Int. Conference on Availability, Reliability

290

REFERENCES

and Security, IEEE Conference Proceedings, Los Alamitos, March 2009. IEEE
Computer Society Press.

[101] S. H. Houmb, V. N. L. Franqueira, and E. A. Engum. Quantifying Security Risk
Level from CVSS Estimates of Frequency and Impact. Journal of Systems and
Software, 2009. Available online 23 August 2009.

[102] S. H. Houmb, V. N. L. Franqueira, and E. Erlend. Estimating Impact and Fre-
quency of Risks to Safety and Mission Critical Systems Using CVSS. In ISSRE
2008 Supplemental Proceedings: 1st Workshop on Dependable Software Engineer-
ing, Seattle, US, IEEE CS Conference Proceedings, Washington, US, November
2008. IEEE Computer Society Press.

[103] M. Howard, J. Pincus, and J. M. Wing. Measuring Relative Attack Surfaces. In
Proc. Workshop on Advanced Developments in Software and Systems Security,
December 2003.

[104] IE PassView v1.15 - Recover lost passwords stored by Internet Explorer. http:

//www.nirsoft.net/utils/internet_explorer_password.html, visited 20 Feb
2009.

[105] K. Ingols, R. Lippmann, and K. Piwowarski. Practical attack graph generation
for network defense. In ACSAC ’06: Proc. of the 22nd Annual Computer Security
Applications Conference on Annual Computer Security Applications Conference,
pages 121–130, Washington, DC, USA, 2006. IEEE Computer Society.

[106] INMOS. Occam Programming Manual. Prentice Hall Trade, 1984.
[107] ISO/IEC-27002. Information technology. Security techniques. Code of practice

for information security management, 2005.
[108] ISO/IEC-27005. Information technology. Security techniques. Information secu-

rity risk management, 2008.
[109] IT Governance Institute. CobiT 4.0 - Control Objectives for Information and

related Technology, 2005.
[110] IT Governance Institute. IT Control Objectives for Sarbanes-Oxley, The Role of

IT in the Design and Implementation of Internal Control Over Financial Report-
ing - 2nd Edition, 2006.

[111] S. Jajodia, S. Noel, and B. O’Berry. Topological Analysis of Network Attack
Vulnerability. In Managing Cyber Threats: Issues, Approaches and Challenges.
Springer-Verlag, Germany, 2003.

[112] A. Jones and Y. Lin. Application intrusion detection using language library calls.
In Proc. 17th Annual Computer Security Applications Conf. (ACSAC’01), pages
442–449, 2001.

[113] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale: surviving organized
DDoS attacks that mimic flash crowds. In NSDI’05: Proc. of the 2nd Conf.
on Symposium on Networked Systems Design & Implementation, pages 287–300,
Berkeley, CA, USA, 2005. USENIX Association.

[114] M. Keeney, E. Kowalski, D. Cappelli, A. Moore, T. Shimeall, and S. Rogers.
Insider Threat Study: Computer System Sabotage in Critical Infrastructure Sec-
tors, May 2005. U.S. Secret Service and CERT Coordination Center.

[115] J. King. The new ground zero in internet warfare. Computerworld, published on
April 27, 2009. http://http://acishost.acis.org.co/pipermail/segurinfo/

2009-April/000108.html, accessed June 2009.
[116] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. In In

Proc. Ninth Ann. ACM-SIAM Symp. Discrete Algorithms, pages 668–677, New
York, 1998. ACM Press.

291

REFERENCES

[117] E. J. Kokko, H. E. Martz-Jr., D. J. Chinn, H. R. Childs, J. A. Jackson, D. H.
Chambers, D. J. Schneberk, and G. A. Clark. As-Built Modeling of Objects
for Performance Assessment. J. Comput. Inf. Sci. Eng., 6(4):405–417, December
2006.

[118] C. Kruegel, F. Valeur, and G. Vigna. Intrusion Detection and Correlation - Chal-
lenges and Solutions, volume 14 of Advances in Information Security. Springer
Verlag, New York, NY, USA, 2005.

[119] S. Kumar. Classification and Detection of Computer Intrusions. PhD thesis,
Purdue University, Department of Computer Sciences, 1995.

[120] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science
of Search Engine Rankings. Princeton Universty Press, 2006.

[121] K. C. Laudon and J. P. Laudon. Essentials of Management Information Systems.
Prentice Hall, Upper Saddle River, NJ, USA, fifth edition, 2003.

[122] P. T. Leeson and C. J. Coyne. The Economics of Computer Hacking. Journal of
Law, Economics and Policy, 1(2):511–532, 2006.

[123] R. Lempel and S. Moran. The stochastic approach for link-structure analysis
(SALSA) and the TKC effect. Computer Networks, 33(1-6):387–401, 2000.

[124] F. Levi and D. Sangiorgi. Controlling Interference in Ambients. In POPL’00:
Proc. of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 352–364, New York, NY, USA, 2000. ACM.

[125] W. Li, R. B. Vaughn, and Y. S. Dandass. An approach to model network ex-
ploitations using exploitation graphs. Simulation, 82(8):523–541, 2006.

[126] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K. Kratkiewicz, M. Artz,
and R. Cunningham. Validating and Restoring Defense in Depth Using Attack
Graphs. In MILCOM’06: Military Communications Conference, pages 1–10, Oc-
tober 2006.

[127] R. P. Lippmann and K. W. Ingols. Annotated Review of Past Papers on Attack
Graphs. Technical Report ESC-TR-2005-054, MIT Lincoln Laboratory, Mass-
chusetts, USA, March 2005.

[128] R. P. Lippmann, K. W. Ingols, C. Scott, K. Piwowarski, K. J. Kratkiewicz,
M. Artz, and R. K. Cunningham. Evaluating and Strengthening Enterprise Net-
work Security using Attack Graphs. Technical Report ESC-TR-2005-064, MIT
Lincoln Laboratory, Masschusetts, USA, October 2005.

[129] P. Liu, W. Zang, and M. Yu. Incentive-based modeling and inference of attacker
intent, objectives, and strategies. ACM Trans. Inf. Syst. Secur., 8(1):78–118,
2005.

[130] S. Marlow, T. Harris, R. P. James, and S. P. Jones. Parallel generational-copying
garbage collection with a block-structured heap. In ISMM’08: Proc. of the 7th
Int. Symposium on Memory Management, pages 11–20, New York, NY, USA,
2008. ACM Press.

[131] R. A. Martin. Managing Vulnerabilities in Networked Systems. IEEE Computer
Society Computer Magazine, 34(11):32–38, November 2001.

[132] J. P. McDermott. Attack Net Penetration Testing. In ACM SIGSAC’00: Proc.
of the 2000 Workshop on New security Paradigms, pages 15–21, New York, NY,
USA, 2000. ACM Press.

[133] G. McGraw. Testing for Security During Development: Why We Should Scrap
Penetrate-and-Patch. IEEE Aerospace and Electronic Systems, 13(4):13–15, April
1998.

292

REFERENCES

[134] N. R. Mead, E. D. Hough, and T. R. Stehney. Security quality requirements
engineering (square) methodology. Technical Report CMU/SEI-TR-009, Carnegie
Mellon Software Engineering Institute, Pittsburgh, PA, USA, November 2005.

[135] V. Mehta, C. Bartzis, H. Zhu, E. M. Clarke, and J. M. Wing. Ranking Attack
Graphs. In RAID 2006: Proceedings of the 9th Int. Symposium on Recent Ad-
vances in Intrusion Detection, number 4219 in LNCS, pages 127–144. Springer,
September 2006.

[136] P. Mell, K. Scarfone, and S. Romanosky. A complete guide to the common
vulnerability scoring system, version 2.0. Published by FIRST - Forum of Incident
Response and Security Teams, June 2007.

[137] Merriam-Webster. Online dictionary. http://www.merriam-webster.com.
[138] M. Merro and M. Hennessy. Bisimulation Congruences in Safe Ambients. In

POPL’02: Proc. of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 71–80, New York, NY, USA, 2002. ACM.

[139] C. Michel and L. Me. ADELE: an attack description language for knowledge-based
intrustion detection. In IFIP/SEC’01: Proc. of the 16th int. conf. on Information
security: Trusted information, pages 353–368, June 2001.

[140] R. Milner. Calculus of Communicating Systems. Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 1980.

[141] R. Milner. Pure bigraphs. Technical Report UCAM-CL-TR-614, University of
Cambridge, January 2005.

[142] J. Mirkovic and P. Reiher. A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms. SIGCOMM Computer Communications Review, 34(2):39–53, 2004.

[143] R. A. Miura-Ko and N. Bambos. SecureRank: A Risk-Based Vulnerability Man-
agement Scheme for Computing Infrastructures. In ICC’07: Proc. of Int. Conf.
on Communications, pages 1455–1460. IEEE Computer Society Press, June 2007.

[144] G. Modelo-Howard, S. Bagchi, and G. Lebanon. Determining Placement of Intru-
sion Detectors for a Distributed Application through Bayesian Network Modeling.
In RAID’08: Proc. of the 11th Int. Symposium on Recent Advances in Intrusion
Detection, volume 5230 of LNCS, pages 271–290. Springer, 2008.

[145] MPI Forum. MPI: A Message-Passing Interface Standard, June 2008. Version
2.1, http://www.mpi-forum.org/docs/mpi21-report.pdf, accessed June 2009.

[146] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented to goal-oriented re-
quirements analysis. Commun. ACM, 42(1):31–37, 1999.

[147] M. A. Najork. Comparing the Effectiveness of HITS and SALSA. In CIKM ’07:
Proc. of the sixteenth ACM Conf. on Information and Knowledge Management,
pages 157–164, New York, NY, USA, 2007. ACM.

[148] S. Nawaz. Security issues in ’Remember Me’ feature. Palisade Magazine: Appli-
cation Security Intelligence, published by PLYNT (Security Testing Verification
& Certification), March 2006. http://palisade.plynt.com/issues/2006Mar/

remember-me-security/, visited 20 Feb 2009.
[149] Tenable network security: The Nessus Security Scanner. http://www.nessus.

org. Visited 10-July-2008.
[150] F. Nielson, H. R. Nielson, R. R. Hansen, and J. G. Jensen. Validating Firewalls in

Mobile Ambients. In CONCUR’99: Proc, of the 10th Int. Conf. on Concurrency
Theory, pages 463–477, London, UK, 1999. Springer-Verlag.

[151] P. Ning and D. Xu. Learning Attack Strategies from Intrusion Alerts. In CCS’03:
Proc. of the 10th ACM Conf. on Computer and Communications Security, pages
200–209, New York, NY, USA, 2003. ACM.

293

REFERENCES

[152] National Institute of Standards and Technology. http://www.nist.gov//, visited
10-July-2008.

[153] NISTIR-7298. Glossary of Key Information Security Terms. NIST, National
Institute of Standards and Technology, NISTIR-7298, April 2006.

[154] Nmap. Network mapper: Open source licence.
[155] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, and K. Prole. Advances in

Topological Vulnerability Analysis. Proc. Cybersecurity Applications and Tech-
nology Conference for Homeland Security (CATCH), pages 124–129, March 2009.

[156] S. Noel, M. Jacobs, P. Kalapa, and S. Jajodia. Multiple Coordinated Views
for Network Attack Graphs. In VIZSEC’05: Proc. of the IEEE Workshops on
Visualization for Computer Security, page 12, Washington, DC, USA, 2005. IEEE
Computer Society.

[157] S. Noel and S. Jajodia. Managing attack graph complexity through visual hierar-
chical aggregation. In VizSEC/DMSEC ’04: Proc. of the 2004 ACM workshop on
Visualization and data mining for computer security, pages 109–118, New York,
NY, USA, 2004. ACM.

[158] S. Noel and S. Jajodia. Understanding Complex Network Attack Graphs through
Clustered Adjacency Matrices. In ACSAC ’05: Proceedings of the 21st Annual
Computer Security Applications Conference, pages 160–169, Washington, DC,
USA, 2005. IEEE Computer Society.

[159] S. Noel and S. Jajodia. Attack graphs for sensor placement, alert prioritization,
and attack response. Presented at Cyberspace Research Workshop (part of Air
Force Cyberspace Symposium), held in Shreveport, Louisiana, November 2007.

[160] S. Noel, E. Robertson, and S. Jajodia. Correlating intrusion events and building
attack scenarios through attack graph distances. In ACSAC ’04: Proc. of the 20th
Annual Computer Security Applications Conference, pages 350–359, Washington,
DC, USA, 2004. IEEE Computer Society.

[161] NVD. National Vulnerability Database v2. http://nvd.nist.gov/, visited 10-
July-2008.

[162] R. Ortalo, Y. Deswarte, and M. Kaâniche. Experimenting with Quantitative
Evaluation Tools for Monitoring Operational Security. IEEE Trans. Softw. Eng.,
25(5):633–650, 1999.

[163] X. Ou. A logic-programming approach to network security analysis. PhD thesis,
Princeton University, November 2005.

[164] X. Ou, W. F. Boyer, and M. A. McQueen. A Scalable Approach to Attack
Graph Generation. In CCS ’06: Proc. of the 13th ACM Conf. on Computer
and Communications Security, pages 336–345, New York, NY, USA, 2006. ACM.
people.cis.ksu.edu/~xou/publications/ccs06.pdf.

[165] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: a logic-based network
security analyzer. In SSYM’05: Proc. of the 14th Conf. on USENIX Security
Symposium, Berkeley, CA, USA, August 2005. USENIX Association.

[166] PA Consulting Group. Process Control and SCADA Security, Good Practice
Guide. CPNI - Centre for the Protection of National Infrastructure, UK Se-
curity Service. http://www.cpni.gov.uk/Docs/Overview_of_Process_Control_
and_SCADA_Security.pdf, visited 12 Jan 2009.

[167] C. Phillips and L. P. Swiler. A Graph-Based System for Network-Vulnerability
Analysis. In NSPW ’98: Proc. 1998 workshop on New Security Paradigms, pages
71–79, New York, NY, USA, 1998. ACM Press.

[168] Python. Programming language. http://www.python.org/.

294

REFERENCES

[169] M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill
Higher Education, July 2003.

[170] C. R. Ramakrishnan and R. Sekar. Model-based analysis of configuration vulner-
abilities. Journal of Computer Security, 10(1-2):189–209, 2002.

[171] M. R. Randazzo, M. Keeney, E. Kowalski, D. Cappelli, and A. Moore. Insider
Threat Study: Illicit Cyber Activity in the Banking and Finance Sector, August
2004. U.S. Secret Service and CERT Coordination Center.

[172] M. Rausand and A. Hoyland. System Reliability Theory: Models, Statistical Meth-
ods, and Applications. John Wiley & Sons, Inc., second edition, 2004.

[173] Red Hat Enterprise Linux 4.5.0: Security Guide. Red Hat, Inc., May
2007. http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/

en-US/Security_Guide/, accessed Jan 2008.
[174] RedSeal. RedSeal System Inc. http://www.redseal.net/, accessed 16 Sept 2008.
[175] C. R. Reeves. Modern Heuristic Techniques for Combinatorial Problems. Alfred

Waller, 1993.
[176] A. Regev, E. M. Panina, W. Silverman, L.Cardelli, and E. Shapiro. BioAm-

bients: An abstraction for biological compartments. Theoretical Computer Sci-
ence, Special Issue on Computational Methods in Systems Biology, 325(1):141–
167, September 2004.

[177] E. Rescorla. Security holes... who cares? In SSYM’03: Proc. of the 12th confer-
ence on USENIX Security Symposium, pages 75–90, Berkeley, CA, USA, 2003.
USENIX Association.

[178] R. W. Ritchey and P. Ammann. Using Model Checking to Analyze Network
Vulnerabilities. In SP’00: Proc. of the 2000 IEEE Symposium on Security and
Privacy, pages 156–165, Washington, DC, USA, 2000. IEEE Computer Society.

[179] M. B. Salem, S. Hershkop, and S. J. Stolfo. Insider Attack and Cyber Security,
chapter A Survey of Insider Attack Detection Research, pages 69–90. Springer-
Verlag, 2008.

[180] R. Sawilla and X. Ou. Googling Attack Graphs. Technical Report TM-2007-205,
Defense Research and Development Canada, September 2007.

[181] R. E. Sawilla and X. Ou. Identifying Critical Attack Assets in Dependency Attack
Graphs. In ESORICS’08: Proc. of the 13th European Symposium on Research in
Computer Security, pages 18–34, Berlin, Heidelberg, 2008. Springer-Verlag.

[182] A. Schaad. A Framework for Organisational Control Principles. PhD thesis,
University of York, Department of Computer Science, 2003.

[183] A. Schaad and J. D. Moffett. A framework for organisational control principles.
In ACSAC ’02: Proceedings of the 18th Annual Computer Security Applications
Conference, page 229, Washington, DC, USA, 2002. IEEE Computer Society.

[184] S. Schechter, J. Jung, W. Stockwell, and C. McLain. Inoculating SSH Against
Address Harvesting. In NDSS’06: The 13th Annual Network and Distributed
System Security Symposium, San Diego, CA, USA, February 2006.

[185] S. E. Schechter. Toward Econometric Models of the Security Risk from Remote
Attack. IEEE Security and Privacy, 03(1):40–44, 2005.

[186] B. Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, De-
cember 1999.

[187] B. Schneier. Secrets and Lies: Digital Security in a Networked World. Wiley
Computer Publishing, 2004.

[188] B. Schneier. Information Security and Externalities. ENISA Quarterly, 2(4):3–4,
January 2007.

295

REFERENCES

[189] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and
P. Sommerlad. Security Patterns: integrating security and systems engineering.
John Wiley & Sons, Ltd, Wiltshire, GB, first edition, 2006.

[190] J. R. Seeley. The net of reciprocal influence: A problem in treating sociometric
data. Canadian Jounal of Psychology, 3:234–240, 1949.

[191] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated Gener-
ation and Analysis of Attack Graphs. In SP’02: Proc. 2002 IEEE Symposium on
Security and Privacy, pages 273–284, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[192] O. Sheyner and J. Wing. Tools for Generating and Analyzing Attack Graphs.
In In Proc. of Workshop on Formal Methods for Components and Objects, LNCS
3188, pages 344–371, Germany, 2004. Springer-Verlag.

[193] O. M. Sheyner. Scenario graphs and attack graphs. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 2004. Chair-Jeannette Wing.

[194] D. Sieberg. Hackers shift focus to financial gain. CNN online news, posted on 26
September 2005. http://www.cnn.com/2005/TECH/internet/09/26/identity.

hacker/, visited Jan 2008.
[195] G. Sindre and A. L. Opdahl. Eliciting Ssecurity Requirements by Misuse Cases.

In TOOLS-Pacific 2000: Proc. 37th Int. Conference on Technology of Object-
Oriented Languages and Systems, pages 120–131, Washington, DC, USA, 2000.
IEEE Computer Society.

[196] Skybox. Skybox Security Inc. http://www.skyboxsecurity.com/, accessed 16
Sept 2008.

[197] Skybox. Skybox view platform. http://www.skyboxsecurity.com/?CategoryID=
238&ArticleID=134, accessed 30 Jan 2009.

[198] M. Stamatelatos, G. Apostolakis, H. Dezfuli, C. Everline, S. Guarro, P. Moieni,
A. Mosleh, T. Paulos, and R. Youngblood. Probabilistic Risk Assessment Proce-
dures Guide for NASA Managers and Practitioners. U.S. Nasa, Office of Safety
and Mission Assurance, August 2002. Version 1.1.

[199] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick, and J. Railsback.
Fault Tree Handbook with Aerospace Applications. U.S. Nasa, Office of Safety
and Mission Assurance, August 2002. Version 1.1.

[200] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An Authentication Service
for Open Network Systems. In Proc. of the USENIX Winter Conference, pages
191–202. USENIX Association, January 1988.

[201] P. Stephenson. Managing digital incidents - a background. Computer Fraud &
Security, 2004(12):17–19, December 2004.

[202] G. Stoneburner, A. Goguen, and A. Feringa. Risk Management Guide for Informa-
tion Technology Systems. Technical Report NIST SP 800-30, National Institute
Of Standards and Technology, US, July 2002.

[203] X. Su, D. Bolzoni, and P. van Eck. A business goal driven approach for under-
standing and specifying information security requirements. In 11th Int. Work-
shop on Exploring Modeling Methods in Systems Analysis and Design (EMM-
SAD2006), pages 465–472. Presses Universitaries de Namur, June 2006.

[204] S. Suehring and R. L. Ziegler. Linux Firewalls. Novell Press, US, third edition,
2005.

[205] Survey. E-Crime Watch 2006, CSO Magazine and U.S. Secret Service and CERT
Coordination Center and Microsoft Corporation, 2006. http://www.cert.org/

archive/pdf/ecrimesurvey06.pdf, accessed Jan 2008.

296

REFERENCES

[206] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer-attack graph
generation tool. In DISCEX II’01: DARPA Information Survivability Conference
and Exposition Conference and Exposition, volume 2, pages 307–321, Washington,
DC, USA, June 2001. IEEE Computer Society.

[207] S. J. Templeton and K. Levitt. A requires/provides model for computer attacks.
In NSPW’00: Proc. of the 2000 Workshop on New Security Paradigms, pages
31–38, New York, NY, USA, 2000. ACM.

[208] W. T. Tener. Discovery: An expert system in the commercial data security
environment. In Proceedings of the IFIP Security Conference, 1986.

[209] T. Tidwell, R. Larson, K. Fitch, and J. Hale. Modeling Internet Attacks. In
Proc. of the 2001 Workshop on Information Assurance and Security, pages 54–
59, Washington, DC, USA, June 2001. IEEE Computer Society.

[210] H. F. Tipton and M. Krause. Information Security Management Handbook. Auer-
bach Publications, New York, NY, 6th edition, May 2007.

[211] J. A. Tomlin. A new paradigm for ranking pages on the world wide web. In
WWW ’03: Proc. of the 12th Int. Conf. on World Wide Web, pages 350–355,
New York, NY, USA, 2003. ACM.

[212] J. J. Treinen and R. Thurimella. Application of the PageRank Algorithm to
Alarm Graphs. In ICICS’07: Proc. of the 9th Int. Conf. on Information and
Communications Security, LNCS, pages 480–494. Springer, December 2007.

[213] The United States Army Functional Concept for Battle Command. U.S. Army
Training and Doctrine Command, April 2007. version 1.0, TRADOC Pam 525-
3-3.

[214] A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic
Models, number 1491 in LNCS, pages 429–528. Springer-Verlag, 1998.

[215] W. van der Aalst and K. van Hee. Workflow Management: Models, Methods,
and Systems. Cooperative Information Systems. The MIT Press, Massachusetts,
USA, 2002.

[216] Y. Volkovich. Stochastic Analysis of Web Page Ranking. PhD thesis, University
of Twente, Enschede, April 2009.

[217] J. Wack, M. Tracy, and M. Souppaya. Guideline on Network Security Testing.
NIST (National Institute of Standards and Technology), Special Publication 800-
42, October 2003.

[218] Walton-on-Thames: Insight Consulting. CRAMM User Guide, July 2005. Version
5.1.

[219] L. Wang, A. Liu, and S. Jajodia. Using attack graphs for correlating, hypothe-
sizing, and predicting intrusion alerts. Computer Communications, 29(15):2917–
2933, 2006.

[220] C. Weissman. Handbook for the Computer Security Certification of Trusted Sys-
tems, chapter Chapter 10: Security Penetration Testing Guideline, pages 1–66.
Center for Secure Information Technology, Naval Research Laboratory (NRL),
US, October 1993. TM-8889/000/01.

[221] Weka data mining software. http://www.cs.waikato.ac.nz/ml/weka/.
[222] S. M. Welberg. Vulnerability management tools for COTS software - A compar-

ison. Technical Report TR-CTIT-08-15, Centre for Telematics and Information
Technology, University of Twente, Enschede, Feb. 2008.

[223] M. G. Welz and A. Hutchison. Interfacing trusted applications with intrusion
detection systems. In RAID ’01: Proc. 4th Int. Symp. on Recent Advances
in Intrusion Detection, LNCS 2212, pages 37–53, London, UK, October 2001.
Springer-Verlag.

297

REFERENCES

[224] W. E. Wesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree
Handbook. U.S. Nuclear Regulatory Commission, January 1981. NUREG-0492.

[225] R. Wieringa. Design Science as Nested Problem Solving. In DESRIST’09: Proc.
of the 4th International Conf. on Design Science Research in Information Systems
and Technology. ACM, May 2009.

[226] R. Wieringa and J. Heerkens. The methodological soundness of requirements
engineering papers: a conceptual framework and two case studies. Requirements
engineering, 11(4):295–307, September 2006.

[227] R. Wieringa, N. Maiden, N. Mead, and C. Rolland. Requirements engineering
paper classification and evaluation criteria: A proposal and a discussion. Require-
ments Engineering, 11(1):102–107, March 2006.

[228] L. Williams, R. Lippmann, and K. Ingols. An Interactive Attack Graph Cascade
and Reachability Display. In VizSEC’07: Proc. of the Workshop on Visualization
for Computer Security, pages 221–235. Springer-Verlag, October 2007.

[229] L. Williams, R. Lippmann, and K. Ingols. GARNET: A Graphical Attack Graph
and Reachability Network Evaluation Tool. In VizSec’08: Proc. of the 5th Int.
Workshop on Visualization for Computer Security, pages 44–59, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[230] T. Wilson. Stolen Data’s Black Market. Dark Reading, posted on 07
September 2006. http://www.darkreading.com/document.asp?doc_id=103198,
accessedSeptember2008, accessed Jan 2008.

[231] A. Wool. A quantitative study of firewall configuration errors. Computer,
37(6):62–67, 2004.

[232] C. S. Wright. A Taxonomy of Information Systems Audits, Assessments and
Reviews. SANS Institute, June 2007.

[233] B. Zdrnja. 0-day exploit for Internet Explorer in the wild. SANS Internet Storm
Center, 10 December 2008. http://isc.sans.org/diary.html?storyid=5458,
accessed Dec 2008.

[234] B. Zdrnja. Mass exploits with SQL Injection. SANS Institute, 09 Jan 2008.
http://isc.sans.org/diary.html?storyid=3823, accessed Jan 2008.

[235] J. Zhang, P. Porras, and J. Ullrich. Highly Predictive Blacklisting. In USENIX
Security ’08: Proc. of the 17th USENIX Security Symposium, pages 107–122.
USENIX Association, August 2008.

[236] C. C. Zou and R. Cunningham. Honeypot-Aware Advanced Botnet Construction
and Maintenance. In DSN’06: Proc, of the Int. Conf. on Dependable Systems and
Networks, pages 199–208, Washington, DC, USA, 2006. IEEE Computer Society.

298

SIKS Dissertation Series

1998

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification Using Decision Trees and Neural Nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of Compositional Systems

1999-7 David Spelt (UT)
Verification Support for Object Database Design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

2000

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-Organisatorische Gevolgen van Kennistechnologie;
een Procesbenadering en Actorperspectief.

299

SIKS DISSERTATION SERIES

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

2001

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: A Multiagent Modeling and Simulation Language
for Work Practice Analysis and Design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models in Business Systems Design

2002

300

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
Inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied Legal Epistemology;
Building a Knowledge-Based Ontology of the Legal Domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel for Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
e-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational
Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

2003

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction & Presence in Virtual Reality Exposure Therapy

301

SIKS DISSERTATION SERIES

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and Specification of Virtual Environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The Resolution of Visually Guided Behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some Experimental Studies on the Interaction
Between Medium, Innovation Context and Culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian
Networks

2003-12 Roeland Ordelman (UT)
Dutch Speech Recognition in Multimedia Information Retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported
Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-Party Contracts for e-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem
Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

302

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig Onderwijs; Voorbeeldgestuurd Onderwijs, een Opstap naar
Abstract Denken, Vooral voor Meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; Explorations into Argument-Based Reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-Rich Indexing of Learning-Objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating Emotions and Facial Expressions for Embodied Agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using Generative Probabilistic Models for Multimedia Retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: Facilitating Multidisciplinary Design Teams

2005

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

303

SIKS DISSERTATION SERIES

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web
Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning
Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to
Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service Configuration on the Semantic Web; Exploring How Semantics
Meets Pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-Selection Strategies for Probabilistic Networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by Exploiting
Application Semantics

2006

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual Issues in the Design and Use of Information Technology in
Organizations

2006-03 Noor Christoph (UVA)
The Role of Metacognitive Skills in Learning to Solve Problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools

304

for Graphical Service Modeling
2006-07 Marko Smiljanic (UT)

XML Schema Matching – Balancing Efficiency and Effectiveness by Means of
Clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of People, our Technological
Environment, and the Arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - Towards a Theory of
Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone Models for Prediction in Data Mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework for Structured Information
Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: Generating Video Documentaries from Semantically Annotated
Media Repositories

2006-28 Borkur Sigurbjornsson (UVA)

305

SIKS DISSERTATION SERIES

Focused Information Access using XML Element Retrieval

2007

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: A Dialogue-Based
Approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and
Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive
Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support: A Rational Approach to
Dynamic Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in Institutions and
Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the Development an Management of Adaptive Business Collaborations

2007-19 David Levy (UM)
Intimate Relationships with Artificial Partners

2007-20 Slinger Jansen (UU)

306

Customer Configuration Updating in a Software Supply Network
2007-21 Karianne Vermaas (UU)

Fast Diffusion and Broadening Use: A Research on Residential Adoption and
Usage of Broadband Internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-Oriented Design of Value and Process Models from Patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramrez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

2008

2008-01 Katalin Boer-Sorbn (EUR)
Agent-Based Simulation of Financial Markets: A Modular, Continuous-Time
Approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing Hierarchical Menus: A Usage-Based Approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - Towards Unattended Integration

2008-05 Bela Mutschler (UT)
Modeling and Simulating causal Dependencies on Process-Aware Information
Systems from a Cost Perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an Artificial
Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the Tutor in the Design and Support of Adaptive e-Learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)
The Paradox of the Guided User: Assistance can be Counter-Effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in First-Order Domains

307

SIKS DISSERTATION SERIES

2008-16 Henriette van Vugt (VU)
Embodied Agents from a User’s Perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and Performance
of Focused Text Search

2008-20 Rex Arendsen (UVA)
Geen Bericht, Goed Bericht. Een Onderzoek naar de Effecten van de Introductie
van Elektronisch Berichtenverkeer met de Overheid op de Administratieve
Lasten van Bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian Network Models for the Management of Ventilator-Associated
Pneumonia

2008-24 Zharko Aleksovski (VU)
Using Background Knowledge in Ontology Matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair using
Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Embodied Agents,
Users, and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and
Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Observable Markov
Decision Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; Theoretical and Practical Issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic Morphologies: Function Shapes Structure

308

2009

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration
Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks - Based on
Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-Oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic Programming for Knowledge-Intensive Interactive Applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
Perating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From Ontology-Enabled Services to Service-Enabled Ontologies (Making
Ontologies Work in e-Science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration in
Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)

309

SIKS DISSERTATION SERIES

Search For Expertise: Going beyond Direct Evidence
2009-23 Peter Hofgesang (VU)

Modelling Web Usage in a Changing Environment
2009-24 Annerieke Heuvelink (VUA)

Cognitive Models for Training Simulations
2009-25 Alex van Ballegooij (CWI)

RAM: Array Database Management through Relational Mapping
2009-26 Fernando Koch (UU)

An Agent-Based Model for the Development of Intelligent Mobile Services
2009-27 Christian Glahn (OU)

Contextual Support of social Engagement and Reflection on the Web
2009-28 Sander Evers (UT)

Sensor Data Management with Probabilistic Models
2009-29 Stanislav Pokraev (UT)

Model-Driven Semantic Integration of Service-Oriented Applications
2009-30 Marcin Zukowski (CWI)

Balancing Vectorized Query Execution with Bandwidth-optimized Storage
2009-31 Sofiya Katrenko (UVA)

A Closer Look at Learning Relations from Text
2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)

Architectural Knowledge Management: Supporting Architects and Auditors
2009-33 Khiet Truong (UT)

How Does Real Affect Affect Affect Recognition In Speech?
2009-34 Inge van de Weerd (UU)

Advancing in Software Product Management: An Incremental Method
Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over Geautomatiseerde Normatieve Informatie-
uitwisseling

2009-36 Marco Kalz (OU)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OU)
Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and Self-organisation: A Metadata Ecology for Learning Resources in a
Multilingual Context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers (UvT)
Recommender Systems for Social Bookmarking

310

