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THE INFLUENCE OF GEOGRAPHIC AND PSYCHIC DISTANCE ON 

ONLINE HOTEL RATINGS 

Abstract  

This study examines the relationship between distance measures and a Portuguese dataset 

consisting of 34,622 online hotel reviews extracted from Booking.com and TripAdvisor, written 

in Portuguese, Spanish, and English. Based on the country of origin of each review author, a 

geographic and a psychic distance measure is calculated for Portugal. Data and text mining 

analysis provides additional insights into online hotel ratings. We confirm that online travelers’ 

evaluations are multifaceted constructs displaying varying patterns of rating behavior among the 

traveler base. By investigating the contemporary relevance of geographic and psychic distance, a 

key finding of this study is that travelers with less distance both in terms of psychic and 

geographic distance give a lower rating score than travelers with greater distance. The inclusion 

of psychic and geographic distance is advocated as a salient aspect for future researchers and for 

those practitioners who wish to enhance hotel product and service features.  
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INTRODUCTION 

The increasing focus on customer experience by practitioners has led to the creation of a  rich 

seam of research pertaining to online hotel ratings. Travelers’ purchasing decisions are 

increasingly being influenced by online reviews (Cantallops and Salvi 2014; Kwok, Xie, and 

Richards 2017; Ring, Tkaczynski, and Dolnicar 2016; Tan, Lv, and Gursoy 2018). Indeed, from 

such investigations various questions arise, and are answered. We  know from several 

contributions, that culture (Gao et al. 2018), language (Antonio et al. 2018a; Goethals 2016; Wu 

et al. 2017), travel experience (Lu and Stepchenkova 2015; Morosan and Bowen 2017), are 

among factors that have an influence on online hotel ratings. The continued growth of data-

generating platforms have inspired new approaches to understanding the traveler experience. 

Such subjective rating information is now expressed and published in more than seventy diverse 

platforms including popular online booking websites such as Booking.com and TripAdvisor 

(Phillips et al. 2015). 

 

Reviews from Booking.com and TripAdvisor possess two main types of ratings: quantitative (the 

overall review score) and qualitative (the textual component being the commentary). Although 

there are numerous studies on the subject of online reviews, most of them focus on the 

quantitative ratings of reviews to represent user opinion (Duan et al. 2016), but recent works are 

advocating the use of the textual component of reviews  (Antonio et al. 2018a; Bjørkelund, 

Burnett, and Nørvag 2012; Duan et al. 2016; Han et al. 2016; Xiang et al. 2015; Xu and Li 

2016). The rationale being the textual component has the potential to allow for better recognition 

of “guests’ true feelings” (Han et al. 2016, 17). 
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The initial interest of online hotel ratings has been maintained by researchers advocating the 

merits of understanding evaluations posted on web and social media sites (Floyd et al. 2014; 

Kostyra et al. 2016; Schuckert, Liu, and Law 2015). Li, Xu, Tang, Wang, and Li, (2018) provide 

a thorough review of big data and online hotel ratings research. To date, researchers have mainly 

focused on using sentiment analysis which can automatically detect the valence of a piece of 

reviewer text, which can be positive, neutral or negative (Geetha, Singha, and Sinha 2017). Prior 

tourism related research has assessed the valence of reviews (Duverger 2013; Sparks and 

Browning 2011); volume of reviews (Xie, Zhang, and Zhang 2014); variance of reviews 

(Melian-Gonzalez, Bulchand-Gidumal, and Gonzalez Lopez-Valcarcel 2013). Additional 

insights can be derived from studying semantic relationships and meaning in online hotel ratings 

(Alaei, Becken, and Stantic 2017; Phillips et al. 2016; Xiang et al. 2015; Xu and Li 2016). The 

degree of positivity or negativity towards the main textual subject of online hotel ratings 

(semantic analysis) is currently a hotbed of research and development for academics and 

practitioners (Ge, Vazquez, and Gretzel 2018). The continual lower prices to travel to overseas 

locations together with a more favorable US dollar exchange rates have in part accelerated the 

international dimension of online hotel ratings. Online travelers’ preferences have been 

investigated from many facets, but distance offers a fresh perspective. Indeed, in an online 

environment the concept of distance, needs to go beyond geographic distance (Deodhar, 

Subramani, and Zaheer 2017). Similar to Deodhar, Subramani and Zaheer (2017), this study 

incorporates a set of psychic measures, which are one of the most popular forms of distance 

(Safari, Thilenius, and Hadjikhani 2013). Psychic distance is liken as “the sum of factors” or the 

“differences” that goes beyond the objective criteria of geographic and cultural distance per se 
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(see Yang, Liu, and Li 2019) ,  incorporating other factors such as business development, 

industrial development, and education differences too (Dow and Karunaratna 2006). 

 

Using online hotel ratings, this study explores the relationship between distance measures. The 

authors generate a dataset consisting of reviews and associated ratings on Booking.com and 

TripAdvisor for Portuguese hotels in three different languages (Portuguese, Spanish and 

English). The country of origin of each review author is collected in order to derive a geographic 

and psychic distance measure between the author's country of origin and Portugal. A more 

technical aspect of this study is the sentiment analysis of reviews, where each review is in 

addition associated with a sentiment score based on a dictionary approach, where the ratio of 

terms with positive and negative sentiment is computed to derive an overall score. This technical 

approach of text mining analysis, provides additional insights into online hotel ratings.  

 

Dissimilarities among travelers will influence their preferences with respect to hotel attributes 

(Banarjee and Chua 2016), which is rather pertinent for heterogeneous groups of travelers. Such 

a difference, leads onto social identity theory (Tajfel 1982), whereby networked-based 

communities may act not as an individual, but develop a social identity. Individuals perceive 

themselves and others as belonging to various social groups, which from the perspective of the 

hotel may result in different evaluative online hotel ratings statements, from guests based on 

their distance measures. For example, although culture is an important factor in decision-making, 

other factors such as online platforms may affect the decision-making process of travelers. Given 

the relatively nascent state of research, there is limited empirical work directly related to how the 

country of origin affects rating behavior. Furthering this path has led to some recent studies (Kim 
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2018; Gao et al. 2018) who look at the country of origin effects relating to online review ratings 

and culture and its effects relating to online review ratings respectively.  Less well examined too, 

is the role of language in online hotel ratings (Schuckert, Liu, and Law 2015; Yong et al. 2017). 

Moreover, research is lacking on how distance influences travelers’ ratings, together with the 

dangers of aggregating reviews written in multiple languages. 

 

So why does this matter? Well, having an accurate understanding of salient online hotel ratings’ 

relationships is essential for both strategic management and marketing theory and practice. The 

economic and societal impact of tourism across global markets is a priority for governments, 

private sector and societal oriented organizations. Hotels play a pivotal role in a country’s 

tourism product. Travelers of varying distances may possess different expectations in areas 

unknown to those responsible for marketing strategies at the individual and destination level. So, 

by understanding such relationships may help advance a more effective connectivity among the 

online hotel ratings database, which is a key strategic resource.  

 

The remainder of the paper is organized as follows. In the next section, we consider online hotel 

ratings, the relevant distance literature and present the research questions that describe the 

positioning of the study. The data and methods are outlined. Finally, we present the data analysis 

and results of our empirical analysis and round off with conclusion, theoretical and managerial 

implications.  
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ONLINE HOTEL RATINGS 

Valence, variance, volume, and increasingly verbal features (4Vs) are the essential evaluation 

features of online hotel ratings (Maeyer 2012). Hoteliers believe that their performance will be 

hampered if they are unable to reliably monitor online hotel ratings, and results from recent 

academic studies support this (Duverger 2013; Phillips et al. 2016; Xie, Zhang, and Zhang 2014). 

A consequence of the popularity of online hotel ratings, is that reviews now constitute a new 

element of the marketing communication mix and have implications for both theory and practice. 

The decomposition of online reviews into their main elements of valence, variance and volume 

has been one way to obtain a better understanding into the relevance of each aspect of firm 

performance (see e.g. Floyd et al. 2014; Kostyra et al. 2016 for an overview). 

 

Online hotel ratings  not only captures online reviews, recommendations and opinions exchanged 

by consumers (Cantallops and Salvi 2014) but also form the bases on which consumers may 

revise their purchase decisions and ultimately change their buying behavior (Cantallops and 

Salvi 2014; Sparks and Browning 2011). Online hotel ratings create a resource whereby 

reviewers, review readers and managers can use either quantitative or qualitative techniques to 

consider outcomes in terms of consumer decision-making and business performance (Kwok, Xie, 

and Richards 2017). In fact, because of the diversity of opinion, independence, decentralization, 

and aggregation, users who post online reviews can be considered as Surowiecki (2005) calls a 

“crowd”. This being a diverse collection of independent individuals which are better at making 

certain decisions and predictions that its individual members or even, better than experts, which 

explains why, these days, consumers value more online hotel ratings than hotels’ official 

classifications or stars (Öğüt and Onur Taş 2012). A number of companies such as Olery.com 
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(www.olery.com), ReviewPro (www.reviewpro.com) and Revinate (www.revinate.com) have 

sprung up to develop reputational management systems that show how improving guest 

satisfaction can translate and enhance revenues (Hensens 2015). Another firm with a strong 

presence is Brand Karma, which is an in-house market agency of Next story group 

(www.nextstory.com). This firm has the ability to filter western social media channels from 

Chinese social media channels. 

 

To illustrate such benefits that can accrue, consider, for example Anderson (2012) who found 

that a 1% increase in a hotel’s index score results in higher profitability in terms of 1.42% 

increase in Revenue per Available Room. But now, we accept that there is causality between 

review management, reputation and revenue development, but not as linear as presented by 

Anderson (2012). Recent studies have demonstrated that the effect of review management on 

revenues depends on the type of hotel, the destination, the customer structure, and the occupancy 

rate, for instance (Kim, Lim, and Brymer 2015; Phillips et al. 2015, 2016; Xie, Zhang, and 

Zhang 2014; Yang, Park, and Hu 2018). 

 

Online hotel ratings  is now a powerful resource, as the exchange of information by which the 

communicator (reviewer) transmits content (message) to several communicates (receivers), 

which can modify perceptions and behavior (Hernández-Ortega 2018). In terms of further 

opportunities, marketing managers ought to learn how to actively manage reviews, including 

negative reviews (Baka 2016; Cantallops and Salvi 2014). Yet, previously raised questions on 

what needs managing and measuring (Godes and Mayzlin 2004) have become more difficult to 

answer due to the increasing availability of data both to consumers and organizations.  
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Moreover, an area which has received scant scholarly attention is that of the influence of 

travelers’ origin on online hotel ratings. In general, prior academic studies aggregate reviews 

from individual travelers of differing origins to compute an average rating. Such travelers may 

have consistently varying experiences. This practice raises particular issues for those hotels, 

where guests come from different nationalities (Wilson, Murphy, and Fierro 2012). Prior 

research of online hotel ratings aggregated data does reveal general trends, but as Mckercher  

(2008) notes aggregation camouflages significant changes that occur at sub-market levels. To 

illustrate this point consider (Pizam and Sussmann 1995) who espoused that travelers’ 

perceptions in terms of satisfaction levels do vary according to country of origin. We know that 

when travelers select a tourism destination, they are influenced in part by both measurable and 

cognitive distances (Ankomah, Crompon, and Baker 1996; Massara and Severino 2013; 

Uchiyama and Kohsaka 2016; Zhang, Seo, and Lee 2013).  

 

Understanding how distance and language influences online hotel ratings is important for several 

reasons. Dissimilarities among travelers will influence their preferences with respect to hotel 

attributes (Banarjee and Chua 2016), which is rather pertinent for heterogeneous groups of 

travelers. Having an accurate understanding of salient online hotel ratings’ relationships is 

essential for both strategic management and marketing theory and practice. The economic and 

societal impact of tourism across global markets is a priority for governments, private sector and 

societal oriented organizations. Travelers of different origins will possess significantly different 

expectations. So, by understanding changes in online customer reviews beyond those written in 
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English, may help advance a more effective connectivity among the online hotel ratings 

database. 

  

DISTANCE 

The construct of distance can be disaggregated into multiple measures across the social sciences, 

economic, financial, political, administrative, cultural, as well as geographic (Berry, Guillén, and 

Zhou 2010). According to Johanson and Vahlne (1977), distance can be measured as an 

objective variable (e.g.  geographic) and measured as a matter of decision-makers’ perceptions 

(e.g. psychic distance). Both physical and perception distances are related but imperfectly 

correlated, and physical distance influences judgement and decision-making (Fujita et al. 2006).  

 

Prior research within the business and management literature has considered cultural (Hofstede 

1980; House et al. 2004), psychic (Beckerman 1956; Dow and Karunaratna 2006) and 

geographic (Choi and Contractor 2016; Mckercher 2008) distances as central to comprehending 

organizational performance. This study considers both objective and perceptive perspectives. 

 

Geographic  

Understanding, the influence of geographical distance is important for several reasons. The 

stimuli of geographic distance has been incorporated in prior empirical studies (Choi and 

Contractor 2016). Previous research defines geographic distance as the distance between two 

cities in kilometers (Brewer 2007). Blum and Goldfarb (2006) note how geographic distance 

influences the trade of digital goods sold over the Internet. Studies have had varying levels of 
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success by assessing the distance between capital cities (Brock, Johnson, and Zhou 2011), major 

cities (Hutzschenreuter, Kleindienst, and Lange 2014), and geographic centers of countries 

(Ojala and Tyrväinen 2008).The geographical dispersal of travelers present opportunities for 

marketers to customize visitor packages. In the tourism literature, studies observe that travel 

demand decreases as distance from the origin market increases (Cai and Li 2009; Mckercher 

2008; Mckercher and Lew 2003). Increasing the distance, adds time, costs and money, thus 

making the destination less attractive to the traveler (Prideaux 2000). The distance-decay model 

provides some theoretical foundations (Mckercher and Lew 2003), where the demand increases 

up to a certain distance and afterwards decreases exponentially. Nicolau and Más (2006) 

proposed that the effects of distance and prices are moderated by travelers’ motivation. The 

digitized environment operating across different time zones can further reduce the efficacy of the 

communication effort. Geographical proximate destinations provide lower economic and social 

costs, together with a degree of environmental familiarity.  

 

In short, both information networks and transportation costs may influence the impact of distance 

(Ghemawat 2001). Notwithstanding the improvements in transportation systems and digital 

technologies, travelers that are geographically distant may undergo differing experiences in their 

outbound trips. In fact, Ojala (2015) remark that modern air transport and communication have 

reduced the perceived distance, and have eased commercial interactions.  Child, Ng and Wong 

(2002) allude to these as “distance-compressing factors”. This study investigates how traveler 

distance between home and destination influences online hotel ratings by considering:  

RQ1 How do varying levels of geographic distance influence travelers’ online hotel ratings? 
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Psychic 

In this section, we set out the positioning of our  study in the broader destination image literature. 

We begin by briefly acknowledging the destination image literature, and highlight why we have 

framed our approach using psychic distance. 

 

In examining how tourists view or have mental representations of a place, researchers generally 

consider destination image (Ryan and Cave 2005). Taking this perspective, destination image is 

commonly depicted as a concept formed by a traveler’s interpretation of cognitive and perceptive 

evaluations and effective appraisals towards a destination (Crompton 1979; Hallmann, Zehrer, 

and Müller 2015). The topic has been the most popular tourism literature for more than four 

decades (Pike and Page 2014), and is considered to be a multidimensional construct. In the 

extant literature, destination image tourists’ mental representation has been defined, 

operationalized and measured in a plethora of ways. Space precludes us from a detailed 

overview, but Kock, Josiassen, and Assaf (2016) provide a succinct overview of the destination 

image literature. Critically, two ways of depicting destination image include: the sum of beliefs, 

ideas, and impressions people have of an object, place, destination (Zhang et al. 2014). Another 

view relates to cognitive (beliefs or assessments), affective (positive or negative emotion) and 

conative (behavioural intention) (Choi, Hickerson, and Kerstetter 2018; Kim 2018).  

 

On the credit side, although the considerable body of prior destination image research provide 

useful insights, they leave room for additional theorizing and empirical research. We shall 

outline our rationale. 
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First, as previously stated the topic of destination image has been one of the most popular topics 

of the tourism literature (Pike and Page 2014). However, the precise nature and scope of 

destination image remain vague (Hallmann, Zehrer, and Müller 2015; Lai and Li 2016). As 

Albert Einstein famously quoted ‘‘We cannot solve problems by using the same kind of thinking 

we used when we created them’’. Moreover, new approaches are required if organizations wish 

to prosper and survive new environments (Baden-Fuller and Stopford 1994; Markides 1998) . 

We wish to look outside this traditional destination image approach, indeed delve into another 

area. 

 

Second, in a turbulent, chaotic and nonlinear tourism environment, strategies need to incorporate 

cultural and value differences (Phillips and Moutinho 2014). More specifically, Phillips and 

Moutinho (2014) lament about the methodological introspection of prior approaches in tourism 

and stress that new research methodologies are critically important in enhancing theory and 

practice. The implication being that new approaches may generate fresh knowledge and insights 

too. 

 

Third, in addition, Ferrer-Rosell, Martin-Fuentes, and Marine-Roig (2019) findings revealed that 

the marketing promotion activities of higher-class hotels highlight their facilities, whereas lower-

class hotels refer more to the destination. In this study, 4 and 5-star hotels made up more than 

80% of our sample. This latter point reinforces that our unit of analysis is not the destination per 

se, but the hotel itself.  
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Finally, according to Mossberg and Kleppe (2005), destination image is an area for marketing 

practice, which can incorporate the sale of export products in the international arena. Psychic 

distance being the distance between the home country of the firm and export countries can be 

used as multidimensional concept and measured from the customer perspective at the individual 

level (Assarut and Srisuphaolarn 2018). So, the adoption of psychic measures can incorporate 

Mossberg and Kleppe (2005) views of destination image, and its legitimacy can be supported by 

our first three points. We replace the traditional unit of analysis of the firm with the traveler, and 

give attention to the international business management and marketing literatures and employ 

both psychic and distance measures. Kim (2018) considers post visit image rather than revisit, so 

that tourists are able to rate their experiences. The current study adopts the post visit approach 

and considers hotels and uses online hotel reviews to gauge perceptions.  

 

Early psychic distance research commenced with Beckerman (1956), who coined the phrase by 

remarking on the special problem posed by its existence. The term was sporadically referred to in 

international trade flow research (Geraci and Prewo 1977; Linnemann 1966).  During the 1970s 

prominence in the management-oriented literature was provided by the research at the University 

of Uppsala. In terms of measurement, the sum of the factors approach include differences in 

language, culture, political systems, level of education, and level of industrial development 

(Johanson and Wiedersheim-Paul 1975). International business researchers have since refined 

and added to the aforementioned list. The existing literature offers a wide range of studies, but 

developing and confirming a set of psychic scales that captures the characteristics that matter has 

posed a dilemma (Dow and Karunaratna 2006). 
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Psychic distance is not solely about nationality and cultural factors, but considers individuals and 

relationships of customers in an international online setting (Safari, Thilenius, and Hadjikhani 

2013). The unit of analysis varies too, with some studies considering differences between 

countries and others between companies (Durand, Turkina, and Robson 2016). In the context of 

this study psychic distance is the gap or differences that a traveler might perceive between their 

origin (country) and the destination. In spite of a decade of online hotel ratings research, the field 

of tourism has not yet illuminated a comprehensive analysis of the fact that travelers with 

different origins may provide ratings, which are different on a number of distance dimensions 

beyond solely cultural studies (Assaf, Josiassen, and Agbola 2015; Bi and Lehto 2018; Martin, 

Jin, and Trang 2017; Qian, Law, and Wei 2018). Psychic distance goes beyond the objective 

criteria of geographic and cultural distance per se, as it incorporates business, industrial 

development, and education differences too. Dow and Karunaratna (2006) proposed and tested a 

range of potential psychic distance stimuli encompassing culture, language, religion, education 

and political systems. This school of thought concentrates upon more than one stimulus, such as 

culture, and demonstrates that the latter is only one indicator.  

 

The concept of psychic distance is one of the most explored areas in the internationalization 

literature (Safari, Thilenius, and Hadjikhani 2013). Yet, conflicting findings on the issue of 

psychic distance indicates the need for further research (see Durand, Turkina and Robson 2016). 

This issue deserves attention in tourism too, as it prevents researchers and practitioners from 

making effective recommendations in deploying marketing strategies. The scarcity of available 

resources now makes it imperative that the salient drivers are identified (Durand, Turkina, and 

Robson 2016). Considering the importance of forming and maintaining effective customer 
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relationships as drivers of competitiveness, innovation, customer satisfaction, and performance 

(Ulaga and Eggert 2006) in international settings (Zhang, Cavusgil, and Roath 2003), it is 

necessary to identify contingent factors that influence the effect of psychic distance on 

international travel (Durand, Turkina, and Robson 2016). 

 

Another significant observation from the prior literature is the absence of studies applying 

psychic distance in online settings (Safari, Thilenius, and Hadjikhani 2013). In this study, we 

reflect and investigate this multifaceted concept by considering: 

RQ2 How do varying levels of psychic distance influence travelers’ online hotel ratings? 
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DATA AND METHODS 

DATASET 

The study utilizes a unique dataset created by merging four different datasets: one with 

geographic distances between countries created by Mayer and Zignago (2011), a dataset with 

psychic distance between countries developed by Dow and Karunaratna (2006), a third one with 

ISO country codes (International Organization for Standardization 2017) with ISO 3166 two-

digit country codes and their designations in English, Portuguese and Spanish, and a dataset of 

hotel online customer reviews. The latter was created using a custom-built web content extractor 

that retrieved a total of 39,425 hotel reviews published during the period 1st July 2015 to the 

30th November 2016. The custom-built web extractor made use of a Firefox internet browser to 

automatically navigate through Booking.com and TripAdvisor reviews’ web pages and process 

the content of those web pages. A process known as “web scraping” (Batrinca and Treleaven 

2015; Braun, Kuljanin, and DeShon 2018). European law recognizes users can make copies of 

publicly available databases and use that data in research (Bosch 2017; Monkman, Kaiser, and 

Hyder 2018), but companies are making scraping increasingly difficult (Jennings and Yates 

2009). Due to this difficulty we decided to extract data only from Booking.com and TripAdvisor 

as these are the two of the most popular platforms, and only in English, Spanish and Portuguese. 

Also, these three languages represent the main official languages of 70 per cent of Portugal’s 

hotel guests (Instituto Nacional de Estatística 2016).  This diversity in languages makes Portugal 

an ideal location to examine the influence of language. Difference in language is a stimuli that 

has received endorsement from numerous studies, from Beckerman (1956), Conway and Swift 

(2000) and Dow and Karunaratna (2006) to more recent works such as Avloniti and Filipppaios 

(2014), Cuypers, Ertug and Hennart (2015), and Antonio et al. (2018a).  
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One of the authors (responsible for the data collections) is actively involved in the Portuguese 

hotel sector and has access to many hotel contacts and sources of data. This enables the 

collection of both qualitative and quantitative data, which supports this study. Portugal is the 

setting for the destination with two, three, four and five star city and resort hotels providing the 

context of the study. The inclusion of city and resort hotels enable greater insights by category of 

hotel. Andriotis (2011) clusters destinations into three categories: urban, coastline and rural and 

so, in terms of hotel profiles, our study uses City (urban) hotels in Lisbon and Resort (coastline) 

hotels in the Algarve. Four city hotels and four resort hotels were initially selected and each hotel 

manager were asked to identify the top five hotels of their competitive set. This resulted in a total 

of 56 hotels being selected for online reviews retrieval, from two to five stars, as detailed in 

Table 1.  

Table 1. Hotel summary 

Hotel classification 
City Resort 

Hotels Average 
rooms Hotels Average 

rooms 
Two stars 5 52 4 32 

Three stars 6 65 6 77 

Four stars 12 127 12 202 

Five stars 6 224 5 116 
Total 29 117 27 106 

 

Dataset elaboration 

To elaborate and analyze this dataset with respect to the two research questions, we employed 

the software package R because of its openness, statistical and visualization capabilities. As 

previously mentioned and illustrated in Figure 1, this study’s dataset is a merger of four different 
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datasets: hotel reviews, geographic distances, psychic distances and ISO country codes. The 

construction of the final dataset was based on the hotel reviews. From the 39,425 obtained 

reviews, 16 were removed because they were duplicated or in a language different from the ones 

chosen for this study. As the country of the traveler writing the review was not identifiable, 

another 3,877 reviews were removed. Most TripAdvisor reviews provide the user’s identification 

and his/her location, but that is not the case in Booking.com reviews, where either location is not 

a mandatory field in the user profile or the user can ask to remain anonymous. Lastly, 448 

reviews were removed because they were from countries that had less 20 reviews, or were from 

countries where there was no information on the geographic or psychic distances datasets, which 

was the case of 462 reviews from Serbia, Gibraltar, Georgia and Angola. 

Figure 1. Dataset elaboration diagram 

 
 
 

An array of Data Science tools were employed to build this dataset, including Data Visualization, 

Natural Language Processing, Feature Engineering, Statistics and Machine Learning. Such tools 

enable the creation of new features, which were necessary because:  

Booking.com and TripAdvisor use different rating scales in their quantitative components. 

Booking.com uses a continuous scale from 1 to 10 and TripAdvisor a discrete scale from 1 to 5. 

Besides this, there is a difference in the scales used. Yet, Booking.com scale actually has a 

minimum rating of 2.5, as highlighted by  Mellinas, María-Dolores, and García (2015). Thus, it 

is necessary to normalize the quantitative ratings from both sources in order to study them. 

Collected 
Online 

Reviews

ISO 
Country 
Codes 

Features

Psychic 
Distance 
Features

Geographic 
Distance 
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Natural 
Language 

Processing
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There is a need for clearer analysis and interpretation of the impact of geographic and psychic 

distances in ratings. Thus, geographic and psychic distances, originally continuous variables, 

need to be converted into categorical features.   

 

A summary of the features included in the final dataset is presented in Table 2. 

Table 2. Final dataset features summary 

Feature Origin Description 
CEPII_dist CEPII dataset Geographic distance (in kilometers) from Portugal and 

review user country based on most important 
cities/agglomerations (of population) 

HotelID Reviews dataset Hotel ID 
HotelStars Reviews dataset Hotel official classification (2 to 5 stars) 
HotelType Reviews dataset Type of hotel (City or Resort) 
GeoDistanceFactor CEPII dataset Categorical version of “CEPII_dist” 
Language Reviews dataset Language of the review (English, Spanish or 

Portuguese) 
PD_PD_DK Psychic distance dataset Psychic distance from Portugal and the review user 

country (numeric) 
PsychicDistanceFactor Psychic distance dataset Categorical version of “PD_PD_DK” (PT, Near or 

Far) 
RevID Reviews dataset Review unique ID 
RevRating Reviews dataset Review overall rating (normalized in a 1 to 5 scale)  
RevSentences Reviews dataset Number of sentences in the textual component of the 

review 
RevSentimentStrength Reviews dataset Sentiment analysis polarity value, calculated from the 

textual component of the review 
RevTotalWords Reviews dataset Number of words in the textual component of the 

review 
RevUserCountyISOCode Reviews dataset ISO country code based on the location mentioned on 

the review 
Source Reviews dataset Website were review were extracted from 

(Booking.com or TripAdvisor) 
 
 

Some of the features in Table 2 were engineered, namely: 

• GeoDistanceFactor: geographic distance was transformed and resulted in a three-valued 

categorical feature: PT (Portugal), Near and Far. We considered values from 0 to 114.9 

km as “PT”, values from 115 to 4,999.9 km as “Near” (this includes most European 
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countries) and from 5,000 km upwards as “Far”. The process of transforming continuous 

features to categorial features is called discretization. This process is usually done for 

allowing a feature to be employed by machine learning algorithms who do not work with 

continuous features, to speed processing, or to increase interpretability (Dougherty, 

Kohavi, and Sahami 1995; Kotsiantis and Kanellopoulos 2006). Discretization methods 

are usually divided into two groups: unsupervised and supervised. Unsupervised 

methods, such as equal interval binning or equal frequency binning, do not make use of 

class membership information in the discretization process. Conversely, supervised 

methods make use of class membership information to establish the discretization limits. 

Since supervised discretization methods only produce slightly better performance results 

than unsupervised methods (Dougherty, Kohavi, and Sahami 1995) and our objective was 

not to build a predictive model, we decided to employ an unsupervised approach that 

would guarantee what Kotsiantis and Kanellopoulos (2006) designate as the compromise 

between information quality (homogenous intervals) and statistical quality (sufficient 

sample size to ensure generalization). 

• PsychicDistanceFactor: psychic distance was also transformed to a categorical feature. 

As for geographic distance, psychic distance was divided into three named values using a 

similar distance criterion: PT (Portugal), Near and Far. We considered a null (zero) 

distance as “PT”. From 0.1 to 1.49, which cover most Latin countries and other countries 

that Portuguese feel as “familiar” like Brazil, as “Near” (in terms of religion, language, 

and even in historic background). All other countries with a psychic distance above 1.5 

were considered “Far”. 
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• RevRating: due to the aforementioned differences in the quantitative rating scales used by 

Booking.com and TripAdvisor, ratings were normalized so that the quantitative overall 

rating of reviews could be analyzed together. We opted to normalize ratings according to 

the TripAdvisor scale, that is from 1 to 5. Since Booking.com only allows a minimum 

rating of 2.5, we employed binning, a common technique used to convert numeric 

variables to discrete (Abbott 2014; Dougherty, Kohavi, and Sahami 1995).  We divided 

the amplitude of the Booking.com scale (7.5 = 10 – 2.5) by 5 to obtain each bin 

amplitude, which resulted in the following bins classification intervals: [2.5, 4.0[, [4.0, 

5.5[, [5.5, 7.0[, [7.0, 8.5[ and [8.5, 10], respectively represented by 1 to 5. 

• RevSentences: this feature is a by-product of the sentiment analysis of the review textual 

component. By recording the number of sentences, we can explore the existence of a 

possible relationship with the opinion or quantitative rating of the review.  

• RevSentimentStrength: a numeric feature that reflects the polarity of the opinion (also 

known as sentiment analysis) based on the textual component of review. In the case of 

Booking.com, since it has two textual components, one for positive aspects and one for 

negative aspects, we concatenated both texts. Sentiment analysis, or opinion mining, is 

the computational study of people’s opinions toward entities, individuals, events, topics, 

and their attributes. Sentiment analysis allows for the quantification of opinions 

according to their polarity (positive, negative, or neutral) (Liu and Zhang 2012). By 

assigning each review with a polarity value based on the textual component, it is possible 

to compare how users rate hotels in the textual component of reviews against what they 

rate in the quantitative component, therefore, obtaining two ratings for the same review. 

Prior to the execution of sentiment analysis, text preprocessing was performed. As 
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recognized by Han et al. (2016), text preprocessing is an arduous and time-consuming 

task, because it requires going back and forth while creating a document-term matrix (a 

document-term matrix is a common form for representing a collection of documents, 

where documents are assigned to rows, words are assigned to columns, and each cell 

populated with the frequency of the word in the document). This is even more difficult 

when it must be applied to three different languages. Text preprocessing consisted of the 

following steps: 

o Transform all text to lowercase. 

o Normalize related entities - transform words of similar meaning that appear in 

different formats in different languages to a consistent form. For example, “wi-fi” 

and “wi fi” were converted to “wifi”. 

o Per language - perform stemming of common hospitality words like “rooms”, 

“restaurants”, and others that could be meaningful for data interpretation. 

o Per language - normalize different spellings of the same words or expressions that 

could be written differently or could be misspelled. For example, in English, 

transform “didn’t” and “didnt” to “did not.”  

o Per language - standardize domain-specific terms. For example, in English, 

“staff” is a common word used to describe hotel staff, but in Portuguese, 

numerous words like “equipa” (team), “pessoal” (personnel), “funcionários” 

(employees), or “colaboradores” (collaborators) are used. Other examples related 

to guest origin also had to be taken into consideration. Brazilian Portuguese has 

some differences from the European Portuguese language, and because Brazil is 

an important market in Portugal, terms from Brazilian Portuguese like “café da 
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manhã,” “ônibus,” or “metrô” had to be transformed to national equivalents, 

respectively, “pequeno-almoço,” “autocarro,” and “metro” (in English, 

“breakfast” “bus” and “metro”). 

o Removal of punctuation, numbers, and stop words (e.g. “a”, “as”, “at”, “by”, etc.). 

After text preprocessing we then performed sentiment analysis to calculate the review 

sentiment strength. We adopted a dictionary-based approach, also known as a lexicon-

based approach. Dictionaries are a collection of opinion words with a polarity 

classification (Ravi and Ravi 2015). Selection of dictionaries is an important 

methodological consideration (Han et al. 2016), with one essential aspect being its 

adequacy to the domain of the text, in this case, hospitality. Since we did not find 

hospitality dictionaries in any of the languages of this study, the criteria to choose 

dictionaries was based on relatively easy transformation, completeness (dictionaries had 

to have an extensive range of words), and openness (should be of general domain and 

broad). Based on these criteria, SentiLex-PT 02 sentiment lexicon (Silva, Carvalho, and 

Sarmento 2012) was chosen for Portuguese. For Spanish, the choice was the ElhPolar 

dictionary (Saralegi and San Vincente 2013). For English, the choice rested on the well-

known Opinion Lexicon from Hu and Liu (2004). Sentiment strength was calculated by 

sentence, counting positive and negative words and then applying the same formula as 

used in Bjørkelund et al. (2012), 

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒	𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡	𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = ∑./012134	5/670
∑./012134	5/6708∑94:;2134	5/670

  

which results in a value between 0 to 1, where 0 is perfectly negative and 1 is perfectly 

positive. Each review overall sentiment strength was calculated as the average of the 

reviews’ sentences sentiment strength. 
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• RevTotalWords: as for RevSentences this feature is a byproduct of the sentiment analysis 

of the textual component the review. We kept a record of the number of words in the 

textual component to explore any links with the other features. 

• RevUserCountyISOCode: from the location of the user of the review we extracted the 

name of the country and assigned its ISO 3166 two-digit country code.  

 

The frequency and distribution of the resulting 34,622 observations in the final dataset, can be 

seen, per each categorical feature, per review source, in Table 3.  

Table 3. Review frequency and distribution by source 

 
Booking TripAdvisor Total 

 N % N % N % 

Hotel classification   26,337  76.1 8,285 23.9 34,622 100.0 

   Two stars 2,823 10.7 288 3.5 3,111 9.0 

   Three stars 4,635 17.6 835 10.1 5,470 15.8 

   Four stars 15,227 57.8 5,504 66.4 20,731 59.9 

   Five stars 3,652 13.9 1,658 20.0 5,310 15.3 

Hotel type 26,337 76.1 8,285 23.9 34,622 100.0 

   City 17,925 68.1 3,404 41.1 21,329 61.6 

   Resort 8,412 31.9 4,881 58.9 13,293 38.4 

Language  26,337  76.1 8,285 23.9 34,622 100.0 

   English 10,204 38.7 5,837 70.5 16,041 46.3 

   Portuguese 9,591 36.4 1,526 18.4 11,117 32.1 

   Spanish 6,542 24.8 922 11.1 7,464 21.6 

Geographic distance  26,337  76.1 8,285 23.9 34,622 100.0 

   PT 6,355 24.1 1,197 14.4 7,552 21.8 

   Near 13,461 51.1 5,841 70.5 19,302 55.8 

   Far 6,521 24.8 1,247 15.1 7,768 22.4 

Psychic distance  26,337  76.1 8,285 23.9 34,622 100.0 

   PT 6,355 24.1 1,197 14.4 7,552 21.8 

   Near 13,885 52.7 2,611 31.5 16,496 47.6 

   Far 6,097 23.1 4,477 54.0 10,574 30.5 
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DATA ANALYSIS AND RESULTS 

Using a table plot, built with “tabplot”, an R package for visualization of large multivariate 

datasets (Tennekes and de Jonge 2017), we started by analyzing the distribution and looked for 

patterns in the dataset. This powerful visualization, as illustrated in Figure 2, shows each feature 

in a separated column and in each row, each bin aggregates a predefined number of observations 

of the dataset, in this case 100. Numeric features are represented in the form of bar charts and 

categorical, in the form of stacked bar charts. 

This powerful visualization reveals in a glance patterns in data which indicate potential areas of 

interest. More than 50% of reviews have a RevRating of 5 and an average RevSentimentStrength 

above 0.7, which means the data is not normally distributed and is highly skewed. Figure 2 also 

shows that the sentiment strength (RevSentimentStrength) of the textual component of reviews is 

in line with the behavior of the review ratings (RevRating), because as one decreases the other 

decreases as well, but it also shows a similar pattern with geographic distance (CEPII_dist) and 

psychic distance (PD_PD_DK). This could indicate that less distant users, both in geographic 

and psychic distance, give lower ratings than more distant users. This visualization also 

illustrates that lower ratings (RevRating and RevSentimentStrength) occur more often in hotels of 

lower classification (2 and 3 stars in HotelStars) and when there is a lower number of reviews in 

English (Language). 
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Figure 2. Visualization of the full final dataset 

 
 
Another interesting visualization that illustrates the skewness and the spread (degree of 

dispersion) of both review ratings (RevRating and RevSentimentStrength) by geographic and 

psychic distance factors, per hotel type and hotel star rating, is the set of boxplots presented in 

Figure 3. These boxplots show that although there are some similarities in the distribution of the 

quantitative ratings (RevRating) between geographic and psychic distances, this does not apply 

to the qualitative ratings (RevSentimentStrength). Qualitative rating, i.e. the sentiment strength of 

the textual component of reviews, does not follow the same patterns in terms of geographic and 

psychic distances, as the quantitative review ratings. This figure also shows that the distribution 

of both ratings differs by hotel type and hotels star ratings. These similarities and differences are 

detailed in Table 4 and Table 5, where frequency of reviews, as well as the mean and standard 
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deviation for each combination by hotel type and hotel stars ratings, respectively per geographic 

and psychic distance, are shown. 

Figure 3. Distribution of ratings by psychic and geographic distances, per hotel 

type and hotel stars 
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Table 4. Ratings statistics by geographic distance, hotel type and hotel stars 

 RevRating RevSentimentStrength 
 

Distance 
 

Hotel Type Hotel 
Stars Frequency Mean Standard 

Deviation Mean Standard 
Deviation 

PT City 2 327 3.77676 1.03424 0.58779 0.20250 
PT City 3 646 4.10217 0.92112 0.58610 0.19350 
PT City 4 1,687 4.38234 0.81154 0.60024 0.21000 
PT City 5 956 4.12762 1.07539 0.58181 0.19650 
PT Resort 2 401 3.95012 0.95787 0.59943 0.20842 
PT Resort 3 850 4.02353 0.86656 0.58493 0.19822 
PT Resort 4 2,384 4.16233 0.94591 0.63436 0.21760 
PT Resort 5 301 4.60797 0.69700 0.64219 0.19470 
Near City 2 821 3.75761 1.09920 0.61570 0.21353 
Near City 3 1,846 4.27898 0.89240 0.68870 0.20930 
Near City 4 6,244 4.47213 0.77649 0.69620 0.21070 
Near City 5 1,989 4.15535 1.09485 0.66597 0.20894 
Near Resort 2 694 4.09366 0.93891 0.64361 0.21189 
Near Resort 3 895 4.09832 0.98838 0.64535 0.20346 
Near Resort 4 5,991 4.37423 0.85130 0.71107 0.19728 
Near Resort 5 822 4.57421 0.72788 0.68993 0.18074 
Far City 2 634 3.91956 1.03714 0.60112 0.22229 
Far City 3 1,177 4.34240 0.83555 0.66761 0.22239 
Far City 4 3,834 4.57303 0.73701 0.68872 0.22109 
Far City 5 1,168 4.48031 0.86617 0.69568 0.20951 
Far Resort 2 234 4.09829 0.98647 0.61607 0.22186 
Far Resort 3 56 4.12500 0.99201 0.66436 0.23211 
Far Resort 4 591 4.35871 0.92237 0.69947 0.21150 
Far Resort 5 74 4.43243 0.87712 0.67974 0.22309 

 

Table 5. Ratings statistics by psychic distance, hotel type and hotel stars 

 RevRating RevSentimentStrength 
 

Distance 
 

Hotel 
Type 

Hotel 
Stars 

Frequency Mean Standard 
Deviation 

Mean Standard 
Deviation 

PT City 2 327 3.77676 1.03424 0.58779 0.20250 
PT City 3 646 4.10217 0.92112 0.58610 0.19350 
PT City 4 1,687 4.38234 0.81154 0.60024 0.21000 
PT City 5 956 4.12762 1.07539 0.58181 0.19650 
PT Resort 2 401 3.95012 0.95787 0.59943 0.20842 
PT Resort 3 850 4.02353 0.86656 0.58493 0.19822 
PT Resort 4 2,384 4.16233 0.94591 0.63436 0.21760 
PT Resort 5 301 4.60797 0.69700 0.64219 0.19470 
Near City 2 1,144 3.83392 1.06829 0.60188 0.21678 
Near City 3 1,962 4.26300 0.88856 0.66044 0.21691 
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 RevRating RevSentimentStrength 
 

Distance 
 

Hotel 
Type 

Hotel 
Stars 

Frequency Mean Standard 
Deviation 

Mean Standard 
Deviation 

Near City 4 6,949 4.48726 0.77695 0.67964 0.21490 
Near City 5 1,759 4.18533 1.06596 0.64555 0.20803 
Near Resort 2 748 4.06551 0.94550 0.62401 0.21129 
Near Resort 3 625 4.06400 1.00754 0.62273 0.20542 
Near Resort 4 2,936 4.33481 0.89555 0.67658 0.20885 
Near Resort 5 373 4.61394 0.67284 0.66799 0.18538 
Far City 2 311 3.80707 1.10194 0.63682 0.21797 
Far City 3 1,061 4.37889 0.83309 0.71756 0.20557 
Far City 4 3,129 4.56216 0.72940 0.72382 0.21123 
Far City 5 1,398 4.38913 0.96700 0.71649 0.20493 
Far Resort 2 180 4.21667 0.96460 0.68926 0.22107 
Far Resort 3 326 4.16871 0.94742 0.69197 0.19713 
Far Resort 4 3,646 4.40346 0.82511 0.73696 0.18566 
Far Resort 5 523 4.52581 0.78589 0.70414 0.18253 

 
 

Analysis conducted with CTree, a conditional decision tree (Hothorn, Hornik, and Zeileis 2006) 

implemented with the R package “partykit” (Hothorn and Zeileis 2015) with the top three nodes 

predicting the value of RevRatings as depicted in Figure 4, shows that geographic distance is an 

important predictor of the quantitative review rating among four and five star hotels. This seems 

to be confirmation that some form of relationship exists between the geographic distance and 

review ratings. Figure 4 only shows three levels due to space constrains. CTree is a non-

parametric class of regressions trees that embeds tree-structured regression models to the well-

defined theory of conditional inference techniques. As CTree deals with overfitting and variable 

selection problems by inducing a recursive fitting procedure and application of appropriate 

statistical tests, on both variable selection and stopping, it is a good tool to explore the predictive 

importance of features in a determined outcome. 
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Figure 4. Conditional inference tree by top predictors of RevRating 

 
 

We also applied a set of filter-based techniques to evaluate how each feature of the dataset was 

relevant in terms of the prediction of the RevRating. The objective of this test is to understand if 

geographic and psychic distances have predictive power over the quantitative rating of the 

review, which could indicate the importance of these features (see Table 6). The tests we applied, 

with the help of Microsoft Azure Machine Learning, were: Pearson correlation, Mutual 

information, Kendall correlation, Chi squared and Spearman correlation. 

 

Since our dataset is not normally distributed, to compare means of review ratings by geographic 

and psychic distances, per hotel type and per hotels star ratings, we chose to employ the Kruskal-

Wallis (Kruskal and Wallis 1952), which is considered to be the non-parametric equivalent of the 

one-way ANOVA. With the Kruskal-Wallis results presenting values below the defined 

threshold (that we defined as 0.05) this indicates that rating mean values differ in each category 

of analyzed features. In these instances, it is necessary to conduct a posthoc analysis by the 
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categories of each feature in the study. For this posthoc analysis we employed the R package 

“pgirmess” (Giraudoux 2016). 

Table 6. Filter-based feature selection Results 

Method 
Pearson Mutual 

Information Kendall Chi Squared Spearman Rank 
Mean 

Rank 
Median Rank Score Rank Score Rank Score Rank Score Rank Score 

GeoDistanceFactor 7 0.09712 7 0.00619 4 0.09845 7 428.58 4 0.10880 5.8 7 

HotelID 11 0.03552 2 0.01583 11 0.02066 2 1084.97 11 0.02611 7.4 11 

HotelStars 3 0.12674 3 0.01446 3 0.12019 3 994.31 3 0.13315 3 3 

HotelType 10 0.03778 11 0.00150 10 0.04742 11 103.47 10 0.04992 10.4 10 

Language 8 0.08724 9 0.00550 6 0.08845 9 380.28 7 0.09809 7.8 8 

PsychicDistanceFactor 5 0.09850 8 0.00615 5 0.09729 8 426.01 5 0.10802 6.2 5 

RevSentences 4 0.10089 6 0.00788 7 0.22339 6 534.19 6 0.09877 5.8 6 

RevTotalWords 6 0.09789 5 0.00871 9 0.06326 5 621.48 8 0.08031 6.6 6 

RevUserCountryISOCode 2 0.14515 4 0.01409 2 0.12709 4 980.57 2 0.15366 2.8 2 

RevSentimentStrength 1 0.28980 1 0.03928 1 0.22339 1 2556.78 1 0.26567 1 1 

Source 9 0.05230 10 0.00259 8 0.06475 10 179.79 9 0.06817 9.2 9 

 
 

The result of Kruskal-Wallis test is used to evaluate if the means of RevRating and 

RevSentimentStrength differ by each of the features in the scope of the study (geographic and 

psychic distances, per hotel types and hotel star ratings) and is presented in Table 7. Since p-

values for all categorical features presented values below 0.05, means do differ by categories for 

each feature. In other words, with respect to the two research questions, RevRating and 

RevSentimentStrength distributions differ by hotel type, hotel star ratings, geographic distance 

and psychic distance, which mean that users from different geographic and psychic distances rate 

hotels differently according to the hotel type and hotel stars. 
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Table 7. Kruskal-Wallis test results 

 
 

As the Kruskall-Wallis test revealed that there were differences in the mean values of the 

categories in this study, a posthoc analysis was performed to determine which categories possess 

different means. This analysis is achieved by pairwise comparison for each combination of 

categories. Results of this test are presented in Table 8 and Table 9. In this test when the 

observed differences are higher than the critical value considered as significant (we opted for 

0.05), we identify a difference between the categories. 

Table 8. Geographic distance Kruskal-Wallis pairwise comparison 

   RevRating RevSentimentStrength 
Distance 

pair 
Hotel 
Type Measure 2 stars 3 stars 4 stars 5 stars 2 stars 3 stars 4 stars 5 stars 

PT - Near 

City 
O.Dif. 1.632286 218.58573 377.5145 52.6228 68.86610 512.30538 1470.3708 484.4130 
C.Dif. 80.55358 115.92541 223.1080 111.8762 80.55358 115.92541 223.1080 111.8762 
Difference FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE 

Resort 
O.Dif. 60.99697 72.71656 586.47342 11.34392 78.58512 172.36841 987.3956 96.15210 
C.Dif. 57.63328 59.62671 150.0522 55.7540 57.63328 59.62671 150.0522 55.7540 
Difference TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE 

PT – Far 

City 
O.Dif. 73.861811 277.98615 838.4594 381.7184 26.51697 414.76299 1355.4141 643.1468 
C.Dif. 83.86921 124.17255 237.5557 123.9847 83.86921 124.17255 237.5557 123.9847 
Difference FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE 

Resort 
O.Dif. 70.44365 92.32849 637.21634 55.57726 37.75505 208.77441 810.1646 82.09789 
C.Dif. 75.58314 171.76107 284.7406 107.3796 75.58314 171.76107 284.7406 107.3796 
Difference FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE 

Near - Far 

City 
O.Dif. 72.229525 59.40042 456.9449 329.0956 42.34913 97.54239 114.9567 158.7338 
C.Dif. 65.12904 94.59142 166.8284 104.7948 65.12904 94.59142 166.8284 104.7948 
Difference TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE 

Resort 
O.Dif. 9.44668 19.61193 50.74292 44.23335 40.83006 36.40601 177.2310 14.05420 
C.Dif. 69.45516 171.49396 267.1704 100.4402 69.45516 171.49396 267.1704 100.4402 
Difference FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

 
  

 RevRating RevSentimentStrength 
 p-value KW statistic p-value KW statistic 
HotelType 1.5604663-20 86.28169 9.370848e-06 19.63557 
HotelStars 6.035435e-226 1,043.67400 3.187812e-86 399.26901 
GeographicDistanceFactor 2.999200-92 421.47897 9.319089e-199 911.96474 
PsychicDistanceFactor 3.220689e-92 421.33647 7.205815e-316 1,451.28400 
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Table 9. Psychic distance Kruskal-Wallis pairwise comparison 

   RevRating RevSentimentStrength 
Distance 

pairs 
Hotel 
Type Measure 2 stars 3 stars 4 stars 5 stars 2 stars 3 stars 4 stars 5 stars 

PT - 
Near 

City 
O.Dif. 35.35794 194.2310 455.4339 75.29413 33.41208 378.776 1220.0371 367.2979 
C.Dif. 77.24650 115.03362 220.6876 114.2259 77.24650 115.03362 220.6876 114.2259 
Diference FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE 

Resort 
O.Dif. 49.20347 56.04866 510.5273 3.148166 45.59563 105.8142 523.9990 51.98803 
C.Dif. 56.86633 65.60103 170.8352 64.12061 56.86633 65.60103 170.8352 64.12061 
Difference FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE 

PT – Far 

City 
O.Dif. 24.81997 329.5172 764.3681 299.04971 112.94986 651.021 1885.3835 764.3891 
C.Dif. 97.56985 126.55507 245.5971 119.3059 97.56985 126.55507 245.5971 119.3059 
Difference FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

Resort 
O.Dif. 122.28617 108.04080 655.8555 23.447711 162.59565 306.2184 1331.8248 125.66106 
C.Dif. 82.43237 81.10535 163.2112 59.87353 82.43237 81.10535 163.2112 59.87353 
Difference TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE 

Near - 
Far 

City 
O.Dif. 10.53797 135.2862 308.9342 223.75559 79.53778 272.245 665.3104 397.0913 
C.Dif. 78.77668 96.63815 175.0506 101.8573 78.77668 96.63815 175.0506 101.8573 
Difference FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

Resort 
O.Dif. 73.08269 51.99214 145.3282 20.299545 117.00001 200.4042 807.8258 73.67303 
C.Dif. 76.27902 85.05612 153.6545 56.08595 76.27902 85.05612 153.6545 56.08595 
Difference FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE 
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Unlike the quantitative review rating, the textual component allows users to fully expose their 

opinions. In other words, although a user gives a hotel a top rating (5 in TripAdvisor quantitative 

scale), in the text the user can express views differently (e.g. “Excellent hotel. Staff very helpful. 

Very good breakfast. The only downside is that it is slightly away from the center”), which is a 

sentence that is not fully positive. Therefore,  as expected, the results presented in Table 8 show 

that there is a difference between the results of the quantitative rating (RevRating) and the 

sentiment of the textual component (RevSentimentStrength) (Antonio et al. 2018b). Nevertheless, 

results show that from the 48 combinations of categories, results only differ in seven of the 

combinations. This illustrates the correlation between review ratings and sentiment polarity of 

the textual component of reviews (Antonio et al. 2018a). This correlation is also illustrated in 

Table 9, with only nine of the combinations out of the 48 presenting different results. 

 

Table 8 also shows that out of the 16 combinations of hotel type and hotel stars for each 

geographic category, 12 present different distributions for “PT – Near” distance category, nine 

for “PT – Far” and five for “Near – Far”. The results suggest users from Portugal tend to have a 

very different opinion to users from a “Near” distance, but not so different to users from “Far”. 

Opinions of users from “Near” do not differ much from users from “Far”. However, for psychic 

distance, as presented in Table 9, results differ even more between combinations. From the 16 

combinations of hotel type and hotel stars for each psychic category, eight present different 

distributions for “PT – Near”, 14 for “PT – Far” and 11 for “Near – Far”. The observations 

illustrate that the further away a user is in terms of psychic distance, the less similarity there is in 

ratings, independently of the hotel type and star rating. 
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CONCLUSION  

This study reinforces the importance of both psychic and geographic distance as an influence of 

hotel online reviews, and provides theoretical and managerial guidance. We seek to draw upon a 

multi-disciplinary social science approach by incorporating strands of prior literature from 

international management, international marketing and tourism. Tourism is an integral aspect of 

contemporary society and is an area of interest across the social sciences (Holden 2004). This 

research considers some important gaps in the literature by strengthening understanding of the 

online hotel ratings during times of significant demand shifts (Wong, Fong, and Law 2016). In 

this article, we specifically ask, in terms of hotels, if distance is a factor, then to what extent does 

language of the review, hotel location and hotel star rating matter? 

 

Based on the influence of preferences with respect to hotel attributes, the results reveal 

dissimilarities among travelers based on geographic and psychic distances. This is in agreement 

with prior research (Banarjee and Chua 2016). For hoteliers with a significant number of foreign 

guests this is worthy of further investigations, and is rather pertinent for heterogeneous groups of 

travelers. Social identity theory (Tajfel 1982), refers to social identity within communities. 

Hotels need to identify social groups within their customer database. With the prevalence of 

digital transformation, even the smallest hotel has to act. The marketing processes need to keep 

abreast of external shifts, customer expectations and from the employee perspective. To remain 

competitive hotels cannot allow the likes and dislikes of guests and communities to remain 

unknown. This study provides a platform that illuminates why aggregated evaluative online hotel 

ratings statements, from guests need to be disaggregated for effective marketing decision-

making. With the advance and growing importance of personalization to the hotel sector (Buhalis 
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and Amaranggana 2015), identifying patterns in terms of geographic and psychic distance will 

provide fresh knowledge.  

 

The application of big data represents a new era for data exploration and utilization, which can 

be a driver for innovative processes in customer facing practices. Tourism is not an exception 

and the results from this study can provide opportunities to enrich marketing processes by 

delving into influence of traveler distance and language. For this to be effective hoteliers will 

need to demonstrate higher levels of analytical, interpretive and strategic knowledge (Phillips 

and Moutinho 2014). As research into the opportunities available through the use of big data in 

hotels remain nascent, this study provides theoretical and empirical evidence of fresh insights 

that can be obtained.  

 

THEORETICAL AND MANAGERIAL IMPLICATIONS 

The present study extends extant research in three important ways. First, this paper provides new 

insights into how geographic and psychic distance influence online hotel ratings. Even though 

the concept of distance occupies a central role in business and management literature, tourism 

research to-date has not delved into the influence of the origin of travelers in their online rating 

behavior. In general, prior academic studies aggregate reviews from individual travelers of 

differing origins to compute sentiment scores of simple average ratings, which are also written in 

different languages. Aggregated hotel ratings may not provide the full story, as guest opinions 

may be buried and lost. 
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The choice of concept of distance needs to go beyond geographic distance (Deodhar, Subramani, 

and Zaheer 2017), and this study deploys a set of psychic measures, which are one of the most 

popular forms of distance (Safari, Thilenius, and Hadjikhani 2013). Online travelers’ preferences 

have been investigated from many facets, but a paucity of prior studies focus upon traditional 

distance metrics. Gao et al. (2018) analyzed the relationship between online ratings (quantitative 

review ratings) and power distance (a metric distance different from this study). Our study 

distinguishes from Gao et al. (2018), by using two distance measures (geographic and psychic) 

and incorporating sentiment polarity of the qualitative component of reviews.	 

 

Second, the results of Kruskal-Wallis test illustrate the difference in the means of Rerating and 

RevSentimentStrength for each of the features in the scope of the study (geographic and psychic 

distances, per hotel types and hotel star rating). By using original data of 34,622 online customer 

reviews written in English, Portuguese and Spanish, we also confirm that online customer 

reviews are multifaceted constructs. By investigating the contemporary relevance of distance, 

whether psychic or geographic, our results reveal that both types of distance matter differently to 

hotels in terms of language, location and star rating. Travelers’ rating patterns by language vary 

across hotel profiles too. We observe that less distance users both in terms of geographic and 

psychic distance give lower scores than more distance users. Figure 2 illustrates that lower 

ratings (RevRating and RevSentimentStrength) occur more often in hotels of lower classification 

(2 and 3 stars in HotelStars) and when there is a lower number of reviews in English (Language). 

 

Third, in light of these gaps and concerns spotted in the literature, this study provides theoretical 

and managerial guidance for future research. Travelers of different origins may possess 
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significantly different expectations. So, by understanding changes in online customer reviews 

beyond those written in English, may help advance a more effective connectivity among the 

traveler base. With the already high English penetration rates on the Internet, future growth will 

come from non-English languages. English is the most common language on the Internet 

(25.4%), but Chinese is already 19.3% (“Top Ten Internet Languages in the World - Internet 

Statistics (2017)” 2019). So, further research could develop and validate the influence of 

distances and alternative languages in differing tourism contexts. The study provides a platform 

for further exploration of geographic and psychic distance. The findings of this study provide a 

starting point to design a more focused investigation. We analyzed hotels in a Portuguese setting 

and suggest future work analyzing hotels in other countries. Each country may impact both 

geographic and psychic distance differently. This would strengthen the generalization of our 

results. 

 

Moreover, as tourism has matured, increasing numbers of academics and practitioners’ attention 

is drawn to developing creative ways for firms to enhance distinctiveness in their offer. To 

enhance the service offer, managers need to closely monitor customer voice (Phillips et al. 

2016). This study contributes to contemporary research on online hotel ratings by incorporating 

distance and language. In fact, after a near decade of eWOW research, there have not been a 

comprehensive analysis of how differences of origin influence online hotel ratings. Distance 

influences not only travelers’ assessment and choice of destination, but also the activities 

selected during their stay. This illustrates the potential for distance to be used as a segmentation 

variable (Nyaupane and Graefe 2008). The relationship between language and the Internet is not 

unimportant, but rather neglected in hospitality and tourism research (Schuckert, Liu, and Law 
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2015; Yong et al. 2017). So what causes this? Well distance compression may be making 

countries less distinct over time, and easier for travelers from greater distances. The promotional 

material received by such travelers may be making the hotel and its location more attractive. We 

content that this holistic distance results in travelers being more discerning as they possess 

improved availability of information together with increased knowledge of hotel experience.  

The uncertainty in greater psychic distance appears to make travelers less critical of the hotel 

experience. In this instance, the hotel may appear more attractive and the associated network 

relationships determine the impact (Ojala 2015).  

 

In terms of practical implications, hotels need to listen to travelers, as they form an invaluable 

resource and are part of the brand strategy. However, it is critical to have effective processes in 

place to make the necessary operational and service improvements. This will enhance the level 

of the traveler experience. Tracking what travelers are saying requires the firm to develop a 

sound management of online customer reviews. By tapping into rich bespoke datasets firms can 

ascertain their strengths and weaknesses and make better quality decisions. Hotels should 

understand the impact of geographic and psychic distance when evaluating the customer journey. 

The advent of technology makes it possible to design bespoke customer journey strategies for 

differing customer segments beyond traditional demographics such as purpose of visit and age. 

 

The results of the study suggest that local travelers tend to be more critical than travelers from a 

distance, which suggests that incentives could be made available to local travelers. In these 

instances, understanding the motivation of the trip and behavioral approaches of key segments 

will create a platform for better managing the salient information flows between the traveler and 
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hotel. Our results highlight that when travelers perceive a gap and this is beyond an acceptable 

level, this will lead to dissatisfaction, which should be avoided. 

 

Collectively this demonstrates how “the sum of factors” or the “differences” interact in the 

formation of asymmetric distance perceptions. The individual experience of travelers are 

influences by psychic distance and this will impact hotel marketing strategies and promotional 

activity, product development, and pricing strategies. Future research may delve into the 

moderating effects of distance and hotel online reviews, such as the size of the host country in 

GDP terms, attractiveness of host country, historical events, hotel entry modes.  

 

LIMITATIONS 

As with any other study, this research possesses limitations. Our research employs a sampling 

frame of reviews and associated ratings on Booking.com and TripAdvisor for Portuguese hotels 

in three different languages (Portuguese, Spanish and English). So, our findings may not be 

generalizable to other hotel markets and languages. However, the development of any new seam 

of research needs to be repositioned in terms of an over focus on the theoretical aspects, such as 

the rigor-relevance debate.  Prior research in social sciences, have argued for a slight shift in 

abstract philosophical debate around research epistemologies. The consequence is very 

significant illustrating a lack of what (Ven 2007) outlined as engaged scholarship which has both 

rigor and relevance. With more than three quarters of traveler purchasers visiting TripAdvisor 

prior to making a booking, its influence and significance makes the platform useful for academic 

research. 
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Another limitation, as identified by Antonio et al. (2018a), relates to the small number of users 

that do not write reviews in the official language of their country. For example, such users will 

tend to write reviews in English rather than in their mother tongue. Therefore, the analysis of 

ratings or sentiment polarity based on the language of the review could not reflect the cultural 

background of all users communicated their review. 

Another difficulty relates to the difficulty of performing text analysis across multiple languages, 

it was decided to use only reviews in English, Spanish, and Portuguese. Although reviews in 

these languages represent 70% of Portugal’s tourists official languages, they are not 

representative of all tourists. Therefore, future research could explore the analysis of reviews in 

other languages. 

 

We also recognize that as every language has a different degree of expressive power (Ravi and 

Ravi 2015), it is possible that some differences in the sentiment strength exist due to the 

differences in the dictionaries employed per language. Future research should explore the 

analysis of sentiment with dictionary-free approaches or with domain-specific dictionaries.  
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