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Abstract 

How can interoceptive accuracy, i.e. the objective ability to identify interoceptive 

signals, be improved? In the present study, we investigated whether non-invasive 

stimulation of the auricular branch of the vagus nerve (taVNS) modulates cardiac 

interoceptive accuracy, interoceptive sensibility, i.e. confidence in the identification 

of bodily signals, and interoceptive awareness, i.e. the capacity to evaluate one’s 

ability in the objective task. Using a single-blind within-subjects design we compared 

participants’ performance on the heartbeat counting task and on the heartbeat 

discrimination task during active and sham taVNS stimulation. Results revealed 

improved accuracy during active taVNS on the heartbeat discrimination task but not 

on the heartbeat counting task. Participants were also more confident during active 

stimulation, but interoceptive awareness was not modulated by taVNS. These 

findings show that taVNS can modulate interoceptive processing and suggest its 

potential as a tool to investigate body-brain interactions. 
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Impact Statement (max words: 100) 

The vagus nerve is a major component of the parasympathetic system and one of the most 

important pathways between the internal body organs and the brain. However, evidence of its role 

in the conscious perception of interoceptive sensations is still lacking. Here, we show that the non-

invasive stimulation of the auricular branch of the vagus nerve (taVNS) increases the ability to 

correctly identify own heartbeats. These findings enhance our understanding of the mechanisms 

underlying the conscious perception of heartbeats and demonstrate the potential of taVNS as an 

important tool to manipulate interoceptive processing and investigate brain-body interactions. 
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1. Introduction 

Interoception refers predominantly to the processing and central representation of signals arising 

from within the body. The term was first introduced by Sherrington in 1906 and the concept of 

interoception has been developing ever since with different authors arguing for a more inclusive 

definition, while others remain focused on visceral signals only (e.g., Ceunen, Vlaeyen, & Van Diest, 

2016; Craig, 2002; Critchley & Garfinkel, 2017). There is, however, a generalized consensus that 

interoception should be perceived as a multi-dimensional phenomenon (Garfinkel, Seth, Barrett, 

Suzuki & Critchley 2015; Khalsa et al., 2018; A. Schulz & Vögele, 2015). For example, Garfinkel and 

colleagues (2015) distinguished three dimensions of interoception: accuracy, sensibility, and 

awareness. Interoceptive accuracy (IAcc) refers to the ability to accurately detect internal bodily 

sensations and represents an objective measure of behavioural performance; interoceptive 

sensibility refers to self-evaluated, dispositional tendencies to interpret interoceptive sensations and 

thus represents a subjective dimension; interoceptive awareness refers to a metacognitive ability 

and reflects the correspondence between objective and subjective measures. 

The cardiovascular system has been the main target to gauge interoception by focusing on 

interoceptive accuracy (IAcc). There are two widely used methods to measure cardiac IAcc, the 

heartbeat counting task (HCT; Schandry, 1981) and heartbeat discrimination tasks (HDT; Whitehead, 

Drescher, Heiman, & Blackwell, 1977; Ring & Brener, 2018). Both involve the perception of 

heartbeats as discrete interoceptive events. During the HCT participants are asked to silently count 

individual heartbeats for predetermined time-intervals and without taking their pulse. The number 

of counted heartbeats is compared with the actual number of heartbeats they had to form an 

accuracy index. Performance in this task has been shown to correlate with several dimensions of 

human cognition, ranging from the intensity of emotional experience and psychopathology (Dunn, 

Dalgleish, Ogilvie, & Lawrence, 2007; Ehlers & Breuer, 1992) to decision-making (Dunn et al., 2010; 
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Lenggenhager, Azevedo, Mancini, & Aglioti, 2013). The HCT presents some advantages over other 

methods, such as easiness of administration, but it has been subject to important criticisms 

(Murphy, Brewer, Hobson, Catmur, & Bird, 2018; Ring, Brener, Knapp, & Mailloux, 2015; Zamariola, 

Maurage, Luminet, & Corneille, 2018). The fact that performance in this task does not require actual 

online heartbeat perception and that it may be influenced by previous knowledge of one’s own 

heart rate are among the limitations. However, performance in the task has theoretical and 

predictive validity in domains where interoceptive accuracy is thought to play a role, such as 

emotion processing and various sub-clinical and clinical conditions (Badoud & Tsakiris, 2017; Herbert 

& Pollatos, 2012; Khalsa et al., 2018; Quadt, Critchley, & Garfinkel, 2018). 

For the HDT, the second most used IAcc measure, participants are asked to judge if a train of ten 

auditory tones are delivered in synchrony (200ms after the ECG’s R-peak) or asynchrony (500ms 

after the ECG’s R-peak) with their own heartbeats. Performance in the HDT has been shown to be 

associated, among other things, with the intensity of emotional experience (Barrett, Quigley, Bliss-

Moreau, & Aronson, 2004; Katkin, Wiens, & Öhman, 2001; Wiens, Mezzacappa, & Katkin, 2000) and 

anxiety (Critchley, Wiens, Rotshtein, Öhman, & Dolan, 2004). Because accurate responding in the 

HDT requires online heartbeat perception and is not influenced by previous beliefs and expectations, 

it has been suggested that this task, or variations of this task (e.g., Ring & Brener, 2018), constitute a 

more valid method to assess cardiac IAcc (Kleckner, Wormwood, Simmons, Barrett, & Quigley, 2015; 

Ring & Brener, 2018; Ring et al., 2015). 

At the neural level, the cortical correlates of cardioception have been linked to the insula, the 

anterior cingulate and the prefrontal and somatosensory cortices (Critchley et al., 2004; Pollatos, 

Gramann, & Schandry, 2007; S. M. Schulz, 2016). Nonetheless, and while the anatomical afferent 

pathways conveying visceral information to the brain are fairly well understood, the 

neurophysiological mechanisms underlying the conscious perception of cardiac signals remain 

subject to debate. The most prominent hypothesis posits that cardiac sensations depend on the 



Running head: taVNS and interoceptive accuracy 

 

stimulation of mechanoreceptors (i.e., baroreceptors) in the heart or in the surrounding major 

arteries, such as the aortic arch, by the pressure wave generated by the blood ejected at each 

heartbeat (Cameron, 2002; Critchley & Harrison, 2013). These signals are carried by the cranial 

nerves X (i.e., vagus nerve) and IX (i.e., glossopharyngeal nerve) to the Nucleus Tractus Solitarius 

(NTS) in the brainstem from where they are relayed, through thalamocortical projections, to higher 

order structures such as the insula, a structure well known for its role in the processing of 

interoceptive sensations (Craig, 2002; Critchley et al., 2004). 

The vagus nerve, i.e. the X cranial nerve, is part of the parasympathetic division of the autonomic 

nervous system and one of the most important communication pathways between the body and the 

brain (Cameron, 2002; Critchley & Harrison, 2013) conveying afferent signals from the major internal 

organs, including the heart. This information is funnelled into the NTS of the brainstem, a major 

interoceptive hub for homeostatic control with direct ascending projections to the monoaminergic 

neuromodulatory system (Critchley & Harrison, 2013). Capitalising on these projections, direct 

stimulation of the vagus nerve (VNS), through an electrical device implanted in the upper chest, has 

been used as a treatment for a wide range of neurologic and psychiatric disorders, such as refractory 

epilepsy and depression (Beekwilder & Beems, 2010). In 2000, Ventureyra developed taVNS, an 

alternative, non-invasive approach, consisting in the application of mild electrical current to the 

auricular branch of the vagus nerve whose fibres are found in the tragus and the cymba conchae of 

the auricle (Peuker & Filler, 2002). Since then, several fMRI studies confirmed that taVNS modulates 

brain activity in those areas identified by VNS, such as brainstem regions, thalamus, amygdala and 

insula (Badran, Dowdle, et al., 2018; Dietrich et al., 2008; Frangos, Ellrich, & Komisaruk, 2015; Kraus 

et al., 2007; Kraus et al., 2013), many of them known to be involved in the regulation of autonomic 

activity. 

Research on taVNS initially focused on investigating the possible clinical applications of this 

stimulation, but there is now a growing interest in taVNS as a tool to modulate cognitive and 



Running head: taVNS and interoceptive accuracy 

 

emotional processes (Colzato, Sellaro, & Beste, 2017; Keute, Ruhnau, Heinze, & Zaehle, 2018, 

Ventura-Bort et al., 2018). For instance, a recent study found that taVNS modulates flow absorption 

(Colzato, Wolters & Peifer, 2018), a psychophysiological state related to sustained attention to 

external tasks and diminished self-awareness (Sheldon, Prentice & Halusic, 2014). Other studies have 

shown that taVNS enhances emotion recognition of others’ faces and bodies (Colzato et al., 2017; 

Sellaro, de Gelder, Finisguerra, & Colzato, 2018) and may accelerate fear extinction (Burger et al., 

2016; but see Genheimer, Andreatta, Asan, & Pauli, 2017). However, it is still unclear whether these 

effects are mediated by changes in the representation of physiological activity. Research 

investigating the impact of taVNS on autonomic activity has presented, so far, conflicting evidence. 

Some studies found taVNS modulation of physiological indices, such as heart rate and heart rate 

variability and blood pressure (Antonino et al., 2017; Badran, Mithoefer, et al., 2018; Clancy et al., 

2014) while other studies failed to observe such effects (e.g., Burger et al., 2016; Colzato et al., 

2017). Indeed, despite the fundamental role of the vagus nerve in the communication and regulation 

of physiological activity, little attention has been given to its effects in the processing of the actual 

physiological signals and how this may be linked to their awareness. 

The main purpose of this study was to test the potential of taVNS in the modulation of interoceptive 

processing. To that end, we used a within-subjects design to compare participants’ accuracy in the 

HCT and HDT during active and sham taVNS. Since tavNS modulates activity within the interoceptive 

neural network (Badran et al., 2018), we predicted that taVNS would lead to increased accuracy in 

both tasks. We also tested participants’ interoceptive sensitivity and interoceptive (meta-) 

awareness, but had no specific prediction regarding the effect of taVNS on these dimensions. Finally, 

we measured several physiological indices, such as heart rate variability, heart rate and blood 

pressure. Given the contrasting findings observed in the literature, we had no specific predictions 

regarding the effects of taVNS in autonomic activity. However, these variables were collected to be 

used as covariates in our main analyses looking at changes in IAcc as a function of stimulation type. 



Running head: taVNS and interoceptive accuracy 

 

2. Methods 

2.1 Participants 

Following recent recommendations to achieve sufficient reliability (rtrue > 0.35) in the HDT (Kleckner 

et al., 2015), the task consisted of 50 trials and the sample size was set to 45. A power analyses (G* 

Power – Faul, Edgar Erdfelder, & Buchner, 2007; www.gpower.hhu.de/), based on a previous report 

(Colzato et al., 2018) of taVNS modulation on the experience of flow absorption (effect size: 

η2p=0.191), estimated the need for 37 participants to detect a significant effect (α=0.05) with 80% 

power. Fifty-one volunteers (17 males; mean age=21.1, sd=3.1) were recruited for the present study. 

Data from five participants were excluded due to noisy ECG (n=3) or technical difficulties with the 

stimulation (n=2). Thus, the final sample consisted of 46 subjects (14 males; mean age=21.2, sd=3.1). 

A screening form was administered to all participants to assess their eligibility to undergo taVNS. 

Only volunteers who met the following inclusion criteria were tested: no personal/familiar history of 

neuro-psychiatric, cardiovascular and/or respiratory disorders; no metal/implants fitted into the 

body; not currently pregnant; no alcohol/drugs taken 24 h prior to the experiment. Eligible 

participants were given oral and written explanation about the study procedure and were informed 

about the possible taVNS-induced adverse side effects, i.e. itching, burning sensations under the 

electrodes and mild headache. All participants gave written informed consent prior to the 

experiment and received £20 as compensation for their time. The study was approved by the 

University’s Ethical Committee at Royal Holloway University of London. 

2.2 Transcutaneous auricular vagus nerve stimulation 

A single blind, sham-controlled, within-subjects design was used to assess the effects of online taVNS 

on the ability to attend cardiac bodily signals. All participants carried out two identical experimental 

sessions, at least one week apart, differing only in the stimulation type: active or sham taVNS (see 

Figure 1). The session order was randomized. Stimulation was delivered using the Transcutaneous 
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Electrical Nerve Stimulation device (V-TENS Plus; https://bodyclock.co.uk/) with a custom-built clip 

electrode (cf. Clancy et al., 2014). During active taVNS, the electrode was placed on the anterior wall 

of the external ear canal corresponding to the participant’s tragus. Sham taVNS was performed by 

placing the electrode on the left earlobe, an area of the auricle which is known to be free of vagal 

endings (Peuker & Filler, 2002). Current was applied continuously with the following parameters: 

pulse width=250µs, frequency=25Hz. The intensity of stimulation was individually tailored to a level 

just above the participant’s perceptual threshold. To achieve this, the experimenter slowly increased 

the amplitude until the participant reported some sensations (e.g., tingling), which could be barely 

detected and did not cause neither pain nor discomfort. The same procedure was adopted for active 

and sham stimulation. Once initiated, the stimulation was applied throughout the session for an 

average duration of 37min (sd=3min)1. At the end of each session, participants completed a 

questionnaire, consisting of 8 items to be rated on a Likert scale (1 – not at all; 5 – extremely), to 

assess sensations and adverse effects they might have felt due to the stimulation (cf. Colzato et al., 

2017). Average ratings for each session were compared with Wilcoxon signed rank test with 

continuity correction revealing significantly (W=350.5, p=0.043) higher average discomfort ratings 

during active taVNS (mean=1.26, sd=0.23) than during sham (mean=1.18, sd=0.18). However, 

reported sensations were rather mild and none of the participants reported major complaints or 

discomfort during or after taVNS. Average sensation scores were tested as covariates in the 

regression models (see below). 

 

                                                           
1 Variations in total time of stimulation depended on participant’s HR and response speed, which was constrained to a 

fixed duration for both tasks (up to 20 seconds in the HCT and up to 7 seconds in the HDT). 
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Figure 1. Experimental procedure carried out for both active and sham taVNS sessions (counterbalanced). 

 

2.3 Physiological measures 

In order to record participants’ ECG, two electrodes were attached under the left and right clavicle 

and one on the left lower back, within the ribcage frame. The ECG signal was recorded using a 

Powerlab 8/35 box (Bio Amp 132) and LabChart 8 software (https://www.adinstruments.com). The 

sampling rate was 1 kHz and a hardware band-pass filter between 0.3 and 1,000 Hz was applied as 

well as a 50 Hz notch filter to reduce electrical noise. During the HDT, heartbeats were detected 

online with the LabChart’s fast response output function, a hardware-based function that identifies, 

with minimal delays (~1ms), the R-wave each time the ECG amplitude exceeds an individually-

tailored threshold. We also collected blood pressure (BP), heart rate (HR) and heart rate variability 

(HRV) before and during stimulation. HR and HRV were calculated offline with a LabChart dedicated 

toolbox (maximum frequency = 0.5 Hz, number of frequencies = 500; VLF = 0-0.04 Hz, LF = 0.04-0.15, 

HF = 0.15-0.45 Hz) over 5-minute recordings of rest-ECG immediately before (baseline) and 

immediately after stimulation start (stimulation). The main index of interest was high frequency HRV 

(HF-HRV) because it is generally regarded a proxy of vagal tone. However, the ratio between low and 

high frequencies HRV (LF/HF-HRV) was also used because it has been previously found to be 

modulated by taVNS (Clancy et al., 2014). BP was measured using an Omron BP629N monitor 

(www.omronhealthcare.com) wrapped around the left wrist2. The average of two measurements 

taken before stimulation (BP-baseline) and two taken immediately after stimulation completion (BP-

stimulation) were used to test for taVNS-induced changes in BP (data from 4 participants was lost 

due to equipment failure). 

                                                           
2
 this type of device may not be ideal to detect small variations in BP, continuous beat-to-beat BP measurements should be 

used to adequately assess the effect of taVNS on BP. 
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2.4 Interoceptive accuracy tasks 

Two methods were used to assess interoceptive accuracy: the heartbeat counting task (HCT; 

Schandry, 1981) and the heartbeat discrimination task (HDT; Whitehead et al., 1977). In the HCT, 

participants were instructed to silently count their heartbeats over six trials of different duration 

(21s, 25s, 33s, 47s, 55s, and 74s). An auditory tone signalled the beginning of the trial and a second 

one signalled its end. Participants were then asked to input the number of counted heartbeats. The 

order of each trial was randomised and an accuracy score was computed according to the equation 

below: 

 

 

In the HDT, participants listened to sequences of ten auditory tones. The sequences could be either 

synchronous (200ms after R wave) or asynchronous (500ms after R wave) with the participants’ 

heartbeats. Participants were instructed to focus on their cardiac sensations and asked to 

discriminate between synchronous and asynchronous sequences by pressing one of two keys on a 

keyboard. After that, they were asked to rate their confidence about their response on a visual 

analogue scale (1 – not confident at all; 100 – extremely confident). The procedure was repeated 

fifty times (25 synchronous and 25 asynchronous trials) to ensure sufficient reliability (Kleckner et 

al., 2015) and the order of trials was fully randomised. The accuracy score for this task was 

computed as the percentage of correctly identified trials. Confidence ratings were collected after 

each trial to estimate interoceptive sensibility and meta-awareness.  

During both tasks, participants sat upright in a dimly lit room to avoid distractions and were not 

allowed to take their pulse throughout the experiment. All subjects did one practice trial for the HCT 

and three practice trials for the HDT. The HCT was always carried out before the HDT to prevent that 

knowledge about own-heart rhythm gathered during the HDT from biasing performance on the HCT 
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(Ring & Brener, 2018). We have no reasons to believe that carrying out the HCT may contaminate 

performance on the HDT. The HCT lasted approximately 10 minutes and the HDT lasted 

approximately 20 minutes. 

2.5 Data analyses 

Interoceptive accuracy – data from both tasks was analysed with mixed-model regressions using the 

lme4 v1.1 -17 package (Bates, Mächler, Bolker, & Walker, 2014) available for R software (R Core 

Team, 2013) with participant’s ID as a priori random factor, i.e. the model allowed subject-specific 

intercepts, and stimulation type (1=taVNS; 0=sham) as a dummy predictor. The covariates – session 

(1=first session; 2=second session), HF-HRV (during stimulation), HR, BMI, age, gender (1=male; 

2=female) and average reported stimulation sensations – were sequentially entered in the model as 

fixed factors (and random slopes) and retained whenever improving model fit (p<0.05). Model 

comparisons and statistical significance of each predictor of the final model were carried out 

through loglikelihood ratio statistics asymptotically approximated to a χ2 distribution (Barr, 2013), 

using the anova and drop1 functions, respectively. Shapiro-Wilk test was used to test the normality 

of the DVs. When data was not normally distributed, the function descdist of the fitdistrplus package 

(Delignette-Muller & Dutang, 2015) was used to select the distribution that better fitted the data. 

Interoceptive sensibility – Average confidence ratings given in each session were estimated to create 

an index of interoceptive sensibility. It should be noted that this measure is independent of the 

actual (trial-by-trial) accuracy and reflects the participant’s beliefs about their ability to perform the 

task. 

Interoceptive awareness – Trial-by-trial confidence ratings were combined with objective (type-I) 

performance to estimate participant’s metacognitive ability (type-II performance). A close 

correspondence between accuracy and confidence (e.g., incorrect trials with low confidence and 

correct trials with high confidence), indicates good knowledge of the ability to perform the task, i.e. 

a high metacognitive ability. To estimate this type-II performance index we used a measure (meta-d’; 
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sum-square error approach) developed by Maniscalco and Lau (2012, 

http://www.columbia.edu/~bsm2105/type2sdt/; see also Fleming & Lau, 2014; Azevedo, Aglioti, & 

Lenggenhager, 2016). This method is conceptually similar to other approaches, such as the type 2 

Receiver Operator Curve (cf. Garfinkel et al., 2015), but is more robust to variations in type-I 

performance and to response biases (Fleming & Lau, 2014). 

The final model for IAcc on the HDT was:  

HDT_final = glmer(IAcc_HDT ~ stimulation + HF-HRV_stimulation + (1 + HF-

HRV_stimulation|participant), data=HDT, family=gaussian(link="log")) 

 

The final model for IAcc on the HCT was: 

HCT_final = lmer(IAcc_HCT ~ stimulation+ HR_stimulation + (1|participant), data=HCT) 

 

The final model for interoceptive sensibility on the HDT was: 

Sensibility_HDT_final = glmer(Confidence ~ stimulation + (1 |participant), data=HDT, 

family=gaussian(link="log")) 

The final model for interoceptive awareness on the HDT was: 

Meta_HDT_final = lmer(Meta_HDT ~ stimulation + BMI + (1|participant), data=HDT) 

 

Physiological measures – To test potential effects of taVNS on HRV, HR and BP, we divided the values 

acquired during stimulation with those measured during the baseline period, and compared the 

resulting indices for each stimulation type with paired t-tests or Wilcoxon signed rank tests when the 

variables were not normality distributed. 
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3. Results 

Heartbeat discrimination task. Results showed improved accuracy during active taVNS (mean=0.58; 

sd=0.11) compared to sham (mean=0.55; sd=0.091) stimulation (χ2=6.86, p=0.009; see Figure 2A)3. 

None of the covariates, nor their interaction with stimulation type, were found to significantly 

predict accuracy in HDT. A significant difference was also found for interoceptive sensibility 

(χ2=10.34, p=0.0013), reflecting higher confidence during active (mean=32.55; sd=6.26) than sham 

(mean=31.80; sd=7.05) stimulation. None of the covariates were significant. Conversely, stimulation 

type was not associated with changes in metacognitive awareness (χ2=0.063, p=0.80; active: 

mean=0.25; sd=0.8; sham: mean=0.22; sd=0.48). Only a negative relationship between BMI and 

interoceptive awareness was found (χ2=7.48, p=0.006). 

Heartbeat counting task. Accuracy on the HCT did not differ (χ2=0.75, p=0.39) between taVNS 

(mean=0.64, sd=0.18) and sham (mean=0.65, sd=0.18) stimulation. HR during stimulation (χ2=4.74, 

p=0.03) was found to be negative predictor of accuracy. 

Physiological measures. No significant differences between stimulation types were observed in any 

of the physiological measures: HF-HRV (active: mean=1.16, sd=0.48; sham: mean=1.19, sd=0.50; 

W=528, p=0.90); LF/HF-HRV (active: mean=0.95, sd=0.63; sham: mean=0.94, sd=0.49; W=556, 

p=0.87) , HR (active: mean=0.97, sd=0.03; sham: mean=0.97, sd=0.04; t(45)=0.03, p=0.97); systolic 

BP (active: mean=0.96, sd=0.06; sham: mean=0.96, sd=0.06; t(40)=-0.18, p=0.86) and diastolic BP 

(active: mean=0.99, sd=0.09; sham: mean=0.99, sd=0.09; t(40)=-0.14, p=0.89). 

 

                                                           
3 Equivalent results are observed (χ

2
=5.17, p=0.023) when replacing the covariate HF-HRV index with LF/HF-

HRV or when excluding data from 4 outliers (χ
2
=4.81, p=0.028), defined as those in which the difference of 

accuracy scores between the two session exceeded ± 2.5 standard deviations from the mean difference. 
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Figure 2. Accuracy in the A) heartbeat discrimination task (HDT) and in the B) heartbeat counting task (HCT) as a function of 

stimulation type. The raincloud plots (Allen, Poggiali, Whitaker, Marshall, & Kievit, 2018) provide a comprehensive 

descriptive representation of accuracy scores during sham (lighter colour) and active (darker colour) stimulation. The red 

lines correspond to the fitted values, with error bars, and represent the main effect of stimulation that was found to be 

significant in the HDT but not in the HCT. 

4. Discussion 

We investigated the effects of taVNS on the ability to accurately detect and report heartbeats. 

Active and sham taVNS stimulation were applied on different sessions while participants performed 

the two most widely used tasks to measure cardiac IAcc: the heartbeat counting task (HCT) and the 

heartbeat detection task (HDT). Confidence ratings were also collected during the HDT to assess the 

potential impact of taVNS on interoceptive meta-awareness. The pattern of results observed here 

partially supports our predictions, given that accuracy during active (vs sham) stimulation was higher 

on the HDT, but not on the HCT. Additionally, while participants tended to be more confident in their 

synchrony judgments (i.e. interoceptive sensibility), no significant differences were found on 

interoceptive awareness scores as a function of stimulation. Importantly, we adopted a within-

subjects design and controlled for several variables known to impact performance on both tasks, 

such as HRV, HR, BMI and gender (Grabauskaitė, Baranauskas, & Griškova-Bulanova, 2017; Herbert 

& Pollatos, 2014; Rouse, Jones, & Jones, 1988). We also measured several indices of autonomic 

activity before and after stimulation but found no significant differences as a function of stimulation 
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type. Together, these findings demonstrate the potential of taVNS on the modulation of 

interoceptive processing. 

The fact that we found improved accuracy during active taVNS in the HDT but not in the HCT is likely 

due to methodological differences between these two tasks. The HCT can be influenced by higher-

order factors, such as the previous knowledge of one’s own heart-rate, and does not necessarily 

require online conscious perception of heartbeats. At least some of our participants may partially 

rely on strategies unrelated to online heartbeat perception to count heartbeats, making the HCT less 

sensitive to manipulations that induce changes in the processing of visceral signals. In contrast, in 

the HDT, both synchronous and asynchronous conditions reflect the participant’s actual online heart 

rhythm and, therefore, accurate performance on this task requires actual perception of ongoing 

heartbeats. The HDT is also thought to be more immune to top-down influences than the HCT. There 

are also conceptual differences between these two tasks. While the latter consist only in the 

monitoring of heartbeats, the former also requires the matching between the interoceptive 

sensations and auditory tones. Thus, it is possible that taVNS also facilitated the integration of 

signals originating within and outside the body, an ability known be to be associated with insula 

activity (Critchley et al., 2004; Ronchi et al., 2015).  

Several fMRI studies have shown that taVNS modulates activity in several brain regions related with 

the processing of afferent vagal signals and interoception, such as the NTS, thalamus, precentral 

gyrus and insular cortex (e.g., Badran, Dowdle, et al., 2018; Dietrich et al., 2008; Yakunina, Kim, & 

Nam, 2017). Interestingly, grey matter volume and activation of the insula during the HDT have been 

shown to correlate with accuracy in the task (Critchley et al., 2004). Similarly to other non-invasive 

brain stimulation techniques, taVNS effects might be explained by modulation of neural activity and 

consequent shifts in the signal-to-noise ratio in the system (Miniussi, Harris, & Ruzzoli, 2013). 

Importantly, the effects of the stimulation depend on the state of the recruited neural populations 

(i.e., state dependency) and thus on the task’s characteristics. Here, it is likely that taVNS modulation 
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of brain activity within vagal and interoceptive regions, e.g. NTS or insula, increased the signal-to-

noise ratio enhancing the sensitivity to heartbeat sensations during the HDT, which necessarily relies 

on online heartbeat perception, but not during the HCT, for which the possible endorsement of 

ancillary strategies may be associated with poorer signal-to-noise relation. 

We also measured several physiological indices (HR, HRV and BP) but found no differences as a 

function of stimulation type. We note that there is currently no consensus on the direct impact of 

taVNS on autonomic activity and therefore we had no specific predictions in this regard. It is possible 

that the contrasting findings observed so far in literature reflect the different experimental 

procedures and stimulation parameters, e.g. right vs left ear stimulation or continuous vs phasic 

stimulation, adopted in these studies (e.g., Badran, Mithoefer, et al., 2018; Burger et al., 2016; 

Clancy et al., 2014; Colzato et al., 2017). Importantly, however, in the present study we included 

these variables as covariates and found that they did modulate accuracy on the HDT as a function of 

stimulation type. This suggests that taVNS effects on IAcc are not driven by substantial changes in 

autonomic activity and are more likely to occur at the representational level in the central nervous 

system. 

Interestingly, even if participants were more confident (interoceptive sensibility) in their ability to 

perform the task during active stimulation, such confidence was unrelated to their actual accuracy, 

as no differences were found on interoceptive awareness, i.e. the meta-ability to evaluate one’s own 

accuracy. This is possible if participants report higher confidence even when their answer is not 

accurate. Indeed, while these three dimensions are related, research has shown that they are also 

partially dissociable (Azevedo, Aglioti, & Lenggenhager, 2016; Garfinkel et al., 2015) and rely on 

partially distinct neural networks (Barttfeld et al., 2013; García-Cordero et al., 2016; Rouault, 

McWilliams, Allen, & Fleming, 2018). Interoceptive sensibility reflects processes such as subjective 

interpretation of bodily sensations, attention and cognitive biases. Conversely, interoceptive 

awareness is likely to reflect higher-order processes that integrate sensory information with other, 
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domain-specific and domain-general, decision-making variables (Rouault et al., 2018). It may be that 

taVNS modulates interoceptive-sensory processing (IAcc) and appraisal of bodily sensations or 

cognitive states (interoceptive sensibility) but not processes related to meta-evaluation. 

Nevertheless, such interpretation should be taken with caution. A recent study found increases in 

metacognitive performance but not in objective performance in a visual perception task after 

pharmacological blockage of noradrenaline (Hauser et al., 2017), which is known to be modulated by 

stimulation of the vagus nerve (Ruffoli et al., 2011). Thus, future studies using other interoceptive 

tasks, arousal-inducing paradigms or probing other sensory modalities may shed further light into 

the possible effects of taVNS on metacognitive processes. 

Although the HDT is, arguably, the most reliable method to assess IAcc, it has some limitations, such 

as the task’s difficulty. In fact, it is generally accepted that the HDT has limited sensitivity at the 

lower end of the accuracy spectrum with participants performing at chance levels (Khalsa, Rudrauf, 

Sandesara, Olshansky, & Tranel, 2009). Thus, it is possible that stimulation had no influence on those 

with particularly low accuracy and a minimal level of interoceptive representation is required to 

benefit from it. It is also believed that extent to which taVNS impacts behaviour and physiological 

activity may partially depend on inter-individual differences, as exemplified by the finding that older 

participants tend to show greater stimulation induced changes in HRV (Clancy et al, 2014). Thus, it 

might be that variability along physiological and performance-related factors might account for 

inter-individual differences in taVNS responsivity in the present study. Moreover, it would also be 

important to test whether different stimulation sites, e.g. cymba conchae, and different stimulation 

parameters have different effect on IAcc. While stimulation in these two sites produce equivalent 

patterns of cortical activity (Badran et al, 2018), there is currently a debate on whether these are 

fully equivalent (Badran, Brown, et al., 2018; Burger & Verkuil, 2018). A recent study compared 

several stimulation parameters and found that some specific stimulation frequencies (e.g., 10Hz) 

and pulse with (e.g., 500 µs) have stronger effects on HR (Badran, Mithoefer, et al., 2018). Formal 
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investigations using different parameters, e.g. ON-OFF 30-second cycles vs continuous stimulation, 

applied on either the tragus or the cymba conchae would be required to elucidate this further. Pupil 

size, which is thought to be closely related to noradrenaline release by the locus coeruleus (Aston-

Jones & Cohen, 2005), might be a good index of autonomic activity to establish the effectiveness of 

taVNS. Finally, future studies may also be designed to test how taVNS modulates responses to 

manipulations of the interoceptive system and how these are reflected in changes in IAcc (Khalsa, 

Rudrauf, Sandesara, et al., 2009; Schandry, Bestler, & Montoya, 1993). Peripheral perturbations of 

the cardiovascular system might increase the salience of interoceptive signals and reveal increased 

accuracy also in the HCT when paired with taVNS. 

While interoceptive accuracy, as measured with tasks such as the HCT and the HDT, is typically 

regarded as a trait measure, several studies have shown state-dependent changes (Ainley, Tajadura-

Jiménez, Fotopoulou, & Tsakiris, 2012; Canales-Johnson et al., 2015; Khalsa, Rudrauf, Sandesara, et 

al., 2009; Schandry et al., 1993). For example, experimental manipulations targeting top-down 

processes, such as psychological stress (Fairclough & Goodwin, 2007) or attention towards one’s 

own body (Ainley et al., 2012), may modulate IAcc. At the physiological level, procedures inducing 

changes on cardiovascular parameters, such as physical exercise and postural manipulations 

(Schandry et al., 1993) or bolus infusions of isoproterenol (Khalsa, Rudrauf, Sandesara, et al., 2009), 

can also induce transient changes in IAcc. Here, we introduce a new procedure to manipulate 

interoceptive processing with large potential for experimental research and clinical practice. The 

non-invasiveness of this method and the fact that it is does not seem to rely on higher-order 

cognitive factors, such as attention or psychological stress, makes it a valuable tool for the study of 

body-brain interactions and, potentially, the impact of afferent cardiac signals in healthy and clinical 

populations. Recent proposals argue for a central role of dysfunctional interoceptive processing in 

certain psychiatric disorders, e.g. anxiety and eating disorders. Specifically, it is argued that the 

inability to correctly perceive inner bodily states or the mismatch between this ability and subjective 
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believes may be important for the development of psychopathological states (Khalsa et al., 2018; 

Palser, Fotopoulou, Pellicano, & Kilner, 2018; Quadt et al., 2018). Thus, clinical interventions 

targeting dysfunctional bodily awareness should include protocols to improve participants’ IAcc and 

align this ability with their meta-cognitive beliefs about bodily states. Future studies may be 

designed to investigate how taVNS can promote interoceptive learning (IAcc) or be integrated with 

other therapeutic techniques, e.g. mindfulness, to improve interoceptive awareness for the 

treatment of metal health conditions. The findings reported here enhance our understanding of the 

mechanisms underlying the conscious perception of heartbeats and demonstrate the potential of 

taVNS as an important tool to investigate brain-body interactions. 
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