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“On becoming terrestrial the hand was never then ‘freed’ 

from branch-holding, it brought the branch with it…” 
-Richards, 1986, pp.146 
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* Throughout this work, the term hominid is used to refer to humans and other great 

apes, whereas hominin is reserved for species more closely related to modern humans 
than chimpanzees (Crompton, 2016). Similarly, the term great ape here includes: 
humans, chimpanzees, bonobos, gorillas and orangutans. 

General Introduction 

The scientific problem  

When and how did arboreal environments become less important, and technology 

become more important, for hominin survival? This fundamental question of our 

own evolution has been a focus of palaeoanthropological and archaeological 

debate for over a century. Wood-Jones (1916) may be retro-actively credited with 

the most succinct summary of this debate in the title of his work “Arboreal Man”. 

Perhaps the most widely cited and accepted defining characteristic of a hominin is 

bipedalism (Harcourt-Smith and Aiello, 2004; DeSilva, 2009). Traditionally, the 

transition from arboreal locomotion to terrestrial bipedalism was thought to free 

the hands of locomotor selection pressures and allow them to be used for forceful 

precision manipulation (Napier, 1962). In turn, this manipulative ability allowed for 

the advent of complex hominin technology, access to novel ecological niches and 

more human-like cognition, though which of these traits came first is also 

unresolved (Kimbel and Villmoare, 2016). The discovery of “Lucy” (AL-288-1), a 

relatively complete Australopithecus afarensis skeleton (Johanson et al., 1982), 

subsequently sparked debate about this genus, common to eastern and South 

Africa. While several Australopithecus species were clearly bipedal, the functional 

interpretation of their more ape-like traits was debated (Ricklan, 1987; Kimbel and 

Delezene, 2009; Berger et al., 2010). Some researchers view these traits as 

retentions from a more arboreal ancestor (Latimer, 1991), an example of 

phylogenetic inertia, while others view them as functional and indicative of some 

arboreality in a species not yet fully committed to terrestrial bipedalism (Stern and 

Susman, 1983). Hominins were certainly capable of precision grips at least 3.3 

million years ago as evidenced by stone tool technology (Harmand et al., 2015). 

However, this need not preclude the use of the hand in arboreal locomotion as 

forceful precision grips, if not their habitual use, are also used by extant hominids* 

that have a significant arboreal component in their locomotor repertoire (Marzke et 

al., 2015).  
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The hand of Australopithecus offers a microcosm of the broader scientific problem. 

If species of this genus did use their hands for both arboreal locomotion and 

habitual forceful precision grips, the transition to bipedalism in hominins could be 

interpreted as more gradual. However, if this hand was used solely for 

manipulation, it suggests that at least some members of Australopithecus had 

become fully committed to terrestrial bipedalism, as we are today. This thesis is 

therefore concerned with a facet of the broader problem; are the morphological 

features associated with arboreal locomotion in the hand of Australopithecus 

functional or not? 

Aims  

The present work aims to address this scientific problem via the analysis of the 

internal structure of osteological and fossil material. Specifically the trabecular, or 

cancellous, epiphyseal structure and the cortical diaphyseal structure of long bones, 

have been experimentally demonstrated to change in response to loads they 

experience during life. This process, known as ‘bone functional adaptation’ (Cowin 

et al., 1985; Ruff et al., 2006), holds that bone will functionally adapt to its 

mechanical environment and so its architecture may be used to infer the 

behaviours that are consistent with this environment. Therefore, this internal bone 

architecture can be used to infer loads experienced by fossil hominin hands and 

thus hand postures used in arboreal locomotion or manipulation, consistent with 

these loads. The following analyses focus on metacarpals because they are the long 

bones of the hand, amenable to diaphyseal and trabecular analysis. The 

metacarpophalangeal joints are bi-axial, while the trapeziometacarpal joint is 

further mobile, and together they provide a range of potentially loaded hand 

postures adopted in different grips. The internal bone architecture of fossil and 

osteological hand bones was analysed via micro-computed tomography. This 

analysis proceeded in three stages.  

First, this thesis aims to link the trabecular structure of the second to fifth 

metacarpals of extant hominids to what is known about their hand loading during 

their diverse habitual locomotor repertoires. Secondly, the trabecular structure of 

the first metacarpal of extant hominids is assessed in light of observed manipulative 
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grips habitually used by hominids, including modern humans. Finally, both the 

cortical and trabecular structure of the whole hominid metacarpus are brought 

together, to infer the habitual postures in which fossil hominin hands were likely 

habitually loaded. 

Overview 

Chapter 1 - General Background 

Chapter 1 contextualises the scientific problem within an in-depth discussion of the 

manual fossil record and bone functional adaptation. It describes in detail why 

functional inference based on external fossil morphology alone is open to 

interpretative debate.  

Chapter 2 - Materials and Methods 

Chapter 2 describes the methods employed, from a hand bone on the collection 

bench to an analysed, segmented virtual model. It also provides a rationale for each 

successive stage of analysis. 

Chapter 3 - MIA-Clustering: A novel method for segmentation of paleontological 

material 

While mentioned in Chapter 2, this chapter presents the detailed description and 

testing of a new method of image segmentation, developed for the present thesis, 

in order to accurately delineate trabecular morphology in fossils: MIA-Clustering. 

Chapter 4 - Metacarpal trabecular bone varies with distinct hand-positions used in 

hominid locomotion 

Chapter 4 validates the assumption that the trabecular structure of the second to 

fifth metacarpals of extant hominids is consistent with what is known about hand 

loading, during the diverse habitual locomotor repertoires, of hominids. It provides 

validation of the method developed to test for inter-specific differences in 

trabecular distribution and, unexpectedly, provides a method of informal 

falsification for the current mode of fossil hominin behavioural inference. 

 



xiii 

 

Chapter 5 - Trabecular variation in the first metacarpal reflects distinctive human 

manipulation among hominids 

Chapter 5 validates the assumption that the trabecular structure of the first 

metacarpal of extant hominids is consistent with the observed manipulative grips 

habitually used by great apes, including modern humans.  

Chapter 6 - Fossil hominin hand use: Evidence for arboreality and human-like 

manipulation in Australopithecus 

This chapter infers the likely grips of fossil hominins from both their trabecular and 

cortical structure. Importantly, it brings together all of the rays in a holistic analysis 

of internal fossil morphology, in the context of internal bone structure consistent 

with arboreal and manipulative grips practised by extant hominids. 

Chapter 7 - Discussion and Conclusion 

This chapter discusses how far the present results resolve the initial scientific 

problem and what we can say about fossil hominin hand use. Further this chapter 

acknowledges the limitations of the current approach and what future data or 

methodologies may ameliorate them. 
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Chapter 1 

General Background 

In order to understand when arboreal environments became less important for 

extinct hominins, such as Australopithecus, this thesis infers their hand use via 

internal bone morphology. This chapter begins by describing features of extant 

great ape hands and how these features have been associated with hand use in 

these species. How these features have been used to infer fossil hominin behaviour 

and the limitations of these approaches are then discussed, with special reference 

to the debate surrounding the locomotion of Australopithecus. Previous studies 

that have employed internal bone morphology to infer primate and fossil hominin 

behaviour have had varying success. The limitations of these more recent 

methodologies are also considered, and the present approach, both methodological 

and theoretical, is discussed in light of these studies. 

Great ape hand morphology and grips 

The anatomically modern human hand is easily distinguished among extant 

hominoids by its relatively short fingers and long, robust, well-muscled thumb 

(Huxley, 1863; Napier, 1962; Susman and Creel, 1979; Marzke and Shackley, 1986; 

Napier, 1993; Susman, 1998; Marzke et al., 1999; Tocheri et al., 2008; Almécija et 

al., 2015). These features of the thumb combined with a broad, moderately-curved 

sellar facet at the trapeziometacarpal (TMc) joint, broad apical phalangeal tufts, 

differently oriented radial carpals and a mobile fifth digit, have all been associated 

with enhanced human manipulation (Marzke and Shackley, 1986; Marzke, 1997; 

Tocheri, 2007; Tocheri et al., 2008; Almécija et al., 2010; Marzke, 2013; Kivell, 

2015). The unique aspects of human manipulation compared with other primates 

have traditionally included habitual forceful precision grips (Marzke and Wullstein, 

1996; Marzke, 1997), power ‘squeeze’ grips (Marzke et al., 1992) and precision in-

hand manipulation (Christel, 1993; Fragaszy and Crast, 2016). Forceful precision 

grips involve securing an object between the fingers with little to no aid from the 

palm and are considered critical to lithic tool production, an activity known to have 
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occurred from at least 3.3 million years ago (Harmand et al., 2015). For example, a 

‘3-jaw-chuck’ forceful precision grip, in which the object is held by the second and 

third fingers forcefully opposing the thumb (like when grasping a baseball; Marzke 

and Shackley, 1986), is often the focus of discussion as it is used to hold 

hammerstones during lithic production (Marzke and Shackley, 1986; Marzke et al., 

1998; Williams et al., 2012; Key et al., 2018). Such a grip is facilitated by a relatively 

high thumb to finger length ratio in humans compared with other hominoids 

(Napier, 1993; Almécija et al., 2015).  

The morphology of the radial side of the human hand has been interpreted as 

advantageous for forceful precision grips. A moderately flat trapezial facet for the 

first metacarpal (Rafferty, 1990; Marzke et al., 2010) combined with a relatively 

short palmar beak at the base of the human first metacarpal (Niewoehner, 2005; 

Marchi et al., 2017) is thought to permit the compound abduction, flexion and axial 

rotation of the first metacarpal required for thumb opposition (D’Agostino et al., 

2017). This morphology has been interpreted as a compromise between joint 

mobility and stability, required for forceful precision grips, such as those employed 

during lithic production (Tocheri, 2007; Marzke et al., 2010; Marzke, 2013). The 

broad flat surface of this articulation is thought to better dissipate large loads from 

the thumb (Marzke et al., 2010). During tool-related manipulation, external load is 

greatest at the first distal phalanx (Key and Dunmore, 2015; Williams-Hatala et al., 

2018), and translated into increasingly higher loads at successively more proximal 

manual joints (Cooney and Chao, 1977; Rolian et al., 2011). The broad apical tufts of 

the distal phalanges, as well as the ability to passively dorsiflex the distal 

interphalangeal joints (Christel, 1993), are thought to provide a greater area for 

pad-to-pad opposition in humans (Marzke, 2013) and may also assist in dissipating 

strong forces, at least in the thumb, though baboons also possess broad apical tufts 

(Shrewsbury, 2003). The greater forces apparently resisted by the thumb relative to 

other digits in humans, may also be related to a significantly stronger first 

metacarpal diaphyseal shaft (Wong et al., 2018). The forces present in a forceful 

precision grips are the result of large thenar muscles, with significantly longer 

moment arms in humans relative to other apes (Marzke et al., 1999).  



3 

Many elements of the hand and wrist are also thought to aid human manipulation. 

The second metacarpal head is asymmetric in humans as it is radio-palmarly 

expanded, causing the index finger to pronate during flexion allowing more 

opposition of the second distal phalanx with an object (Lewis, 1977; Marzke, 1997). 

Below the second metacarpal, the human trapezoid is more proximo-distally 

oriented and palmarly expanded than in other great apes, creating its ‘boot’ shape 

(Marzke, 1997; 2013; Tocheri et al., 2005). This reorientation has also been argued 

to more efficiently dissipate radio-ulnar forces incurred in precision grips, such as 

those transmitted through the thumb during lithic production and use (Lewis, 1989; 

Tocheri, 2007; Rolian et al., 2011; Marzke, 2013). Unique to humans, the styloid 

process at the base of the third metacarpal has also been related to stabilising the 

wrist against large radial forces and thus preventing subluxation (Marzke and 

Marzke, 1987). Hypothenar muscles of the fifth metacarpal were found to play a 

critical role in object manipulation during lithic production (Marzke et al., 1998; 

2013).The sellar-shaped fifth carpometacarpal (CMc) joint in humans allows the 

hand to be ‘cupped’ and when combined with a palmo-ulnarly expanded fifth 

metacarpal head (Lewis, 1977; Marzke, 1997), allows effective opposition the fifth 

digit to the thumb or held objects (Domalain, et al., 2017). The fifth ray is also 

argued to be important for power ‘squeeze’ grips (Marzke, 1992; 1997). These grips 

are unique to humans and, unlike forceful precision grips, involve ‘cupping’ a 

cylindrical object between thenar and hypothenar eminences of the palm, while the 

thumb is adducted with considerable force and controls the direction in which force 

is applied to the object (Marzke et al., 1992). Power ‘squeeze’ grips have been 

identified in lithic manipulation (Key et al., 2018) and make use of the unique 

morphology of the fifth ray and its musculature.  

Power grips, in which the palm is recruited, are more frequently practised by non-

human great apes than humans, and are generally used for gripping arboreal 

substrates in locomotion. There is a paucity of evidence for non-human great ape 

hand use compared to humans. However, gorillas, chimpanzees and bonobos have 

all been observed, either in captive or wild settings, using diagonal power grips in 

which the branch lies diagonally across the palm and the fingers, with more flexion 
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in more ulnar rays (Marzke and Wullstein, 1996; Neufuss et al., 2017; Samuel et al., 

2018). While differences exist, such as a less adducted (ulnarly deviated) wrist in a 

chimpanzee diagonal power grip compared to that of a mountain gorilla, these grips 

tend to be performed by African apes on substrates of smaller diameters, such as 

branches (Neufuss et al., 2017). Larger diameter substrates, such as tree a trunk, 

tend to be gripped by African apes with an orthogonal power grip using all five 

digits and the palm (Sarmiento, 1994; Neufuss et al., 2017). Smaller diameter 

substrates, such as terminal branches, are gripped by orangutans in ‘double-locked’ 

grips whereby all joints of the non-pollical, second to fifth, rays are flexed and the 

distal phalanx contacts its proximal phalanx (Sarmiento, 1988; Rose, 1988). 

Orangutans, as well as chimpanzees, also use ‘hook’ grips on medium-sized 

branches in which the fingers hook over the top of a branch, possibly with some 

support from the palm, and the individual is suspended below it (Rose, 1988; Hunt, 

1991; Alexander, 1994).  

In all of these grips, the long curved digits of non-human great apes are thought to 

be useful for gripping arboreal substrates as they can conform to their curved 

surfaces providing more surface area from friction and thus grip (Sarmiento, 1988; 

Hunt, 1991). Curvature in ape phalanges has also been related to suspension, 

suggesting that this curvature might act to resist strong anterior-posterior loads 

(Richmond, 2007; Nguyen et al., 2014). In either case, the strong flexor sheath 

ridges on non-human great ape phalanges (Susman, 1979) have likely developed in 

response to the strong flexor muscles required for habitual arboreal power grips. 

The long metacarpals of non-human apes are also thought to be a derived feature 

and evolved in parallel, perhaps in response to a similar orthograde arboreal 

locomotor repertoire (Almécija et al., 2015). In the wrist, extant African apes have a 

more radio-ulnar alignment of the second metacarpal articulations with the 

capitate and the trapezium, as well as a narrower ‘waisted’ capitate than humans 

and no styloid process in the base of the third metacarpal (Tocheri et al., 2008). This 

morphology has been argued to better withstand proximo-distal forces generated 

in arboreal locomotion and knuckle-walking, as well as strong compression of the 

wrist in the latter behaviour (Tocheri, 2007). This emphasis on proximo-distal forces 
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from the non-pollical rays during arboreal grasping is also mirrored in the 

diaphyseal robusticity of non-human great apes non-pollical metacarpals (Mc2-5; 

Susman, 1979; Marchi, 2005) and relatively similar non-pollical digit lengths in 

orangutans (Rose, 1988). However, the robusticity of the African ape metacarpals 

has often been directly linked to knuckle-walking (Susman, 1979; Marchi, 2005). 

While not a prehensile hand posture, knuckle-walking, in which the 

metacarpophalangeal (McP) joints are hyperextended and weight is borne on the 

intermediate phalanges (Tuttle, 1967; 1969; Wunderlich and Jungers, 2009), is the 

dominate form of locomotion for African apes (Doran, 1996). Much as the long, 

strong non-pollical metacarpals of African apes are likely derived (Marchi, 2005; 

Almécija et al., 2015), differences in digit use between chimpanzees and gorillas 

(Inouye, 1992; 1994; Matarazzo, 2013), development (Inouye, 1994; Dainton and 

Macho, 1999) as well as potential differences in wrist posture (Kivell and Schmitt, 

2009), suggest this behaviour may have evolved in parallel rather than from a 

common ancestor.  

In non-human great apes, the first metacarpal is small and gracile relative to the 

non-pollical metacarpals (Susman, 1979). While the first ray is never recruited 

during knuckle-walking (Tuttle, 1969; Wunderlich and Jungers, 2009; Matarazzo, 

2013; 2013b), there is some evidence for its use in arboreal grasping in both 

orangutans (McClure, 2012) and chimpanzees, but especially in mountain gorillas as 

they descend lianas (Neufuss et al., 2017). However, the thumb is recruited in the 

majority of precision grips practised by non-human great apes (Christel, 1993; 

Marzke et al., 2015; Bardo et al., 2016; 2017; Neufuss et al., 2018).  

During manipulation all non-human great apes engage in power grips, especially 

when handing larger objects (Pouydebat et al., 2009; Neufuss et al., 2016; 2018). 

However, non-human great apes are also capable of many precision grips that 

involve the thumb, and most frequently practise ‘pad-to-side’ grips in which the 

thumb is opposed to the radial side of the second ray (Christel, 1993; Marzke and 

Wullstein, 1996; Neufuss et al., 2016; Bardo et al., 2016; 2017). Similarly the ‘V-

pocket’ grip (Lesnik et al., 2015), in which the object is held in the webbing between 
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the full thumb and index finger is also practised by all non-human great apes 

(Marzke et al., 2015; Bardo et al., 2016; 2017; Neufuss et al., 2017; 2018). Though 

both of these grips appear to vary in frequency ,depending on species and whether 

individuals were captive or wild (Marzke et al., 2015), the common element is that 

the pad of the thumb is usually opposed to the side of the second ray rather than 

its pad. When necessary, such as when very small objects are gripped, non-human 

great apes are capable of ‘tip-to-tip’ grips in which the apex of the thumb and 

another finger meet, though this does not include opposition of their ungual pads 

(Christel, 1993). Recent studies have demonstrated that apes are capable of more 

manipulative grips than previously thought (Neufuss et al., 2018) and rare ‘pad-to-

pad’ precision grips have been observed in chimpanzees during feeding (Marzke et 

al., 2015). Nevertheless, the preponderance of ‘pad-to-side’ or ‘V-pocket’ grips in 

non-human great apes is related to their relatively long fingers, long metacarpals 

and short thumb (Napier, 1993; Almécija et al., 2015). The adduction of the thumb 

during these frequent grips (Bardo et al., 2017) has been linked to the myological 

anatomy of non-human great apes. Flexor pollicis brevis and opponens pollicis 

muscles tend to secondarily adduct the TMc joint in chimpanzees and, despite their 

overall slightly smaller thenar musculature, the transverse head of the adductor 

pollicis muscle can generate significantly more torque than in humans (Marzke et 

al., 1999, van Leeuwen et al., 2018). 

The distinctive features of modern human and non-human great ape hands are 

often linked to manipulative and arboreal power grips, respectively, following a 

more refined version of Napier’s (1993) grip schema. However, as demonstrated by, 

for example, rare ‘pad-to-pad’ precision grips observed in wild chimpanzees 

(Marzke et al., 2015), as well as in semi-free ranging macaques (Macfarlane and 

Graziano, 2009), manual morphology does not necessarily preclude different kinds 

of grips or hand use. The functional explanations that link comparative anatomy 

and observed manual behaviours in different species are not always explicit or 

tested, a problem that is only exacerbated when they are applied to fossil hand 

morphology. 



7 

Inferring hand function in fossil hominins 

To infer hand function in fossil hominins, observed manual behaviours are often 

related to aspects of extant morphology via a functional explanation. Where this 

morphology exists in fossil hands the observed manual function in extant taxa is 

inferred. However, these functional explanations are rarely directly tested since 

measuring joint reaction forces or muscle recruitment in vivo can be difficult. Non-

human great apes may choose to not perform a behaviour under investigation 

when being observed or measured, and ex vivo non-human great ape samples that 

allow this direct testing of functional explanations are rare (e.g. Marzke et al., 1999; 

van Leeuwen et al., 2018). Further, the behaviour or manual morphology of an 

extinct hominin need not necessarily have a modern analogue. The inference of 

fossil behaviour, in particular, is limited to less direct evidence that may be 

multifaceted, hierarchical, contingent and inductive rather than deductive (Smith, 

2016). This is not to say that this inference is impossible, but that care must be 

taken to ensure functional explanations of extant morphology are as explicit as 

possible and to ensure that the inferred fossil behaviour is the most supported 

explanation based on currently available evidence. In this section, some examples 

of inferred hand use in fossil hominins, that propose somewhat implicit functional 

explanations that may not be supported by further evidence, are discussed to 

highlight some of the limitations of this inferential approach.  

All African ape species possess a ridge at the dorsal limit of the non-pollical 

metacarpal heads, which has been thought to provide a ‘bony stop’ to help prevent 

luxation, and dissipate stresses, at the McP joints in hyperextension during knuckle-

walking (Tuttle, 1969; Richmond et al., 2001). While dorsal ridges are also present 

in digitigrade primates, it has been argued that given these features are present in 

closely related African ape taxa that all knuckle-walk, the last common ancestor of 

hominins and great apes would also have had dorsal ridges, indicative of knuckle-

walking (Gebo, 1996; Richmond et al., 2001). However, these dorsal ridges are not 

present in all individuals (Susman, 1979) and can also appear on metatarsals 

(Inouye and Shea, 2004). More recent work has found that this phylogenetic 
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argument for fossil hominin dorsal ridges and knuckle-walking can be strongly 

criticised. Not only do Pan and Gorilla knuckle-walk in different ways (Inouye, 1992; 

1994; Dainton and Macho, 1999; Kivell and Schmitt, 2009; Matarazzo, 2013) but 

both of their hand proportions may be derived, especially in Pan, and likely 

acquired in parallel rather than from a common ancestor (Drapeau and Ward, 2007; 

Almécija et al., 2015). The functional explanation given for metacarpal dorsal ridges 

has also been questioned. Dorsal ridges in non-human great apes are small 

compared to the rest of the McP joint and so the forces that would be required for 

them to act as ‘bony stops’ would be so high they would cause injury to the joint 

(Lovejoy et al., 2009; Simpson et al., 2018). Instead, it has been argued that this 

feature may reflect only knuckle-walking stresses early in development when 

cartilage at the McP joint has yet to ossify (Simpson et al., 2018). In any case, the 

inference of knuckle-walking based on inferred metacarpal dorsal ridges in basal 

hominins is problematic. The original functional explanation for the dorsal ridge 

(Richmond et al., 2001) may not hold (Lovejoy et al., 2009; Simpson et al., 2018) 

and the phylogenetically inferred fossil morphology has yet to be found in the 

hominin fossil record. However, even when fossil manual morphology is measured, 

rather than inferred, there are also limitations to the inference of fossil manual 

behaviour on its basis. 

Compared to other manual elements, fossil hominin first metacarpals are relatively 

well-represented in the Plio-Pleistocene fossil record and they are 

contemporaneous with lithic technology (Susman, 1994; Harmand et al., 2015). The 

human thumb is long and robust compared to the fingers, which has been related 

to manipulative grips used in lithic tool production and thus much research has 

been devoted to this morphology (Napier, 1960; 1993; Susman, 1994; Shrewsbury 

et al., 2003; Tocheri et al., 2008). Susman (1994) found that the breadth of the first 

metacarpal head, relative to the first metacarpal length, was significantly higher in 

modern Homo sapiens than in both species of Pan. Susman (1994) associated this 

wider distal first metacarpal with precision grips in humans, not found in Pan 

species, and proceeded to infer these grips in a Neanderthal (Shanidar 4) and two 

specimens that may be Paranthropus robustus or early Homo (SKX 5020 and SK 84) 
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which were similarly wide. Conversely, an Australopithecus afarensis first 

metacarpal (AL333w-39) had a width similar to apes and so was argued to not 

possess these grips. The functional explanation proposed for this derived 

morphology was that the robust thumb of these later hominins likely had well 

developed muscles to resist the high forces involved in tool manufacture and use, 

while this broader head would aid in the dissipation of these increased forces 

(Susman, 1994). This explanation has been supported by more recent experimental 

evidence for first McP forces that are indeed high in simulated stone tool use 

(Rolian et al., 2011), and a similar argument has been made regarding the large flat 

trapezial facet for the first metacarpal base (Marzke et al., 2010; 2013). However, 

researchers have pointed out that mountain gorillas also have a similarly wide first 

metacarpal head and do not engage in stone tool production or use (Hamrick and 

Inouye, 1995; Smith, 2000). Susman (1998) countered that mountain gorillas are 

known to be dexterous (see also Byrne et al., 2001; Neufuss et al., 2018) but did 

concede that this point weakened his functional inference. In this case, the 

functional explanation for a wide first metacarpal head (Susman, 1994) has been 

somewhat experimentally supported (Rolian et al., 2011). Yet, the association of 

this trait with two distinct modes of hand use in humans and gorillas, means that 

some level of dexterity, but not specifically lithic production or use, may be 

associated with its presence in fossil hominins. The functional explanation for a 

wide first metacarpal head is more biomechanically, rather than phylogenetically, 

based but it still does not allow for the inference of a specific kind of hand use.  

Hand musculature may provide more direct functional explanations since it is, in 

part, responsible for hand movements. It has been experimentally shown that if 

muscles are habitually used to perform movements their mass is maintained and if 

they are not habitually used they atrophy (Fitts et al., 2001). However, since soft-

tissue does not preserve in the fossil record, researchers have used the level of 

rugosity, shape and dimensions of entheses to infer fossil musculature, which can 

be challenging. For example, the extrinsic flexor pollicis longus muscle (FPL) inserts 

on the distal thumb phalanx and accounts for around 22% of the total human 

thumb muscle physiological cross-sectional area (PSCA; Marzke et al., 1999) and is 
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frequently not present as a distinct functioning muscle in non-human great apes 

(Strauss, 1942; Marzke, 1971). Though a well-developed tendon of the flexor 

digitorum profundus does insert on the distal phalanx in bonobos, its muscle belly is 

not differentiated from that of the tendon that inserts on the second phalanx, as in 

humans (van Leeuwen et al., 2018). This shared muscle belly is thought to limit the 

amount of independent movement of the first or second finger in bonobos and thus 

also limits their dexterity relative to humans (van Leeuwen et al., 2018). A distinct 

FPL does exist in gibbons, though it has been suggested that this muscle is normally 

used to recruit the thumb in branch grasping during their distinct locomotion 

(Susman, 1998, Diogo et al., 2012), where the human FPL is thought to facilitate 

complex manipulation (Tocheri et al., 2008). While the relative recruitment of the 

FPL by modern humans in stone tool production is still a matter of debate (Marzke 

et al., 1998; Hamrick et al., 1998), its insertion has often been used to infer a strong 

thumb in fossil hominins. Napier (1962b) implicitly used the size of the volar ungual 

fossa, where the FPL was thought to insert, to infer the size of the FPL, and thus the 

ability to forcefully oppose the thumb to use or produce of stone tools in Homo 

habilis, specimen OH7-A. Susman (1988) has described similar morphology on SKX 

5016, attributed to P. robustus, and Trinkaus (1983) has done the same for a Homo 

neanderthalensis distal pollical phalanx from Shanidar. Ricklan (1987) even 

suggested that width to length ratio of the distal phalanx combined with this volar 

insertion in STW 294, attributed to Australopithecus africanus, offered a 14-17% 

greater mechanical advantage for FPL relative to modern humans. Shrewsbury et al. 

(2003), however, showed that this muscle tendon actually inserts proximal to the 

volar ungual fossa on a gabled ridge, in agreement with Wilkinson (1953) and that 

the size of this ridge shows no correlation with the size of the FPL. Therefore, the 

inferred powerful FPL and associated behaviours of some fossil hominins (Ricklan, 

1987; Susman 1988) were based on incorrect morphology and, in the case of OH 7-

A (Susman and Creel, 1979), particularly “odd” morphology (Almécija et al., 2010, 

pp. 3.). However, even when the correct insertion site is described (Lovejoy et al., 

2009; Almécija et al., 2010; Kivell et al., 2011), the inference of a strong FPL from 

entheseal morphology has been questioned (Shrewsbury et al., 2003). 
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Rather than focus on one enthesis, Karakostis and colleagues (2017) found that the 

pattern of entheseal sizes across the hand broadly matched historically recorded 

professions of medieval individuals. Specifically, individuals with high grip force 

professions had relatively larger entheses on the second and fifth rays suggestive of 

power grips, whereas those with low grip force professions had relatively larger 

entheses on the first and second rays suggestive of precision grips. Karakostis et al. 

(2018a) also found that the pattern of enthesis sizes in H. neanderthalensis was 

consistent with precision grips. Although relationships between occupational 

activity categories and entheseal morphology appear promising, experimental 

studies have failed to find a relationship between entheseal morphology and 

activity. For example, neither magnitude nor frequency of muscle use was found to 

experimentally alter six different limb muscle attachment sites in a sheep model, 

despite an increase in muscle physiological cross-sectional area (PCSA) due to 

exercise (Zumwalt, 2006). It could be argued that sheep are inappropriate 

analogues for fossil hominins but Rabey (2014) found a similar pattern in captive 

Pongo and Williams-Hatala et al. (2016) found no relationship between muscle size 

and hand entheses in a cadaveric human sample. Karakostis et al. (2018b) have 

argued that Williams-Hatala et al. (2016) failed to find a relationship because of 

their elderly human sample, on average they were 78 years old. PSCA would likely 

be reduced in these individuals due to senescence, but the entheses developed 

during their lifetime would remain large due to a slower mechanical response rate 

in entheseal tissue than that of muscular PSCA (Karakostis et al., 2018b). However, 

Rabey et al. (2015) conducted an experiment in subadult mice and found again that 

while PSCA area increased with exercise, neither the shape nor size of entheses 

were affected. Further entheseal robusticity and frequencies are correlated with 

sexual dimorphism and age in great apes (Alves-Cardoso and Henderson, 2010; 

Milella, 2014), which complicates functional inferences from them. Kivell (2015) has 

noted this while interpreting the manual entheses of A. sediba. Therefore while the 

size of muscles certainly reflects movements of the hand for which they are 

recruited, providing an explicit functional explanation, the assocaition of this 

feature with entheseal form is debated, making inferences of fossil hand function 

challenging. 
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These examples demonstrate that correlating extant behaviour with a 

morphological trait, and then inferring this behaviour where the morphology exists 

in the fossil record, represents two inferential steps, which may contain less well-

supported suppositions. These steps include inferring a behaviour is linked to 

certain morphological traits, and inferring fossil behaviour as a result. A 

morphological trait may occur with a behaviour, such as tool-making, but also with 

others, such as manipulation in Gorilla. Therefore, a clear functional relationship 

between extant morphology and behaviour may not be unequivocal. Further, it 

may be that the inference of a certain morphological trait in the record cannot be 

well supported, as is the case for the metacarpal dorsal ridge. Even when functional 

explanation provides clear links between extant morphology and behaviour, this 

morphology may not be faithfully recorded by the fossil record, as in fossil 

entheses. 

Moving beyond one behaviourally diagnostic trait (Susman, 1994; 1998) to a 

functionally coherent pattern of them (Karakostis et al., 2017) can strengthen 

inferences of fossil manual behaviour. For example, the intrinsic hand proportions 

and broad distal phalanges of Papio are similar to that of Homo (Shrewsbury, 2003; 

Marzke, 2013; Alemcija et al., 2015), but when the wrist morphology is described it 

is clear that inferred and observed hand function are not the same in these species. 

However, a pattern of behaviourally diagnostic, fossil morphological traits may be 

not be found in a single extant species. Perhaps the best example of this in the 

hominin fossil record is the mosaic postcrania of Australopithecus afarensis, the 

best known of all australopith species (Kimbel and Delezene, 2009). Several 

behaviourally diagnostic morphological traits in this species are found in extant 

humans while another set are found in non-human great apes (Ward, 2002; Kimbel 

and Delezene, 2009). Since these traits do not exist as a coherent pattern in a single 

living species and they each imply quite a different form of locomotion and hand 

use, there has been considerable debate surrounding the functional interpretation 

of the same fossil evidence. 
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The locomotion of Australopithecus afarensis 

The Australopithecus afarensis hypodigm demonstrates morphology compatible 

with facultative, habitual bipedalism (Ward, 2002). The lumbar vertebral column of 

A.L. 288-1 shows a marked lordosis that would have centred mass over bipedal legs 

(Latimer and Ward, 1993; Whitcome et al., 2007), which in turn, possess relatively 

large femoral heads, argued to better dissipate the load of the trunk on the lower 

limbs during bipedalism (Jungers, 1988). In addition to these phylogenetically stable 

traits, the high bicondylar angle at the articulation of A.L. 129a+b (Johanson et al., 

1976) evidences a valgus angle of the knee in this species, a trait that does not 

occur in modern humans that cannot walk (Tardieu, 2010). Further behavioural 

evidence of bipedalism was found in the 3.6-3.75 million year old preserved 

footprints at Laetoli G made in easily-dated volcanic ash (Leakey and Hay, 1979). It 

is thus generally accepted that not only was A. afarensis capable of bipedalism, but 

that archaeological and morphological evidence supports that it did frequently 

engage in some form of this locomotion. 

While A. afarensis was clearly bipedal, its upper limb morphology has been 

interpreted in different ways. In the hand, the thumb to finger ratio of this species 

has been argued to be advantageous for forceful precision grips (Alba et al., 2003), 

known to be used in the production and use of stone tools (Rolian, 2011; Marzke, 

2013). Though this ratio would be advantageous for all manipulative grips in which 

the thumb is opposed to the other digits (Feix et al., 2016). In the wrist, this species 

has a disto-radially oriented second metacarpal-capitate articulation and a proximo-

distal second metacarpal-trapezium articulation (Tocheri et al., 2008). This 

orientation of CMc joints is distinct from non-human great ape morphology, and in 

humans is thought to allow pronation of the second metacarpal in precision grips 

while providing more surface area at its base to dissipate loads from forceful 

precision grips (Marzke et al., 1997). Asymmetry of the second and fifth metacarpal 

heads in A. afarensis (Bush et al., 1982) has also been argued to facilitate pronation 

and supination of these digits, respectively (Marzke et al., 1997). Yet, the hands of 

this species also exhibit features associated with arboreal locomotion. 
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The curved phalanges of A. afarensis found at Afar locality 333 (Susman and Creel, 

1979; Bush et al., 1982) have been argued to be indicative of arboreality, since this 

trait is only found in arboreal primates (Susman, 1979; Stern and Susman, 1983). 

Further, during ontogeny hominoid species that practise more terrestrial 

locomotion with age also tend to decrease in phalangeal curvature (Richmond, 

2007). This curvature allows the finger to better conform to rounded substrates 

(Preuschoft and Demes, 1985), such as medium sized branches, known to be 

habitually used in arboreal locomotion by chimpanzees and gorillas (Neufuss et al., 

2017). Phalangeal curvature may also dissipate large bending stresses at the 

expense of higher compressive strains in below-branch suspensory locomotion 

(Preuschoft, 1970). A 2D finite element model, validated by measuring the strains 

incurred in vitro in a highly suspensory Hylobates cadaver, found that curved 

phalanges experience lower bending moments than straight phalanges, as the 

longitudinal axis of the bone was more aligned with the joint reaction forces 

(Richmond, 2007). While this type of locomotion is primarily associated with 

hylobatids rather than great apes (Thorpe and Crompton, 2006), 3D micro-finite 

element models, that accounted for cortical thickness, found that the peak tensile 

strain in suspensory proximal phalanges was usually located at the flexor sheath 

ridges (Nguyen et al., 2014). Pronounced flexor sheath ridges and curved fingers are 

common to both non-human great apes (Susman, 1979) and A. afarensis (Bush et 

al., 1982; Stern and Susman, 1983). Indeed, Nguyen et al. (2014) posited that the 

increased curvature of one Symphalangus syndactylus proximal phalanx may have 

compensated its lack of pronounced flexor sheath ridges to some extent. Flexor 

sheath ridges are also thought to provide strong attachment points for the flexor 

sheaths to help resist tendon bowstringing of strong extrinsic digital flexors 

(Susman, 1979). The presence of these features in the hand of A. afarensis, as well 

as other elements of the upper limb such as a superiorly-facing glenoid fossa, are 

argued to be adaptations for arboreal grasping and locomotion, subject to 

stabilising selection (Stern and Susman, 1983; Stern, 2000; Green and Alemseged, 

2012). How to reconcile these manipulative and arboreal features to infer hand use, 

and therefore locomotion, in A. afarensis has been a matter of interpretative 

debate (Ward, 2002). 
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Some researchers have argued that these functional interpretations are 

incompatible and, since we know that A. afarensis practised some form of 

bipedality, they argue that the hand of this species was primarily manipulative 

(Latimer, 1991; Gebo, 1996; Alba et al., 2003). Manual traits that would be 

advantageous for arboreality, in this view, are less biomechanically functional and 

more primitive retentions from a predominantly arboreal ancestor, not maintained 

by stabilising selection unlike those traits advantageous for bipedality and 

manipulation (Latimer, 1991; Gebo, 1996; Alba et al., 2003). Indeed, some authors 

have argued the relatively shorter fingers in A. afarensis compared to Pan would be 

actively detrimental to arboreal grasping and demonstrate a directional selective 

pressure for manipulation at the cost of arboreal abilities in the hand (Latimer, 

1991; Alba et al., 2003). However, it has since been demonstrated that Pan hand 

proportions are likely derived and so it is unlikely that hominin fingers became 

shorter (Drapeau and Ward, 2007; Almécija et al., 2015). Conversely, some 

researchers have argued that these manipulative and arboreal functional 

interpretations, respectively based on the extant analogues of humans and extant 

apes, are compatible. These researchers hold that A. afarensis likely practised 

arboreal locomotion and terrestrial bipedalism (Stern and Susman, 1983; Stern, 

2000). The gracile first metacarpal in A. afarensis (Bush et al., 1982; Susman, 1994) 

provides a good example of a manual trait detrimental for forceful manipulation 

with limited arboreal advantage and therefore suggests a selective regime on the 

hand, and upper limb, not totally dominated by manipulative selective pressures in 

this species (contra Alba et al., 2003).  

This functional debate cannot be resolved with this external morphology alone, 

precisely because it is a question of functional interpretation rather than fossil 

evidence (Ward, 2002). Manipulative and arboreal features of the A. afarensis hand 

have extant non-human great ape and human analogues, respectively, forming a 

mosaic rather than coherent functional pattern shared by a single extant species. As 

a result, the mosaic pattern itself may be linked to either an arboreally functional 

hand or one which is primarily used for manipulation in this species. Recent 

advances in technology have allowed for the efficient analysis of internal bone 
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structure, and the processes governing the form of this structure are relatively well 

known. This internal evidence provides another, and perhaps a more explicit, line of 

‘hard’ evidence for reconstructing fossil hominin behaviour (Kivell, 2016).  

Bone functional adaptation 

Internal bone architecture is analysed here at the mesoscale, or tissue level, which 

is divided into cortical (or compact) bone and trabecular (or cancellous) bone 

(Currey, 2012). Cortical bone encases the rest of the bone, provides majority of the 

structural support of the skeleton and is relatively stiff containing most of the 

inorganic hydroxyapatite (Currey, 2002). Trabecular bone is located throughout the 

inside of flat and short bones, but in the epiphyses of long bones (Currey, 2002). 

Trabecular tissue consists of trabecular struts surrounded by cavities that have led 

some researchers to describe this tissue as ‘spongy bone’ (e.g. Lindahl, 1976). Both 

types of bone change their form in response to their mechanical environment over 

time, via a process known as ‘bone functional adaptation’ (Cowin et al., 1985; 

Cowin, 2001; Ruff et al., 2006; Currey, 2012). Though this term is widely used in the 

literature, and throughout this thesis, its constituent element ‘adaptation’ does not 

conform to the traditional biological sense of the word. Where adaptation generally 

refers to a heritable trait on which selection may act, this term within ‘bone 

functional adaptation’ refers to the bone functionally adapting to the demands of 

its mechanical environment, a process that is not directly heritable and better 

described as an example of phenotypic plasticity. This process, which has been 

known since the 19th century (Roux, 1881), was traditionally labelled ‘Wolff’s law’ 

and was proposed as a strict mathematical relation between loading and bone form 

(Wolff, 1892). However, Wolff did not recognise bone’s ability to remodel 

throughout life (Cowin, 2001; Martin et al., 1998) and a more general 

conceptualisation of Wolff’s law, that includes this remodeling throughout life, has 

now been more appropriately termed ‘bone functional adaptation’ (Cowin et al., 

1985; Lanyon and Rubin, 1985; Cowin, 2001; Currey, 2002; 2012; Ruff et al., 2006; 

Kivell et al., 2016). While it is recognised that modeling refers to the formation of 

bone and remodeling refers to the maintenance of bone, researchers use these 

terms differently when referring to bone functional adaptation, since both 
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processes are involved (Martin et al., 1998; Allen and Burr, 2014). Here, the term 

modeling is used to refer to growth since the majority of bone shape is determined 

during this time. Remodeling is here used to refer to the functional adaptation of 

bone to mechanical stimuli, because it implies modification of the pre-existing 

shape of bone. The process of bone functional adaptation can still be divided into 

elements relating to bone formation and ‘trajectoral theory’, as described broadly 

by Wolff’s law (Hammer, 2015).  

Trabecular bone 

The bone formation element of Wolff’s law (1892) holds that bone apposition 

occurs in response to mechanical loading, and is lost in response to unloading, over 

time (Cowin, 2001; Currey, 2002; Ruff et al., 2006). Frost’s (1987) ‘mechanostat’ 

model significantly refined the process of bone formation and loss. Many of the 

cellular processes resulting in bone deposition or resorption due to mechanical 

stimulus, or a lack thereof, are well known (Chen et al., 2010). In trabecular bone, 

deposition can be measured by either bone volume as a fraction of the total 

trabecular volume (BV/TV) or bone mineral density (BMD) that is the attenuation of 

X-rays over an area or per voxel on a radiograph (Currey, 2012). Bone functional 

adaptation predicts increased mechanical load should result in more or thicker 

trabeculae, or both, increasing the mineral content of a section of trabecular bone. 

BV/TV explains ~89% of the variance in the Young’s modulus, a measure of 

mechanical stiffness, of human vertebral trabecular bone (Stauber et al., 2006) and, 

as this ratio measures elastic deformation in a particular direction, this measure has 

often been used as good indicator bone strength (Currey, 2012). Many 

experimental studies have found that exercised animal models have more BV/TV 

relative to controls (Barak et al., 2011) and even artificially induced loading appears 

to increase vertebral BV/TV, bone formation rate and trabecular stiffness relative to 

controls, in just 10 weeks (Lambers et al., 2013). Similarly Biewener et al. (1996) 

found that removing the Achilles tendon from potoroos resulted in a 35% reduction 

of BV/TV after eight weeks. A similar degree of trabecular bone loss has been 

reported in human astronauts (Lang et al., 2004). Therefore, experimental and 
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comparative evidence supports the idea that trabecular bone mass increases in 

response to load.  

The trajectoral theory element of Wolff’s law (1892) relates to the realignment of 

trabeculae, and secondarily external bone, to functionally adapt to mechanical 

loads (Bertram and Swartz, 1991). The level of uniform orientation of the 

trabeculae is measured by their degree of anisotropy (DA; Martin et al., 1998). 

Greater DA indicates relatively more trabeculae aligned to a given axis to better 

resist loads in that direction. DA is responsible for ~10% of the variance in Young’s 

modulus, since this fourth rank fabric tensor incorporates direction and magnitude 

of a load (Cowin, 1985; Maquer et al., 2014). The trabecular bone of guinea fowl 

made to run on an incline has been shown to reorient by 13.7°, in line with a 13.6° 

more acutely flexed knee at the point of peak ground reaction force (GRF) relative 

to a control group (Pontzer et al., 2006). A similar experiment in a sheep model 

found that animals exercised on an incline extended their tarsal joints 3.6° further 

at peak GRF than the level group, and possessed 2.7°- 4.3° more obtuse trabeculae 

in a parasagittal plane (Barak et al., 2011). Unlike BV/TV, reorientation of 

trabeculae cannot be achieved be thickening existing bone but instead by the 

formation of de novo rods or plates in the tissue. However, several experiments find 

this response elicited from quite subtle mechanical stimuli (Pontzer et al., 2006; 

Barak et al., 2011). Reorientation may also occur with the loss of trabecular struts. 

Systematic resorption of bone that occurs with age weakens the trabecular bone of 

human vertebra, which transfers over 75% of the load through the bone (Eswaran 

et al., 2006). To compensate for this loss of bone it appears that osteoporotic 

vertebrae can have a 24% greater DA, with trabeculae aligned superior-inferiorly, 

than healthy vertebrae with more BV/TV (Homminga et al., 2004). That is, 

osteoporotic vertebrae appear to preferentially resorb the trabeculae not in the 

axial orientation, the direction of primary loading in this bone (Homminga et al., 

2004). The same argument has been used to interpret the trabecular morphology in 

the femur of howler monkeys, Alouatta seniculus (Saparin et al., 2011). Again, this 

comparative and precise experimental evidence is consistent with the remodeling 

of trabecular architecture in response to experienced loads. 
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Cortical bone 

Cortical bone formation is often measured via the cross-sectional geometry of mid-

diaphyseal bone. Directional strains in a diaphysis promote deposition in that plane, 

to better counter them and this changes the cross-sectional geometry in the 

diaphyseal shaft in axial cross-section (Ruff et al., 2006). This change in bone 

geometry is usually measured as a ratio of area moments of inertia in different 

planes. Carlson and Judex (2007), for example, found that mice forced to turn 

during locomotion had a significantly higher area moment of inertia in the medio-

lateral plane than free-ranging mice or those that were forced to locomote in a 

straight line. In a more controlled experiment, Robling et al. (2002) found that after 

applying force to the distal end of a fixed mouse ulna over time, medio-lateral 

bending was resisted by the formation of additional cortical bone in this plane. 

Analysis of human athlete long bones has demonstrated that specific demands of 

different sports causes an increase in cortical bone at different sites. The dominant 

humerus of tennis players demonstrates significantly thicker cortical bone than that 

of the non-dominant arm (Jones et al., 1977). Further, the mid-shaft of the second 

metatarsal of football players and the tibia of endurance runners, respectively, 

showed significantly more cortical area compared to controls (Macinstosh and 

Stock, 2019). These diaphyseal robusticity patterns also translate to recent human 

populations. Andaman Islanders that were known to swim or use watercraft had 

significantly more robust humeri and clavicles than Late Stone Age South Africans 

known be more terrestrially mobile, which themselves had significantly more 

robust femora and tibiae than the former group (Stock and Pfeiffer, 2001). In the 

hand, using a slightly different measure, Wong and colleagues (2018) demonstrated 

that the first metacarpal of humans was significantly more robust than the other 

metacarpals. While Sarringhaus (2005) did not find a significant laterality in the 

cortical area of second metacarpals in chimpanzees, Marchi (2005) found that 

knuckle-walking African apes had stronger diaphyses in the third and fourth 

metacarpals than both orangutans and humans. These studies are representative of 

a larger body of evidence for the functional adaptation of diaphyseal cortical bone 

to incurred loads.  
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Other influences on internal bone structure  

While experimental testing provides a basis for clear functional interpretation of 

internal bone morphology, it also elucidates the limits of what we know about bone 

functional adaptation, and thus the limits of the functional interpretations made on 

its basis. In this section, the effects of allometry, phylogeny, genetics, systemic 

factors, and ontogeny on internal bone structure are discussed, along with the 

frequency and magnitude of load necessary to cause this bone functional 

adaptation. 

Allometry 

The range of species that show bone functional adaptation emphasizes its role as a 

robust tool for functional inference, but it also demonstrates that trabeculae do not 

scale with body size isometrically. Larger skeletons are more heavily loaded and 

thus must scale allometrically to maintain function (Biewener, 1990). Larger animals 

have absolutely thicker trabeculae but it appears ~460 μm is the maximum limit as, 

beyond it, the surface area to volume ratio prevents effective remodeling via 

osteocytes (Lozupone and Favia, 1990; Ryan and Shaw, 2013). Similarly, as part of 

the remodeling process, osteoclasts resorb bone in amounts ~40μm in diameter, 

and so this is the minimum thickness of trabeculae, as any struts thinner than this 

would be destroyed (Eriksen et al., 1985; Cowin, 2001; Barak et al., 2013). 

Therefore, in particularly large animals trabecular thickness scales with negative 

allometry since the isometric thickness required would be larger than biologically 

possible (Cotter et al., 2009; Barak et al., 2013; Ryan and Shaw, 2013). Conversely, 

Fajardo et al. (2013) found trabecular thickness scales isometrically within 

strepsirrhines, while Doube et al. (2011) found it scales with positive allometry 

across birds and mammals. As corollaries of this, trabecular spacing and number 

have also been found to scale with negative allometry, leaving researchers to 

question how trabecular strength is maintained in larger animals (Barak et al., 2013; 

Ryan and Shaw, 2013). Of course, the difference in phylogenetic distances across 

two closely related species (Fajardo et al., 2013), the order primates (Ryan and 

Shaw, 2013) or mammals and birds (Doube et al., 2011), are likely to result in 

different scaling factors for these trabecular parameters. However, the general 
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trend of allometry is a non-functional phenomenon that must be controlled for in 

trabecular analyses over large phylogenetic ranges. Nevertheless, the effect of this 

allometry does not confound studies of bone functional adaptation since the two 

most mechanically relevant trabecular parameters, trabecular bone volume fraction 

(BV/TV) and degree of anisotropy (DA; Maquer et al., 2014), appear to be 

independent of body mass (Barak et al., 2013; Tsegai et al., 2017b), scale with 

isometry, or at least scale with very weak positive allometry (Doube et al., 2011, 

Ryan and Shaw, 2013). The range of hominid body masses that are considered 

presently is therefore unlikely to affect trabecular signals of function. In cortical 

bone, it has been demonstrated that cross-sectional geometry of the mid-diaphysis 

of long bones also scales with isometry in Homo sapiens femora and tibiae (Ruff, 

1984) and studies of anthropoid primates, and mammals more broadly, have 

revealed isometry, or at most very weak positive allometry, in these cortical bone 

measures (Alexander, 1979; Biewener, 1982; Ruff and Runestad, 1992; Ruff, 2002). 

Indeed, allometry in indriid cross-sectional geometry measures (Demes et al., 1991; 

1993) also appears isometric in the context of a wider sample of mammal body 

sizes (Ruff and Runestad, 1992). Therefore, the measures of internal bone structure 

analysed here are not subject to strong allometric effects that may confound 

analysis, especially given that the current sample does not have a large diversity of 

body sizes relative to the primate order. 

Phylogeny 

It could be argued that linking internal bone architecture to the behaviour of extant 

non-human great apes is somewhat confounded since extant crown hominids are 

quite genetically close, especially bonobos and chimpanzees (Won and Hey, 2004). 

Trabecular bone functional adaptation, however, has been demonstrated to be 

mechanistically similar across phylogenetically disparate taxa (Biewener, et al., 

1996; Pontzer et al., 2006; Barak et al., 2011; Christen and Müller, 2017). Indeed, 

when a substantial phylogenetic signal was explicitly tested for in primate 

trabecular studies, it has not been found (Ryan and Shaw, 2012; Tsegai et al., 2013). 

Further, closely related Gorilla species, often used as a model for speciation 

(Albrecht et al., 2003; Leigh et al., 2003), demonstrate significantly different cross-
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sectional geometry in several limb bones related to their locomotor differences 

(Ruff et al., 2018). As a result it seems that internal bone morphology is not greatly 

constrained by phylogenetic factors. 

Genetics 

Though internal bone morphology may not be directly constrained by phylogeny, 

the process of its formation and maintenance, that is modeling and remodeling 

(Allen and Burr, 2014), must be genetically controlled to some extent. Cartilaginous 

precursors of bone are present at birth before significant biomechanical loading can 

occur (Carter et al., 1991). Young et al. (2018) have found inter-specific cross-

sectional geometry differences in perinatal strepsirrhine femora, explicable by 

different types of locomotion that these individuals have yet to engage in. Indeed, 

though bone functional adaptation has been demonstrated in controlled 

experiments (Ruff et al., 2006; Pontzer et al., 2006; Barak et al., 2011; Macintosh 

and Stock, 2019), the mechanism by which bone can respond to load is somewhat 

genetically controlled (Almécija et al., 2015b; Wallace et al., 2017). Up to ~50% of 

the variation of bone mineral content, density and area could be explained by 

genetic factors in a large human sample over several skeletal sites (Havill et al., 

2007). Further, Havill et al. (2010) found a heritability estimate of 55% for BV/TV in 

a known lineage population of Papio hamadryas. Controlled experiments have also 

found that the same loads applied to genetically different model organisms do not 

engender the same response. Robling and Turner (2002) found that the same load 

applied to the ulnae of different strains of mice did not produce the same bone 

functional adaptation in mid-diaphyseal cross-sectional geometry. One strain 

required greater mechanical load to produce an osteogenic response in cortical 

bone, that was itself less pronounced than in the other strain of mice. Similar 

results have also been found in the trabecular bone of mouse models (Judex et al., 

2002; Wallace, 2013). However, the amount of genetic influence may not be the 

same in trabecular and cortical bone.  

As trabecular bone does not bind osteocytes to the same extent as dense cortical 

bone (Chen et al., 2010; Erikssen, 2010), the surface area provided by trabeculae 

allows the relatively unimpeded cells to be more biologically active, turning over 
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trabecular bone at around ten times the speed of cortical bone (Eriksen, 1986; 

Huiskes et al., 2000). Since the remodeling rate of trabecular bone is faster than in 

cortical bone, it has been argued to be sensitive to smaller mechanical stimuli 

(Frost, 1987) and thus under less genetic control, though this has been debated 

(Skinner et al., 2015; 2015b; Almécija et al., 2015b). It should be stressed, however, 

that these studies do not invalidate the functional signal of internal bone, as 

implied by Lovejoy et al. (2003), but instead reveal that the process of bone 

functional adaptation is canalised by genetic factors in a biological organism 

(Wallace et al., 2017).  

Systemic factors 

Focussing on the process of bone functional adaptation highlights its similarity 

across taxa, but this process does not happen in isolation in vivo and is not entirely 

governed by a genetic ‘blueprint’ (Carter et al., 1991). Rather, bone functional 

adaptation is the result of several levels of biological organisation receiving signals 

and responding to them, a process termed mechanotransduction (Martin et al., 

1998; Chen et al., 2010). Briefly, physical loading is converted into a tissue level 

response, that is then converted into a cellular response of, though not limited to, 

osteoclasts and osteoblasts, that themselves are then regulated by variously 

expressed portions of the genome (Rubin et al., 1990; Wallace et al., 2017). As the 

complex processes that occur at these levels can be simultaneous and interactive 

(Pearson and Lieberman, 2004) they are necessarily influenced by other factors. 

Therefore systemic factors, that is those that affect a whole organism, influence 

bone functional adaptation and resulting internal bone structure. Hormones, for 

example, are known to affect trabecular and cortical bone formation rates in model 

animals (Prakasam et al., 1999; Kim et al., 2003). Similarly, the composition of an 

animal’s gut-biome has been thought to affect bone structure (Charles et al., 2015; 

McCabe et al., 2015). Further, other roles of the skeleton, such as the maintenance 

of mineral homeostasis, likely influence internal bone morphology (Clarke, 2008). 

Lieberman (1996) demonstrated that cranial vault cortical thickness in exercised 

pigs and armadillos increased more rapidly than in controls. He argued that bone 

functional adaptation had occurred, but part of this adaptation was systemic and 
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thus affected parts of the skeleton that were not, themselves, under any increased 

or different load. Studies of multiple anatomical sites have found a systemically 

lower amount of BV/TV in modern humans compared to non-human great apes 

(Griffin et al., 2010; Tsegai et al., 2013; 2018) and fossil humans, which has also 

been related to lower overall activity levels (Ryan and Shaw, 2015; Chirchir et al., 

2015). More broadly, higher BV/TV has been found in the primate femoral head 

compared to the humeral head (Fajardo and Müller, 2001; Ryan and Walker, 2010; 

Tsegai et al., 2018). As this pattern appears to be consistent across primates with 

very different locomotor styles it is difficult to explain in terms of positional 

behaviour, though Tsegai et al. (2018) do point out that primate locomotion is 

generally ‘hind-limb driven’ (Kimura, 1979). It is therefore likely that systemic 

factors are responsible for these patterns of primate trabecular bone. Indeed, 

bonobos and chimpanzees are known to have heterochronic thyroid hormone 

levels that may affect bone formation (Behringer et al., 2014). Even within the same 

limb, trabecular structure appears to be somewhat dependent on anatomical site. 

Saers et al. (2016) found that BV/TV systemically decreased with smaller cortical 

shafts, at more distal elements of the lower limb, across several human 

populations. These studies highlight that bone functional adaptation does not occur 

in isolation and thus that an element of internal bone structure can be attributed to 

systemic rather than biomechanically functional factors. While these systemic 

factors are likely multi-facetted and poorly understood, this does not prevent 

functional inference from internal bone architecture. Rather, functional signals 

should be understood as one signal among many recorded by the palimpsest of 

internal bone architecture (Saers et al., 2016). 

Ontogeny 

While it is important to contextualise trabecular and cortical bone within the 

biological hierarchy of an organism, it is also important to remember that the 

organism is not static and that many factors influencing internal bone structure 

change during ontogeny. Much of the experimental evidence for functional 

adaptation in trabecular bone comes from studies of juvenile animals (Pontzer et 

al., 2006; Barak et al., 2011), which is perhaps unsurprising as the bone is most 
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biologically active and least ossified during growth (Scheuer and Black, 2000). Ryan 

and Krovitz (2006) have shown that changes in the architecture of femoral 

trabeculae occur with the adoption of bipedalism, and Raichlen et al. (2015) have 

shown this pattern becomes less variable with age suggesting a common functional 

response. Cunningham and Black (2009) found that trabecular architecture of the 

human ilium is essentially fixed in the juvenile skeleton with only slight 

modifications throughout adulthood. Further, increased humeral cortical thickness 

in the preferred arm of tennis players (Jones et al., 1977) has been argued to be the 

result of increased activity before adulthood (Lovejoy et al., 2003). A controlled 

experiment demonstrated that the polar moment of inertia in the diaphyseal shaft 

of exercised sheep tibiae increased less in subadult, and even less in adult sheep, 

relative to juveniles (Lieberman et al., 2001; 2003). Taken together these results 

may suggest that any functional signal found in trabeculae and diaphyseal cortical 

bone may only reflect the juvenile positional behaviour of an animal (Bertram and 

Swartz, 1991; Pearson and Liebermann, 2004; Wallace et al., 2017), which can be 

different in adult primates (Inoyue, 1994; Plavcan and van Schaik, 1997). In humans, 

Warden et al. (2014) demonstrated that changes to bone geometry in professional 

athletes were maintained to a large extent subsequent to retirement. 

While bone functional adaptation may be reduced in adult life (Willie et al., 2013), 

trabecular and cortical bone continues to remodel throughout ontogeny (Martin et 

al., 1998). Kerr et al. (1996) demonstrated that small, but significant, gains in bone 

mineral density were found in exercised radii compared to the other, non-

exercised, arms of post-menopausal women. Ruff et al. (2006) cite this as an 

example of an effect that would not be seen in shorter term studies and argue that 

a lack of strong bone functional adaptation evidence in older bone may be due to 

the time it takes for older bone to adapt. Small absolute gains in bone volume due 

to exercise in older individuals have been interpreted as ontogenetic degradation in 

bone adaptability (Wallace et al., 2017). However, just as bone can functionally 

adapt during growth and adulthood, it can also functionally adapt during 

senescence, without an increase in bone volume. For example, the lack of external 

stimulus in adult bone has been experimentally demonstrated to cause a loss of 
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trabecular bone (Biewener et al., 1996). Further, the greater alignment of 

trabeculae in the superior-inferior axis of osteoporotic human vertebrae 

demonstrates that bone functional adaptation to positional loads can occur even in 

a bone that is degrading as a result of senescence (Homminga et al., 2004). Indeed, 

ontogenetic responses in trabecular bone appear to be site specific, indicating 

heterogenic responses to different functional requirements (Amling et al., 1996). 

Based on this understanding, it is perhaps better to think of internal bone 

architecture as a result of cumulative functional signals over ontogeny, successively 

superimposed (Ruff et al., 2006; Saers et al., 2016). The internal bone structure 

analysed in adult bone or fossils is therefore reflective of both the mechanical 

demands placed on a highly responsive juvenile skeleton, as well as the cumulative 

demands experienced by the skeleton throughout adulthood. 

Pathology 

During senescence the human skeleton often develops osteoporosis and trabecular 

structure has been shown to alter as a result (e.g. Homminga, et al., 2004). This 

pathological signal has the potential to alter the functional signal sought here. To 

the author’s knowledge, no similar investigation of osteoporotic effects on 

trabecular structure has been conducted in non-human great apes. However, a 

study of baboons, Papio hamadryas, did find evidence of osteopenia, if not 

osteoporosis (Havill et al., 2008). Osteoporosis was diagnosed in less than 12.4% of 

a rhesus macaque, Macaca mulatta, population (Cerroni et al., 2000). However, the 

BMD in osteoporotic individuals was similar to that of healthy individuals, leaving 

researchers to infer osteoporosis via fractures, that were the result of the loss of 

key trabeculae oriented in the main loading axis of the bone (Cerroni et al., 2000). 

Given the absence of such fractures in the extant sample (see Chapter 2), or any 

other signs of pathology in the examined elements, it unlikely that a strong 

pathological signal is present in the following analyses. Therefore, while a 

pathological influence on trabecular and cortical structure is still possible, it is 

unlikely to overwhelm the functional signal under investigation in subsequent 

chapters (4, 5 & 6).  
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The complexity of mechanical loading 

As many biological processes are responsible for internal bone morphology, it is 

remarkable that a biomechanical loading signal is so often found. Yet, simply 

because a biomechanical effect on the cortical or trabecular bone is clear, that does 

not mean it is not complex. The relative roles of the frequency and strength of 

mechanical stimulus required to produce osteogenic changes necessary for bone 

functional adaptation have been debated (Turner, 1998; Ruff et al., 2006). The 

mechanostat hypothesis holds that the strength of the loading stimulus should be 

larger than the bone can currently cope with, and that there is a minimum 

threshold beyond which mechanical stimulus does not result in bone formation 

(Frost, 1987). Of course it is equally true that a single large load will not produce 

bone functional adaptation since it will not produce a mechanical signal larger than 

those transduced from habitual loading. 

When a strong change to the magnitude of mechanical loading occurs, trabecular 

bone can functionally adapt relatively quickly. For example, sheep exercised for just 

15 minutes a day over 34 days were found to have significantly higher BV/TV than a 

sedentary control group (Barak et al., 2011). The subset of these sheep that were 

made to walk on an incline that extended their tarsal joints by 3.6° also displayed 

2.7°- 4.3° more obtuse trabeculae in a parasagittal plane than controls (Barak et al., 

2011). Interestingly, however, a sedentary group of sheep were shod on their 

forelimbs to create a similar extension of the tarsal joint, but this did not result in 

significantly re-oriented trabeculae compared to the level exercised group, which 

Barak et al. (2011) interpret as a lack of mechanical stimulus for trabecular 

remodeling in the animals. Trabecular reorientation may take longer to occur than 

changes in BV/TV (Tanck et al., 2001). Once bone functional adaptation to a 

mechanical regime has been achieved the trabecular bone does not appear to 

modify any further. Lambers et al. (2013) demonstrated that a cyclical load in mice 

significantly increased BV/TV, bone formation rate and trabecular stiffness in a 

vertebra, relative to control mice, in just 10 weeks. The authors also found that 

bone formation rate, stiffness and BV/TV only minimally increased beyond 10 

weeks suggesting that once bone functional adaptation occurred no further process 
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was elicited. Skerry and Lanyon (1995) also found that immobilised sheep, and 

sheep that were immobilised for a 12 week shorter period, had the same level of 

BV/TV reduction at the end of their experiment.  

Mechanical stimulus or loading must be frequent and strong enough to elicit bone 

response but there has been much debate over whether it is primarily the result of 

static or dynamic loading. Indeed, muscular, as in the exercised animal studies 

discussed above, or gravitational loading are often used as respective proxies for 

static or dynamic forces (Judex and Carlson, 2009; Robling, 2009). Jee et al. (1983) 

found that rats taken into orbit for 18.5 days had significantly less humeral BV/TV 

than another group kept in similar mobility limiting cages on earth. Rats that 

returned from orbit regained BV/TV demonstrating the gravitational stimulus for 

bone formation and loss. Judex and Carlson (2009) highlight similar bone loss in 

human astronauts, though it was more pronounced at more gravitationally loaded 

skeletal sites (Vico et al., 2000). Rubin et al. (2002) have similarly found that 

postural, high frequency and low impact loads imposed by body weight in sheep in 

an oscillation machine for just 20 minutes per day were also enough to increase 

BV/TV by 32% in the absence of increased exercise. Therefore, a mechanical 

stimulus, gravitational or muscular, of sufficient frequency and magnitude, may 

cause functional adaptation of trabecular bone  

As cortical bone remodels at a slower rate, it may take longer to functionally adapt 

to novel loads than trabecular bone (Eriksen, 1986; Huiskes et al., 2000). Carlson et 

al. (2008) divided mice into three locomotor groups, ‘linear’, ‘turning’ and ‘free-

ranging’ and studied the trabecular architecture of their distal femora. Contrary to 

their predictions the authors found that the ‘linear’ mice did not have significantly 

greater DA than their ‘turning’ counterparts and the ‘free-ranging’ group had 

significantly higher BV/TV than either exercised group. Carlson et al. (2008) state 

their ‘free-ranging’ animals may have engaged in more activity whilst the 

experimental groups did not receive enough mechanical stimulus to adapt, but 

diaphyseal cortical bone did functionally adapt to the mechanical stimuli of ‘linear’ 

and ‘turning’ conditions in these mice (Carlson and Judex, 2007). In fact it may be 

the case that, since the mice were constantly subjected to locomotor controls over 
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57 days (Carlson et al., 2008), their slower remodeling cortical bone (Eriksen, 1986; 

Huiskes et al., 2000) functionally adapted to these relatively extreme conditions 

and their initial trabecular bone functional adaptations reversed as they were no 

longer necessary. In any case, repetitive low-impact, rare-high impact and high-

magnitude sports have all been shown to significantly affect the cross-sectional 

geometry of the lower limb cortical bone in humans, though in different elements 

and locations (Macintosh and Stock, 2019). Thus, while cortical bone is responsive 

to sufficiently frequent and strong mechanical loads, its response may not always 

be simply interpreted.  

Demes et al. (1998; 2001) measured the strains on two macaque ulnae and tibiae 

during walking and galloping, and found that the direction of the greatest strain did 

not approximate the axis of greatest diaphyseal cortical bone rigidity, as assessed 

by cross-sectional geometry. As a result, the authors argue that cross-sectional 

geometry did not reflect patterns of functional loading in these individuals. 

However, Ruff et al. (2006) highlight that the tibial bending stresses did move to 

within 19° of the plane of maximal bending rigidity in cross-section when the 

macaque galloped. The higher, if less frequent, strains imposed by this faster 

locomotion are thought to produce a stronger mechanical signal than walking, and 

so the bone is more functionally adapted to stresses engendered by galloping 

rather than those incurred in walking (Ruff et al., 2006). Though the ulna cross-

section of these animals did not approximate the axis of greatest bending stresses 

(Demes et al., 1998), Ruff et al. (2006) argue that this was actually the result of the 

multifactorial use of the macaque forelimb relative to the locomotor dominated 

hindlimb (Kimura, 1979). That is, as the ulnae were recruited for many different 

functional roles, locomotion may not cause the most frequent or the highest 

magnitude strains on this bone, and so its cross-sectional geometry may not reflect 

the axes of these locomotor peak stresses well. These studies highlight that while 

bone does functionally adapt to biomechanical loads this process may not always 

be simple or straight-forward. 
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Inferring bone functional adaptation 

In spite of the multifaceted influences on internal bone architecture, the concept of 

bone functional adaptation has a growing body of experimental evidence, as well as 

a reasonably well known set of biological processes that govern this process (Frost, 

1987; Chen et al., 2010). Given the similar trabecular and cortical responses to 

mechanical loading in phylogenetically distant species (Jee et al., 1983; Homminga 

et al., 2004; Pontzer et al., 2006; Barak et al., 2011), it seems that internal bone 

architecture does respond to sufficiently strong or frequent mechanical loads in a 

broadly predictable manner. Therefore, this experimentally tested mechanism 

offers a direct functional explanation for fossil internal bone architecture and 

allows researchers to infer in vivo mechanical environments in fossil taxa. Of 

course, it could be argued that fossil trabecular structure may also contain 

pathological, rather than functional, signals even when the rest of the bone does 

not (Colombo et al., 2018). However, this reasoning requires other evidence to 

initially suggest pathology, which is absent for the fossils studied here. Thus the 

fossil trabecular bone analysed in this thesis is argued to primarily reflect function. 

This line of evidence, internal bone morphology, can therefore discriminate 

between biomechanically functional and non-functional morphology. The 

mechanical environments inferred for internal bone structure can then be 

associated with fossil hand use and locomotion. The link between cortical bone 

diaphyseal shape and mechanical loading in primates has been possible to 

demonstrate for some time (Jones et al., 1977; Ruff and Hayes, 1982; Stock and 

Pfeiffer, 2001; Ruff, 2002; Ruff et al., 2006; Carlson and Judex, 2007; Ruff et al., 

2018; Macintosh and Stock, 2019; but see Demes et al., 1998; 2001; Young et al., 

2018). Yet, the technology required to efficiently image and analyse trabecular 

structure is relatively recent and linking extant primate trabecular structure to 

locomotion and hand use is not necessarily simple. 

Inferring primate hand use from trabecular architecture 

Since Wolff’s (1892) ‘trajectoral theory’ was originally proposed in the light of 

trabecular orientation in the human femoral neck, it is no surprise that most of the 

research regarding trabecular indication of locomotion has been focussed on 
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human bipedality and risks of hip fracture (e.g. Smith et al., 1989). Nevertheless, 

Rafferty and Ruff (1994) were the first to compare trabecular bone in extant 

haplorrhines by digitising 2D X-rays of the humeri and femora of Hylobates 

syndactylus, Colobus guereza and Papio cyanocephalus. The authors measured the 

optical luminescence across a transect drawn through the humeral and femoral 

heads at half the depth of the articular surface to measure trabecular bone density. 

They found that the humeral density of all three species was similar but that the 

femoral head of the gibbon was less dense than expected and related this to its 

forelimb dominated method of locomotion, brachiation. Rafferty and Ruff (1994) 

chose a scaled, but relatively arbitrary 2D, measure from which to draw their 

inferences, since any increase in articular area studied would not be biologically 

homologous. Similarly, variation in trabecular architecture may go uncaptured in 

different parts of the humeral or femoral head with this technique (Whitehouse 

and Dyson, 1974) and the third dimension not analysed (Rafferty and Ruff, 1994).  

Fajardo and Müller (2001) expanded on this early work by using micro-CT scans to 

analyse several trabecular variables in a spherical volume of interest (VOI) placed in 

the humeral and femoral heads of primates. Their results did not support BMD as a 

discriminator of locomotor mode but instead found that suspensory genera Ateles 

and Hylobates had lower DA in both proximal limbs than did terrestrial genera 

Papio and Macaca, consistent with variable loading due to more variable, arboreal 

substrates. MacLatchy and Müller (2002) also argued for a locomotor signal in the 

femoral head and neck of strepsirrhines when they found that leaping bush babies, 

Galago senegalensis, had more antero-posteriorly aligned trabeculae and greater 

DA than the slow moving arboreal quadruped Perodicticus potto. Using three 

central cubic VOIs of the femoral head and a slightly different method of calculating 

trabecular orientation, Ryan and Ketcham (2002) independently confirmed an 

association of greater DA in leaping strepsirrhines. However, the authors did note 

that intra-specific variation was high, with two individuals of one species 

demonstrating greatest DA in the superior and inferior VOIs of the femoral head, 

respectively. Ryan and Ketcham (2005) also found that in 11 species of 

strepsirrhines, the leaping genera had not only more supero-anteriorly oriented 
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trabeculae, but that these showed less variation than in the arboreally quadrupedal 

species. Conversely, micro-finite element models demonstrated that pattern and 

magnitude of strain at the hip of a Loris tardigradus and a Galago senegalensis 

specimen were not differentiated (Ryan and van Rietbergen, 2005). This study, 

however, only had a small sample size (n=1) and substantial intra-specific variation 

in trabecular bone has been reported in these species (Ryan and Ketchum, 2002) 

suggesting that a broader sample might show inter-specific differences. There 

seems, therefore, to be comparative evidence in prosimians for a link between 

trabecular architecture of the femoral head and locomotion, though this link may 

not be simple. 

In haplorrhines, initially promising results linking locomotor mode and trabecular 

architecture in the proximal limbs (Fajardo and Müller, 2001) became increasingly 

complex with further study. Fajardo et al. (2007) placed two VOIs in the femoral 

neck of a wide variety of anthropoids, representing many locomotor modes, but 

found that BV/TV and DA values in these species were not statistically distinct 

(contra Fajardo and Müller, 2001). Similarly, Ryan and Walker (2010) found that 

there were no inter-specific differences in the humeral and femoral heads across 

five phylogenetically disparate anthropoids. Rather than a locomotor signal, these 

authors found that BV/TV and DA in the femora of each species sample were 

significantly greater than in the humeri. This apparent order-level difference in the 

trabecular bone of primate humeral and femoral heads was also found by Shaw and 

Ryan (2012), while a locomotor signal could be elicited from the diaphyseal cortical 

bone of the same sample. These studies show a distinct lack of a clear locomotor 

signal in the trabecular bone of haplorrhines, in the contrast to many controlled 

experiments that have found this signal in diverse animals (Biewener et al., 1996; 

Pontzer et al., 2006; Barak et al., 2011). A key difference may be that the 

experiments all considered relatively simple joints that primarily flex and extend in 

one axis. Carlson et al. (2008) argued that their lack of locomotor signal in the distal 

femur of ‘turning’ mice might be because this behaviour stresses the antero-

posterior ‘hinge’ joint in the medio-lateral plane. The humeral and femoral heads of 

primates are complex ball-and-socket joints, used in many separate planes, and 
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whilst it is intuitively easy to connect lower BV/TV and DA in primate arms (Ryan 

and Walker, 2010; Shaw and Ryan, 2012) to their order-level ‘hind-limb drive’ 

pattern (Kimura et al., 1979), some biomechanical assumptions of the mobile 

primate shoulder continue to be challenged (Larson, 1995; Chan, 2008; Green et al., 

2015; Püschel and Sellers, 2015). Thus, while it is unsurprising that the proximal 

femur has received much study given its initial role in the ‘trajectoral theory’ (Wolff, 

1892) and apomorphic nature in hominin bipeds (Ward, 2002), its complex loading 

regime is unlikely to produce the same clear re-alignment of trabeculae as in more 

simple joints, such as those of the calcaneus (Skredros and Baucom, 2007). 

Furthermore, proximal limb elements may be well-insulated from peak GRF by 

distal elements and so may not receive the magnitude of stimulus necessary for 

remodeling (Kivell, 2015). Therefore, the lack of locomotor differentiation in 

haplorrhine proximal femora and humeri (Ryan and Walker, 2010; Shaw and Ryan, 

2012) may reflect the biomechanical complexities of these joints. 

Trabecular studies of primate distal limbs have also yielded equivocal results. Maga 

et al. (2006) compared the trabecular architecture of the calcaneus in hominoids 

and humans and found that, despite stark differences in locomotor mode, all 

trabeculae were oriented antero-posteriorly, though the habitual bipeds did have 

the highest DA. DeSilva and Devlin (2012) analysed quadrants in the trabecular 

compartment of tali in anthropoids but did not find any differences relating to 

locomotor mode, with similar trabecular architecture found in humans and 

orangutans. Conversely, Su et al. (2013) divided the talus into nine areas and 

specifically analysed subarticular trabecular bone. The authors found that, relative 

to other hominoids, the human trabeculae were more anisotropic, particularly in 

the lateral portion of the talus, which was argued to be a result of the relatively 

stereotypical movements of the human foot relative to other hominoids. In the 

wrist, three human carpals have been shown to have significantly lower BV/TV than 

in hominoids that habitually use their forelimb for locomotion but no other 

locomotor signal was found in these bones (Schilling et al., 2014). Using three 

volumes of interest in the third metacarpal head, Chirchir et al. (2017) found that 

BV/TV was significantly higher in distal and palmar portions of the third metacarpal 
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head in orangutans and, to a lesser extent, in humans, consistent with flexed-finger 

grips used during arboreal locomotion and manipulation, respectively. Barak et al. 

(2017), conversely, found the dorsal VOI in both chimpanzees and humans had 

significantly lower BV/TV and DA than the distal or palmar VOIs using a similar 

method. Though these results conflict, both studies found that humans possessed 

significantly less BV/TV throughout the third metacarpal head relative to other 

primate species (Barak et al., 2017; Chirchir et al., 2017). Matarazzo (2015) analysed 

many trabecular parameters in the several VOIs taken from the distal and proximal 

portions of third proximal and middle phalanges, as well as the third metacarpal 

head of hominoids and macaques. Using these five locations, the orientation of the 

trabeculae, as well as their shape, were able to clearly differentiate species into 

‘suspensory’, ‘quadrupedal’ and ‘knuckle-walking’ groups while traditional 

measures of BV/TV and DA alone could not. Nevertheless, considering this suite of 

trabecular measures together did improve species locomotor classifications, and a 

similar suite of measures has found locomotor signal in the primate humeral and 

femoral heads (Ryan and Shaw, 2012; Matarazzo, 2015).  

Although a suite of trabecular measures may differentiate between locomotor 

modes, they are a conflation of different biomechanical responses. This conflation 

then makes it difficult to relate trabecular patterns to a specific bone functional 

adaptation, obscuring the link between trabecular architecture and habitual 

locomotion (Ryan and Shaw, 2012; Scherf et al., 2013). Therefore, the fact that 

trabecular shape and orientation, alone, can predict locomotor mode is very 

intriguing, especially as the principle orientation of trabeculae reported by 

Matarazzo (2015) appears to reflect assumed principle directions of strain; 

quadrupedal macaques had palmo-dorsal alignment in their proximal phalanges 

whereas suspensory orangutans and gibbons had proximo-distal orientation in the 

same location. It should be noted, however, that fabric orientation and shape were 

coded into three categorical states in this study, based, in the former case, on 

“stronger directionality” (Matarazzo, 2015, pp.5). Thus, while this study certainly 

does demonstrate a bony locomotor signal, its clarity may be in part an artefact of 

the loss of biological variability in a continuous variable, and none of the continuous 
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variables could classify species alone. Distal elements of the limbs therefore appear 

to provide a better, but still equivocal, trabecular signal of primate locomotion and 

some of these varying results may be attributed to methodological issues arising 

from the VOIs chosen for analysis. 

A two dimensional analysis of trabecular bone proceeds by analysing either a 

transect drawn through (Rafferty and Ruff, 1994), or an area demarcated on 

(Zeininger et al., 2011), an X-ray image. This approach necessarily ignores variation 

in bone structure in the third dimension (Whitehouse and Dyson, 1974). Advances 

in micro-computed tomography that allowed researchers to begin analysing in 3D 

required the definition of a VOI. From the inception of this 3D trabecular research, 

Fajardo and Müller (2001) noted that a standardised size of VOI would over-sample 

the trabeculae of smaller primates, relative to larger taxa because the absolute size 

(thickness) of trabeculae does not scale isometrically. Lazenby et al. (2011) have 

shown that the size of VOI in the same bone can dramatically affect many 

trabecular parameters and support the use of scaled VOIs, though Kivell et al. 

(2011b) have found that the choice of scaling factor also influences some trabecular 

values. Similarly, the location of the VOI can confound a biologically homologous 

comparison of trabecular bone, since it may be placed in a position thought to be 

relevant to a functional hypothesis a priori. If this assumption is incorrect, the 

researcher may not be measuring relevant trabecular structure for their research 

question (Whitehouse and Dyson, 1974; Kivell et al., 2011b). Similarly, even 

hypothesis-neutral locations, such as the centre of the humeral head (Ryan and 

Walker, 2010; Shaw and Ryan, 2012; Scherf et al., 2013) are problematic, since their 

relatively arbitrary definition may not yield biologically homologous VOIs between 

species, possessing differently shaped bones (Kivell et al., 2011b). Thus, the 

conflicting results found in some trabecular architecture studies (Fajardo and 

Müller, 2001; Fajardo et al., 2007; DeSilva and Devlin, 2012; Su et al., 2013) may be 

in part due to methodology. 

Recognising the limitation of VOI methods, more recent studies (Tsegai et al., 2013; 

Skinner et al., 2015; Hoechel et al., 2015; Stephens et al., 2016) have employed a 

‘whole-epiphysis’ approach (Gross et al., 2014) that essentially samples many VOIs 
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over a whole epiphysis, creating a biologically homologous unit of trabecular 

architecture for comparison. This method allowed Tsegai et al. (2013) to find a 

locomotor signal in the third metacarpal head of extant hominoids. Specifically, the 

authors found that knuckle-walking taxa had higher BV/TV and DA than suspensory 

hominoids and especially in the dorsal region of the third metacarpal head, which is 

thought to incur a high load during knuckle-walking. Suspensory hominoids were 

found to have more isotropic trabeculae, lower BV/TV and more palmar disposition 

of trabecular bone consistent with hook grips. Homo sapiens demonstrated an even 

lower BV/TV and isotopic structure, that Tsegai et al. (2013) argued was consistent 

with lower and more varied joint loading during manipulation. Similarly, Skinner et 

al. (2015) found that, like the committed tool-making species H. sapiens and H. 

neanderthalensis, A. africanus had a palmar concentration of trabecular bone in the 

base of first metacarpal (Mc1) and an asymmetrical disto-palmarly ulnar 

concentration in the head of the third metacarpal. Since these trabecular patterns 

were not found in other hominoids and correspond well with the position of the 

hand in precision grips (Marzke and Shackley, 1986), it was argued that all of these 

hominins likely also used forceful precision grips and potentially frequent tool-

related behaviours (Skinner et al., 2015). Whilst these two studies represent a 

significant step forward in inferring bone functional adaptation from trabecular 

architecture, Tsegai et al. (2013) report high-intra specific variation in Pongo, with 

one individual indistinguishable from African apes, and Skinner et al. (2015) confirm 

the human-like asymmetric pattern in the third metacarpal of another Pongo 

specimen. These individual specimens do not invalidate the connection between 

bone functional adaptation and behaviours, but they do highlight that species 

comparisons of trabecular bone over a whole epiphysis are often qualitative or 

statistically compare trabecular values over a larger biological region that may not 

be appropriate for some research questions. 

When the distribution of trabecular bone within an epiphysis appears to hold an 

inter-specifically different functional signal (Tsegai et al., 2013; Skinner et al., 2015), 

comparing whole-epiphysis trabecular values does not necessarily capture this 

signal. Similarly, qualitative comparisons cannot provide species averages with 
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which to infer a stable trabecular and functional pattern. Nor can these 

comparisons assess the extent of outliers from this species average pattern. Very 

recent studies have dealt with this issue by dividing the whole-epiphysis values into 

geometrically regular sections and statistically assessing differences between them 

intra- and inter-specifically (Georgiou et al., 2018; Stephens et al., 2018; Sukhdeo et 

al., 2018). While these sections represent an analytical step forward, this approach, 

like VOIs, risks missing biologically meaningful differences in trabecular value 

distribution where they lie across these biologically arbitrary, regular sections. 

Many comparative studies have provided evidence for a connection between 

trabecular variables and locomotor mode (MacLatchy and Müller, 2002; Tsegai et 

al., 2013; Su et al., 2013; Matarazzo, 2015), yet studies of the functionally complex 

proximal primate limbs (Ryan and Walker, 2010; Shaw and Ryan, 2012) failed to 

clearly demonstrate this connection, in contradiction to earlier results (Fajardo and 

Müller, 2001; Fajardo et al., 2007). Similarly, VOI-based approaches (e.g. DeSilva 

and Devlin, 2012; Schilling et al., 2014) may inherently bias results (Lazenby et al., 

2011; Kivell et al., 2011b). Recent methodological advances, however, such as the 

‘whole-epiphysis’ method (Gross et al., 2014) obviate many of these issues and 

have been used to connect behaviour and functional adaptation of bone (Tsegai et 

al., 2013; Skinner et al., 2015; Hoechel et al, 2015). Further statistical methods are 

now being developed for this ‘whole-epiphysis’ approach that allow for the 

identification of average species trabecular patterns that may be associated with 

bone function (Georgiou et al., 2018; Stephens et al., 2018; Sukhdeo et al., 2018). 

The current project 

The current project endeavours to build on these studies, and connect the 

differences in the trabecular architecture in primate hands with distinct locomotor 

modes, as well as different types of manipulation, in order to infer fossil hominin 

hand use from preserved internal bone structure. The association of extant 

morphology with observed behaviours, via functional explanation, is key to 

inferring these behaviours in similar fossil morphology. Internal bone offers 

additional fossil morphology, formed by relatively well-known biological processes 

common to vertebrates, that records the in vivo mechanical environment, and thus 
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biomechanical function of fossil hominin bones. While this functional signal is just 

one of many, including systemic and ontogenetic signals among others discussed 

above, it not only reflects what a species is capable of but also has the potential to 

reflect what an individual actually did (Ruff and Runestad, 1992). Therefore, when 

internal bone structure is combined with external morphology, it can distinguish 

between functional and non-functional anatomy. Whilst comparative studies have 

yielded mixed results, new methodological advances in trabecular analysis (Tsegai 

et al., 2013; Gross et al., 2014; Skinner et al., 2015; Georgiou et al., 2018; Stephens 

et al., 2018; Sukhdeo et al., 2018) and the creation of micro-finite element models 

(Richmond, 2007; Nguyen et al., 2014) present a growing body of evidence that 

fossil hominin bone function can be reliably inferred.  

The present thesis brings together geometric morphometric methods and the 

‘whole-epiphysis’ method of trabecular analysis to test for statistical differences in 

trabecular architecture distribution across the metacarpal heads, and the first 

metacarpal base, of great apes. These elements were chosen as the subject of 

trabecular analysis as they are positioned at relatively simple bi-axial joints. 

Different prehensile hand postures generally require the use of different finger 

postures that, in turn, load these bi-axial joints from different directions and thus 

should produce a different distribution of trabecular architecture in the metacarpal 

heads, as well as the first metacarpal base. Of course, prehensile hand postures 

often also incorporate the palm, the position of which is determined by the carpal 

joints. Therefore study of the trabecular structure of the carpals may also yield 

interesting results and is consistent with the forces thought to act during the ‘dart-

throwers arc’ motion of the human wrist (Stephens et al., 2018). However early 

work in this regard has not elicited a clear interspecific functional signal likely due 

to the complexity of the carpal joints (Schilling et al., 2014). Similarly the trabecular 

structure non-pollical metacarpal bases maybe useful for certain research 

questions, such as the biomechanical role of the styloid process of the third 

metacarpal in humans. However, the CMc joints are largely static in great apes and 

so the trabeculae of non-pollical metacarpal bases are unlikely to reflect different 

hand postures, with the possible exception of the fifth metacarpal base in humans 
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which is sellar and capable of some movement (Lewis, 1977). Nevertheless, 

trabecular analysis of the metacarpal heads necessitated the acquisition of scans of 

whole bones and therefore allowed for this thesis to present a holistic approach, by 

assessing the relative cross-sectional geometry of cortical diaphyseal bone across 

the long bones of the hand; the great ape metacarpus.  

Where great ape metacarpal internal structure is associated with observed grips, 

similar fossil internal architecture is used to infer hand use and function in fossil 

hominin species, including the complete metacarpus of A. sediba. This thesis 

proceeds by testing if observed habitual hand postures, used in non-human great 

ape locomotion (Chapter 4) and in great ape manipulation (Chapter 5), can be 

associated with metacarpal trabecular architecture. This extant context is then used 

to infer hand use in fossil hominins, in order to ascertain their habitual mode of 

locomotion and manipulative capabilities (Chapter 6). The methods employed in 

these analyses are described in Chapters 2 and 3. 
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Chapter 2 

Materials and Methods 

While the analysis of trabecular and cortical bone has been approached in a variety 

of ways, this thesis provides: a novel method of the segmentation of bone or fossil 

material (Dunmore et al., 2018 ; Chapter 3), extends the recently developed ‘whole-

epiphysis’ method (Gross et al., 2014) of trabecular analysis via geometric 

morphometric techniques and describes a novel automated orientation technique 

used for cortical analysis. These methods are used to separate and analyse 

trabecular bone in the non-pollical metacarpals of extant species (Chapter 4) and 

their pollical metacarpals (Chapter 5). These methods, as well as the cross-sectional 

geometry methods, are then applied to the whole metacarpus of extant, and fossil 

hominin, taxa (Chapter 6).The MIA-Clustering segmentation technique is discussed 

in further detail in Chapter 3. 

Materials 

Material selection 

This thesis is concerned with the internal bone morphology of metacarpals, rather 

than other manual elements, as the distribution of trabecular structure in their 

distal heads is hypothesized to reflect the habitually loaded positions of the fingers, 

and therefore grips, of primate hands. The complex joints of the carpus mean that 

analysis of their trabecular structure is challenging to interpret (Schilling et al., 

2014). Conversely, the interphalangeal joints are simple hinges and their trabecular 

structure is only likely to reflect the degree of digit flexion habitually employed by 

primate hands, unlike the bi-axial degrees of freedom permitted by the 

metacarpophalangeal joints. The bases of the non-pollical metacarpus are also not 

the focus of this thesis, as the carpometacarpal joint have fewer degrees of 

freedom than the interphalangeal joints. However, since metacarpals are rarely 

sectioned the whole bone, including the base, was scanned for analysis (see 

Methodology). The selection of whole metacarpals also permitted the cross-

sectional analysis of their diaphyseal bone.  
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The aim of this thesis was initially to test if trabecular and cortical bone morphology 

of the metacarpus reflected hand use in different primates. It would therefore be 

ideal to sample primates with a broad range of different habitual hand postures. In 

practise, however, most non-hominid primates are much smaller than great apes. 

As discussed in the previous chapter, trabecular struts have a minimum thickness, 

due to the cellular process of bone remodeling (Barak et al., 2013). As a result 

smaller primates tend to have thicker trabeculae, relative to body mass (Ryan and 

Shaw, 2013), and therefore, based on first principles, fewer trabeculae in a smaller 

epiphysis (but see Ryan and Shaw, 2013, for further discussion). The methods used 

for analysis in this thesis were developed to analyse hominid trabecular bone, to 

ultimately infer fossil hominin hand use, where trabeculae are numerous and may 

be treated as a tissue. The lower trabecular number in non-hominid metacarpal 

heads means that the definition of this structure as a tissue is debatable. Therefore, 

while this type of analysis in other primates may yield interesting results, those 

results may not be directly comparable to those of fossil hominins. Large 

haplorrhine species such as Mandrillus spp. may be comparable in such analyses 

but their hand bones are relatively rare in collections. Similarly the most closely 

group related to hominids, hylobatids, are small by comparison and have highly 

specialised hand morphology, with no close analogue in the fossil record. Therefore 

the current sample is exclusively composed of great apes, to create a comparable 

extant sample with which to infer hand use in fossil hominins. 

Data collection  

The initial aim was to CT-scan as many complete disarticulated, dry and adult 

hominid metacarpi as possible to increase power of subsequent statistical tests. 

However, care was also taken to ensure sample sizes across extant species were 

similar, as well as of a similar sex composition and ratio of left-to-right hands. The 

exception to this was the recent human sample that was entirely composed of right 

hands. Humans are the only extant species studied that are cross-populationally, 

predominantly right-handed (Faurie et al., 2005) and the recent humans sampled 

were of unknown hand preference. Therefore, the use of right hands was more 

likely to capture the osteogenic signal of manipulative behaviours, on average, in 
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human populations. However, handedness is unlikely to greatly affect the strength 

or significance of differences at the inter-specific level in the trabecular and cortical 

bone of primate hands (Sarringhaus, 2005; Skinner et al., 2015; Stephens et al., 

2016).  

While some of the of the scans analysed were available from the database created 

by Dr. Matthew Skinner and Prof. Tracy Kivell, several research trips were required 

to produce the current sample. Over several months, agreements to visit, organise 

and loan material were made with several institutions in Germany and the UK. The 

majority of the Pongo sample was sourced via the kind permissions of Mr. Michael 

Hiermeier and Dr. Anneke van Heteren from the Bavarian State Collection in 

Munich, Germany. Pan paniscus scans from the Royal Museum for Central Africa, 

Tervuren, were analysed at the permission of Emmanuel Gilissen and Wim 

Wendelen. Pan troglodytes verus samples were accessed at the permission of Uta 

Schwarz and Prof. Christophe Boesch at the Department of Human Evolution the 

Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany. 

All Pan specimens were all scanned in the Department of Human Evolution, MPI-

EVA by David Plotski. Specimens were also sought in the Phyletisches Museum in 

Jena, Germany, however, most had been articulated with metal wire or springs and 

so could not be scanned (Fig. 2.1). In CT-scanning, metal attenuates X-rays far more 

than rock or bone and as a result this creates many artefacts obscuring the rest of 

the image. In this case, the wire was also often secured via drilled holes in the 

metacarpal heads and such drilling would destroy trabecular structure. 

 

Figure 2.1. Example of Gorilla metacarpophalangeal joints articulated by wire. 
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Gorilla specimens were primarily sourced from the Powell-Cotton Museum, 

Birchington, U.K., accessed at the permission of Dr. Inbal Livine. After the 

negotiation of two formal loan agreements specimens were transported by the 

researcher to and from the Cambridge Biotomography Centre, Department of 

Zoology, University of Cambridge, UK where they were scanned by Keturah 

Smithson. A single Pongo specimen from the Smithsonian National Museum of 

Natural History, USA was also kindly scanned at the American Museum of Natural 

History, USA by Dr. Anna Ragni. 

Fossil hominin micro-CT scans were made available through existing collaborations 

and permissions organised by Dr. Skinner and Prof. Kivell. Fossil metacarpi from 

Sterkfontein and Swartkrans housed at the Evolutionary Studies Institute, 

University of the Witwatersrand, S.A. (with Prof. Berhnard Zipfel and Prof. Francis 

Thackeray) and Ditsong National Museum of Natural History (with Stephanie Potze) 

were micro-CT scanned in a collaborative agreement with the Department of 

Human Evolution, MPI-EVA. Australopithecus sediba fossils were scanned at the 

Evolutionary Studies Institute, University of the Witwatersrand with permission 

from the Fossil Access Committee. Kebara 2 and Ohalo II were scanned in 

Department of Human Evolution, MPI-EVA, by permission of Prof. Israel Hershkovitz 

and Prof. B. Arensburg. Scans of Australopithecus afarensis material were scanned 

by David Plotzki and Prof. Fred Spoor. These scans were shared with permission 

from Prof. William Kimbel and Prof. Zeray Alemseged. Homo neanderthalensis 

material from El Sidrón was scanned by Prof. Antonio Rosas and provided by Dr. 

Nick Stephens. 

Protocol 

On arrival at each institution, catalogues were sought to aid in efficient 

identification of suitable specimens. Where specimens were not organised by 

postcranial element these were organised into separate bags for left and right 

hands as well as feet. A combination of White et al. (2011), Susman (1979) and Rose 

(1988) was used as a reference for identifying and siding bones, as well as previous 

instruction in hand anatomy from Prof. Kivell. Additionally several disarticulated 

reproductions of great ape hands were used to aid in this process (Fig. 2.2). Where 
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bones were not organised, all elements were first counted, in order to estimate the 

number of individuals present. Next tarsals and carpals as well as metapodials and 

phalanges were separated. Manual elements were then aligned with their 

antimeres, where possible, to help side them. In some cases it was necessary to 

sample articulated hands to increase sample size (Fig. 2.3). Photographic records 

were taken of each potentially viable specimen along with large associated 

postcranial elements and crania. Together these were used to check that specimens 

were adult, via the fusion of external epiphyseal lines and cranial sutures as well as 

the eruption of a third molar (Fig. 2.3a-c). Of the 365 hands put through this 

protocol only wild-caught, adult, complete metacarpi with no obvious pathology 

were analysed. 

Samples 

Samples used in each analysis are listed in each relevant chapter. See Appendix A 

for full enumeration. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Example of specimen identification in data collection protocol. Elements of a 
dry disarticulated Gorilla hand are positioned next to their antimeres where available. 
White reproduction Gorilla carpals are pictured next to bone material (top left). Scale bar is 
7 cm. 
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Figure 2.3. Elements of several Pongo individuals. a) Example of a humerus with no visible 
epiphyseal line, b) a maxilla with erupted third molars and c) a skull with complete fusion of 
cranial sutures. d) An example of an articulated hand that was scanned. 

Methodology  

High-resolution scanning 

To image the inner architecture of hand bones in three dimensions, samples were 

placed in several micro-computed tomographic (µCT) scanners. These scanners 

included BIR ACTIS 225/300 and Diondo D3 static scanners as well as a Skyscan 

1172 desktop µCT scanner, all housed in the Department of Human Evolution, MPI-

EVA, and a Nikon XTH225 ST at the Cambridge Biotomography Centre. X-ray 

emitters within these scanners pass rays through a filter (Fig. 2.4a) and 

subsequently through a sample (Fig. 2.4b) where they are to some extent absorbed. 

The remainder of the X-ray energy then strikes a detector panel opposite creating 

an image. The sample is placed at the minimum distance from the emitter that still 

allows the X-rays to pass through the entire sample being scanned. This minimum 

distance ensures that samples were scanned at a resolution that allowed for 

accurate visualisation of thin trabecular bone. Resolutions varied proportional to 

the continuum of biological variation in the size of the manual elements both within 

and between species. Similarly time and financial considerations meant that 

multiple elements were scanned together creating a larger volume and a slightly 

lower resolution. The scanning protocol is detailed in Appendix A. 

c 
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All scans analysed achieved an isometric voxel size of <57 μm, at 100-160kV and 

100-140µA, using a brass or copper filter of 0.25-0.5mm and clearly resolved 

individual trabeculae. As X-rays are emitted the sample is turned about an axis of 

rotation orthogonal to the floor. This allows 1080 projections to be generated in 

360° around this centre of rotation at ~0.333° increments (Fig. 2.4c). After 

corrections for beam hardening and ring artefacts, that may still be present, 

projections were averaged using various proprietary reconstruction software 

packages and a volumetric image of the bone was produced as 16-bit TIFF stack 

(Fig. 2.4d). 

Figure 2.4. Elements of the scanning process. a) A static µCT-scanner (top) and its X-ray 

gun with a copper filter (bottom). b) An articulated Pan hand close to the maximum size of 

µCT-scanner aperture, c) projection image of disarticulated metacarpals and d) parasagittal 

cross-section of a reconstructed scan of an articulated hand, with adequate resolution for 

visualisation of individual trabeculae. 

Reorientation 

The reconstructed TIFF stack was loaded into Avizo 6.3 (Visualization Sciences 

Group, Berlin, Germany) using the resolution of the scan. In some cases the 

reconstruction algorithm unfortunately mirrored the image in the y-axis, as checked 

against photographs and, where possible, re-evaluation of material in person. In 

these cases the whole reconstructed image was flipped in the y-axis using the crop 

editor in Avizo. Subsequently, each bone was cropped from the scan, virtually 

a 

b 

d c 
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cleaned using label fields and limit lines in Avizo 6.3 (Fig. 2.5). All present elements 

of hands were scanned and separated for future work, with the exception of distal 

phalanges, as these rarely preserve trabeculae. Separated TIFF stacks of 

metacarpals were reoriented, so that their proximo-distal axis was aligned with the 

z-axis with their base approximating the xy-plane. The palmar surface of the 

metacarpals was reoriented parallel to the y-axis and faced away from the origin 

(Fig. 2.6a). These images were then further cropped and saved. The exact 

transformation matrix used, and the number of pixels cropped, were recorded to 

ensure repeatability (Fig. 2.6b-d). Where necessary, particularly large metacarpals 

were stack-scanned, resulting in two TIFF stacks that were merged with an overlap 

of ~10 voxels to ensure no stitching mark artefacts were present in the scan. 

Depending on the segmentation method used (see below), the bone image was 

then saved as a .RAW file or a .Nii (Nifti) format file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Example of cropping and cleaning specimens. a) An isosurface of disarticulated 
metacarpals scanned together that was then b) cropped to create images of single bones. 
c) Cross-section of an articulated metacarpophalangeal joint with desiccated soft-tissue and 
d) the cleaned joint with separated bones.  
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Figure 2.6. Example of image orientation steps on a right third metacarpal from a Pan 
paniscus individual. a) Anatomical orientation of the bone from various views b) the 
transformation matrix used to achieve this orientation, c) the size of the image on 
transforming it and d) the size of the final volume image after it is cropped for faster 
processing. 

Segmentation 

Images were segmented to produce binary, black and white, 3D images of bone 

that excluded any noise or non-bone, or non-fossil, material from analysis. This 

segmentation was achieved in bone material, using the Ray-Casting Algorithm (RCA) 

outlined in Scherf and Tilgner (2009). This algorithm first applies a 3D Sobel 

operator in the X, Y and Z dimensions, respectively, at each voxel (Fig. 2.7a-b). 

These operators use 3 x 3 x 3 kernel matrices, orthogonally opposed, to convolve 

with original gray values around each voxel and approximate the first derivative of 

the grayscale gradient in one direction. These three grayscale gradients at the voxel 

are combined to create the steepest grayscale gradient 𝑀 = √𝐺𝑥
2 + 𝐺𝑦

2 + 𝐺𝑧
2. This 

gradient is then steeper where there is a stark difference in neighbouring grayscale 

values, such as at the edge of bone, but much lower within materials such as air or 

bone. A non-maximum suppression filter is subsequently applied to remove all but 

a 

b 

c d 
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the zenith of local 𝑀 which is then represented as a 1 voxel thick contour that 

traces the edge of the bone (Fig. 2.7c). Since an image may include some very low 

background gray values or ‘noise’, it is possible steep local gradients in this section 

of the image will also be counted as edges. This is obviated by the selection of a 

minimum 𝑀 or ‘edge-strength’ threshold below which a gradient is not counted as 

an edge. Further, the algorithm allows the selection of lower and upper limits of 

gray-values within the image that are to be considered for the segmentation, 

thereby thresholding out some of these ‘noise’ edges at low or background gray 

values. These thresholds were defined by the researcher using test runs of the 

segmentation algorithm in Avizo via a plug-in. In rarer cases where ‘noise’ was close 

to the edge of the bone and it was possible that maximal local 𝑀 or calculated edge 

would be adjacent to, rather than at, the edge of the bone. Therefore, as a matter 

of procedure, a 3D median filter with kernel size of 3 was applied to all images 

before test segmentation, and actual segmentations, to remove any high level noise 

that may cause this effect.  

Scherf and Tilgner (2009) test RCA against threshold-based segmentations that 

simply employ a minimum gray-scale value, below which voxels are not considered 

bone. They find that RCA performs much more accurate segmentations since it 

does not only use one global threshold for the whole image, but rather a local 

maximum cline as described above. In this way, regional changes in grayscale values 

caused by underlying artefacts such as beam-hardening are mitigated rather than 

included above a single static threshold. Indeed other similar, though more 

computationally intensive, methods such as the algorithm proposed by Burghardt 

et al. (2007) incorporate local grayscale gradients. Of course, the disadvantage of 

this method is that it allows for very small gaps in contours where the value of 𝑀 

selected may adequately exclude non-edges but not include the entirety of the 

contour. This issue is resolved by the next step of RCA that casts mathematical rays 

at 11.25° steps around ±45° of the normal of each contour voxel. Rays terminate 

where they hit a contour voxel at or above 𝑀 and so very few rays originate at the 

correct position with the correct angle to pass through the gap in the contour, 

instead hitting neighbouring contour voxels. Voxels for which most rays are 
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terminated are then marked as contour voxels filling any gaps and creating an 

unbroken edge of the segmentation (Fig. 2.7d). The voxels that define these 

contours are then used as seed points for a 3 x 3 x 3 neighbourhood joining filter 

that connects voxels that are <10% of the maximum gray value in the ray casting 

data set.  

This process produces an 8-bit binary image, segmented with bone as white and 

non-bone as black, and is run on at least two 50 XY slice sections at the proximal 

and distal ends of the bone via an Avizo 6.3 plug-in (Fig. 2.7e). This allows the 

researcher to test if parameters performed equally well, via comparison to the 

original image, when segmenting different parts of the bone. Subsequently, 

segmentation of the entire bone was achieved via separate executable program 

that takes a batch file defining the input, output and segmentation parameters, as 

previously determined.  

Figure 2.7. Example of RCA segmentation steps. a) A µCT- scan, b) the image after a Sobel 
filter in the x-axis, c) the edges defined by the maximum-suppression filter, d) the rays cast 
at the image and e) the segmented image.  

MIA-Clustering segmentation 

As outlined in Chapter 3, I developed a new method for the segmentation of fossil 

material that can be particularly problematic to segment (Dunmore et al., 2018). 

Difficulties with segmentation can be due to introgression of adherent substances 

of varying densities that can make it challenging to separate bone from non-bone 
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and to create an accurate binary segmentation. Sometimes, these intrusive 

substances can be manually segmented but this can be extremely time consuming 

and is often not repeatable or, at times, objective. Briefly, MIA- (Medical Image 

Analysis) clustering segmentation uses K-means clustering to assign voxels in an 

image to one of a number of specified classes. Typically, there are three classes in a 

fossil image; fossilised bone, introgressed adherent, and the background air. In each 

case, the centre of a cluster is found by finding an average grayscale value for each 

class and then iterating this value until it becomes as equidistant as possible from 

all other values. The three clusters are found simultaneously and voxels closest to 

each cluster centre are assigned to that class, resulting in a trinary image. More 

classes are specified if required. Subsequently the K-means clustering values are 

used to perform c-means clustering in which the assignment of class is done over a 

probability function rather than a binary decision; that is, a voxel is not simply gray 

and not black, it is 70% likely to be gray and 30% likely to be black. This process 

results in a global segmentation of the image. 

To capture fine detail in the image, in this case trabecular structure, this process is 

then repeated in overlapping regular cubes. The edge-length of these cubes is 

determined by the grid size parameter that was found by selecting three random 

two-dimensional slices and measuring the thinnest trabecular strut. The grid-size 

selected is 2 pixels larger than this thinnest strut to ensure the algorithm does not 

look for features at a scale below that of these trabecular analyses. The classes 

clustered in each cube do not include those that had a probability of <2% in the 

global segmentation, this ensures the algorithm does not waste time looking for 

black voxels in the middle of a fossil or bone. Finally the probabilities of each 

overlapping cube are fused and the highest probability class is assigned to that 

voxel. This results in segmented images that contain more than one class, are not 

dependent on high contrast gradients in an image, and are more objective, since 

not only is one parameter selected instead of three, but this parameter is based on 

the image rather than a sequence of user-selected thresholds. Since these 

thresholds are user selected, they are to some extent subjective and may take 

many iterations to find acceptable parameter values, as there is no objective 
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starting point for a researcher, only a stepwise iteration of progressively ‘better’ 

segmentations, analogous to an adaptive peak model (sensu Wright, 1932). This 

approach also avoids the issue of equifinality present in RCA where two sets of 

values may produce a very similar if not identical segmentation. 

Fossils were segmented with MIA 2.4.6 (Wollny et al., 2012) as part of the MIAtools 

Docker Image. Docker is a cross-operating system (OS) platform that uses 

virtualisation technology to provide the bare minimum version of a different 

operating system. Here, MIA uses the Unix shell language Bash, to parse commands 

in a Linux environment that does not exist in the Windows OS. As such, Docker was 

used to run these Linux commands but read and wrote files through the Windows 

OS. Once segmented, binary Nifti images were saved as .RAW images in Avizo for 

further processing. 

Fossil caveats and procedures 

Every fossil has a different state of preservation owing to different taphonomic 

processes. So while an effort was made to standardise all fossil segmentations, 

some extra steps were taken when needed. Fossils were initially median filtered 

using a kernel size of three in Avizo 6.3. If necessary, global grayscale clines were 

ameliorated by median filtering the image using a kernel of 25, inverting this image 

using an arithmetic operation and then adding a fraction of this to the initial image. 

In this way, contrast of the fossil trabeculae was improved using only the data 

within the image. 16-bit images were then segmented with MIA clustering 

(Dunmore et al., 2018) and then binarised using Avizo 6.3. Any cracks or edges of 

invasive material were removed by performing several median filters on the 

segmented image. While this did distort trabeculae, the filters eroded these very 

thin lines, caused by cracks or edges of invasive material, until they were non-

existent. This image could then be taken from the original binarised segmentation 

using an arithmetic operation and the resulting skeleton of cracks and edges could 

be extracted with a label field in Avizo 6.3. Finally, this cleaned skeleton image of 

cracks and edges could be subtracted from the original binarised segmentation 

using an arithmetic operation, leaving undistorted trabeculae.  
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Medtool 

The binary image of the segmented bone (Fig. 2.8a) was then processed in medtool 

4.2 (Dr. Pahr Ingenieurs E.U.), a script manager that allows the automatic execution 

of a series of image filters and analyses, in native and third party programs, written 

in a variety of computational languages. This program employs C++ and a native 

Python 2.7.9 distribution that is used for the majority of computation, though this 

itself interfaces with Fortran77 during computation via F2Py functions. Several 

variables for each bone image were recorded in a parameter file, including image 

dimensions and the resolution, in order to perform batch processes on a number of 

bone and fossil specimens with custom parameters. A customised shell script 

executed these processes including, several of the morphological filters outlined in 

Gross et al. (2014) and Pahr and Zysset (2009). Broadly, these processing steps 

allow the segmentation of cortical and trabecular bone within the image, as well as 

the production of a 3D model required for the analyses of these structures. As this 

process requires several parallel steps, filtered volumetric images are below 

formatted in bold and italics to aid the reader. 

The RCA or MIA segmented data was subjected to a Clean filter which identifies 

white ‘bone’ voxels that do not connect to the bone. The main structure in the 

image was identified as the structure with the most contiguous voxels with a 

grayscale value of one, i.e. white voxels, then any ‘floating’ voxels not contiguous 

with the bone are set to zero or black. Next, a Close filter used a spherical kernel to 

mark any black voxels as ‘bone’ if they would otherwise join two bone voxels across 

a gap defined by the radius of the kernel. This morphological ‘closing’ operation 

was computed by Fortran and removed fine shape detail, in this case cortical pores, 

by sequentially dilating and then eroding contours while assessing if there is a gap 

to be closed based on the size of kernel radius. This kernel size or $kc is a key value 

read from the parameter file and was initially set to three voxels, though this value 

was later evaluated and changed as necessary (see below). In this way, the fine 

porosity of cortical bone was lost and moderate gaps that represent real 

differences in shape or separation of trabeculae were maintained. The closing of 

cortical holes was necessary for the logic of the subsequent steps which generate 
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several 3D masks of the image each representing different types of bone present in 

the image, as outlined in Pahr and Zysset (2009). 

The first of these masks was an Outer Mask which defined the limit of the bone 

from the ‘air’ surrounding it (Fig. 2.8b). This morphological fill operation used the 

same kernel size ($Kc Out) as the Close along with some of the same logic as the 

RCA as it cast mathematical rays at the bone from seven directions, the three 

orthogonal axes (X,Y,Z) as well as the four diagonal axes of a unit cube. Where the 

rays hit the first bone voxel, that direction it was marked as ‘fill’. Where a voxel is 

marked as ‘fill’ in over five of the seven directions it was treated as bone. Where 

the rays have marked ‘fill’ voxels on opposite sides of the bone the distance 

between them is also marked as bone and a region growing function as well as 

‘opening’ and ‘closing’ operations ensured internal structures were lost, leaving a 

solid outline of the bone. The image grayscale values were then scaled from 0:1 to 

0:255 for further processing. 

In certain cases the bone may have a particularly deep concavity, such that not all 

of the 5 required rays hit the nadir of the ‘C’ shaped feature as their angle is 

blocked by the rim of the concavity. This can lead to artefacts in the masking 

process and often occurs in metacarpal heads beneath projecting palmar 

epicondyles. To remedy this issue, a subsequent bounding box was found by the 

researcher in Avizo 6.3, and its coordinates were used to create a second instance 

of mathematical ray casting. Since these rays begin from inside the ‘C-shape’ they 

were not blocked by the rim of the concavity and the artefact was removed. Where 

used, this masking correction was iterated 15 times and checked by the researcher 

before proceeding. 

The second mask is an Inner Mask which delimited the ‘trabecular’ space inside the 

cortical shell (Fig. 2.8c). This was achieved using much the same process, excepting 

that rays began at the edge of the Outer Mask and were marked ‘fill’ voxels where 

they met ‘air’ voxels. If the Close operation did not precede this, rays would likely 

have contacted pores in the cortical bone and incorrectly assigned sections of 

cortical bone to the Inner Mask and ultimately trabeculae. Again ‘opening’ and 

‘closing’ morphological operations were used to create a solid mask of the inner 
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structure but the kernel size ($Kc In) used here was twice that of the other filters, 

beginning at six voxels. The $Kc and $Kc Out operations were designed to close 

small holes in the cortical bone but not artificially join trabeculae. Thus, the average 

trabecular thickness (see below) is halved and rounded down to the nearest integer 

to generate $Kc and $Kc Out, to close holes that were half the average width of 

trabeculae. However for the Inner Mask rays may have travelled from the outer 

contour of the cortical bone along trabeculae attached to it and not immediately hit 

‘air’ creating channels in the solid inner mask. As these channels were the inverse of 

trabeculae, they were the same width and so in this case a closing operation that 

joined the edges of these channels was assigned the same kernel size as that of 

average trabecular thickness. Therefore where $Kc Out was half a trabecular strut 

at three voxels, $Kc In was a full strut width at six voxels. On completion of the ‘fill’ 

operation another cleaning filter was used to remove any unconnected elements 

leaving only the Inner Mask which was then also scaled from 0:1 to 0:255. Another 

optional bounding box correction could have been applied if necessary. 

The Thickness Mask of the solid cortical bone was then created, by subtracting the 

Inner Mask from the Outer Mask, and subjected to a cleaning filter and scaled to 

0:255. This Thickness Mask is in turn subtracted from the image created by the 

Clean filter leaving the detail of the inner architecture and air as the Trabecular 

Mask. 

Having segmented the bone into a cortical shell and inner architecture, an 

evaluation step was carried out to ensure the kernel sizes used are unlikely to 

erroneously assign voxels to the wrong element of the bone. At this point a 

Windows command line execution called headerless ImageJ (Schneider et al., 2012) 

to run the BoneJ plugin, as described in Doube et al. (2010), on the Trabecular 

Mask. The plugin calculated trabecular thickness, in pixels, as the diameter of the 

greatest sphere that fit within the bone structure. The centres of these spheres 

were sampled within the bone structure in a non-redundant manner and the 

maximum diameter was averaged to generate one thickness value per bone 

(Hildebrand and Rüegsegger, 1997; Dougherty and Kunzelmann, 2007). This mean 

value was then rounded down to provide the $Kc In value for this specific bone and 
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divided by two, again rounding down, to generate the $Kc and $Kc Out values. If 

these differ from the initial values of six and three the morphological operations 

from the Close to the Trabecular Mask were repeated with the new kernel size. 

Medtool allows for each Kernel size to be visualised as different colour overlays of 

the original CT-scan allowing for both quantitative and qualitative identification of 

the optimal kernel size; in practice this ranged from $Kc3–$Kc5. 

These different masks were brought together into a single segmented mask with 

four values denoting ‘outer air’, ‘inner air’, trabecular bone and cortical bone. The 

trabecular model was combined with ‘inner air’ in order to create a MaskSegIn, a 

continuous 3D model for analysis, since the Trabecular Mask is not continuous 

within the diaphyseal shaft where trabeculae are often absent. Specifically, the 

MaskSegIn was created by adding a scaled version of the Clean image to the Inner 

Mask creating a trinary image of the ‘inner air’ and ‘trabeculae’ on a black 

background. A MaskSegOut was then made by applying the same process to the 

Clean image except the Inner Mask is replaced by the Thickness Mask resulting in 

the definition of ‘cortical bone’, ‘inside’ and ‘outside air’. These two images were 

then combined into a quaternary image, the MaskSeg (Fig. 2.8d), by converting the 

cortical shell into a gray value of three and adding this to the other image. 

Having segmented the three different materials in the 3D image it is possible to 

mesh these into a 3D finite element model. Slight modifications of the masks were 

required before formatting the models for a third party meshing program. Both the 

inner and outer masks were reduced in resolution by a factor of four, and each was 

subjected to a ‘closing’ filter with kernel size of three. The effect of this was to 

slightly increase the limits of each mesh and re-resolve its edges, such that finite 

elements at the edge of the bone could be created within the mesh. The Outer 

Mask was additionally dilated with a kernel size of three, since some of the cortical 

bone was very thin. Without the slight inflation of this area it was likely that an 

element would not fit in the mesh, resulting in a hole in the model. Finally the Inner 

Mask was taken from the modified Outer Mask to produce the modified cortical 

shell mask and both were converted into Inira files for the mesher. 
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The CGAL (Computational Geometry Algorithms Library) 4.9 mesher discretised a 

3D domain into an isotropic simplicial mesh using a restricted 3D Delaunay 

triangulation. The elements made were tetrahedra with 30° angles at vertices, to 

guarantee termination of the meshing process at smooth boundary surfaces. The 

size of the elements was equal to the distance between them, as well as the size of 

each facet of the element, to ensure contiguous tessellation of the mesh. This size 

was determined by the $inmesh and $outmesh variables defined by the user in the 

parameter file but the $outmesh was usually calculated as half the $inmesh to 

ensure at least two elements were created in the thinnest sections of the cortical 

mesh. This initial mesh may have contained slivers, i.e. degenerate tetrahedra with 

overlapping vertices, which were removed with several optimisers applied to the 

mesh. The Lloyd and Optimal Delaunay Triangulation (ODT) global optimisers 

minimised mesh energy resulting from the interpolation of linear piecewise 

functions to better approximate curved surfaces. Local optimisers either moved 

vertices of a degenerate tetrahedron, the perturber, or optimally reweighted the 

vertices, the exuder, to make these slivers disappear. This process results in three 

optimised meshes: the cortical bone, the inner domain and an analysis version of 

the inner domain set at a mesh with a cell size of 1mm. Further analysis was carried 

out on the analysis mesh as this ensures parity between models. These meshes 

were written as Abaqus (2007) files which were then converted into Ensight files for 

visualisation in the Paraview (Ayachit, 2015). 

Trabecular analysis of the bone proceeds in medtool 4.2 by creating a rectangular 

background grid of 2.5mm cells in which the MaskSegIn Image is placed (Fig. 2.8e). 

Volumes of interest (VOI) spheres with a diameter of 5 mm, in order to ensure 

overlap between spheres, were centred on each vertex in the grid and trabecular 

parameters were measured. In practise, this led to the minimum number of VOIs 

per whole bone to range from 756 to 7,728 in non-pollical metacarpals, and from 

481 to 2,161 in first metacarpals (Mc1). Spheres were used to avoid cornering 

effects, which can poorly sample features close to orthogonal axes, found in cubic 

VOIs (Ryan and Ketcham, 2004). Trabecular bone volume fraction (BV/TV) and 

degree of anisotropy (DA) were measured by the mia-multi module in medtool 4.2. 

http://www.paraview.org/
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Figure 2.8. Example of image processing steps in medtool. Sagittal cross-section of a) A 

segmented metacarpal, b) the outer mask, c) the inner mask, d) the trinary MaskSeg, e) the 

overlaid background grid (red) and a representation of a VOI centred on a vertex (blue). f) 

Trabecular values from overlapping VOIs interpolated onto the inner analysis 3D mesh. 

Trabecular variables 

Previous studies have shown that BV/TV and DA are good predictors of trabecular 

bone strength and functional bone adaptation (Odgaard, 1997; Uchiyama et al., 

1999; Pontzer et al., 2006; Barak et al., 2011; Lambers et al., 2013b) and that they 

are not subject to strong allometric effects (Doube et al., 2011; Barak et al., 2013; 

Ryan and Shaw, 2013). Analyses have used other trabecular variables such as 

trabecular spacing (Tb.Sp), number (Tb.N) and thickness (Tb.Th; e.g. Ryan and 

Walker, 2010; Saers et al., 2016, Reina et al., 2017). Together these values 

constitute BV/TV and are dependent on each other to some extent. Tb.Th and Tb.Sp 

are the inverse of each other and sum to the total trabecular space. Similarly, for a 

given BV/TV, Tb.N is proportional to Tb.Th, as only so many trabecular struts of a 

given thickness will be accommodated by a given trabecular space. Given the 

dependence of these variables, analysing them all is somewhat redundant (but see 

Ryan and Shaw, 2013), but they do reveal information about the relative 

contributions of these variables to BV/TV. However, these three variables have all 

been shown to scale with strong allometry that may mask a functional signal in 

trabeculae where BV/TV would not (Ryan and Shaw, 2013), and so were not 

retained for analysis in subsequent chapters.  
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DA measures to what extent trabeculae are uniformly aligned in a direction, 

whereas principle trabecular orientation (PTO) provides their actual direction 

(Pontzer et al., 2006; Barak et al., 2011; Matarazzo, 2015; Barak et al., 2017). 

However, PTO is a meaningless measure when trabecular structure is close to 

isotropic, as there is no ‘principle’ orientation (Barak et al., 2017). Indeed 

researchers have manually coded the ‘main’ orientation of trabeculae when 

trabeculae are almost equally oriented in two different directions (Matarazzo, 

2015). Unfortunately scaling PTO by DA does not obviate this issue as, in the case 

two similarly represented orientations, the second strongest orientation is not 

included in DA (see below). That is, we do not know to what degree the principle 

orientation of trabeculae is differentiated from their second most prominent 

orientation. Therefore while this measure has yielded promising results in early 3D 

applications (Matarazzo, 2015; Barak et al., 2017) it is challenging both to interpret, 

and to compare with older literature which only employs DA. Consequently PTO 

was not retained for analysis in favour of DA.  

 

DA is calculated using the mean intercept length algorithm (MIL) following Odgaard 

(1997). This algorithm casts equal length vectors, originating from random points 

within the image, through the sample in different directions, until they hit a white 

or bone voxel. A mean intercept length is generated by dividing the length of the 

vectors at these terminations by how many terminations occurred. A second rank 

tensor is then fitted to the directions and lengths of these mean intercept vectors, 

and they are decomposed into three primary eigenvectors. DA for this spheroid is 

then calculated by subtracting the largest of the three eigenvalues, divided by the 

smallest of the three eigenvalues, from one. BV/TV was calculated by dividing the 

amount of segmented bone voxels by the total number of voxels in each VOI 

sphere. The centroid of each finite element in the mesh is then assigned a value for 

each trabecular parameter. These values are a linear interpolation of the spheres in 

the background grid and saved as an .Esca1 file (Fig. 2.8f; Pahr and Zysset, 2009). 
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Geometric morphometric mapping 

One of the key issues with the whole-epiphysis approach is that while it provides 

models for qualitative analysis, quantitative trabecular analysis has largely been 

restricted to the comparisons of whole-epiphyses (Tsegai et al., 2013; Skinner et al., 

2015), or sections of them (Georgiou et al., 2018; Stephens et al., 2018; Sukhdeo et 

al., 2018). As these sections are geometric divisions that may not be biologically 

meaningful, a new approach was developed to statistically analyse trabecular 

variables using geometric morphometric techniques (Gunz and Mitteroecker, 

2013). Accordingly, analysis was limited to the surface of the trabecular models 

created by medtool 4.2, although there is also good biological reason to focus on 

subarticular (otherwise known as subchondral) trabecular bone. This region of bone 

must transmit loads from adjacent joints to deeper trabecular structure, and 

eventually the diaphysis, by virtue of its position (Zhou et al., 2014; Sylvester and 

Terhune, 2017). Therefore, subchondral trabecular bone disposition is likely to 

reflect habitual joint loading via the mechanism of bone functional adaptation (Ruff 

et al., 2006). 

The surface of the trabecular mesh (Fig. 2.9a) was extracted using Paraview (Fig. 

2.9b; Ayachit, 2015) and was smoothed (Fig. 2.9c), to permit landmark sliding (see 

below), in Meshlab (Cignoni et al., 2008) via a screened Poisson surface 

reconstruction filter (Kazhdan and Hoppe, 2013). For left hand bones this surface 

mesh was mirrored in Meshlab so that it was oriented in the same manner as those 

from the right hand. The smoothed surface of trabecular model was then 

landmarked in Checkpoint (Stratovan, Fig. 2.9d) using external anatomical 

landmarks (see Chapters 4 and 5 for location and type of landmarks following 

Bookstein, 1991). These landmarks were easily translated to the inner trabecular 

surface of metacarpals as the overlying cortical bone is very thin in hominids (Tsegai 

et al., 2017). A separate set of anatomical landmarks was used for the first 

metacarpal base, the first metacarpal head, and the non-pollical metacarpal heads, 

as these three sets of epiphyses have different developmental and evolutionary 

histories in primates (Pazzaglia et al., 2018). In each case, a repeatability test was 

performed to ensure landmarks were stable and reproducible by the researcher. 
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Three landmark templates were created on two randomly chosen specimens, a 

non-pollical metacarpal and a first metacarpal, in Checkpoint. These templates 

consisted of the anatomical landmarks and sliding semi-landmarks constrained to 

curves or distributed over the subchondral surface (Fig. 2.9d). These curves were 

located between anatomical landmarks and at the edge of the subarticular surface 

to constrain semi-sliding landmarks to this surface, as recommended by Gunz et al. 

(2005). These templates were then projected onto each of the appropriate 

trabecular models via the Morpho package in R (Schlager, 2017), using the manually 

placed anatomical landmarks on each metacarpal specimen for reference. The 

semi-sliding landmarks were then relaxed onto the surface of each model by 

minimising bending energy and were then slid along their respective curves and 

over the subarticular surface, by minimising Procrustes distances. Bending energy 

was used as the algorithmic criterion for relaxation as it prioritises smooth global 

deformation and takes into account all landmarks together, producing a more 

stable criterion over a large range of shape variation that is likely present at the 

inter-specific level. Conversely, landmarks were slid using Procrustes distance as 

this is computationally faster. Since the curves terminated in anatomical landmarks 

and themselves surrounded surface sliding semi-landmarks, there was no way 

landmarks could slide beyond their proscribed limits with this method (Gunz and 

Mitteroecker, 2013). BV/TV and DA values, as calculated in medtool, were mapped 

to these homologous landmarks for statistical comparisons, unconstrained by 

geometric divisions of continuous trabecular structure. A custom Python script 

plugin for Paraview (Ayachit, 2015) was used to assign trabecular values of each 

tetrahedron of the trabecular model (Fig. 2.9e) to the centre of their surface 

triangle facet(s). These surface values could then be interpolated to their nearest 

landmark via the Python module SciPy (Jones et al., 2001; Fig. 2.9f). This 

interpolation was carried out in medtool 4.2 for BV/TV and DA separately. It should 

be noted that this data is interpolated from VOIs that cover the articular surfaces 

analysed. These overlapping VOIs number from 72 to 336 in non-pollical 

metacarpals, and from 60 to 180 in first metacarpals. After values were associated 

with landmarks, a generalised Procrustes procedure was performed using the 

Geomorph package (Adams et al., 2017) in R to create three sets of homologous 
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landmarks across the hominid metacarpals, each associated with two trabecular 

values.  

 

 

 

 

 

 

 

 

Figure 2.9. Illustration of geometric morphometric mapping procedure. a) The trabecular 
mesh of a Pan troglodytes Mc1, inside its cortical shell (translucent) with interpolated 
trabecular values (red = high BV/TV and blue = lower BV/TV). b) The extracted surface of 
the trabecular mesh cut in the sagittal plane to show its inner (blue) and outer surface (red) 
with some surface facet triangles selected (pink outline). c) The smoothed trabecular mesh, 
d) with anatomical landmarks (red) and sliding semi-landmarks on curves (cyan) as well as 
on the subarticular surface (green). e) A close up of selected surface facets, as in b), with 
their interpolated trabecular values and an example landmark. In this case the landmark 
would be associated with the 0.228226 value as this is the closest surface triangle centre. f) 
The entire landmark configuration with RBV/TV values as per scale bar. Note that as much 
of the original surface (a) had similar values, most of the landmark values are close to one, 
or the average BV/TV of this subchondral epiphysis. 

Visualisation 

To visualise the results of the subarticular trabecular analysis in a manner unbiased 

by a species metacarpal morphology, a canonical mesh was created using 

WxRegSurf (Gee et al., 2015; Tsegai et al., 2017). Specifically, a statistical shape 

model was constructed by registering the surfaces of each smoothed trabecular 

model to a single randomly chosen specimen using local affine deformation over 

200 iterations. This was performed separately for each metacarpal position to 

create five canonical meshes on which the relevant landmark template could be 

projected, relaxed and slid to homologous positions as done for the real 

metacarpals using the R package Morpho (Schlager, 2017). Average values per 

species, and individual fossil values, could then be visualised on the appropriate 

b 
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canonical metacarpal mesh using a continuous scale, created in R using the 

colorRamps package (Keitt, 2008). This approach was also used to depict the 

relative contributions of landmarks to a principle component (see below). 

Furthermore, each landmark was coloured individually to visualise significant 

differences where appropriate.  

Statistical Analysis  

Previous approaches to trabecular analysis (see Chapter 1), including a smaller 

number of large VOIs or sections of a whole epiphysis, artificially section the 

continuous structure of trabecular bone but they do provide units amenable to 

statistical analysis. The approach taken here was designed to capture differences in 

subarticular trabecular architecture without these artificial sections but presents 

less clear-cut units of analysis. Analysis proceeded with two complimentary 

statistical approaches, multivariate and mass-univariate, for relative trabecular 

volume (RBV/TV; see below) and DA, respectively. 

The multivariate approach tests for differences in the distribution of trabecular 

values across landmark configurations, between species and rays. Sylvester and 

Terhune (2017) detailed a method in which geometric morphometric techniques 

have been used to analyse trabecular bone. In this study, overlapping spherical VOIs 

were placed just beneath surface sliding semi-landmarks on a trabecular mask. As 

there were a greater number of VOIs than specimens, and the VOIs also 

overlapped, their data were multi-collinear and therefore the authors opted to 

perform non-parametric MANOVAs, designed to deal with high-dimensional data to 

test for group differences in trabecular distribution (Sylvester and Terhune, 2017). 

Further interpretation was aided by principle components analyses (PCA) of 

trabecular values, to visualise the separation of groups and individuals at the 

extremes of principal components (PCs). The present approach employs much of 

the same logic as Sylvester and Terhune (2017) but builds on it in several significant 

ways. First the present approach effectively subsamples values interpolated from 

overlapping VOIs, at fewer landmarks than Sylvester and Terhune (2017), 

somewhat obviating the issue of multi-colinearity. Second, the present approach 

first conducts a PCA using the trabecular values at each landmark as a separate 
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variable. This variable reduction technique preserves most of the variation in 

trabecular values but reduces higher-dimensional data to a number of variables, 

PCs, far less than the number of specimens studied. As higher-dimensional data is 

not an issue for this approach, a less specialised permutational MANOVA was run 

on a response variable composed of the number of PCs that explained a substantial 

portion of the variability in trabecular dataset. A permutational MANOVA was used 

to test for differences between groups as the assumptions of multivariate normality 

were not always met by the distribution of PC scores. This omnibus test was 

conducted using the Adonis function in the Vegan package (Oksanen et al., 2018) in 

R. Although it is non-parametric, this test is still based on group variance and so a 

test of multivariate homogeneity of variances was performed on the Euclidean 

distance matrix that describes the PC scores, using the dist and betadisper functions 

in the Vegan package. In no case did groups have a significantly different variance 

of their PC scores. If this omnibus test was significant, pairwise permutational 

MANOVAs were conducted using the RVAideMemoire Package (Hervé, 2017) to 

determine which groups differed in their trabecular value distribution. For all 

permutational MANOVAs pseudo-F statistics describe the effect size of differences 

(Anderson, 2017). 

Significance was set at p<0.05 subsequent to a Bonferroni correction for pairwise 

comparisons. While the current approach plots individual PC scores to visualise 

intra-group variation, it departs from previous work in that it uses the signed 

contributions of each landmark to each PC axis, to visualise the trabecular 

configuration at each end of each axis, rather that visualising one specimen that lies 

close to this extreme. This approach, therefore, does not rely on one individual 

falling near the extremes of a particular PC axis. To compare fossils to extant 

groups, a permutational one-sample Hotelling’s T2 test was run on the multivariate 

response variable made of PC scores. This was run using the Compositional package 

in R (Tsgaris and Athineou, 2018). Importantly this multivariate approach can 

identify significant differences in trabecular distribution between species or rays. 

However, this multivariate method does not directly test for significant regional 

differences in subchondral trabecular structure. That is, the method tells us that a 
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significant difference exists but not where that difference lies in the subchondral 

epiphysis. 

To determine which regions of the trabecular architecture differed between groups, 

this analysis also employed a ‘mass-univariate’ approach as advocated by Friston et 

al. (1995). This type of statistical approach has also been used to analyse cortical 

bone in ape metacarpals (Tsegai et al., 2017), although in this case the authors 

performed statistical tests directly on the vertices of a mesh, resulting in many 

more statistical tests that could be refined using p-value clustering. The present 

thesis employs a lower resolution version of this approach utilising landmark data, 

as registering surfaces to achieve homologous vertices for analysis is difficult at the 

inter-species level. Registration of hominoid third metacarpal surfaces, for example, 

has been shown to be affected by both the relatively featureless smooth diaphyseal 

shaft and inter-specific differences in morphology, such as the presence of a styloid 

process in humans to the exclusion of other hominoids (Tsegai et al., 2017). 

Therefore, the trabecular values at each landmark are independently analysed, to 

ensure biological homology, using univariate statistics. Shapiro-Wilk tests found 

non-normal data at a minority of landmarks in every group comparison. To 

maintain consistent comparisons, a non-parametric Kruskal-Wallis test was applied 

at each landmark and a Dunn’s test was used to test for pairwise differences if the 

omnibus test was significant. Dunn’s test was chosen as it uses the pooled variance 

of the Kruskal-Wallis tests and is thus conservative. The level of significance was set 

at p<0.05 subsequent to a Bonferroni correction in each case. This univariate 

approach consists of homologous landmark value comparisons across groups rather 

than with spatially auto-correlated neighbouring landmarks. Z-scores were used to 

determine the polarity, as well as the effect size, of significant differences between 

groups. Mapping significant differences at landmarks allows for the identification of 

regions within a subchondral metacarpal epiphysis that are significantly different 

between species or rays. 
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Relative trabecular volume 

Since bone volume fraction has been shown to be influenced by systemic factors in 

great apes (Tsegai et al., 2018), each landmark’s raw BV/TV value was divided by 

the mean of every landmark BV/TV value on that metacarpal subchondral surface, 

to generate a relative measure of bone volume (RBV/TV, Fig. 2.9f). This measure 

allows for the comparison of the distribution of trabecular values rather than their 

magnitude, analogous to the Z-scores used by Sylvester and Terhune (2017) or the 

standardised BV/TV used by Sukhdeo et al. (2018). The magnitude of BV/TV, not 

measured by this scaled factor, has yielded interesting results, such as the overall 

lower BV/TV in recent humans relative to other hominids and fossil hominins 

(Chirchir et al., 2015; Ryan and Shaw, 2015; Tsegai et al., 2018). However, there is 

debate whether these group differences are systemic or related to functional bone 

adaptation. Low BV/TV in recent humans may primarily reflect either selection for a 

systemic reduction in bone mass, or anatomical site-specific bone functional 

adaptation due to sedentism and dependence on technology (Ryan and Shaw, 

2015; Chirchir et al., 2015). Differentiating between these causes of decreased 

BV/TV magnitude is further complicated by the fact that this putatively systemic 

pattern appears to be expressed differently at different anatomical sites (Chirchir et 

al., 2015; Saers et al., 2016; Tsegai et al., 2018). This differential expression of the 

BV/TV pattern is usually associated with a functional aetiology but does not match 

observed behaviour. For example, within chimpanzee anatomical sites BV/TV is 

highest in the femur, but this is not the case in bipedal humans (Tsegai et al., 2018). 

A normalised BV/TV variable does not allow for this thesis to directly address 

interspecific differences in the magnitude of BV/TV and thus inferred differences in 

the frequency or extent of loading at the analysed joints. However, it preserves a 

bone functional adaptation signal in the distribution of BV/TV across a subchondral 

joint surface, when other factors, such as skeletal element, may obscure this in raw 

BV/TV values (Saers et al., 2016; see Chapter 4). RBV/TV controls for systemic 

differences and is also analogous to the process of bone remodeling itself, where a 

finite amount of energy is spent depositing bone to bear habitual load (RBV/TV >1) 

at the cost of depositing bone where there is less habitual load (RBV/TV <1). 
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Cross-sectional geometry of cortical bone  

Cross-sectional geometry offers a complementary approach to the analysis of 

trabecular bone functional adaptation in diaphyseal cortical bone. Differences in 

the mid-diaphyseal shape and rigidity of long bones are often analysed to infer their 

function during life (Biewener and Bertram, 1994; Ruff, 2002; Marchi, 2005; Carlson 

and Judex, 2007; Young et al., 2018; Ruff et al., 2018; Macintosh and Stock, 2019). 

For appropriate comparisons of the cross-sectional geometry, each axial cross-

section of a diaphysis must be placed in a homologous location. Protocols exist, 

particularly those of Ruff (2002), to orient and accurately assess the length of long 

bones to then define a 50% mid-shaft point. However, several metacarpals studied, 

particularly those of Pongo, were curved (Fig. 2.10). Such curvature adds extra 

variation to linear measures of length and, more importantly, means that axial 

cross-sections orthogonal to the long axis of anatomically oriented bones are not 

homologous to those of straighter metacarpals. This curvature can therefore distort 

the shape of a cross-section in the same manner as a non-orthogonal axial cross-

section through a straight metacarpal would.  

To somewhat control for the effect of diaphyseal curvature in metacarpals, a 2D 

sagittal cross-section of each segmented 3D metacarpal image was created using 

medtool 4.2 (Dr. Pahr Ingenieurs e.U.). A PCA was then run in the Numpy Python 

module, treating the bone pixels as 2D coordinates. The eigenvector that best 

described the variation in bone pixel distribution was then used as the new long 

axis of the bone, as it is the best way to mathematically describe the length of both 

curved and relatively straight metacarpals in linear manner (Fig. 2.10a). The 3D 

metacarpal image was then rotated through the sagittal axis by the angle between 

the original, anatomical, y-axis and the eigenvector in medtool 4.2 (Fig. 2.10b-c). 

The most proximal and distal bone voxels in a sagittal cross-section of the rotated 

metacarpal were then used to find the 50% mid-diaphyseal point in ImageJ 

(Schneider et al., 2012). Homologous axial cross-sections were created from the 3D 

image at this point using medtool. These axial cross-sections were then analysed 

using a Macro, developed by the researcher, to run mass Slice Geometry commands 

from BoneJ (Doube et al., 2010). The average, minimum and maximum area area 
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moments of inertia, and the maximum area moment of inertia in antero-posterior 

and medio-lateral, here radio-ulnar, planes, were calculated in mm4 for each mid-

diaphysis.  

 

 

 

 

 

 

 

 

 

Figure 2.10. Example of metacarpal reorientation procedure for cross-sectional geometry. 
a) 2D sagittal cross-section of a metacarpal a principle eigenvector describing its long axis 
marked in red and b) with its anatomical long axis marked in blue. c) The cross-section after 
rotation of the 3D image; the angle between the two axes is now 0°. 
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Chapter 3 

MIA-Clustering: A novel method for 

segmentation of paleontological material 

Abstract  

Paleontological research increasingly uses high-resolution micro-computed 

tomography (µCT) to study the inner architecture of modern and fossil bone 

material to answer important questions regarding vertebrate evolution. This non-

destructive method allows for the measurement of otherwise inaccessible 

morphology. Digital measurement is predicated on the accurate segmentation of 

modern or fossilized bone from other structures imaged in µCT scans, as errors in 

segmentation can result in inaccurate calculations of structural parameters. Several 

approaches to image segmentation have been proposed with varying degrees of 

automation, ranging from completely manual segmentation, to the selection of 

input parameters required for computational algorithms. Many of these 

segmentation algorithms provide speed and reproducibility at the cost of flexibility 

that manual segmentation provides. In particular, the segmentation of modern and 

fossil bone in the presence of materials such as desiccated soft tissue, soil matrix or 

precipitated crystalline material can be difficult. Here we present a free open-

source segmentation algorithm application capable of segmenting modern and 

fossil bone, which also reduces subjective user decisions to a minimum. We 

compare the effectiveness of this algorithm with another leading method by using 

both to measure the parameters of a known dimension reference object, as well as 

to segment an example problematic fossil scan. The results demonstrate that the 

MIA-clustering method produces accurate segmentations and offers more flexibility 

than those of equivalent precision. Its free availability, flexibility to deal with non-

bone inclusions, and limited need for user input give it broad applicability in 

anthropological, anatomical, and paleontological contexts. 

Published Article: Dunmore C.J., Wollny G., Skinner M.M. (2018) MIA-Clustering: a novel method for 
segmentation of paleontological material. PeerJ 6:e4374 (see Appendix B) 
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Introduction 

Over the last decade, there has been an abundance of high-resolution micro-

computed tomography (µCT) studies within the paleontological and anthropological 

communities, likely due to the ability of this method to non-destructively image 

extant and fossil specimens. This has been used to investigate the inner osseous 

architecture of a diverse range of orders including, but not limited to : primates 

(Ryan et al., 2010), galliformes (Pontzer et al., 2006), xenarthrans (Amson et al., 

2017) and diprotodontians (Biewener et al., 1996). The technique allows the 

visualization of internal structures, such as trabeculae (Fajardo et al., 2007), the 

enamel-dentine junction of teeth (Skinner et al., 2009) or the inner ear (Spoor et al., 

2007). This is of particular importance for fossils, whose inner architecture could 

only be destructively analyzed otherwise (Witmer et al., 2008; Kivell, 2016). To 

visualize very small biological structures, it is necessary to ensure adequate X-ray 

penetration of the bone or fossil material being CT-scanned, as well as to control 

for common artefacts such as beam hardening (Herman, 1979). To digitally 

measure these structures and their properties, it is necessary to define them in the 

scan image and so the image must be accurately segmented (Hara et al., 2002). 

Various segmentation protocols have been developed for anthropological 

applications. Simple thresholding involves the visual selection of a grayscale value, 

any part of the image composed of voxels above this value is considered the phase 

of interest. Iterative adaptive thresholding (Ridler and Calvard, 1978; Trussell, 1979; 

Ryan and Ketcham, 2002) improves on this simple thresholding by optimizing the 

threshold value between the present phases. Conversely, Half-Maximum-Height 

thresholding (HMH, Spoor et al., 1993; Coleman and Colbert, 2007) re-calculates 

the threshold over a row of pixels, which cross a phase boundary, periodically in the 

z-axis of a three-dimensional (3D) image. These three methods are all sensitive to 

intensity inhomogeneity and background noise in a scan (Scherf and Tilgner, 2009). 

In all cases, a grayscale value threshold calculated from a different or larger section 

of an image may not accurately segment all parts of the structure. 

Instead of using grayscale values alone, region-based segmentation approaches 

incorporate the spatial information in a scan. Region growing methods use seed 
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points, manually selected by the researcher, known to be in the phase of interest. A 

segmented region is then grown from the seed by connecting neighboring voxels 

that meet specific, pre-defined criteria (Pham et al., 2000). Region splitting, 

conversely, does not use seed points but divides the image into distinct regions and 

re-fuses the image based on selected criteria. Both region-based approaches, 

however, often require a priori knowledge of image features to select seed points 

or criteria, and can be sensitive to intensity inhomogeneity (Pham et al., 2000; 

Dhanachandra and Chanu, 2017).  

Edge-detection-based segmentation offers an alternative method that discerns the 

transition between two phases and delineates these voxels as an edge. The Ray 

Casting Algorithm (RCA, Scherf and Tilgner, 2009) is an example of this method 

used in anthropology (e.g. Tsegai et al., 2013). This algorithm uses a 3D-Sobel filter 

to mark voxels at the peak of rapid changes in grayscale values and subsequently 

removes the rest of the image with a non-maximum suppression filter. To be 

considered part of the remaining edge of the phase of interest, the gradient of the 

grayscale transition must be above a user-defined ‘minimum edge strength’ 

parameter. This one-voxel-thick edge may have infrequent gaps due to local, more 

gradual, transitions not quite satisfying the ‘minimum edge strength’ threshold. In 

order to ameliorate this, a series of rays are subsequently cast at 11.25° steps 

around the normal of each edge voxel in an arc of ±45°. The rays are set to 

terminate on meeting a voxel with the specified ‘minimum edge strength’, so edge 

voxels that neighbor these gaps terminate the rays at most angles, and the gap is 

closed. The RCA segmentation produces a structure with the continuous edge 

described (Scherf and Tilgner, 2009). 

Edge-based segmentation techniques provide an advantage over other techniques 

in that they are resistant to the effects of both background noise and intensity 

inhomogeneity. Tests of segmentation methods have found RCA is more accurate 

than thresholding methods (Scherf and Tilgner, 2009). Similarly, algorithms such as 

RCA require less prior knowledge of the image, as they need no seed points or 

initial manual segmentation. Still, the RCA requires the selection of the ‘minimum 

edge strength’ value and may also incorporate minimum or maximum threshold 
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values. These input values are found during trial segmentation of a subset of the 

data (Scherf and Tilgner, 2009). The selection of these three parameters is partially 

subjective, as is the case with all segmentation algorithms. This input parameter 

selection represents another source of error, that an algorithm must be robust to, 

in addition to background noise and intensity inhomogeneity. An algorithm run with 

extreme parameters is unlikely to produce an accurate segmentation. With RCA, 

the same segmentation can be produced with different sets of input values. This 

equifinality is not a problem of the method per se, but allows for additional 

potential difficulty in reproducing the same segmentation. A researcher cannot be 

sure that a visually similar segmentation was produced using the RCA parameters. 

Here we present a segmentation method, Medical Image Analysis (MIA)-Clustering, 

implemented as free and open-source software (Wollny et al., 2013), that reduces 

subjective user decisions to a minimum. Broadly, clustering approaches sort the 

voxels or pixels of an image into a number of clusters defined by the user. This 

sorting is accomplished by iteratively calculating the center of a cluster and its 

distance to the other voxels in that cluster. This iteration then converges on stable 

clusters by minimizing this distance and the voxels in each cluster are segmented as 

distinct phases. The MIA-Clustering algorithm performs this sorting both globally 

and locally to segment an image based on its properties.  

We test the efficacy of the MIA-Clustering algorithm by segmenting a reference 

model of known thickness. Results of this segmentation and a RCA segmentation of 

the same material following Scherf and Tilgner (2009) are compared. To assess the 

robusticity of the MIA-Clustering algorithm to variation in parameter selection, 

segmentations of this synthetic material, produced by a range of inputs, are 

analyzed. Similarly, a fossil sample is segmented with different parameters to assess 

their effect on the segmentation of a highly variable, embedded, natural structure. 

This fossil also presents a challenging segmentation, due to multiple phases of 

invasive matrix as well as bright inclusions, and so permits an assessment of the 

MIA-Clustering algorithm’s robusticity to background noise and intensity 

inhomogeneity. The fossil is also segmented using the RCA to compare the 

simplicity and accuracy of both methods.  
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Materials  

A coiled stainless steel wire, which is rectangular in cross-section, was used as a 

reference object of known thickness (40 µm). This materially homogeneous 

phantom was scanned in air, with the SkyScan 1173 µCT scanner at the Max Planck 

Institute for Evolutionary Anthropology, Leipzig, Germany, at 80 kV and 62 µA. This 

shape of object has previously been shown to both approximate trabecular bone 

and be susceptible to beam hardening due to its structure (Scherf and Tilnger, 

2009). The 4224 x 4224 x 2240 voxel reconstructed image had an isometric voxel 

size of 7.86 µm. This was cropped to an image size of 3240 x 3240 x 150 voxels to 

reduce processing time. The example fossil was scanned at 90 kV and 200 µA using 

a Nikon Metrology XTH 225/320 at the University of the Witwatersrand. This fossil 

is U.W.88-119, a first metacarpal of Malapa hominin 2, Australopithecus sediba, 

dated to 1.98 million years ago and found in peloidal sandstone (Berger et al. 2010; 

Pickering et al., 2011). Permission to use this material was granted by Fossil Access 

Committee of the Evolutionary Studies Institute at this institution. The 

reconstructed image was 726 x 551 x 1826 voxels and had an isometric voxel size of 

22.6 µm.  

Methods 

MIA-Clustering Algorithm 

The MIA-Clustering algorithm is a machine-learning approach, based on fuzzy c-

means clustering (Pham and Prince, 1999) and initialized by the K-means algorithm 

(Forgy, 1965; Lloyd, 1982). First, the K-means algorithm clusters the input data, 

based on voxel intensity, into the number of classes specified by the user (Fig. 3.1a-

b). A subsequent fuzzy c-means algorithm iteratively estimates all class membership 

probabilities for each voxel, expressed as a vector (Fig. 3.1c). Based on their highest 

membership probability, voxels are globally clustered into distinct classes 

representing structures in the whole image. However, this global segmentation 

does not always capture fine detail because the input images may suffer from 

intensity inhomogeneities, which result from scanning artifacts or different levels of 
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fossil mineralization. Therefore, subsequent local fuzzy c-means segmentation is 

applied. 

Based on a user-defined grid-size parameter, the volume is subdivided into 

overlapping cubes. For each cube, the class membership probability vector is 

initialized by using the globally obtained probabilities (Fig. 3.1d). If the sum of 

membership probabilities of all voxels in a sub-volume falls below a threshold, then 

this class is not taken into account for the local, refined c-means clustering. This 

threshold can be specified by the user if desired, but the default value of 2% 

appears to generate acceptable segmentations and was used in all cases here. 

Therefore in this case, if there was no more than 2% of a cube that was globally 

clustered as a certain class, this class was not considered for that cube’s local c-

means segmentation. Subsequently, class probabilities for each voxel in overlapping 

cubes are merged, and voxels are assigned to the class for which they have the 

highest membership probability, producing the whole segmented image (Fig. 3.1e). 

This local segmentation allows the algorithm to compensate for local intensity 

variations. It follows that a grid-size value smaller than the structure of interest will 

cause the algorithm to attempt to find clusters within these structures, such as 

small inhomogeneities in cortical bone, that are generally not of interest. Therefore, 

to balance between compensating for inhomogeneities resulting from imaging 

artifacts and ignoring small inhomogeneities within the structures of interest, the 

grid-size parameter selected should be slightly larger than the largest dimension of 

the phase of interest for the segmentation. For a variable and continuous structure, 

such as trabecular bone, we recommend looking at 2D cross-sections in each plane 

and measuring thicker trabeculae to ascertain their width in pixels. The grid-size 

value should then be set a few voxels larger than these measurements to ensure 

the local segmentation is not looking for features within the phase of interest (e.g. 

Fig. 3.2). The global and local segmentations can be generated at the same time for 

comparison of each segmentation step.  

Finally, an optional threshold can then also be applied to the calculated class 

membership probabilities of each voxel. A voxel is excluded from a class if its 

highest membership coefficient does not meet or exceed the threshold given. 



75 

Voxels that do not meet the threshold for their highest class are assigned to a 

grayscale value of zero and all other classes are elevated by one gray value. Since 

the vector of membership probabilities sums to one, in practice, this allows the user 

50 threshold values (51-100%) to fine tune the segmentation based on the initial, 

data-led, analysis. The black or zero-class voxels that did not meet the threshold 

can be considered a margin of error for the segmentation (Fig. 3.1f). 

Figure 3.1. Diagram of MIA-Clustering algorithm in a 2D-image. a) Gray values are mapped 
to the z-axis. b) Gray values are initially clustered into three classes by the K-means 
algorithm; the black-class is represented as dark-gray in the 3D overlay for clarity. c) The 
fuzzy c-means algorithm iteratively estimates a class membership probability vector for 
each voxel (two example voxels are shown in blue boxes) and globally clusters each voxel 
based on its highest class probability. d) Local fuzzy c-means clustering is performed in 
overlapping sub-volumes, here represented by the colored squares. e) Overlapping class 
probabilities are merged and voxels are clustered based on their highest membership 
probability. f) An optional probability threshold is then applied at an arbitrary 75%, for 
illustrative purposes. All voxels with their highest membership probabilities below 75% are 
labeled as zero, or black, and voxels above this threshold are clustered into three classes 
labeled by gray values elevated by one; here one to three. 
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Wire Segmentation 

In order to test its efficacy, the MIA-Clustering algorithm was used to segment a 

scan of a machined wire phantom, previously measured at 40 µm thickness, 

following Scherf and Tilgner (2009; Fig. 3.3). The RCA was also used to segment the 

same image for comparison. 3D-thickness was measured at every point, in each 

segmentation of the same 3240 x 3240 x 150 voxel volume in the center of the 

wire, using the BoneJ plugin for ImageJ (Hildebrand and Rüegsegger, 1997; Doube 

et al., 2010). Average 3D-thicknesses within one voxel, or ~8 µm, of the measured 

thickness were considered effective segmentations. In the case of RCA, 3240 x 3240 

x 10 voxel trial segmentations were run to find the three input parameters that 

produced acceptable segmentations. In the case of the MIA-Clustering algorithm, 

the wire thickness of 40 µm divided by the resolution yielded a voxel size of 

approximately five, thus the grid-size was set just above this at seven. The 

probability threshold used was found after two trial segmentations. 

 

Figure 3.2. A 2D cross-section image of an example dry bone. a) One of its thickest 
trabecular struts in the image measured in Paraview, at ~32 pixels. b) A binarized image of 
the same cross-section after 3D segmentation of the bone, using the MIA-Clustering 
algorithm. The grid-size input parameter selected for the segmentation was 35 voxels as 
this was just larger than the measurement in a). 
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Parameter robusticity 

In order to test the robusticity of MIA-Clustering algorithm, the full range of both 

input parameters was independently varied and average thickness of the wire in 

the resulting segmentations was measured. The probability threshold was varied in 

5% increments from 50% to 95%. Grid-size was varied from the smallest maximum 

dimension of the data-set, here 150 voxels, to the minimum value of three. The 

fossil specimen was segmented at grid-sizes from 10 to 100 voxels, since these 

more extreme values did not produce a visually satisfactory segmentation. This 

allowed comparison between segmentations produced by a range of possible 

values and the grid-size value attained from a cursory visual inspection (e.g. Fig. 

3.2), in a variable structure of largely unknown thickness. 

 

 

 

 

 

 

 

 

 

Figure 3.3. A 3D-surface view of the machined wire phantom. 

Fossil application 

In order to assess the performance of the presented method on paleontological 

material, the fossil is segmented using the RCA as well as the MIA-Clustering 

algorithm; pre- and post- processing steps are described. Every fossil scan is likely 

to present different issues, owing to disparate diagenetic processes over varying 

timescales. In some fossils, invasive matrix may be relatively uniform, but overlap in 

attenuation intensity with the fossil bone phase preventing its removal by a global 

threshold. Similarly small bright mineral inclusions may provide grayscale value 
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outliers, thus decreasing contrast in the majority of the material, markedly affecting 

segmentation approaches based on thresholding of a grayscale value range such as 

the iterative, adaptive threshold method (Ryan and Ketcham, 2002; Fajardo et al., 

2007). Also, cracks and multiple phases of invasive matrix may create edges within 

the fossil that are distinct from the fossil bone. The present fossil scan contains all 

of these issues to some extent, as well as a global-gradient that becomes brighter 

towards the center of the fossil. This centrally higher attenuation artefact is the 

result of photons with less energy than is required to uniformly penetrate this 

dense fossil and is essentially the inverse of beam hardening.  

Implementation  

The RCA segmentations were run as a stand-alone executable on the Windows 

command line. The MIA-Clustering algorithm was run as command line tool using 

Medical Image Analysis (MIA, Wollny et al., 2013). MIA was run from a Docker 

image as a Docker container in order to run a lightweight virtual Linux machine in 

Windows (Boettiger, 2015). This approach allows MIA to be run on most widely 

available operating systems. Instructions for downloading and use of MIA are 

available at http://mia.sourceforge.net/. 

Results 

Wire segmentation 

Two acceptable sets of parameters were found for RCA segmentations, after at 

least 10 trial segmentations for each. The probability threshold value for the MIA-

clustering algorithm was found after two trial segmentations at 80% and 90%. MIA-

clustering algorithm segmentations of the 3 gigabyte wire phantom scan ran in ~10 

minutes using four cores whereas RCA ran this object in ~8 minutes using 16 cores. 

 

 

 

 

 
 

http://mia.sourceforge.net/
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Table 3.1. Mean and standard deviation of thickness calculated for each segmentation 
method.  

  

 

 

 

 

 

 

RCA.1 used parameters lower threshold: 7,000, upper threshold: 20,000 and minimum 
edge strength: 5,000; RCA.2 used lower threshold: 18,000, upper threshold: 26,000 and 
minimum edge strength: 20,000. Note the near identical measurements using two different 
sets of values. Parameters for the MIA-Clustering algorithm were grid-size: 7 and 
probability threshold 85%. 

 

As can be seen in Table 3.1 and Figure 3.4, both algorithms can produce accurate 

segmentations, segmenting the wire at thicknesses within 1 micron of the known 

width of the wire. Figure 3.5, however, demonstrates that at least for some local 

areas the MIA-Clustering algorithm segments the closely packed, fine structures 

more accurately than either of the equifinal RCA segmentations. The average 

thickness values are within 1% and 0.5% of the known thickness, respectively. This 

is considered acceptable given an isometric voxel size of eight microns (Table 3.1). 

The standard deviation of the thickness measured in the RCA segmentation is 

slightly higher than the voxel size whereas the MIA-Clustering algorithm 

segmentation standard deviation is below this level of variability and therefore is 

the result of partial volume effects. 

 
Figure 3.4. The mid-slice of the wire scan in superior view. a) The reconstructed image. b) 
The segmented image produced by the MIA-Clustering algorithm. c) The segmented image 
produced by the RCA.1 and d) the equifinal RCA.2 segmentation. Note the similarity of the 
segmentations of a) in each method (b, c, d). 

Segmentation 

Method 

Thickness 

Mean 

(Pixels) 

σ 

(Pixels) 

Thickness 

Mean (µm) 
σ (µm) 

RCA.1 5.054 1.340 39.728 10.533 

RCA.2 5.026 1.386 39.508 10.895 

MIA-Clustering 

Algorithm 
5.111 0.952 40.176 7.484 
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Figure 3.5. A magnified section of the mid-slice of the wire phantom scan (Fig. 3.4) in 
superior view. a) The reconstructed image. b) The segmented image produced by the MIA-
Clustering algorithm. c) The segmentation produced by the RCA.1 and d) the equifinal 
RCA.2 segmentation. Note the separation of closely packed wire in the red circles in a) and 
b) but not in c) and d). 

Parameter robusticity  

In order to evaluate the potential effect of input error in the MIA-Clustering 

algorithm, the wire was segmented over the full range of each input variable, and 

average 3D-thickness of each segmentation was measured. Figure 3.6a 

demonstrates the linear relationship between probability threshold and thickness 

for this image. The range of grid-size values result in a thickness range of 12 µm. 

Figure 3.6b demonstrates an exponential relationship from the maximum possible 

(150) to the minimum possible grid-size (3) and a thickness range of 9 µm. This 

parameter quickly converges on values within 10% of the known thickness of the 

wire when grid-size becomes small enough to segment the finer structures of the 

image at ~25 voxels. From this point lower grid-sizes produce a larger variation in 

thickness values as fine structures are more consistently segmented, only 

underestimating thickness when a grid-size smaller than the width of the fine 

structures is used. As expected, different grid-sizes produced a wider range of mean 

thickness measures (~100 µm) for the structurally variable fossil, than the machined 

wire (Figs. 3.6 and 3.7). It should be noted that these values include cortical bone 

and reflect variation in segmentation of the whole image rather than a trabecular 

analysis. Despite this larger range, thickness values display an exponential 

relationship with grid-size quickly converging on the value obtained from visual 

inspection. Much as in the grid-size comparison for the machined wire (Fig. 3.6b), 

when grid-size becomes small enough to segment the finer structures of the image 

at ~35 voxels variation in thickness increases (Fig. 3.7). This trend continues until a 

grid-size smaller than the width of the fine structures is used and the method 

begins to detect inhomogeneities within the osseous structure. 
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Figure 3.6. The effect of MIA-Clustering algorithm parameters on average thickness of the 

wire. a) Full range of possible probability thresholds and with grid-size of 7 held constant. 

b) Full range of possible grid-sizes with probability threshold held constant at 85%. 

 

 

Figure 3.7. The effect of grid-size input on average thickness estimates of the fossil, after 
MIA-Clustering segmentation. Grid-size ranged from 10 to 100 voxels. The red line 
represents the grid-size of 20, ascertained from manual measurement of the fossil as per 
the technique in Fig. 3.2. 
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RCA fossil segmentation  

RCA is only able to segment the highest attenuation phase in an image, because it 

will only exclude voxels on the other side of a gradient-defined edge if they have a 

lower gray value than the phase of interest. Since the structure of interest was not 

the brightest part of the image (Fig. 3.8a), it was necessary to invert the image in 

Avizo 6.3 (Visualization Sciences Group, Fig. 3.8b). A median filter of kernel size 

three was run as part of the RCA program using a lower threshold of 19,000, an 

upper threshold of 29,000 and minimum edge strength of 2,500 (Fig. 3.8c). This was 

not a satisfactory segmentation of the image, as much of the trabeculae near the 

center of the bone were lost. Therefore, in order to somewhat reduce the 

artifactual global-gradient, the original image was subjected to a median filter of 

kernel size 25, obliterating structures but preserving the global-gradient (Fig. 3.8d). 

The resultant image could then be added to the inverted image to ‘cancel-out’ the 

global grayscale gradient without affecting the edge gradients of the trabeculae to a 

large extent (Fig. 3.8e). RCA segmentation could then produce an improved 

segmentation with same parameters as initially used (Fig. 3.8f). 

MIA-Clustering algorithm fossil segmentation 

As a pre-processing step, a noise reducing median filter of kernel size three was 

applied, and the image was thresholded at 10,000 to remove noise in the 

background of the image (Fig. 3.8a). The MIA-Clustering algorithm was run to look 

for three classes with a grid-size of 20, since the thickest elements of the trabecular 

bone were ~15 voxels in dimension from a cursory inspection in Avizo 6.3 (Fig. 

3.8g). No probability threshold was needed in this case for refinement, though 

running the command with a threshold of 50% achieves the same result. 

Subsequently the image was binarized on the second brightest class in the image, 

leaving only the fossil bone phase (Fig. 3.8h). This post-processing step allows for 

direct comparison with the RCA segmentation but is not necessary (Fig. 3.8f, c, i). 
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Discussion 

Wire segmentation 

The current study presents a novel open-source method for segmenting bone or 

fossil bone phases from high-resolution µCT images. Tests using a wire phantom 

indicate that both this technique and RCA are capable of producing accurate 

segmentations that are within 1% of the wire phantom’s thickness (Table 3.1; Figs. 

3.5 and 3.6). Therefore, in scans with high material contrast, including those of the 

present synthetic sample and many examples of dry bone, it appears both 

segmentation techniques would produce accurate results. However, in practice, the 

MIA-Clustering algorithm offers several advantages over other segmentation 

techniques by keeping subjective user decisions to a minimum to increase the 

reproducibility of results. 

Parameter robusticity 

Many segmentation approaches can require manual interaction with the image to 

provide appropriate input parameters, such as the placement of seed points for a 

region-based segmentation or the visual inspection of trial RCA segmentations. In 

this case, the user must iteratively determine whether one set of trial RCA 

parameters produced a better segmentation of the wire phantom than the last and 

when these parameters could no longer be improved. It can often take many 

attempts to find acceptable parameters, since there is no objective starting point 

other than the range of grayscale values in the image for the lower and upper 

thresholds. Since ‘minimum edge strength’ is not easily visualized, it can be initially 

difficult to find an acceptable value for this parameter. Conversely, the MIA-

Clustering algorithm input parameters are data-led, as grid-size selection is based 

on the dimensions of the structure to be segmented, either through prior 

knowledge or an initial, manual, inspection of the material (Fig. 3.2). In the case of 

the wire, a grid-size of seven is just larger than its (known) five voxel thickness, and 

six voxels may be too small due to potential partial volume averaging effects. In the 

case of the fossil, cursory measurements in three orthogonal 2D-slices of the image 

were sufficient to determine an appropriate grid-size of 20. Average thickness 

measures of segmentations produced by different grid-sizes demonstrate that a 



84 

grid-size of 20 is within the range of values that greatly affect the segmentation 

result (Fig. 3.7) but is not so small that algorithm detects inhomogeneities within 

the phase of interest and begins to break-up and thin trabeculae (Fig. 3.8g, h, i). In 

both cases, as the grid-size parameter selection was data-led, there was an 

objective justification for the value used. Though this value may not necessarily 

produce the optimal MIA-Clustering segmentation, especially in the fossil, it does 

provide a starting point within a narrow range of values that allow the 

segmentation of finer structures to varying degrees. Further, as the grid-size 

parameter defines a local reapplication of a machine-learning algorithm, it could be 

argued it is more objective than a user-defined threshold of either absolute 

grayscale values or their gradients. Therefore, this data-led parameter selection 

requires minimal manual interaction with an image and provides an objective 

justification for the value used, even when segmenting a structure of largely 

unknown and variable dimensions, such as osseous or fossil material. 

The optional probability threshold parameter, however, is more subjective as it is 

only found by trialing values. Yet, this final step of the algorithm may only fine tune 

the segmentation from the data-led clustering results. Indeed, over the full range of 

50 possible values not only did the segmented wire phantom show just a 30% 

variation in measured average thickness, it did so in a predictable way with strong a 

linear relationship (Fig. 3.6a).This is due to the fact that voxels at the boundary of 

each segmented phase will have lower membership coefficients than those in the 

middle on the phase (Fig. 3.1c). As the threshold is raised, more of these boundary 

voxels are no longer considered part of this phase and the thickness of the 

structure will reduce in-kind (Fig. 3.1f). This relationship allows the user to 

potentially derive an acceptable value after just two trials. The probability threshold 

is particularly useful for the accurate segmentation of abrupt phase transitions, 

such as the edge of the machined wire. In structures with more gradual or complex 

edge transitions, such as fossilized or extant bone, this parameter is less useful as 

the effects of different values will be less predictable; the probability threshold was 

not used in the fossil segmentation. Therefore the MIA-Clustering algorithm keeps 

subjective user decisions to a minimum by basing input parameters on the 
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properties of the image, rather than iterative manual interaction and more 

subjective refinement of the result is done in a predictable way, over a small range 

of input values.  

Another way the MIA-Clustering algorithm reduces subjective user decisions is by 

limiting input parameters to a minimum. The algorithm only takes two input 

parameters, each with a smaller range of values than the three of RCA, since 

minimum edge strength ranges from 0-32,000 and the thresholding limits are based 

on the potential gray value range of 16-bit data, 0-65,535. Initially, the relatively 

small range of inputs for the MIA-Clustering algorithm could be seen as 

detrimental, affording the researcher less freedom to find values to segment the 

data accurately. However, this constraint allows for less error in parameter 

selection and is sufficient to quickly converge on a single pair of parameters that 

produce an acceptable segmentation (Figs. 3.6 and 3.7). An additional benefit to 

having a small range of input values is that it does not allow for multiple 

combinations that yield similar results. Here, there are at least two sets of input 

parameters for the RCA that can produce near identical segmentations and 

thickness value measurements (Table 3.1; Figs. 3.4 and 3.5). The MIA-Clustering 

algorithm is not subject to the same equifinality and so results are more 

reproducible since they can only be achieved via the same input.  

The MIA-Clustering algorithm appears to be as accurate as another leading 

segmentation technique, RCA, in segmenting the wire phantom. Yet, the method 

presented here reduces subjective user decisions to a minimum by grounding input 

parameters in the properties of the image as well as limiting the range of these 

input parameters and in doing so, obviating the issue of equifinality. This increased 

objectivity allows for faster more reproducible segmentations (Table 3.2). Indeed, 

since these parameters are not based on grayscale values but rather the structures 

at hand, they may be applied uniformly across a sample of different scans of similar 

synthetic, or dry osseous, material removing another potential source of error in 

segmentation and measurement across a sample. However, perhaps the most 

useful property of the MIA-Clustering algorithm is its ability to segment more 

complex, embedded structures, with less clear contrast, such as fossil material. 
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Table 3.2. Summary of subjective user decisions minimized by the MIA-Clustering 

Algorithm. 

Subjective user-
decision 

Minimized by the MIA-
Clustering Algorithm? 

Minimized by RCA? 

Initial input 
parameter 
selection 

Yes, grid-size should be slightly 
larger than cursory measurement 

of the structure of interest. 

No, while maximum upper 
and lower thresholds may 

be found from the data 
range in the image, 

appropriate minimum 
edge strength values are 

not clear initially. 

The number of 
decisions required. 

Yes, only the single parameter, 
grid-size, must be chosen. The 

additional probability threshold 
is optional and simply a 

refinement of the segmentation. 

No, three parameters 
must be chosen, each of 
which could have a great 

effect on the 
segmentation. 

The input 
parameter values 
selected from the 

possible range. 

Yes, grid-size should be slightly 
larger than the maximum 2D 

dimension of desired structure 
and only values close to the 

initial grid-size value will have a 
great effect on the 

segmentation. 

No, the full range of 16-bit 
data grayscale values (0-

65,535) and minimum 
edge strength values from 

0-32,000 are available. 
Further different 

combinations may 
produce the same result. 

How to invert or 
otherwise, pre-

process an image 
where the desired 

structure is not 
the brightest in 

the image. 

Yes, multiple classes can be 
segmented at once; the desired 
class can be thresholded out if 

required. Similarly, other types of 
data such as 8-bit may be 

segmented. 

No, pre-processing steps 
required for the algorithm 
are not standardized and 

maybe unique to 
particular images. 

How to ensure 
parameters used 

in segmentation of 
different scans do 

not introduce 
additional 

variation into the 
structures 
analyzed. 

Yes, similar structures (such as 
trabeculae in two fingers of the 
same hand) should have similar 

grid-sizes applied. 

No, scans of two very 
similar materials may 

have different gray values 
and so require different 

sets of input parameters. 
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Fossil Segmentation 

One of the clearest challenges uniquely presented by segmentation of the fossil 

material is the high-attenuation invasive matrix. As the highest attenuation phase is 

selected by default in RCA, it was necessary to invert the foreground image, where 

matrix has a higher attenuation than the fossil bone (Fig. 3.8b), adding another 

pre-processing step and a potential source of error. Conversely, the MIA-Clustering 

method can segment multiple classes at once. Matrix, background and bone may 

each be a distinct initial cluster set, used to segment the image into separate gray 

value classes. Any of these classes can be extracted from the image via a simple 

threshold if subsequent analysis requires a binarized image (Fig. 3.8h). MIA (Wollny 

et al., 2013) offers a number of single-task command line tools, including a binarize 

filter that was used to produce the present result. The highest attenuation structure 

need not be the one of interest, and so the extra step of inverting the image is not 

required. Since matrix is also segmented, it is also easier to compare the 

segmentation to the original image by eye, as the white of binarized image may 

appear larger than the original simply because it is brighter (e.g. Fig. 3.8a, g, h). 

A further challenge of this particular fossil image is the global-gradient which makes 

the center of the object appear brighter than the edges. The ray casting step of the 

RCA was invented to close gaps in Sobel filter defined edges that are caused by local 

grayscale transitions, not steep enough to meet the globally set ‘minimum edge 

strength’ parameter. The first derivative of grayscale value transitions, rather than 

absolute values, is still based on a global, if locally applied, threshold. Therefore, 

although RCA mitigates the effects of a global-gradient, it is not immune to them 

(contra Scherf and Tilgner, 2009). The global intensity gradient may affect one side 

of an edge more than the other if one edge is more central and, in doing so, may 

change the grayscale gradient over the transition. Therefore, RCA may not find 

edges where they exist in the cases of these artefacts. The present fossil scan 

appears to be darker in the center of the inverted image (Fig. 3.8b). RCA accurately 

segments the trabeculae closer to the edge of the fossil but fails to segment the 

central trabeculae as their grayscale gradients relative to the matrix phase are not 

steeper than the ‘minimum edge strength’ threshold applied (Fig. 3.8c). 
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Ameliorating this global-gradient as per the extra pre-processing steps allows the 

RCA with the same parameters to segment these central trabeculae (Fig. 3.8f). 

However, these extra un-prescribed steps make the segmentation process less 

efficient and potentially less reproducible. The MIA-Clustering algorithm, however, 

does not use grayscale based thresholds but considers only the local sub-volumes at 

the edge or the center of the fossil when segmenting them and can therefore 

segment the trabeculae in both areas of the bone concurrently (Fig. 3.8g, h, i). 

Both fossil segmentations contain thin rings at the boundary of invasive matrix and 

air as these features are present in the initial image and have similar characteristics 

as trabecular bone (Fig. 3.8c, f, i). While both algorithms fully segment the image, 

researchers may wish to remove these features, before analysis, as they are not of 

biological origin. While this is beyond the scope of the current method, we would 

suggest applying a connected component algorithm, as available in software such 

as Avizo, to remove many of these features that are unconnected to the segmented 

bone. Unfortunately, to the authors’ knowledge, remaining connected features 

must be removed manually at the researcher’s discretion. 

Unlike RCA and single threshold methods, the MIA-Clustering algorithm has the 

flexibility to concurrently segment multiple classes across a fossil specimen affected 

by a global-gradient scanning artefact, segmenting a phase of interest that is not 

necessarily the brightest in the image. The preservation of multiple classes in the 

segmentation provides a higher fidelity comparison between the segmentation and 

the original image. Also, the lack of additional pre-processing steps required for this 

segmentation allows for fewer potential sources of error and greater reproducibility 

of results. Therefore, this method is particularly suitable for the segmentation of 

complex images containing several embedded structures. These images may 

include fossils with invasive matrix or possibly even images of several tissues 

produced by magnetic image resonance (MRI) techniques. The presented algorithm 

can also be used on 8-bit data though the efficacy of the segmentation will depend 

on the clarity of the original image.  
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Figure 3.8. Cross-section (XY plane) through the fossil at various stages of segmentation 
using RCA and MIA-Clustering. a) The fossil scan. b) The image after foreground inversion. 
c) The RCA segmentation of the inverted image overlaid on the original image (red), note 
the lack of segmentation of central trabeculae (e.g. above the white asterisk). d) An image 
preserving the global gradient of the fossil scan but little of its spatial structure, after a 
strong median filter. e) The result of merging the global gradient and the inverted image. f) 
The RCA segmentation of the merged result overlaid on the original image (blue). g) The 
MIA-Clustering segmentation of the three classes in the image. h) The MIA-Clustering 
segmentation binarized on the second brightest class, the fossilized bone phase. i) This 
binarized segmentation overlaid on the original image (yellow).  
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Conclusion 

Here, we present a segmentation algorithm implemented in free open-source 

software, which can be run on most operating systems and is as effective as other 

leading algorithms, in terms of segmentation accuracy. The move from a gray value 

based approach to a data-led, machine-learning approach allows the MIA-

Clustering algorithm to lessen the amount of subjective user choices required for 

segmentation. Therefore, MIA-Clustering segmentations of µCT data offer 

increased reproducibility. Further, the flexibility of this MIA-Clustering algorithm 

allows for segmentation of problematic modern or fossil material, which often 

contains more than two structures and may be affected by common scanning 

artifacts. The robusticity of the algorithm is demonstrated by the lack of need for 

additional image processing steps and by how quickly the range of possible input 

parameters converge on those acceptable for segmentation. The MIA-Clustering 

algorithm is a flexible, robust method that produces highly reproducible results, 

ideal for segmenting fossil bone. As RCA provides an equivalent level of accurate 

segmentation in extant bone, it is used to segment these samples for subsequent 

thesis chapters. MIA-clustering could also have been used for this purpose but was 

still under development when work began on these chapters. However, due to its 

objectivity and ability to deal with complex fossil scans, the MIA-clustering 

approach had to be used to segment all fossil scans analysed in the present thesis. 
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Chapter 4 

Metacarpal trabecular bone varies with distinct 

hand-positions used in hominid locomotion 

Abstract 

Trabecular bone remodels during life in response to loading and thus should, at 

least in part, reflect potential variation in the magnitude, frequency and direction of 

joint loading across different hominid species. Here we analyse the trabecular 

structure across all non-pollical metacarpal distal heads (Mc2-5) in extant non-

human great apes, expanding on previous volume of interest and whole-epiphysis 

analyses that have largely focussed on only the first or third metacarpal. 

Specifically, we employ both a univariate statistical mapping and a multivariate 

approach to test for both inter-ray and interspecific differences in relative 

trabecular bone volume fraction (RBV/TV) and degree of anisotropy (DA) in Mc2-5 

subchondral trabecular bone. Results demonstrate that while DA values only 

separate orangutans (Pongo) from African apes (Pan troglodytes, Pan paniscus, 

Gorilla gorilla), RBV/TV distribution varies with the predicted loading of the 

metacarpophalangeal (McP) joints during locomotor behaviours in each species. 

Gorillas exhibit a relatively dorsal distribution of RBV/TV consistent with habitual 

hyperextension of the McP joints during knuckle-walking, whereas orangutans have 

a palmar distribution consistent with flexed McP joints used to grasp arboreal 

substrates. Both chimpanzees and bonobos possess a disto-dorsal distribution of 

RBV/TV, compatible with multiple hand postures associated with a more varied 

locomotor regime. Further, inter-ray comparisons reveal RBV/TV patterns 

consistent with varied knuckle-walking postures in chimpanzees and bonobos, in 

contrast to higher RBV/TV values toward the midline of the hand in Mc2 and Mc5 of 

gorillas, consistent with habitual palm-back knuckle-walking. These patterns of 

trabecular bone distribution and structure reflect different behavioural signals that 

could be useful for determining the behaviours of fossil hominins. 

 
Published Article: Dunmore, C.J., Kivell, T.L., Bardo, A., and Skinner, M.M. (2019) Metacarpal 
trabecular bone varies with distinct hand-positions used in hominid locomotion. Journal of Anatomy, 
235 (1), 45-66 (see Appendix B) 
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Introduction 

Trabecular, or cancellous, bone has been experimentally shown to remodel (Cowin, 

1986; Frost, 1987) in response to loading across a range of phylogenetically 

disparate taxa (Biewener et al., 1996; Pontzer et al., 2006; Barak et al., 2011). 

Therefore, trabecular architecture can provide additional information about how a 

bone was loaded during life, compared to external morphology alone (Ruff and 

Runestad, 1992; Tsegai et al., 2013). The term ‘remodeling’ is used here, rather 

than ‘modeling’, as it occurs throughout life and is therefore key to a bone’s “ability 

to function in a changing mechanical environment” (Martin et al., 1998 pp. 96; see 

Allen and Burr, 2014). When trabeculae are preserved in fossil hominins they have 

been used to infer habitual loading and reconstruct both locomotor (DeSilva and 

Devlin, 2012; Barak et al., 2013; Su et al., 2013; Zeininger et al., 2016; Ryan et al., 

2018) as well as manipulative (Skinner et al., 2015; Stephens et al., 2018) 

behaviours during human evolution. These functional inferences rely on 

comparative analyses that associate known behaviours of extant primates with 

variation in trabecular architecture at particular joints (Orr, 2016). 

The hand makes direct contact with the substrate during non-human primate 

locomotion, and therefore its trabecular structure may provide a clearer functional 

signal than skeletal elements that are further removed from substrate reaction 

forces, such as the humerus (Ryan and Walker, 2010; Scherf et al., 2016). Indeed, 

previous studies of the internal bone structure of hand bones have found 

substantial differences between primate species with distinct habitual locomotor 

modes (Zeininger et al., 2011; Lazenby et al., 2011b; Tsegai et al., 2013; Skinner et 

al., 2015; Matarazzo, 2015; Stephens et al., 2016; Chirchir et al., 2017; Barak et al., 

2017). The majority of these studies have investigated trabecular bone structure in 

the third metacarpal (Mc3) head because the central ray is buffered from radio-

ulnar forces, is consistently involved in weight bearing during locomotion, and often 

experiences peak reaction forces in ape locomotion (Zeininger et al., 2011; Tsegai et 

al., 2013; Matarazzo, 2015; Chirchir et al., 2017; Barak et al., 2017).  
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Different methodological approaches to the analysis of trabecular structure in the 

primate Mc3 head have yielded varied results. Tsegai et al. (2013) applied a whole-

epiphysis approach and found that African apes had higher trabecular bone volume 

fraction (BV/TV) and degree of anisotropy (DA) than suspensory hominoids, 

especially in the dorsal region of the Mc3 head, consistent with an extended 

metacarpophalangeal (McP) joint during knuckle-walking. Suspensory orangutans 

and hylobatids were found to have more isotropic trabeculae and lower overall 

BV/TV that was highest in the palmar aspect of the Mc3, consistent with flexed-

finger arboreal grips. Using fewer volumes of interest (VOI), Chirchir et al. (2017) 

found that there were no significant differences in DA across a sample of 

chimpanzees, orangutans, baboons and humans, but that BV/TV was significantly 

higher in distal and palmar portions of the Mc3 head in orangutans and, to a lesser 

extent in humans, consistent with flexed-finger grips used during arboreal 

locomotion and manipulation, respectively. In contrast, Barak et al. (2017), using a 

similar method, found the dorsal VOI in both chimpanzees and humans had 

significantly lower BV/TV and DA than the distal or palmar VOIs. Despite these 

conflicting results, these studies uniformly found that humans possessed 

significantly less BV/TV throughout the Mc3 head relative to other primate species 

(Tsegai et al., 2013; Barak et al., 2017; Chirchir et al., 2017). This finding is 

consistent with other skeletal elements (Chirchir et al., 2015; Ryan and Shaw, 2015) 

and may reflect, at least in part, lower loading of the hand during manipulation 

compared with that of locomotion (Tsegai et al., 2013), or sedentism in recent 

human populations, or both (Ryan and Shaw, 2015). Although the whole-epiphysis 

approach has found a relationship between variation in metacarpal trabecular 

structure and hand use (Tsegai et al., 2013), this approach has been limited to 

comparisons of average trabecular parameters (Tsegai et al., 2013; Skinner et al., 

2015; Stephens et al., 2016) or sections thereof (Georgiou et al., 2018). Recently 

some researchers have called for (Chirchir et al., 2017), or developed (Sylvester and 

Terhune, 2017), new methods that can better quantify and statistically compare 

trabecular structure across different individuals and species. Here, we build on this 

previous work by analysing trabecular structure across all of the non-pollical 

metacarpal heads (Mc2-5) and applying a geometric morphometric, statistical 
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mapping method to trabecular bone data produced by the whole-epiphysis 

approach. We compare relative trabecular bone volume fraction (RBV/TV) and 

degree of anisotropy (DA) between Mc2-5 both within and across the following 

species: bonobos (Pan paniscus), chimpanzees (Pan troglodytes), gorillas (Gorilla 

gorilla gorilla) and orangutans (Pongo abelii and Pongo pygmaeus). RBV/TV values 

are BV/TV values divided by the average BV/TV of each metacarpal head (see 

methods). This approach allows for the quantification of trabecular architecture in a 

heuristic sample, less affected by issues of subsampling of a continuous structure, 

to infer differences in habitual hand loading and posture associated with hominid 

locomotor modes.  

Hand use and locomotion 

Hand postures vary greatly during different types of arboreal and terrestrial 

locomotion in apes (Hunt et al., 1996; Schmitt et al., 2016). However, detailed 

studies of hominid hand postures in the wild (Hunt, 1991; Neufuss et al., 2017; 

Thompson et al., 2018) and captive settings (Wunderlich and Jungers, 2009; 

Matarazzo, 2013; Samuel et al., 2018) can inform predictions of frequent McP joint 

positions and loading across the hand in different species. While frequent McP joint 

postures may only reflect part of a large and varied locomotor repertoire, previous 

research suggests that subchondral trabecular patterns of the metacarpal head can 

be statistically discerned among species with different locomotor modes (Tsegai et 

al., 2013; Chirchir et al., 2017; Barak et al., 2017). 

 

 

 

 

 

 

Figure 4.1. Diagrammatic representations of the metacarpophalangeal postures during a) 

a hook grip, b) a ‘double-locked’ grip and c) knuckle-walking and d) a diagonal power-grip. 

Images are adapted from Lewis (1977), Rose (1988), and Tsegai et al. (2013). 
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Pongo 

Orangutans (here including P. pygmaeus and P. abelii) are primarily arboreal, 

engaging in suspensory locomotion to move through the canopy via tree branches 

and lianas (Cant, 1987; Sugardjito and Cant, 1994; Thorpe and Crompton, 2005). 

Specifically, researchers have emphasized the use of multiple supports and 

quadrumanous orthograde locomotion in orangutans (Thorpe and Crompton, 2006; 

Manduell et al., 2011), though specific hand grips have not been reported in detail 

(Thorpe and Crompton, 2005). However, during suspension orangutans are thought 

to employ a hook-grip, in which the proximal phalanges align with the proximo-

distal axis of the metacarpal, such that the distal McP joint is thought to be loaded 

in tension (Sarmiento, 1988; Rose, 1988; Schmitt et al., 2016; Fig. 4.1a.). Similarly a 

double-locked grip, in which all joints of the ray, including the McP, are greatly 

flexed around a small substrate, is also adopted in orangutan locomotion (Napier, 

1960; Rose, 1988; Fig. 4.1b.).  

The McP joints in orangutans possess a limited degree of possible hyperextension 

at 19 degrees (Susman, 1979; Rose, 1988). Mc2-4 are also dorso-palmarly thicker at 

the diaphysis, and all the non-pollical metacarpal heads possess palmarly wide 

articular heads suggestive of habitual McP flexion (Susman, 1979). As the fourth 

intermediate and proximal phalanges may often equal or exceed the length of 

those comprising the third phalanx in orangutans (68% and 42% respectively; 

Susman, 1979), Rose (1988) has argued that the fourth ray is more in line with the 

second and third rays, which would be advantageous for both hook and double-

locked grips in which rays 2-5 are typically all engaged. While body size in 

orangutans is sexually dimorphic (Rodman, 1984) and there is some evidence for 

differential locomotion between the sexes (Sugardjito and van Hooff, 1986), further 

work has found these differences to be relatively slight (Thorpe and Crompton, 

2005). Therefore, we do not expect habitual prehensile postures to greatly differ 

between male and female orangutans. 
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Gorilla 

The most frequent locomotor mode of gorillas terrestrial knuckle-walking (Inouye, 

1994; Doran, 1996; Remis, 1998). However, this genus can vary substantially in their 

degree of arboreality based on the species, sex and local ecology (Doran, 1996; 

Remis, 1998; Neufuss et al., 2017). The western lowland gorilla (Gorilla gorilla 

gorilla) is reported to probably spend at least 20% of its time in trees (Tuttle and 

Watts, 1985; Remis, 1998). During knuckle-walking, the McP joint is hyperextended 

to place the arm above the weight-bearing intermediate phalanges (Tuttle, 1969; 

Matarazzo, 2013; Fig. 4.1c). Gorillas usually uses a ‘palm-back’ hand posture during 

knuckle-walking, which places the McP orthogonal to the direction of travel while 

consistently loading rays 2-5. This differs from the more variable hand postures, as 

well as digit loading, found in chimpanzees and probably reflects the relatively 

longer fifth digit of gorillas (Tuttle, 1969b; Susman, 1979; Inouye, 1992; 1994; 

Wunderlich and Jungers, 2009; Matarazzo, 2013; but see Thompson et al., 2018). In 

a study of digit pressures during knuckle-walking captive gorillas, Matarazzo (2013) 

found that the fifth digit always touches down first with weight moving radially until 

the second (61%) or third (39%) digit lifts off. Peak pressures were significantly 

lower on the fifth digit and highest on the third, but overall gorillas maintained a 

more even distribution of pressure across rays 2-5 than that of captive 

chimpanzees.  

Compared to terrestrial knuckle-walking, far less is known about hand postures 

used by gorillas during arboreal locomotion. In captivity, gorillas are described as 

using a power grip with little McP flexion when vertically climbing large-diameter 

substrates (Sarmiento, 1994). Neufuss et al. (2017) also described a similar type of 

power grip using all five digits and the palm in wild mountain gorillas (Gorilla 

beringei beringei) when climbing larger substrates. However, when climbing 

medium-sized substrates (6-10 cm diameter), mountain gorillas used a diagonal 

power grip, in which the substrate lies diagonally across the fingers and palm, with 

an extremely ulnarly-deviated wrist posture (Neufuss et al., 2017; Fig. 4.1d). In this 

diagonal power grip, weight appeared to be frequently borne by digits 2-4 while the 

fifth McP joint was unable to flex to the same extent due to the irregular shape of 
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some substrates. Although similar data on arboreal hand postures is not available, 

we assume that during arboreal locomotion the McP joints of lowland gorillas are 

moderately flexed, and that this flexion increases as the substrate diameter 

decreases, with potentially less flexion at the fifth McP joint. However, this arboreal 

McP posture is likely less frequent than that associated with knuckle-walking in 

gorillas. Indeed, while female gorillas are more arboreal than larger males (Remis, 

1995), the primary locomotor mode for both sexes is knuckle-walking (Tuttle and 

Watts, 1985; Remis, 1995; Crompton et al., 2010).  

Pan troglodytes 

Generally, chimpanzees (P. troglodytes) are thought to be more arboreal than 

gorillas (Remis, 1995; Doran, 1996; Thorpe and Crompton, 2006) though this may 

be the result of comparisons to mountain gorillas that are better habituated to 

humans than their more arboreal lowland counterparts (Doran, 1997; Hunt, 2016; 

Neufuss et al., 2017). There is a large degree of variation in the chimpanzee 

locomotor repertoire depending on the local ecology (Doran and Hunt, 1994; 

Carlson et al., 2006). Pan troglodytes verus engages in knuckle-walking, both 

arboreal and terrestrial, in ~85% of their locomotion and spend more time in the 

trees than P. troglodytes schweinfurthii (Doran and Hunt, 1994; Carlson et al., 

2006). Compared with gorillas, chimpanzees use more varied hand postures during 

knuckle-walking (Tuttle, 1969; Inouye, 1994; Matarazzo, 2013). Chimpanzees have 

been thought to primarily load digits 3 and 4 during knuckle-walking (Tuttle, 1969; 

Tuttle and Basmajian, 1978). Inouye (1994) found that during captive terrestrial 

knuckle-walking, larger chimpanzees used their second digit significantly less often 

than gorillas of equivalent size and both chimpanzees and bonobos generally used 

their fifth digit significantly less often than gorillas. Pressure studies also found that 

the fifth digit of chimpanzees did not touch-down in 20% of knuckle-walking steps 

and that this digit experienced significantly less load than the other digits when it 

was used (Wunderlich and Jungers, 2009; Matarazzo, 2013). Further, chimpanzees 

use both ‘palm-back’ (~40%) and ‘palm-in’ (~60%) postures, compared with a more 

consistent use of mainly ‘palm-back’ (~86%) knuckle-walking postures in gorillas 

(Wunderlich and Jungers, 2009; Matarazzo, 2013). During ‘palm-in’ knuckle-walking 
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the intermediate phalanges roll radially in the direction of travel and the second or 

third digit usually experiences the highest pressures (Wunderlich and Jungers, 2009; 

Matarazzo, 2013). In ‘palm-back’ knuckle-walking, the third digit is typically placed 

in front the others, and usually is the last to touch off, which may be related to the 

fact that the third ray may be relatively longer in chimpanzees than in gorillas 

(Matarazzo, 2013; 2013b). Compared to gorillas, the peak pressures experienced by 

digits 2-4 are more variable in chimpanzees (Wunderlich and Jungers, 2009; 

Matarazzo, 2013). 

P. troglodytes verus most often uses climbing and scrambling locomotion in trees 

(60-77%, Doran, 1992; 1993). Chimpanzees are described as using power grips, 

diagonal power grips and hook grips during arboreal locomotion, all of which 

typically involve some degree of flexion at the McP joint (Alexander, 1994; Hunt, 

1991; Marzke et al., 1992; Marzke and Wullstein, 1996; Napier, 1960). Climbing 

often encompasses vertical climbing and clambering in naturalistic studies. Hunt 

(1991) has emphasized the role of vertical climbing in wild chimpanzees and while 

the grips employed tend to be ulnarly deviated at the wrist, they are dependent on 

substrate diameter. Neufuss et al. (2017) also found that chimpanzees used both 

power grips and diagonal power grips, but with a less ulnarly deviated wrist than in 

gorillas. A diagonal power grip involves greater flexion of the more ulnar rays and in 

some cases flexion at the fifth carpometacarpal joint, which may likely be 

associated with ulnar deviation at the wrist (Marzke and Wullstein, 1996; Fig. 4.1d). 

Therefore the locomotor hand postures of chimpanzees may be characterised as 

primarily those of knuckle-walking but with a more frequent arboreal grasping 

component than in gorillas. Given the lower sexual dimorphism in chimpanzees 

relative to gorillas and orangutans (Doran, 1996), there may be less variation in 

grasping postures in this species. 

 Pan paniscus 

While bonobos (P. paniscus) have a relatively similar locomotor repertoire to 

chimpanzees, they are thought to be more arboreal (Alison and Badrian, 1977; 

Susman et al., 1980; Susman, 1984) and have been shown to use significantly more 

palmigrady in the trees (Doran, 1993; Doran and Hunt, 1994; Crompton et al., 
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2010). The former claim, however, may be an artefact of incomplete habituation of 

the individuals in these studies and more data is needed (Hunt, 2016), the relatively 

longer and heavier lower limbs of this species make for more generalised anatomy 

than that of chimpanzees (Zihlman, 1984; D’Août et al., 2004). During terrestrial 

knuckle-walking bonobos use the fifth digit even less than chimpanzees and Mc5 is 

shorter than the rest of the metacarpals in bonobos (Inouye, 1994). In a pressure 

study of arboreal locomotion, Samuel et al. (2018) found that captive bonobos used 

‘palm-back’ (64%) or ‘palm-in’ (36%) knuckle-walking hand postures, and that peak 

pressure was experienced by or around the third digit. However, unlike 

chimpanzees (Wunderlich and Jungers, 2009), they did not roll radially across their 

digits and the fifth digit always made contact with the substrate (Samuel et al., 

2018). During vertical climbing and suspensory postures, bonobos used flexed-

finger power grips similar to those described in other non-human great apes and 

again peak pressure was experienced by or around the third digit (Samuel et al., 

2018). In summary, the hand postures used during locomotion in bonobos can be 

characterised as similar to those of chimpanzees, including a relatively low level of 

sexual dimorphism compared to other non-human great apes (Doran, 1996), 

although more frequent palmigrady and arboreal grasping differentiate this species 

from chimpanzees. 

Predictions 

Based on the summary above, we predict RBV/TV and DA in Pongo will be 

significantly higher in the disto-palmar region of the metacarpal heads compared to 

other hominids and no significant inter-ray differences in both measures due to the 

more consistent recruitment of rays 2-5 during hook and double-locked grasping. In 

Gorilla we predict a significantly higher dorsal distribution of RBV/TV and DA in 

each metacarpal head compared with all other hominids, reflecting McP joints 

frequently loaded in a hyperextended posture during knuckle-walking. As P. 

troglodytes may be more arboreal and uses more variable knuckle-walking 

postures, we predict this species will have significantly lower dorsal RBV/TV and DA, 

with more significant differences across rays, than that of Gorilla. We also predict 

this mixture of arboreality and terrestrially in P. troglodytes will elicit higher dorsal 

https://www.ncbi.nlm.nih.gov/pubmed/?term=D%26%23x02019%3BAo%26%23x000fb%3Bt%20K%5BAuthor%5D&cauthor=true&cauthor_uid=15198700
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RBV/TV and DA than Pongo but with a more homogeneous distribution within each 

metacarpal head. We predict P. paniscus trabecular patterning will be similar to 

that of P. troglodytes, and thus possess significantly higher palmar distribution of 

RBV/TV and DA compared to Gorilla and a more dorsal distribution of these 

measures than in Pongo. However, we also expect P. paniscus to have lower DA and 

further homogenised distribution of RBV/TV than P. troglodytes due to more 

frequent use of palmigrady and arboreal grips. 

Materials  

Subchondral trabecular bone was analysed in the metacarpus of Pan paniscus 

(n=10), Pan troglodytes (n=13), Gorilla gorilla gorilla (n=12), Pongo sp. indet. (n=1), 

Pongo pygmaeus (n=7) and Pongo abelii (n=3). Metacarpi were sampled from: the 

Royal Museum for Central Africa, Tervuren, Belgium, the Max Planck Institute for 

Evolutionary Anthropology, Leipzig, Germany, the Powell-Cotton Museum, 

Birchington-on-sea, U.K., Bavarian State Collection of Zoology, Munich, Germany, 

the Natural History Museum, Berlin, Germany, the Senckenberg Natural History 

Museum, Frankfurt Germany, and the Smithsonian National Museum of Natural 

History, Washington D.C., U.S.A (Table 4.1). All specimens were adult, wild shot and 

free from external signs of pathology. Within each taxon efforts were made to 

ensure the samples were sex balanced with even numbers of right and left 

metacarpi, neither ratio was more imbalanced than 5:7 for any sample. While non-

human great ape locomotion is sexually biased (Doran, 1996) and there has been 

some evidence for lateralized asymmetry in both the trabecular (Stephens et al., 

2016) and cortical bone of hominid metacarpals (Sarringhaus et al., 2005), neither 

of these signals seems likely to be greater than species locomotion differences 

under investigation here. Further, the use of evenly mixed samples should 

ameliorate these effects (see discussion). 
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Table 4.1. Study sample 

Taxonomy Accession ID Sex Side Institution 

Gorilla gorilla gorilla PC_MER_300 Female Left Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_264 Male Right Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_372 Male Left Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_95 Female Right Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_962 Male Left Powell-Cotton Museum 

Gorilla gorilla gorilla PC_CAMI_230 Male Left Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_138 Female Left Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_174 Male Right Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_696 Female Right Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_856 Female Left Powell-Cotton Museum 

Gorilla gorilla gorilla PC_MER_879 Male Left Powell-Cotton Museum 

Gorilla gorilla gorilla PC_ZVI_32 Male Right Powell-Cotton Museum 

Pan troglodytes verus MPITC_11789 Male Right Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_11778 Female Right Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_13439 Female Right Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_15002 Female Left Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_11800 Female Right Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_11903 Male Left Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_11781 Male Left Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_14996 Female Left Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_15012 Male Right Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_15013 Female Right Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_15014 Male Right Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes verus MPITC_15032 Male Left Max Planck Institute for 
Evolutionary Anthropology 

Pan troglodytes* ZSM_AP_122 Male Right Bavarian State Collection of 
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Zoology 

Pongo abelii SMF_6785 Male Right Senckenberg Natural 
History Museum, Frankfurt 

Taxonomy  Accession ID Sex Side Institution 

Pongo abelii SMF_6779 Female Left Senckenberg Natural 
History Museum, Frankfurt 

Pongo pygmaeus ZSM_1907_0633b Female Right Bavarian State Collection of 
Zoology 

Pongo pygmaeus 
pygmaeus 

ZSM_1907_0660 Female Right Bavarian State Collection of 
Zoology 

Pongo sp. indet. ZSM_AP-120 Male Left Bavarian State Collection of 
Zoology 

Pongo pygmaeus 
pygmaeus 

ZSM_1907_0483 Female Right Bavarian State Collection of 
Zoology 

Pongo pygmaeus 
pygmaeus 

ZSM_1909_0801 Male Right Bavarian State Collection of 
Zoology 

Pongo abelii NMNH_267325 Male Left Smithsonian Institution 
National Museum of 

Natural History 
Pongo pygmaeus ZMB_6948 Female Left Natural History Museum, 

Berlin 
Pongo pygmaeus ZMB_6947 Male Left Natural History Museum, 

Berlin 
Pongo pygmaeus ZMB_87092 Female Right Natural History Museum, 

Berlin 
Pan paniscus MRAC_15293 Female Left Royal Museum for Central 

Africa, Tervuren 

Pan paniscus MRAC_15294 Male Left Royal Museum for Central 
Africa, Tervuren 

Pan paniscus MRAC_20881 Male Left Royal Museum for Central 
Africa, Tervuren 

Pan paniscus MRAC_27696 Male Right Royal Museum for Central 
Africa, Tervuren 

Pan paniscus MRAC_27698 Female Left Royal Museum for Central 
Africa, Tervuren 

Pan paniscus MRAC_29042 Female Right Royal Museum for Central 
Africa, Tervuren 

Pan paniscus MRAC_29044 Male Right Royal Museum for Central 
Africa, Tervuren 

Pan paniscus MRAC_29045 Female Left Royal Museum for Central 
Africa, Tervuren 

Pan paniscus MRAC_29052 Male Right Royal Museum for Central 
Africa, Tervuren 

Pan paniscus MRAC_29060 Female Right Royal Museum for Central 
Africa, Tervuren 

* Though this specimen was marked as Pongo in the collection, CT-scans demonstrate it 

has a fused scaphoid and os centrale, and so this specimen is treated as Pan troglodytes. 

 

 

 



103 

Methods 

Micro-CT Scanning 

Specimens were scanned with BIR ACTIS 225/300 and Diondo D3 high resolution 

micro-CT scanners at the Department of Human Evolution, Max Planck Institute for 

Evolutionary Anthropology, Germany, as well as with the Nikon 225/XTH scanner at 

the Cambridge Biotomography Centre, University of Cambridge, U.K. Scan 

parameters were 100-160 kV and 100-140 µA, using a brass or copper filter of 0.25-

0.5 mm, resulting in reconstructed images with an isometric voxel size of 24-45 µm. 

Image processing 

Micro-CT scans of each metacarpal were isolated in Avizo 6.3 (Visualization Sciences 

Group; Fig. 4.4a) and segmented using the Ray Casting Algorithm (Scherf and 

Tilgner, 2009). The segmented volume images were then processed as per the 

whole-epiphysis method, outlined in Gross et al. (2014). Briefly, a series of filters 

run in medtool 4.2 (Dr. Pahr Ingenieurs e.U.) isolated the inner trabecular structure 

(Fig. 4.4b) by casting rays at different angles from the outer cortical shell and 

terminating them on contact with background, non-bone, voxels. A spherical 

kernel, with a diameter equal to the measured average trabecular thickness in that 

bone, was then used to close this inner structure (Pahr and Zysset, 2009). The 3D 

edge of this solid inner structure defined the boundary between subchondral 

trabecular and cortical bone. Subsequently, a regular 3D background grid, spaced at 

2.5mm intervals, was overlaid and a spherical VOI 5 mm in diameter was centred at 

each vertex of the grid in which BV/TV and DA was measured (Fig. 4.4c). Previous 

studies have shown that these two variables are correlated with the mechanical 

properties of trabecular bone, reflect bone functional adaptation (Odgaard et al., 

1997; Uchiyama et al., 1999; Pontzer et al., 2006; Barak et al., 2011; Lambers et al., 

2013; 2013b) and that they are not strongly allometric (Doube et al., 2011; Barak et 

al., 2013; Ryan and Shaw, 2013). DA was measured via the mean intercept length 

(MIL) method and was bounded between 0, total isotropy, and 1, total anisotropy, 

using the calculation: 1 – (lowest eigenvalue of the fabric tensor / greatest 

eigenvalue fabric tensor). Both trabecular values were then separately interpolated 

on a regular 3D tetrahedral mesh of the trabecular model (Fig. 4.4d), created using 
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CGAL (www.cgal.org; Computational Geometry Algorithms Library). The surface of 

the trabecular mesh was extracted using Paraview (Ayachit, 2015) and it was 

smoothed, to permit landmark sliding (see below), in Meshlab (Cignoni et al., 2008) 

via a screened Poisson surface reconstruction filter (Kazhdan and Hoppe, 2013; Fig. 

4.4e). For left hand bones this surface mesh was mirrored in Meshlab, so that it was 

oriented in the same manner as those from right hands to permit homologous 

functional comparisons. 

Geometric morphometric mapping 

While the whole-epiphysis method maps the entire volumetric trabecular model, 

we focus our analysis on the trabecular bone beneath the articular surface of the 

metacarpal heads because external loads necessarily pass through these 

subchondral trabeculae before they can be transmitted to any other part of the 

trabecular structure (Zhou et al., 2014; Sylvester and Terhune, 2017). We employ a 

3D geometric morphometric (GM) approach (Gunz and Mitteroecker, 2013) to 

trabecular analysis similar to that of Sylvester and Terhune (2017) and test for 

significant differences between groups using homologous landmarks on the 

subchondral trabecular surface.  

Anatomical landmark definitions 

Many landmarks have been identified on the non-pollical metacarpals for 

morphometric studies (Susman, 1979; Inouye, 1992; Drapeau, 2015) but there have 

been relatively few studies that have applied GM methods to the primate 

metacarpus and these have focussed on the first metacarpal (Mc1) base 

(Niewoehner, 2005; Marchi et al., 2017). Metatarsals are developmental serial 

homologues of metacarpals (Rolian et al., 2010) and a relatively recent study 

captured their shape variation using a patch of 3D landmarks (Fernández et al., 

2015). A recent study of Mc3 head shape used most of the same landmarks that 

bordered this metatarsal patch, at the analogous metacarpal locations (Rein, 2018). 

Based on these studies, the location and type (Bookstein, 1991) of anatomical 

landmarks used here are given in Table 4.2. Although the internal trabecular 

subchondral surface is landmarked, cortical bone is very thin at the metacarpal 

http://www.cgal.org/
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head in hominids (Tsegai et al., 2017) and so the correspondence between these 

surfaces is generally high. Though the articular surface may not reach the same 

extent in all species studied, the same landmarks are used for comparison as they 

are present on all metacarpal heads studied.  

 

 

Table 4.2. Anatomical landmark definitions.  

Types of landmark (Bookstein, 1991) and their provenance. Each article describes the 

landmark, uses it as the terminus of a linear measure or directly uses it for GM analysis. 

 

 

 

Number Type Description Provenance 

1 II Most proximal point under the 
ulnar palmar epicondyle (anterior 
eminence) 

(Yeh and Wolf, 1977; Fernández, 
2015; Rein, 2018) 

2 III The point of maximum curvature 
on the inter-epicondylar ridge 
between points 1 and 3 

(Drapeau, 2015; Fernández, 
2015; Rein, 2018) 

3 II Most proximal point under the 
radial palmar epicondyle (anterior 
eminence) 

(Yeh and Wolf, 1977; Fernández, 
2015; Rein, 2018) 

4 III Point of maximum curvature on 
the radial ridge separating the 
articular surface from the radial 
lateral sulcus 

(Yeh and Wolf, 1977; Fernández, 
2015; Rein, 2018) 

5 II Most radially projecting point 
under the radial dorsal tubercle 

(Yeh and Wolf, 1977; Susman, 
1979; Inouye, 1992; Fernández, 
2015; Rein, 2018) 

6 III Mid-point between the posterior 
tubercles on the intertubercular 
ridge, underlying the dorsal ridge if 
present. 

(Yeh and Wolf, 1977; Fernández, 
2015) 

7 II Most ulnarly projecting point 
under the ulnar posterior tubercle 

(Yeh and Wolf, 1977; Susman, 
1979; Inouye, 1992; Fernández, 
2015; Rein, 2018) 

8 III Point of maximum curvature on 
the ulnar ridge separating the 
articular surface from the ulnar 
lateral sulcus 

(Yeh and Wolf, 1977; Fernández, 
2015; Rein, 2018) 

9 II Most distally projecting point on 
the subchondral surface 

(Fernández, 2015; Susman, 1979; 
Inouye, 1992; Rein, 2018) 
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Repeatability 

Landmarks were manually placed in Checkpoint (Stratovan Corporation, Davis, CA) 

and repeated ten times on three randomly selected specimens from each species 

over several days. A different ray was used from each species to ensure landmarks 

were repeatable across elements following Fernández et al. (2015). The landmarks 

were then aligned using Procrustes superimposition in the Morpho package in R 

(Schlager, 2017; R Development Core team, 2016). Landmark configurations were 

then plotted in the first two principal components (PCs) of shape space. Landmarks 

were considered stable if repeated measures were more clustered than those of 

different individuals. Significant pairwise permutational MANOVAs conducted on 

PC1 and PC2 combined scores, demonstrated that group means (the three 

individuals and their repeats) are significantly different in each case and that 

variance in landmark placement is significantly less than that between specimens 

(p<0.001; Fig. 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Repeatability tests of landmarks. Each individual metacarpal (marked in a 
different colour) was landmarked 10 times on different days. The same rays from three 
individuals of the same species were then subjected to Procrustes transformation in each 
case. Subsequent permutational omnibus and pairwise MANOVAs were run on the 
combined PC1 and PC2 scores, as these cumulatively explained >80% of the variation: a) 
Gorilla Mc2s (Cumulative Variance 83%); b) Pongo Mc3s (Culm. Var. 80%); c) Pan paniscus 
Mc4s (Culm. Var. 85%); d) Pan troglodytes Mc5s (Culm. Var. 87%). All individual specimen 
repeats were significantly different from each other subsequent to a Bonferroni correction 
(p≤0.0006). 

b 

d 

a 

c 
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Geometric morphometric procedure 

To create the landmark template a random specimen was selected and eight curves 

were defined at the margins of the subarticular surface, in Checkpoint (Stratovan 

Corporation, Davis, CA ), each bordered by anatomical landmarks as recommended 

by Gunz et al. (2005). Three sliding semi-landmarks were placed on each of these 

curves and an additional 140 were equally distributed over the subarticular surface 

in Avizo 6.3 (Visualization Sciences Group, Germany) to create a 173 landmark 

template. The anatomical landmarks were subsequently placed on every specimen, 

then the landmark template (Fig. 4.4f) was projected onto each of the 183 other 

metacarpal heads and relaxed onto the surface of each metacarpal using the 

Morpho package in R (Schlager, 2017) by minimising bending energy. This package 

was then used to slide the semi-landmarks along their respective curves and over 

the surface by minimising Procrustes distances. This slid template is plotted on an 

individual Mc3 from each species to provide a sense of the shape variation present 

(Fig. 4.3). 

 

 

 

 

 

 

 

 

Figure 4.3. Landmark template projected onto Mc3s of individual specimens of a) Gorilla 
gorilla, b) Pan troglodytes , c) Pan paniscus and d) Pongo pygmaeus. Note the homology of 
these landmarks across shape variation in species. 
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Data mapping  

Using a custom Python script plugin for Paraview (www.paraview.org) the non-

smoothed surface mesh triangles inherited trabecular values from their originating 

tetrahedra. The Python module SciPy (Jones et al., 2001) was then used in medtool 

4.2 (Dr. Pahr Ingenieurs e.U.) to interpolate the trabecular values to the nearest 

landmark; this was done separately for BV/TV and DA. Interpolating these 

trabecular values from the outer tetrahedra of the trabecular model is analogous to 

using spherical VOIs, 1 mm in diameter, centred 0.5 mm beneath an inner 

trabecular surface landmark. Finally, the geomorph package (Adams et al., 2017) 

was used to perform a generalised Procrustes procedure in R, resulting in 184 sets 

of 173 homologous landmarks each with two associated trabecular values (Fig. 

4.4g).  

Relative trabecular volume 

We employ a relative measure of bone volume fraction (RBV/TV), in which the raw 

BV/TV value of each landmark is divided by the mean of all landmark BV/TV values 

on that metacarpal head. Thus RBV/TV values ~1 indicate landmarks close to the 

average BV/TV of that metacarpal head, while values above or below 1 indicate a 

deviation from this average at these landmarks. This relative measure was 

preferred because, while BV/TV can vary systemically across extant hominid species 

(Tsegai et al., 2018) and may show considerable intraspecific variation, the relative 

patterns of trabecular architecture appear to preserve a functional signal 

superimposed on this variation (Saers et al., 2016). RBV/TV measures the position 

of the greatest subchondral trabecular bone of a given metacarpal head rather the 

absolute volume of bone and therefore is argued to reflect the habitually loaded 

joint positions of extant hominids while controlling, at least in part, for intra-species 

and systemic inter-species differences. Species average absolute BV/TV landmark 

values are depicted (Fig. 4.5) for comparison with RBV/TV values (Fig. 4.6).  

 

 

 

http://www.paraview.org/
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Figure 4.4. Methodological stages of metacarpal trabecular analysis, shown in a third 
metacarpal as an example: a) isosurface model, b) segmented trabecular structure inside 
cortical shell, c) diagram of the background grid and one of the VOI’s at a vertex (purple), d) 
volume mesh coloured by BV/TV (0-45%), e) smoothed trabecular surface mesh, f) surface 
landmarks (anatomical = red, semi-sliding landmarks on curves = blue and on surfaces =  
green), g) RBV/TV interpolated to each surface landmark.
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Figure 4.5. Species average absolute BV/TV, mapped to average models of each Mc head in a) distal, b) palmar and c) dorsal views. Note that absolute 
BV/TV interspecies or inter-ray comparisons are more likely to reveal overall differences in subchondral BV/TV than differences in the regional distribution  
of BV/TV, which are consistent with certain McP postures, as is the case for the scaled RBV/TV.
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Statistical analysis 

We employ a ‘mass-univariate’ approach as advocated by Friston et al. (1995) 

similar to that used to statistically analyse cortical bone in ape metacarpals (Tsegai 

et al., 2017). Specifically, the trabecular values between species and rays at each 

landmark are independently analysed using univariate statistics. Inter-ray 

comparisons do not include comparisons between rays two and four, or between 

rays three and five, as they are not biologically contiguous and thus are less 

informative when prehensile hand postures are considered. However, comparisons 

of rays two and five are included to test for significant differences between the 

most ulnar and radial aspects of the metacarpus. Shapiro-Wilk tests found a non-

normal distribution of data at one or more landmarks in one or both groups in 

every pairwise, inter-ray and interspecific, comparison. To maintain consistent 

comparisons a non-parametric Kruskal-Wallis test was applied at each landmark, 

and a post-hoc test was used to test for pairwise differences if the omnibus test 

was significant. Dunn’s test was chosen as it uses the pooled variance of the 

Kruskal-Wallis tests and so is conservative. Significance was set at p<0.05 

subsequent to a Bonferroni correction in each case. This univariate approach means 

that homologous landmark values are compared across groups rather than with 

spatially auto-correlated neighbouring landmarks. Z-scores were used to determine 

the polarity, as well as the effect size, of significant differences between groups. 

These Z-scores were transformed into absolute, rather than signed, values and 

summarised for significant landmark differences, in both interspecific and inter-ray 

pairwise comparisons (Tables 4.3 and 4.4). Resulting plots of significant univariate 

differences map regional differences between species and rays, but were only 

considered meaningful if they were found at nine contiguous landmarks, as this 

represents just over 5% of the subarticular surface, in order to further ameliorate 

any Type I error. Despite the fact this univariate method can identify where regions 

of significant difference lie, it can be susceptible to Type I error. Therefore, to 

provide a multivariate corollary to this approach, a principle components analysis 

(PCA) of trabecular values, using landmarks as individual variables, was also run for 

all comparisons. Subsequent omnibus and pairwise one-way permutational 
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MANOVAs were run with a Bonferroni correction, using the Vegan package 

(Oksanen et al., 2018) package in R (R Core Development team, 2016), on the 

principal component scores of these PCAs to test for significant overall, rather than 

regional, differences in trabecular patterns.  

 

Results 

Univariate landmark comparisons  

Pongo 

Average RBV/TV was higher in the palmar aspect of all Pongo metacarpal heads 

than in their dorsal aspect (Fig. 4.6). The significant differences among the rays 

included those between Mc2 and Mc5, in which each had a small patch of 

significantly higher RBV/TV at the ulnar and radial aspects of the metacarpal head, 

respectively (Fig. 4.8). Mc3 also had a patch of significantly higher RBV/TV at radio-

palmar landmarks relative to Mc2. Interspecifically, Pongo RBV/TV was significantly 

higher at landmarks in the palmar region of the metacarpal heads than in P. 

troglodytes and especially Gorilla (Fig. 4.10). Compared with P. paniscus, Pongo was 

again significantly higher at more palmar landmarks in Mc4 and Mc5 but there were 

fewer significantly higher landmarks in Mc3 and almost none in the Mc2 

comparison. 

Pongo had high DA values throughout the subarticular metacarpal heads with few 

significant differences between rays (Figs. 4.7, 4.9, 4.15). Interspecifically, Pongo DA 

was significantly greater than that of Gorilla in all metacarpal heads except for the 

central disto-palmar aspects of Mc3-4 and radio-palmar aspects of Mc5. Pongo had 

significantly higher DA on the disto-dorsal aspects of Mc2 and Mc5 relative to both 

P. troglodytes and P. paniscus. Pongo also had higher DA at landmarks situated on 

the dorsal aspects of Mc3 and 4 relative to P. paniscus (Fig. 4.11).  
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Figure 4.6. Species average RBV/TV, mapped to average models of each Mc head in a) distal, b) palmar and c) dorsal views. RBV/TV values around one 
(white) indicate landmarks close to the average BV/TV of that Mc head, while values above (red) or below one (blue) indicate a deviation from this average 
at these landmarks. 
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Figure 4.7. Species average DA, mapped to average models of each Mc head in a) distal, b) palmar and c) dorsal views. 
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Gorilla 

The highest RBV/TV values in Gorilla were concentrated in the disto-dorsal portion 

of each metacarpal head extending dorsally on the medio-lateral edges of Mc3 and 

4 but toward the mid-line of the hand in the Mc2 and Mc5 heads (Fig. 4.6). This 

latter pattern was clear in the inter-ray comparison, with significantly greater 

RBV/TV found at the radial aspect of Mc5 relative to Mc2 and Mc4 as well as on the 

ulnar aspect of these rays relative to Mc5 (Fig. 4.8). Interspecifically, Gorilla was 

significantly higher in RBV/TV dorsally compared to Pongo, though the radio-palmar 

aspect of Mc5 was not significantly different between these groups. Compared with 

Pan, Gorilla generally had significantly higher RBV/TV dorsally but this was 

restricted to the medio-lateral edges of each metacarpal head in the regional 

comparison (Fig. 4.10). Specifically, Gorilla had significantly higher RBV/TV than Pan 

species on the radio-dorsal aspect of Mc5 and both medio-lateral edges of Mc4, as 

well as the ulno-dorsal aspect of Mc2, though this is extended across the dorsal 

aspect in the P. troglodytes comparison. The Mc3 of Gorilla was also had 

significantly higher RBV/TV than P. paniscus at landmarks on its dorso-ulnar aspect 

but was not significantly different from P. troglodytes in any region. Gorilla had less 

significant regional differences with P. troglodytes than with P. paniscus in RBV/TV.  

Gorilla had low DA throughout the subchondral metacarpal head trabeculae with 

slightly higher values distally on Mc3 and Mc4, though only the ulno-distal aspect of 

Mc3 had values that were significantly larger than Mc2 (Figs. 4.7 and 4.9). Mc5 had 

significantly higher DA on its radial side relative to Mc2 (Fig. 4.9). Gorilla was not 

significantly higher in DA than other taxa, apart from the radial border of the distal 

Mc5 head compared with Pan paniscus (Fig. 4.11). 
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Figure 4.8. Inter-ray significant differences in RBV/TV, mapped to an average right Mc3 
head in each case in dorsal (top), distal (middle) and palmar (bottom) views. Where RBV/TV 
values at landmarks are significantly higher in one ray than the other, they are coloured as 
per the ray numbers in each comparison.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Inter-ray significant differences in DA, mapped to an average right Mc3 head in 
each case in dorsal (top), distal (middle) and palmar (bottom) views. Where DA values at 
landmarks are significantly higher in one ray than the other, they are coloured as per the 
ray numbers in each comparison
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Pan troglodytes 

P. troglodytes had disto-dorsally higher average RBV/TV values in the subchondral 

trabeculae of all the metacarpal heads, though this pattern was more dorsally-

positioned in Mc3 and Mc4 (Fig. 4.6). Mc2 and Mc5 showed significantly higher 

RBV/TV at their most palmar extent relative to Mc3 and Mc4, respectively (Fig. 4.8). 

Interspecifically, P. troglodytes showed almost no significant differentiation from P. 

paniscus in RBV/TV in any ray (Fig. 4.10). P. troglodytes had significantly higher 

RBV/TV across the palmar extent of Mc2, and disto-palmarly on the ulnar aspect of 

Mc5 compared to that of Gorilla, and significantly higher RBV/TV dorsally than 

Pongo in each ray. P. troglodytes generally had low DA through all of the 

metacarpal heads, although DA values were slighter higher in the palmar regions of 

Mc3 and Mc4 (Fig. 4.7). DA values were significantly higher in Mc4 relative to Mc5 

and higher in Mc3 relative to Mc2 (Fig. 4.9). P. troglodytes showed the fewest 

significant differences in DA with P. paniscus, significantly higher DA in the palmar 

aspects of Mc2 and Mc3 compared with Gorilla, and significantly lower DA than 

Pongo throughout all the rays (Fig. 4.11). 

Pan paniscus 

Like P. troglodytes, P. paniscus had the highest RBV/TV values at the disto-dorsal 

aspect of metacarpal heads but subchondral trabecular structure was more 

homogenous within and between the rays (Figs. 4.6 and 4.8). Interspecifically, P. 

paniscus showed the fewest significant differences with P. troglodytes apart from a 

small concentration of higher RBV/TV landmarks in the most palmar extent of Mc3 

(Fig. 4.10). P. paniscus possessed significantly higher RBV/TV dorsally than Pongo 

across the rays and significantly higher palmar RBV/TV than Gorilla in all of the rays. 

This latter pattern extended distally on Mc2 and Mc5 (Figs. 4.6 and 4.10). P. 

paniscus had a similar DA pattern to P. troglodytes, with similar inter-ray significant 

differences and almost no significant differences between these species (Figs. 4.7, 

4.9 and 4.11). P. paniscus showed significantly higher DA than Gorilla in landmarks 

across the Mc2 and Mc3 heads, in the palmar regions (Fig. 4.11). As with all other 

African apes, P. paniscus had significantly lower DA than Pongo across the 

metacarpal heads, particularly in the dorsal regions.  
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Figure 4.10. Significant differences in RBV/TV between species, mapped to average models of each Mc head in a) distal b) palmar and c) dorsal views. 

Where RBV/TV values at landmarks are significantly higher in one species than the other, they are coloured as per the species name in each comparison. 
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Figure 4.11. Significant differences in DA between species, mapped to average models of each Mc head in a) distal b) palmar and c) dorsal views. Where 

DA values at landmarks are significantly higher in one species than the other, they are coloured as per the species name in each comparison. 
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Table 4.3. Descriptive statistics of absolute Z-scores from significant pairwise inter-species landmark comparisons.  

Species abbreviations are: Ggg = Gorilla, Pt = Pan troglodytes, Pp = Pan paniscus, Ppy = Pongo spp. The minimum differences between species at a given 
landmark are over 2.4 normalized standard deviations from each other. 
 

 

 

 

 

  Mc2 Mc3 Mc4 Mc5 

RBV/TV Ggg 
-  
Pp 

Ggg 
- 
Ppy 

Ggg 
- 
Pt 

Pp  
- 
 Ppy 

Pp 
 -  
Pt 

Ppy 
-  
Pt 

Ggg 
- 
 Pp 

Ggg 
- 
Ppy 

Ggg 
- 
Ptv 

Pp  
- 
Ppy 

Pp  
-  
Pt 

Ppy 
-  
Pt 

Ggg 
-  
Pp 

Ggg 
- 
Ppy 

Ggg 
- 
Ptv 

Pp  
- 
Ppy 

Pp  
-  
Pt 

Ppy 
- 
Pt 

Ggg 
- 
 Pp 

Ggg 
- 
Ppy 

Ggg  
-  
Pt 

Pp  
 -  
Ppy 

Pp  
-  
Pt 

Ppy 
- 
 Pt 

Min 2.41 2.44 2.40 2.42 2.42 2.41 2.42 2.48 2.40 2.40 2.40 2.45 2.44 2.41 2.45 2.40 2.63 2.42 2.41 2.41 2.40 2.40 n/s 2.43 

Max 4.33 5.59 4.79 3.54 3.21 4.15 4.32 5.63 3.27 4.19 3.22 4.73 3.87 5.92 3.59 4.94 2.78 4.88 3.89 5.76 3.95 3.79  n/s 5.18 

SD 0.48 0.82 0.67 0.34 0.39 0.47 0.55 0.79 0.27 0.41 0.24 0.57 0.36 0.77 0.32 0.71 0.07 0.58 0.44 0.98 0.34 0.35  n/s 0.73 

Mean 3.14 3.90 3.31 2.92 2.81 3.11 3.25 4.25 2.65 2.96 2.71 3.44 3.03 4.18 2.98 3.41 2.72 3.45 3.12 4.13 3.01 2.95 n/s  3.54 

DA Ggg 
-  
Pp 

Ggg 
- 
Ppy 

Ggg 
-  
Pt 

Pp 
 - 
Ppy 

Pp  
-  
Pt 

Ppy 
-  
Pt 

Ggg 
-  
Pp 

Ggg 
- 
Ppy 

Ggg 
-  
Pt 

Pp 
 - 
Ppy 

Pp 
 - 
 Pt 

Ppy 
-  
Pt 

Ggg 
-  
Pp 

Ggg 
- 
Ppy 

Ggg 
-  
Pt 

Pp  
- 
Ppy 

Pp  
-  
Pt 

Ppy 
-  
Pt 

Ggg 
-  
Pp 

Ggg 
- 
Ppy 

Ggg 
-  
Pt 

Pp  
 -  
Ppy 

Pp 
 -  
Pt 

Ppy 
-  
Pt 

Min 2.40 2.40 2.45 2.41 2.41 2.40 2.40 2.41 2.42 2.42 2.41 2.40 2.41 2.41 2.42 2.40 2.42 2.40 2.40 2.40 2.40 2.41 2.56 2.40 

Max 3.48 4.77 3.89 4.84 3.34 3.41 4.58 4.84 4.00 4.40 3.11 3.14 3.40 4.42 4.13 4.14 2.69 3.45 4.03 4.44 3.87 4.72 3.25 4.27 

SD 0.36 0.59 0.38 0.59 0.30 0.27 0.50 0.56 0.41 0.58 0.26 0.19 0.27 0.55 0.49 0.46 0.12 0.31 0.40 0.47 0.44 0.57 0.28 0.49 

Mean 2.83 3.43 2.94 3.21 2.82 2.76 2.94 3.21 2.84 3.25 2.74 2.82 2.88 3.23 2.99 2.97 2.52 2.84 3.01 3.15 2.94 3.29 2.92 3.16 
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   Table 4.4. Descriptive statistics of absolute Z-scores from significant pairwise inter-ray landmark comparisons.  

 

 

 

 

 

 

 

               The minimum differences between rays at a given landmark are over 2.4 normalized standard deviations from each other. 

 Gorilla gorilla Pan paniscus  Pongo spp. Pan troglodytes 

RBV/TV 2 - 3 3 - 4 4 - 5 2 - 5 2 - 3 3 - 4 4 - 5 2 - 5 2 - 3 3 - 4 4 - 5 2 - 5 2 - 3 3 - 4 4 - 5 2 - 5 

Min 2.41 n/s 2.42 2.49 2.51 2.60 2.41 2.43 2.41 2.47 2.47 2.42 2.45 2.41 2.42 2.39 

Max 3.59  n/s 4.51 5.39 3.02 2.60 3.60 3.52 3.30 2.79 3.19 4.73 4.10 2.89 3.86 4.00 

SD 0.40  n/s 0.45 0.71 0.26 0.00 0.37 0.38 0.24 0.09 0.21 0.64 0.46 0.18 0.39 0.45 

Mean 2.95 n/s  3.19 3.69 2.76 2.60 2.75 2.85 2.66 2.62 2.79 3.40 3.10 2.64 3.03 3.03 

DA 2 - 3 3 - 4 4 - 5 2 - 5 2 - 3 3 - 4 4 - 5 2 - 5 2 - 3 3 - 4 4 - 5 2 - 5 2 - 3 3 - 4 4 - 5 2 - 5 

Min 2.42 2.48 2.45 2.42 2.41 2.47 2.41 2.43 2.67 n/s 2.64 2.41 2.46 n/s 2.39 2.41 

Max 3.97 3.02 3.65 4.33 3.71 3.44 3.42 3.35 3.00  n/s 3.25 4.12 3.09  n/s 3.82 3.51 

SD 0.50 0.22 0.35 0.59 0.37 0.41 0.30 0.28 0.17  n/s 0.19 0.41 0.21  n/s 0.29 0.29 

Mean 2.86 2.63 2.79 3.11 2.86 2.96 2.85 2.69 2.84 n/s  2.84 2.84 2.69 n/s  2.81 2.67 



122 

  
Figure 4.12. RBV/TV PCA plots showing species differences within each metacarpal head 
Each plot shows the first two principle components (PC) in each ray. For Mc5, PC3 is 
depicted with PC1, inset, as PC2 and PC3 explain a similar amount of the variance (16% and 
14% respectively) in this case. Landmarks at each extreme of a PC are coloured in grayscale, 
according to their signed contribution to that PC and plotted on a Mc3 in distal view. White 
landmarks indicate the highest signed contribution to the PC and black the least. 

 

Multivariate whole-surface comparisons 

Interspecific results 

Figure 4.12 depicts the results of the PCA on RBV/TV values, showing species 

differences within each metacarpal head. Within the Mc2-5 of all the taxa, the first 

principal component (PC1) explains 38-46% variation in RBV/TV and was driven by 

dorsal and palmar landmarks. PC2 in Mc2-Mc5 described 13-17% of the variation 

and reflected variation of values at landmarks that were distally and non-distally 

situated, respectively. In Mc5, PC3 described 14% of RBV/TV variation in values at 

radio-ulnar landmarks. Permutational MANOVA omnibus tests were run using PC1-
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3 in each case, as for some comparisons the PC2 and PC3 explained a similar 

amount of variance whereas further PCs each explained less than 10% of the 

variance. These omnibus tests were significant in every ray. As with the individual 

landmark comparisons described above, Pongo had significantly higher palmar 

RBV/TV compared to all other species, especially Gorilla. The overall configuration 

of Gorilla RBV/TV was significantly higher dorsally compared to all other species in 

Mc2-4, and radio-dorsally in Mc5 (Fig. 4.12, Table 4.5). P. troglodytes and P. 

paniscus were not significantly different from each other in any of the species 

comparisons (Table 4.5).  

Figure 4.13. RBV/TV PCA plots showing ray differences within each species. Each plot 
shows the first two principle components (PC) in each ray, except for Pan troglodytes 
where PC3 is depicted with PC1, inset, as PC2 and PC3 explain a similar amount of the 
variance (15% and 12% respectively) in this case. Landmarks at each extreme of a PC are 
coloured in grayscale, according to their signed contribution to that PC and plotted on a 
Mc3 in distal view. White landmarks indicate the highest signed contribution to the PC and 
black the least 
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Following the limited interspecific differences in DA described above, a PCA of DA 

values yielded poor separation among the sampled taxa. PC1 in DA for each ray, 

across species, described 34-36% of the variation and was driven by higher values 

at most landmarks. PC2 described 10-14% of the variation and was driven by 

landmarks situated dorsally and disto-palmarly, respectively (Fig. 4.14). While 

Pongo tended to occupy the positive end of PC1, reflecting higher DA, 

permutational MANOVAs on PC1-3 revealed they were only significantly different in 

every ray from Gorilla. This result may be partially driven by the larger intra-species 

variation in Pongo DA relative to other species studied (Fig. 4.14; see discussion). 

Pongo was significantly different from P. paniscus in Mc2, Mc3 and Mc5 as well as 

from P. troglodytes in Mc2 and Mc5 by having generally higher DA (Table 4.5). 

Again, P. paniscus and P. troglodytes were not significantly different from each 

other at any ray, though both species were slightly, but significantly, higher in DA 

than Gorilla in most rays, P. troglodytes was not significantly different from Gorilla 

in DA across Mc4. Both Pan species had significantly lower DA than Gorilla in the 

radio-distal aspect of Mc5.  

Inter-ray results 

Figure 4.13 depicts the results of PCA of RBV/TV values, showing inter-ray 

differences within each species. Overall metacarpal head variation in RBV/TV across 

rays was different for each species, but generally consistent with individual 

landmark comparisons described above. In Pongo, PC1 explained 25% of the 

variation and was driven by dorso-palmar landmark values, while PC2 explained 

18% of the variation and reflected radio-ulnar landmark RBV/TV. The significant 

omnibus result was driven solely by a Mc2 configuration that had significantly 

higher disto-ulnar RBV/TV than the other rays. In Gorilla, PC1 reflected 27% of the 

variation as a result of radio-ulnar landmark values, while PC2 reflected 18% of the 

variation in RBV/TV due to distal and more dorso-palmarly located landmarks (Fig. 

4.13). Permutational MANOVAs on PC1-3 demonstrated the Gorilla Mc5 had 

significantly higher RBV/TV disto-radially relative to all other rays. Gorilla Mc2 had 

significantly higher disto-ulnar RBV/TV than the other rays, whereas Mc3 and Mc4 

had significantly higher RBVTV dorsally than Mc2 and Mc5, and were not  



125 

Figure 4.14. DA PCA plots showing species differences within each metacarpal head. Each 
plot shows the first two principle components (PC) in each ray. Landmarks at each extreme 
of a PC are coloured in grayscale, according to their signed contribution to that PC and 
plotted on a Mc3 in distal view. White landmarks indicate the highest signed contribution 
to the PC and black the least. 

not significantly different from each other (Table 4.5). For P. troglodytes variation in 

overall RBV/TV was chiefly driven by dorso-palmar landmarks on PC1, which 

explained 32% of the variation, while PC2 explained 15% of the variation and 

reflected differences in the disto-ulnar landmarks. PC3 in P. troglodytes RBV/TV 

describes 12% of the variation and is driven by radio-ulnar landmarks (Fig. 4.13). P. 

troglodytes Mc2 had significantly higher RBTV/TV disto-palmarly on its ulnar aspect 

relative to all other rays, whereas Mc5 had significantly higher RBV/TV disto-

palmarly on its ulnar aspect compared to Mc2 and Mc3. While Mc3 and Mc4 were 

not significantly different from each other as both had higher dorsal RBV/TV, Mc4 

was not significantly different from Mc5. In Pan paniscus PC1 explained 36% of the 

variance in RBV/TV and was driven by dorso-palmar landmarks while PC2 explained 
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24% of the variance and reflected distal and non-distal landmarks. However, no 

significant differences in RBV/TV were found between P. paniscus rays (Table 4.5). 

Variation in DA values did not show many significant differences across the 

metacarpal heads but was broadly consistent with the individual landmark 

comparisons. For all species sampled, PC1 was driven by higher values at most 

landmarks in PC1 and explained 19-45% of the variation. PC2 described 10-16% of 

the variation in DA and reflected distal as opposed to non-distal landmarks in all 

species (Fig. 4.15). In Pongo no ray was significantly different from any other in 

overall configuration of DA values (Table 4.5). In Gorilla PC3 explained 9% of the 

variance and was driven by radio-ulnar landmarks. Mc5 in Gorilla had significantly 

higher DA at radial landmarks than Mc2 and Mc3. The Gorilla Mc4 had slightly, but 

significantly, higher DA over most landmarks relative to Mc2. Both P. troglodytes 

and P. paniscus had significantly lower DA at landmarks on the distal aspect of Mc5 

compared to Mc3 and Mc4. P. paniscus alone, also had significantly lower DA over 

most landmarks on Mc2 compared to Mc3.  
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Table 4.5. Permutational MANOVAs on the first three principle components between all groups.  

Species abbreviations are: Ggg = Gorilla, Pt = Pan troglodytes, Pp = Pan paniscus, Ppy = Pongo spp. Subsequent pairwise Permutational MANOVAs were 
carried out if the omnibus test was significant; otherwise pairwise tests are marked as non-significant (n/s). All Pseudo-F values that represented a 
significant difference, subsequent to a Bonferroni correction, are marked with asterisks(*). 
 

 

  RBV/TV MC2 RBV/TV MC3 RBV/TV MC4 RBV/TV MC5 
 

RBV/TV Ggg RBV/TV Pp RBV/TV Ppy RBV/TV Pt 

All (n=46) 10.764* 21.595* 26.081* 16.008* All 14.983* (n=48) 1.667 (n=40) 6.472* (n=44) 5.336* (n=52) 

Ppy-Pp (n=21) 6.893* 18.627* 35.572* 11.279* 2-3 6.088* (n=24) n/s 4.998*(n=22) 8.399* (n=26) 

Pt-Pp (n=23) 0.538 2.142 0.512 0.519 3-4 1.553 (n=24) n/s 1.780 (n=22) 1.026 (n=26) 

Pp-Ggg (n=22) 14.230* 11.165* 14.534* 13.257* 4-5 19.235* (n=24) n/s 4.006 (n=22) 3.289 (n=26) 

Pt-Ggg (n=25) 9.956* 5.925* 9.209* 13.999* 2-5 32.396* (n=24) n/s 11.963* (n=22) 5.015* (n=26) 

Pt-Ppy (n=24) 5.598* 33.532* 31.306* 20.794* 3-5 23.657* (n=24) n/s 3.384 (n=22) 7.813* (n=26) 

Ppy-Ggg (n=23) 33.495* 50.945* 75.214* 45.695* 2-4 11.776* (n=24) n/s 12.434* (n=22) 6.333* (n=26) 

  DA MC2 DA MC3 DA MC4 DA MC5  DA Ggg DA Pp DA Ppy DA Pt 

All (n=46) 9.449* 6.308* 5.921* 8.574* All 4.160* (n=48) 6.496* (n=40) 0.274 (n=44) 3.531* (n=52) 

Ppy-Pp (n=21) 15.689* 5.899* 5.720 11.344* 2-3 2.645 (n=24) 7.215*(n=20) n/s 2.466 (n=26) 
Pt-Pp (n=23) 2.219 1.148 1.409 0.637 3-4 1.504 (n=24) 2.462 (n=20) n/s 0.880 (n=26) 

Pp-Ggg (n=22) 4.599* 8.049* 5.423* 11.599* 4-5 3.888 (n=24) 7.019* (n=20) n/s 5.615* (n=26) 

Pt-Ggg (n=25) 5.293* 5.100* 4.179 4.341* 2-5 6.020* (n=24) 2.874 (n=20) n/s 2.602 (n=26) 

Pt-Ppy (n=24) 6.917* 3.772 4.344 9.896* 3-5 6.066* (n=24) 15.040* (n=20) n/s 9.133* (n=26) 

Ppy-Ggg (n=23) 24.985* 13.466* 14.051* 12.116* 2-4 5.945* (n=24) 4.987 (n=20) n/s 0.695 (n=26) 



128 

 

Figure 4.15. DA PCA plots showing ray differences within each species. Each plot shows 
the first two principle components (PC) in each ray. For Gorilla, PC3 is depicted with PC1, 
inset, as PC2 and PC3 explain a similar amount of the variance (11% and 9% respectively) in 
this case. Landmarks at each extreme of a PC are coloured in grayscale, according to their 
signed contribution to that PC and plotted on a Mc3 in distal view. White landmarks 
indicate the highest signed contribution to the PC and black the least. 

Discussion 

The aim of this study was to associate inferred loading during particular hand 

postures in non-human great apes during locomotion with subchondral trabecular 

architecture across the non-pollical metacarpal heads. The results confirm and build 

upon previous studies of trabecular bone (most often focussed on only the Mc3 

head; Tsegai et al., 2013; Barak et al., 2017; Chichir et al., 2017), demonstrating that 

not only is this association possible, but that regional trabecular patterns within 

metacarpal heads, both within and across species, can be statistically discerned. 

Further, locomotor signals within trabecular structure are not limited to the Mc3 

and analysis of all non-pollical metacarpals can provide greater insight into inter-ray 

and interspecific differences in digit loading.  
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Relative trabecular bone volume fraction 

Pongo 

We predicted the orangutans would show significantly higher RBV/TV in the disto-

palmar region of the metacarpal heads compared to other hominids and that there 

would be no significant differences between rays, reflecting the flexed or neutral 

McP joint posture of all the fingers that characterises flexed-finger power, hook and 

double-locked grips typically used during arboreal locomotion (Rose, 1988; 

Sarmiento, 1988). We found general support for these predictions. Orangutans 

demonstrated significantly higher RBV/TV in the disto-palmar aspect of the 

subchondral trabeculae in all non-pollical metacarpal heads compared to that of all 

other taxa. We also found few inter-ray differences, with orangutans generally 

showing fewer significantly different landmarks in RBV/TV compared with gorillas 

and chimpanzees (Fig. 4.8) and no significant difference in overall RBV/TV between 

adjacent rays (Table 4.5). The only exception to this was Mc2 of orangutans, which 

had significantly higher RBV/TV in the disto-dorsal region of its ulnar aspect, relative 

to the other rays (Figs. 4.8 and 4.13). Overall, our results are consistent with 

previous studies using differing methodologies that also found a higher BV/TV in 

the disto-palmar region of the orangutan Mc3 head (Zeininger et al., 2011; Tsegai et 

al., 2013; Skinner et al., 2015; Chirchir et al., 2017) and Mc5 head (Skinner et al., 

2015). It should be noted, however, that the present study sample includes five of 

the same Mc3 specimens and three of the Mc5 specimens used by Tsegai et al. 

(2013) and Skinner et al. (2015), respectively. The generally similar pattern of 

RBV/TV distribution across the Mc2-5 heads is consistent with using all of the 

fingers during power, hook and double-lock grips to grasp arboreal substrates 

(Rose, 1988). The diverging pattern found in the orangutan Mc2 could reflect the 

relatively more extended second digit posture during a diagonal double-locked grip 

of very thin substrates, as pictured by Napier (1960) in captivity (Fig. 4.16). 

However, although challenging data to collect, more behavioural studies of types 

and frequency of hand grips used by orangutans during arboreal locomotion are 

needed to substantiate this.  
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Figure 4.16. The right hand of a captive orangutan engaged in a diagonal ‘double-locked’ 
grip around a piece of string. Note the extension of the second metacarpophalangeal joint. 
Image adapted from Napier (1960). 

 

Gorilla  

We predicted gorillas would show a significantly higher dorsal distribution of 

RBV/TV in each metacarpal head compared with all other hominids, reflecting McP 

joints loaded in a hyperextended posture during frequent knuckle-walking and this 

prediction was supported. RBV/TV in the gorilla subchondral trabeculae was 

significantly higher dorsally than in all other species (Figs. 4.10 and 4.12). This 

RBV/TV pattern was also found in previous studies of the Mc3 in gorillas (Tsegai et 

al., 2013; Skinner et al., 2015). The present results, however, also revealed high 

RBV/TV along the disto-ulnar region of the Mc2 head and disto-radial region of the 

Mc5 head, which was not predicted, although a similar pattern was also found in 

the Mc5 by Skinner et al. (2015). This pattern is present in both the average male 

and female RBV/TV distribution (Fig. 4.17). The gorilla fifth digit is more frequently 

used in knuckle-walking (Inouye, 1994) and is more similar in length to the other 

rays than that of chimpanzees (Susman, 1979; Inouye, 1992), which may explain the 

more even distribution of knuckle-walking pressure across the digits in captive 
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gorillas (Matarazzo, 2013). As the fifth digit is often not involved in grips of thinner 

arboreal substrates (Neufuss et al., 2017) and this RBV/TV pattern is mirrored in the 

Mc2, it seems parsimonious to argue it reflects more frequent and less variable 

knuckle-walking hand postures in gorillas relative to chimpanzees and bonobos 

(Tuttle and Basmajian, 1978; Matarazzo, 2013; Samuel et al., 2018; Thompson et 

al., 2018). The Mc3 and Mc4 of gorillas also showed high RBV/TV dorsally, especially 

at the radio-ulnar margins (Figs. 4.6 and 4.8), which is consistent with the idea that 

the fingers work in concert to buffer medio-lateral forces during locomotion 

(Chirchir et al., 2017). The medio-lateral forces generated during ‘palm-back’ 

knuckle-walking, which places the McP joints orthogonal to the direction of travel, 

may be considerable.  

    

 

 

 

 

Figure 4.17. Gorilla average RBV/TV by sex, mapped to average models of right Mc heads 

in distal view for a) Male Mc5, b) Male Mc2, c) Female Mc5 and d) Female Mc2, specimens. 

Note that the radio-ulnar bias is present in both sexes. 

Pan troglodytes  

We predicted that chimpanzees would have significantly higher dorsal RBV/TV than 

orangutans but lower than in gorillas, with a more homogeneous distribution of 

RBV/TV within each metacarpal head and more inter-ray differences, reflecting 

their more varied locomotor regime. These predictions were generally supported. 

The disto-dorsal pattern of higher RBV/TV across the subchondral metacarpus of 

chimpanzees (Fig. 4.6) was more dorsally concentrated than that of orangutans and 

more distally-extended than in gorillas (Figs. 4.10 and 4.12). This RBV/TV pattern is 

consistent with previous studies of chimpanzee subchondral trabecular bone 
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(Zeininger et al., 2011) and whole–epiphyseal analyses that found a similar signal in 

the subchondral trabeculae of Mc3 and Mc5 (Tsegai et al., 2013; Skinner et al., 

2015). It should be noted, however, that the present study sample includes five of 

the same Mc3 specimens and four of the Mc5 specimens used by Tsegai et al. 

(2013) and Skinner et al. (2015), respectively. In contrast to these analyses, studies 

using larger volume of interest (VOI) methods have found higher BV/TV in centrally-

placed VOIs relative to palmar or dorsally placed VOI’s in the chimpanzee Mc3 head 

(Barak et al., 2017; Chirchir et al., 2017). However, the use of fewer large VOIs in 

these studies, as opposed to the many smaller VOIs produced by the whole-

epiphysis approach employed here, may exacerbate issues of VOI placement and 

size that have been shown to dramatically affect trabecular measures in the 

primate Mc3 (Kivell et al., 2011b). 

In partial support of our prediction, we found that chimpanzees showed several 

significant differences in RBV/TV between the metacarpal heads, although there 

were not more differences than those found in gorilla metacarpals. Specifically, 

RBV/TV was significantly higher palmarly in Mc2 and Mc5 but higher distally in Mc3 

and Mc4 in chimpanzees (Figs. 4.8 and 4.13). This pattern may reflect relatively 

more weight bearing by digits 3 and 4 during knuckle-walking than in the second or 

fifth digit (Tuttle and Basmajian, 1978). Some captive chimpanzees with injuries to 

digits 2 and 5 appeared to be unimpaired when knuckle-walking, and some healthy 

individuals were observed flexing these digits so that they did not bear weight 

during this mode of locomotion (Tuttle, 1967). Larger captive chimpanzees have 

been observed using their second digit significantly less often than gorillas of 

equivalent size during knuckle-walking, and chimpanzees of all sizes used their fifth 

digit significantly less often and loaded it less than gorillas did (Inouye, 1994; 

Wunderlich and Jungers, 2009; Matatrazzo, 2013). Matarazzo (2013) found the 

third digit regularly lifted-off last during ‘palm-back’ knuckle-walking in captive 

chimpanzees and that peak pressure was often experienced by the third digit. 

Wunderlich and Jungers (2009) also found that peak pressures were higher on digits 

3 and 4 than on digits 2 and 5 when young chimpanzees practised arboreal knuckle-

walking and when they used a ‘palm-back’ posture during terrestrial knuckle-
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walking. Therefore it could be argued that the more palmar RBV/TV distribution in 

Mc2 and Mc5, relative to Mc3 and Mc4, might reflect less loading in McP 

hyperextension during knuckle-walking and a need to flex digits 2 and 5 during 

arboreal grasping. Marzke and Wullstein (1996) have argued that the fifth digit 

should be the most flexed in diagonal power grips, known to be used by wild 

chimpanzees while vertically climbing (Hunt, 1991; Neufuss et al., 2017). 

That being said, in previous hand pressure studies, all mature chimpanzees 

experienced peak pressures on digits 2-4 when terrestrially knuckle-walking and the 

second digit usually lifts-off during ‘palm-in’ knuckle-walking (Wunderlich and 

Jungers, 2009; Matatrazzo, 2013). Further, the second digit should be the most 

extended during diagonal power grips (Marzke and Wullstein, 1996) which opposes 

the relative flexion thought to be indicated here by the relatively palmar RBV/TV 

pattern found in the chimpanzee Mc2 head. Therefore, in the absence of kinematic 

and kinetic studies of locomotor hand postures in wild chimpanzees, we suggest 

that this pattern may reflect a more varied hand postures and distribution of 

pressure across the digits during knuckle-walking (Wunderlich and Jungers, 2009; 

Matarazzo, 2013) or more frequent arboreal grasping compared with gorillas, or a 

combination of both (Remis, 1995; Doran, 1996; Thorpe and Crompton, 2006).  

Pan paniscus  

Given the general similarities in locomotion and hand use between chimpanzees 

and bonobos, we predicted that bonobos would have a RBV/TV pattern that was 

very similar to that of chimpanzees, but with a more homogenised distribution of 

RBV/TV within each metacarpal head. Our results supported these predictions; 

bonobos showed higher RBV/TV disto-dorsally on their metacarpal heads, that was 

more distally-extended than in gorillas and more dorsally concentrated than that of 

orangutans (Figs. 4.6, 4.10 and 4.12). Bonobos differed from chimpanzees in that 

they possessed almost no significant inter-ray differences and they showed the 

most landmarks closest to the mean of BV/TV throughout each head’s trabecular 

surface (i.e., RBV/TV being ~1; Figs. 4.6, 4.8 and 4.13). This RBV/TV distribution is 

consistent with the expectation raised by Tsegai et al. (2013), that bonobos would 

have an intermediate Mc3 trabecular structure between that of African and Asian 
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non-human great apes (Fig.4.12), and consistent with the intermediate thickness of 

Mc3 cortical bone in this species (Susman, 1979). If the relatively higher dorsal 

RBV/TV in chimpanzee Mc3 and Mc4 is a knuckle-walking signal, then the lack of it 

in bonobos, as well as the significantly higher palmar RBV/TV of Mc3, may either 

reflect more loading of a flexed McP joint consistent with the presumed greater 

arboreality in this species (Alison and Badrian, 1977; Susman et al., 1980; Susman, 

1984; Crompton et al., 2010) or direct palmar loading of the metacarpal head as a 

result of a significant amount of arboreal palmigrady (Doran, 1993; Doran and Hunt, 

1994). 

Trabecular anisotropy  

In contrast to the RBV/TV results, the degree of anisotropy (DA) in the subchondral 

trabecular bone was less variable, both in inter-species and inter-ray comparisons. 

Interestingly, every species studied possesses higher average DA values across the 

most dorsal aspect of each metacarpal (Fig.4.7). As this pattern also appears in 

orangutans, it is likely not reflective of hyperextension of the McP during knuckle-

walking but may instead reflect fewer trabeculae at the limit of the subarticular 

surface. Fewer subchondral trabecular struts would reduce the variability of 

alignment and thus increase DA. The main significant differences in DA were found 

in orangutans, which were generally more anisotropic than any other taxon, 

especially gorillas (Figs. 4.7, 4.9, 4.14, 4.15 and Table 4.5). This did not support our 

prediction that orangutan DA would be significantly higher in the disto-palmar 

region, nor that gorilla DA would be significantly higher in the dorsal region of the 

metacarpal heads compared to other hominids. Given this lack of specific regional 

differences it is difficult to attribute the general lack of inter-ray differences in 

orangutans and gorillas to functional grips as per our predictions (Figs. 4.9; 4.15). 

Conversely, the analyses of chimpanzees and bonobos did partially support our 

predictions, as they showed the least significantly different landmarks in DA 

between them (Fig.4.11) and the most inter-ray differences within each species 

(Fig.4.9), though again it is difficult to link this to specific hand postures. 

High DA in orangutans did not support our predictions and appears contradictory to 

previous results showing significantly lower DA in orangutans and other suspensory 
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taxa (Tsegai et al., 2013). However, Tsegai et al. (2013) quantified and averaged 

trabecular DA throughout the entire Mc3 head, as opposed to just the subchondral 

trabeculae, which can mask the signal of higher DA in particular regions of the 

head. In particular, subchondral trabeculae are responsible for the initial dissipation 

of load from the articular, compact cortical bone through to the more internal 

trabecular structure in long bones such as metacarpals (Currey, 2002). Thus, it may 

be possible that trabeculae in this region are more constrained in their orientation, 

as they must link the cortical shell of the metacarpal head and the deeper 

trabecular structure, explaining the lack of variability in DA in our sample. If this is 

true, the variation in DA we did find, significantly higher DA in orangutans than in 

other species, might be due to a general lower number of trabeculae in orangutans. 

However, Chirchir et al. (2017) also found that DA was consistently, if not 

significantly, higher in orangutans compared with chimpanzees in all three of their 

VOIs which sampled most of the Mc3 head. Further, higher DA has been found in 

other regions of in the orangutan skeleton, such as at superior-central region of 

humerus (Kivell et al., 2018b). Therefore, it is unlikely that the significantly higher 

DA in orangutans is solely an artefact of sampling subchondral trabeculae. 

High subchondral DA in orangutans may reflect a lower extension range of motion 

(19°) compared to that of African apes (50°) (Napier, 1960; Rose, 1988). Although 

orangutans have been assumed to load their hands in a greater range of postures, 

to accommodate their diverse arboreal locomotor repertoire, relative to the 

frequent and consistent knuckle-walking postures of African apes (Tsegai et al., 

2013), the orangutan McP joint will, presumably, always be in a neutral-to-flexed 

posture when grasping arboreal substrates. Indeed, while variability in DA values 

for orangutans appears to be higher than in other taxa studied, higher average DA 

values are not solely driven by outlying individuals (Fig. 4.14) nor, on further 

interrogation, those of a particular species or sex. An analysis of trabeculae in the 

whole Mc3 head has reported similar intra-species variability in orangutans (Tsegai 

et al., 2013). Yet, one constant across orangutan species and sexes is their high 

frequency of arboreal locomotion requiring flexed McP grasping and perhaps a 

more stereotypically-aligned trabecular structure, reflected in the high average DA 



136 

found here. In contrast, African apes load their McP joints in both hyperextension 

during knuckle-walking, and a range of neutral-to-flexed postures during arboreal 

locomotion. The greater isotropy found within African apes subchondral trabeculae 

may reflect loading of the McP joint from multiple directions during arboreal, as 

well as terrestrial, behaviours.  

Inferring bone functional adaptation 

Many explorative comparative anatomy analyses, including the present study, can 

be thought of as adaptationist (Gould and Lewontin, 1979), presenting functionally 

adaptive explanations for the observed data that are not easily falsified (Smith, 

2016). Note that the term adaptation, within the adaptationist framework, is 

typically used to refer to heritable traits on which selection may act (Smith, 2016). 

The bone functional adaptation inferred here is considerably simpler, unconcerned 

with the fitness of a trait but merely its causal link with loading and a behaviour. 

Yet, the co-occurrence of behaviour and trabecular structure need not be linked 

causally and so this inference could still be termed, functionally, adaptationist. 

Here, however, we submit that as the clearest differences in subchondral RBV/TV 

and DA patterns in the metacarpal heads are between the two species with the 

most disparate locomotor modes (orangutans and gorillas) and the least differences 

are between the two species with the most similar locomotor modes (chimpanzees 

and bonobos). If the chimpanzees and bonobos were the most disparate in 

trabecular pattern this would provide an informal falsification of the broad 

underlying logic of our predictions. Conversely, with respect to our more specific 

predictions that were not met, for example those regarding regional DA in 

orangutans and gorillas, alternative data must be sought to explain these results (as 

detailed above). For example, future work that scales DA by trabecular number, 

analyses of the differences between subchondral and deeper trabecular structure, 

or detailed studies of locomotor hand postures in wild orangutans, could all 

potentially falsify some of these explanations. Nevertheless, it must be noted that 

the broader logic underlying more predictions holds for DA, as chimpanzees and 

bonobos did not display the most significant differences.  
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In the same vein, it could be argued that the lack of differences between 

chimpanzees and bonobos is due to their close phylogenetic distance rather than 

their similar locomotor regimes. Trabecular bone structure is controlled, at least to 

some extent, by genetic factors (Lovejoy et al., 2003; Havill et al., 2010; Judex et al., 

2013; Almécija et al., 2015) and role of trabecular remodeling is not solely 

functional (Skinner et al., 2015; 2015b); for example, trabecular bone is also 

important for mineral homeostasis (Clarke, 2008). There were clear differences in 

absolute BV/TV, however, such that bonobos demonstrated much greater 

subchondral BV/TV in all elements of the hand studied compared to chimpanzees 

(Fig. 4.5). This difference has been previously reported within the Mc3 of the same 

individuals in this study, for which the phylogenetic influence was assessed (Tsegai 

et al., 2013). The relative measure used here appears to have effectively controlled 

for this difference in subchondral metacarpal head BV/TV. This suggests that the 

absolute difference in BV/TV is not functional in origin, as it is unlikely bonobos 

practise a form of locomotion very similar to chimpanzees but with remarkably 

greater force. The only comparable kinematic data available demonstrates both 

captive chimpanzees and captive bonobos experience similar peak pressures on 

their fingers during arboreal knuckle-walking (Wunderlich and Jungers, 2009; 

Samuel et al., 2018). If not functional in origin, the absolute difference in BV/TV 

between chimpanzees and bonobos may be systemic. Though a study of metatarsal 

trabeculae failed to find a large difference in absolute BV/TV between chimpanzees 

and bonobos, that later did have higher values (Griffin et al., 2010), Tsegai et al. 

(2018) have noted that systemic differences in BV/TV between species may be 

variably pronounced at different anatomical sites. While the reasons for systemic 

differences in trabeculae might be varied, including hormones, diet and disparate 

intestinal biomes (Tsegai et al., 2018), this difference in absolute BV/TV is marked 

between these phylogenetically close species. As a corollary it would seem that 

there is little reason to suspect non-functional systematic forces are driving the 

similarities between RBV/TV in Pan species. Although the relative measure appears 

to have effectively controlled for possible systemic differences in subchondral 

trabeculae of the non-pollical metacarpal heads, there are still small differences 
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between the species which, by process of elimination, appear to be functional 

origin. 

Work on intra-species variation in a large sample of a single species also supports 

this idea of both a systemic and functional signal in trabecular architecture (Chirchir 

et al., 2015; Saers et al., 2016). While current studies have focused on humans, 

likely due to the availability of specimens, data from several anatomical joints have 

demonstrated lower BV/TV in sedentary humans relative to great apes (Chirchir et 

al., 2015; Ryan and Shaw, 2015; Tsegai et al., 2018). Lower limb BV/TV in recent 

sedentary humans is also lower than early modern humans and recent mobile 

forager populations, suggesting that this lower BV/TV reflects lower mechanical 

demands of a sedentary human lifestyle (Chirchir et al., 2015; Ryan and Shaw, 

2015). However, BV/TV in the upper limb of recent sedentary humans is also lower 

than great apes and early modern humans, even though this limb is not necessarily 

loaded less in sedentary populations. As a result it remains possible that the 

reduction in the BV/TV in sedentary modern human populations is partly systemic 

(Chirchir et al., 2015). That is, reduction in upper limb BV/TV in sedentary modern 

human populations may be an indirect consequence of less lower limb loading, 

rather than less mechanical load on the upper limb (Chirchir et al., 2015). Within 

the lower limb, this lower BV/TV in sedentary human populations relative to mobile 

foragers, appears to be superimposed on a pattern of increasing trabecular gracility 

with increasingly distal elements of the limb in both types of population (Saers et 

al., 2016). The transition to sedentism in human populations provides a natural 

experiment that allows the identification of a trabecular functional signal 

superimposed onto a structural limb tapering signal, which is also found in cortical 

bone (Saers et al., 2016). The difference in upper limb and lower limb BV/TV 

between mobile and sedentary populations, allows us to begin explaining the 

variance structure in BV/TV values via both indirect (systemic) and direct 

(functional) factors (Chirchir et al., 2015). Similarly, this known difference in BV/TV 

can highlight other non-functional factors determining BV/TV such as a systemic 

limb tapering signal (Saers et al., 2016). We argue that the phylogenetic proximity 

and similar locomotion of both Pan species also provide a natural experiment, 
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holding some influences on BV/TV constant, that begins to separate functional and 

systemic differences between these species, as seen in the present RBV/TV and 

BV/TV results. Future work should consider the possibility of clarifying functional 

and systemic signals in trabecular bone. 

It would be interesting to apply these methods to the pollicial metacarpal of 

hominids, and perhaps a larger sample of primates, in order to test for manipulative 

behaviour signals that may lie in the subchondral trabecular bone. Even this 

relatively small comparative sample may be used to contextualise fossil hominin 

trabeculae to shed light on their habitually loaded hand postures. Fossil hominins 

with a distribution of trabeculae similar to that found in extant hominids here, likely 

loaded their hand in similar manner and practised similar grips to these species. 

Therefore this comparative context has the potential to distinguish between 

habitual knuckle-walking and aboreality in fossil hominins. Though relatively 

complete fossil hominin hands are rare in the paleontological record, this 

comparative sample demonstrates that isolated Mc2 or Mc5 elements are more 

important than previously thought for identifying habitual hand use in our 

ancestors.  
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Conclusion 

Using a geometric morphometric approach, we demonstrated significant 

differences in the distribution of subchondral trabecular RBV/TV across non-human 

great apes that were consistent with our predicted differences in McP joint loading 

during locomotion. Results of this study generally confirm previous analyses of 

metacarpal head trabecular structure that have largely focused only on the Mc3, 

but provide, for the first time, a statistically robust comparison using the whole-

epiphysis approach. Building upon previous work, to analyse trabecular structure 

across all of the non-pollical metacarpals, we revealed novel RBV/TV patterns in the 

inter-ray comparisons within gorillas, chimpanzees and bonobos, that are 

consistent with differences in hand posture during knuckle-walking as well as the 

frequency of arboreal locomotion in these species. However, these inferences 

require testing with more detailed kinematic and kinetic analyses of the hand, 

ideally in wild non-human great apes. Contrary to our predictions, we found few 

significant differences in DA across taxa, with orangutans demonstrating 

significantly higher DA than African ape taxa. We conclude that the interspecific 

variation in subchondral trabecular RBV/TV revealed here is consistent with what is 

currently known about non-human great ape hand use and McP joint loading. 

Therefore, subchondral trabecular structure provides a valuable comparative 

context in which to interpret the trabecular structure of fossil hominoid or hominin 

metacarpal heads (see Chapter 6).  
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Chapter 5 

Trabecular variation in the first metacarpal 

reflects distinctive human manipulation among 

hominids 

Abstract 

The dexterity of fossil hominins is often inferred by assessing the comparative 

manual anatomy and behaviors of extant hominids, with a focus on the thumb. The 

aim of this study is to test whether trabecular structure is consistent with what is 

currently known about habitually loaded thumb postures across extant hominids. 

We analyse first metacarpal (Mc1) subarticular trabecular architecture in humans 

(Homo sapiens, n=10), bonobos (Pan paniscus, n=10), chimpanzees (Pan 

troglodytes, n=11), as well as, for the first time, gorillas (Gorilla gorilla gorilla, n=10) 

and orangutans (Pongo sp. indet., n=1, Pongo abelii, n= 3 and Pongo pygmaeus, 

n=5). Using a combination of subarticular and whole-epiphysis approaches, we test 

for significant differences in relative trabecular bone volume (RBV/TV) and degree 

of anisotropy (DA) between species. Humans have significantly greater RBV/TV on 

the radio-palmar aspects of both the proximal and distal Mc1 subarticular surfaces 

and greater DA throughout the Mc1 head than other hominids. Non-human great 

apes have greatest RBV/TV on the ulnar aspect of the Mc1 head and the palmar 

aspect of the Mc1 base. Gorillas possessed significantly lower DA in the Mc1 head 

than any other taxon in our sample. These results are consistent with abduction of 

the thumb during forceful pad-to-pad precision grips in humans and, in non-human 

great apes, a habitually adducted thumb that is typically used in precision and 

power grips. This comparative context will help infer habitual manipulative and 

locomotor grips in fossil hominins. 

 

 

Submitted Article: Dunmore C.J., Bardo A., Skinner M.M. & Kivell T.L. (in review) Trabecular variation 

in the first metacarpal and manipulation in hominids. American Journal of Physical Anthropology 
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Introduction 

The unique dexterity of the human hand is often linked to two major events in 

hominin evolution, the development of obligate bipedalism and complex 

technology (Wood-Jones, 1916; Napier, 1993; Marzke, 2013; Lemelin and Schimtt, 

2016; Richmond et al., 2016). The discovery in the late 1950s of stone tools in 

association with the OH 7 Homo habilis fossil hand, dated to approximately 1.75 

million years ago (mya), was interpreted as potential anatomical and behavioural 

evidence of human-like dexterity (Napier, 1962b; Leakey, et al., 1964; de la Torre, 

2011). Archaeological evidence of hominin tool behaviours has since been found in 

earlier contexts, dating back to at least 3.3 mya (Harmand et al., 2015), and is likely 

a preserved facet of a larger hominin manipulative repertoire that may have older 

origins (Panger, et al., 2002; Haslam et al., 2009; Alba et al., 2003; Kivell, 2015). 

When and how the manipulative capability required for stone tool behaviours 

evolved, however, is still a key question in human evolution (Panger et al., 2002; 

Richmond et al., 2016).  

As hominids are our closest living relatives, their manipulative abilities of have been 

used to functionally interpret fossil hand bones (e.g. Susman, 1994; 1998; Marzke, 

1997). Napier’s (1956; 1993) broad schema of power grips, usually practised by 

apes in locomotion, and precision grips, generally practised by humans during 

manipulation, provides an intuitive dichotomy of phylogenetic polarity that has 

been the basis for this functional inference. Ape-like aspects of fossil hominin hand 

morphology are often interpreted as useful for arboreal locomotion whereas 

human-like morphological features are interpreted as advantageous for 

manipulation (e.g., Susman, 1994; Tocheri et al., 2008; Marzke, 2013; Kivell et al., 

2015). In particular, compared to other apes, humans possess a relatively long 

thumb with a robust first metacarpal (Mc1) and broad phalanges that have been 

interpreted as key to enabling forceful pad-to-pad precision grips. Forceful 

precision grips have been traditionally considered unique to humans (Marzke and 

Wullstein, 1996) and facilitate stone tool production (Marzke and Shackley, 1986; 

Marzke et al., 1998; Key and Dunmore, 2015) as well as use (Williams-Hatala et al., 

2018; Key et al., 2018). Here, rather than external shape or size, we analyse another 
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aspect of the Mc1 morphology across hominids, the internal trabecular 

architecture. 

Despite having comparatively short and gracile thumbs and long fingers compared 

with that of humans, captive non-human great apes are capable of several human-

like precision grips (Christel, 1993; Christel and Fragaszy, 2000; Pouydebat et al., 

2009; Bardo et al., 2017) and are more adept at tool-use than previously thought 

(Wright, 1972; Toth, et al., 1993; Pouydebat et al., 2005; Bardo et al., 2017). While 

the manipulative repertoires of captive non-human great apes can differ from their 

wild counter-parts (Tuttle, 1969; Marzke et al., 2015; Neufuss et al., 2016), all wild 

non-human great apes show high levels of dexterity during food processing (Byrne 

et al., 2001; Marzke et al., 2015; Neufuss, et al., 2018) and, in some species, tool-

use (Boesch and Boesch, 1990; Matsuzawa, 1996; Nishida and Hiraiwa, 1982; 

Sugiyama, 1994; Fox and Bin'Muhammad, 2002). Further, the use of stone tools 

naturally occurs in some non-hominid primate communities including capuchins 

(Cebus libidinosus, Fragaszy et al., 2004; Sapajus libidinosus, Proffitt et al., 2016) 

and macaques (Macaca fascicularis, Malaivijitnond et al., 2007; Proffitt et al., 2018). 

Thus, behavioural inferences concerning fossil hominin manipulation have become 

more nuanced (Marzke et al., 2015; Kivell, 2015), as non-human great ape hand 

morphology has been shown to be more dexterous than previously thought (e.g. 

Susman, 1998).  

Fossil hominin manipulative capabilities have also been inferred from a 

biomechanical perspective. For example, compared to non-human great apes, 

humans have a larger and less curved sellar trapezium-first metacarpal facet, a 

palmarly-expanded trapezium, and a reorientation of the radial carpal bones that is 

thought to help facilitate the transfer of large forces, that occur during forceful 

manipulation from the thumb, across the wrist and palm (Tocheri et al., 2005; 

Tocheri, 2007; Marzke et al., 2010). The presence of these morphological features 

in Neanderthals (Trinkaus, 1983; Niewoehner, 2005; Tocheri, 2007) or many of 

these features in Homo naledi (Kivell et al., 2015), has been interpreted as 

morphological evidence of committed tool behaviours in these fossil hominins. The 

hand bones of australopiths show a variety of external morphological features that 
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are shared with either humans or apes, from which inferences about their 

manipulative abilities have been made (e.g. Marzke, 1983; Clarke, 1999; Green and 

Gordon, 2008; Kivell et al., 2011; Rolian and Gordon, 2013; Alba et al., 2003). 

However, these functional interpretations can suggest the grips a particular fossil 

hominin may have been biomechanically capable of performing, but less so which 

grips were frequently used.  

Internal trabecular structure can provide additional evidence of how a bone was 

loaded during life (Ruff and Runestad, 1992; Currey, 2002) and thus potentially 

provide novel insight into fossil hominin hand use. Biomechanical loading causes 

trabeculae to remodel (Cowin, 1986; Frost, 1987), as experimentally demonstrated 

in a variety of non-primate taxa (Biewener et al., 1996; Pontzer et al., 2006; Barak 

et al., 2011; Christen and Müller, 2017). Trabecular studies of primate hands have 

also found that the distribution of trabecular bone is consistent with hand positions 

thought to be used by different species during locomotion (Zeininger et al., 2011; 

Tsegai et al., 2013; Chirchir et al., 2017; Barak et al., 2017; Dunmore et al., 2019). 

Preserved trabeculae in fossil hominins have been used to infer habitual loading 

and reconstruct locomotor (e.g. DeSilva and Devlin, 2012; Barak et al., 2013b; Su et 

al., 2013; Zeininger et al., 2016; Ryan et al., 2018) and manipulative (e.g. Skinner et 

al., 2015; Stephens et al., 2018) behaviours during human evolution. These 

functional inferences are based on the comparative context of extant great apes 

and an association between variation in their trabecular architecture and 

assumptions about the joint postures they most commonly use (Orr, 2016). 

Studies of trabeculae in the thumb have mainly focussed on humans. Right human 

Mc1s have a significantly greater trabecular bone volume fraction (BV/TV) than 

those from left hands (Stephens et al., 2016) consistent with cross-populational 

right-hand bias in our species (Faurie et al., 2005; Reina et al., 2017) though the 

trabecular difference was small in absolute terms (Skinner et al., 2015; Stephens et 

al., 2016; Reina et al., 2017). While BV/TV is significantly greater in the Mc1 head of 

both humans and chimpanzees relative to the base (Lazenby et al., 2011b; Stephens 

et al., 2016) the species differ in the Mc1 base. Specifically, the human Mc1 base 

has a greater concentration of trabecular bone in its palmar aspect relative to 
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human non-pollical metacarpals (Wong et al., 2018) and the Mc1 of Pan species 

(Skinner et al., 2015). Where Skinner et al. (2015) inferred function by qualitatively 

analysing 3D trabecular models, Stephens et al. (2018) quantitatively analysed an 

expanded sample of pre- and post-Neolithic humans and found that BV/TV was 

greatest in the radio-palmar segments of the Mc1 head and base, consistent with a 

flexed, abducted thumb in precision grips.  

We build on this work by analysing Mc1 trabeculae across extant hominids 

including modern humans (Homo sapiens), bonobos (Pan paniscus), chimpanzees 

(Pan troglodytes), and for the first time, gorillas (Gorilla gorilla gorilla) and 

orangutans (Pongo abelii, Pongo pygmaeus and Pongo sp. indet.). A geometric 

morphometric, statistical mapping method (Dunmore et al., 2019) is applied to 

subarticular regions of trabecular models produced by the whole-epiphysis 

approach. Specifically, we measure and statistically analyse variation in relative 

trabecular bone volume (RBV/TV; see below) and degree of anisotropy (DA) in the 

proximal and distal Mc1 to assess whether it is consistent with habitual thumb 

loading postures in these species. 

Locomotion, manipulation and thumb morphology 

While trapeziometacarpal (TMc) and metacarpophalangeal (McP) joint movement 

and loading is a product of both bony and soft tissue morphology (van Leeuwen, et 

al., 2018), combining what is known of this morphology with observed habitual 

thumb use allows us to characterise habitual thumb loading postures in the species 

studied. 

Homo sapiens 

Humans are obligate bipeds and so rarely employ grips in locomotion but power 

grips are used to habitually climb in some populations (Kraft et al., 2014). The 

uniquely human power-squeeze grip is also used in manipulation (Marzke et al., 

1992; Key et al., 2018). This grip flexes fingers around a cylindrical object, which 

diagonally lies across the palm, while the thumb is adducted with considerable 

force and controls the direction in which force is applied to the object (Cooney and 

Chao, 1977; Marzke et al., 1992).  
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Human precision grips can also be uniquely forceful as demonstrated by the 

relatively high levels of pressure on the distal thumb of both hands during stone 

tool production and use (Key and Dunmore, 2015; Williams-Hatala et al., 2018). 

During stone tool production, a ‘three-jaw-chuck’ grip is commonly used to wield 

hammerstones, in which the thumb is abducted and rotated to oppose the second 

and third digits (Marzke, 1997). When using small flake stone tools, humans tend to 

use ‘pad-to-side’ grips whereas for larger flakes or handaxes they often employ a 

‘cradle’ or ‘five-jaw buttressed pad-to-pad’ power grip, which both oppose the 

thumb to the other fingers with support from the palm (Rolian et al., 2011; Key et 

al., 2018). Biomechanical analysis has also shown large pollical flexion forces are 

required to stabilise a simulated tool during use (Rolian et al., 2011). While the role 

of the flexor pollicis longus muscle is debated (Hammrick et al., 1998; Marzke et al., 

1998), electromyography data has highlighted that flexor pollicis brevis and 

opponens pollicis are strongly recruited to oppose the thumb to the rest of the 

fingers in these strong precision grips (Marzke et al., 1998).  

Humans possess the longest thumb relative to the fingers among hominids 

(Almécija et al., 2015), which facilitates opposition of thumb to the fingers (Napier, 

1956; Marzke, 1997; Feix et al., 2015; Bardo et al., 2018). Human distal phalanges 

are capable of passive hyperextension as our deep flexor tendons are long 

compared to those of other great apes (Preuschoft, 1965; Tuttle, 1967). This 

movement permits full pad-to-pad precision grips (Napier, 1960) frequently used by 

humans to forcefully manipulate small objects, especially within the hand (Christel, 

1993; Marzke and Wullstein, 1996; Bardo et al., 2017; Key et al., 2018). Humans are 

unique among hominids in possessing a distinct extensor pollicis brevis muscle, 

which is well-developed and stabilises the extended McP joint while the first 

interphalangeal joint is forcefully flexed (Marzke et al., 1999; Diogo, Richmond and 

Wood, 2012). This force is achieved through high potential torques of human 

musculature compared to non-human great apes (Marzke et al., 1999). Further, 

during finger opposition, large human thenar muscles allow a forceful compound 

movement of axial rotation, flexion and abduction of the human thumb (Napier, 

1961; Halilaj et al., 2014; Feix et al., 2016; D’Agostino et al., 2017). The larger and 
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flatter sellar-facet (Tocheri et al., 2005; Marzke et al., 2010), as well as a less curved 

proximal Mc1 and a shorter palmar beak (Niewoehner, 2005; Marchi et al., 2017), 

are associated with greater TMc mobility in humans compared to other great apes 

(Cooney et al., 1981; Rose, 1992). Although the high radio-ulnar congruence at the 

TMc joint may limit abduction, it facilitates resistance to large axial forces 

generated in human manipulation (Marzke et al., 2010; 2013).  

Pongo 

Orangutans are primarily arboreal and engage in quadrumanous torso-orthograde 

locomotion (Thorpe and Crompton, 2006; Manduell et al., 2011). Hand use during 

arboreal locomotion is not well studied (Thorpe and Crompton, 2005), but 

orangutans are thought to habitually use hook-grips or ‘double-locked’ grips that 

only recruit their fingers (Sarimento, 1988; Rose, 1988). However, orangutans may 

oppose the thumb to the fingers when climbing small-diameter substrates 

(Sarmiento, 1988), and preliminary behavioural evidence shows more frequent 

recruitment of the thumb than traditionally thought (McClure et al., 2012).  

In captivity, orangutans do recruit the thumb in pad-to-side precision grips during 

manipulative tasks (Christel, 1993; Bardo et al., 2017). However, they far more 

frequently use a power-grip, especially for larger objects (Pouydebat et al., 2009), 

or a ‘V-pocket’ grip (Marzke, et al., 2015), in which the object is held in the webbing 

between the full thumb and index finger (Bardo et al., 2017). In both grips, the 

thumb may provide support but is not strongly recruited and orangutans frequently 

reposition tools with their mouths rather than with their hand (Christel, 1993; 

Bardo et al., 2017). In the wild, orangutans have not yet been observed using 

precision grips, even during tool production and use of tools (e.g. van Schaik et al., 

1996; Fox et al., 1999).  

The lack of thumb recruitment in orangutan grips is likely because the orangutan 

thumb is the shortest, relative to the fingers, of any great ape (Tuttle, 1969b; 

Almécija et al., 2015; Bardo et al., 2018). As such, the theoretical ‘work space’ for 

manipulating small objects between the tip of the thumb and the tip of the index 

finger, a ‘tip-to-tip’ grip, has been shown to be the smallest of all great apes (Feix, 



148 

et al., 2015). The manipulative capability of orangutans is also constrained by a lack 

of a distinct flexor pollicis longus that inserts on the distal phalanx, as well as the 

well-developed thenar musculature, found in humans (Strauss, 1942; Tuttle, 1969b; 

Zihlman et al., 2011). Orangutans, however, have the largest range of 

hyperextension (25°) and radio-ulnar movement at the first McP (36°) of all non-

human great apes, especially ulnarly (Tuttle, 1969b). This range of movement may 

relate to the fact that unlike other non-human great apes, the palmar aspect of the 

orangutan Mc1 head is rotated ulnarly relative to its base, which is argued to be a 

consequence of the short thumb opposing the rigid palm rather than mobile fingers 

in this species (Drapeau, 2015). This McP joint mobility may partially offset a TMc 

joint that has been described as generally more congruent in orangutans than in 

other great apes which presumably limits its range of motion somewhat (Rafferty, 

1990). However, the range of movement at this joint has also been described as 

highly variable (Rafferty, 1990) and a quantitative study found few significant 

differences in surface congruity at this joint between orangutans and other great 

apes (Marzke et al., 2010). 

Pan troglodytes 

Chimpanzees predominantly knuckle-walk, a mode of locomotion that does not 

recruit the thumb (Doran, 1996; Wunderlich and Jungers, 2009). However, 

chimpanzees are also arboreal and those of the Taï Forest, Ivory Coast, frequently 

vertically climb or scramble in trees (Doran, 1993), and this species has been 

described as more arboreal than gorillas (Remis, 1995; Doran, 1996; Thorpe and 

Crompton, 2006). Depending on branch diameter, chimpanzees use their thumbs in 

adducted, abducted, and opposed positions during power or hook grips (Hunt, 

1991; Marzke and Wullstein, 1996; Neufuss et al., 2017). Unlike gorillas, 

chimpanzees only oppose the thumb in-line with, rather than wrapping it around, 

arboreal substrates during diagonal power grasping (Marzke et al., 1992; Alexander, 

1994; Neufuss et al., 2017).  

The chimpanzee thumb is frequently involved in tip-to-tip and pad-to-side precision 

grips during manipulative activities in captivity (Christel, 1993; Marzke and 

Wullstein, 1996; Jones-Engels and Bard, 1996; Pouydebat et al., 2011). In the wild, 
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rare pad-to-pad precision grips have been observed in chimpanzees during feeding 

but pad-to-side grips are the most frequent, employing an adducted thumb 

(Marzke et al, 2015).  

These observed grips may be a result of the chimpanzee thumb to finger ratio that 

is intermediate between that of gorillas and orangutans (Drapeau and Ward, 2007; 

Almécija et al., 2015). Chimpanzees generally have smaller thenar muscles than 

those of humans (Ogihara et al., 2005) that can generate lower potential torques, 

due to shorter moment arms (Marzke et al., 1999). Conversely, the transverse head 

of the adductor pollicis muscle is equivalent to, or larger than, that of humans in 

chimpanzees and can create larger potential torques (Tuttle, 1969b; Marzke et al., 

1999; Jacofsky, 2009). As the flexor pollicis brevis and opponens pollicis muscles 

tend to secondarily adduct the TMc joint in chimpanzees, while they abduct the 

joint in humans, Marzke et al. (1999) have linked this myological morphology to 

adduction of the thumb in pad-to-side grips in this species. The chimpanzee TMc 

joint itself is relatively incongruent, especially dorso-palmarly, which may allow for 

mobility at this joint at the cost of stability (Rafferty, 1990; Marzke et al., 2010). 

Pan paniscus 

Like chimpanzees, bonobos also primarily knuckle-walk, both arboreally and 

terrestrially, which does not recruit the thumb. However, they are argued to be 

more arboreal than chimpanzees (Alison and Badrian, 1977; Susman and Badrian, 

1980; Crompton, Sellers and Thorpe, 2010) and engage in arboreal palmigrady 

more frequently (Doran, 1993). While the bonobo thumb is frequently observed in 

use during vertical climbing and suspension, it may not be meaningfully loaded 

(Samuel et al., 2018). Similarly, while the thumb may be recruited in palmigrady, 

data on this are lacking, and so it is possible the thumb is most frequently loaded 

during manipulative behaviour in this species.  

Captive bonobos use precision grips and, uniquely among non-human great apes, 

they frequently independently flex their first distal phalanx while picking up small 

objects (Christel, 1993; Christel et al., 1998). The most frequent grips used by 

bonobos during manipulative tasks that employ the thumb are the V-pocket and 
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pad-to-side grips, in which the thumb is adducted (Bardo et al., 2016). In 

naturalistic environments, bonobos use, albeit rarely, tools in social and feeding 

behaviours, as well as to shelter from rain (Ingmanson, 1996; Hohmann and Fruth, 

2003; Furuichi et al., 2015). Sanctuary-living bonobos have also been reported to 

employ a variety of different grips during nut-cracking, including many that involve 

an adducted thumb that may be flexed or extended (Neufuss et al., 2016).  

Bonobos have a similar relative thumb length (Almécija et al., 2015) and a 

comparable kinematic workspace to chimpanzees (Feix et al., 2015). This species 

has well-developed thenar musculature that can exert high pressures at the TMc 

joint and includes a tendon of the flexor digitorum profundus that flexes the distal 

phalanx (van Leeuwen et al., 2018; 2018b), a trait that is weakly expressed or 

absent in chimpanzees (Tuttle, 1969b; Susman, 1998). However, the bonobo thumb 

is not capable of the same level of force as is the human thumb (van Leeuwen et al., 

2018). Further, this species demonstrates a fusion of thumb and index finger 

musculature that may limit complex precision grips that require independent 

movement of these digits (van Leeuwen et al., 2018). The shape of the bonobo TMc 

joint is similar to that of humans, but unlike humans strong volar ligaments at this 

joint in bonobos restrict the extension at the TMc to just 30° (van Leeuwen et al., 

2018b). The rounded Mc1 base palmar beak is also thought to limit axial rotation 

and medio-lateral movements of the Mc1 on the trapezium and therefore the 

compound movement involved in pad-to-pad opposition grips (van Leeuwen et al., 

2018b) 

Gorilla 

The most frequent locomotor mode in gorillas is terrestrial knuckle-walking, which 

does not recruit the thumb (Inouye, 1994; Remis, 1998; Matarazzo, 2013). Gorillas 

are also arboreal, and when captive lowland gorillas climb large diameter supports 

they recruit, but do not oppose, the thumb keeping it in line with the rest of the 

digits (Sarmiento, 1994). Unfortunately, relatively little is known about wild western 

lowland gorilla hand use compared to that of mountain gorillas (Byrne et al., 2001; 

Neufuss et al., 2017). Wild mountain gorillas also adduct their thumbs in grips of 

>50cm diameter substrates but they oppose the thumb in-line with, or around, 6-
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10cm diameter substrates, and the thumb is particularly important in counter-

stabilising descent grips on lianas (Neufuss et al., 2017). While arboreal behaviours 

may have been traditionally underestimated in gorillas (Crompton et al., 2010; 

Neufuss et al., 2017), this genus most frequently terrestrially knuckle-walks, which 

does not recruit the thumb, and therefore the thumb may be most often used 

during manipulation. 

Captive gorillas can perform tip-to-tip precision grips (Christel, 1993; Pouydebat et 

al., 2008), although they also often use power grips and ‘interdigital brace’ grips 

during manipulative tasks (Bardo et al., 2017). The latter grip threads an object 

between the adducted thumb and index finger, as well as the palmar or dorsal 

aspects of the ulnar digits (Lesnik et al., 2015; Bardo et al., 2017). Wild mountain 

gorillas most frequently employ precision grips including interdigital brace, ‘thumb 

wrap’, and pad-to-side grips during food processing, which all adduct the thumb 

(Neufuss et al., 2018). However, Neufuss et al. (2018) have emphasized the great 

variety of grips and thumb positions used by mountain gorillas in food processing 

and while they did not observe precise in-hand manipulation (sensu Landsmeer, 

1962) in this community, it has been reported in others (Byrne et al., 2001; Bardo et 

al., 2017). Gorillas have also been observed engaging in tool-use behaviours (Breuer 

et al., 2005; Kinani and Zimmerman, 2015). 

The use of the gorilla thumb in a variety of grips may be linked to its long thumb, 

relative to the fingers, which is relatively longer than that of all non-human great 

apes (Susman, 1979; Almécija et al., 2015). These hand proportions provide for the 

largest theoretical kinematic workspace, between the thumb and index finger, 

compared with all other non-human great apes (Feix et al., 2015). The Mc1 head is 

of comparable breadth to that of humans, which may facilitate a similar degree of 

movement at the McP joint in gorillas (Hamrick and Inouye, 1995; Susman, 1998). 

The distal fibres of abductor pollicis longus muscle do not separate into a distinct 

muscle belly in gorillas (contra Sarmiento, 1994), which is the extensor pollicis 

brevis muscle in humans. However, the abductor pollicis longus muscle does insert 

on the gorilla proximal phalanx more frequently than in other non-human great 

apes (Diogo et al., 2012), which may facilitate increased thumb dexterity. Similarly, 
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gorillas have a less congruent TMc than orangutans (Rafferty, 1990) allowing for a 

greater range of motion at this joint, although this difference is small quantitatively 

(Marzke et al., 2010) and different approaches used to quantify TMc surface 

congruence are often difficult to compare (Halilaj et al., 2014b). 

Predictions 

We predict that (P1) the subarticular trabecular architecture in the Mc1 head 

humans will be distinct from non-human great apes, with gorillas possibly 

displaying a distinct pattern within the latter group. All non-human great apes 

appear to habitually use pad-to-side or V-pocket grips in which the thumb is 

adducted (Jacofsky, 2009; Marzke et al., 2015; Bardo et al., 2016; 2017; Neufuss et 

al., 2018). Therefore, we predict (P1a) that both subarticular relative trabecular 

volume (RBV/TV; see methods) and degree of anisotropy (DA) will be greatest 

ulnarly in the Mc1 head of these species. Gorillas may be an exception to this 

pattern because while they frequently adduct the thumb in some interdigital 

brace’grips (Bardo et al., 2017), they also have a wide Mc1 head (Hamrick and 

Inouye, 1995; Susman, 1998) and frequently recruit the thumb in abducted 

positions (Neufuss et al., 2018). As a result we expect that (P1b) gorillas may have 

lower DA across the Mc1 head than other non-human great apes. Conversely, due 

to frequent use of forceful precision grips in which the thumb is flexed and 

abducted (Napier, 1956; Feix et al., 2016; Marzke, 2013), we predict that (P1c) 

humans will have greater subarticular DA and RBV/TV in the radio-palmar aspect of 

the Mc1 head.  

In the Mc1 base we predict (P2) that the trabecular structure of humans will again 

be distinct from non-human great apes. However, given the lower range of motion 

in the joint compared to the McP in non-human great apes (Napier, 1960), we do 

not predict differences within this group. Given the frequent, forceful use of the 

relatively mobile human TMc joint, we predict (P2a) that subarticular DA will be 

lower throughout the Mc1 base in humans than in non-human great apes. Similarly 

we predict (P2b) RBV/TV will be greater in the palmar aspect of the Mc1 base in 

non-human great apes as the TMc is primarily flexed in these species during 

arboreal power grasping (Neufuss et al., 2017) and precision grasping (Marzke, 
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1997; Marzke et al., 2015; Bardo et al., 2016; 2017; Neufuss et al., 2018). 

Conversely, in humans we predict (P2c), RBV/TV will be greater in the radio-palmar 

aspect of the Mc1 base due to habitual abduction and flexion during precision 

grasping (Napier, 1956; Feix et al., 2016; D’Agostino et al., 2017) as has been 

demonstrated previously (Stephens et al., 2018). 

Materials  

Subarticular trabecular bone was analysed in the Mc1 of Homo sapiens (n=10), Pan 

paniscus (n=10), Pan troglodytes (n=11), Gorilla gorilla gorilla (n=10), Pongo sp. 

indet. (n=1), Pongo pygmaeus (n=5) and Pongo abelii (n=3, Table 5.1). All specimens 

were considered adult based on complete epiphyseal fusion of the Mc1 as well as 

other postcranial elements, and free from external signs of pathology. All non-

human specimens were wild-caught. Human specimens were drawn from four 

populations: Nubians of ~5th century AD Sayala, Egypt (Strouhal and Jungwirth, 

1979; Paoli et al., 1993), Yámanas individuals from 19th century Tiera del Fuego 

(Marangoni et al., 2011), 20th century individuals from Syracuse and 20th century 

individuals from a cemetery in Inden, Germany (Großkopf, 2015). The samples were 

sex balanced for each species, although one Pongo pygmaeus and two H. sapiens 

specimens were of unknown sex. For the non-human apes, an effort was made to 

analyse even numbers of antimeres as there are some signs of lateral asymmetry in 

metacarpal trabecular (Stephens et al., 2016) and cortical bone (Sarringhaus et al., 

2005), though these differences are slight in absolute terms (Sarringhaus et al., 

2005; Skinner et al., 2015). Conversely, humans are cross-culturally right-handed 

(Faurie et al., 2005) and this is reflected in Mc1 trabecular bone (Stephens et al., 

2016; Reina et al., 2017). Therefore, the human sample was drawn from right hands 

to avoid potential bias related to handedness.  
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  Table 5.1. Study sample enumerated by sex and side. 

 

 

 

 

 

 

 

 

 

Methods 

Micro-CT Scanning 

Specimens were scanned with a BIR ACTIS 225/300, Diondo D3, or a Skyscan 1172 

high resolution micro-CT scanner at the Department of Human Evolution, Max 

Planck Institute for Evolutionary Anthropology, Germany, or with the Nikon 

225/XTH scanner at the Cambridge Biotomography Centre, University of 

Cambridge, UK. Scans were performed at 100-160 kV and 100-140 µA, using a brass 

or copper filter of 0.25-0.5 mm. The scans were reconstructed to create images 

with an isometric voxel size of 28-41 µm depending on the size of the specimen. 

Image processing 

Avizo 6.3 (Visualization Sciences Group) was used to isolate and rotate micro-CT 

scans of each Mc1 into a standardised anatomical position (Fig. 5.2a) and the Ray 

Casting Algorithm (Scherf and Tilgner, 2009) was used to segment bone tissue. 

Trabecular structure was analysed with the whole-epiphysis method, which has 

been described and tested in detail (Gross et al., 2014). Briefly, medtool 4.2 (Dr. 

Pahr Ingenieurs e.U.) was used to run the image through a series of image filters 

that separated the inner trabecular structure from the cortical shell (Fig. 5.2b). 

  Side 

Species Sex Left Right 

Gorilla gorilla gorilla Female 3 2 

 Male 2 3 

Homo sapiens Female - 4 

 Male - 4 

 Unknown - 2 

Pan paniscus Female 3 2 

 Male 2 3 

Pan troglodytes  Female 2 3 

 Male 3 3 

Pongo abelii Female 1 1 

 Male - 1 

Pongo pygmaeus Female 1 2 

 Male - 1 

 Unknown 1 - 

Pongo sp. indet. Male 1 - 
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Specifically, an algorithm casts mathematical rays from the edge of the cortical 

bone inward in seven directions, the three orthogonal axes as well as at the four 

diagonals of the unit cube. Where at least five of these seven rays met the first 

‘inner-air’ voxel, that is part of the image that is not bone and inside the cortical 

shell, they were marked as part of the inner structure. A smooth kernel, with a 

diameter equal to the measured average trabecular thickness in that bone, was 

then used to close the gaps in this inner structure, the trabeculae, to delimit the 

volume of the inner trabecular structure (Pahr and Zysset, 2009). A three-

dimensional (3D) grid was then superimposed on the inner structure and 

overlapping spherical volumes of interest (VOI) with a 5mm diameter were 

positioned at each vertex within the 2.5mm-spaced grid. Trabecular bone volume 

(BV/TV) and degree of anisotropy (DA) were then measured for each VOI (Fig. 5.2c), 

as several studies have demonstrated these properties correlate with bone 

biomechanics (Odgaard, 1997; Uchiyama et al., 1999; Pontzer et al., 2006; Barak et 

al., 2011; Lambers et al., 2013), and are not strongly affected by allometry (Doube 

et al., 2011; Barak et al., 2013; Ryan and Shaw, 2013). The mean intercept length 

(MIL) method was used to calculate the second order fabric tensor and DA as 1 – 

(lowest eigenvalue / greatest eigenvalue). Thus, DA values of 0 represent total 

isotropy and values of 1 represent total anisotropy. Each trabecular variable was 

then separately interpolated on 3D tetrahedral mesh created using CGAL 

(Computational Geometry Algorithms Library; www.cgal.org; Fig. 5.2d). The outer 

surface of this trabecular mesh was then isolated using Paraview (Ayachit, 2015), 

and smoothed to permit landmark sliding (see below) in Meshlab (Cignoni et al., 

2008) via a screened Poisson surface reconstruction filter (Kazhdan and Hoppe, 

2013; Fig. 5.2e). For left Mc1s, this smoothed mesh was oriented in the same way 

as right Mc1s by a reflection filter in Meshlab to allow for homologous 

comparisons.  

Geometric morphometric mapping 

Only the subarticular trabecular bone of the Mc1 head and base was analysed 

rather than the entire volumetric trabecular model created by the whole-epiphysis 

approach. This subarticular trabecular bone is the first point of transmission for 

http://www.paraview.org/
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external loads from the cortical shell to the deeper trabecular structure and should 

contain a bone functional adaptation signal (Marzke et al., 2010; Zhou et al., 2014; 

Sylvester and Terhune, 2017). We apply 3D geometric morphometric (GM) 

techniques (Gunz and Mitteroecker, 2013) to the analysis of trabecular bone 

(Dunmore et al., 2019) in a similar manner to the method described by Sylvester 

and Terhune (2017). 

Table 5.2. Mc1 head anatomical landmark definitions.  

Types of landmarks (Bookstein, 1991) and their provenance. Each article describes the 
landmark, uses it as the terminus of a linear measure or directly uses it for geometric 
morphometric analysis. 

Anatomical landmark definitions 

Many landmark sets have been used to analyse the primate Mc1 proximal base 

(Niewoehner, 2005; Marchi et al., 2017), although few have been employed to 

analyse the Mc1 distal head (Drapeau, 2015). Recently, however, Rein (2018) has 

used landmarks to quantify shape in the distal articular surface of the third 

metacarpal and a patch of 3D landmarks have been used to quantify metatarsal 

shape (Fernández et al., 2015), which is the serial homologue of a metacarpal 

(Rolian et al., 2010). The location and type (Bookstein, 1991) of anatomical 

Number Type Description Reference 

1 II 
Most proximal point under the ulnar palmar 
epicondyle (anterior eminence) 

(Yeh and Wolf, 1977; 
Fernández , 2015; Rein, 2018) 

2 III 
The point of maximum curvature on the 
inter-epicondylar ridge between points 1 
and 3 

(Drapeau, 2005; Rein, 2018) 

3 II 
Most proximal point under the radial palmar 
epicondyle (anterior eminence) 

(Yeh and Wolf, 1977; 
Fernández , 2015) 

4 III 
Point of maximum curvature on the radial 
ridge separating the articular surface from 
the radial lateral sulcus 

(Yeh and Wolf, 1977; 
Fernández , 2015; Rein, 2018) 

5 II 
Most radially projecting point on the dorsal 
aspect of the distal articular surface 

(Fernández , 2015; Rein, 2018) 

6 III 
The midpoint point on the dorsal limit of the 
distal articular surface, between points 5 and 
7 

(Fernández , 2015; Rein, 2018) 

7 II 
Most ulnarly projecting point on the dorsal 
aspect of the distal articular surface 

(Fernández , 2015; Rein, 2018) 

8 III 
Point of maximum curvature on the ulnar 
ridge separating the articular surface from 
the ulnar lateral sulcus 

(Yeh and Wolf, 1977; 
Fernández , 2015; Rein, 2018) 

9 II 
Most distally projecting point on the 
subarticular surface 

(Fernández , 2015; Rein, 2018) 
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landmarks used here for the head and base of Mc1 are given in Tables 5.2 and 5.3, 

respectively. Previously identified cortical landmarks were accurately transposed to 

the inner trabecular surface, as thin cortical bone at the metacarpal head and base 

in hominids (Tsegai et al., 2017) allows for high correspondence between these 

surfaces. 

 Table 5.3. Mc1 base anatomical landmark definitions.  

Types of landmark (Bookstein, 1991) and their provenance. Each article describes the 
landmark, uses it as the terminus of a linear measure or directly uses it for geometric 
morphometric analysis. 
 

Repeatability 

Three random Mc1 specimens from each species were landmarked on their head 

and base, five times respectively, over several days (by one observer supervised by 

a second observer), with Checkpoint (Stratovan Corporation, Davis, CA), following 

Fernández et al. (2015). The Morpho package in R (Schlager, 2017; R Development 

Core team, 2016) was then used to generate Procrustes coordinates for the five 

repeats of three individuals per species and articular surface. These coordinates 

were then plotted on the first two principle components (PCs) of each of the 10 

repeatability comparisons (Fig. 5.1). Pairwise permutational MANOVAs, with 

Bonferroni correction, conducted on combined PC1 and PC2 scores demonstrated 

that repeats of individual configurations were significantly different from the other 

two specimens in each case (p< 0.05), so landmarks were considered repeatable 

(Fig. 5.1). 

 

Number Type Description Reference 

1 Type II 
Most palmar aspect of the proximal 
articular surface, the ‘tip’ of the palmar 
beak. 

(Marchi et al., 2017) 

2 Type II 
The most dorsal aspect of the articular 
surface on the metacarpal base. 

(Marchi et al., 2017) 

3 Type II 
The most ulnar aspect of the articular 
surface on the metacarpal base. 

(Marchi et al., 2017) 

4 Type II 
The most radial aspect of the articular 
surface on the metacarpal base. 

(Marchi et al., 2017) 

5 Type III 

The deepest point of the articular surface, 
that lies on the intersection of the 
orthogonal chords formed between points 
1 & 2 and 3 & 4, respectively. 

- 
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Figure 5.1. Repeatability tests of landmarks. Each individual first metacarpal head and 
base was landmarked 5 times on different days. Three individuals (each marked in a 
different colour) of the same species were then subjected to Procrustes transformation in 
each case. Subsequent permutational omnibus and pairwise MANOVAs were run on the 
combined PC1 and PC2 scores, as these cumulatively explained >85% of the variation: a) 
Pan troglodytes heads, b) Pongo heads, c) Pan paniscus heads, d) Gorilla heads, e) Homo 
sapiens heads, f) Pan troglodytes bases, g) Pongo bases, h) Pan paniscus bases, i) Gorilla 
bases and j) Homo sapiens bases. All individual specimen repeats were significantly 
different from each other subsequent to a Bonferroni correction (p ≤ 0.028). 

b 

d 

a c 

e f 

g h i 

j 
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Geometric morphometric procedure 

Both landmark templates (Fig. 5.2f) were created by defining sliding semi-

landmarks on curves at the subarticular surface margins of a random specimen in 

Checkpoint. These curves were each bordered by anatomical landmarks following 

Gunz et al. (2005). For the Mc1 head template, single sliding semi-landmarks were 

defined on each of the eight curves. For the Mc1 base template, three sliding semi-

landmarks were defined for each of the four curves between anatomical landmarks. 

Where subarticular margins were smoothed, a translucent model of the cortical 

surface was overlaid in Paraview to ensure correct placement of the template 

landmarks. Additional sliding semi-landmarks were then distributed over each 

subarticular surface in Avizo 6.3 (Visualization Sciences Group, Germany) to 

produce a 49 landmark template for the Mc1 head, comprising nine anatomical 

landmarks, eight sliding semi-landmarks on curves and 32 surface sliding semi-

landmarks. The 40 landmark template for the base contained five anatomical 

landmarks, 12 sliding semi-landmarks on curves and 23 surface sliding semi-

landmarks (Fig. 5.2f). Subsequently, anatomical landmarks were placed on every 

specimen and then each landmark template was projected onto each of the other 

49 Mc1 heads and 48 bases, respectively, using the Morpho package in R (Schlager, 

2017). A single Pongo pygmaeus specimen did not have a fully-preserved base and 

was excluded from the base analyses. Each template was relaxed onto the surface 

of each Mc1 by minimising bending energy and then semi-landmarks were slid 

along their respective curves or surfaces by minimising Procrustes distances, using 

the Morpho package in R (Schlager, 2017) . 

Data mapping  

A custom Python script was run using Paraview to allow the non-smoothed surface 

mesh triangles to inherit trabecular values (BV/TV and DA) from their originating 

tetrahedra. The Python module SciPy (Jones et al., 2001) was then used in medtool 

4.2 (Dr. Pahr Ingenieurs e.U.) to interpolate the trabecular values to the closest 

landmark (Fig. 5.2g). This procedure is analogous to measuring trabecular structure 

with 1 mm diameter spherical VOIs, centred 0.5 mm deep to the normal of the 

inner trabecular surface, at the location of a landmark. A Procrustes procedure was 
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then performed using the geomorph package (Adams et al., 2017) in R to produce 

two sets of homologous landmarks each with the trabecular parameters mapped to 

them (Fig. 5.2g).  

Relative trabecular volume (RBV/TV) 

A relative measure of bone volume fraction (RBV/TV) was calculated for 

interspecific comparisons, in which the raw BV/TV values were divided by the mean 

of all landmark BV/TV values on that subarticular surface. If a landmark value is 

close to the average of that Mc1 surface it will have a value of ~1, whereas a 

landmark with a lower than the average BV/TV will have an RBV/TV <1, and with a 

higher value it will have RBV/TV >1. This normalisation of BV/TV values was 

performed for several reasons. BV/TV can vary systemically across species (Tsegai 

et al., 2018) and thus may diminish the potential functional signal under 

investigation here. Further, while BV/TV yields functional information relating to 

the response of trabecular bone to both magnitude and direction of load, it 

conflates these signals. The present study is focussed on the latter response, as it is 

more directly related to thumb joint postures in extant hominids. Finally, 

intraspecific variation in BV/TV has been shown to be considerable in a large 

sample of humans, yet the relative differences in BV/TV at several VOIs appear to 

show a consistent functional signal across populations (Saers et al., 2016). 

Therefore, we here opt to use a relative measure to somewhat control for non-

functional trabecular signals and analyse which areas of the subarticular trabecular 

bone have most functionally adapted to habitual loads. 

Statistical analysis 

Species differences in trabecular parameters were independently tested for each 

landmark using ‘mass-univariate’ statistics, following Friston et al. (1995). Shapiro-

Wilk tests identified significantly non-normal data (p<0.05) for both trabecular 

parameters at some landmarks. Therefore non-parametric Kruskal-Wallis tests were 

run at each homologous landmark for consistency. Post-hoc Dunn’s tests identified 

significant pairwise species differences at p<0.05 after a Bonferroni correction. 

Trabecular values were compared at homologous landmarks between species  
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Figure 5.2. Stages of Mc1 trabecular analysis. a) Isosurface model of a Pan troglodytes 
right first metacarpal, b) Segmented trabecular structure inside cortical shell, c) Diagram of 
the background grid and one of the spherical VOIs at a vertex (purple), d) Volume mesh 
coloured by BV/TV, shown as a range of 0% (blue) to 45% (red), e) Smoothed trabecular 
surface mesh, f) Surface landmarks on the subarticular head (top) and base (bottom; 
anatomical = red, semi-sliding on curves=blue and on surfaces =green), g) RBV/TV 
interpolated to each surface landmark on the Mc1 head (top) and base (bottom). 

 

rather than with spatially auto-correlated neighbouring landmarks. Polarity and the 

effect size of pairwise comparisons were determined via Z-scores. Significant 

univariate species differences at each landmark could then be mapped to an 

average Mc1 model, to show regional differences for functional interpretation. 

Significant trabecular value differences were only considered functionally 

meaningful if they occurred at a minimum of four spatially contiguous landmarks 

(as this was 8-10% of each template) to further ameliorate any Type I error. 

To investigate whether distribution of RBV/TV and DA were different between 

species over the whole subarticular surface of the head and base, a principle 

components analysis (PCA) was performed using each landmark as a variable. 
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Significant overall differences between species were tested for using omnibus and 

pairwise, one-way permutational MANOVAs on the first three principle component 

scores generated from each PCA. These tests were run using the Vegan package 

(Oksanen et al., 2018) in R (R Core Development team, 2016), with a Bonferroni 

correction.  

Results 

 Average species values and univariate landmark comparisons 

Average values at each landmark, per species are depicted in for RBV/TV (Fig. 5.3a) 

and DA (Fig. 5.3b), respectively. Significantly different values at each landmark, in 

each pairwise species comparison are depicted for RBV/TV (Fig. 5.4) and DA (Fig. 

5.5) for both subarticular surfaces of the Mc1. As post-hoc Dunn’s test pairwise 

comparisons were too numerous to be easily interpreted in table format, the 

effects size of each significant test, the Z-test statistics, are summarized as 

descriptive statistics in Table 5.4. These Z-scores were transformed into unsigned, 

absolute values to demonstrate the size of differences between species.  

Homo sapiens 

H. sapiens had the largest range of average RBV/TV values among the sample, with 

higher values at disto-palmar landmarks on the radial aspect of the Mc1 head (Fig. 

5.3a). This region had significantly higher RBV/TV values compared with all other 

great apes (Fig. 5.4). In the Mc1 base, average RBV/TV values were highest radio-

palmarly, although not at the most palmar landmarks (Fig. 5.3a). H. sapiens had 

significantly higher RBV/TV in the central and radial aspects of the Mc1 base 

compared to all other apes, though these differences were most pronounced with 

Gorilla and P. troglodytes (Fig. 5.4). H. sapiens displayed the highest average DA 

values throughout the head compared to all other species (Fig. 5.3b), which 

resulted in significantly higher values than Gorilla at almost every landmark (Fig. 

5.5). Further, H. sapiens had significantly higher DA than P. troglodytes at disto-

ulnar landmarks and P. paniscus at palmar landmarks. The average H. sapiens DA 

values were highest in the radio-palmar and ulnar aspects of the Mc1 base. Radio-

palmar Mc1 base landmarks had significantly higher DA values than P. paniscus. 



163 

 

Figure 5.3. Species Average trabecular values, mapped to average models of a right Mc1 in 
distal and palmar views of the head as well as a proximal view of the base (left to right) for 
a) RBV/TV and b) DA. (Ggg = Gorilla (n=10), Pt = Pan troglodytes (n=11), Pp = Pan paniscus 
(n=10), Ppy = Pongo spp. (n=9), Hs = Homo sapiens).  

Pongo 

In the Mc1 head, the average RBV/TV in Pongo was highest in the ulno-distal region 

(Fig.5.3a). Pongo had significantly greater RBV/TV at landmarks situated ulno-

dorsally than Gorilla and H. sapiens (Fig. 5.4). In the average Mc1 base, Pongo 

displayed a slightly higher RBV/TV in the central palmar region, though the range of 

values throughout the base was small (Fig. 5.3a). Pongo only had significantly 

higher RBV/TV relative to H. sapiens, at landmarks situated on the radio-dorsal 

extreme of the Mc1 base. DA in the Pongo average Mc1 head was lowest ulno-

distally (Fig. 5.3b) and significantly higher than Gorilla in the palmar region (Fig. 

5.5). In the base, Pongo had a slightly higher average DA ulnarly, but did not show a 

contiguous patch of landmarks significantly different from any other species, expect 

P. troglodytes where Pongo had significantly higher DA at dorso-central landmarks. 
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Pan troglodytes 

P. troglodytes had the highest RBV/TV values at ulnar landmarks on the disto-

palmar aspect of the Mc1 head (Fig. 5.3a). RBV/TV in this species was significantly 

higher at radio-palmar landmarks compared to Pongo and at ulnar landmarks 

relative to H. sapiens (Fig. 5.4). The Mc1 base in P. troglodytes had the highest 

range of average RBV/TV values among non-human great apes (Fig. 5.3a). Average 

RBV/TV was highest in the central palmar base but values were only significantly 

greater than H. sapiens at dorso-ulnar landmarks. The Mc1 head of P. troglodytes 

had lower DA at disto-palmar landmarks on its ulnar side (Fig. 5.3b). P. troglodytes 

DA was only significantly greater than Gorilla, across radial and dorsal landmarks 

(Fig. 5.5). The highest average DA values were in the dorsal Mc1 base of P. 

troglodytes and these DA values were significantly higher than Gorilla, H. sapiens 

and, to a lesser extent, Pongo at radio-dorsal landmarks.  

Pan paniscus 

P. paniscus possessed the lowest range of average RBV/TV values in the Mc1 head 

across the sample. The homogenous distribution of RBV/TV values in this species 

resulted in significantly higher RBV/TV than in Gorilla at dorso-ulnar landmarks and 

H. sapiens at both dorso-ulnar and palmo-ulnar landmarks (Fig. 5.4). In the Mc1 

base, P. paniscus had slightly higher average RBV/TV at its central palmar 

landmarks, although like Pongo the range of values was low throughout the base. 

This species had significantly higher RBV/TV relative to H. sapiens at the most 

extreme dorsally-positioned landmarks in the Mc1 base. For DA, the P. paniscus 

Mc1 head had a similar average pattern to P. troglodytes, although lower DA values 

were found at more palmar landmarks (Fig. 5.3b). DA values of the Mc1 head were 

significantly higher than in Gorilla at dorsal and radial landmarks (Fig. 5.5). In the 

average Mc1 base, P. paniscus showed higher DA values at dorsal landmarks (Fig. 

5.3b) that were significantly greater, especially radially, than in H. sapiens and 

Gorilla (Fig. 5.5). 
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Gorilla 

Gorilla had the highest range of average RBV/TV values across Mc1 head landmarks 

in non-human great apes. The highest RBV/TV values were located ulnarly on the 

disto-palmar aspect of the Mc1 head (Fig. 5.3a). Gorilla was significantly higher in 

RBV/TV than H. sapiens ulno-palmarly, and significantly higher than all other great 

apes disto-palmarly (Fig. 5.4). The average Gorilla Mc1 base had higher RBV/TV 

values centred at its most palmar extent. RBV/TV was only significantly higher than 

that of H. sapiens, at dorso-ulnar landmarks (Fig. 5.4). Gorilla had the lowest 

average DA of all species throughout both the Mc1 head and base subarticular 

surfaces (Fig. 5.3b). This species showed significantly lower DA than any other 

species at most landmarks on the Mc1 head and at radio-dorsal landmarks in 

comparison with both Pan species (Fig. 5.5).  

 
 
 
 
 
 
Table 5.4. Descriptive statistics of absolute Z-scores from Mc1 significant pairwise 
landmark comparisons.  

The minimum differences between species at a given landmark are over 2.5 normalized 
standard deviation

 RBV/TV Base DA Base RBV/TV Head DA Head 

Min 2.582 2.598 2.588 2.577 

Max 4.416 5.133 5.093 5.093 

Std.Dev 0.557 0.551 0.625 0.549 

Mean 3.359 3.229 3.413 3.293 
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Figure 5.4. Significant univariate differences in RBV/TV between species, mapped to average right Mc1 models in palmar (top) and distal (middle) views of 

the head, as well as a proximal view of the base (bottom). In all views left is ulnar and right is radial. The significantly higher RBV/TV at each landmark is 

coloured as per species names of that column (Ggg = Gorilla, Pt = Pan troglodytes, Pp = Pan paniscus, Ppy = Pongo spp. Hs = Homo sapiens). 
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Figure 5.5. Significant univariate differences in DA between species, mapped to average right Mc1 models in palmar (top) and distal (middle) views of the 
head, as well as a proximal view of the base (bottom). In all views left is ulnar and right is radial. The significantly higher DA at each landmark is coloured as 
per species names of that column (Ggg = Gorilla, Pt =Pan troglodytes, Pp = Pan paniscus, Ppy = Pongo spp. Hs = Homo sapiens). 
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Multivariate whole-surface comparisons 

PCA results for RBV/TV and DA values in the Mc1 head and base are depicted in 

Figures 5.6 and 5.7 respectively. Permutational MANOVAs were run using the first 

three PCs of each subarticular surface, as further PCs each explained less than 10% 

of the variance in each PCA. These omnibus tests were significant for both RBV/TV 

and DA for in the head and base (Table 5.5) indicating there were significant 

differences between species in overall subarticular trabecular structure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. PCA plots showing species differences within the first metacarpal head 
trabecular structure in a) RBV/TV and b) DA values. Each plot shows the first two principle 
components (PC) in each ray. For RBV/TV PC3 is depicted with PC1, inset, as PC3 explains a 
non-trivial amount of the variance (14%) in this case. Landmarks at each extreme of a PC 
are coloured in grayscale, according to their signed contribution to that PC and plotted on a 
PC in distal view. White landmarks indicate the highest signed contribution to the PC 
extreme and black the least. Species abbreviations as in Fig. 5.3. 

Mc1 heads 

The first principal component (PC1) of the RBV/TV data explained 36% of the 

variation and reflected variation in RBV/TV values at dorsal and palmar Mc1 head 

landmarks. PC2 represented 27% of the variation in RBV/TV values at radio-palmar 

and disto-ulnar landmarks, whereas PC3 explained 14% of the variation and 

reflected radio-ulnar landmark variation (Fig. 5.6a). Pairwise permutational 

MANOVAS demonstrated that H. sapiens was significantly different in RBV/TV 
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distribution compared with all other hominids, distinguished primarily by radio-

palmarly higher RBV/TV in the Mc1 head, on PC2 and PC3 (Fig. 5.6a, Table 5.5). 

Gorilla was also significantly different from P. paniscus and P. troglodytes with 

higher RBV/TV values ulno-palmarly. 

For DA, PC1 described 53% of the variation and reflected lower or higher values at 

most landmarks across the Mc1 head (Fig. 5.6b). PC2 explained 12% of the variation 

and reflected variation in DA values at disto-palmar and dorsal landmarks. Pairwise 

tests revealed that Gorilla was significantly different from all other species in its 

overall lower DA (Table 5.5). Conversely, H. sapiens was not significantly different in 

its overall configuration relative to any other species, save for Gorilla, despite being 

distinguished by higher DA values at most landmarks on PC1 (Fig. 5.6b). Neither PC2 

nor PC3 differentiated the studied taxa to a notable extent.  

 
Figure 5.7. PCA plots showing species differences within the first metacarpal base 
trabecular structure in a) RBV/TV, b) DA values. Each plot shows the first two principle 
components (PC) in each ray and PC3 is depicted with PC1, inset, as PC3 explains a non-
trivial amount of the variance (14% and 10%, respectively) in each case. Landmarks at each 
extreme of a PC are coloured in grayscale, according to their signed contribution to that PC 
and plotted on a PC in proximal view. White landmarks indicate the highest signed 
contribution to the PC extreme and black the least. Species abbreviations as in Fig. 5.3. 
 



170 

Table 5.5. Permutational MANOVAs on the first three principle components between all 
groups.  

Species abbreviations as in Figure 5.3. Subsequent pairwise tests were carried as all 

omnibus tests were significant. All Pseudo-F values that were significant, subsequent to a 

Bonferroni correction, are marked with asterisks(*). 

Mc1 bases 

In the Mc1 base RBV/TV values, 35% of the variation was explained by values at 

radio-palmar and a combination of extremely palmar and dorsal landmarks in PC1 

(Fig. 5.7a). PC2 explained 17% of the variation in RBV/TV values and was driven by 

radio-ulnar landmark RBV/TV values, while PC3 explained 14% of the variation and 

was driven by dorso-palmar landmark values.  

H. sapiens was significantly different to all other species and was distinguished by 

higher RBV/TV in the palmar and radial aspects of the Mc1 base on PC1 (Table 5.5). 

Gorilla was separated from the other taxa by higher RBV/TV at extremely palmar 

and dorsal landmarks at the opposite end of PC1, while all other taxa were 

intermediate between the two. However, there were no significant differences in 

RBV/TV of the Mc1 base across non-human great apes. While PC2 and PC3 were 

driven by contiguous patches of landmark values they did not distinguish any taxa.  

In subarticular DA of the Mc1 base, PC1 explained 38% of the variation and mainly 

differences in central and dorsal landmark DA (Fig. 5.7b). PC2 explained 21% of the 

variation reflecting radio-palmar and dorsal landmark DA values. PC3 explained 10% 

of the variation and was driven by DA values at radio-ulnar landmarks. P. 

troglodytes and P. paniscus were both separated from H. sapiens and Gorilla on 

PC2, as both Pan species had highest DA at dorsal landmarks, while the latter two 

  RBV/TV Head RBV/TV Base  DA Head DA Base 

All  8.446* (n=50) 5.110*(n=49)  All 8.141*(n=50) 6.905*(n=49) 

Ggg - Hs 10.308* (n=20) 11.880* (n=20) Ggg - Hs 23.588* (n=20) 6.083 (n=20) 

Ggg - Pp 15.539* (n=20) 1.915 (n=20) Ggg - Pp 12.001* (n=20) 10.097* (n=20) 
Hs - Pp 16.563* (n=20) 9.904* (n=20) Hs - Pp 5.069 (n=20) 16.584* (n=20) 
Ggg - Ppy 6.677 (n=19) 1.1461 (n=18) Ggg - Ppy 9.190* (n=19) 3.207 (n=18) 
Hs - Ppy 6.187* (n=19) 4.473* (n=18) Hs - Ppy 4.665 (n=19) 2.663 (n=18) 
Pp - Ppy 4.211 (n=19) 0.276 (n=18) Pp - Ppy 3.255 (n=19) 4.461 (n=18) 
Ggg - Pt 5.302* (n=21) 1.220 (n=21) Ggg - Pt 17.438* (n=21) 11.694* (n=21) 
Hs - Pt 11.860*(n=21) 15.197* (n=21) Hs - Pt 4.514 (n=21) 6.479* (n=21) 
Pp - Pt 2.244 (n=21) 3.156 (n=21) Pp - Pt 0.626 (n=21) 6.910* (n=21) 
Ppy - Pt 2.686 (n=20) 1.681(n=19) Ppy - Pt 3.288 (n=20) 3.745 (n=19) 
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species had highest DA at radio-palmar landmarks (Fig. 5.7b). These two groups 

were significantly different from each other whereas Pongo plotted between them 

on PC2 and was not significantly different from any other species (Table 5.5). Pan 

species were also significantly different from each other in overall DA configuration, 

though this appears to be due to a larger range of variation in Pan troglodytes DA 

values. PC1 and PC3 did not discriminate between taxa. 

Discussion 

We investigated variation in the subarticular trabecular bone structure of the Mc1 

across extant hominids to test whether it is consistent with what is known about 

their habitual thumb postures. In the Mc1 head, our prediction that subarticular 

RBV/TV and DA would be greatest at ulnar landmarks in non-human hominids (P1a) 

was partially supported. The prediction that gorillas would have lower DA 

throughout the head was supported (P1b). Conversely in humans we predicted DA 

and RBV/TV would be highest at radio-palmar landmarks on the Mc1 head (P1c), 

which was only partially supported as DA was high throughout the human Mc1 

head. We also predicted that humans would have lower DA throughout the Mc1 

base than other hominids but this was not well supported by the data (P2a). Non-

human hominids were predicted to have the highest RBV/TV values in the central 

palmar aspect of the Mc1 base (P2b) while humans would have highest RBV/TV 

values radio-palmarly (P2c). These last two predictions were fully supported by the 

results. 

Mc1 heads 

The data support our predictions concerning subarticular RBV/TV across hominid 

Mc1 heads (P1a and c) but only partially support those relating to DA (P1 b and c). 

Average RBV/TV was higher at ulno-distal landmarks in the Mc1 head across all 

non-human great apes, consistent with a habitually adducted thumb used in pad-

to-side or V-pocket grips (Marzke et al., 2015; Bardo et al., 2016; 2017; Neufuss et 

al., 2016; 2018) and some power grasps used in African ape locomotion (P1a; 

Neufuss et al., 2017; Samuel et al., 2018). Contrary to our hypothesis, however, DA 

was lowest at the ulno-distal landmarks, where RBV/TV was highest, in 
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chimpanzees, bonobos and orangutans (P1a). This prediction was based on the 

concept that stereotypical loading of the first McP would cause the realignment of 

trabeculae, via remodeling, in the direction of this load, resulting in higher DA. 

Interpreting the results in this way would imply orangutans do not load their Mc1 

head in a flexed McP posture, the disto-palmar Mc1 articular surface, which does 

not agree with overwhelming behavioural and anatomical evidence, nor the 

present RBV/TV results. This coincidence of highest RBV/TV and lowest DA values at 

ulno-distal landmarks instead reflects more trabecular bone with less alignment in 

this subarticular region that may be better able to withstand load from multiple 

directions. Indeed, while RBV/TV may be the result of thicker or more trabeculae, 

or some combination of both, it is notable that this average lower ulno-distal DA 

pattern was present in the three species with the smallest Mc1s (i.e., chimpanzees, 

bonobos and orangutans; Fig. 5.3b) and smaller bones tend to have thicker and 

fewer trabeculae (Barak et al., 2013). This DA pattern, therefore, is likely the result 

of the number of trabeculae and is consistent with high ulnar loading of the McP 

joint in the chimpanzee, bonobo and orangutan Mc1 head, despite displaying the 

opposite trend to that predicted. However, further work that accounts for variation 

in trabecular number is needed to substantiate this interpretation of the present 

DA results. 

For both DA and RBV/TV, the predominantly Taï chimpanzee sample, a population 

known to use tools (Boesch and Boesch, 1993), displayed almost no significant 

differences from bonobos or orangutans. This may be surprising, as though 

bonobos have been observed using very few tools in the wild (Kano, 1982; Koops et 

al., 2015), and neither wild bonobos nor orangutans are known to engage in 

percussive tool use (van Schaik et al., 1996; Meulman and van Schaik, 2013). It may 

be that nut-cracking (Boesch and Boesch, 1993) and the use of precision forceful 

grips during food processing (Marzke et al., 2015) are simply not frequent or 

forceful enough to stimulate subarticular trabecular remodeling in the Mc1 head. A 

similar sample of Taï chimpanzee Mc1s have previously been shown to have less 

robust trabecular architecture than another group of chimpanzees that do not 

habitually nut-crack (Lazenby et al., 2011b). Therefore, either a strong osteogenic 
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signal does not exist for this behaviour, or it is constrained by more habitual or 

greater loading of the Mc1 during Taï chimpanzee locomotion (Lazenby et al., 

2011b; Neufuss et al., 2017). 

The Mc1 heads of gorillas also had the highest RBV/TV at ulno-distal landmarks 

consistent with pad-to-side, interdigital brace and thumb wrap grips frequently 

used in wild manipulation (Neufuss et al., 2018). This subarticular pattern, however, 

is statistically distinguished from bonobos, orangutans and, to a lesser extent, 

chimpanzees by the greater range of RBV/TV values across the gorilla Mc1 head, 

suggestive of more habitual or greater loading of the pollical McP joint in adduction 

in this species. DA values in the gorilla Mc1 were significantly lower than all other 

species studied and displayed a low range throughout the head (P1b). Combined, 

this trabecular pattern is consistent with the habitual use of varied thumb positions 

in gorillas but also more frequent or forceful loading in thumb adduction, relative to 

the other non-human great apes (Neufuss et al., 2018). However, it must be noted 

that this prediction was based on the greater volume of behavioural evidence from 

mountain gorillas (Gorilla gorilla beringei) rather than the western lowland (Gorilla 

gorilla gorilla) species studied here. Furthermore, there are limited detailed studies 

of grip and hand use in other non-human hominids in the wild (Marzke et al., 2015), 

and this interpretation must thus be treated with some caution.  

Humans displayed both significantly higher RBV/TV at radial landmarks and higher 

DA throughout the subarticular Mc1 head than in other great apes (P1c). This 

RBV/TV distribution is consistent with a habitually and forcefully opposed thumb, a 

movement which entails flexion, and importantly, abduction at the McP joint 

(Napier, 1956). An opposed thumb is used in forceful precision grips during the 

production (Marzke, 1997; 1998) and use of stone tools (Rolian et al, 2011; Key et 

al., 2018) among other manipulative activities (Napier, 1993; Bardo et al., 2017). A 

radio-palmar concentration has also been found, in a similar sample of humans, 

using a method that analysed absolute BV/TV in the whole distal epiphysis of the 

Mc1 rather than just the subarticular region (Stephens et al., 2018). 
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In contrast to these RBV/TV results, high DA throughout the human Mc1 head, 

while not overall significantly different from any species except gorillas, does not 

match our prediction of the highest DA at radio-palmar landmarks (P1c). Stephens 

et al. (2018) found slightly lower average DA values in a similar human Mc1 sample, 

likely due to their sampling of the whole distal epiphysis, but also found little 

regional differentiation across the Mc1 head in agreement with the results here. 

The present result may reflect the higher frequency of forceful prehensile thumb 

use in humans than in other extant hominids. Though the highest or most habitual 

forces may be resisted by the radio-palmar McP joint during thumb abduction, the 

frequently-used, powerful and mobile human thumb likely engenders a stronger 

osteogenic signal throughout the head than in other apes and therefore more 

aligned trabeculae (i.e. higher DA). For example, humans are unique among extant 

hominids in their ability to forcefully extend and stabilise the first proximal phalanx 

on the Mc1 while flexing the distal phalanx via distinct flexor pollicis longus and 

extensor pollicis brevis muscles (Marzke et al., 1998; Hammrick et al., 1998; Diogo 

et al., 2012). The thumb held in this position probably induces considerable loads 

on the distal McP, even if these are not as large as those loads resisted in forceful 

abduction (Cooney and Chao, 1977; Toft and Berme, 1980).  

Mc1 bases 

The subarticular trabeculae of the Mc1 base did support our predictions for RBV/TV 

but not for DA. Contrary to our predictions, DA values throughout the human 

subarticular Mc1 base were not significantly lower than in other great apes (P2a). 

Rather, our results indicate a regional pattern, in which chimpanzees and bonobos 

had the highest DA values in the dorsal Mc1 palmar base and were both 

significantly different from gorillas and humans, which had higher palmar DA values 

on the radio-ulnar edges of the Mc1 base. The functional significance of this pattern 

is not immediately apparent though it may relate to more varied habitual thumb 

positions in humans and gorillas relative to the other species studied. 

All non-human hominids displayed the highest RBV/TV at extremely palmar and 

central landmarks consistent with habitual flexion at the TMc joint (P2b), though 

the range of values throughout the base was lower than in humans. This more 
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homogenous distribution of subarticular RBV/TV is consistent with previous studies 

of absolute BV/TV throughout a similar sample of Pan species Mc1 proximal 

epiphyses (Skinner et al., 2015; Stephens et al., 2016). Humans displayed a 

significantly different pattern with the highest RBV/TV values at the radial and less 

extreme palmar region of Mc1 base landmarks, consistent with a habitually and 

forcefully abducted thumb, flexed in opposition (P2c; Napier, 1956; Halilaj et al., 

2014; Feix et al., 2016; D’Agostino et al., 2017; Marchi et al., 2017). These results 

agree with other studies that have found a palmar concentration of Mc1 base 

BV/TV in comparison to other apes (Skinner et al., 2015) and other metacarpals 

(Wong et al., 2018). The subchondral radio-palmar RBV/TV concentration found 

here was also found using the whole-epiphysis method, on a similar sample 

(Stephens et al., 2016; 2018), and is the same region of the Mc1 base in which 

osteoarthritis first develops (Koff et al., 2003). The present results further refine 

this radio-palmar RBV/TV distribution to a less markedly palmar subarticular area 

than that found in other great apes. This pattern is consistent with habitual loading 

of the human TMc joint in a less flexed position than in other extant hominids, as 

occurs during McP flexion in cadaveric humans (Moulton et al., 2001). The distinct 

extensor pollicis brevis muscle of humans is thought to counteract thenar flexors to 

stabilise the thumb during manipulation (Marzke et al., 1998; Diogo et al., 2012). 

This morphology combined with a greater range of flexion, and especially 

extension, of the TMc joint in humans (Cooney et al., 1981; Rose, 1992, van 

Leeuwen et al., 2018b) and the possible limitation of TMc flexion imposed by a 

large thenar eminence (Tuttle et al., 1969b) is also suggestive of a TMc loaded in 

less markedly flexed position than in other extant hominids.  

Functional interpretation 

Taken together the current results are consistent with habitual loading of the TMc 

joint in flexion, and the McP joint in adduction, during frequently used precision 

and power grips in all non-human great apes studied. The results also suggest that 

gorillas use more varied thumb postures than chimpanzees, bonobos or 

orangutans, as they have lower DA at both joints. Chimpanzees, bonobos and 

orangutans all demonstrate a similar trabecular distribution at both articular 
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surfaces which, at first, may appear inconsistent with observed differences habitual 

thumb use in these species. Orangutans are thought to employ the thumb less 

frequently during power-grasping than in chimpanzees or bonobos (Sarimento, 

1988; Rose, 1988; but see McClure et al., 2012) and also use their feet, as well as 

their mouth, more frequently in manipulation (Bardo et al., 2017). However, all 

three of these species use a habitually adducted thumb in pad-to-side grips during 

manipulation (Marzke et al., 2015; Bardo et al., 2016; 2017; Neufuss et al., 2018). 

Therefore the similar distribution of trabecular bone volume is consistent with a 

habitually adducted thumb, more often and perhaps more forcefully employed by 

chimpanzees and bonobos than by orangutans. While RBV/TV does not reflect the 

inferred magnitude of loading, visual inspection of species average absolute BV/TV 

values beneath both articular surfaces demonstrates they are higher in both Pan 

species relative to orangutans, consistent with this interpretation. Humans, unlike 

the other great apes, exhibit a trabecular morphology that suggests a habitually less 

flexed more abducted TMc joint and a more strongly, or frequently, recruited flexed 

abducted McP joint. This pattern is consistent with habitual forceful precision grips 

uniquely practised by humans. 

While these results appear consistent with hominid behaviour and anatomy, the 

function of trabecular bone is not only biomechanical but also physiological, as it is 

important for mineral homeostasis (Clarke, 2008). Furthermore, trabecular 

structure may be affected by systemic factors (Tsegai et al., 2018) and is 

determined genetically to some extent (Lovejoy et al., 2003; Havill, 2010; Judex, et 

al., 2013; Almécija et al., 2015b). The Mc1 also has a different developmental, and 

thus possibly evolutionary, history from the other metacarpals (Pazzaglia et al., 

2018) in that its head develops from a pseudo-epiphysis whereas the base arises 

from a true secondary ossification centre (Haines, 1974). This developmental 

difference may also potentially affect trabecular architecture (Lazenby et al., 

2011b). The functional signal found here, however, appears to be relatively strong, 

given these potentially confounding variables.  

The interpretation of this functional trabecular signal must also consider the shape 

of the cortical bone which surrounds it, as well as soft tissue morphology. It could 
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be argued that the radio-palmar concentration of RBV/TV in humans is due to ulnar 

deviation of the Mc1 head relative to the base (Drapeau, 2015) in this species, 

rather than an interspecific difference in manipulation. That is, the trabecular 

pattern is caused by the same vector of manipulative load in all species, but in 

humans the McP joint load angle differs due to the shape of the Mc1. However, an 

ulnar trabecular signal is found in the orangutan Mc1 head, that is also ulnarly 

deviated relative to the Mc1 base (Drapeau, 2015) and therefore this signal is likely 

due to species differences in manipulation. Similarly the size of subarticular Mc1 

surfaces (Tocheri et al., 2005) may also affect the current results, since a constant 

number of landmarks will necessarily sample less subarticular trabeculae of a larger 

surface or redundantly over-sample a smaller subarticular surface. The use of 

interpolated trabecular values, however, should ameliorate this sampling effect and 

it appears to not have affected the relatively large regional patterns found here. 

Nevertheless, as discussed for the Mc1 head, it would be advantageous to scale DA 

by trabecular number in future studies to ensure more direct and intuitive 

comparison of species with differently sized bones. 

Conclusion 

In conclusion, interspecific variation found in the subarticular trabecular 

architecture of the hominid Mc1 head and base reveals a distinct pattern in 

humans, that is consistent with a habitually abducted thumb used during forceful 

precision grips, which are employed in many manipulative behaviours, including 

stone tool production. This manipulative signal is significantly different from other 

great apes and so may be used as a basis to infer the habitual manipulation in fossil 

hominin hands, where trabeculae are preserved. The similar trabecular volume 

distribution in the chimpanzee, bonobo and orangutan Mc1 also highlights their 

similar use of an adducted thumb, although this use may be in different grips 

employed in different frequencies. Further, the prehensile signal found in gorilla 

Mc1 trabeculae is consistent with more frequent and varied habitual manipulation 

than has yet been observed in other wild non-human great apes. This signal is 

distinct from that of humans, and is especially interesting as gorillas are the most 

terrestrial non-human great ape.  
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Chapter 6 

Fossil hominin hand use: Evidence for arboreality 

and human-like manipulation in 

Australopithecus 

Abstract  

The human lineage is defined by a transition to bipedalism and an associated shift 

in the use of the hands from locomotion towards increasingly dextrous 

manipulation. The habitual forceful precision grips used by modern humans likely 

evolved in the context of stone tool manufacture and use, but when and how 

hominin hands became principally manipulative remains a matter of debate. Here, 

we analyse the internal structure of the metacarpi of fossil hominins including: 

Homo sapiens, Homo neanderthalensis, Australopithecus afarensis, 

Australopithecus africanus, Australopithecus sediba and material attributed to 

either early Homo or Paranthropus. Results indicate that fossil H. sapiens display an 

internal morphology similar to recent humans, while H. neanderthalensis is argued 

to display an intraspecifically varied pattern, more consistent with habitual power 

squeeze grips. A. afarensis and A. africanus display intermediate internal 

morphology between recent humans and non-human great apes. We demonstrate 

that the Malapa hominin (MH2) hand (Australopithecus sediba) has a distinct 

pattern of both trabecular and cortical bone structure across its metacarpus. The 

metacarpals of the palm have an internal morphology most similar to orangutans 

and consistent with arboreal power grasping with the fingers, while cortical and 

trabecular morphology of the thumb is consistent with human-like manipulation. 

These results support the evolution of human-like manipulation within a hand still 

partially used for arboreal locomotion in at least one Australopithecus species, 

contemporaneous with Homo and Paranthropus.  
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Introduction 

The dexterity of the modern human hand is often contrasted with the less 

dexterous hands of other apes, primarily employed for locomotion (Susman, 1994; 

Tocheri et al., 2008; Kivell et al., 2011). The long thumb relative to the fingers 

(Almécija et al., 2015), strong thenar musculature (Marzke et al., 1999), reoriented 

radial carpals and broad phalangeal apical tufts in humans (Marzke, 1997; Tocheri 

et al., 2008) are thought to facilitate habitual forceful precision grips (Marzke et al., 

2013), power ‘squeeze’ grips (Marzke et al., 1992) and precision in-hand 

manipulation in our species (Christel et al., 1993). The evolution of this enhanced 

dexterity is challenging to infer in Plio-Pleistocene hominins, since some of its 

associated morphological features often occur together with ape-like features 

associated with arboreal locomotion, such as curved fingers with well-developed 

flexor sheath ridges (Bush et al., 1982; Ricklan, 1987). This mosaic of ape-like and 

human-like manual traits is replicated in other postcranial elements of 

Australopithecus afarensis and Australopithecus africanus (Green et al., 2007; 

Kimbel and Delezene, 2009). There is consensus that human-like features of the 

lower limb indicate at least facultative bipedality in Australopithecus (Kimbel and 

Delezene, 2009). However, the significance of ape-like upper limb features has been 

debated for decades, with some interpreting them as non-functional retentions 

from an arboreal ancestor (Latimer, 1991) while others consider these features as 

clear evidence of sustained selection for arboreal locomotion (Stern and Susman, 

1983). These differing interpretations imply that either our manipulative abilities 

began to evolve in hands freed of the demands of locomotion, or in an arboreal 

hominin(s) that was not yet an obligate biped. 

The A. sediba partial skeleton, Malapa Hominin 2 (MH2), offers a unique 

Pleistocene perspective on the debate concerning locomotion in Australopithecus, 

as it is characterised by a mosaic of ape-like and human-like features. At 1.98 

million years old (Berger et al., 2010; Pickering et al., 2011), MH2 lived just after the 

oldest known lithic technology found in South Africa (Granger et al., 2015; 2.18mya; 

mya = millions of years ago) and well after the earliest evidence of this technology 

known elsewhere (Harmand et al., 2015; 3.3mya). Several morphological features 
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of the lower limb and pelvis indicate straight-legged bipedalism in this species, 

perhaps with a uniquely hyperpronated foot (Zipfel et al., 2011; DeSilva et al., 2013; 

Kibii et al., 2011). In contrast, MH2 has a relatively long upper limb and superiorly-

oriented glenoid fossa of the scapula, which it shares with other australopiths, that 

could be interpreted as either primitive retentions or functionally-significant 

arboreal adaptations, under stabilising selection (Churchill et al., 2013). Similarly, a 

human-like thumb-to-finger length ratio would be advantageous for a manipulative 

hand in A. sediba but this is concomitant with moderately curved phalanges with 

well-developed flexor ridges considered useful for arboreal locomotion (Kivell et al., 

2011). Stable-carbon isotope, as well as dental calculus and micro-wear analyses, 

indicate this species was distinct from other South African hominins in having a 

predominantly C3 diet, similar to savannah chimpanzees that predominantly 

consume arboreal foods, such as gallery-forest fruits (Henry et al., 2012). Therefore, 

as with other Australopithecus species, the ape-like morphological features in the 

MH2 hand may be interpreted as biomechanically non-functional in the context of 

contemporaneous lithic evidence for habitual forceful precision grips, or indicative 

of a significant arboreal component in this species’ locomotor repertoire and diet. 

As behaviour can change faster than external morphology, current fossil evidence 

cannot discriminate between these interpretations. To resolve this debate, we 

analyse morphological information that directly reflects behaviour of fossil 

individuals during their lifetime. 

Internal bone structure, cortical bone distribution and trabecular architecture, can 

provide additional insight into behaviour inferred from external shape. Trabecular 

structure has been experimentally shown to remodel in response to load, via bone 

functional adaptation (Ruff et al., 2006), across a range of phylogenetically distant 

taxa (Biewener et al., 1996; Pontzer et al., 2006; Barak et al., 2011). Several 

comparative studies have shown a correlation between trabecular structure and 

inferred habitual hand posture in apes (Tsegai et al., 2013; Skinner et al., 2015; 

Chirchir et al., 2017; Stephens et al., 2018). The cross-sectional geometry of cortical 

bone diaphyses has also been shown to remodel in various mammals and birds 

(Ruff et al., 2006; Wallace et al., 2017), and to reflect different locomotor modes in 
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primate hands (Marchi, 2005). Habitual locomotor modes are thought to produce 

strains on a long-bone diaphysis, stimulating the formation of new bone to resist 

these strains, producing a change in cross-sectional shape and robusticity (Ruff et 

al., 2006; Carlson and Judex, 2007). Combined, the evidence of functional 

adaptation in cortical and trabecular bone during the life of an individual can 

provide critical information for reconstructing behaviour in the past. 

Here we analyse the relative cortical structure and quantify, for the first time, the 

subchondral trabecular bone volume fraction (BV/TV) across the metacarpal heads, 

as well as the mobile first metacarpal base, in extant non-human great apes, 

humans and fossil hominins. As there was strong variation in the magnitude of 

BV/TV across species, and the distribution of these values is more informative for 

habitually loaded hand postures, we standardised BV/TV values for each 

subchondral surface to calculate relative BV/TV (RBV/TV) values. Initially, we assess 

whether variation in these internal bone structures reflect the presumed habitual 

hand postures employed by great apes during locomotion and manipulation. Next, 

we use this comparative context to infer habitual hand postures and grips in fossil 

Homo sapiens and Homo neanderthalensis from their internal fossil architecture. 

Finally, we infer hand use in Plio-Pleistocene hominins, including a putative 

Paranthropus specimen and several species of Australopithecus. In particular, we 

test if ape-like traits in the external morphology of the A. sediba hand were 

functionally significant or primitive retentions that were not yet lost. 

Predictions 

In order to objectively assess which interpretations of external manual morphology 

the analysed internal architecture of the metacarpus supports, no predictions were 

made for fossil hominins. Given the subchondral trabecular analyses of individual 

non-pollical metacarpal heads (Chapter 4, Dunmore et al., 2019) their combined 

analysis is predicted to yield similar results. Gorilla is predicted to have a trabecular 

bone volume distribution that is higher across the dorsal metacarpus, and higher on 

the ulnar aspect of the second metacarpal (Mc2) as well as the radial aspect of the 

fifth metacarpal (Mc5), compared to other aspects of the metacarpal heads. This 

distribution is consistent with a predominantly terrestrial palm-back style of 
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knuckle-walking in Gorilla (Inouye, 1994; Remis, 1998; Matarazzo, 2013; Thompson 

et al., 2018). Conversely, the Pan locomotor repertoire includes more varied 

knuckle-walking style (Wunderlich and Jungers, 2009; Matarazzo, 2013) and a 

greater arboreal component relative to Gorilla (Remis, 1995; Doran, 1996; Thorpe 

and Crompton, 2006). This habitual locomotion is predicted to produce a more 

dorso-distal distribution of higher trabecular bone volume in Pan paniscus and Pan 

troglodytes, that is not significantly different between them. As Pongo does not 

habitually knuckle-walk but is thought to grasp branches in double-locked or hook 

grips (Rose, 1988; Sarmiento, 1988) and so trabecular bone volume is predicted to 

be higher in the disto-palmar aspect, relative to other aspects, of the non-pollical 

metacarpus in this genus. While the non-pollical metacarpus of recent Homo 

sapiens were not previously analysed, they also use their hands primarily for 

manipulation and so habitually flex their metacarpophalangeal joints. Unlike Pongo, 

however, H. sapiens have asymmetrical Mc2 and Mc5 heads which cause the 

second finger to pronate and move radially, but the fifth finger to supinate and 

move ulnarly, during flexion (Lewis, 1977; Marzke, 1997). However the human fifth 

finger has a larger freedom of movement than the second in the radio-ulnar plane 

(Coupier et al., 2016). This is likely due to the greater overall freedom of ulnar, 

rather than radial, deviation of the fingers allowed by the positions of the collateral 

ligaments (Landsmeer, 1955; Lewis, 1977). As a result H. sapiens are predicted to 

have higher trabecular bone volume on the palmar aspect of the non-pollical 

metacarpus, as well as on increasingly palmo-ulnar aspects of more ulnar 

metacarpals, especially the fifth metacarpal (Mc5), compared to other aspects of 

the metacarpal heads. 

The separate trabecular analyses of the proximal and distal subarticular surfaces of 

first metacarpals (Mc1s; Chapter 5) are also predicted to be consistent with the 

current combined first metacarpal analysis. Non-human great apes are predicted to 

demonstrate higher trabecular bone volume at the palmar aspect of the Mc1 base 

and the ulnar aspect of the Mc1 head due to their use of adducted thumb in 

frequent pad-to-side grips (Marzke et al., 2015; Bardo et al, 2017;2017; Neufuss et 

al., 2018). Conversely, a concentration of higher trabecular bone volumes in the 



183 

palmo-radial Mc1 base and the radial aspect of the Mc1 head is predicted humans 

due to the use of a abducted thumb in habitual pad-to-pad precision grips (Napier, 

1956; 1961; D’Agostino et al., 2017; Stephens et al., 2018). 

Methods 

Sample 

Table 6.1 enumerates the sex and side of extant hominid metacarpals analysed in 

this study. All extant non-human hominid samples were from wild populations and 

are curated at the following institutions: the Royal Museum for Central Africa 

(Tervuren, Belgium), the Max Planck Institute for Evolutionary Anthropology 

(Leipzig, Germany), the Powell-Cotton Museum (Birchington, UK), Bavarian State 

Collection of Zoology (Munich, Germany), the Natural History Museum (Berlin, 

Germany), the Senckenberg Natural History Museum (Frankfurt, Germany) and the 

Smithsonian National Museum of Natural History (Washington D.C, USA). Recent 

human specimens were drawn from four populations: Nubians of ~5th century AD 

Sayala, Egypt (Strouhal and Jungwirth, 1979; Paoli et al., 1993) curated at Natural 

History Museum Vienna, Yámanas individuals from 19th century Tiera del Fuego 

(Marangoni et al., 2011), 20th century individuals from Syracuse, both curated at the 

University of Florence, and 20th century individuals from a cemetery in Inden, 

Germany (Großkopf, 2015) curated at the University of Göttingen. 

All extant specimens were considered adult based on complete epiphyseal fusion of 

postcranial elements and had no external signs of pathology. An effort was made to 

balance left and right hands as well as sex for each non-human species, although 

one Pongo pygmaeus was of unknown sex and the Gorilla sample contains five 

females and seven males. Two humans were also of unknown sex. As humans cross-

populationally right-handed (Faurie et al., 2005), and this is reflected in Mc1 

trabecular bone (Stephens et al., 2016; Reina et al., 2017), the human sample was 

drawn from right hands in an attempt to avoid potential bias related to 

handedness. The hand preference of the human sample was unavailable, it is 

therefore possible that some left handed individuals are included in the sample, but 

given the preponderance of right-handed humans (Faurie et al., 2005), right hands 
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were analysed in order to be conservative. Table 6.2 lists the fossil hominin hand 

bones analysed in this study. All fossils included in the trabecular analysis have no 

major elements of subchondral trabecular bone missing from the metacarpal heads 

or first metacarpal base. Similarly, metacarpals without a diaphyseal shaft were 

excluded from the cortical cross-sectional geometry analysis. 

 

Table 6.1. Extant sample composition.  

Note: Only metacarpals drawn from the same hands were used for the cross-sectional 
geometry analysis.

    Mc1  Mc2-5  

Species Sex Left Right Total Left Right Total 

Gorilla gorilla gorilla Female 3 2 5 3 2 5 

  Male 2 3 5 4 3 7 

 Total 5 5 10 7 5 12 

Homo sapiens Female - 4 4 - 4 4 

  Male - 4 4 - 6 6 

  Unknown - 2 2 - 2 2 

 Total - 10 10 - 12 12 

Pan paniscus Female 3 2 5 3 2 5 

  Male 2 3 5 2 3 5 

 Total 5 5 10 5 5 10 

Pan troglodytes  Female 2 3 5 2 4 6 

  Male 3 3 6 3 4 7 

 Total 5 6 11 5 8 13 

Pongo abelii Female 1 1 2 1 - 1 

  Male - 1 1 1 1 2 

Pongo pygmaeus Female 1 2 3 1 4 5 

  Male - 1 1 1 1 2 

  Unknown 1 - 1 - - - 

Pongo sp. indet. Male 1 - 1 1 - 1 

 Total 4 5 9 5 6 11 
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 Table 6.2. Fossil sample composition.  

Where fossil metacarpals are not associated, the fossils that comprise the composite metacarpi are given. LLR refers to side of the metacarpals used for 
composite, in this case a left Mc2 and 3 with a right Mc 4 or 5.*This sex designation only applies to AL438-1; AL333-141 is of unknown sex. (kya = thousands 
of years ago) 

Fossil Taxonomy Side Sex Element 
Unassociated 
metacarpals  

Date Reference 

STW 418 A. africanus left unknown Mc1   
1.95-2.95 
mya 

Pickering et al., 2011 

SK84 Homo/ Paranthropus left unknown Mc1   
~1.6-1.8 
mya 

Susman et al., 2001 

Neanderthal 1, Feldhofer 1 
H. neanderthalensis left unknown Mc1 

 
40 kya Schmitz et al., 2002 

Barma Grande 2 
H. sapiens left male  Mc1   

19 kya 
Bisson et al., 1996 

Malapa Hominin 2 
A. sediba right  female Mc1-5 

 
1.98 mya Kivell et al., 2011 

Kebara 2 
H. neanderthalensis left male Mc1-5   

60 kya 
Valladas et al., 1987 

El Sidrón H. neanderthalensis left unknown Mc1-5 
SD-661 SDR-73 
SDR-74 SDR-70 
SDR-77 

49kya Wood et al., 2013 

Ohalo 2 H2 
H. sapiens left male Mc1-5   

23 kya 
Hershkovitz et al., 1995 

Arene Candide 2 
H. sapiens left male Mc1-5 

 
12kya Formicola et al., 1990 

Hadar, Afar localities 438 and 

333 A. afarenisis LLR male* Mc2, 3 and 5 
AL438-1d 
AL438-1e 
AL333-141 

~3-3.2 mya 
Kimbel et al., 2004 

Sterkfontein Member 4 A. africanus LLR unknown Mc2, 3 and 4 
STW394 
STW382 
STW552 

1.95-2.95 
mya 

Pickering et al., 2011 

Tabun C1 
H. neanderthalensis left female Mc1, 3 and 5   

~122 kya 
Bar-Yosef and Callander, 1999 
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Scanning and Image segmentation 

Extant specimens were micro-CT scanned with a BIR ACTIS 225/300, Diondo D3, or 

Skyscan 1172 high resolution micro-CT scanners at the Department of Human 

Evolution, Max Planck Institute for Evolutionary Anthropology, Germany, or with 

the Nikon 225/XTH scanner at the Cambridge Biotomography Centre, University of 

Cambridge, UK. Fossils were scanned at these or their host institutions. Scans were 

performed at 100-160 kV and 100-140 µA, using a brass or copper filter of 0.25-0.5 

mm. The scans were reconstructed to create volumetric images with an isometric 

voxel size of 13-57 µm, depending on the size of the specimen. 

If the quality of micro-CT reconstructed volume, as well as the trabecular and 

cortical preservation, were appropriate for at least one of the analyses, the 

metacarpal image was cropped and reoriented into standard anatomical positions 

(Fig.6.1a, inset), and unwanted dense inclusions that would be erroneously 

classified as bone were removed in Avizo 6.3 (Visualization Sciences Group, SAS). 

The Ray Casting Algorithm (Scherf and Tilgner, 2009) was used to segment bone 

from other materials in bone metacarpals whereas fossils, often with several types 

of introgressive material and degrees of fossilisation, were segmented with the 

MIA-Clustering method (Dunmore et al., 2018; Chapter 3; Fig. 6.1b, c).  

Trabecular analysis 

Segmented metacarpal images were processed with the whole-epiphysis method, 

outlined in Gross et al. (2014) and subsequent geometric morphometric landmark 

analysis was performed in a similar manner to that described by Dunmore et al. 

(2019). In brief, a number of image filters, run via medtool 4.2 (Dr. Pahr Ingenieurs 

e.U.), automatically isolated the inner trabecular structure from the cortical bone 

by casting rays from the outer cortical shell at multiple angles and terminating them 

at non-bone voxels. The volume delimited by these rays was then effectively dilated 

by a number of voxels equal to the average trabecular thickness in that bone, to 

create a solid volume within the cortical shell of the metacarpal (Pahr and Zysset, 

2009). A grid of 2.5 mm cubes was superimposed on the isolated trabecular volume 

and overlapping spherical volumes of interest (VOI), 5 mm in diameter, were 

centred at each of its vertices (Fig. 6.1c). Trabecular bone volume fraction (BV/TV) 
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was then measured in each VOI and the values were interpolated on a regular 3D 

tetrahedral mesh of the trabecular volume, created with CGAL (Computational 

Geometry Algorithms Library; www.cgal.org, Fig. 6.1d). BV/TV is strongly correlated 

with the mechanical properties of trabecular bone (Odgaard et al., 1997; Uchiyama 

et al., 1999; Pontzer et al., 2006; Barak et al., 2011; Lambers et al., 2013) and is not 

markedly allometric (Doube et al., 2011; Barak et al., 2013; Ryan and Shaw, 2013). 

The present study focuses on subchondral or subarticular BV/TV, since forces at a 

joint must pass through part of the subchondral trabecular structure before 

reaching the deep trabecular structure or diaphyseal cortical bone. Therefore, if 

bone functional adaptation to habitually loaded joint positions exists, it should be 

found in this subchondral trabeculae (Marzke et al., 2010; Zhou et al., 2014; 

Sylvester and Terhune, 2017; Dunmore et al., 2019). To achieve this subchondral 

trabecular analysis, the outer surface of the 3D trabecular mesh was isolated in 

Paraview (Ayachit, 2015) and a Poisson surface reconstruction filter (Kazhdan and 

Hoppe, 2013) was used to smooth the surface in in Meshlab (Cignoni et al., 2008). 

Metacarpal surfaces from left hands were then mirrored so that they were oriented 

in the same manner as those from right hands, for homologous functional 

comparison. Surfaces of all metacarpal heads and first metacarpal bases were 

manually landmarked in Checkpoint (Stratovan Corporation, Davis, CA). Anatomical 

landmarks used here, have been previously shown to be repeatable and are listed 

in Chapters 4 and 5 (Tables 4.2, 5.2 and 5.3). A template of landmarks was manually 

created on a randomly chosen specimen for non-pollical metacarpal heads, first 

metacarpal heads and first metacarpal bases, respectively in Avizo 6.3 (Visualization 

Sciences Group, Germany), following Dunmore et al. (2019). The sliding semi-

landmarks that bordered, and those that were equally distributed over, the 

subarticular surface of each template were then projected onto the appropriate 

surface of each metacarpal in the sample via the Morpho package (Schlager, 2017) 

in R (R Core Development team, 2016). This package was also used to relax 

projected landmarks onto each metacarpal surface by minimising bending energy 

and to slide the semi-landmarks along their respective curves and over the surface 

by minimising Procrustes distances (Fig. 6.1e). In order to interpolate BV/TV to 

these landmarks, a custom python script was used to assign BV/TV values of each 

http://www.cgal.org/
http://www.paraview.org/
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tetrahedra in the unsmoothed trabecular mesh created in medtool 4.2 (Dr. Pahr 

Ingenieurs e.U.) to the centre of their surface triangles. The Python module SciPy 

(Jones et al., 2001) was used to interpolate these centre BV/TV values to the closest 

landmark on the smooth surface (Fig. 6.1f). This approach is analogous to 

measuring BV/TV in spherical VOIs, 1 mm in diameter, centred 0.5 mm beneath an 

inner trabecular surface and projecting the values onto the surface. In R (R Core 

Development team, 2016), a generalised Procrustes procedure was run on these 

landmarks using the Geomorph package (Adams et al., 2017) to create 204 sets of 

173 homologous 3D non-pollical metacarpal head landmarks, and 58 sets of both 

49 first metacarpal head, and 40 first metacarpal base, 3D homologous landmarks, 

all with an associated BV/TV value. Several studies that have standardised 

measures of BV/TV in order to analyse distribution rather than raw magnitude of 

trabecular volume as raw values may incorporate both biomechanically functional 

and systemic differences in BV/TV between species or individuals (Saers et al., 

2016; Tsegai et al., 2018; Sukhdeo et al., 2018; Dunmore et al., 2019). Following this 

logic, the BV/TV value at each landmark was divided by the arithmetic mean of all 

landmark BV/TV values on that subarticular surface to derive a relative measure of 

bone volume fraction (RBV/TV). RBV/TV values close to one indicate BV/TV values 

close to the average BV/TV of that subarticular surface. 
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Figure 6.1. Trabecular analysis method, example on Pan troglodytes metacarpus. a) An 
isosurface model of the metacarpus with inset parasagittal cross-section of the first 
metacarpal. b) 3D isosurface showing inner trabecular structure of the metacarpus. c) 
Segmented 2D cross-section of the first metacarpal (left), cortical and trabecular 
segmentation (centre), regular background grid overlaid on the isolated trabecular 
structure (right) and a close-up of this grid with a representation of the overlapping 
volumes of interest (VOIs) centred at each vertex of the background grid in purple (top). d) 
Interpolation of BV/TV values, measured in overlapping VOIs, onto 3D trabecular meshes. 
e) Anatomical landmarks (red), sliding semi-landmarks on curves (blue) and across the 
subarticular surfaces (green), on the smoothed surface of the trabecular models. f) BV/TV 
values interpolated to each landmark and then divided by the mean value of each articular 
surface to produce RBV/TV values on each landmark. 

Cross-sectional geometry 

Several palaeoanthropological and bio-archaeological studies have employed cross-

sectional geometry (CSG) at the mid-diaphysis of long bones to investigate cortical 

bone functional adaptation (Ruff, 2003; Marchi et al., 2005; Young et al., 2018; Ruff 

et al., 2018; Macintosh and Stock, 2019). Though recent findings have cautioned 

against a simple interpretation of comparative results (Wallace, et al., 2017; Young 

et al., 2018), several experimental studies have shown that loading regime does 

affect the cross-sectional properties of cortical bone (Biewener and Bertram, 1994; 

Robling et al., 2002; Lieberman et al., 2004; Carlson and Judex, 2007).  

a b 

d e f 

c 
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In order to generate a 50% mid-diaphysis axial cross-section, a 2D sagittal cross-

section of each segmented metacarpal image was created using medtool 4.2 (Dr. 

Pahr Ingenieurs e.U.). A homologous axial cross-section requires a mid-slice 

orthogonal to the long axis of the metacarpal; however, several specimens studied, 

particularly those of Pongo, were curved resulting in an oblique axial cross-section 

in anatomical position, that is not homologous to those of straighter metacarpals. 

In order to ameliorate the effect of metacarpal curvature on axial cross-section 

homology, the Numpy Python module was used to find the largest eigenvector of 

the bone pixels in the 2D sagittal cross-section image (Fig. 6.2a). As this vector 

mathematically best describes the long axis of a metacarpal, it incorporates the 

relative amount of curvature in each bone. The angle between the eigenvector and 

the y-axis was found and the segmented 3D volume was then rotated by this angle 

in the sagittal plane using medtool 4.2 (Fig. 6.2b). ImageJ (Schneider et al., 2012) 

was then used to find the most proximal and distal bone pixel in the rotated sagittal 

image and the midpoint between them in the y-axis (Fig. 6.2c). Medtool 4.2 was 

used to extract a homologous axial mid-slice from the rotated 3D segmented 

volume at this 50% diaphysis point (Fig. 6.2d). The Slice Geometry function of BoneJ 

(Doube et al., 2010) was used to calculate the maximum (Imax) and minimum 

(Imin) area moments of inertia as well as the area moment of inertia in the 

anteroposterior (IAP) and medio-lateral, or radio-ulnar, (IML) planes (Fig. 6.2e,f). 

The average area moment of inertia (Iavg) for each mid-slice, calculated as the 

mean of Imax and Imin, was used as a measure of overall diaphyseal stiffness as it is 

directly proportional to the average bending rigidity of a bone (Ruff, 2002). The 

ratio of IAP/IML measures how far the bone can resist bending forces in each 

anatomical plane, with ratios above one indicating a more anteroposterior bending 

rigidity, ratios below one indicating more medio-lateral bending rigidity and ratios 

around one indicating similar resistance in both planes. These measures were 

calculated in mm4, as they are calculated by taking the second integral of the 

distance to a reference axis, multiplied by the differential element of area (a 

measurement to the second power). Both Iavg and IAP/IML of the first metacarpal 

were divided by the arithmetic mean Iavg and IAP/IML of the non-pollical 

metacarpals. The resulting ratios indicate the biomechanical bending rigidity at 
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mid-diaphysis of the first metacarpal relative to the rest of the metacarpus, and 

how far the direction of this resistance to bending departs from the non-pollical 

metacarpus. 

 

 

 

 

 

 

 

Figure 6.2. Cross-sectional analysis method, example on a Pongo first metacarpal. a) A 
parasagittal cross-section image with its manual proximo-distal axis marked in blue and the 
computed eigenvector that best describes this axis marked in red. b) The 3D image is 
rotated by the angle between the two axes (green arrows). c) The cross-section of the 
rotated image shows the eigenvector now equals the proximo-distal axis of the bone and a 
50% coronal cross-section, marked in orange, is orthogonal to the new axis. d) The position 
of this 50% diaphyseal mid-slice shown in 3D and e) the anatomical axes used to calculate 
directional area moments of inertia are medio-lateral (ML), anteroposterior (AP). f) The 
minimum (Imin) and maximum (Imax) area moments of inertia calculated for this bone are 
depicted and were averaged to generate the average area moment of inertia (Iavg, mm4). 

Statistical analysis 

 In order to analyse the distribution of subchondral RBV/TV, the mean values of 

each landmark per species were visualised on canonical metacarpal surfaces 

created using a statistical shape model in wxRegSurf 

(http://mi.eng.cam.ac.uk/~ahg/wxRegSurf/). For non-pollical metacarpals, each of 

the 692 landmark values were treated as variables in a principle components 

analysis (PCA). The first three principle components (PCs) comprised 54% of the 

variation and further PCs each described less than 10% additional variation. 

Therefore in order to test if overall RBV/TV distribution was different between 

extant species, omnibus and subsequent pairwise one-way permutational 

MANOVAs were run on the first three PC scores of each non-pollical metacarpus, 

using the Vegan (Oksanen et al., 2018) and RVAideMemoire (Hervé, 2017) packages 
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in R (R Core Development team, 2016). Before these tests were performed, a test of 

multivariate homogeneity of variance was performed on the Euclidean distance 

matrix that describes the PC scores and a Bonferroni correction was applied to all 

pairwise results, to ensure valid comparisons. A permutation approach was taken as 

not all data met the assumption of multivariate normality (Anderson, 2017). This 

approach was separately applied to the subchondral RBV/TV of the non-pollical 

metacarpus (Mc2-5) and the first metacarpal, as this bone has two mobile 

epiphyses with a different developmental, and evolutionary, history than the rest of 

the metacarpus (Pazzaglia et al., 2018). For this analysis both epiphyses were 

combined, in the same manner as the four non-pollical metacarpal heads. In order 

to determine if individual fossils were significantly different from extant groups, a 

permutational Hotelling’s one-sample T2 test was employed from the R Package 

Compositional (Tsagris and Athineous, 2018) for the first and non-pollical 

metacarpals separately. While one-sample test results must be interpreted with 

caution, as their statistical power is limited, these tests provide some statistical 

interpretation of the results visualised in the PCAs until further fossils are 

discovered. To test for significant differences in the relative cortical rigidity and 

shape of metacarpal diaphyses between extant species, a Kruskal-Wallis with post-

hoc Dunn’s tests were run on Iavg and IAP/ IML ratios respectively, with a 

Bonferroni correction. This test was chosen as neither variable was normally 

distributed, as demonstrated by significant Shapiro-Wilk test results. A one-sample 

Wilcoxon signed rank test was used to determine if individual fossils were 

significantly different from extant species for each variable separately, though again 

these are interpreted with caution. All statistical tests were performed in R (R Core 

Development team, 2016), and a p-value less than 0.05 was considered significant. 
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Results 

Metacarpals in extant great apes 

We tested the hypothesis that distribution of RBV/TV would be consistent with 

metacarpophalangeal (McP) and trapeziometacarpal (TMc) joint positions, thought 

to be habitually loaded together in great ape locomotion and manipulation. As 

depicted in Figure 6.3, red landmarks with higher average RBV/TV in each species 

correspond with predicted McP and TMc joint positions. Higher dorsal RBV/TV in 

Gorilla (Fig. 6.3a) and Pan is consistent with the hyperextended McP joints adopted 

during knuckle-walking (Tuttle, 1967; Fig. 6.7). A principle components analysis 

(PCA) of subchondral RBV/TV distribution in second to fifth metacarpal heads (Mc2-

Mc5; Fig. 6.4a) demonstrates that P. trgolodytes and P. paniscus, sharing a similar 

locomotor repertoire (Doran, 1993) and assumed habitual hand use, were 

statistically similar to each other. This PCA also statistically distinguishes knuckle-

walking African apes from Pongo and Homo at these joints (Fig. 6.4a; Table 6.3). 

Higher palmar RBV/TV in Pongo (Fig. 6.3b) is consistent with habitually-flexed McP 

joints employed in arboreal power grasps, such as a ‘double-locked’ grip (Rose, 

1988). Recent humans also show high palmar RBV/TV, but this distribution is 

asymmetrical, showing increasingly palmar high RBV/TV from Mc2 to Mc5, which is 

consistent with simultaneous flexion and ulnar deviation of the McP joints during 

opposition of the fingers to the thumb in manipulation (Skinner et al., 2015; 

Stephens et al., 2018; Fig. 6.3c). Recent H. sapiens displayed a statistically distinct 

pattern of higher RBV/TV values in first metacarpal compared to other extant great 

apes (Figs. 6.3c, 6.5; Fig. 6.8). This distribution of higher RBV/TV at radial Mc1 head 

landmarks and radio-palmar Mc1 base landmarks is compatible with thumb 

abduction, flexion and opposition during forceful precision grips and in-hand 

manipulation (D’Agostino et al., 2017; Stephens et al., 2018). Conversely, the non-

human great ape pattern of higher average RBV/TV values at disto-ulnar Mc1 head 

landmarks and palmar Mc1 base landmarks is consistent with thumb flexion and 

adduction (Fig. 6.3b) during pad-to-side grips frequently practised by wild and 

captive apes (Marzke et al., 2015; Bardo et al., 2017; Neufuss et al., 2018). Gorilla 

showed a more pronounced pattern of the non-human great ape RBV/TV value 

distribution though this was only significantly different from Pan species (Table 6.3). 



194 

Combining the whole metacarpus allowed us to assess the biomechanical 

importance of the thumb in each species, by analysing the rigidity and shape of 

metacarpal diaphyses at a 50% mid-slice along their length. We hypothesized that 

due to higher radio-ulnar loading of the muscular thumb of recent humans during 

manipulation (Tocheri, 2008; Marzke et al., 1999), the Mc1 diaphysis would be 

medio-laterally wider and stiffer, relative to Mc2-5, than in extant apes. The human 

first metacarpals have a significantly higher average area moment of inertia than 

extant non-human great apes (Table 6.5). However, though human Mc1 midshafts 

are medio-laterally wider relative to Mc2-5, this is not significantly different from 

most non-human great apes, as this trait appears to be variable for these species 

(Fig. 6.6).  

 

 

Figure 6.3. Average relative trabecular bone (RBV/TV) distribution in great ape 
metacarpals during habitual hand postures. RBV/TV is the ratio of subchondral trabecular 
bone to space at each landmark divided by the average values for all landmarks on that 
subchondral surface. Higher RBV/TV indicates relatively more bone in this part of the 
metacarpal (red landmarks) while lower RBV/TV indicate relatively less bone (blue 
landmarks). RBV/TV values ~1 indicate trabecular bone is near the average of the surface in 
this area (white landmarks). Hand postures are shown for a) knuckle-walking in Gorilla, b) 
arboreal locomotion in Pongo and c) manipulation in humans. The arrow in b) illustrates 
adduction of the thumb during ‘pad-to-side’ grips habitually used by non-human apes and 
in c) abduction of the ‘pad-to-pad’ opposed thumb in humans during precision grips. 
Species average RBV/TV distribution in the Mc1 base is depicted inset for b) and c). 

a b c 
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Figure 6.4. Relative trabecular bone volume fraction (RBV/TV) distribution in the 
metacarpal heads of the palm. a) A 3D PCA depicting subchondral RBV/TV variation across 
the non-pollical metacarpus (Mc2-5). Landmarks at each extreme of a PC are coloured in 
grayscale, according to their signed contribution to that PC, and plotted on distal view of a 
right non-pollical metacarpus. Each point represents the pattern of RBV/TV across an 
associated metacarpus in one individual. Fossils are plotted in black and labelled. RBV/TV 
distribution clearly distinguishes among the extant taxa, apart from both Pan species that 
have similar locomotor repertoires. Both fossil H. sapiens (Ohalo II and Arene Candide 2) 
fall within the proximity of recent humans, while H. neanderthalensis specimens (Kebara 2 
and El Sidrón) are separated from humans on PC3. A. sediba is distinct, situated closest to 
Pongo and far from humans and other great apes. b) The same PCA but based on just Mc2-
4 for comparison with A. africanus composite sample, and c) based on just Mc2, 3 and 5, 
for comparison with A. afarensis composite sample. Though interpretation of incomplete 
and composite metacarpi must be undertaken with caution, note that in neither case do A. 
afarensis or A. africanus have a similar RBV/TV distribution to that of A. sediba. 
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Figure 6.5. Relative trabecular bone volume fraction (RBV/TV) distribution in the first 
metacarpal. A 3D PCA depicting subchondral RBV/TV variation across the first metacarpal 
head and base. Landmarks at each extreme of a PC are coloured in grayscale, according to 
their signed contribution to that PC. These landmarks are plotted on a right Mc1 in distal 
(left) and proximal (right) views. Each point represents the pattern of RBV/TV across both 
epiphyseal surfaces in one individual. Fossils are plotted in black and labelled. RBV/TV 
clearly distinguishes modern humans from non-human great apes and Gorilla somewhat 
departs from the non-human great ape pattern. SK84 is situated within the non-human 
great apes. All fossil H. sapiens (Arene Candide 2, Barma Grande 2 and Ohalo II H2) and 
Feldhofer 1 (H. neanderthalensis) fall close to the recent human sample. Kebara 2, El Sidrón 
(H. neanderthalensis) and STW418 (A. africanus) are separated from all extant species. A. 
sediba plots within the range of recent humans. 

Table 6.3. Extant species trabecular comparisons.  

  Gorilla 
Homo 
sapiens 

Pan 
paniscus 

Pan 
troglodytes 

Pongo 

Gorilla 
 

10.912* 12.516* 5.167* 5.473* 

Homo sapiens 63.428* 
 

14.940* 12.519* 5.272* 

Pan paniscus 24.149* 20.851* 
 

2.735 3.426 

Pan troglodytes 16.465* 22.905* 0.672 
 

2.766 

Pongo 92.890* 8.823* 26.350* 32.485* 
 

Permutational MANOVAs conducted on the first 3 PCs of subchondral RBVTV landmark 
values, for non-pollical metacarpi are highlighted in blue (n=58) and first metacarpal 
comparisons in green (n=49). Multivariate homogeneity of variances were not significantly 
different and an omnibus permutational MANOVA was significant for both samples. All 
Pseudo-F values that were significant, subsequent to a Bonferroni correction, are marked 
with asterisks(*). 
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   Table 6.4. Fossil comparisons to extant species.  

Mc2-5 
Arene 

Candide 2 
Ohalo II 

H2 
Kebara 2 El Sidrón A. sediba 

   

Gorilla 241.430* 131.554* 167.503* 162.052* 545.462* 
   

Homo sapiens 18.674* 12.578* 57.942* 48.488* 105.626* 
   

Pan paniscus 90.560* 98.043* 8.017 18.819* 40.654* 
   

Pan troglodytes 95.942* 45.991* 39.179* 35.206* 236.387* 
   

Pongo 16.168* 45.550* 51.805* 49.828* 7.264* 
   

Mc1 
Arene 

Candide 2 
Ohalo II 

H2 
Kebara 2  El Sidrón A. sediba 

Feldhofer 
1 

SK84 STW418 
Barma 

Grande 2 

Gorilla 18.293* 36.960* 11.844 11.857 6.608 21.331* 8.407 21.078* 12.583 

Homo sapiens 1.325 2.053 11.406 20.452 4.939 2.826 12.004 20.184* 5.222 

Pan paniscus 322.242* 715.610* 211.717* 25.393* 192.874* 293.713* 55.515* 79.318* 293.295* 

Pan troglodytes 71.141* 180.898* 54.234* 7.602* 40.538* 63.550* 8.758* 25.981* 65.560* 

Pongo 22.719 39.256 31.242 24.384 6.106 29.375 0.576 30.470 13.410 

Permutational one-sample Hotelling’s T2 tests conducted between the first 3 PCs of subchondral RBV/TV landmark values of each fossil and each extant 

sample. Significant F-values (note this is not pseudo-F but a transformation of T2) , at p <0.05 are marked in with an asterisk(*). Note the due to the lower 

sample size in Pongo, in particular, some Mc1 results were close to (p = 0.05-0.07), but did not reach, significance.
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Hand use in fossil Homo 

The trabecular distribution within fossil H. sapiens and H. neanderthalensis is 

consistent with manipulation and forceful opposition of the thumb, but also 

suggests that these species employed slightly different habitual loaded hand 

postures than recent humans. The fossil H. sapiens RBV/TV distribution places them 

close to, or within the range of, recent humans across the metacarpals (Figs. 6.4; 

6.5). Fossil H. sapiens exhibit the same shape ratio, but a Mc1 diaphysis more 

resitant to bending, compared to recent H. sapiens (Table 6.5). Conversely, H. 

neanderthalensis specimens maintain a similar relative diaphyseal rigidity of the 

Mc1 to that of recent humans, but a less radio-ulnarly wide Mc1. The RBV/TV 

distribution of the majority of H. neanderthalensis Mc1 specimens also departs 

from that of H. sapiens, with higher values in the ulnar aspect of the Mc1 head. 

However, one H. neanderthalsensis Mc1 (Neanderthal 1, Feldhofer 1) did cluster 

with H. sapiens to the exclusion of its conspecifics.  

Hand use in Plio-Pleistocene hominins  

The internal bone structure of Plio-Pleistocene hominin metacarpi demonstrates 

significant diversity. SK84 is an Mc1 that may be attributed to Paranthropus or 

Homo (Trinkhaus and Long, 1990) with trabecular structure that suggests it was 

loaded in a similar manner to those of extant non-human great apes. The A. 

africanus Mc1 (STW418) clustered near those of H. neanderthalensis (Fig. 6.5) but 

displayed a distinct pattern of RBV/TV values unlike any Homo specimens studied. 

The relative biomechanical bending rigidity of this Mc1 is also significantly lower 

than that of recent humans, falling within the range of extant apes (Fig. 6.6). The 

trabecular disposition of A. africanus Mc2-4 is relatively intermediate between all 

extant taxa (Fig.6.4b), as is the distribution of Mc2,3, and 5 (Fig. 6.4c). However, 

these two results are not directly comparable as a different metacarpal is omitted 

from each PCA, Mc5 (Fig.6.4b), and Mc4 (Fig.6.4c), respectively. Further, it must 

also be borne in mind that these analyses are based on chimeric and incomplete 

metacarpi. The associated Mc2-5 of A. sediba (MH2), however, maintains a 

different RBV/TV distribution than either of the other Australopithecus species and 

consistently falls at the edge of the Pongo range (Fig.6.4). This is in stark contrast to 
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the associated Mc1 of MH2, which has a trabecular structure within the range of 

recent humans (Fig. 6.5). This unique ‘dual’ trabecular bone pattern has a corollary 

in the uniquely intermediate rigidity of the Mc1 diaphysis of A. sediba which, while 

relatively radio-ulnarly wide, lies between that of extant non-human great apes and 

recent humans (Fig. 6.6). 

Figure 6.6. Relative cortical rigidity of first metacarpals at 50% diaphyseal mid-slice. A 
bivariate plot of cross-sectional geometry variables. For each hand a ratio of the first 
metacarpal and the average non-pollical metacarpal average area moments of inertia (Iavg, 
mm4) is plotted on the X-axis. The ratio of area moments of inertia (mm4) in the anterior-
posterior (AP) and medio-lateral (ML) planes is a shape index for a metacarpal diaphysis. A 
ratio of these shape indices between the first metacarpal and average non-pollical 
metacarpals is plotted on the y-axis. Representative metacarpi of P. troglodytes and H. 
sapiens are depicted adjacent to their respective values. Note the separation of recent and 
fossil H. sapiens (Ohalo II H2, Arene Candide 2) as well as H. neanderthalensis (Kebara 2, El 
Sidrón and Tabun C1) from other great apes and A. africanus. A. sediba is situated between 
recent humans and non-human great apes.  
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  Table 6.5. Extant group and individual fossil sample comparisons of cross-sectional geometry variables.  

 Iavg ratio IAP/IML ratio 

 Gorilla Homo 
sapiens 

Pan 
paniscus 

Pan 
troglodytes 

Pongo Gorilla Homo 
sapiens 

Pan 
paniscus 

Pan 
troglodytes 

Pongo 

Gorilla (n=10)           

Homo sapiens (n=10) 4.723*      0.442     

Pan paniscus (n=10) 1.120 3.580*    1.871 1.473    

Pan troglodytes (n=11) 1.486 3.320* 0.340   3.868* 3.510* 1.953   

Pongo (n=7) 0.394 4.041* 0.662 0.995  2.730* 2.371 0.965 0.850  

Arene Candide 2  3.097* 3.097* 2.886* 3.097* 2.418* 1.970* 3.097* 0.597 1.610 0.650 

Ohalo II H2  3.097* 3.097* 2.886* 3.097* 2.418* 0.049 1.273 2.335* 3.097* 1.987* 

Kebara 2  2.886* 1.970* 2.886* 3.097* 2.418* 1.728* 3.097* 0.319 1.970* 0.489 

El Sidrón 2.886* 1.273 2.886* 3.097* 2.418* 2.886* 3.097* 2.660* 0.352 1.230 

Tabun C1 2.517* 1.728* 2.886* 3.097* 2.418* 2.407* 3.097* 1.785* 0.220 0.650 

A. sediba 1.728* 3.097* 2.886* 3.097* 2.418* 0.588 1.160 0.994 2.886* 1.601 

A. africanus 2.207* 3.097* 2.886* 3.097* 0.298 2.206 2.584* 0.511 2.584* 1.043 

Extant species were compared with Kruskal-Wallis tests and pairwise post-hoc Dunn’s tests with a Bonferroni correction. Fossils were compared with extant 
species via one-sample Wilcoxon signed rank tests. Absolute Z-values are reported for each variable and significant p-values below 0.05 are marked with an 
asterisk(*). 
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Figure 6.7. Extant species average distributions of subchondral RBV/TV across the metacarpus in a) distal, b) palmar and c) dorsal views, in addition d) 
depicts the average distributions of RBV/TV across the first metacarpal base. 



202 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. Distributions of RBV/TV across fossil hominin metacarpi, in a) distal, b) palmar and c) dorsal views. Also d) depicts the average distributions of 
RBV/TV across the first metacarpal base and e) displays distal, palmar, dorsal and proximal views of individual fossil first metacarpals
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Discussion 

The combined cortical and trabecular structure analysed here is argued to be 

primarily the result of behaviour performed in that individual’s life (Ruff et al., 

2006). Yet, the relative importance of the magnitude or frequency of biomechanical 

loading in generating these plastic osteogenic responses is not yet well known 

(Wallace et al., 2017). Indeed, the interaction of trabecular and cortical bone also 

requires more analysis, as does the role of systemic factors such as hormones, 

intestinal-biomes and genetic factors in shaping internal bony architecture (Ruff et 

al., 2006; Wallace et al., 2017; Tsegai et al., 2018). In spite of all of these potential 

sources of variation, both comparative and experimental studies have produced a 

growing body of evidence for in vivo loading as a primary determinate of mid-

diaphyseal and trabecular bone structure (Biewener et al., 1996; Pontzer et al., 

2006; Ruff et al., 2006; Barak et al., 2011; Wallace et al., 2017). The RBV/TV 

distribution and cortical bone cross-sectional geometry analysed here reflect 

presumed, and observed, habitually loaded hand-postures in extant great apes and 

so also appear to hold a functional signal. 

As expected, fossil H. sapiens demonstrated a pattern of internal bone architecture 

very similar to that of recent H. sapiens, except for the higher relative diaphyseal 

rigidity of their fossil Mc1s. This disparity may reflect a mosaic element in the 

systemic reduction of robusticity thought to have occurred by the Neolithic in 

Europe (Chirchir et al., 2015), though further research is required to substantiate 

this. The internal bone structure of H. neanderthalensis evinced a more distally 

loaded Mc2-5 than in recent humans. The lower radio-ulnar asymmetry in the 

second (Mc2) and fifth metacarpal (Mc5) heads, a flatter Mc5 base and a more 

laterally oriented Mc2-capitate articulation, may have restricted the pronation of 

the ulnar rays to the thumb during precision grips in H. neanderthalensis relative to 

H. sapiens (Niewoehner, 2006). This interpretation is consistent with a more distally 

loaded metacarpus, as inferred from the current results. Internal bone evidence for 

ulnar Mc1 head loading in this species is consistent with the adduction of the first 

McP during both human power ‘squeeze’ grips (Marzke et al., 1992) and pad-to-

side grips, which may have been frequently employed to grip hafted tools or secure 
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scrapers, respectively, by H. neanderthalensis (Niewoehner, 2006). The fact that 

one H. neanderthalensis Mc1 (Neanderthal 1, Feldhofer 1), deviates from this 

pattern is not surprising, as the diversity of lithic tools thought to have been 

produced by this species likely required different habitual grips (Hardy et al., 2013). 

External morphological evidence also supports a distinction between northern and 

southern European H. neanderthalensis (Rosas et al., 2006), that may also be 

reflected in manual behaviours. 

The diversity of Plio-Pleistocene Mc1 loading regimes indicated by the internal bone 

structure in A. africanus and the species represented by SK84, is further underlined 

by the Mc2-5 of several Australopithecus species, as might be expected for a 

sample that potentially comprises several fossil hominin genera. Together the 

present trabecular results suggest A. africanus loaded is metacarpus in a unique 

manner not found in non-human great apes or recent humans. However the 

relative bending stiffness of the Mc1 diaphysis in this species suggests its thumb 

was not significantly loaded in manipulation, as in recent humans. The A. afarensis 

Mc2, 3 and 5 is similar in trabecular structure to that of A. africanus Mc2-4, but is 

consistent with metacarpal loading in a slightly more flexed position, aligning A. 

afarensis more closely with orangutans and recent humans. However, no 

associated metacarpus of either A. afarensis or A. africanus has yet been found, and 

comparisons between different sets of metacarpals are difficult. Yet, it seems that 

A. sediba loaded its hand distinctly differently to these species. Perhaps the diverse 

habitual hand use of Australopithecus (4.2-1.98 mya) is not surprising because just 

as we do not know which of these hominin species made stone tools, we are 

equally unaware of how far each species adopted obligate bipedalism or if they did 

so in similar manner. 

The distinct internal bone structure of A. sediba suggests this species habitually 

used its fingers in a flexed power grip posture that recruited all the fingers in a 

similar manner, like orangutans, without the same degree of opposition of fingers 

towards the thumb as in humans. A. sediba appears to have loaded its non-pollical 

McP joints in a manner similar to orangutans but need not have practised the exact 

same grips as orangutans. Just as the H. neanderthalensis and bonobo specimens 
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appear to load their non-pollical metacarpophalangeal (McP) joints in a similar 

distal manner, but likely did so in quite different grips. The present trabecular 

evidence in the Mc1 of A. sediba is consistent with an abducted opposed thumb, as 

in recent human forceful precision grips, and so does not support the idea that this 

species used manipulative power grips like the power ’squeeze’ grip in this species, 

in which the thumb is adducted. This apparently contradictory trabecular evidence 

for a human-like manipulation in the Mc1 and non-human great ape-like arboreal 

power grasping in Mc2-5 of A. sediba can be understood in the context of the 

biomechanics of its cortical bone. The unique relative robusticity of the Mc1 in A. 

sediba was intermediate between than that of apes and humans, indicating these 

trabecular signals are present within a distinct mosaic morphology.  

External morphological evidence supports this interpretation of mosaic manual 

morphology as the MH2 Mc1 is longer, relative to its non-pollical metacarpals, than 

recent humans and all other known fossil hominins, but it is gracile with poorly 

developed entheses (Kivell et al., 2011; 2018). These features are associated with 

an increased ability to oppose the fingers to the thumb but simultaneously a limited 

degree of force production relative to that seen in modern human precision grips. 

Similarly, the asymmetrical second metacarpal head in A. sediba is thought to aid 

thumb to index opposition (Kivell et al., 2018) yet the Mc2-capitate articulation is 

lateral, as in H. neanderthalensis, limiting Mc2 pronation in precision grips 

(Niewoehner, 2006; Kivell et al., 2018). The non-pollical metacarpals appear gracile 

possessing a medio-lateral width within the range of modern humans with uniquely 

large proximal bases and distal heads (Kivell et al., 2018). Unlike humans, however, 

fourth (Mc4) and fifth (Mc5) metacarpals are more robust than the second and 

third metacarpals in A. sediba (Wong et al., 2018; Kivell et al., 2018), a pattern more 

like orangutans, thought to reflect more uniform use of digits in arboreal grasping 

(Marchi, 2005; Rose, 1988). The Mc5 is particularly robust with well-developed 

entheses and a medio-distal hamate articulation suggesting a flexed abducted fifth 

digit in A. sediba that could have been forcefully opposed to the thumb. Conversely, 

the lack of a sellar Mc5-hamate articulation would limit lateral rotation, and thus 

pronation, of the fifth digit limiting opposition of the fifth digit and thumb, though 
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the Mc5 head is medially asymmetric in A. sediba (Kivell et al., 2018). Other 

external morphology of the MH2 hand, such as moderate curvature of the proximal 

phalanges, as well as flexor sheath ridges on the proximal and, uniquely, 

intermediate phalanges (Kivell et al., 2018), is consistent with a mosaic manual 

morphology in A. sediba.  

Conclusion 

The integrated cortical and trabecular structure of the great ape metacarpus 

analysed here is consistent with both manipulative and locomotor hand positions 

used by extant great apes, as well as the relative prominence of thumb use in 

humans. Within this context, the cortical and trabecular morphology of fossil H. 

sapiens is similar to their extant counterparts, and that of H. neanderthalensis 

appears intra-specifically variable while evincing power squeeze grips when it 

departs form the recent human pattern. A. sediba is consistent with the rest of its 

relatively complete mosaic postcrania. Specifically, the internal morphology of the 

MH2 metacarpus is consistent with non-pollical arboreal power grasping in Mc2-5 

and human-like manipulation in the Mc1, which has a relative robusticity 

intermediate between that of non-human great apes and humans. Since trabecular 

and cortical bone remodel in response to their ontogenetic loading history during 

life, these results provide the first evidence for the use of ape-like aspects of the 

mosaic manual morphology in A. sediba, and do not support the hypothesis that 

these features were non-functional primitive retentions from a more arboreal 

ancestor. Together, this record of in vivo manual behaviour reveals that while the 

hand of A. sediba was used for manipulation, possibly including stone tools, it was 

also used for arboreal power grasping, possibly to access arboreal food sources. We 

do not mean to imply that this model necessarily holds for other Australopithecus 

species. Current partial evidence suggests that A. afarensis and A. africanus were 

using their hands in a different manner to A. sediba and this species may reflect but 

one of many transitions to obligate bipedalism in Plio-Pleistocene hominins. 

Nevertheless, here we present the first behavioural evidence consistent with an 

australopith that used its hand both for manipulation and arboreal locomotion in a 

distinct manner 
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Chapter 7 

General Discussion and Conclusion 
 

The aim of this thesis was to link observed manual behaviours to loads experienced 

during habitual hand postures across the great ape metacarpus, via internal bone 

structure, in order to then infer fossil hominin hand use. This chapter begins by 

addressing the methodological and inferential limitations of the current analysis, 

and subsequently discusses how far the methods created to produce (Chapters 3-4) 

internal bone structure results, and the results themselves (Chapters 4-6), achieve 

the thesis aim. Subsequently, the main results of the preceding chapters are 

discussed as a whole and in the context of other studies. Finally, the implications of 

the present evidence for the evolution of hominin hand use are considered. 

Limitations of analysing internal bone structure 

Despite recent advances in the efficiency and availability of micro-computed 

tomography scanning and analytical techniques, there are current limitations to the 

analysis of internal bone anatomy (Scherf and Tilgner, 2009; Gross et al., 2014; 

Sylvester and Terhune, 2017; Georgiou et al., 2018; Suhdeko et al., 2018; Stephens 

et al., 2018; Georgiou et al., 2019). Analysis of internal bone morphology is 

predicated on the accurate segmentation of the structure of interest from other 

material in a scanned image. In the present thesis, I developed a new technique in 

order to perform this segmentation in a more objective manner in a number of 

complex situations that arise on scanning fossil material (Chapter 3; Dunmore et al., 

2018). However, there is still no ‘gold standard’ for the segmentation of biological 

material. Biological tissues, and particularly trabeculae, are non-uniform in 

structure and variation in scanned images can be introduced by the scanning 

process itself. Therefore, there is as yet, no quantitative way of assessing the 

quality of segmentation, as any comparison of structure necessitates an ‘accurate’ 

segmentation a priori. Here a phantom image of known dimensions was used to 

test the accuracy of segmentation carried out using the novel MIA-clustering 

technique (Chapter 3; Dunmore et al., 2018) but removing the scanning step 

completely, by creating 3D digital models with known geometric properties, may 
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also allow for the testing of segmentation protocols at a fraction of the cost. For 

example, a network of cylinders of a known thickness range, akin to the that 

measured in trabeculae, could be procedurally generated providing a ‘gold 

standard’ with which to test a segmentation. Other variables, such as the angles 

between cylinders, may also be held constant, allowing the researcher to assess 

what property of the structure is altering the accuracy of their segmentation. In any 

case, this would be a useful area of further methodological development and would 

provide a standard model closer to biological reality.  

Another method developed in the present thesis was the morphometric mapping of 

the ‘whole-epiphysis’ data (Gross et al., 2014) to landmarks for analysis, using 

geometric morphometric techniques (Dunmore et al., 2019; Chapters 4-6). This 

technique builds on recent ‘proof-of-concept’ work (Sylvester and Terhune, 2017) 

and adds statistical rigor to trabecular analysis, while not sectioning data into 

subsets that may not be biologically meaningful. The major limitation of this 

method, however, is that it is restricted to the surface of the trabecular space. 

While there are good reasons to look for functional signals at the trabecular surface 

(Zhou et al., 2014), the ‘whole-epiphysis’ method has demonstrated that functional 

signals may lie in deeper trabecular architecture (Schilling, et al., 2014; Georgiou et 

al., 2018; Stephens et al., 2018). In particular, epiphyseal trabeculae are thought to 

direct multidirectional loads from a joint to the diaphyseal cortical bone, which lies 

in the main axis of a long bone (Currey , 2002). This biomechanical transfer path 

(Zhou et al., 2014) should, therefore, be reflected in deeper trabecular architecture, 

and provide a further record of how bone responds to loading. For example, since 

African apes knuckle-walk (Inoyue, 1994) and arboreally grasp, we might expect 

their trabecular structure deep to the metacarpal head, to consolidate more 

loading directions than in orangutans which arboreally grasp but no not knuckle-

walk (Rose, 1988). However, identifying homologous units of deeper internal bone 

architecture for statistical analysis remains the largest challenge of these analytical 

techniques. Analysis of deeper trabecular structure would be a profitable area for 

future research. 
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The current limits of functional inference 

While bone functional adaptation records the mechanical environment, and thus 

loading of great ape hand bones, relating this loading signal to a specific grip is not 

always straightforward. Several prehensile movements may cause similar loading at 

the metacarpophalangeal (McP) joints; for example, both a pad-to-side grip and a 

power grip with an adducted thumb, such as those frequently used on tree trunks 

in chimpanzees and gorillas, may both cause ulnar loading at the first McP joint 

(Bardo et al., 2017; Neufuss et al., 2017). The addition of evidence from multiple 

joints, as presented here, allows the inference of certain kinds of grips, as there is 

more opportunity for data to depart from the hypothesized grips’ loading pattern. 

However, this problem is further compounded by the lack of detailed ape hand use 

data compared to that of humans (Marzke, 2013). Although this thesis would not 

have been possible without recent studies that have enhanced what we know 

about non-human great ape hand use (Marzke et al., 2015; Bardo et al., 2016; 2017; 

Neufuss et al., 2016; 2017; 2018; Samuel et al., 2018; Thompson et al., 2018), many 

of these studies have necessarily been undertaken with captive animals (Bardo et 

al., 2016; 2017; Samuel et al., 2018) and so may not reflect the diversity of wild 

non-human great ape hand use (Marzke et al., 2015). This problem is further 

compounded by the fact that wild, and especially arboreal, non-human great ape 

hand use is difficult to observe (Thorpe and Crompton, 2005) and even when it is, 

researchers must estimate the amount of force applied. Studies of knuckle-walking 

pressures (Wunderlich and Jungers, 2009; Matarazzo, 2013) have broadly aligned 

with observations of this behaviour (Tuttle, 1967; Inoyue, 1992; 1994; Samuel et al., 

2018; Thompson et al., 2018), but Samuel et al. (2018) found that observed hand 

use during arboreal locomotion did not always match the part of the hand being 

loaded. Specifically, the bonobo thumb was frequently used during locomotion, but 

recorded little to no pressure on a force mat attached to the simulated arboreal 

substrate. Therefore, when manual behaviours are infrequently observed, such as 

the use of the first digit in orangutan locomotion (McClure et al., 2012), this 

certainly provides data on their kinematics but it may not provide data on their 

kinetics (those forces transduced in bone functional adaptation). Thus, while the 
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broad locomotor and manipulative grips inferred in the present work are supported 

by much primatological experimentation and observation, more detailed data on 

hand use, and actual loading, are needed before more specific grips can be inferred 

in the fossil hominin record. 

Functional units of the great ape hand  

The structure and the aims of this thesis are, necessarily, to some degree opposed. 

One of the key ways in which the present thesis builds upon previous work, is that it 

analyses the internal bone structure of all five rays of the hand. While some early 

work analysed several rays (Lazenby et al., 2011b), most previous studies have 

focused their analysis on the trabecular architecture of the third metacarpal head 

(Zeininger et al., 2011; Tsegai et al., 2013; Zeininger et al., 2016; Barak et al., 2017; 

Chirchir et al., 2017). The third metacarpal is often chosen due to its central 

position within the hand and regular use during most locomotor and, less so, 

manipulative grips (Zeininger et al., 2011; Tsegai et al., 2013). However, the third 

ray is thought to be somewhat insulated from radio-ulnar forces (Chirchir et al., 

2017) and it is argued here, that radio-ulnar forces incurred by the hand during 

locomotion or manipulation are just as important in shaping internal bone structure 

as those in any other plane. The analysis of all five digits is necessary because 

habitual great ape hand postures and grips are rarely limited to a single digit 

(Marzke and Shackley, 1986; Marzke et al., 1992; Christel, 1993; Bardo et al., 2016; 

2017; Neufuss et al., 2016; 2017; 2018). To infer hand postures, all of the rays 

recruited by them should therefore be analysed, and analysis should not be 

confined to selected rays since, relative to humans, wild non-human great ape hand 

use is poorly documented (Thorpe and Crompton, 2005; Neufuss et al., 2017). 

Conversely, there are hand postures habitually employed by apes in locomotion 

that do not recruit the first ray, such as knuckle-walking or hook grips (Tuttle, 1967; 

1969; Wunderlich and Jungers, 2009; Rose, 1988; Sarmiento, 1988). Further, as the 

relatively short proportions of digits 2-5 in humans have been argued to be 

plesiomorphic, and shared with other primates (Drapeau and Ward, 2007; Almécija, 

et al., 2015), the relative size and robusticity of the first ray has become increasingly 

important as a morphological indicator of uniquely human grips and manipulation 
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(Napier, 1993; Susman, 1994; Marzke, 1998; Shrewsbury, 2003; Marchi et al., 

2017). Indeed, this ray has been the sole focus of some research into internal bone 

architecture (Stephens et al., 2016). 

The structure of this thesis reflects this paradigmatic dichotomy by analysing the 

non-pollical metacarpals (Mc2-5) in non-human great apes (Chapter 4) before 

separately analysing the first metacarpals (Mc1) of great apes and humans (Chapter 

5). Indeed, when both of these regions of the hand are analysed together their 

interaction is reduced to a ratio (Fig. 6.6). Thus, while this thesis does consider all 

the rays involved in great apes postures, it does so in stages, directed by previous 

work and behavioural observation. That is, the structure and the aims of this work 

are opposed figuratively, because the first ray and second to fifth rays, are 

frequently opposed literally. These major functional units of the great ape hand are 

further broken down for analysis of each of the metacarpal heads and, since it is 

mobile the Mc1 base, in preceding chapters (4,5) before being considered together 

statistically (Chapter 6). However, as these chapters were focussed on a functional 

unit of the hand or the inference of fossil hominin manual behaviour, they did not 

consider the present results together, as a record of habitual postures adopted by 

the whole hand of great apes. Below the present results are discussed in this 

holistic context for each species, as well as unexpected emergent results that 

occurred during analysis. 

Gorilla as a model for the hominin hand 

As the species that knuckle-walks the most frequently in the analysed sample 

(Remis, 1998; Crompton et al., 2010), it is intuitive to think of gorillas as the most 

removed from humans in terms of habitually loaded hand postures. It is important 

to note that gorilla locomotion, and manipulation, has been primarily studied in 

mountain gorillas (Remis, 1995; Byrne et al., 2001; Neufuss et al., 2017; 2018), 

whereas the current sample is of western lowland gorillas, which are thought to be 

more arboreal (Remis, 1995; Neufuss et al., 2017). Nevertheless, the limited 

information available demonstrates that these two species of Gorilla practise 

similar hand postures (Sarmiento, 1994; Matarazzo, 2013; Neufuss et al., 2017; 

Thompson et al., 2018). Further, the level of analysis presented here is unlikely to 
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be confounded by these subtle differences. That is, while lowland gorillas may 

move differently to mountain gorillas, this difference is thought to far smaller than 

that between chimpanzees and gorillas (Doran, 1996; Crompton, 2010; Neufuss et 

al., 2017). Indeed, the general lack of internal morphology differences between Pan 

species found here, supports this idea (Chapters 4, 5 and 6).  

Certainly, the hyperextended McP joint position frequently adopted by gorillas 

(Tuttle, 1967; 1969; Matarazzo, 2013) is very unlike that of humans, and consistent 

with their dorsal distribution of relative trabecular bone volume fraction (RBV/TV; 

Figs. 4.5 and 4.6). Yet, this distribution of higher RBV/TV is restricted to the radio-

ulnar edges of the dorsal metacarpal in the third (Mc3) and fourth metacarpals 

(Mc4) and, unexpectedly, is concomitant with a generally ulnar trabecular 

concentration in the second metacarpal (Mc2), as well as a radial concentration in 

the fifth metacarpal (Mc5). This concentration of dorsal trabecular bone toward the 

mid-line of the hand is consistent with the columnar, palm-back style of knuckle-

walking that usually recruits the fifth digit, frequently practised by gorillas (Inoyue, 

1994; Kivell and Schmitt, 2009; Matarazzo, 2013; Thompson et al., 2018). As the 

palm is held consistently orthogonal to the direction of travel in this style of 

knuckle-walking, it likely incurs many radio-ulnar forces on contact with uneven 

substrates. This result not only highlights the importance of studying all of the rays 

recruited in different hand postures, but also the functional signal apparently 

engendered by radio-ulnar forces in gorillas (contra Chirchir et al., 2017). However, 

the fact this dorsal signal is restricted to the radio-ulnar edges of the metacarpal 

head highlights that the gorilla hand is, like all other primates (Patel, 2016), still 

primarily functions to flex at McP joints. While gorillas are the most terrestrial of 

the species studied, especially mountain gorillas (Remis, 1998), they are also 

arboreal, using power grips that extend the McP on larger arboreal substrates but 

diagonal power grips on medium size substrates, in which the McP joints are flexed 

and the thumb may be opposed to the rest of the rays (Neufuss et al., 2017). This 

dual role of McP flexion and hyperextension is reflected in the distal concentration 

of the RBV/TV values as well as the low degree of anisotropy (DA) across Mc2-5 

heads of gorillas (Figs. 4.6 and 4.7). The latter feature is consistent with a pattern of 
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habitual loads primarily experienced dorsally but with an important disto-palmar 

component, that does not allow trabeculae to preferentially align in either 

direction. The importance of prehensile postures for gorilla is further underscored 

by a thumb that is longer relative to the other digits than in other non-human great 

apes (Susman, 1979; Almécija, et al., 2015). Mountain gorillas often oppose the 

thumb when using a diagonal power grip on medium-sized substrates, such as 

lianas, either keeping it in-line with the vertical axis of a substrate or wrapped 

around it (Neufuss, 2017). The relatively long, absolutely robust, Mc1 of mountain 

gorillas has a broad Mc1 head comparable to that of humans, and is shared with 

lowland gorillas (Hamrick and Inoyue, 1995; Galletta et al., 2018). This morphology 

is capable of resisting large forces during plant food processing in both species 

(Neufuss et al., 2018). Further, although the mountain gorilla thumb is frequently 

used in pad-to-side grips during precision grasping of food items, it is also used in a 

wide variety of manipulative postures (Neufuss et al., 2018). This is consistent with 

the strongest concentration of RBV/TV on the ulnar side of the gorilla Mc1 head 

and the lowest DA, across the subchondral Mc1 base and head, of any species 

studied here (Fig.5.3). 

Given this evidence for a relatively long robust Mc1 (Susman, 1979; Hamrick and 

Inoyue, 1995; Almécija, et al., 2015) for arboreal and manipulative thumb use 

(Neufuss et al., 2017; 2018), it may seem surprising that the comparison of cross-

sectional geometry of the gorilla hand did not differentiate it from other non-

human apes. Neufuss et al. (2018) highlight that while the thumb of gorillas is 

relatively larger than other non-human great apes, it is likely still not capable of the 

forces of a human hand. However, the fact that gorillas are not significantly 

different from other non-human apes in the ratio of average area moment of 

inertia is interesting (Fig. 6.6). Marchi (2005) investigated the cross-sectional 

geometry of Mc2-5 in gorillas, and found that they had lower polar moment of area 

relative to chimpanzees, once this variable was size corrected. Almécija et al. (2015) 

demonstrated that the intrinsic and extrinsic hand proportions of gorillas were 

more similar to humans than chimpanzees, and interpreted this as a more 

plesiomorphic condition. However, when scaled by ulnar length, gorilla metacarpals 
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are significantly longer than in humans (Drapeau and Ward, 2007) and could be 

interpreted as more derived than in humans but less so than in chimpanzees. The 

disparity between these two results is likely a result of a significantly longer thumb 

in gorillas relative to chimpanzees or orangutans (Almécija et al., 2015), which also 

has a broader Mc1 head (Hamrick and Inouye, 1995). If this is the case, then the 

ratio of Mc1 to Mc2-5 diaphyseal average area moments of inertia found here (Fig. 

6.6), may be the result of absolutely stiffer metacarpals in both of these functional 

units (Mc1 and Mc2-5) of the gorilla hand, relative to those of chimpanzees (Marchi 

et al., 2005; Hamrick and Inouye, 1995). That is, the ratio of gorillas is similar to 

other non-human great apes as both Mc1 and Mc2-5 are more robust than in these 

species. However, this absolutely robust Mc1 does not imply gorillas have the same 

manipulative abilities, nor manual proportions, as humans and present evidence 

cannot distinguish between the relative roles of locomotion and manipulation in 

the putative aetiology of internal metacarpal architecture. Rather, this confluence 

of Mc1 and Mc2-5 morphology and observed behaviours suggest that locomotor 

and manipulative traits may have both influence the mophrology the gorilla hand. 

This is important in the context of human evolution since fossil hominins often 

preserve a mosaic of locomotor and manipulative traits not seen in modern humans 

(Chapters 1 and 6; Tocheri, 2008; Kimbel and Delezene, 2009; Kivell, 2011; 2015). 

Indeed, the co-occurrence of knuckle-walking and manipulative abilities within the 

hand, may make the gorilla a useful extant model for some questions relating to the 

evolution of human manipulation and terrestrial bipedalism. Complex manipulation 

and tool-use have been linked to terrestrial behaviour in general (Meulman et al., 

2012; Heldstab et al., 2016). In any case, the internal structure of gorilla 

metacarpals analysed here is consistent with, and builds on, previous morphological 

and primatological studies of their manual behaviour, highlighting that they are not 

simply knuckle-walkers or the most functionally removed from modern humans in 

terms of great ape hand use. 
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Pongo and trabecular anisotropy 

As the least terrestrial of the non-human great apes analysed, orangutans present a 

very distinct pattern of internal bone architecture consistent with its primarily 

arboreal locomotion characterised by quadrumanous orthograde positional 

behaviour (Cant, 1987; Sugardjito and Cant, 1994; Thorpe and Crompton, 2006; 

Manduell et al., 2011). The hook and double-locked grips thought to be practised by 

orangutans (Rose,1988; Sarmiento, 1988) have not yet been systematically 

observed in the wild due to the difficulties of observing these grips in the arboreal 

milieu (Thorpe and Crompton, 2005), though hook grips have been observed in 

captivity (Alexander, 1994). In both grips, the McP joints in rays 2-5 are all either 

strongly flexed or extended (Rose, 1988; Sarmiento, 1988) which is consistent with 

the uniformly disto-palmar distribution of RBV/TV across the subchondral surfaces 

of the Mc2-5 heads (Fig. 4.6). Although it should be noted the second metacarpal 

(Mc2) maintains a significantly more ulno-distal concentration of RBV/TV in 

orangutans than in Mc3-5 (Fig. 4.13). The uniformly high DA across the metacarpal 

heads of orangutans is consistent with a lower range of habitual McP joint motion 

than is found in other non-human great apes, that all knuckle-walk and thus 

hyperextend these joints (Napier, 1960; Tuttle, 1969; 1969b; Rose, 1988; Doran, 

1996). Certainly the complexity of arboreal substrates has led authors to assume a 

variety McP positions are required to effectively grasp them, engendering a variety 

of loads and thus low DA (Tsegai et al., 2013; Chapter 4). Yet, in each case the 

branch is gripped with a flexed or extended McP in accordance with the present 

results. It could be argued that as DA is dependent on trabecular number and a 

lower number of trabeculae can necessarily be aligned in fewer directions, these 

results may reflect systemic, or otherwise non-functional, lower trabecular number 

in this genus rather than a functional signal. However, orangutan DA values and 

indeed RBV/TV values, in the Mc1 head and base are very similar to chimpanzees 

and bonobos (Fig. 5.3) as well as lower than those seen in Mc2-5 in the same 

species. This suggests that either this putative systemic signal is either restricted to 

Mc2-5 or that high DA in these digits is indeed a functional signal. As higher RBV/TV 

values appear to have a similar spatial distribution as that of lower DA values in the 
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orangutan Mc1 (Fig. 5.3), it is likely that they are the result of a low number of 

trabeculae that can be aligned in fewer directions. Conversely high DA values in 

Mc2-5 heads (Fig. 4.7) are not distributed in the same manner as either absolute or 

relative trabecular bone volume fraction value distributions (Fig. 4.5 and 4.6). Since 

there is no reason, a priori, why trabecular thickness should be strongly inversely 

proportional to trabecular number in a linear relationship, RBV/TV is a reasonable 

proxy for trabecular number. Therefore, high DA in orangutan Mc2-5 heads is likely 

a functional signal when the whole hand, including the Mc1, is considered.  

Pan and the biomechanical significance of the non-human great ape 

thumb 

Chimpanzees and bonobos possess a broadly similar locomotor repertoire 

characterised by arboreal and terrestrial knuckle-walking (Doran and Hunt, 1994; 

Carlson et al., 2006) as well as vertical climbing, arboreal scrambling and 

suspensory behaviour (Hunt, 1991; Marzke and Wullstein, 1996; Neufuss et al., 

2017). Both chimpanzees and bonobos are thought to be more arboreal than 

gorillas (Remis, 1995; Doran, 1996; Thorpe and Crompton, 2006). Chimpanzees use 

a less radially deviated wrist compared to gorillas during diagonal power grips 

(Neufuss et al., 2017), while captive bonobos use similar arboreal grips (Samuel et 

al., 2018). The internal structure found here is consistent with the very similar 

locomotor modes employed by these two species. Not only is the concentration of 

high RBV/TV values in Mc2-5 in a less palmar position than in orangutans, but it 

extends less dorsally than in gorillas, consistent with a more varied locomotor 

regime, including arboreal grasping and knuckle-walking, in both chimpanzees and 

bonobos relative to other non-human great apes (Figs. 4.6 and 4.10). 

Chimpanzees tend to use both palm-in and palm-back knuckle-walking postures 

that differ from those of gorillas (Tuttle, 1969; Inouye, 1994; Matarazzo, 2013). 

During palm-back knuckle-walking, chimpanzees tend to extend their third digit in 

front of the others and often do not recruit the fifth digit (Inoyue, 1994; Wunderlich 

and Jungers, 2009; Matarazzo, 2013). During palm-in knuckle-walking, chimpanzees 

roll their digits in ulno-radial succession, though the fifth digit is again frequently 
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not recruited (Inoyue, 1994; Wunderlich and Jungers, 2009; Matarazzo, 2013). The 

varied digit use in chimpanzee knuckle-walking appears to be reflected in the 

significantly more dorsal, though still primarily distal, concentration of RBV/TV in 

Mc3-4 and a more palmar concentration in Mc2 and 5. The extension of Mc3 past 

the other joints in palm-back knuckle-walking and the lack of use of the fifth digit in 

this hyperextended posture match these patterns and Mc4 is also thought to be 

heavily loaded in this type of locomotion (Tuttle, 1969; Tuttle and Basmajian, 1978). 

However, as the peak substrate reaction forces in chimpanzee knuckle-walking are 

borne on Mc2 (Wunderlich and Jungers, 2009; Matarazzo, 2013), it may be 

expected that this digit has a more dorsal concentration of the RBV/TV. Conversely, 

larger captive chimpanzees used their second digit significantly less often than 

gorillas of equivalent size during captive terrestrial knuckle-walking (Inouye, 1994). 

Although still relatively poorly studied, bonobos do not roll their hand during 

arboreal knuckle-walking and more frequently recruit the fifth digit than in 

chimpanzees (Samuel et al., 2018). In Mc2-5, the uniformly disto-dorsal pattern of 

RBV/TV distribution appears to reflect this lack of differential digit use. Bonobos are 

also thought to be more arboreal than chimpanzees (Alison and Badrian, 1977; 

Susman et al., 1980; Susman, 1984), although this may be an artefact of the fact 

that no bonobo community has yet been fully habituated to humans, and so flee 

into the trees when observers are present (Hunt, 2016). While absence of evidence 

is not evidence of absence, the current internal bone morphology results do not 

strongly support bonobos using their hands for arboreal grasping more frequently 

than chimpanzees. In either case, bonobos have been shown to be more 

palmigrade in the trees than chimpanzees (Doran, 1993; Doran and Hunt, 1994; 

Crompton et al., 2010) and this seems to be reflected in significantly higher RBV/TV 

values in the palmar aspect for the subchondral Mc3 (Fig. 4.10). This localised 

concentration is consistent with either a more habitually flexed third digit in 

bonobos, which seems unlikely given its central position in the hand, or direct 

loading of this surface form the substrate during palmigrady. 

In general, the present results demonstrate that the trabecular structure of the 

subchondral metacarpus of both chimpanzees and bonobos is remarkably similar 



218 

and not statistically distinguishable, overall, across any epiphyseal surface for DA or 

RBV/TV, except for the DA of the Mc1 base (Figs. 4.6, 4.7, 4.10, 4.11, 5.3, 5.4 and 

5.5). Neither of these species are significantly different in RBV/TV values when Mc2-

5, or both ends of the Mc1, are taken as a whole (Figs. 6.4, 6.5). This is consistent 

with their similar locomotion but is somewhat at odds with what is known about 

their manipulative abilities. The manipulative abilities of chimpanzees are well-

studied (Christel, 1993; Marzke and Wullstein, 1996; Jones-Engels and Bard, 1996; 

Pouydebat et al., 2011; Marzke et al., 2015) compared to bonobos, however, both 

species are known to use frequent pad-to-side grips, in which the thumb is 

adducted (Marzke and Wullstein, 1996; Christel et al., 1998; Bardo et al., 2016; 

Neufuss et al., 2016) and diagonal power grips in which the thumb may or may not 

be loaded (Marzke and Wullstein, 1996; Neufuss et al., 2017; Samuel et al., 2018). 

The slightly higher RBV/TV, and lower DA, values in the ulnar Mc1 head of these 

species are consistent with these grips (Fig. 5.3). However, orangutans also share 

this distribution of internal bone architecture with chimpanzees and bonobos, yet 

have not been thought to frequently use diagonal power grips (Sarmiento, 1988; 

Rose, 1988) and the importance of their thumb during arboreal grips is debatable 

(Rose, 1988; McClure et al., 2012). 

Orangutans frequently manipulate objects with their mouth (Bardo et al., 2017) 

and, with the longest finger-to-thumb ratio among hominids, are at the greatest 

disadvantage when opposing the fingers to the thumb (Almécija et al., 2015; Feix et 

al., 2016). Drapeau (2015) theorised that the ulnar torsion of the orangutan Mc1 

shaft allowed it to more effectively oppose the relatively immobile palm, due to a 

lack of effective opposition with the fingers. Given that the orangutan Mc1 

trabecular signal is not statistically different from either bonobos or chimpanzees 

when the head and base are considered separately (Figs. 5.3, 5.4 and 5.5), or 

together (Fig. 6.5), it initially appears to be inconsistent with differences observed 

in habitual thumb use in these species (Bardo et al., 2017). However, chimpanzees, 

bonobos and orangutans all employ pad-to-side grips, associated with high ulnar 

RBV/TV in the Mc1 head, when they use the thumb to manipulate objects (Marzke 

et al., 2015; Bardo et al., 2017). Therefore, it may be that observed intergeneric 
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differences in thumb use may be primarily of frequency. That is, while chimpanzees 

and bonobos possess a more dexterous thumb and manipulate objects with it more 

often, orangutans perform similar movements of the Mc1 when they use it in 

manipulation. The distribution of trabeculae measured by RBV/TV here thus 

accurately records these similar joint positions, but does not reflect the difference 

in magnitude or frequency of loading presumably engendered by observed 

differences in thumb use between chimpanzees, bonobos, and orangutans (Bardo 

et al., 2017). Preliminary analysis of species average absolute subarticular 

trabecular volume fractions (BV/TV) in the Mc1 supports this interpretation, as 

orangutans appear to show lower values than either chimpanzees or bonobos. 

Gorillas, conversely, have both significantly more regionalised RBV/TV distribution 

and the highest BV/TV of all the non-human great apes, consistent with their 

observed manipulative behaviour and larger Mc1 relative to all other non-human 

great apes (Hammrick and Inoyue, 1995; Neufuss et al., 2018). Thus this 

interpretation of chimpanzee, bonobo and orangutan internal Mc1 morphology is 

consistent with external morphology, observed hand use and the current trabecular 

results. This suggests that the thumb of chimpanzees, bonobos and orangutans is 

likely used in a similar position, if to differing extents, relative to the significantly 

different Mc1 architecture of gorillas and recent humans. Combined with the lack 

of trabecular bone in the Mc1 head implied by the coincidence of lower DA and 

higher RBV/TV values, this trabecular distribution suggests a relative lack of use, or 

at least a biomechanically less important role, of the first digit in chimpanzees, 

bonobos, and especially orangutans, relative to gorillas. The subtle differences in 

trabecular architecture between chimpanzees or bonobos and orangutans, not 

clearly resolved by measuring their distribution with RBV/TV, further underlines 

that this measure will not clearly distinguish between differences in the magnitude 

or frequency of joint loading in fossil hominins. This example therefore emphasizes 

the need to consider external morphology, observed extant behaviour and all 

available skeletal elements when inferring fossil hominin hand use. 
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The significance of dorsal ridges on the metacarpal head 

Considering all the trabecular structure of the non-human apes together provides 

unexpected insights into the dorsal ridge on metacarpal heads. Perhaps the 

simplest explanation for higher DA in the dorsal extreme of Mc2-5 in African great 

apes (Fig. 4.7) would be that it occurs directly beneath the dorsal ridge and 

therefore reflects alignment of local trabeculae that have remodelled to better 

transmit a dorsal load incurred by a hyperextended McP during knuckle-walking. 

However, as discussed in Chapter 1, these dorsal ridges are too small to act as ‘bony 

stops’ during McP hyperextension, which was the functional hypothesis 

traditionally invoked to explain their existence (Tuttle, 1969; Richmond et al., 2001). 

The forces at the McP joint during locomotion would be so great as to be injurious 

to the joint (Lovejoy et al., 2009; Simpson et al., 2018). Instead it has been 

proposed that the epiphyseal mass of the metacarpal head is displaced palmarly, 

prior to or during ossification, due to the loads incurred at the McP joint during 

knuckle-walking (Simpson et al., 2018). This palmar movement of the epiphyseal 

mass would explain more uniformly oriented trabeculae at the growth plate, 

beneath the dorsal ridge. This higher DA signal would then be the result of one end 

of the trabeculae near, or at, the growth plate between the metaphysis and 

epiphysis, moving palmarly with the whole epiphyseal mass. Therefore, as argued 

for the dorsal ridge, this internal structure can then be seen as partly a functional 

and partly developmental signal. However, mountain gorillas and chimpanzees are 

more arboreal in their infancy and employ palmigrade quadrupedalism terrestrially, 

rather than knuckle-walking, until 2.5-4 or 6 years of age, respectively (Doran, 

1997). Therefore, while there may be a period where the metacarpal head is not 

fully fused and knuckle-walking is acquired, it seems counter-intuitive that the adult 

form of the metacarpal is shaped early in ontogeny by a behaviour that is more 

frequently practised later in ontogeny.  

Indeed, the presence of this high DA in the dorsal metacarpal head of orangutans, 

given that they do not knuckle-walk, suggests that either this internal bone signal is 

divorced from the overlying cortical bone’s shape, or that the palmar displacement 

of the cartilaginous epiphyseal mass is not the result of knuckle-walking behaviour. 
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As it is unlikely that internal bone structure is independent of its over-lying joint, 

the high dorsal DA at the fused remnant of the growth plate found in all great apes 

is indeed likely the result of palmar displacement of the cartilaginous epiphyseal 

mass (Simpson et al., 2018). However, since the less pronounced “bipartite 

extensions of the articular surface” in orangutans (Susman, 1979, p.220) and dorsal 

ridges of African apes both overlie a locally, highly organised trabecular 

architecture, that these morphologies are unlikely the result of knuckle-walking in 

young non-human great apes. Instead, it is here argued that this putative palmar 

displacement, common to all great apes, may be purely developmental and mostly 

genetically controlled, or the result of strong flexion at the McP joint, such as that 

employed in arboreal grasping, a behaviour common to all immature non-human 

great apes (Doran, 1997; Thorpe and Crompton, 2006). Strong digital flexion may 

‘pull’ the epiphyseal mass forward rather than knuckle-walking behaviour ‘pushing’ 

it forward, in immature non-human great apes. Whatever the reason, the presence 

of a dorsally high DA in orangutans likely offers more of a developmental signal 

than a functional one, and provides further evidence that the dorsal ridge of African 

ape metacarpals is unlikely to be the result of adult knuckle-walking. 

Human grips and the role of the fifth digit 

The recent human hands analysed here present the most distinct internal bone 

architecture of all species sampled, almost assuredly due to their primarily 

manipulative mode of use. The diaphysis of human Mc1 is consistently better at 

resisting loads in the radio-ulnar plane and has a higher overall bending rigidity 

relative to Mc2-5 (Fig. 6.6). This has been previously reported in humans via a 

different measure (Wong et al., 2018) but the present results demonstrate that this 

inter-ray difference in average area moment of inertia is significantly larger than in 

other great apes (Fig. 6.6). This biomechanically robust thumb, along with features 

of the human wrist (Marzke, 1997; Tocheri, 2007), likely resists strong pollical 

forces incurred by the human thumb during precision grips and manipulation 

(Cooney and Chao, 1977; Marzke and Shackley, 1986; Rolian et al., 2011; Key and 

Dunmore, 2015; Williams-Hatala et al., 2018). The trabecular architecture of the 

thumb supports this functional interpretation of the cortical evidence, with a 
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concentration of high RBV/TV values radially in the Mc1 head and radio-palmarly in 

the Mc1 base, as well as high DA in the Mc1 head. Analysed separately (Figs. 5.3-

5.7) or combined (Fig. 6.5), the trabeculae of these subchondral surfaces are 

significantly different from those of other great apes. The human pattern is 

consistent with a Mc1 that is habitually, and likely forcefully, abducted at both the 

McP and trapeziometacarpal (TMc) joints. This trabecular distribution is consistent 

with the abduction, ulnar rotation in the axial plane, and flexion of the TMc, a 

complex motion that is necessary for full pad-to-pad opposition of the fingers, 

collectively termed the ‘screw-home’ mechanism (Halilaj et al., 2014; D’Agostino et 

al., 2017). This radial pattern of RBV/TV at both joints has also been found in a 

more expansive sample of recent humans (Stephens et al., 2018). The first McP 

joint is less well-investigated than the TMc in the literature but early work 

described this joint as abducted in human precision grips (Napier, 1956). A recent 

functional interpretation of a similar trabecular pattern includes the wide-

abduction of the thumb (Stephens et al., 2018), which would be facilitated by 

abduction at the McP and TMc joints. The significantly higher DA in the human Mc1 

head relative to other great apes may seem counter-intuitive given the highly 

mobile human thumb and the broad Mc1 head (Susman, 1994). However, humans 

can extend the first McP while flexing the distal phalanx due to distinct flexor 

pollicis longus and extensor pollicis brevis muscles (Marzke et al., 1998; Hammrick 

et al., 1998; Diogo et al., 2012). The high DA may reflect a combination of a 

relatively small number of forceful movements in the human thumb during multiple 

prehensile grasps over a relatively small range of motion at the McP. Indeed, where 

flexion at the first McP joint is limited to 90° in gorillas, orangutans and most 

chimpanzees by the thenar eminence (Tuttle, 1969b), clinical data suggest modern 

humans are limited to just 70° (Barakat, et al., 2013), likely also as a result of the 

relatively large human thenar eminence. 

Moving beyond the thumb, the asymmetric inclination of the Mc2 and Mc5 heads 

towards the midline of the palm has been suggested to aid the opposition of the 

fingers to the thumb, and grasped objects, in humans (Marzke, 1997; Kivell, 2015). 

Further, the hypothenar eminence of the human hand and associated powerful 
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flexion of the fifth digit are thought to be crucial for effective power ‘squeeze’ grips 

(Marzke et al., 1992). The present trabecular evidence supports these functional 

interpretations of external metacarpal anatomy. Like orangutans, high RBV/TV is 

concentrated palmarly in the Mc2-5 heads of recent humans but maintains a 

significantly different overall subchondral trabecular pattern (Fig. 6.4). This 

difference lies in the ulnar skew of higher RBV/TV values of Mc2-4, particularly Mc2, 

and the palmarly extended RBV/TV distribution in the human Mc5. This pattern is 

consistent with pronation of the second digit, as well as supination and pronounced 

ulnar deviation of the fifth digit, during manipulation (Landsmeer,1955; 1962; Lewis 

1977; Marzke, 1997). It is also consistent with strong flexion of the fifth digit in 

power ‘squeeze’ grips (Marzke et al., 1992). This result highlights the role of non-

pollical digits in human manipulation and warrants further investigation. 

Implications for the evolution of the hominin hand use 

The evolution of hominin hand use has traditionally been simplified to the 

development of a dexterous modern human hand, capable of precision grips and 

tool-production or use, from a more ape-like hand that was adept at locomotor 

power grips (Napier, 1993). More recent work and fossil discoveries have argued 

that the modern human, and indeed basal hominin hand, is far more plesiomorphic 

than previously thought, and that the few living non-human great apes possess 

more apomorphic hand morphology (Drapeau and Ward, 2007; Lovejoy et al., 2009; 

Almécija et al., 2015). This view of a primitive human hand was actually articulated 

much earlier (Wood-Jones, 1916) but a focus on the human thumb, manipulation 

and stone tools is predominant in the hominin hand literature (Napier, 1962; 

Marzke and Shackley, 1986; Susman, 1994; Marzke et al., 1998; Shrewsbury, 2003; 

Tocheri, 2005; Rolian et al., 2011; Williams et al., 2012; Key and Dunmore, 2015; 

Harmand, 2015; Skinner et al., 2015; Key et al., 2018). This long-standing focus is 

perhaps unsurprising, since stone tools offer the only surviving direct evidence of 

early hominin manual behaviour and were linked closely associated with the first 

Plio-Pleistocene member of our genus discovered, Homo habilis (Napier, 1962b). 

Further, the robust nature of the human thumb is unique among great apes 

(Tocheri, 2008; Marzke, 2013), as is the use of the human hand primarily for 
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manipulation rather than locomotion. Therefore, the derived human hand has been 

historically linked to tool use (Darwin, 1871) and consequently was intimately 

linked with the defining trait of hominini, bipedalism. However, the current results 

argue for a more nuanced, mosaic and piecemeal view of hominin hand evolution, 

comprising a diversity of hand use that included arboreal locomotion.  

The present results agree with the interpretation of several more recently 

discovered fossils, including Homo floresiensis (Tocheri et al., 2007b), 

Australopithecus sediba (Kivell et al., 2011) and Homo naledi (Kivell et al., 2015), 

that evidence mosaic hand morphology. That is, the internal bone structure of the 

fossil Homo sapiens, Homo neanderthalensis, Australopithecus africanus, 

Australopithecus afarensis and Australopithecus sediba do not evince a linear 

progression of increasingly more manipulative hand, or more modern human-like 

thumb use, with time in the hominin lineage. Rather, this evidence is more 

consistent with an adaptive radiation (Foley, 2005) of hominin hand use that was 

not always completely removed from the requirements of locomotion, or solely 

subject to selection pressures of modern human-like manipulation. For example, H. 

neanderthalensis was the last hominin species, well-represented in the current 

archaeological record to become extinct (some 30 thousand years ago; Stringer and 

Davies, 2001). The two individuals of this species for which the complete, 

associated trabecular architecture could be analysed (El Sidrón and Kebara 2) do 

not show a distribution of trabecular bone consistent with either fossil or recent 

Homo sapiens (Figs. 6.4 and 6.5). Instead, these specimens demonstrate a 

trabecular architecture consistent with disto-palmar loading of Mc2-5 and unique 

combination of radio-palmar loading of Mc1 base and ulno-central loading of the 

Mc1 head (Fig. 6.8). While it is difficult to equate this loading with specific grips, as 

this pattern does not appear in any extant species studied, it is consistent with 

power ‘squeeze’ grips (Marzke et al., 1992), thought to be used by this species 

when using hafted tools or scrapers (Anderson-Gerfaud, 1990; Niewoehner, 2006). 

Of course, this does not mean H. neanderthalensis individuals were incapable of 

modern human precision grips, but rather indicates that they appeared to 

habitually load their hand in different ways. Certainly, the independent evidence 
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that at least some H. neanderthalensis individuals used their teeth in manipulation 

(Fox and Frayer, 1997) and that their lithic tool-kit was somewhat distinct from that 

of H. sapiens, supports this interpretation (Hardy and Moncel, 2011). Indeed, the 

Mc1 of Feldhofer (Neanderthal) 1 has a modern human-like pattern, indicating that 

this individual did in engage in modern human-like loading of their thumb. This 

does not invalidate the previous interpretation as trabecular architecture is a plastic 

trait and substantial variation in H. neanderthalensis tool kits implies variation in 

their hand use (Hardy and Moncel, 2011). Further, some researchers have pointed 

to a distinction between Northern and Southern European H. neanderthalensis 

(Rosas et al., 2006), which may be reflected in different tool kits and thus habitual 

hand use. Therefore, the present evidence from the whole metacarpus indicates 

that the advent of modern human manipulation appears to be rather recent, as the 

fossil H. sapiens studied here are 12-23 thousand years old (Formicola et al., 1990; 

Hershkovitz et al., 1995; Bisson et al., 1996) and have a similar trabecular structure 

as that of recent H. sapiens (Figs. 6.4 and 6.5). Even though the hands of fossil H. 

neanderthalensis and H. sapiens are ostensibly similar (Niewoehner, 2006), the 

present trabecular results demonstrate a diversity of Upper Palaeolithic hominin 

hand use. This inter- and intra-species variability in internal bone structure in late 

surviving fossil hominins underscores the fact that the evolution of modern human 

manipulation was not a linear progression with time.  

The present evidence for hand use in Australopithecus species also supports the 

idea of several adaptive radiations of hominin hand use. Though it must, again, be 

stressed that the present samples of A. africanus and A. afarensis are chimeric and 

incomplete, the internal structure that is available from these bones evinces very 

different habitual hand loading to that of the geologically younger A. sediba (Kimbel 

et al., 2006; Pickering et al, 2011; Granger et al., 2015). Only in A. sediba does the 

trabecular pattern evince orangutan-like arboreal grasping in Mc2-5 and human-like 

manipulation in the Mc1, which itself is more robust than in apes but less so than in 

recent humans (Figs. 6.4, 6.5, 6.6). This diversity in habitual hand loading is made 

even more intriguing by the fact that SK 84, attributed to either early Homo or 

Paranthropus robustus, and geographically as well as temporally proximate to A. 
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sediba (Trinkhaus and Long, 1990), demonstrates trabecular structure consistent 

with thumb use in non-human great apes (Fig. 6.5). Therefore not only does the 

present evidence argue for diversity of habitually loaded hand postures and grips in 

Australopithecus, which do not necessarily become more human-like in younger 

fossils, but also that this diversity extends to other contemporaneous hominin 

genera.  

The internal bone structure of the MH2 hand is perhaps the most exciting finding of 

the present thesis. Not only do the trabecular and cortical signals of this associated 

metacarpus present a similar functional signal of mosaic hand use, this mosaic 

signal is replicated thoughout MH2 skeleton and A. sediba hypodigm (Berger et al., 

2010; Berger, 2013). As internal bone architecture is plastic and these results are, at 

least in part, a record of loads experienced in vivo, this evidence reveals what MH2 

actually did with its hands rather than their capabilities. These results, therefore, 

represent the first evidence for the use of ape-like arboreal features in 

Australopithecus postcrania, and do not support the hypothesis that these were 

non-mechanically functional retentions from a more arboreal ancestor (contra 

Latimer, 1991). As discussed in Chapter 6, this does not necessarily mean that 

arboreal features in other australopith species were also functionally significant, 

but it raises the probability that they were to some extent. While caution must be 

exercised when drawing inferences from the internal bone structure of incomplete, 

chimeric metacarpi, the present results do allow for some discussion of hand use in 

Australopithecus afarensis and Australopithecus africanus. The A. afarensis Mc2-3 

and Mc5 have a combined trabecular distribution most similar to orangutans but 

fall on the opposite side of the orangutan range and much closer to recent humans 

relative to A. sediba (Fig. 6.4c). This combination tentatively suggests that the Mc2-

5 of A. afarensis were more adapted for manipulation, as has been argued based on 

their hand proportions (Alba et al., 2003), than in A. sediba. Unlike A. afarensis and 

A. sediba, the A. africanus Mc2-4 analysed here displays a distribution of RBV/TV 

closer to that of bonobos, as well as an Mc1 distribution that clusters near H. 

neanderthalensis (Figs. 6.4b and 6.5). It may be tempting to ascribe this A. africanus 

pattern to manipulative power grips such as those practised by H. neanderthalensis, 
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as discussed above. However, the cortical cross-sectional geometry of this chimeric 

specimen is similar to that of all non-human great apes studied and suggests that 

the thumb was less biomechanically important in A. africanus hand use, a finding 

that is supported by relative narrow Mc1 in this species (Green and Gordon, 2008). 

Conversely, as STW418 has the most distinctive Mc1 trabecular pattern in the 

whole sample suggesting A. africanus used its first digit in a manner unlike that of 

any of the extant species studied. It seems parsimonious to then ascribe the Mc2-4 

trabecular pattern found here to arboreal power grips in A. africanus rather than to 

manipulation (contra Skinner et al., 2015), an inference supported by its more ape-

like limb proportions compared with A. afarensis (Green et al., 2007). Though again, 

it must be stressed that these inferences are tentative, the internal bone 

architecture of A. sediba found here is distinct from that known of A. afarensis and 

A. africanus. This A. sediba pattern has implications for the evolution of hominin 

manipulation and bipedalism, as it can now be demonstrated that at least one 

hominin used its hands for both manipulation and locomotion. Therefore, the 

advent of enhanced hominin manipulation need not have succeeded the 

development of obligate bipedalism in our lineage but could have been 

concomitant with it. 
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Conclusion 

The initial goal of this thesis was to establish a link between observed habitual 

manual behaviours and internal bone structure across the great ape metacarpus. To 

achieve this goal, I developed two novel methodologies, MIA-clustering 

segmentation (Dunmore et al., 2018; Chapter 3) and geometric morphometric 

mapping of ‘whole-epiphysis’ trabecular data (Dunmore et al., 2019; Chapters 4-6). 

These methods allowed for the statistical analysis of subchondral trabecular 

patterns in great apes (Chapters 4-5). The distribution of relative trabecular volume 

and degree of anisotropy in these species were largely statistically distinct and 

reflected hand postures known, or thought, to be habitually employed during great 

ape manipulation and locomotion. Further, the examination of all five metacarpals 

offered the first holistic analysis of hominid hand internal bone structure and 

yielded novel, and at times unexpected, results that were also explicable in terms 

extant great ape hand use. This extant context then allowed for the inference of 

habitually employed hand postures and grips in fossil hominins (Chapter 6). These 

results indicated that the evolution of modern human-like hand use was not a 

linear progression but rather an adaptive radiation, or possibly several, within the 

hominin clade. Despite intra-specific variation, results indicated that Homo 

neanderthalensis likely used different habitual grips to those of fossil and recent 

Homo sapiens. Further evidence for hand use diversity was found in species of 

Australopithecus. Finally, the present results indicate, for the first time, that the 

ape-like arboreally-advantageous aspects of manual morphology in 

Australopithecus sediba, were indeed functional rather than simply a retention 

from a more arboreal ancestor. These results have implications for the evolution of 

hominin manipulation, the development of hominin tool use and the adoption of 

obligate bipedalism in our lineage.  
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Current limitations and future directions 

The limitations discussed at the start of this chapter, pertaining to the analysis of 

internal bone structure and the inference of specific grips, are limitations of kind, 

that will require novel techniques to overcome. However, there are aspects of the 

present work that are subject to limitations of degree, which simply require more 

resources to surmount. Perhaps the most obvious of the latter type of limitations is 

sample size. The sample of associated great ape metacarpi analysed here is the 

largest known to myself, but still represents a small fraction of those potentially 

available in collections. While it is difficult to find non-pathological adult associated 

metacarpi, that have not been artificially articulated, an expansion of the current 

sample size will likely reveal more patterns of intra- and inter-species variability. 

The addition of relatively rare mountain gorilla (Gorilla gorilla beringei) metacarpi 

to the sample would be of particular value, as functional inference of grips for this 

genus is based on behavioural accounts of this subspecies. Smaller metacarpi such 

as those of platyrrhines, especially those of Ateles, would be interesting to add to 

the current sample but as they preserve few trabeculae, due to allometry, 

comparisons of them with great ape metacarpals using the present methods must 

be attempted with caution. Larger monkeys, belonging to genera such as Mandrillus 

and Theropithecus, would be more comparable and may yield additional insights 

into internal bone architectural response to the demands of digitigrady and 

manipulation. Further, outgroups that practise similar locomotion to non-human 

great apes, such as knuckle-walking Myrmecophaga, would be good case studies 

with which to interpret the internal bone architecture of non-human great ape 

metacarpals. Even within great apes the quantification of internal bone structure 

between adjacent elements, such as the proximal phalanges and carpus with 

respect to the metacarpus, may help us interpret force distributions through the 

hand during manual behaviours. This data would be of great use in finite element 

studies that seek to reverse engineer some of these forces in silico. Indeed, the 

analysis of internal bone morphological integration between adjacent elements, 

may allow functional inferences to be made with further clarity and elucidate the 

extent of mechanical interplay between external shape, cortical bone and 
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trabecular structure. The opportunity to further understand the biomechanics of 

bone, primate hand use and fossil hominin ecomorphology, makes further research 

in the present vein an exciting prospect. 
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Scanning protocol 

Metacarpals 

• Use the small Perspex tube for each set of five metacarpals. 

• Wrap open cell foam around the metacarpals lengthways. 

• Secure with scotch tape the entire way around at both ends . 

• Place the large second to fifth metacarpals in the tube, if there is space gently 

wedge the first metacarpal in the space. 

Carpals 

• Use the four black foam inserts I cut to fit each general carpal shape and fit the two 

or three carpals in each piece. 

• Arrange them so the line between each bone is orthogonal to the one above ( this 

ensures bones fall to the edge rather than touch in the middle). 

• For close packing insert an open cell foam disc in the top hand and gently push 

down flat with a smaller tube or pen.  

 

Proximal and Intermediate phalanges 

• Wrap up the proximal phalanges (five bones with a single facet at the base) just like 

the metacarpals and insert them lengthways as before. Please insert the second upside 

down, the 3rd up, 4th upside down and the 5th up; the first is the smallest and can be 

squeezed in the top 

   

• Insert an open cell foam disc in the tube. 

• Wrap up the remaining four bones ( intermediate phalanges with a double facet on 

the base) and place in order as before(i.e. 2nd upside down, the 3rd up, 4th upside down 

and the 5th up). 

• May have to add some foam to wedge the top stage so it is stable. 
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Samples analysed 

Appendix A Table 1. Fossil sample composition. Where fossil metacarpals are not associated the fossils that comprise the composite metacarpi are given. 
LLR refers to side of the metacarpals used for composite, in this case a left Mc2 and 3 with a right Mc 4 or 5.*This sex designation only applies to AL438-1; 
AL333-141 is of unknown sex. 

Fossil Taxonomy Side Sex Element 
Unassociated 
metacarpals  

Date Reference 

STW418 A. africanus left unknown Mc1   
1.95-2.95 
mya 

Pickering et al., 2011 

SK84 Homo/ Paranthropus left unknown Mc1   
~1.6-
1.8mya 

Susman et al., 2001 

Neanderthal 1, Feldhofer 1 
H. neanderthalensis left unknown Mc1 

 
40 kya Schmitz et al., 2002 

Barma Grande 2 
H. sapiens left male  Mc1   

19 kya 
Bisson et al., 1996 

Malapa Hominin 2 
A. sediba right  female Mc1-5 

 
1.98 mya Kivell et al., 2011 

Kebara 2 
H. neanderthalensis left male Mc1-5   

60 kya 
Valladas et al., 1987 

El Sidrón 
H. neanderthalensis left unknown Mc1-5 

SD-661 SDR-73 SDR-74 
SDR-70 SDR-77 

49kya Wood et al., 2013 

Ohalo 2 H2 
H. sapiens left male Mc1-5   

23 kya 
Hershkovitz et al., 1995 

Arene Candide 2 
H. sapiens left male Mc1-5 

 
12kya Formicola et al., 1990 

Hadar,  

Afar localities 438 and 333 
A. afarenisis LLR male* 

Mc2, 3 
and 5 

AL438-1d AL438-1e 
AL333-141 

~3-3.2mya 

Kimbel et al., 2004 

Sterkfontein Member 4 A. africanus LLR unknown 
Mc2, 3 
and 4 

STW394 STW382 
STW552 

1.95-2.95 
mya 

Pickering et al., 2011 

Tabun C1 H. neanderthalensis left female 
Mc1, 3 
and 5 

  
~122 kya Bar-Yosef and Callander, 

1999 
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Appendix A Table 2. Extant sample composition. All metacarpals from each hand were analysed.  

Taxonomy Accession ID Sex Side Institution 
Gorilla gorilla gorilla PC_MER_300 Female Left Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_MER_264 Male Right Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_MER_372 Male Left Powell-Cotton Museum, Birchington-on-sea 

Gorilla gorilla gorilla PC_MER_95 Female Right Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_MER_962 Male Left Powell-Cotton Museum, Birchington-on-sea 

Gorilla gorilla gorilla PC_CAMI_230 Male Left Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_MER_138 Female Left Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_MER_174 Male Right Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_MER_696 Female Right Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_MER_856 Female Left Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_MER_879 Male Left Powell-Cotton Museum, Birchington-on-sea 
Gorilla gorilla gorilla PC_ZVI_32 Male Right Powell-Cotton Museum, Birchington-on-sea 
Pan troglodytes verus MPITC_11789 Male Right Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_11778 Female Right Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_13439 Female Right Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_15002 Female Left Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_11800 Female Right Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_11903 Male Left Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_11781 Male Left Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_14996 Female Left Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_15012 Male Right Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_15013 Female Right Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_15014 Male Right Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes verus MPITC_15032 Male Left Max Planck Institute for Evolutionary Anthropology, Leipzig 
Pan troglodytes ZSM_AP_122 Male Right Bavarian State Collection of Zoology, Munich 
Pongo abelii SMF_6785 Male Right Senckenberg Natural History Museum, Frankfurt 
Pongo abelii SMF_6779 Female Left Senckenberg Natural History Museum, Frankfurt 

Pongo pygmaeus ZSM_1907_0633b Female Right Bavarian State Collection of Zoology, Munich 
Pongo pygmaeus pygmaeus ZSM_1907_0660 Female Right Bavarian State Collection of Zoology, Munich 
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Pongo sp. indet. ZSM_AP-120 Male Left Bavarian State Collection of Zoology, Munich 
Pongo pygmaeus pygmaeus ZSM_1907_0483 Female Right Bavarian State Collection of Zoology, Munich 
Pongo pygmaeus pygmaeus ZSM_1909_0801 Male Right Bavarian State Collection of Zoology, Munich 
Pongo abelii NMNH_267325 Male Left Smithsonian Institution National Museum of Natural History, 

Washington D.C. 
Pongo pygmaeus ZMB_6948 Female Left Natural History Museum, Berlin 
Pongo pygmaeus ZMB_6947 Male Left Natural History Museum, Berlin 
Pongo pygmaeus ZMB_87092 Female Right Natural History Museum, Berlin 
Pongo pygmaeus ZMB_11647* Unknown Left Natural History Museum, Berlin 

Pan paniscus MRAC_15293 Female Left Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_15294 Male Left Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_20881 Male Left Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_27696 Male Right Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_27698 Female Left Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_29042 Female Right Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_29044 Male Right Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_29045 Female Left Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_29052 Male Right Royal Museum for Central Africa, Tervuren 
Pan paniscus MRAC_29060 Female Right Royal Museum for Central Africa, Tervuren 
Homo sapiens GAUG-Inden_118 Male Right University of Göttingen, Göttingen 
Homo sapiens GAUG-Inden_119* Male Right University of Göttingen, Göttingen 
Homo sapiens GAUG-Inden_311 Male Right University of Göttingen, Göttingen 
Homo sapiens GAUG-Inden_319 Unknown Right University of Göttingen, Göttingen 
Homo sapiens NHMW-Nubian_J2 Male Right Natural History Museum Vienna, Vienna 
Homo sapiens NHMW-Nubian_K13_3 Male Right Natural History Museum Vienna, Vienna 
Homo sapiens NHMW-Nubian_K18_2 female Right Natural History Museum Vienna, Vienna 
Homo sapiens NHMW-Nubian_K24_2 female Right Natural History Museum Vienna, Vienna 
Homo sapiens NHMW-Nubian_K5_2 Male Right Natural History Museum Vienna, Vienna 
Homo sapiens NHMW-Nubian_K78_2 female Right Natural History Museum Vienna, Vienna 
Homo sapiens UNIFL_3124 Unknown  Right University of Florence, Florence 
Homo sapiens UNIFL_4865 Male Right University of Florence, Florence 
Homo sapiens UNIFL_4887 female Right University of Florence, Florence 

* Only the Mc1 from this hand was used for analysis. 
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Fossil samples not analysed 

Appendix A Table 3. Un-analysed fossils. The fossils were processed in medtool but were unsuitable for further analysis as the preservation of internal 

structure was not sufficient.  

 

Fossil Taxonomy Element Side 

STW26 Australopithecus africanus Mc4 Right 

SK85 Paranthropus robustus Mc4 Left 

KB542 Paranthropus robustus Unknown Unknown 

SKX5020 Paranthropus robustus Mc1 Right 

STW330 Australopithecus africanus Mc4 Left 

AL333-48 Australopithecus afarensis Mc2 Left 

AL333-18 Australopithecus afarensis Mc4 Right 

AL333-16 Australopithecus afarensis Mc3 Left 

AL333-56/AL333-81 Australopithecus afarensis Mc4 Left 

AL333-89 Australopithecus afarensis Mc5 Left 

AL333-14 Australopithecus afarensis Mc5 Right 

Barma Grande 2 Homo sapiens Mc2-4 Left 
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MIA-Clustering: a novel method for
segmentation of paleontological material

Christopher J. Dunmore1, Gert Wollny1 and Matthew M. Skinner1,2

1 School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
2Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig,

Germany

ABSTRACT
Paleontological research increasingly uses high-resolution micro-computed

tomography (mCT) to study the inner architecture of modern and fossil bone

material to answer important questions regarding vertebrate evolution. This non-

destructive method allows for the measurement of otherwise inaccessible

morphology. Digital measurement is predicated on the accurate segmentation of

modern or fossilized bone from other structures imaged in mCT scans, as errors in

segmentation can result in inaccurate calculations of structural parameters. Several

approaches to image segmentation have been proposed with varying degrees of

automation, ranging from completely manual segmentation, to the selection

of input parameters required for computational algorithms. Many of these

segmentation algorithms provide speed and reproducibility at the cost of flexibility

that manual segmentation provides. In particular, the segmentation of modern and

fossil bone in the presence of materials such as desiccated soft tissue, soil matrix

or precipitated crystalline material can be difficult. Here we present a free open-

source segmentation algorithm application capable of segmenting modern and fossil

bone, which also reduces subjective user decisions to a minimum. We compare

the effectiveness of this algorithm with another leading method by using both

to measure the parameters of a known dimension reference object, as well as to

segment an example problematic fossil scan. The results demonstrate that the

medical image analysis-clustering method produces accurate segmentations and

offers more flexibility than those of equivalent precision. Its free availability,

flexibility to deal with non-bone inclusions and limited need for user input give it

broad applicability in anthropological, anatomical, and paleontological contexts.

Subjects Anthropology, Bioinformatics

Keywords Digital image processing, Micro-CT, Machine-learning, Fossil, Trabecular bone

INTRODUCTION
Over the last decade there has been an abundance of high-resolution micro-computed

tomography (mCT) studies within the paleontological and anthropological communities,

likely due to the ability of this method to non-destructively image extant and fossil

specimens. This has been used to investigate the inner osseous architecture of a

diverse range of orders including: primates (Ryan et al., 2010), galliformes (Pontzer et al.,

2006), xenarthrans (Amson et al., 2017) and diprotodontians (Biewener et al., 1996).

The technique allows the visualization of internal structures, such as trabeculae
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(Fajardo et al., 2007), the enamel–dentine junction of teeth (Skinner et al., 2009) or the

inner ear (Spoor et al., 2007). This is of particular importance for fossils, whose inner

architecture could only be destructively analyzed otherwise (Witmer et al., 2008; Kivell,

2016). To visualize very small biological structures, it is necessary to ensure adequate X-ray

penetration of the bone or fossil material being CT-scanned, as well as to control for

common artifacts such as beam hardening (Herman, 1979). To digitally measure these

structures and their properties, it is necessary to define them in the scan image and so the

image must be accurately segmented (Hara et al., 2002).

Various segmentation protocols have been developed for anthropological applications.

Simple thresholding involves the visual selection of a grayscale value, any part of the

image composed of voxels above this value is considered the phase of interest. Iterative

adaptive thresholding (Ridler & Calvard, 1978; Trussell, 1979; Ryan & Ketcham, 2002)

improves on this simple thresholding by optimizing the threshold value between the

present phases. Conversely, half-maximum-height thresholding (Spoor, Zonneveld &

Macho, 1993; Coleman & Colbert, 2007) recalculates the threshold over a row of pixels,

which cross a phase boundary, periodically in the z-axis of a three-dimensional (3D)

image. These three methods are all sensitive to intensity inhomogeneity and

background noise in a scan (Scherf & Tilgner, 2009). In all cases, a grayscale value

threshold calculated from a different or larger section of an image may not accurately

segment all parts of the structure.

Instead of using grayscale values alone, region-based segmentation approaches

incorporate the spatial information in a scan. Region growing methods use seed points,

manually selected by the researcher, known to be in the phase of interest. A segmented

region is then grown from the seed by connecting neighboring voxels that meet specific,

pre-defined criteria (Pham, Xu & Prince, 2000). Region splitting, conversely, does not use

seed points but divides the image into distinct regions and refuses the image based on

selected criteria. Both region-based approaches, however, often require a priori knowledge

of image features to select seed points or criteria, and can be sensitive to intensity

inhomogeneity (Pham, Xu & Prince, 2000; Dhanachandra & Chanu, 2017).

Edge-detection-based segmentation offers an alternative method that discerns the

transition between two phases and delineates these voxels as an edge. The Ray Casting

Algorithm (RCA, Scherf & Tilgner, 2009) is an example of this method used in

anthropology (Tsegai et al., 2013). This algorithm uses a 3D-Sobel filter to mark voxels at

the peak of rapid changes in grayscale values and subsequently removes the rest of the

image with a non-maximum suppression filter. To be considered part of the remaining

edge of the phase of interest, the gradient of the grayscale transition must be above a

user-defined “minimum edge strength” parameter. This one-voxel-thick edge may

have infrequent gaps due to local, more gradual, transitions not quite satisfying the

“minimum edge strength” threshold. In order to ameliorate this, a series of rays are

subsequently cast at 11.25� steps around the normal of each edge voxel in an arc of ±45�.
The rays are set to terminate on meeting a voxel with the specified “minimum edge

strength,” so edge voxels that neighbor these gaps terminate the rays at most angles, and
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the gap is closed. The RCA segmentation produces a structure with the continuous edge

described (Tsegai et al., 2013).

Edge-based segmentation techniques provide an advantage over other techniques

in that they are resistant to the effects of both background noise and intensity

inhomogeneity. Tests of segmentation methods have found RCA is more accurate than

thresholding methods (Scherf & Tilgner, 2009). Similarly, algorithms such as RCA require

less prior knowledge of the image, as they need no seed points or initial manual

segmentation. Still, the RCA requires the selection of the “minimum edge strength” value

and may also incorporate minimum or maximum threshold values. These input values are

found during trial segmentation of a sub-set of the data (Scherf & Tilgner, 2009). The

selection of these three parameters is partially subjective, as is the case with all

segmentation algorithms. This input parameter selection represents another source of

error, that an algorithm must be robust to, in addition to background noise and intensity

inhomogeneity. An algorithm run with extreme parameters is unlikely to produce an

accurate segmentation. With RCA, the same segmentation can be produced with

different sets of input values. This equifinality is not a problem of the method per se,

but allows for additional potential difficulty in reproducing the same segmentation.

A researcher cannot be sure that a visually similar segmentation was produced using the

same RCA parameters. Here we present a segmentation method, medical image analysis

(MIA)-Clustering, implemented as free- and open-source software (Wollny et al., 2013),

that reduces subjective user decisions to a minimum. Broadly, clustering approaches

sort the voxels or pixels of an image into a number of clusters defined by the user.

This sorting is accomplished by iteratively calculating the center of a cluster and its

distance to the other voxels in that cluster. This iteration then converges on stable clusters

by minimizing this distance and the voxels in each cluster are segmented as distinct

phases. The MIA-Clustering algorithm performs this sorting both globally and locally

to segment an image based on its properties.

We test the efficacy of the MIA-Clustering algorithm by segmenting a reference

model of known thickness. Results of this segmentation and a RCA segmentation of

the same material following Scherf & Tilgner (2009) are compared. To assess the robustcity

of the MIA-Clustering algorithm to variation in parameter selection, segmentations of

this synthetic material, produced by a range of inputs, are analyzed. Similarly, a fossil

sample is segmented with different parameters to assess their effect on the segmentation of

a highly variable, embedded, natural structure. This fossil also presents a challenging

segmentation, due to multiple phases of invasive matrix as well as bright inclusions, and

so permits an assessment of the MIA-Clustering algorithm’s robusticity to background

noise and intensity inhomogeneity. The fossil is also segmented using the RCA to compare

the simplicity and accuracy of both methods.

MATERIALS
A coiled stainless steel wire, which is rectangular in cross-section, was used as a

reference object of known thickness (40 mm). This materially homogeneous phantom was

scanned in air, with the SkyScan 1173 mCTscanner at the Max Planck Institute, Leipzig at
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80 kV and 62 mA. This shape of object has previously been shown to both approximate

trabecular bone and be susceptible to beam hardening due to its structure (Scherf &

Tilgner, 2009). The 4,224 � 4,224 � 2,240 voxel reconstructed image had an isometric

voxel size of 7.86 mm. This was cropped to an image size of 3,240 � 3,240 � 150 voxels to

reduce processing time. The example fossil was scanned at 90 kV and 200 mA using a

Nikon Metrology XTH 225/320 at the University of the Witwatersrand. Permission to use

this material was granted by Fossil Access Committee of the Evolutionary Studies Institute

at this institution. The reconstructed image was 726 � 551 � 1,826 voxels and had an

isometric voxel size of 22.6 mm.

METHODS
MIA-Clustering algorithm
The MIA-Clustering algorithm is a machine-learning approach, based on fuzzy c-means

clustering (Pham & Prince, 1999) and initialized by the K-means algorithm (Forgy, 1965;

Lloyd, 1982). First, the K-means algorithm clusters the input data, based on voxel

intensity, into the number of classes specified by the user (Figs. 1A and 1B). A subsequent

fuzzy c-means algorithm iteratively estimates all class membership probabilities for each

voxel, expressed as a vector (Fig. 1C). Based on their highest membership probability,

voxels are globally clustered into distinct classes representing structures in the whole

image. However, this global segmentation does not always capture fine detail because the

input images may suffer from intensity inhomogeneities, which result from scanning

artifacts or different levels of fossil mineralization. Therefore, subsequent local fuzzy

c-means segmentation is applied.

Based on a user-defined grid-size parameter, the volume is subdivided into overlapping

cubes. For each cube, the class membership probability vector is initialized by using

the globally obtained probabilities (Fig. 1D). If the sum of membership probabilities of

all voxels in a sub-volume falls below a threshold, then this class is not taken into account

for the local, refined c-means clustering. This threshold can be specified by the user if

desired, but the default value of 2% appears to generate acceptable segmentations and

was used in all cases here. Therefore in this case, if there was no more than 2% of a

cube that was globally clustered as a certain class, this class was not considered for that

cube’s local c-means segmentation. Subsequently, class probabilities for each voxel in

overlapping cubes are merged and voxels are assigned to the class for which they have the

highest membership probability, producing the whole segmented image (Fig. 1E). This

local segmentation allows the algorithm to adapt to local intensity variations. It follows

that a grid-size value smaller than the structure of interest will cause the algorithm to

attempt to find clusters within these structures, such as small inhomogeneities in cortical

bone, that are generally not of interest. Therefore, to balance between adapting to

inhomogeneities resulting from imaging artifacts and ignoring small inhomogeneities

within the structures of interest, the grid-size parameter selected should be slightly

larger than the largest dimension of the phase of interest for the segmentation. For a

variable and continuous structure, such as trabecular bone, we recommend looking at

two-dimensional (2D) cross-sections in each plane and measuring thicker trabeculae to
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ascertain their width in pixels. The grid-size value should then be set a few voxels larger

than these measurements to ensure the local segmentation is not looking for features

within the phase of interest. (e.g., Fig. 2). The global and local segmentations can be

generated at the same time for comparison of each segmentation step.

Finally, an optional threshold can then also be applied to the calculated class membership

probabilities of each voxel. A voxel is excluded from a class if its highest membership

coefficient does not meet or exceed the threshold given. Voxels that do not meet the

threshold for their highest class are assigned to a grayscale value of zero and all other classes

are elevated by one gray value. Since the vector of membership probabilities sums to one,

in practice, this allows the user 50 threshold values (51–100%) to fine tune the segmentation

based on the initial, data-led, analysis. The black or zero-class voxels that did not meet

the threshold can be considered a margin of error for the segmentation (Fig. 1F).

Figure 1 Diagram of MIA-Clustering algorithm in a 2D-image. (A) Gray values are mapped to the

z-axis. (B) Gray values are initially clustered into three classes by the K-means algorithm; the black-class

is represented as dark-gray in the 3D overlay for clarity. (C) The fuzzy c-means algorithm iteratively

estimates a class membership probability vector for each voxel (two example voxels are shown in blue

boxes) and globally clusters each voxel based on its highest class probability. (D) Local fuzzy c-means

clustering is performed in overlapping sub-volumes, here represented by the colored squares. (E)

Overlapping class probabilities are merged and voxels are clustered based on their highest membership

probability. (F) An optional probability threshold is then applied at an arbitrary 75%, for illustrative

purposes. All voxels with their highest membership probabilities below 75% are labeled as zero, or black,

and voxels above this threshold are clustered into three classes labeled by gray values elevated by one;

here one to three. Full-size DOI: 10.7717/peerj.4374/fig-1
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Wire segmentation
In order to test its efficacy, the MIA-Clustering algorithm was used to segment a scan of

a machined wire phantom, previously measured at 40 mm thickness, following

Scherf & Tilgner (2009; Fig. 3). The RCA was also used to segment the same image for

comparison. 3D-thickness was measured at every point, in each segmentation of the same

3,240 � 3,240 � 150 voxel volume in the center of the wire, using the BoneJ plugin for

ImageJ (Hildebrand & Rüegsegger, 1997; Doube et al., 2010). Average 3D-thicknesses

within one voxel, or ∼8 mm, of the measured thickness were considered effective

segmentations. In the case of RCA, 3,240 � 3,240 � 10 voxel trial segmentations were

run to find the three input parameters that produced acceptable segmentations. In the

case of the MIA-Clustering algorithm, the wire thickness of 40 mm divided by the

resolution yielded a voxel size of approximately five, thus the grid size was set just above

this at seven. The probability threshold used was found after two trial segmentations.

Parameter robusticity
In order to test the robusticity of MIA-Clustering algorithm, the full range of both input

parameters was independently varied and average thickness of the wire in the resulting

segmentations was measured. The probability threshold was varied in 5% increments

from 50% to 95%. Grid size was varied from the smallest maximum dimension of the

dataset, here 150 voxels, to the minimum value of three. The fossil specimen was

segmented at grid sizes from 10 to100 voxels, since these more extreme values did not

produce a visually satisfactory segmentation. This allowed comparison between

segmentations produced by a range of possible values and the grid-size value attained

Figure 2 A 2D cross-section image of an example dry bone. (A) One of its thickest trabecular struts in

the image measured at ∼32 pixels. (B) A binarized image of the same cross-section after 3D segmentation

of the bone, using the MIA-Clustering algorithm. The grid size input parameter selected for the seg-

mentation was 35 voxels as this was just larger than the measurement in (A).

Full-size DOI: 10.7717/peerj.4374/fig-2
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from a cursory visual inspection (e.g., Fig. 2), in a variable structure of largely unknown

thickness.

Fossil application
In order to assess the performance of the presented method on paleontological material,

the fossil is segmented using the RCA as well as the MIA-Clustering algorithm; pre- and

post-processing steps are described. Every fossil scan is likely to present different issues,

owing to disparate diagenetic processes over varying timescales. In some fossils, invasive

matrix may be relatively uniform, but overlap in attenuation intensity with the fossil bone

phase preventing its removal by a global threshold. Similarly, small bright mineral

inclusions may provide grayscale value outliers, thus decreasing contrast in the majority of

the material, markedly affecting segmentation approaches based on thresholding of a

grayscale value range such as the iterative, adaptive threshold method (Ryan & Ketcham,

2002; Fajardo et al., 2007). Also, cracks and multiple phases of invasive matrix may create

edges within the fossil that are distinct from the fossil bone. The present fossil scan

contains all of these issues to some extent, as well as a global gradient that becomes

brighter towards the center of the fossil. This centrally higher attenuation artifact is the

result of photons with less energy than is required to uniformly penetrate this dense fossil

and is essentially the inverse of beam hardening.

Figure 3 A 3D-surface view of the machined wire phantom.

Full-size DOI: 10.7717/peerj.4374/fig-3
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Implementation
The RCA segmentations were run as a stand-alone executable on the Windows command

line. The MIA-Clustering algorithm was run as command line tool using MIA (Wollny

et al., 2013). MIA was run from a Docker image as a Docker container in order to run a

lightweight virtual Linux machine in Windows (Boettiger, 2015). This approach allows

MIA to be run on most widely available operating systems. Instructions for downloading

and use of MIA are available at http://mia.sourceforge.net/.

RESULTS
Wire segmentation
Two acceptable sets of parameters were found for RCA segmentations, after at least 10 trial

segmentations for each. The probability threshold value for the MIA-Clustering algorithm

was found after two trial segmentations at 80% and 90%. MIA-Clustering algorithm

segmentations of the 3 gigabyte wire phantom scan ran in ∼10 min using four cores

whereas RCA ran this object in ∼8 min using 16 cores.

As can be seen in Table 1 and Fig. 4, both algorithms can produce accurate

segmentations, segmenting the wire at thicknesses within 1 mm of the known width of

the wire. Figure 5, however, demonstrates that at least for some local areas the

MIA-Clustering algorithm segments the closely packed, fine structures more accurately

than either of the equifinal RCA segmentations. The average thickness values are

within 1% and 0.5% of the known thickness, respectively. This is considered acceptable

given an isometric voxel size of 8 mm (Table 1). The standard deviation of the thickness

measured in the RCA segmentation is slightly higher than the voxel size whereas the

MIA-Clustering algorithm segmentation standard deviation is below this level of

variability and therefore is the result of partial volume effects.

Parameter robusticisty
In order to evaluate the potential effect of input error in the MIA-Clustering algorithm,

the wire was segmented over the full range of each input variable, and average

3D-thickness of each segmentation was measured. Figure 6A demonstrates the linear

relationship between probability threshold and thickness for this image. The range of

grid-size values result in a thickness range of 12 mm. Figure 6B demonstrates an

exponential relationship from the maximum possible (150) to the minimum possible

Table 1 Mean and standard deviation of thickness calculated for each segmentation method.

Segmentation

method

Thickness

mean (pixels)

s (pixels) Thickness

mean (mm)

s (mm)

RCA.1 5.054 1.340 39.728 10.533

RCA.2 5.026 1.386 39.508 10.895

MIA-Clustering algorithm 5.111 0.952 40.176 7.484

Notes:
RCA.1 used parameters lower threshold: 7,000, upper threshold: 20,000 and minimum edge strength: 5,000; RCA.2 used
lower threshold: 18,000, upper threshold: 26,000 and minimum edge strength: 20,000. Note the near identical
measurements using two different sets of values. Parameters for the MIA-Clustering algorithm were grid size: 7 and
probability threshold 85%.
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grid size (3) and a thickness range of 9 mm. This parameter quickly converges on values

within 10% of the known thickness of the wire when grid size becomes small enough to

segment the finer structures of the image at ∼25 voxels. From this point lower grid sizes

produce a larger variation in thickness values as fine structures are more consistently

segmented, only underestimating thickness when a grid size smaller than the width of

the fine structures is used. As expected, different grid sizes produced a wider range of

mean thickness measures (∼100 mm) for the structurally variable fossil, than the

machined wire (Fig. 7). It should be noted that these values include cortical bone and

reflect variation in segmentation of the whole image rather than a trabecular analysis.

Despite this larger range, thickness values display an exponential relationship with grid size

quickly converging on the value obtained from visual inspection. Much as in the grid

size comparison for the machined wire (Fig. 6), when grid size becomes small enough to

segment the finer structures of the image at ∼35 voxels variation in thickness increases

(Fig. 7). This trend continues until a grid size smaller than the width of the fine structures is

used and the method begins to detect inhomogeneities within the osseous structure.

RCA fossil segmentation
Ray Casting Algorithm is only able to segment the highest attenuation phase in an image,

because it will only exclude voxels on the other side of a gradient-defined edge if they have

a lower gray value than the phase of interest. Since the structure of interest was not the

Figure 4 The mid-slice of the wire scan in superior view. (A) The reconstructed image. (B) The

segmented image produced by the MIA-Clustering algorithm. (C) The segmented image produced by

the RCA.1 and (D) the equifinal RCA.2 segmentation. Note the similarity of the segmentations of (A) in

each method (B–D). Full-size DOI: 10.7717/peerj.4374/fig-4

Figure 5 A magnified section of the mid-slice of the wire phantom scan (Fig. 4) in superior view. (A)

The reconstructed image. (B) The segmented image produced by the MIA-Clustering algorithm. (C) The

segmentation produced by the RCA.1 and (D) the equifinal RCA.2 segmentation. Note the separation of

closely packed wire in the red circles in (A) and (B) but not in (C) and (D).

Full-size DOI: 10.7717/peerj.4374/fig-5
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Figure 6 The effect of MIA-Clustering algorithm parameters on average thickness of the wire. (A)

Full range of possible probability thresholds and with grid size of 7 held constant. (B) Full range of

possible grid sizes with probability threshold held constant at 85%.

Full-size DOI: 10.7717/peerj.4374/fig-6

Figure 7 The effect of grid-size input on average thickness estimates of the fossil, after MIA-

Clustering segmentation. Grid size ranged from 10 to 100 voxels. The red line represents the grid

size of 20, ascertained from manual measurement of the fossil as per the technique in Fig. 2.

Full-size DOI: 10.7717/peerj.4374/fig-7
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brightest part the image (Fig. 8A), it was necessary to invert the image in Avizo 6.3

(Visualization Sciences Group, Berlin, Germany, Fig. 8B). A median filter of kernel size

three was run as part of the RCA program using a lower threshold of 19,000, an upper

threshold of 29,000 and minimum edge strength of 2,500 (Fig. 8C). This was not a

satisfactory segmentation of the image, as much of the trabeculae near the center of the

bone were lost. Therefore in order to somewhat reduce the artifactual global gradient, the

original image was subjected to a median filter of kernel size 25, largely obliterating

structures but preserving the global gradient (Fig. 8D). The resultant image could then be

added to the inverted image to “cancel-out” the global grayscale gradient without affecting

the edge gradients of the trabeculae to a large extent (Fig. 8E). RCA segmentation could

then produce an improved segmentation with same parameters as initially used (Fig. 8F).

MIA-Clustering algorithm fossil segmentation
As a pre-processing step, a noise reducing median filter of kernel size three was applied,

and the image was thresholded at 10,000 to remove noise in the background of the

image (Fig. 8A). The MIA-Clustering algorithm was run to look for three classes with a

grid size of 20, since the thickest elements of the trabecular bone were ∼15 voxels in

dimension from a cursory inspection in Avizo 6.3 (Fig. 8G). No probability threshold

was needed in this case for refinement, though running the command with a threshold

of 50% achieves the same result. Subsequently the image was binarized on the second

brightest class in the image, leaving only the fossil bone phase (Fig. 8H). This

post-processing step allows for direct comparison with the RCA segmentation but is

not necessary (Figs. 8F, 8C and 8I).

DISCUSSION
Wire segmentation
The current study presents a novel open-source method for segmenting bone or fossil

bone phases from high-resolution mCT images. Tests using a wire phantom indicate that

both this technique and RCA are capable of producing accurate segmentations that are

within 1% of the wire phantom’s thickness (Table 1; Figs. 4 and 5). Therefore in scans

with high material contrast, including those of the present synthetic sample and many

examples of dry bone, it appears both segmentation techniques would produce accurate

results. However, in practice, the MIA-Clustering algorithm offers several advantages over

other segmentation techniques by keeping subjective user decisions to a minimum to

increase the reproducibility of results.

Parameter robusticity
Many segmentation approaches can require manual interaction with the image to provide

appropriate input parameters, such as the placement of seed points for a region-based

segmentation or the visual inspection of trial RCA segmentations. In this case the user

must iteratively determine whether one set of trial RCA parameters produced a better

segmentation of the wire phantom than the last and when these parameters could no

longer be improved. It can often take many attempts to find acceptable parameters,
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Figure 8 Cross-section (XY plane) through the fossil at various stages of segmentation using RCA and MIA-Clustering. (A) The fossil scan. (B)

The image after foreground inversion. (C) The RCA segmentation of the inverted image overlaid on the original image (red), note the lack of

segmentation of central trabeculae (e.g., above the white asterisk). (D) An image preserving the global gradient of the fossil scan but little of its

spatial structure, after a strong median filter. (E) The result of merging the global gradient and the inverted image. (F) The RCA segmentation of the

merged result overlaid on the original image (blue). (G) The MIA-Clustering segmentation of the three classes in the image. (H) The MIA-

Clustering segmentation binarized on the second brightest class, the fossilized bone phase. (I) This binarized segmentation overlaid on the original

image (yellow). See text for further details. Full-size DOI: 10.7717/peerj.4374/fig-8
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since there is no objective starting point other than the range of grayscale values in the

image for the lower and upper thresholds. Since “minimum edge strength” is not easily

visualized, it can be initially difficult to find an acceptable value for this parameter.

Conversely, the MIA-Clustering algorithm input parameters are data-led, as grid size

selection is based on the dimensions of the structure to be segmented, either through

prior knowledge or an initial, manual, inspection of the material (Fig. 2). In the case of

the wire, a grid size of seven is just larger than its, known, five voxel thickness and six

voxels may be too small due to potential partial volume averaging effects. In the case of

the fossil, cursory measurements in three orthogonal 2D-slices of the image were

sufficient to determine an appropriate grid size of 20. Average thickness measures of

segmentations produced by different grid sizes demonstrate that a grid size of 20 is

within the range of values that greatly affect the segmentation result (Fig. 7) but is not so

small that algorithm detects inhomogeneities within the phase of interest and begins to

break-up and thin trabeculae (Figs. 8G–8I). In both cases, as the grid-size parameter

selection was data-led, there was an objective justification for the value used. Though

this value may not necessarily produce the optimal MIA-Clustering segmentation,

especially in the fossil, it does provide a starting point within a narrow range of values that

allow the segmentation of finer structures to varying degrees. Further, as the grid-size

parameter defines a local reapplication of a machine-learning algorithm, it could be

argued it is more objective than a user-defined threshold of either absolute grayscale

values or their gradients. Therefore, this data-led parameter selection requires minimal

manual interaction with an image and provides an objective justification for the value

used, even when segmenting a structure of largely unknown and variable dimensions,

such as osseous or fossil material.

The optional probability threshold parameter, however, is more subjective as it is only

found by trialing values. Yet this final step of the algorithm may only fine tune the

segmentation from the data-led clustering results. Indeed, over the full range of 50

possible values not only did the segmented wire phantom show just a 30% variation

in measured average thickness, it did so in a predictable way with strong a linear

relationship (Fig. 6A). This is due to the fact that voxels at the boundary of each

segmented phase will have lower membership coefficients than those in the middle on the

phase (Fig. 1C). As the threshold is raised, more of these boundary voxels are no longer

considered part of this phase and the thickness of the structure will reduce in-kind

(Fig. 1F). This relationship allows the user to potentially derive an acceptable value

after just two trials. The probability threshold is particularly useful for the accurate

segmentation of abrupt phase transitions, such as the edge of the machined wire. In

structures with more gradual or complex edge transitions, such as fossilized or extant

bone, this parameter is less useful as the effects of different values will be less predictable;

the probability threshold was not used in the fossil segmentation. Therefore the

MIA-Clustering algorithm keeps subjective user decisions to a minimum by basing

input parameters on the properties of the image, rather than iterative manual interaction

and more subjective refinement of the result is done in a predictable way, over a small

range of input values.
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Another way the MIA-Clustering algorithm reduces subjective user decisions is by

limiting input parameters to a minimum. The algorithm only takes two input parameters,

each with a smaller range of values than the three of RCA, since minimum edge

strength ranges from 0 to 32,000 and the thresholding limits are based on the potential

gray value range of 16 bit data, 0–65,535. Initially, the relatively small range of inputs

for the MIA-Clustering algorithm could be seen as detrimental, affording the researcher

less freedom to find values to segment the data accurately. However, this constraint allows

for less error in parameter selection and is sufficient to quickly converge on a single

pair of parameters that produce an acceptable segmentation (Fig. 6).

An additional benefit to having a small range of input values is that it does not allow for

multiple combinations that yield similar results. Here, there are at least two sets of input

parameters for the RCA that can produce near identical segmentations and thickness

value measurements (Table 1; Figs. 4 and 5). The MIA-Clustering algorithm is not subject

to the same equifinality and so results are more reproducible since they can only be

achieved via the same input.

The MIA-Clustering algorithm appears to be as accurate as another leading

segmentation technique, RCA, in segmenting the wire phantom. Yet the method presented

here reduces subjective user decisions to a minimum by grounding input parameters in the

properties of the image as well as limiting the range of these input parameters and in doing

so, obviating the issue of equifinality. This increased objectivity allows for faster more

reproducible segmentations. Indeed, since these parameters are not based on grayscale

values but rather the structures at hand, they may be applied uniformly across a sample of

different scans of similar synthetic, or dry osseous, material removing another potential

source of error in segmentation and measurement across a sample. However, perhaps the

most useful property of the MIA-Clustering algorithm is its ability to segment more

complex, embedded structures, with less clear contrast, such as fossil material.

Fossil segmentation
One of the clearest challenges uniquely presented by segmentation of the fossil material

is the high-attenuation invasive matrix. As the highest attenuation phase is selected by

default in RCA, it was necessary to invert the foreground image, where matrix has a higher

attenuation than the fossil bone (Fig. 8B), adding another pre-processing step and a

potential source of error. Conversely, the MIA-Clustering method can segment multiple

classes at once. Matrix, background and bone may each be a distinct initial cluster set,

used to segment the image into separate gray value classes. Any of these classes can be

extracted from the image via a simple threshold if subsequent analysis requires a binarized

image (Fig. 8H). MIA (Wollny et al., 2013) offers a number of single-task command

line tools, including a binarize filter that was used to produce the present result. The

highest attenuation structure need not be the one of interest, and so the extra step of

inverting the image is not required. Since matrix is also segmented it is also easier to

compare the segmentation to the original image by eye, since the white of binarized image

may appear larger than the original simply because it is brighter (e.g., Figs. 8A, 8G

and 8H).
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A further challenge of this particular fossil image is the global gradient which makes the

center of the object appear brighter than the edges. The ray casting step of the RCA was

invented to close gaps in Sobel filter defined edges that are caused by local grayscale

transitions, not steep enough to meet the globally set “minimum edge strength”

parameter. The first derivative of grayscale value transitions, rather than absolute values,

is still based on a global, if locally applied, threshold. Therefore, although RCA mitigates

the effects of a global gradient, it is not immune to them (contra Scherf & Tilgner, 2009).

The global intensity gradient may affect one side of an edge more than the other if one

edge is more central and in doing so, may change the grayscale gradient over the

transition. Therefore, RCA may not find edges where they exist in the cases of these

artifacts. The present fossil scan appears to be darker in the center of the inverted image

(Fig. 8B). RCA accurately segments the trabeculae closer to the edge of the fossil but fails

to segment the central trabeculae as their grayscale gradients relative to the matrix phase

are not steeper than the “minimum edge strength” threshold applied (Fig. 8C).

Ameliorating this global gradient as per the extra pre-processing steps allows the RCA

with the same parameters to segment these central trabeculae (Fig. 8F). However, these

extra un-prescribed steps make the segmentation process less efficient and potentially less

reproducible. The MIA-Clustering algorithm, however, does not use grayscale-based

thresholds but considers only the local sub-volumes at the edge or the center of the fossil

when segmenting them and can therefore segment the trabeculae in both areas of the bone

concurrently (Figs. 8G–8I).

Both fossil segmentations contain thin rings at the boundary of invasive matrix and

air as these features are present in the initial image and have similar characteristics as

trabecular bone (Figs. 8C, 8F and 8I). While both algorithms fully segment the image,

researchers may wish to remove these features, before analysis, as they are not of biological

origin. While this is beyond the scope of the current method, we would suggest applying a

connected component algorithm, as available in software such as Avizo, to remove many

of these features that are unconnected to the segmented bone. Unfortunately, to the

authors’ knowledge, remaining connected features must be removed manually at the

researcher’s discretion.

Unlike RCA and single threshold methods, the MIA-Clustering algorithm has the

flexibility to concurrently segment multiple classes across a fossil specimen affected by

a global gradient scanning artifact, segmenting a phase of interest that is not necessarily

the brightest in the image. The preservation of multiple classes in the segmentation

provides a higher fidelity comparison between the segmentation and the original

image. Also, the lack of additional pre-processing steps required for this segmentation

allows for fewer potential sources of error and greater reproducibility of results. Therefore,

this method is particularly suitable for the segmentation of complex images containing

several embedded structures. These images may include fossils with invasive matrix or

possibly even images of several tissues produced by magnetic resonance imaging

techniques. The presented algorithm can also be used on 8 bit data though the efficacy of

the segmentation will depend on the clarity of the original image.
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CONCLUSION
Here, we present a segmentation algorithm implemented in free open-source software,

which can be run on most operating systems and is as effective as other leading

algorithms. The move from a gray value-based approach to a data-led, machine-learning

approach allows the MIA-Clustering algorithm to lessen the amount of subjective user

choices required for segmentation. Therefore, MIA-Clustering segmentations of mCT data

offer increased reproducibility. Further, the flexibility of this MIA-Clustering algorithm

allows for segmentation of problematic modern or fossil material, which often contains

more than two structures and may be affected by common scanning artifacts. The

robusticity of the algorithm is demonstrated by the lack of need for additional image

processing steps and by how quickly the range of possible input parameters converge on

those acceptable for segmentation. The MIA-Clustering algorithm is a flexible, robust

method that produces highly reproducible results, ideal for segmenting fossil bone.
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Hildebrand T, Rüegsegger P. 1997. A new method for the model-independent assessment of

thickness in three-dimensional images. Journal of Microscopy 185(1):67–75

DOI 10.1046/j.1365-2818.1997.1340694.x.

Kivell TL. 2016. A review of trabecular bone functional adaptation: what have we learned from

trabecular analyses in extant hominoids and what can we apply to fossils? Journal of Anatomy

228(4):569–594 DOI 10.1111/joa.12446.

Lloyd S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory

28(2):129–137 DOI 10.1109/tit.1982.1056489.

Dunmore et al. (2018), PeerJ, DOI 10.7717/peerj.4374 17/18

http://mia.sourceforge.net/
http://dx.doi.org/10.7717/peerj.4374#supplemental-information
http://dx.doi.org/10.7717/peerj.4374#supplemental-information
http://dx.doi.org/10.1186/s12983-017-0241-x
http://dx.doi.org/10.1016/8756-3282(96)00116-0
http://dx.doi.org/10.1145/2723872.2723882
http://dx.doi.org/10.1002/ajpa.20583
http://dx.doi.org/10.24018/ejers.2017.2.1.237
http://dx.doi.org/10.1016/j.bone.2010.08.023
http://dx.doi.org/10.1002/ar.20493
http://dx.doi.org/10.1016/s8756-3282(02)00782-2
http://dx.doi.org/10.1088/0031-9155/24/1/008
http://dx.doi.org/10.1046/j.1365-2818.1997.1340694.x
http://dx.doi.org/10.1111/joa.12446
http://dx.doi.org/10.1109/tit.1982.1056489
http://dx.doi.org/10.7717/peerj.4374
https://peerj.com/


Pham D, Prince JL. 1999. An adaptive fuzzy C-means algorithm for image segmentation in the

presence of intensity in homogeneities. Pattern Recognition Letters 20(1):57–68

DOI 10.1016/s0167-8655(98)00121-4.

Pham DL, Xu C, Prince JL. 2000. Current methods in medical image segmentation. Annual

Review of Biomedical Engineering 2(1):315–337 DOI 10.1146/annurev.bioeng.2.1.315.

Pontzer H, Lieberman DE, Momin E, Devlin MJ, Polk JD, Hallgrimsson B, Cooper D ML. 2006.

Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation.

Journal of Experimental Biology 209(1):57–65 DOI 10.1242/jeb.01971.

Ridler TW, Calvard S. 1978. Picture thresholding using an iterative selection method. IEEE

Transactions on Systems, Man, and Cybernetics 8(8):630–632 DOI 10.1109/tsmc.1978.4310039.

Ryan TM, Colbert M, Ketcham RA, Vinyard CJ. 2010. Trabecular bone structure in the

mandibular condyles of gouging and nongouging platyrrhine primates. American Journal of

Physical Anthropology 141(4):583–593 DOI 10.1002/ajpa.21178.

Ryan TM, Ketcham RA. 2002. The three-dimensional structure of trabecular bone in the femoral

head of strepsirrhine primates. Journal of Human Evolution 43(1):1–26

DOI 10.1006/jhev.2002.0552.

Scherf H, Tilgner R. 2009. A new high-resolution computed tomography (CT) segmentation

method for trabecular bone architectural analysis. American Journal of Physical Anthropology

140(1):39–51 DOI 10.1002/ajpa.21033.

Skinner MM, Gunz P, Wood BA, Boesch C, Hublin JJ. 2009. Discrimination of extant Panspecies

and subspecies using the enamel-dentine junction morphology of lower molars. American

Journal of Physical Anthropology 140(2):234–243 DOI 10.1002/ajpa.21057.

Spoor F, Garland T, Krovitz G, Ryan TM, Silcox MT, Walker A. 2007. The primate semicircular

canal system and locomotion. Proceedings of the National Academy of Sciences of the United

States of America 104(26):10808–10812 DOI 10.1073/pnas.0704250104.

Spoor CF, Zonneveld FW, Macho GA. 1993. Linear measurements of cortical bone and dental

enamel by computed tomography: applications and problems. American Journal of Physical

Anthropology 91(4):469–484 DOI 10.1002/ajpa.1330910405.

Trussell HJ. 1979. Comments on “Picture thresholding using an iterative selection method”. IEEE

Transactions on Systems, Man, and Cybernetics 9(5):311 DOI 10.1109/tsmc.1979.4310204.

Tsegai ZJ, Kivell TL, Gross T, Nguyen NH, Pahr DH, Smaers JB, Skinner MM. 2013. Trabecular

bone structure correlates with hand posture and use in hominoids. PLOS ONE 8(11):e78781

DOI 10.1371/journal.pone.0078781.

Witmer LM, Ridgely RC, Dufeau DL, Semones MC. 2008. Using CT to peer into the past: 3D

visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In:

Anatomical Imaging. Tokyo: Springer, 67–87.

Wollny G, Kellman P, Ledesma-CarbayoMJ, Skinner MM, Hublin JJ, Hierl T. 2013.MIA—A free

and open source software for gray scale medical image analysis. Source Code for Biology and

Medicine 8(1):8–20 DOI 10.1186/1751-0473-8-20.

Dunmore et al. (2018), PeerJ, DOI 10.7717/peerj.4374 18/18

http://dx.doi.org/10.1016/s0167-8655(98)00121-4
http://dx.doi.org/10.1146/annurev.bioeng.2.1.315
http://dx.doi.org/10.1242/jeb.01971
http://dx.doi.org/10.1109/tsmc.1978.4310039
http://dx.doi.org/10.1002/ajpa.21178
http://dx.doi.org/10.1006/jhev.2002.0552
http://dx.doi.org/10.1002/ajpa.21033
http://dx.doi.org/10.1002/ajpa.21057
http://dx.doi.org/10.1073/pnas.0704250104
http://dx.doi.org/10.1002/ajpa.1330910405
http://dx.doi.org/10.1109/tsmc.1979.4310204
http://dx.doi.org/10.1371/journal.pone.0078781
http://dx.doi.org/10.1186/1751-0473-8-20
http://dx.doi.org/10.7717/peerj.4374
https://peerj.com/


Metacarpal trabecular bone varies with distinct
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Abstract

Trabecular bone remodels during life in response to loading and thus should, at least in part, reflect potential

variation in the magnitude, frequency and direction of joint loading across different hominid species. Here we

analyse the trabecular structure across all non-pollical metacarpal distal heads (Mc2-5) in extant great apes,

expanding on previous volume of interest and whole-epiphysis analyses that have largely focused on only the

first or third metacarpal. Specifically, we employ both a univariate statistical mapping and a multivariate

approach to test for both inter-ray and interspecific differences in relative trabecular bone volume fraction

(RBV/TV) and degree of anisotropy (DA) in Mc2-5 subchondral trabecular bone. Results demonstrate that

whereas DA values only separate Pongo from African apes (Pan troglodytes, Pan paniscus, Gorilla gorilla), RBV/

TV distribution varies with the predicted loading of the metacarpophalangeal (McP) joints during locomotor

behaviours in each species. Gorilla exhibits a relatively dorsal distribution of RBV/TV consistent with habitual

hyper-extension of the McP joints during knuckle-walking, whereas Pongo has a palmar distribution consistent

with flexed McP joints used to grasp arboreal substrates. Both Pan species possess a disto-dorsal distribution of

RBV/TV, compatible with multiple hand postures associated with a more varied locomotor regime. Further

inter-ray comparisons reveal RBV/TV patterns consistent with varied knuckle-walking postures in Pan species in

contrast to higher RBV/TV values toward the midline of the hand in Mc2 and Mc5 of Gorilla, consistent with

habitual palm-back knuckle-walking. These patterns of trabecular bone distribution and structure reflect

different behavioural signals that could be useful for determining the behaviours of fossil hominins.

Key words: hominid; locomotion; metacarpal; trabeculae.

Introduction

Trabecular, or cancellous, bone has been experimentally

shown to remodel (Cowin, 1986; Frost, 1987) in response to

loading across a range of phylogenetically disparate taxa

(Biewener et al. 1996; Pontzer et al. 2006; Barak et al. 2011).

Therefore, trabecular architecture can provide additional

information about how a bone was loaded during life,

compared with external morphology alone (Ruff & Runes-

tad, 1992; Tsegai et al. 2013). The term ‘remodelling’ is used

here rather than ‘modelling’, as it occurs throughout life

and is therefore key to a bone’s ‘ability to function in a

changing mechanical environment’ (Martin et al. 1998, p.

96; see Allen & Burr, 2014). Trabeculae preserved in fossil

hominins have been used to infer habitual loading and

reconstruct both locomotor (DeSilva & Devlin, 2012; Barak

et al. 2013a; Su et al. 2013; Zeininger et al. 2016; Ryan et al.

2018) and manipulative (Skinner et al. 2015a; Stephens

et al. 2018) behaviours during human evolution. These

functional inferences rely on comparative analyses that

associate known behaviours of extant primates with varia-

tion in trabecular architecture at particular joints (Orr,

2016).

The hand makes direct contact with the substrate during

non-human primate locomotion, and therefore its trabecu-

lar structure may provide a clearer functional signal than

skeletal elements that are further removed from substrate

reaction forces, such as the humerus (Ryan & Walker, 2010;

Scherf et al. 2016). Indeed, previous studies of the internal

bone structure of hand bones have found substantial differ-

ences between primate species with distinct habitual loco-

motor modes (Lazenby et al. 2011; Zeininger et al. 2011;

Tsegai et al. 2013; Matarazzo, 2015; Skinner et al. 2015a;

Stephens et al. 2016; Barak et al. 2017; Chirchir et al. 2017).

The majority of these studies have investigated trabecular

bone structure in the third metacarpal (Mc3) head because
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the central ray is buffered from medio-lateral forces, is con-

sistently involved in weight-bearing during locomotion,

and often experiences peak reaction forces in ape locomo-

tion (Zeininger et al. 2011; Tsegai et al. 2013; Matarazzo,

2015; Barak et al. 2017; Chirchir et al. 2017).

Different methodological approaches to the analysis of

trabecular structure in the primate Mc3 head have yielded

varied results. Tsegai et al. (2013) applied a whole-epiphysis

approach and found that African apes had higher trabecu-

lar bone volume fraction (BV/TV) and degree of anisotropy

(DA) compared with suspensory hominoids, especially in the

dorsal region of the Mc3 head, consistent with an extended

metacarpophalangeal (McP) joint during knuckle-walking.

Suspensory orangutans and hylobatids were found to have

more isotropic trabeculae and lower overall BV/TV that was

highest in the palmar aspect of the Mc3, consistent with

flexed-finger arboreal grips. Using fewer volumes of inter-

est (VOI) Chirchir et al. (2017) found that there were no sig-

nificant differences in DA across a sample of chimpanzees,

orangutans, baboons and humans, but that BV/TV was sig-

nificantly higher in distal and palmar portions of the Mc3

head in orangutans and, to a lesser extent in humans, con-

sistent with flexed-finger grips used during arboreal loco-

motion and manipulation, respectively. In contrast, Barak

et al. (2017), using a similar method, found the dorsal VOI

in both chimpanzees and humans had significantly lower

BV/TV and DA than the distal or palmar VOIs. Despite these

conflicting results, these studies uniformly found that

humans possessed significantly less BV/TV throughout the

Mc3 head relative to other primate species (Tsegai et al.

2013; Barak et al. 2017; Chirchir et al. 2017). This finding is

consistent with other skeletal elements (Chirchir et al. 2015;

Ryan & Shaw, 2015) and may reflect, at least in part, lower

loading of the hand during manipulation compared with

that of locomotion (Tsegai et al. 2013), or sedentism in

recent human populations, or both (Ryan & Shaw, 2015).

Although the whole-epiphysis approach has found a rela-

tionship between variation in metacarpal trabecular struc-

ture and hand use (Tsegai et al. 2013), this approach has

been limited to comparisons of average trabecular parame-

ters (Tsegai et al. 2013; Skinner et al. 2015a; Stephens et al.

2016) or sections thereof (Georgiou et al. 2018). Recently

some researchers have called for (Chirchir et al. 2017), or

developed (Sylvester & Terhune, 2017), new methods that

can better quantify and statistically compare trabecular

structure across different individuals and species. Here, we

build on this previous work by analysing trabecular struc-

ture across all of the non-pollical metacarpal heads (Mc2-

Mc5) and applying a geometric morphometric, statistical

mapping method to trabecular bone data produced by the

whole-epiphysis approach. We compare relative trabecular

bone volume fraction (RBV/TV) and degree of anisotropy

(DA) between Mc2-5 both within and across the following

species: bonobos (Pan paniscus), chimpanzees (Pan troglo-

dytes), gorillas (Gorilla gorilla gorilla) and orangutans

(Pongo abelii and Pongo pygmaeus). RBV/TV values are BV/

TV values divided by the average BV/TV of each metacarpal

head (see Materials and methods).This approach allows for

the quantification of trabecular architecture in a heuristic

sample, less affected by issues of sub-sampling of a continu-

ous structure, to infer differences in habitual hand loading

and posture associated with hominid locomotor modes.

Hand use and locomotion

Hand postures vary greatly during different types of arbo-

real and terrestrial locomotion in apes (Hunt et al. 1996;

Schmitt et al. 2016). However, detailed studies of hominid

hand postures in the wild (Hunt, 1991; Neufuss et al. 2017;

Thompson et al. 2018) and captive settings (Wunderlich &

Jungers, 2009; Matarazzo, 2013a,b; Samuel et al. 2018) can

inform predictions of frequent McP joint positions and

loading across the hand in different species. Although fre-

quent McP joint postures may only reflect part of a large

and varied locomotor repertoire, previous research suggests

(Tsegai et al. 2013; Barak et al. 2017; Chirchir et al. 2017)

that subchondral trabecular patterns of the metacarpal

head can be statistically discerned among species with dif-

ferent locomotor modes.

Pongo

Pongo pygmeaus and P. abelii are primarily arboreal,

engaging in suspensory locomotion to move through the

canopy via tree branches and lianas (Cant, 1987; Sugardjito

& Cant, 1994; Thorpe & Crompton, 2005). Specifically,

researchers have emphasised the use of multiple supports

and quadrumanous orthograde locomotion in Pongo

(Thorpe & Crompton, 2006; Manduell et al. 2011), though

specific hand grips have not been reported in detail (Thorpe

& Crompton, 2005). However, during suspension, orangu-

tans are thought to employ a hook grip, in which the proxi-

mal phalanges align with the proximo-distal axis of the

metacarpal, such that the distal McP joint is thought to be

loaded in tension (Sarmiento, 1988; Rose, 1988; Schmitt

et al. 2016; Fig. 1A). Similarly a double-locked grip, in which

all joints of the ray, including the McP, are greatly flexed

around a small substrate, is also adopted in orangutan loco-

motion (Napier, 1960; Rose, 1988; Fig. 1B).

The McP joints in Pongo possess a limited degree of possi-

ble hyper-extension at 19 degrees (Susman, 1979; Rose,

1988). Mc2-4 are also dorso-palmarly thicker at the diaph-

ysis, and all the non-pollical metacarpal heads possess pal-

marly wide articular heads suggestive of habitual McP

flexion (Susman, 1979). As the fourth proximal phalanx may

often equal or exceed the length of the third phalanx in

orangutans (40%; Susman, 1979), Rose (1988) has argued

that the fourth ray is more in line with the second and third

rays, which would be advantageous for both hook and

double-locked grips in which rays 2–5 are typically all

engaged. Although body size in Pongo is sexually
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dimorphic (Rodman, 1984) and there is some evidence for

differential locomotion between the sexes (Sugardjito &

van Hooff, 1986), further work has found these differences

to be relatively slight (Thorpe & Crompton, 2005). There-

fore, we do not expect habitual prehensile postures to dif-

fer between male and female Pongo.

Gorilla

The most frequent locomotor mode of Gorilla is terrestrial

knuckle-walking (Inouye, 1994; Doran, 1996; Remis, 1998);

however, they can vary substantially in their degree of

arboreality based on the species, sex and local ecology

(Doran, 1996; Remis, 1998; Neufuss et al. 2017). The western

lowland gorilla (Gorilla gorilla gorilla) is reported to spend

probably at least 20% of its time in trees (Tuttle & Watts,

1985; Remis, 1998). During knuckle-walking, the McP joint

is hyper-extended to place the arm above the weight-bear-

ing intermediate phalanges (Tuttle, 1969; Matarazzo,

2013a,b; Fig. 1C). Gorilla usually uses a ‘palm-back’ hand

posture during knuckle-walking, which places the McP

orthogonal to the direction of travel while consistently

loading rays 2–5, which differs from the more variable hand

postures, as well as digit loading, found in Pan and proba-

bly reflects the relatively longer fifth digit of Gorilla (Tuttle,

1969; Susman, 1979; Inouye, 1992, 1994; Wunderlich & Jun-

gers, 2009; Matarazzo, 2013a,b; but see Thompson et al.

2018). In a study of digit pressures during knuckle-walking

in captive gorilla, Matarazzo (2013a,b) found that the fifth

digit always touches down first, with the weight moving

radially until the second (61%) or third (39%) digit lift-offs.

Peak pressures were significantly lower on the fifth digit

and highest on the third, but overall gorillas maintained a

more even distribution of pressure across rays 2–5 than that

of captive chimpanzees.

Compared with terrestrial knuckle-walking, far less is

known about hand postures used by gorillas during arbo-

real locomotion. In captivity, Gorilla is described as using a

power grip with little McP flexion when vertically climbing

large-diameter substrates (Sarmiento, 1994). Neufuss et al.

(2017) also described a similar type of power grip using all

five digits and the palm-in of wild mountain gorillas (Gor-

illa beringei) when climbing larger substrates. However,

when climbing medium-sized substrates (6–10 cm

diameter), mountain gorillas used a diagonal power grip,

in which the substrate lies diagonally across the fingers

and palm, with an extremely ulnarly deviated wrist posture

(Neufuss et al. 2017; Fig. 1D). In this diagonal power grip,

weight appeared to be frequently borne by digits 2–4,

while the fifth McP joint was unable to flex to the same

extent due to the irregular shape of some substrates.

Although similar data on arboreal hand postures are not

available for G. gorilla, we assume that during arboreal

locomotion, the G. gorilla McP joints are moderately

flexed, and that this flexion increases as the substrate

diameter decreases, with potentially less flexion at the

fifth McP joint. However, this arboreal McP posture is likely

less frequent than that associated with knuckle-walking in

Gorilla. Indeed, although female individuals are more

arboreal than larger males in Gorilla (Remis, 1995), the pri-

mary locomotor mode for both sexes is knuckle-walking

(Tuttle & Watts, 1985; Remis, 1995; Crompton et al. 2010).

Pan troglodytes

Generally P. troglodytes is thought to be more arboreal

than Gorilla (Remis, 1995; Doran, 1996; Thorpe & Crompton,

2006), though this may be the result of comparisons with

mountain gorillas that are better habituated to humans

compared with their more arboreal lowland counterparts

(Doran, 1997; Hunt, 2004, Neufuss et al. 2017). There is a

large degree of variation in the chimpanzee locomotor

repertoire depending on the local ecology (Doran & Hunt,

1996; Carlson et al. 2006). Pan troglodytes verus, the sub-

species that comprises the majority of the current sample,

engages in knuckle-walking, both arboreal and terrestrial,

in ~ 85% of their locomotion and spends more time in the

trees than P. troglodytes schweinfurthii does (Doran & Hunt,

1996; Carlson et al. 2006). Compared with Gorilla,

P. troglodytes uses more varied hand postures during

knuckle-walking (Tuttle, 1969; Inouye, 1994; Matarazzo,

2013a,b). Chimpanzees have been thought to primarily load

digits 3 and 4 during knuckle-walking (Tuttle, 1969; Tuttle &

Basmajian, 1978). Inouye (1994) found that during captive

terrestrial knuckle-walking, larger chimpanzees used their

second digit significantly less often compared with gorillas

of equivalent size, and both chimpanzees and bonobos gen-

erally used their fifth digit significantly less often than

Fig. 1 Diagrammatic representations of the

metacarpophalangeal postures during (A) a

hook grip, (B) a ‘double-locked’ grip, (C)

knuckle-walking and (D) a diagonal power

grip. Images are adapted from Lewis (1977),

Rose (1988) and Tsegai et al. (2013).
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gorillas did. Pressure studies also found that the fifth digit

of chimpanzees did not touch-down in 20% of knuckle-

walking steps and that this digit experienced significantly

less load than the other digits when it was used (Wunderlich

& Jungers, 2009; Matarazzo, 2013a,b). Further, P. troglo-

dytes uses both ‘palm-back’ (~ 40%) and ‘palm-in’ (~ 60%)

postures, compared with a more consistent use of mainly

‘palm-back’ (~ 86%) knuckle-walking postures in Gorilla

(Wunderlich & Jungers, 2009; Matarazzo, 2013a,b). During

‘palm-in’ knuckle-walking, the intermediate phalanges roll

radially in the direction of travel and the second or third

digit usually experiences the highest pressures (Wunderlich

& Jungers, 2009; Matarazzo, 2013a,b). In ‘palm-back’

knuckle-walking the third digit is typically placed in front

the others and usually is the last to touch off, which may be

related to the fact that the third ray may be relatively longer

in chimpanzees than in gorillas (Matarazzo, 2013a,b). Com-

pared with Gorilla, the peak pressures experienced by digits

2–4 are more variable in chimpanzees (Wunderlich & Jun-

gers, 2009; Matarazzo, 2013a,b).

P. troglodytes verus most often uses climbing and scram-

bling locomotion in trees (60–77%; Doran, 1992, 1993).

Chimpanzees are described as using power grips, diagonal

power grips and hook grips during arboreal locomotion, all

of which typically involve some degree of flexion at the

McP joint (Napier, 1960; Hunt, 1991; Marzke et al. 1992;

Alexander, 1994; Marzke & Wullstein, 1996). Climbing often

encompasses vertical climbing and clambering in naturalis-

tic studies. Hunt (1991) has emphasised the role of vertical

climbing in wild P. troglodytes and although the grips

employed tend to be ulnarly deviated at the wrist, they are

dependent on substrate diameter. Neufuss et al. (2017) also

found that chimpanzees used both power grips and diago-

nal power grips, but with a less ulnarly deviated wrist than

in Gorilla. A diagonal power grip involves greater flexion of

the more ulnar rays and in some cases, flexion at the fifth

carpometacarpal joint, which may likely be associated with

wrist adduction (Marzke & Wullstein, 1996; Fig. 1D). There-

fore, the locomotor hand postures of P. troglodytes may be

characterised as primarily those of knuckle-walking but

with a more frequent arboreal grasping component than in

Gorilla. Given the lower sexual dimorphism relative to Gor-

illa and Pongo (Doran, 1996), there may be less variation in

grasping postures in this species.

Pan paniscus

While bonobos have a relatively similar locomotor reper-

toire to chimpanzees, they are thought to be more arboreal

(Alison & Badrian, 1977; Susman et al. 1980; Susman, 1984)

and have been shown to use significantly more palmigrady

in the trees (Doran, 1993; Doran & Hunt, 1996; Crompton

et al. 2010). Though the former claim may be an artefact of

incomplete habituation of the individuals in these studies

and more data are needed (Hunt, 2016), the relatively

longer and heavier lower limbs of this species make for

more generalised anatomy than that of chimpanzees

(Zihlman, 1984; D’Août et al. 2004). During terrestrial

knuckle-walking bonobos use the fifth digit even less than

chimpanzees and Mc5 is shorter than the rest of the meta-

carpals in bonobos (Inouye, 1994). In a pressure study of

arboreal locomotion, Samuel et al. (2018) found that cap-

tive bonobos used ‘palm-back’ (64%) or ‘palm-in’ (36%)

knuckle-walking hand postures and that peak pressure was

experienced by or around the third digit. However, unlike

chimpanzees (Wunderlich & Jungers, 2009), they did not roll

radially across their digits and the fifth digit always made

contact with the substrate (Samuel et al. 2018). During verti-

cal climbing and suspensory postures, bonobos used flexed-

finger power grips similar to those described in other great

apes and, again, peak pressure was experienced by or

around the third digit (Samuel et al. 2018). In summary, the

hand postures used during locomotion in P. paniscus can be

characterised as similar to those of P. troglodytes, including

a relatively low level of sexual dimorphism compared with

other great apes (Doran, 1996), although more frequent

palmigrady and arboreal grasping differentiate this species

from P. troglodytes.

Predictions

Based on the summary above, we predict RBV/TV and DA in

Pongo will be significantly higher in the disto-palmar

region of the metacarpal heads compared with other homi-

nids and no significant inter-ray differences in both mea-

sures due to the more consistent recruitment of rays 2–5

during hook and double-locked grasping. In Gorilla we pre-

dict a significantly higher dorsal distribution of RBV/TV and

DA in each metacarpal head compared with all other homi-

nids, reflecting McP joints frequently loaded in a hyper-

extended posture during knuckle-walking. As P. troglodytes

may be more arboreal and uses more variable knuckle-

walking postures, we predict this species will have signifi-

cantly lower dorsal RBV/TV and DA, with more significant

differences across rays, than that of Gorilla. We also predict

this mixture of arboreality and terrestrially in P. troglodytes

will elicit higher dorsal RBV/TV and DA than Pongo but

with a more homogeneous distribution within each meta-

carpal head. We predict P. paniscus trabecular patterning

will be similar to that of P. troglodytes, and thus possess sig-

nificantly higher palmar distribution of RBV/TV and DA

compared with Gorilla and a more dorsal distribution of

these measures than seen in Pongo. However, we also

expect P. paniscus to have lower DA and further homoge-

nised distribution of RBV/TV compared with P. troglodytes

due to more frequent use of palmigrady and arboreal grips.

Materials and methods

Subchondral trabecular bone was analysed in the metacarpus of P.

paniscus (n = 10), P. troglodytes (n = 13), G. gorilla gorilla (n = 12),

Pongo sp. indet. (n = 1), P. pygmaeus (n = 7) and P. abelii (n = 3).
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Metacarpi were sampled from the Royal Museum for Central Africa,

Tervuren, the Max Planck Institute for Evolutionary Anthropology,

Leipzig, the Powell-Cotton Museum, Birchington, Bavarian State

Collection of Zoology, Munich, the Natural History Museum, Berlin,

the Senckenberg Natural History Museum, Frankfurt, and the

Smithsonian National Museum of Natural History, Washington, DC

(Table 1). All specimens were adult, wild shot and free from exter-

nal signs of pathology. Within each taxon efforts were made to

ensure the samples were sex balanced with even numbers of right

and left metacarpi, neither ratio was more imbalanced than 5:7 for

any sample. While great ape locomotion is sexually biased (Doran,

1996) and there has been some evidence for lateralised asymmetry

Table 1 Study sample.

Taxonomy Accession ID Sex Side Institution

Gorilla gorilla gorilla PC_MER_300 Female Left Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_264 Male Right Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_372 Male Left Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_95 Female Right Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_962 Male Left Powell-Cotton Museum

Gorilla gorilla gorilla PC_CAMI_230 Male Left Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_138 Female Left Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_174 Male Right Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_696 Female Right Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_856 Female Left Powell-Cotton Museum

Gorilla gorilla gorilla PC_MER_879 Male Left Powell-Cotton Museum

Gorilla gorilla gorilla PC_ZVI_32 Male Right Powell-Cotton Museum

Pan troglodytes verus MPITC_11789 Male Right Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_11778 Female Right Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_13439 Female Right Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_15002 Female Left Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_11800 Female Right Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_11903 Male Left Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_11781 Male Left Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_14996 Female Left Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_15012 Male Right Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_15013 Female Right Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_15014 Male Right Max Planck Institute for Evolutionary Anthropology

Pan troglodytes verus MPITC_15032 Male Left Max Planck Institute for Evolutionary Anthropology

Pan troglodytes* ZSM_AP_122 Male Right Bavarian State Collection of Zoology

Pongo abelii SMF_6785 Male Right Senckenberg Natural History Museum, Frankfurt

Pongo abelii SMF_6779 Female Left Senckenberg Natural History Museum, Frankfurt

Pongo pygmaeus ZSM_1907_0633b Female Right Bavarian State Collection of Zoology

Pongo pygmaeus pygmaeus ZSM_1907_0660 Female Right Bavarian State Collection of Zoology

Pongo sp. ZSM_AP-120 Male Left Bavarian State Collection of Zoology

Pongo pygmaeus pygmaeus ZSM_1907_0483 Female Right Bavarian State Collection of Zoology

Pongo pygmaeus pygmaeus ZSM_1909_0801 Male Right Bavarian State Collection of Zoology

Pongo abelii NMNH_267325 Male Left Smithsonian Institution National Museum

of Natural History

Pongo pygmaeus ZMB_6948 Female Left Natural History Museum, Berlin

Pongo pygmaeus ZMB_6947 Male Left Natural History Museum, Berlin

Pongo pygmaeus ZMB_87092 Female Right Natural History Museum, Berlin

Pan paniscus MRAC_15293 Female Left Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_15294 Male Left Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_20881 Male Left Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_27696 Male Right Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_27698 Female Left Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_29042 Female Right Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_29044 Male Right Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_29045 Female Left Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_29052 Male Right Royal Museum for Central Africa, Tervuren

Pan paniscus MRAC_29060 Female Right Royal Museum for Central Africa, Tervuren

*Though this specimen was marked as Pongo in the collection, CT-scans demonstrate it has a fused scaphoid and os centrale, and so

this specimen is treated as Pan troglodytes.

© 2019 Anatomical Society

Hominid metacarpal trabecular bone, C. J. Dunmore et al. 49



in both the trabecular (Stephens et al. 2016) and cortical bone of

hominid metacarpals (Sarringhaus et al. 2005) we argue that nei-

ther of these signals is greater than the species locomotion differ-

ences under investigation here. Further, the use of evenly mixed

samples should ameliorate these effects (see Discussion).

MicroCT scanning

Specimens were scanned with BIR ACTIS 225/300 and Diondo D3

high resolution microCT scanners at the Department of Human Evo-

lution, Max Planck Institute for Evolutionary Anthropology, Ger-

many, as well as with the Nikon 225/XTH scanner at the Cambridge

Biotomography Centre, University of Cambridge, UK. Scan parame-

ters were 100–160 kV and 100–140 lA, using a brass or copper filter

of 0.2–0.5 mm, resulting in reconstructed images with an isometric

voxel size of 24–45 lm.

Image processing

MicroCT scans of each metacarpal were isolated in AVIZO 6.3 (Visual-

ization Sciences Group; Fig. 2A) and segmented using the ray cast-

ing algorithm (Scherf & Tilgner, 2009). The segmented volume

images were then processed as per the whole-epiphysis method,

outlined in Gross et al. (2014). Briefly, a series of filtres run in MED-

TOOL 4.2 (Dr. Pahr Ingenieurs e.U.) isolated the inner trabecular struc-

ture (Fig. 2B) by casting rays at different angles from the outer

cortical shell and terminating them on contact with background,

non-bone voxels. A spherical kernel, with a diameter equal to the

measured average trabecular thickness in that bone, was then used

to close this inner structure (Pahr & Zysset, 2009). The 3D edge of

this solid inner structure defined the boundary between subchon-

dral trabecular and cortical bone. Subsequently, a regular 3D back-

ground grid, spaced at 2.5-mm intervals, was overlaid and a

spherical VOI 5 mm in diameter was centred at each vertex of the

grid in which BV/TV and DA was measured (Fig. 2c). Previous studies

have shown that these two variables are correlated with the

mechanical properties of trabecular bone, reflect bone functional

adaptation (Odgaard et al. 1997; Uchiyama et al. 1999; Pontzer

et al. 2006; Barak et al. 2011; Lambers et al. 2013a,b) and that they

are not strongly allometric (Doube et al. 2011; Barak et al. 2013b;

Ryan & Shaw, 2013). DA was measured via the mean intercept

length (MIL) method and was bounded between 0 (total isotropy)

and 1 (total anisotropy) using the calculation: 1 – (lowest eigen-

value of the fabric tensor/greatest eigenvalue fabric tensor). Both

trabecular values were then separately interpolated on a regular 3D

tetrahedral mesh of the trabecular model (Fig. 2D), created using

CGAL (www.cgal.org). The surface of the trabecular mesh was

extracted using PARAVIEW (www.paraview.org) and smoothed, to per-

mit landmark sliding (see below), in MESHLAB (Cignoni et al. 2008) via

a screened Poisson surface reconstruction filter (Kazhdan & Hoppe,

2013; Fig. 2E). For left-hand bones this surface mesh was mirrored

in MESHLAB so that it was oriented in the same was as those from

right hands to permit homologous functional comparisons.

Geometric morphometric mapping

The whole-epiphysis method maps the entire volumetric trabecular

model, but we focused our analysis on the trabecular bone beneath

the articular surface of the metacarpal heads because external loads

necessarily pass through these subchondral trabeculae before they

can be transmitted to any other part of the trabecular structure

(Zhou et al. 2014; Sylvester & Terhune, 2017). We employed a 3D

geometric morphometric (GM) approach (Gunz & Mitteroecker,

2013) to trabecular analysis similar to that of Sylvester & Terhune

(2017) and tested for significant differences between groups using

homologous landmarks on the subchondral trabecular surface.

Anatomical landmark definitions

Many landmarks have been identified on the non-pollical metacar-

pals for morphometric studies (Susman, 1979; Inouye, 1992; Dra-

peau, 2015), but there have been relatively few studies that have

applied GM methods to the primate metacarpus, and these have

focused on the Mc1 base (Niewoehner, 2005; Marchi et al. 2017).

Metatarsals are developmental serial homologues of metacarpals

(Rolian et al. 2010) and a relatively recent study captured their

shape variation using a patch of 3D landmarks (Fern�andez et al.

2015). A recent study of Mc3 head shape used most of the same

landmarks that bordered on this metatarsal patch, at the homolo-

gous metacarpal locations (Rein, 2018). Based on these studies, the

location and type (Bookstein, 1991) of anatomical landmarks used

here are given in Table 2. Although the internal trabecular sub-

chondral surface is landmarked, cortical bone is very thin at the

Fig. 2 Methodological stages of metacarpal trabecular analysis,

shown in a third metacarpal as an example: (A) isosurface model, (B)

segmented trabecular structure inside cortical shell, (C) diagram of the

background grid and one of the VOIs at a vertex (purple), (D) volume

mesh coloured by BV/TV (0–45%), (E) smoothed trabecular surface

mesh, (F) surface landmarks (anatomical = red, semi-sliding landmarks

on curves = blue and on surfaces = green), (G) RBV/TV interpolated to

each surface landmark.
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metacarpal head in hominids (Tsegai et al. 2017) and so the corre-

spondence between these surfaces is generally high. Though the

articular surface may not cover the same area in all species studied,

the same landmarks are used for comparison as they are present on

all metacarpal heads studied.

Repeatability

Landmarks were manually placed in CHECKPOINT (Stratovan Corpora-

tion, Davis, CA, USA) and repeated 10 times on three randomly

selected specimens from each species over several days. A different

ray was used from each species to ensure landmarks were repeat-

able across elements following Fern�andez et al. (2015). The land-

marks were then aligned using Procrustes superimposition in the

Morpho package in R v3.3.0 (R Core Development Team, 2016; Sch-

lager, 2017). Landmark configurations were then plotted in the first

two principal components (PC) of shape space. Landmarks were

considered stable if repeated measures were more clustered than

those of different individuals. Significant pair-wise permutational

MANOVAs conducted on PC1 and PC2 scores demonstrated that group

means of the three individuals and their repeats, are significantly

different in each case and that variance in landmark placement is

significantly less than that between specimens (Supporting Informa-

tion Fig. S1).

Geometric morphometric procedure

To create the landmark template, a random specimen was selected

and eight curves were defined at the margins of the sub-articular

surface, in CHECKPOINT, each bordered by anatomical landmarks as rec-

ommended by Gunz et al. (2005). Three sliding semi-landmarks

were placed on each of these curves and an additional 140 were

equally distributed over the sub-articular surface in AVIZO 6.3 (Visual-

ization Sciences Group, Germany) to create a 173-landmark tem-

plate. The anatomical landmarks were subsequently placed on every

specimen and the landmark template (Fig. 2F) then projected onto

each of the 183 other metacarpal heads and relaxed onto the sur-

face of each metacarpal using the Morpho package in R (Schlager,

2017) by minimizing bending energy. This package was then used

to slide the semi-landmarks along their respective curves and over

the surface by minimizing Procrustes distances. This slid template is

plotted on an individual Mc3 from each species to provide a sense

of the shape variation present (Supporting Information Fig. S6).

Data mapping

Using a custom PYTHON script plugin for PARAVIEW (www.paraview.

org) the non-smoothed surface mesh triangles inherited trabecular

values from their originating tetrahedra. The PYTHON module SciPy

(Jones et al. 2001) was then used in MEDTOOL 4.2 (Dr. Pahr Ingenieurs

e.U.) to interpolate the trabecular values to the nearest landmark;

this was done separately for BV/TV and DA. Interpolating these tra-

becular values from the outer tetrahedra of the trabecular model is

analogous to using spherical VOIs, 1 mm in diameter, centred

0.5 mm beneath an inner trabecular surface landmark. Finally, the

geomorph package (Adams et al. 2017) in R was used to perform a

generalised Procrustes procedure, resulting in 184 sets of 173

homologous landmarks each with two associated trabecular values

(Fig. 2G).

Relative trabecular volume

We employ a relative measure of bone volume fraction (RBV/TV), in

which the raw BV/TV value of each landmark is divided by the mean

of all landmark BV/TV values on that metacarpal head. Thus RBV/TV

values ~ 1 indicate landmarks close to the average BV/TV of that Mc

head, while values above or below 1 indicate a deviation from this

average at these landmarks. This relative measure was preferred

because, while BV/TV can vary systemically across extant hominid

species (Tsegai et al. 2018) and may show considerable intraspecific

variation, the relative patterns of trabecular architecture appear to

preserve a functional signal superimposed on this variation (Saers

Table 2 Anatomical landmark definitions, types (Bookstein, 1991) and their provenance. Each article describes the landmark, using it as the termi-

nus of a linear measure or directly for GM analysis.

Number Type Description Provenance

1 Type II Most proximal point under the ulnar palmar

epicondyle (anterior eminence)

Yeh & Wolf (1977), Fern�andez et al. (2015),

Rein (2018)

2 Type III The point of maximum curvature on the

inter-epicondylar ridge between points 1 and 3

Drapeau (2015), Fern�andez et al. (2015),

Rein (2018)

3 Type II Most proximal point under the radial palmar

epicondyle (anterior eminence)

Yeh & Wolf (1977), Fern�andez et al. (2015),

Rein (2018)

4 Type III Point of maximum curvature on the radial ridge

separating the articular surface from the radial lateral sulcus

Yeh & Wolf (1977), Fern�andez et al. (2015),

Rein (2018)

5 Type II Most radially projecting point under

the ulnar dorsal tubercle

Yeh & Wolf (1977), Susman (1979), Inouye

(1992), Fern�andez et al. (2015), Rein (2018)

6 Type III Mid-point between the posterior tubercles on the

intertubercular ridge, underlying the dorsal ridge if present.

Yeh & Wolf (1977), Fern�andez et al. (2015)

7 Type II Most ulnarly projecting point under the ulnar dorsal tubercle Yeh & Wolf (1977), Susman (1979), Inouye

(1992), Fern�andez et al. (2015), Rein (2018)

8 Type III Point of maximum curvature on the ulnar ridge separating

the articular surface from the ulnar lateral sulcus

Yeh & Wolf (1977), Fern�andez et al. (2015),

Rein (2018)

9 Type II Most distally projecting point on the subchondral surface Fern�andez et al. (2015); Susman (1979),

Inouye (1992), Rein (2018)
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et al. 2016). RBV/TV measures the position of the greatest subchon-

dral trabecular bone of a given Mc head rather the absolute volume

of bone and therefore is argued to reflect the habitually loaded

joint positions of extant hominids while controlling, at least in part,

for intra-species and systemic inter-species differences. Species aver-

age absolute BV/TV landmark values are depicted for comparison

with RBV/TV values in Fig. 3 (see Supporting information).

Statistical analysis

We employ a ‘mass-univariate’ approach as advocated by Friston

et al. (1995) similar to that used to statistically analyse cortical bone

in ape metacarpals (Tsegai et al. 2017). Specifically, the trabecular

values between species and rays at each landmark are indepen-

dently analysed using univariate statistics. Inter-ray comparisons do

not include comparisons between rays two and four or between

rays three and five as they are not biologically contiguous and thus

are less informative when prehensile hand postures are considered.

However, comparisons of rays two and five are included to test for

significant differences between the most ulnar and radial aspects of

the metacarpus. Shapiro-Wilk tests found a non-normal distribution

of data at one or more landmarks in one or both groups in every

pair-wise, inter-ray and interspecific, comparison. To maintain con-

sistent comparisons, a non-parametric Kruskal�Wallis test was

applied at each landmark and a post-hoc test was used to test for

pair-wise differences if the omnibus test was significant. Dunn’s test

was chosen as it uses the pooled variance of the Kruskal�Wallis

tests and so is conservative. The level of significance was set at

P < 0.05 subsequent to a Bonferroni correction in each case. This

univariate approach means that homologous landmark values are

compared across groups rather than with spatially correlated neigh-

bouring landmarks. Z-scores were used to determine the polarity, as

well as the effect size, of significant differences between groups.

These Z-scores were transformed into absolute, rather than signed,

values and summarised for significant landmark differences, in both

interspecific and inter-ray pair-wise comparisons (Supporting Infor-

mation Tables S1 and S2). Resulting plots of significant univariate

differences map regional differences between species and rays but

were only considered meaningful if they were found at nine con-

tiguous landmarks, as this represents just over 5% of the sub-articu-

lar surface, in order to further ameliorate any Type I error. Despite

the fact this univariate method can identify where regions of signif-

icant difference lie, it can be susceptible to Type I error and so to

provide a multivariate corollary to this approach, a principle compo-

nents analysis (PCA) of trabecular values, using landmarks as individ-

ual variables, was also run for all comparisons. Subsequent omnibus

and pair-wise one-way permutational MANOVAs were run with a Bon-

ferroni correction, using the VEGAN package (Oksanen et al. 2018) in

R v3.3.0 (R Core Development Team 2016), on the principal compo-

nent scores of these PCAs to test for significant overall, rather than

regional, differences in trabecular patterns.

Results

Univariate landmark comparisons

Pongo

RBV/TV was highest in the palmar aspect of all metacarpal

heads in Pongo (Fig. 3). The significant differences among

the rays included those between Mc2 and Mc5, each of

which had a small patch of significantly higher RBV/TV at

the ulnar and radial aspects of the metacarpal head, respec-

tively (Fig. 5). Mc3 also had a patch of significantly higher

RBV/TV at radio-palmar landmarks relative to Mc2. Inter-

specifically, Pongo RBV/TV was significantly higher at land-

marks in the palmar region of the metacarpal heads

compared with P. troglodytes and especially Gorilla (Fig. 7).

Compared with P. paniscus, Pongo was again significantly

higher at more palmar landmarks in Mc4 and Mc5 but there

were fewer significantly higher landmarks in Mc3 and

almost none in the Mc2 comparison.

Pongo had high DA values throughout the sub-articular

metacarpal heads with few significant differences between

Fig. 3 Species average RBV/TV, mapped to average models of each Mc head in (A) distal, (B) palmar and (C) dorsal views. RBV/TV values around

one (white) indicate landmarks close to the average BV/TV of that Mc head, while values above (red) or below one (blue) indicate a deviation from

this average at these landmarks.
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rays (Figs 4, 6 and S3). Interspecifically, Pongo DA was sig-

nificantly greater than that of Gorilla in all metacarpal

heads except for the central disto-palmar aspects of Mc3-4

and radio-palmar aspects of Mc5. Pongo had significantly

higher DA on the disto-dorsal aspects of Mc2 and Mc5 rela-

tive to both P. troglodytes and P. paniscus. Pongo also had

higher DA at landmarks situated on the dorsal aspects of

Mc 3 and 4 relative to P. paniscus (Fig. 8).

Gorilla

The highest RBV/TV values in Gorilla were concentrated in

the disto-dorsal portion of each metacarpal head extending

dorsally on the medio-lateral edges of Mc3 and 4 but

toward the midline of the hand in the Mc2 and Mc5 heads

(Fig. 3). This latter pattern was clear in the inter-ray compar-

ison, with significantly greater RBV/TV found at the radial

aspect of Mc5 relative to Mc2 and Mc4 as well as on the

ulnar aspect of these rays relative to Mc5 (Fig. 5). Inter-

specifically, Gorilla was significantly higher in RBV/TV dor-

sally compared with Pongo, though the radio-palmar

aspect of Mc5 was not significantly different between these

groups. Compared with Pan, Gorilla generally had signifi-

cantly higher RBV/TV dorsally but this was restricted to the

medio-lateral edges of each metacarpal head in the regio-

nal comparison (Fig. 7). Specifically, Gorilla had significantly

higher RBV/TV than Pan species on the radio-dorsal aspect

of Mc5 and both medio-lateral edges of Mc4, as well as the

ulno-dorsal aspect of Mc2, though this is extended across

the dorsal aspect in the P. troglodytes comparison. The Mc3

of Gorilla also had significantly higher RBV/TV than P. panis-

cus at landmarks on its dorso-ulnar aspect but was not sig-

nificantly different from P. troglodytes in any region.

Gorilla had less significant regional differences with P. tro-

glodytes than with P. paniscus in RBV/TV.

Gorilla had low DA throughout the subchondral metacar-

pal head trabeculae with slightly higher values distally on

Mc3 and Mc4, though only the ulnar-distal aspect of Mc3

had values that were significantly larger than Mc2 (Figs 4

and 6). Mc5 had significantly higher DA on its radial side

relative to Mc2 (Fig. 6). Gorilla was not significantly higher

in DA than were other taxa, apart from the radial border of

the distal Mc5 head compared with Pan paniscus (Fig. 8).

Pan troglodytes

P. troglodytes had disto-dorsally higher RBV/TV values in

the subchondral trabeculae of all the metacarpal heads,

though this pattern was more dorsally positioned in Mc3

and Mc4 (Fig. 3). Mc2 and Mc5 showed significantly higher

RBV/TV at their most palmar extent relative to Mc3 and

Mc4, respectively (Fig. 5). Interspecifically, P. troglodytes

showed almost no significant differentiation from P. panis-

cus in RBV/TV in any ray (Fig. 7). P. troglodytes had signifi-

cantly higher RBV/TV across the palmar extent of Mc2, and

disto-palmarly on the ulnar aspect of Mc5 compared with

that of Gorilla, and significantly higher RBV/TV dorsally

than Pongo in each ray.

P. troglodytes generally had low DA through all of the

metacarpal heads, although DA values were slighter higher

in the palmar regions of Mc3 and Mc4 (Fig. 4). DA values

were significantly higher in Mc4 relative to Mc5 and higher

in Mc3 relative to Mc2 (Fig. 6). P. troglodytes showed the

fewest significant differences in DA with P. paniscus, signifi-

cantly higher DA in the palmar aspects of Mc2 and Mc3

compared with Gorilla, and significantly lower DA than

Pongo throughout all the rays (Fig. 8).

Pan paniscus

Like P. troglodytes, P. paniscus had the highest RBV/TV val-

ues at the disto-dorsal aspect of metacarpal heads but sub-

chondral trabeculae structure was more homogenous

within and between the rays (Figs 3 and 5). Interspecifically,

P. paniscus showed the fewest significant differences with

Fig. 4 Species average DA mapped to average models of each Mc head in (A) distal, (B) palmar and (C) dorsal views.
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P. troglodytes apart from a small concentration of higher

RBV/TV landmarks in the most palmar extent of Mc3

(Fig. 7). P. paniscus possessed significantly higher RBV/TV

dorsally than Pongo across the rays and significantly higher

palmar RBV/TV than Gorilla in all of the rays. This latter

pattern extended distally on Mc2 and Mc5 (Figs 3 and 7).

P. paniscus had a similar DA pattern to P. troglodytes,

with similar inter-ray significant differences and almost no

significant differences between these species (Figs 4, 6 and

8). P. paniscus showed significantly higher DA than Gorilla

did in landmarks across the Mc2 and Mc3 heads, in the pal-

mar regions (Fig. 8). As with all other African apes, P. panis-

cus had significantly lower DA than Pongo did across the

metacarpal heads, particularly in the dorsal regions.

Multivariate whole-surface comparisons

Interspecific results

Figure 9 depicts the results of the PCA on RBV/TV values,

showing species differences within each metacarpal head.

Within the Mc2-5 of all the taxa, the first principal

component (PC1) explains 38–46% variation in RBV/TV and

was driven by dorsal and palmar landmarks. PC2 in Mc2-

Mc5 described 13–17% of the variation and reflected varia-

tion of values in landmarks that were distally and non-dis-

tally situated, respectively. In Mc5, PC3 described 14% of

RBV/TV variation in values at radio-ulnar landmarks. Permu-

tational MANOVA omnibus tests were run using PC1-3 in each

case, as for some comparisons the PC2 and PC3 explained a

similar amount of variance whereas further PCs each

explained less than 10% of the variance. These omnibus

tests were significant in every ray. As with the individual

landmark comparisons described above, Pongo had signifi-

cantly higher palmar RBV/TV compared with all other spe-

cies, especially Gorilla. The overall configuration of Gorilla

RBV/TV was significantly higher dorsally compared with all

other species in Mc2-4 and radio-dorsally in Mc5 (Fig. 9,

Table 3). P. troglodytes and P. paniscus were not signifi-

cantly different from each other in any of the species com-

parisons (Table 3).

Following the limited interspecific differences in DA

described above, a PCA of DA values yielded poor

Fig. 5 Inter-ray significant differences in RBV/TV, mapped to an average right Mc3 head in each case in dorsal (top), distal (middle) and palmar (bottom)

views. Where RBV/TV values at landmarks are significantly higher in one ray than the other, they are coloured as per the ray numbers in each comparison.
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separation among the sampled taxa. As such, the results are

depicted in the Supporting Information. PC1 in DA for each

ray, across species, described 34–36% of the variation and

was driven by higher values at most landmarks. PC2

described 10–14% of the variation and was driven by land-

marks situated dorsally and disto-palmarly, respectively

(Supporting Information Fig. S2). Although Pongo tended

to occupy the positive end of PC1, reflecting higher DA,

permutational MANOVAs on PC1-3 revealed that they were

only significantly different in every ray from Gorilla. This

result may be partially driven by the larger intra-species

variation in Pongo DA relative to other species studied

(Fig. S2, see Discussion). Pongo was significantly different

from P. paniscus in Mc2, Mc3 and Mc5 as well as from P. tro-

glodytes in Mc2 and Mc5, having generally higher DA

(Table 3). Again, P. paniscus and P. troglodytes were not

significantly different from each other at any ray, though

both species were slightly, but significantly, higher in DA

than Gorilla in most rays, P. troglodytes was not signifi-

cantly different form Gorilla in DA across Mc4. Both Pan

species had significantly lower DA than Gorilla in the radio-

distal aspect of Mc5.

Inter-ray results

Figure 10 depicts the results of PCA of RBV/TV values,

showing inter-ray differences within each species. Overall

Mc head variation in RBV/TV across rays was different for

each species but was generally consistent with individual

landmark comparisons described above. In Pongo, PC1

explained 25% of the variation and was driven by dorso-

palmar landmark values, whereas PC2 explained 18% of

the variation and reflected radio-ulnar landmark RBV/TV.

The significant omnibus result was driven solely by a Mc2

configuration that had significantly higher disto-ulnar

RBV/TV than the other rays did. In Gorilla, PC1 reflected

27% of the variation as a result of radio-ulnar landmark

values, whereas PC2 reflected 18% of the variation in

RBV/TV due to distal and more dorso-palmarly located

landmarks (Fig. 10). Permutational MANOVAs on PC1-3

demonstrated the Gorilla Mc5 had significantly higher

Fig. 6 Inter-ray significant differences in DA, mapped to an average right Mc3 head in each case in dorsal (top), distal (middle) and palmar (bot-

tom) views. Where DA values at landmarks are significantly higher in one ray than the other, they are coloured as per the ray numbers in each

comparison.
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RBV/TV disto-radially relative to all other rays. Gorilla Mc2

had significantly higher disto-ulnar RBV/TV than the other

rays, whereas Mc3 and Mc4 had significantly higher

RBVTV dorsally than Mc2 and Mc5 and were not signifi-

cantly different from each other (Table 3). For P. troglo-

dytes, variation in overall RBV/TV was chiefly driven by

dorso-palmar landmarks on PC1, which explained 32% of

the variation, whereas PC2 explained 15% of the varia-

tion and reflected differences in the disto-ulnar land-

marks. PC3 in P. troglodytes RBV/TV describes 12% of the

variation and is driven by radio-ulnar landmarks (Fig. 10).

P. troglodytes Mc2 had significantly higher RBTV/TV

disto-palmarly on its ulnar aspect relative to all other

rays, whereas Mc5 had significantly higher RBV/TV disto-

palmarly on its ulnar aspect compared with Mc2 and

Mc3. Mc3 and Mc4 were not significantly different from

each other as both had higher dorsal RBV/TV, and Mc4

was not significantly different from Mc5. In P. paniscus,

PC1 explained 36% of the variance in RBV/TV and was

driven by dorso-palmar landmarks, whereas PC2 explained

24% of the variance and reflected distal and non-distal

landmarks. However, no significant differences in RBV/TV

were found between P. paniscus rays (Table 3).

Variation in DA values did not show many significant

differences across the Mc heads but was broadly consistent

with the individual landmark comparisons. For all species

sampled, PC1 was driven by higher values at most land-

marks in PC1 and explained 19–45% of the variation. PC2

described 10–16% of the variation in DA and reflected dis-

tal as opposed to non-distal landmarks in all species (Sup-

porting Information Fig. S3). In Pongo, no ray was

significantly different from any other in overall configura-

tion of DA values (Table 3). In Gorilla, PC3 explained 9%

of the variance and was driven by radio-ulnar landmarks.

Mc5 in Gorilla had significantly higher DA at radial land-

marks than Mc2 and Mc3 did. The Gorilla Mc4 had

slightly, but significantly, higher DA over most landmarks

relative to Mc2. Both P. troglodytes and P. paniscus had

significantly lower DA at landmarks on the distal aspect of

Mc5 compared with Mc3 and Mc4. P. paniscus alone also

had significantly lower DA over most landmarks on Mc2

compared with Mc3.

Discussion

The aim of this study was to associate inferred loading dur-

ing particular hand postures in great apes during locomo-

tion with subchondral trabecular architecture across the

non-pollical metacarpal heads. The results confirm and

build upon previous studies of trabecular bone, most often

Fig. 7 Significant differences in RBV/TV between species, mapped to average models of each Mc head in (A) distal, (B) palmar and (C) dorsal views.

Where RBV/TV values at landmarks are significantly higher in one species than the other, they are coloured as per the species in each comparison.
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focused on only the Mc3 head (Tsegai et al. 2013; Barak

et al. 2017; Chirchir et al. 2017), demonstrating not only

that is this association possible but that regional trabecular

patterns within metacarpal heads, both within and across

species, can be statistically discerned. Further, locomotor

signals within trabecular structure are not limited to the

Mc3, and analysis of all non-pollical metacarpals can pro-

vide greater insight into inter-ray and interspecific differ-

ences in digit loading.

Relative trabecular bone volume fraction

Pongo

We predicted the orangutans would show significantly

higher RBV/TV in the disto-palmar region of the metacarpal

heads compared with other hominids and that there would

be no significant differences between rays, reflecting the

flexed or neutral McP joint posture of all the fingers that

characterises flexed-finger power, hook and double-locked

grips typically used during arboreal locomotion (Rose, 1988;

Sarmiento, 1988). We found general support for these pre-

dictions. Orangutans demonstrated significantly higher

RBV/TV in the disto-palmar aspect of the subchondral tra-

beculae in all non-pollical metacarpal heads than did all

other taxa. We also found few inter-ray differences, with

orangutans generally showing fewer significantly different

landmarks in RBV/TV compared with gorillas and chimps

(Fig. 5) and no significant difference in overall RBV/TV

between adjacent rays (Table 3). The only exception to this

was Mc2 of orangutans, which had significantly higher

RBV/TV in the disto-dorsal region of its ulnar aspect, relative

to the other rays (Figs 5 and 10). Overall, our results are

consistent with previous studies using differing methodolo-

gies that also found a higher BV/TV in the disto-palmar

region of the orangutan Mc3 head (Zeininger et al. 2011;

Tsegai et al. 2013; Skinner et al. 2015a; Chirchir et al. 2017)

and Mc5 head (Skinner et al. 2015a). It should be noted,

however, that the present study sample includes five of the

same Mc3 specimens and three of the Mc5 specimens used

by Tsegai et al. (2013) and Skinner et al. (2015a), respec-

tively. The generally similar pattern of RBV/TV distribution

across the Mc2-5 heads is consistent with using all of the

fingers during power, hook and double-lock grips to grasp

arboreal substrates (Rose, 1988). The diverging pattern

found in the orangutan Mc2 could reflect the relatively

more extended second digit posture during a diagonal dou-

ble-locked grip of very thin substrates, as pictured by Napier

(1960) in captivity (Supporting Information Fig. S4).

Fig. 8 Significant differences in DA between species, mapped to average models of each Mc head in (A) distal, (B) palmar and (C) dorsal views.

Where DA values at landmarks are significantly higher in one species than the other, they are coloured as per the species in each comparison.
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However, although challenging data to collect, more beha-

vioural studies of types and frequency of hand grips used

by orangutans during arboreal locomotion are needed to

substantiate this.

Gorilla

We predicted gorillas would show a significantly higher

dorsal distribution of RBV/TV in each metacarpal head com-

pared with all other hominids, reflecting McP joints loaded

in a hyper-extended posture during frequent knuckle-walk-

ing; this prediction was supported. RBV/TV in the gorilla

subchondral trabeculae was significantly higher dorsally

than in all other species (Figs 7 and 9). This RBV/TV pattern

was also found in previous studies of the Mc3 in gorillas

(Tsegai et al. 2013; Skinner et al. 2015a). The present results,

however, also revealed high RBV/TV along the disto-ulnar

region of the Mc2 head and disto-radial region of the Mc5

head, which was not predicted, although a similar pattern

was also found in the Mc5 by Skinner et al. (2015a). This

pattern is present in the average male and female RBV/TV

distribution (Supporting Information Fig. S5). The gorilla

fifth digit is more frequently used in knuckle-walking

(Inouye, 1994) and is more similar in length to the other

rays compared with that of chimpanzees (Susman, 1979;

Inouye, 1992), which may explain the more even distribu-

tion of knuckle-walking pressure across the digits in captive

gorillas (Matarazzo, 2013a,b). As the fifth digit is often not

involved in grips of thinner arboreal substrates (Neufuss

et al. 2017) and this RBV/TV pattern is mirrored in the Mc2,

it seems parsimonious to argue it reflects more frequent

Fig. 9 RBV/TV PCA plots showing species differences within each metacarpal head. Each plot shows the first two principle components (PC) in

each ray. For Mc5, PC3 is depicted with PC1 (inset), as PC2 and PC3 explain a similar amount of the variance (16 and 14%, respectively) in this

case. Landmarks at each extreme of a PC are coloured in grayscale, according to their signed contribution to that PC and plotted on a Mc3 in dis-

tal view. White landmarks indicate the highest signed contribution to the PC and black the least.
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and less variable knuckle-walking hand postures in gorillas

relative to chimpanzees and bonobos (Tuttle & Basmajian,

1978; Matarazzo, 2013a,b; Thompson et al. 2018). The Mc3

and Mc4 of gorillas also showed high RBV/TV dorsally, espe-

cially at the radio-ulnar margins (Figs 3 and 5), which is con-

sistent with the idea that the fingers work in concert to

buffer medio-lateral forces during locomotion (Chirchir

et al. 2017). The medio-lateral forces generated during

‘palm-back’ knuckle-walking, which places the McP joints

orthogonal to the direction of travel, may be considerable.

Pan troglodytes

We predicted that chimpanzees would have significantly

higher dorsal RBV/TV than orangutans but lower than in

gorillas, with a more homogeneous distribution of RBV/TV

within each metacarpal head and more inter-ray differ-

ences, reflecting their more varied locomotor regimen.

These predictions were generally supported. The disto-dor-

sal pattern of higher RBV/TV across the subchondral

metacarpus of chimpanzees (Fig. 3) was more dorsally con-

centrated than in orangutans and more distally extended

than in gorillas (Figs 7 and 9). This RBV/TV pattern is consis-

tent with previous studies of chimpanzee subchondral tra-

becular bone (Zeininger et al. 2011) and whole-epiphyseal

analyses that found a similar signal in the subchondral tra-

beculae of Mc3 and Mc5 (Tsegai et al. 2013; Skinner et al.

2015a). It should be noted, however, that the present study

sample includes five of the same Mc3 specimens and four of

the Mc5 specimens used by Tsegai et al. (2013) and Skinner

et al. (2015a), respectively. In contrast to these analyses,

studies using larger VOI methods have found higher BV/TV

in centrally placed VOIs relative to palmar or dorsally placed

VOI’s in the chimpanzee Mc3 head (Barak et al. 2017;

Chirchir et al. 2017). However, the use of fewer large VOIs

in these studies, as opposed to the many smaller VOIs pro-

duced by the whole-epiphysis approach employed here,

may exacerbate issues of VOI placement and size that have

been shown to have a dramatic effect on trabecular mea-

sures in the primate Mc3 (Kivell et al. 2011).

In partial support of our prediction, we found that chim-

panzees showed several significant differences in RBV/TV

between the Mc heads, although there were not more dif-

ferences than those found in gorillas. Specifically, RBV/TV in

chimpanzees was significantly higher palmarly in Mc2 and

Mc5 but higher distally in Mc3 and Mc4 (Figs 5 and 10). This

pattern may reflect relatively more weight-bearing by digits

3 and 4 during knuckle-walking than in the second or fifth

digit (Tuttle & Basmajian, 1978). Some captive chimpanzees

with injuries to digits 2 and 5 appeared to be unimpaired

when knuckle-walking and some healthy individuals were

observed flexing these digits so that they did not bear

weight during this mode of locomotion (Tuttle, 1967). Lar-

ger captive chimpanzees have been observed using their

second digit significantly less often than gorillas of equiva-

lent size during knuckle-walking and chimpanzees of all

sizes used their fifth digit significantly less often, and

loaded it less than gorillas did (Inouye, 1994; Wunderlich &

Jungers, 2009; Matarazzo, 2013a,b). Matarazzo (2013a,b)

found the third digit regularly lifted-off last during ‘palm-

back’ knuckle-walking in captive chimpanzees and that

peak pressure was often experienced by the third digit.

Wunderlich & Jungers (2009) also found that peak pressures

Table 3 Permutational MANOVAs on the first three principle components between all groups.

RBV/TV MC2 RBV/TV MC3 RBV/TV MC4 RBV/TV MC5 RBV/TV Ggg RBV/TV Pp RBV/TV Ppy RBV/TV Pt

All 0.0001 0.0001 0.0001 0.0001 All 0.0001 0.1209 0.0001 0.0001

Ppy-Pp 0.0066 0.0006 0.0006 0.0006 2–3 0.0258 n/s 0.0306 0.0012

Pt-Pp 1.0000 0.6900 1.0000 1.0000 3–4 1.0000 n/s 0.9900 1.0000

Pp-Ggg 0.0006 0.0006 0.0012 0.0006 4–5 0.0006 n/s 0.0924 0.2340

Pt-Ggg 0.0006 0.0120 0.0012 0.0006 2–5 0.0006 n/s 0.0012 0.0498

Pt-Ppy 0.0054 0.0006 0.0006 0.0006 3–5 0.0006 n/s 0.1968 0.0006

Ppy-Ggg 0.0006 0.0006 0.0006 0.0006 2–4 0.0012 n/s 0.0018 0.0084

DA MC2 DA MC3 DA MC4 DA MC5 DA Ggg DA Pp DA Ppy DA Pt

All 0.0001 0.0001 0.0001 0.0001 All 0.0003 0.0001 0.2737 0.0018

Ppy-Pp 0.0006 0.0222 0.0636 0.0024 2–3 0.4032 0.0264 n/s 0.4710

Pt-Pp 0.6234 1.0000 1.0000 1.0000 3–4 1.0000 0.4302 n/s 1.0000

Pp-Ggg 0.0402 0.0102 0.0378 0.0006 4–5 0.0900 0.0012 n/s 0.0162

Pt-Ggg 0.0180 0.0336 0.0828 0.0342 2–5 0.0096 0.3318 n/s 0.3894

Pt-Ppy 0.0054 0.1626 0.0135 0.0036 3–5 0.0108 0.0012 n/s 0.0036

Ppy-Ggg 0.0006 0.0006 0.0018 0.0036 2–4 0.0114 0.0930 n/s 1.0000

Species abbreviations are: Ggg, Gorilla; Pt, Pan troglodytes; Pp, Pan paniscus; Ppy, Pongo spp. Subsequent pair-wise tests were carried

out if the omnibus test was significant; otherwise pair-wise tests are marked as non-significant (N/S). All P-values reported are subse-

quent to a Bonferroni correction and are marked in bold where significant.
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were higher on digits 3 and 4 than on digits 2 and 5 when

young chimpanzees practised arboreal knuckle-walking and

when they used a ‘palm-back’ posture during terrestrial

knuckle-walking. Therefore, it could be argued that the

more palmar RBV/TV distribution in Mc2 and Mc5, relative

to Mc3 and Mc4, might reflect less loading in McP hyper-

extension during knuckle-walking and a need to flex digits

2 and 5 during arboreal grasping. Marzke & Wullstein

(1996) have argued that the fifth digit should be the most

flexed in diagonal power grips, known to be used by wild

chimpanzees while vertically climbing (Hunt, 1991; Neufuss

et al. 2017).

That being said, in previous hand pressure studies, all

mature chimpanzees experienced peak pressures on digits

2–4 when terrestrially knuckle-walking, and the second

digit usually lifts off during ‘palm-in’ knuckle-walking

(Wunderlich & Jungers, 2009; Matarazzo, 2013a,b). Further,

the second digit should be the most extended during

diagonal power grips (Marzke & Wullstein, 1996), which is

in contradiction to the relative flexion thought to be indi-

cated here by the relatively palmar RBV/TV pattern found in

the chimpanzee Mc2 head. Therefore, in the absence of

kinematic and kinetic studies of locomotor hand postures in

wild chimpanzees, we suggest that this pattern may reflect

more varied hand postures and distribution of pressure

across the digits during knuckle-walking (Wunderlich & Jun-

gers, 2009; Matarazzo, 2013a,b) or more frequent arboreal

grasping compared with gorillas, or a combination of both

(Remis, 1995; Doran, 1996; Thorpe & Crompton, 2006).

Pan paniscus

Given the general similarities in locomotion and hand use

between chimpanzees and bonobos, we predicted that

bonobos would have a RBV/TV pattern that was very similar

to that of chimpanzees, but with a more homogenised dis-

tribution of RBV/TV within each metacarpal head. Our

Fig. 10 RBV/TV PCA plots showing ray differences within each species. Each plot shows the first two principle components (PC) in each species,

except for Pan troglodytes, where PC3 is depicted with PC1 (inset), as PC2 and PC3 explain a similar amount of the variance (15 and 12%, respec-

tively) in this case. Landmarks at each extreme of a PC are coloured in greyscale, according to their signed contribution to that PC and plotted on

a Mc3 in distal view. White landmarks indicate the highest signed contribution to the PC and black the least.
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results supported these predictions; bonobos showed disto-

dorsally higher RBV/TV that was more distally-extended

than in gorillas and more dorsally concentrated than that

of orangutans (Figs 3, 7 and 9). Bonobos differed from

chimpanzees in that they possessed almost no significant

inter-ray differences and they showed the most landmarks

closest to the mean of BV/TV throughout the trabecular sur-

face of each head (i.e. RBV/TV being ~ 1; Figs 3, 5 and 10).

This RBV/TV distribution is consistent with the expectation

raised by Tsegai et al. (2013) that bonobos would have an

intermediate Mc3 trabecular structure between that of Afri-

can apes and Asian apes (Fig. 9), and the intermediate

thickness of Mc3 cortical bone in this species (Susman,

1979). If the relatively higher dorsal RBV/TV in chimpanzee

Mc3 and Mc4 is a knuckle-walking signal, then the lack of it

in bonobos, as well as the significantly higher palmar RBV/

TV of Mc3, may reflect either more loading of a flexed McP

joint consistent with the presumed greater arboreality in

this species (Alison & Badrian, 1977; Susman et al. 1980; Sus-

man, 1984; Crompton et al. 2010) or direct palmar loading

of the metacarpal head as a result of a significant amount

of arboreal palmigrady (Doran, 1993; Doran & Hunt, 1996).

Trabecular anisotropy

In contrast to the RBV/TV results, the degree of anisotropy

(DA) in the subchondral trabecular bone was less variable,

both in interspecies and inter-ray comparisons. Interest-

ingly, every species studied possesses higher average DA val-

ues across the most dorsal aspect of each metacarpal

(Fig. 4). As this pattern also appears in orangutans, it is

likely not reflective of hyper-extension of the McP during

knuckle-walking but may instead reflect fewer trabeculae

at the limit of the sub-articular surface. Fewer subchondral

trabecular struts would reduce the variability of alignment

and thus increase DA. The main significant differences in

DA were found in orangutans, which were generally more

anisotropic than any other taxon, especially gorillas (Figs 4,

6, S2 and S3, Table 3). This did not support our prediction

that orangutan DA would be significantly higher in the

disto-palmar region, or that gorilla DA would be signifi-

cantly higher in the dorsal region of the metacarpal heads

compared with other hominids. Given this lack of specific

regional differences it is difficult to attribute the general

lack of inter-ray differences in orangutans and gorillas to

functional grips as per our predictions (Figs 6 and S3). Con-

versely, chimpanzees and bonobos did partially support our

predictions, as they showed the least significantly different

landmarks in DA between them (Fig. 8) and the most inter-

ray differences within each species (Fig. 6), though again it

is difficult to link this to specific hand postures.

High DA in orangutans did not support our predictions

and appears contradictory to previous results showing sig-

nificantly lower DA in orangutans and other suspensory

taxa (Tsegai et al. 2013). However, Tsegai et al. (2013)

quantified and averaged trabecular DA throughout the

entire Mc3 head, as opposed to just the subchondral trabec-

ulae, which can mask the signal of higher DA in particular

regions of the head. In particular, subchondral trabeculae

are responsible for the initial dissipation of load from the

articular, compact cortical bone through to the more inter-

nal trabecular structure in long bones such as metacarpals

(Currey, 2002). Thus it may be possible that trabeculae in

this region are more constrained in their orientation, as

they must link the cortical shell of the metacarpal head and

the deeper trabecular structure, explaining the lack of vari-

ability in DA in our sample. If this is true, the variation in

DA we did find, significantly higher DA in orangutans than

in other species, might be due to a general lower number

of trabeculae in orangutans. However, Chirchir et al. (2017)

also found that DA was consistently, if not significantly,

higher in orangutans than chimpanzees in all three of their

VOIs which were sampled in most of the Mc3 head. Further,

higher DA has been found at the superior-central region

than in other regions of the proximal Pongo humerus (Kiv-

ell et al. 2018). Therefore, it is unlikely that the significantly

higher DA in orangutans is solely an artefact of sampling

subchondral trabeculae.

High subchondral DA in orangutans may reflect a lower

extension range of motion (19°) compared with that of

African apes (50°) (Napier, 1960; Rose, 1988). Although

orangutans have been assumed to load their hands in a

greater range of postures to accommodate their diverse

arboreal locomotor repertoire relative to the frequent and

consistent knuckle-walking postures of African apes (Tsegai

et al. 2013), the orangutan McP joint will, presumably,

always been in a neutral-to-flexed posture when grasping

arboreal substrates. Indeed, while variability in DA values

for orangutans appears to be higher than in other taxa

studied, higher average DA values are not solely driven by

outlying individuals (Fig. S2) or, on further interrogation,

by individuals of a particular species or sex. An analysis of

trabeculae in the whole Mc3 head has reported similar

intra-species variability in orangutans (Tsegai et al. 2013).

Yet one constant across orangutan species and sexes is their

high frequency of arboreal locomotion, requiring flexed

McP grasping and perhaps a more stereotypically aligned

trabecular structure, reflected in the high average DA

found here. In contrast, African apes load their McP joints

in both hyper-extension during knuckle-walking and a

range of neutral-to-flexed postures during arboreal loco-

motion. The greater isotropy found within the subchondral

trabeculae of African apes may reflect loading of the McP

joint from multiple directions during arboreal, as well as

terrestrial, behaviours.

Inferring bone functional adaptation

Many explorative comparative anatomy analyses, including

the present study, can be thought of as adaptationist
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(Gould & Lewontin, 1979), presenting functionally adaptive

explanations for the observed data that are not easily falsi-

fied (Smith, 2016). Here, however, we submit that as the

clearest differences in subchondral RBV/TV and DA patterns

in the metacarpal heads are between the two species with

the most disparate locomotor modes (orangutans and goril-

las), and the least differences are between the two species

with the most similar locomotor modes (chimpanzees and

bonobos), this offers a kind of informal falsification. If the

chimpanzees and bonobos were the most disparate in tra-

becular pattern, this would effectively falsify the broad

underlying logic of our predictions. Conversely, with respect

to our more specific predictions that were not confirmed,

for example those regarding regional DA in Pongo and

Gorilla, alternative data must be sought to explain these

results (as detailed above). For example, future work that

scales DA by trabecular number, analyses of the differences

between subchondral and deeper trabecular structure, or

detailed studies of locomotor hand postures in wild Pongo,

could all potentially falsify some of these explanations. Nev-

ertheless, it must be noted that the broader logic underly-

ing more predictions holds for DA, as chimpanzees and

bonobos did not display the most significant differences.

In the same vein, it could be argued that the lack of dif-

ferences between chimpanzees and bonobos is due to their

close phylogenetic distance rather than their similar loco-

motor regimes. Trabecular bone structure is controlled, at

least to some extent, by genetic factors (Lovejoy et al. 2003;

Havill et al. 2010; Judex et al. 2013; Alm�ecija et al. 2015)

and the role of trabecular remodelling is not solely func-

tional (Skinner et al. 2015b); for example, trabecular bone is

also important for mineral homeostasis (Clarke, 2008). There

were clear differences in absolute BV/TV, however, such

that bonobos demonstrated much greater subchondral BV/

TV in all elements of the hand studied compared with chim-

panzees (Supporting Information Fig. S7). This difference

has been previously reported within the Mc3 of the same

individuals in this study for which the phylogenetic influ-

ence was assessed (Tsegai et al. 2013). The relative measure

used here appears to have effectively controlled for this dif-

ference in subchondral metacarpal head BV/TV. This sug-

gests that the absolute difference in BV/TV is not functional

in origin, as it is unlikely bonobos that practise a form of

locomotion very similar to that of chimpanzees but with

remarkably greater force. The only comparable kinematic

data available demonstrate that both captive chimpanzees

and captive bonobos experience similar peak pressures on

their fingers during arboreal knuckle-walking (Wunderlich

& Jungers, 2009; Samuel et al. 2018). If not functional in ori-

gin, the absolute difference in BV/TV between chimpanzees

and bonobos may be systemic. Though a study of metatar-

sal trabeculae failed to find this difference in absolute BV/

TV between chimpanzees and bonobos (Griffin et al. 2010),

Tsegai et al. (2018) have noted that systemic differences in

BV/TV between species may be variably pronounced at

different anatomical sites. While the reasons for systemic

differences in trabeculae might be varied, e.g. hormones,

diet and disparate intestinal biomes (Tsegai et al. 2018), the

difference is marked between these phylogenetically close

species. As a corollary it would seem that there is little rea-

son to suspect non-functional systematic forces are driving

the similarities between RBV/TV in Pan species. Although

the relative measure appears to have effectively controlled

for possible systemic differences in subchondral trabeculae

of the non-pollical metacarpal heads, there are still small

differences between the species which, by process of elimi-

nation, appear to be functional in origin.

Work on intra-species variation in a large sample of a sin-

gle species also supports this idea of both a systemic and

functional signal in trabecular architecture. While current

studies have focused on humans, likely due to the availabil-

ity of specimens, data from several anatomical sites have

demonstrated lower BV/TV in sedentary humans relative to

mobile forager populations, primarily due to lower

mechanical loading (Chirchir et al. 2015; Ryan & Shaw,

2015). Within the lower limb, this trabecular difference

appears to be superimposed on a pattern of increasing tra-

becular gracility with increasingly distal elements of the

limb (Saers et al. 2016). The transition to sedentism in

human populations provides a natural experiment that

allows the identification of a trabecular functional signal

superimposed onto a structural limb-tapering signal, which

is also found in cortical bone (Saers et al. 2016). We argue

that the phylogenetic proximity and similar locomotion of

Pan also provides a natural experiment that begins to sepa-

rate functional and systemic differences between these spe-

cies, as seen in the present RBV/TV results. Future work

should consider the possibility of clarifying functional and

systemic signals in trabecular bone.

It would be interesting to apply these methods to the pol-

licial metacarpal of hominids, and perhaps a larger sample

of primates, in order to test for manipulative behaviour sig-

nals that may lie in the subchondral trabecular bone. Even

this relatively small comparative sample may be used to

contextualise fossil hominin trabeculae to shed light on

their habitually loaded hand postures. Though relatively

complete fossil hominin hands are rare in the archaeologi-

cal record, this comparative sample demonstrates that iso-

lated Mc2 or Mc5 elements are more important than

previously thought for identifying habitual hand use in our

ancestors.

Conclusion

Using a geometric morphometric approach, we demon-

strated significant differences in the distribution of sub-

chondral trabecular RBV/TV across great apes that were

consistent with our predicted differences in McP joint

loading during locomotion. Results of this study generally

confirm previous analyses of metacarpal head trabecular
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structure that have largely focused only on the Mc3, but

provide for the first time a statistically robust comparison

using the whole-epiphysis approach. By building upon

previous work to look at trabecular structure across all of

the non-pollical metacarpals, we revealed novel RBV/TV

patterns in the inter-ray comparisons within Gorilla and

Pan that are consistent with differences in hand posture

during knuckle-walking and the frequency of arboreal

locomotion. However, these inferences require testing

with more detailed kinematic and kinetic analyses of the

hand, ideally in wild African apes. Contrary to our predic-

tions, we found few significant differences in DA across

taxa, with Pongo demonstrating significantly higher DA

than African ape taxa. We conclude that the interspecific

variation in subchondral trabecular RBV/TV revealed here

is consistent with what is currently known about great

ape hand use and McP joint loading and, as such, pro-

vides a valuable comparative context in which to inter-

pret the trabecular structure of fossil hominoid or

hominin metacarpal heads.
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version of this article:

Fig. S1. Repeatability tests of landmarks.

Fig. S2. DA plots showing species differences within each meta-

carpal head.

Fig. S3. DA PCA plots showing ray differences within each spe-

cies.

Fig. S4 A captive orangutan engaged in a diagonal ‘double-

locked’ grip around a piece of string.

Fig. S5. Gorilla average RBV/TV by sex, mapped to average mod-

els of right Mc heads in distal view for (A) Male Mc5, (B) Male

Mc2, (C) Female Mc5 and (D) Female Mc2, specimens. Note that

the radio-ulnar bias is present in both sexes (see main text for

details).

Fig. S6. Landmark template projected onto Mc3s of individual

(A) Gorilla gorilla, (B) Pan troglodytes, (C) Pan paniscus and (d)

Pongo pygmaeus specimens.

Fig. S7. Species average absolute BV/TV, mapped to average

models of each Mc head in (A) distal, (B) palmar and (C) dorsal

views.

Table S1. Descriptive statistics of absolute Z-scores from signifi-

cant pair-wise inter-species landmark comparisons.

Table S2. Descriptive statistics of absolute Z-scores from signifi-

cant pair-wise inter-ray landmark comparisons.
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