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Abstract: CO2 leakage from transmission pipelines in carbon capture and storage (CCS) systems 

may seriously endanger the ecological environment and human health. Therefore, an accurate and 

reliable leak localization method of CO2 pipelines is a pressing need. In this study, a novel method 

based on the combination of wavelet packet algorithm and the radial basis function network 

(RBFN) is proposed to realize the leak localization. Multiple acoustic emission sensors are 

deployed to collect leakage signals of CO2 pipelines firstly. The characteristics of the leakage 

signals from the AE sensors under different pressures are analyzed in both time and frequency 

domains. Further, leakage signals are decomposed into three layers using the wavelet 

decomposition theory.  Wavelet packet energy and maximum value, time difference calculated by 

cross-correlation are selected as input feature vectors of the RBFN. Experiments were carried out 

on a laboratory-scale test rig to verify the validity and correctness of the proposed method. 

Leakage signals at different positions under different pressures were obtained on the CO2 pipeline 

leakage test bench. Compared with the time difference of arrival (TDOA) method, the relative 

error obtained using the proposed method is less than 2%, which has certain engineering 

application prospects. 

Keywords: Leak detection; Acoustic emission; Carbon capture and storage; Wavelet packet; 

Radial basis function network 

1 Introduction 

   Carbon capture and storage technology is one of the most promising options to solve the 

global environmental crisis [1-2]. CO2 transportation by the large-scale long-distance pipelines 

may pass through factories, ports and cities. Leakage accident will seriously endanger the 

ecological environment and human health [3]. Therefore, leak detection and localization of 

pipelines is indispensable for the CO2 transportation. 

   At present, leak detection methods mainly include mass balance method, tracer method, 

imaging method, fiber optic method and acoustic emission (AE) method. Mass balance method [5] 

needs to be equipped with high accuracy mass flow sensors, but most of transmission pipelines are 

equipped with low accuracy flow meters for cost reasons. Tracer method [6] has a long operation 

time and a large workload, and it is difficult to realize on-line real-time detection of the pipeline. 

Image method includes thermal imaging method [7] and absorption imaging method [8]. It is 

difficult to continuously and real-time detect such long-scale equipment as pipelines using the 

image method [9]. In addition, the buried depth of the pipeline is also limited using the image 

method. The fiber optic method [10] has high precision of leak localization, however, it needs to 
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dig up the soil above the pipe for installation and maintenance. AE method [11-15] use a few of 

sensors to receive leakage signals propagating along the pipelines. It has the advantages of low 

cost, non-intrusiveness, fast response and high sensitivity. Yu et al. [16] proposed a leak detection 

method on small leakage on galvanized steel pipelines based on AE technique, in which a support 

vector machine (SVM) method was used to detect the leaks. Mostafapour et al. [17] proposed a 

leak localization algorithm based on wavelet transform and cross-correlation technique. Wavelet 

transform was used to remove the main noise of the leakage signals, and the leak localization was 

realized by the TDOA method. Results demonstrated that the localization error was less than 5%. 

Davoodi et al. [18] proposed a leak localization method using wavelet transform and 

cross-correlation. Through the signal decomposition and reconstruction, the localization error was 

reduced to less than 3%. Zhu et al. [19] used a model based on factor analysis and k-medoids 

clustering method for the leak localization and the error was less than 3.72%. Cui et al. [20] 

proposed a weighted TDOA method based on the magnitude of the cross-correlation coefficient 

and empirical mode decomposition (EMD) algorithm with a localization error less than 5%. Yan et 

al. [21] is proposed a near-field beamforming technique to locate the leak hole on the shell of a 

pressure vessel. The proposed method can scan the detection area with the localization error less 

than 4.1%. Tao et al. [22] presented an improved multi-array TDOA localization algorithm to 

determine the precise leak location. A localization error less than 2 mm was achieved. Liao et al. 

[23] proposed a method based on time delay estimation (TDE) which utilized three ultrasonic 

sensors arranged in an equilateral triangle. The leak can be located according to time delays 

between every two sensor signals. 

   In summary, the AE technology can effectively achieve the leak location, but the 

above-mentioned methods of detecting leak mainly focus on the cross-correlation method or the 

identification according to a certain leakage characteristic parameter, which has certain limitations. 

  Neural network is an effective method of the signal recognition relying on its good self-learning 

ability and strong adaptive ability [24]. Zadkarami et al. [25] located the leak and determined its 

severity using the neural network. Alexandre et al. [26] proposed a leak localization model using 

echo state neural networks and the results showed it was feasible. 

   Although neural network has the ability to reduce the noise effect and provide a quick analysis 

for a large number of data, the neural network structure and input characteristic parameters have a 

significant impact on the accuracy of leak location. Therefore, the main purpose of this study is to 

improve the localization accuracy through extracting the main characteristic parameters related to 

the pipeline leakage signals by wavelet packet decomposition. The time difference, wavelet energy 

and maximum value of the leakage signals obtained by the wavelet packet decomposition 

algorithm are regarded as the inputs of the RBFN and the leak position is regarded as the output of 

the RBFN. A pipeline leak localization model based on the combination of wavelet packet 

decomposition and RBFN is established under different pressure conditions. 

2 Feature Extractions of Leakage Signal Based on Wavelet Packet Decomposition 

2.1 Spectral analysis of leakage signals at different positions 

   The propagation path of leakage signal is related to various factors such as the location of the 

leakage source, the geometric structure of the detected object and the position where the acoustic 

signal sensors are distributed. In order to analyze the characteristics of the leakage signal at 

different locations, three pairs of sensors with an equal spacing of 2 m are placed on the CO2 

transmission pipeline as shown in Fig.1. Here, the location of the leakage source is defined as the 



 

origin of the coordinates, then CH1=-180 cm, CH2=-160 cm, CH3=-140 cm, CH4=20 cm, 

CH5=40 cm and CH6=60 cm. 

CH1 Source 

of leak

Carbon dioxide pipeline

-140cm

CH2 CH3 CH4 CH5 CH6

-160cm

-180cm 20cm

40cm

60cm

6m

 

Fig.1 The installation position of the acoustic emission sensors 

   The frequency spectra of the leakage signals at different positions are shown in Fig. 2. 

 

 

Fig.2 Frequency spectra of the leakage signals at different positions 

It can be seen from Fig.2 that the leakage signal is a non-stationary random signal containing 

many kinds of interference noise which randomly distributes over the entire sampling time range, 

so the time domain characteristics of the waveform cannot be detected separately. Similarly, it is 

not possible to detect the frequency domain characteristics of a wave signal in a single manner, so 

the two are combined to reflect the complete acoustic signal characteristics. 

2.2 Amplitude extraction of leakage signals 

With the increase of signal propagation distance, the energy attenuation, the corresponding 

signal amplitude attenuation trend will also be present. Signal amplitude can be selected as the 

feature vector of pipeline leak location. The extraction process of the signal amplitude 

characteristic is as follows: 

Step1: The signals of the six channels are filtered by soft threshold to remove noise signals; 

Step2: The signal of each channel is divided into three sections, and the maximum amplitude 

of each section is acquired; 



 

Step3: The average value of the maximum amplitude for each section in the ith channel is 

regarded as the maximum amplitude value of the leak signal collected by the ith signal channel 

under different leak pressures, denoted as 𝑋1𝑖
𝑝

 , (i=CH1, CH2…, CH6), p is the number 

corresponding to different leak pressures.  

Eventually the maximum amplitude of each channel under different pressures is shown in 

Table1. 

Table1 Maximum amplitude of each channel under different pressures 

Pressure (MPa) 
Amplitude (V) 

CH1 CH2 CH3 CH4 CH5 CH6 

0.1 0.0950 0.1289 0.1019 0.1160 0.1252 0.1028 

0.2 0.2092 0.2456 0.2181 0.2644 0.2698 0.2374 

0.3 0.4209 0.5313 0.3902 0.4763 0.4442 0.4256 

2.3 Wavelet packet energy of leakage signals 

   Wavelet analysis can be used in multi-resolution analysis in the time and frequency domains 

because of its good sense of location [27-29]. Wavelet transform can represent the signal with low 

frequency information as the main component well, but it can’t decompose and represent a lot of 

detailed information. In contrast to this, wavelet packet decomposition can divide the leak signals 

into multilevel frequency band and can be further decomposed high frequency part of leakage 

signal, which makes it more accurate in signal analysis as shown in Fig.3. 
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Fig.3 Schematic of three layer wavelet packet decomposition. 

Wavelet packet decomposition algorithm is defined as follows: 
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where 1, ,i k nd  is the upper wavelet packet decomposition results; , ,2i j nd and , ,2 1i j nd  are the next 

level decomposition results of the wavelet packet decomposition; i is measure indicator; j is 

position indicator; n is the frequency index; k  is the variable; 0h  and 1h  are multi-resolution filter 

coefficients[30]. 

Wavelet packet reconstruction algorithm is defined as follows: 

  1, , 0( 2 ) , ,2 , ,2 11 2i j n j k i k n i k nj k
k

d h d h d  
                   （2） 

According to Parseval energy integral equation, the wavelet packet energy of the signals in 

time domain is defined as follows: 
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（3） 

The time domain waveform signals are shown in Fig.4.  

 

 Fig.4 Time domain waveform signals under the pressure of 0.3MPa 

Leakage signals are decomposed using wavelet packet algorithm and then wavelet packet 

decomposition coefficients. 

The wavelet packet decomposition coefficients of the leak signals are decomposed by using 

wavelet packet when the leakage of pipelines located at the leakage point. The choice of mother 

wavelet has an important influence on the results of the analysis. In this study the signal is 

decomposed using db1 wavelet packet. 

Extracting the third layer of signal and analysis respectively, the total signals can be 

represented as follows: 

0 30 31 32 33 34 35 36 37S S S S S S S S S              （4） 

Assume that the original signal S0, the lowest frequency component is 0, and the highest 

frequency component is 3MHz, the range of frequencies of eight components 𝑆3𝑗(𝑗 = 0,1, … ,7) 

is shown in Table 2. The feature of the leakage signals extracted by wavelet packet from CH1 to 

CH6 (0.3Mpa) is shown in Fig.5. 

Table 2 Frequency dimensions of every fact 

Signal S30 S31 S32 S33 S34 S35 S36 S37 

Frequency

（kHz） 
0-375 375-750 750-1125 1125-1500 1500-1875 1875-2250 2250-2625 2625-3000 
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Fig.5 The features of the leakage signals extracted by wavelet packet from CH1 to CH6 (0.3Mpa) 

Take an example to analyze the wavelet packet energy of each frequency band, it is shown in 

Table 3. 

Table 3 The wavelet packet energy of each frequency band under the pressure of up to 0.3MPa 

Pressure (MPa) Channel 
Amplitude 

S30 S31 S32 S33 S34 S35 S36 S37 



 

0.1 

CH1 5.0334 2.7228 0.9423 1.6613 0.4451 0.7467 0.2305 0.5226 

CH2 4.6943 2.5524 0.9180 1.5180 0.4378 0.6841 0.2169 0.4831 

CH3 4.0737 2.8254 1.0676 1.3941 0.5156 0.6322 0.2050 0.4348 

CH4 3.0397 1.8056 0.6021 1.0871 0.2859 0.4883 0.1419 0.3506 

CH5 2.8284 2.1578 0.6425 1.4612 0.2978 0.6526 0.1715 0.4740 

CH6 3.4029 1.9471 0.6696 1.1655 0.3139 0.5255 0.1579 0.3651 

0.2 

CH1 5.8349 2.8972 1.1119 1.4867 0.5344 0.6772 0.2231 0.4533 

CH2 5.9070 2.7918 1.0556 1.4782 0.5060 0.6639 0.2216 0.4823 

CH3 5.5612 3.3310 1.3651 1.4554 0.6641 0.6697 0.2307 0.4185 

CH4 7.6100 3.4572 1.2980 1.8196 0.6252 0.8247 0.2583 0.5721 

CH5 6.3680 3.5702 1.3011 1.9862 0.6216 0.8993 0.2719 0.6031 

CH6 6.3229 2.9006 1.0960 1.5970 0.5245 0.7294 0.2392 0.4656 

0.3 

CH1 12.4840 4.2708 1.8270 1.7133 0.8942 0.7847 0.2679 0.5161 

CH2 12.7242 4.2465 1.8229 1.7375 0.8942 0.7917 0.2703 0.5215 

CH3 12.0996 5.8265 2.5511 2.1973 1.2459 1.0173 0.3654 0.6004 

CH4 14.7358 5.2662 2.1970 2.3822 1.0743 1.0850 0.3542 0.7177 

CH5 14.0106 5.5740 2.2040 2.8659 1.0723 1.2952 0.3798 0.9015 

CH6 13.8933 5.1440 2.0490 2.3096 0.9970 1.0472 0.3232 0.7269 

It can be seen from Table 3 that the measured signal mutation of the pipeline can be clearly 

obtained by the wavelet packet energy S30 which decays with distance. Therefore, the leak 

location is related to wavelet packet energy S30, denoted as 𝑋2𝑖
𝑝

 . 

2.6 Cross-correlation analysis of leak signals 

In order to enhance the robustness of the leak localization system of the CO2 pipeline, other 

type of feature vectors related to the leak should be selected. Here the time difference is chosen as 

one of the feature vectors. Because the [3,0] node of wavelet packet decomposition contains the 

characteristic frequency of the leakage signal, the cross-correlation analysis of the signal S30 of 

each channel of wavelet packet decomposition is taken to obtain the cross-correlation time 

difference of any two channels as a feature vector. The cross-correlation results for any two 

channels are shown in Fig.6. 



 

  

Fig.6 The cross-correlation results of any two channels (0.3Mpa) 

It can be seen from Fig.6 that the peak of the cross-correlation function is not very clear and 

sharp. In some cases, there are several peaks with similar values. This phenomenon illustrates that 

leak localization method only based on the cross-correlation for time delay is not reliable. Table 4 

shows the results of time difference calculated by the cross–correlation function. 

Table 4 Time difference between any two channels under different pressures 

Pressure 

(MPa) 

Time difference (ms) 
CH1 

CH6 

CH1 

CH5 

CH1 

CH4 

CH2 

CH6 

CH2 

CH5 

CH2 

CH4 

CH3 

CH6 

CH3 

CH5 

CH3 

CH4 

0.1 0.2400 0.3013 0.0960 0.2520 0.2797 0.3427 0.0453 0.3360 0.3640 

0.2 0.2577 0.2817 0.3033 0.1757 0.1147 0.2267 0.3520 0.2557 0.2530 

0.3 0.1893 0.2507 0.2160 0.1760 0.1777 0.3227 0.2090 0.1387 0.1483 

It can be seen from Fig.6 and Table 4 that when CH1, CH2 and CH3 are fixed, as the 

distances of CH4, CH5 and CH6 increase, the correlation coefficient decreases and the time 

difference between any two channels also decreases. Therefore, the time difference between two 

sensors based on the correlation coefficient is related to the leak location, which can be regarded 

as a feature vector to improve the accuracy of the leak location, denoted as 𝑋3𝑙,𝑟
𝑝

(𝑙 = 1,2,3; 𝑟 =

4,5,6), where l is the channel number on the left of the leak source and r is the channel number on 

the right of the leak source. However, the time difference between the two sensors on the 

individual channels is abnormal, such as CH1-CH4 in the pressure of 0.1Mpa, CH2-CH5 and 

CH3-CH6 in the pressure of 0.2Mpa, CH1-CH4 and CH3-CH6 in the pressure of 0.3Mpa. This is 

because the AE sensors are influenced by unknown disturbance during collecting the leakage 

signal. Thus, leak localization using the time difference method based on the correlation 

coefficient alone will produce a large error (as shown in Table 6). 

3 Leak localization of CO2 pipelines based on the Wavelet-RBFN 



 

3.1 Leak localization modeling of CO2 pipelines based on the Wavelet-RBFN 

The RBFN is well known in the field of approximation of nonlinear function and pattern 

recognition. In particular, the RBFN has a fast convergence property because of a simple 

architecture and a similar feature to the fuzzy inference system [31]. The peak signal  𝑋1𝑙,𝑟
𝑝

 on 

both sides of the leakage source, the wavelet energy extracted by wavelet 𝑋2𝑙,𝑟 
𝑝

on both sides of 

the leakage source and the time difference  𝑋3𝑙,𝑟
𝑝

 on both sides of the leakage source are taken as 

the input of the RBFN, where  𝑋1𝑙,𝑟
𝑝

,  𝑋2𝑙,𝑟
𝑝

,  𝑋3𝑙,𝑟
𝑝

 are described by (5). 

 𝑋1𝑙,𝑟
𝑝

= [X1𝑙
𝑝

, X1𝑟
𝑝

]

 𝑋2𝑙,𝑟
𝑝

= [X2𝑙
𝑝

, X2𝑟
𝑝

]

 𝑋3𝑙,𝑟
𝑝

= [𝑋3𝑙,𝑟
𝑝

]

                               (5) 

When the leak of the CO2 pipeline occurs, the energy will be changed greatly. Therefore, it can 

be used as an element of the feature vector to determine the leak location of the pipeline. Total 

feature vector is given in (6). 

𝑇 = [𝑋1𝑙
𝑝

, 𝑋1𝑟
𝑝

, 𝑋2𝑙
𝑝

, 𝑋2𝑟
𝑝

, 𝑋3𝑙,𝑟
𝑝

]
                         (6)

 

When the energy is large, the value of 𝑋1𝑙
𝑝

, 𝑋1𝑟
𝑝

, 𝑋2𝑙
𝑝

, 𝑋2𝑟
𝑝

, 𝑋3𝑙,𝑟
𝑝

 are large and not conducive 

to analysis. Here, the feature vector T is normalized as 𝑇′. 

𝑇′ = [𝑋1
′ , 𝑋2

′ , 𝑋3
′ , 𝑋4

′ , 𝑋5
′ ]                           (7) 

where 𝑋1
′ =

𝑋1𝑙
𝑝

𝐸
; 𝑋2

′ =
𝑋1𝑟

𝑝

𝐸
; 𝑋3

′ =
𝑋2𝑙

𝑝

𝐸
;𝑋4

′ =
𝑋2𝑟

𝑝

𝐸
; 𝑋5

′ =
𝑋3𝑙,𝑟

𝑝

𝐸
. 

E is calculated by (8). 

𝐸 = √(𝑋1𝑙
𝑝

)2 + (𝑋1𝑟
𝑝

)2 + (𝑋2𝑙
𝑝

)2 + (𝑋2𝑟
𝑝

)2 + (𝑋3𝑙,𝑟
𝑝

)2            (8) 

After the training of the RBFN, the mathematical model of leak detection is obtained, and the 

leak localization model using the known sensor leak signals based on the combination of wavelet 

and RBF neural network is established in Fig.7. 
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Fig.7 The architecture of a Wavelet-RBFN under different pressures 

In this paper, the Gaussian function is selected as the receptive field unit and the weighted sum 

method is used to calculate the output of the RBFN, then the output is described as (9). 
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                           (9) 

where q is the number of hidden nodes; jc is the weight connecting the jth hidden node to the 

output node; ( )jR X is the jth Gaussian function;
N

jm R is the jth center vector; j is the jth

standard deviation. In this paper, the RBFN is used to realize the leak location of the CO2 pipeline. 

3.2 Leak localization process of the CO2 pipeline based on the Wavelet-RBFN 

The flow chart of the leak localization of the pipeline based on the Wavelet-RBFN is shown in 

Fig.8. 
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Fig.8 The flow chart of the leak location for the CO2 pipeline 

The specific steps of the leak location for the pipeline are as follows: 

① Measure the temperature and pressure of the gas at the end of the simulated leak unit of 

the experimental device and judge the pressure of the pipeline. Here, the pressure of the 

pipeline is respectively chosen to be 0.1, 0.2 and 0.3 MPa. 

② The leakage signals acquisition of the pipeline. Place six AE sensors with equal precision 

on the pipeline responding to Channel1～Channel6, the leak signal characteristics of the 

six signal channels under different leak pressures  X1l,r
p

,  X2l,r
p

,  X3l,r
p

 are extracted by 

adjusting the gas pressure in the pipeline. 

③ Construct feature vector of the leak signals 𝑇 = [𝑋1𝑙
𝑝

, 𝑋1𝑟
𝑝

, 𝑋2𝑙
𝑝

, 𝑋2𝑟
𝑝

, 𝑋3𝑙,𝑟
𝑝

]
 
and perform 

the normalization processing of the feature vectors on both sides of the leak source 𝑇′ =

[𝑋1
′ , 𝑋2

′ , 𝑋3
′ , 𝑋4

′ , 𝑋5
′ ]. 

④ The feature vector T′ under different leak pressures after normalization is used as the 

input of the RBFN, and the leak position value L is used as the output variable of the 

RBFN to establish the RBFN and training samples are adopted for the network training. 

4 Case Analyses 

4.1 Test bench construction of the CO2 transport pipelines 

The detection system based on acoustic emission sensors is composed of two parts: signal 

acquisition and signal processing. AE pipeline leak detection technology is actually the detection 



 

of the acoustic signal frequency and voltage amplitude generated by the pipeline leak. In order to 

simulate the transmission pipeline, an experimental pipeline with the length of 6m and the outside 

diameter of 2inch at the laboratory is set up. A circular hole with 2 mm diameter is drilled in the 

position of 2 m from the left end of the pipeline. A schematic diagram of the experimental 

apparatus with liquid CO2 stored in the tank of 5Mpa is shown in Fig.9. The valves are connected 

to the cylinders to regulate the outlet pressures of CO2. When CO2 is experiencing the leak hole in 

the pipeline, the acoustic signals will produce and propagate along the pipeline wall to the sides. 

In order to avoid echo phenomenon, the interface of the pipeline ends is set to the circular arc. Six 

sensors are placed on both sides of the leak source by the way of vacuum grease coupling agent 

with the equal interval of 2m, such as [CH1, CH4], [CH2, CH5], [CH3, CH6]. Taking the leak 

source as the coordinate center, sensors 1#, 2# and 3# are placed on the left side of the leak source, 

sensors 4#, 5# and 6# are placed on the right side of the leak source. The acoustic signals received 

by six sensors are converted into voltage signals at the range of [-1V, +1V]. Because these 

acoustic signals are very weak, the pre-amplifiers are installed at the rear side of each sensor to 

amplify the signals with the gain of 40dB. Finally, the leak signals collected by acquisition devices 

are fed into the computer.  
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Fig.9 Schematic diagram of the laboratory experimental 

4.2 Selection of acoustic emission sensor 

  In this paper, resonant high-sensitivity AE sensors are selected for leak signal acquisition. 

Resonant AE sensors have different sensitivity to signal response in different frequency bands and 

are often divided into low frequency sensors and high frequency sensors. According to the 

frequency range and amplitude range of the measured leak signal and noise signal, low frequency 

sensors are selected for the leak detection. The frequency response curves and physical parameters 

of low-frequency AE sensors used for the leak location of the CO2 transport pipeline [15] are 

shown in Fig.10 and Table 5. 



 

 

Fig.10 Frequency response of the AE sensor 

Table 5 Technical specifications of the high frequency AE sensor 

Size (Diameter*Height) (mm) 18.8*15 

Operating temperature（oC） -20-200 

Interface Type M5-KY 

Working frequency（kHz） 50-400 

Peak sensitivity（dB） >75 

4.3 The actual leak location test device of the CO2 pipeline 

  Due to the slender structure of the pressure pipeline, the diameter of the pipeline is almost 

negligible compared with the length of the pipeline, so the pipeline can be simplified to a 

one-dimensional linear model, and the sensors can be installed linearly on the pipeline. Through 

the analysis of the characteristics of the above CO2 transport pipeline, it can be seen that the crack 

arrester and the pipeline block valve room are installed at intervals on the pipeline. Although the 

installation distance of these pipeline accessories has not yet been studied, it is generally on the 

order of several hundred meters to one kilometer. Low-frequency acoustic emission sensors are 

used to match high-power preamplifiers, and the detection distance can completely cover the 

installation spacing of these pipeline accessories. During the leak detection of the CO2 

transportation pipeline, the installation position of the sensors can be close to or coincided with the 

position of the crack arrester or the pipeline shut-off valve chamber, which not only facilitates the 

installation and overhaul of the sensors, but also reduces the construction difficulty and solves the 

waveform distortion of acoustic emission signals passing through these pipeline accessories. The 

actual leak location test device of the CO2 pipeline corresponding to Fig.9 is shown in Fig.11. 



 

 
Fig.11 The actual leak test device of the CO2 pipeline 

4.4 The pre-process of the leak signals 

The coupling conditions between the sensor and the pipeline are different in practice, so 

signals from different channels must be modified and fitted before extracting the characteristics. 

Taking the pipeline pressure as 0.3MPa as an example, the data collected by the six sensors from 

CH1 to CH6 is fitted by the least squares method. The data before and after the correction are 

shown in Fig.12. 

 

Fig.12 The data before and after the correction 

It can be clearly seen from Fig.12 that the energy of the signal received by the sensor 

gradually decreases as the distance between the sensor and the leak source increases. 

4.5 Leak localization of the CO2 pipeline method based on the TDOA 

4.5.1 Localization principle based on the TDOA 

Because the continuous AE signal generated by the leak source cannot be separated in 

the time domain, the traditional localization methods of AE sensors, such as the 

threshold method and the parameter method, are no longer suitable for the location 

calculation of the leak source. Therefore, the TDOA is used to achieve the leak localization of 

the CO2 pipelines, which generally needs to install two or more sensors. The signals received by 



 

the two sensors come from the same leak source, but there is a delay in the propagation time. 

Therefore, the position of the leak source can be calculated by the TDOA combining the 

propagation speed of the acoustic waves. Taking the signals from CH1=-180cm and CH4=20cm as 

an example, the localization principle based on the TDOA method is shown in Fig.13. 
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Fig.13 The localization principle based on the TDOA method 

  Assume that the required time for the signal generated by the leak source to propagate to 

CH1 and CH4 is t1 and t2 respectively, and the propagation velocity of acoustic waves at the wall 

of the pipeline is v, then the following relationship can be obtained by (10). 

1

2

d vt

D d vt



 
                                (10) 

where d is the distance from the leak source to CH1 and D is the distance between the two sensors. 

When the installation of the two sensors is complete, D is known (here D is equal to 2m), so only 

the value of d needs to be calculated to locate the leak source. The above equation can be 

simplified to (11). 

2

D v t
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 
                                     (11) 

where ∆𝑡 is the time difference between the two sensors receiving the signal. 

It can be seen from (11) that the location of the leak source is related to only two parameters: 

one is the propagation speed of sound waves on the pipeline, and the other is the time difference of 

the signals received by the sensors. 

4.5.2 Time difference extraction method based on wavelet packet decomposition 

When the time difference of the signals between CH1=-180cm and CH4=20cm is measured, 

since the signals of the sensors at both ends have similarity, the equivalent signal segment is used 

to analyze the correlation coefficient segment by segment. The time difference corresponding to 

the maximum value of the cross-correlation function is defined as ∆𝑡, which is used to achieve the 

positioning of the leak source. Firstly, the collected signals are decomposed by wavelet packet, 

and the reconstructed signals of any two channels of S30 nodes are selected for the 

cross-correlation analysis. The noise signal and the leak signal are regarded as mutually 

independent irrelevant signals, then 
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where xk, yk are the signals acquired by the two sensors; N is the signal length; Rxy is the 

cross-correlation function, meanwhile the time corresponding to the maximum correlation point of 

the cross-correlation function is the time difference between the signals received by the two 



 

sensors. 

  In the absence of a leak, the signals collected by both sensors are noise and uncorrelated, so the 

value of cross-correlation function is approximately to zero; when a leak occurs, the 

corresponding peak value is  at the most relevant moment, that is 

R𝑥𝑦(𝜏0) = max [R𝑥𝑦(𝜏)]                         (13) 

The cross-correlation function between CH1 and CH4 under the pressure of 0.3MPa is shown in 

Fig.14. The sampling frequency is 3M, and 10000 points of the data are used to detect the leak 

location of the CO2 pipelines, equaling to a time length of 1/300s. 

 

Fig.14 Cross-correlation curve between CH1 and CH4 under the pressure of 0.3MPa 

The localization results of the sensors from CH1 to CH6 under different pressures are shown in 

Fig.1 are given in Table 6. 

Table 6 Localization results in different positions and different pressures 

0.1Mpa 

Test sensors 
Time difference

（ms） 
Leakage location（m） Actual location（m） Relative error（%） 

CH1,CH6 0.24 1.8168 1.8 0.93 

CH1,CH5 0.3013 1.9276 1.8 7.09 

CH1,CH4 0.096 0.6867 1.8 61.85 

CH2,CH6 0.252 1.8776 1.6 17.35 

CH2,CH5 0.2797 1.8181 1.6 13.63 

CH2,CH4 0.3427 1.9375 1.6 21.09 

CH3,CH6 0.04533 0.8293 1.4 40.76 

CH3,CH5 0.336 2.1035 1.4 50.25 

CH3,CH4 0.364 2.0455 1.4 46.11 

0.2Mpa 

Test sensors Time difference（s） Leakage location（m） Actual location（m） Relative error（%） 

CH1,CH6 0.2577 1.9065 1.8 5.92 

CH1,CH5 0.2817 1.6282 1.8 9.54 

CH1,CH4 0.3033 1.7377 1.8 3.46 

CH2,CH6 0.1757 1.4908 1.6 6.83 

CH2,CH5 0.1147 0.9814 1.6 38.66 

CH2,CH4 0.2267 1.3494 1.6 15.66 

CH3,CH6 0.3520 1.9846 1.4 41.76 

CH3,CH5 0.2557 1.6964 1.4 21.17 

CH3,CH4 0.2530 1.4827 1.4 5.91 

0.3Mpa 

Test sensors Time difference（s） Leakage location（m） Actual location（m） Relative error（%） 

CH1,CH6 0.1893 1.5598 1.8 13.34 

CH1,CH5 0.2507 1.8710 1.8 3.94 

CH1,CH4 0.2160 1.6951 1.8 5.83 



 

CH2,CH6 0.1760 1.2923 1.6 19.23 

CH2,CH5 0.1777 1.3009 1.6 18.69 

CH2,CH4 0.3227 2.0361 1.6 27.26 

CH3,CH6 0.2090 1.2596 1.4 10.03 

CH3,CH5 0.1387 1.1032 1.4 21.2 

CH3,CH4 0.1483 1.3519 1.4 3.44 

It can be seen from Table 6 that the maximum errors reach 61.85% in the pressure of 0.1Mpa, 

41.76% in the pressure of 0.2Mpa and 27.26% in the pressure of 0.3Mpa. Thus, only using the 

TDOA method for the leak localization cannot meet the engineering needs of the positioning 

accuracy. Therefore, in order to overcome the limitations of the algorithm and improve the 

localization accuracy, a localization method based on the combination of the wavelet and RBFN is 

proposed. 

4.6 Leak localization of the CO2 pipeline based on the Wavelet-RBFN 

According to Section 3, the feature vectors composed of multiple wavelet eigenvalues on [-120, 

80], [-100, 100], [-80,120] are regarded as the training samples of the RBFN, denoted as 

𝑇𝑡𝑟𝑎𝑖𝑛
′ and the feature vectors composed of multiple wavelet eigenvalues on [-180,20], [-160,40], 

[-140,60] are respectively regarded as the testing samples of the RBFN, denoted as 𝑇𝑡𝑒𝑠𝑡
′ . The 

localization accuracy of the RBFN is related to the spread factor of the radial basis function. The 

larger the spread factor is, the smoother the function fit is. However, the approximation error 

becomes larger and the more hidden neurons lead amount of calculations increasing. The smaller 

the spread factor is, the more accurate the approximation of the function will be. However, the 

approximation process is not smooth, and the network performance is poor, and there will be an 

adaptation phenomenon. Therefore, different values of spread factor should be tried, and to the 

spread factor minimize the locating errors should be chosen. Under the three pressure conditions 

of 0.1Mpa, 0.2Mpa and 0.3Mpa, the leak localizations of the CO2 pipelines located on 

[CH1,CH4],[CH2,CH5],[CH3,CH6] are performed, the results are shown in Table 7. 

Table 7 Leak localization results under different pressures 

0.1Mpa 

Test sensors 
Real position 

（cm） 

Leak location 

（cm） 
Spread 

Wavelet-RBFN TDOA 

Relative error（%） Relative error（%） 

CH1-CH4 [-180,20] [-178.5457,21.4543] 2.2 0.81 61.85 

CH2-CH5 [-160,40] [-162.1170,37.8830] 1.9 1.32 13.63 

CH3-CH6 [-140,60] [-139.8651,60.1349] 1.4 0.1 40.76 

0.2Mpa 

Test sensors 
Real position 

（cm） 

Leak location 

（cm） 
Spread 

Wavelet-RBFN TDOA 

Relative error（%） Relative error（%） 

CH1-CH4 [-180,20] [-177.1581,22.8419] 1.9 1.58 3.46 

CH2-CH5 [-160,40] [-158.1776,41.8224] 1.7 1.14 38.66 

CH3-CH6 [-140,60] [-141.8791,58.1209] 1.5 1.34 41.76 

0.3Mpa 

Test sensors 
Real position 

（cm） 

Leak location 

（cm） 
Spread 

Wavelet-RBFN TDOA 

Relative error（%） Relative error（%） 

CH1-CH4 [-180,20] [-180.1599,19.8401] 2.0 0.09 5.83 

CH2-CH5 [-160,40] [-161.5088,38.4912] 1.7 0.94 18.69 

CH3-CH6 [-140,60] [-141.5603,58.4379] 1.3 1.11 10.03 

 

It can be seen from Table 7, the higher the pressure is, the stronger the signal strength is, and 

the higher the accuracy of the leak location will be. Under different pressures and positions, the 

minimum error of the leak location of the CO2 pipelines using the Wavelet-RBFN reaches 0.09%, 

and the maximum error is only 1.58%. The minimum error of the leak locating of the CO2 pipeline 



 

using the TDOA method is 3.46%, and the maximum error is 61.85%. Therefore, the leak 

localization accuracy of the CO2 pipeline based on the Wavelet-RBFN proposed in this paper is 

much higher than simply using the TDOA method. As the pressures of CO2 gas in the pipeline 

increasing, the positioning error of the two methods tends to be decreased. The test results of 

experimental data show that the leak localization system based on the wavelet and RBFN has the 

characteristics of high accuracy and small errors, and has obvious superiority in the positioning 

approaches. 

5 Conclusions 

Through the analysis of the characteristics of CO2 pipeline leakage signal, a localization 

method based on wavelet and RBFN has been proposed. Starting from the time-frequency 

characteristics of the pipeline leakage signal, according to the multi-sensor information fusion 

theory, the main signal characteristics reflecting the pipeline leakage are extracted, and the 

nonlinear learning characteristics of the neural network are used to realize the accurate localization 

of the CO2 pipeline leakage. The main results are as follows: 

   1) Since the acoustic emission signal exists many kinds of interference noise in the real-life 

acoustic emission signal, the combination of the time domain and frequency domain 

characteristics of the leak signals based on multi-sensor fusion can improve the leak localization 

accuracy of the CO2 pipeline to overcome the uncertainty of a single sensor.  

   2) For comparative analysis, the TDOA and Wavelet-RBFN methods are used to realize the 

leak localization of the CO2 pipelines according to the leakage signals collected under different 

locations and different pressure conditions. The maximum error obtained only by the TDOA 

reaches 61.85%, and the maximum error obtained by the Wavelet-RBFN only is 1.58%. The above 

results verify the effectiveness of the proposed method. 
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