University of

"1l Kent Academic Repository

Bertholon, Guillaume and Kell, Stephen (2019) Towards seamless interfacing
between dynamic languages and native code. In: VMIL 2019: Proceedings
of the 11th ACM SIGPLAN International Workshop on Virtual Machines

and Intermediate Languages. . pp. 38-47. ACM ISBN 978-1-4503-6987-9.

Downloaded from
https://kar.kent.ac.uk/76576/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3358504.3361230

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/76576/
https://doi.org/10.1145/3358504.3361230
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Towards Seamless Interfacing between Dynamic
Languages and Native Code

Guillaume Bertholon*
Ecole Normale Supérieure
Paris, France
guillaume.bertholon@ens.fr

Abstract

Existing approaches to interfacing high- and low-level code
push considerable burdens onto the programmer, such as
wrapper maintenance, explicit code generation, interface
re-declaration, and/or signalling to garbage collectors. We
note that run-time information on data layout and alloca-
tions in native code is available, and may be extended with
knowledge of object lifetimes to assist in automating garbage
collection. We describe work in progress towards an exten-
sion of the CPython virtual machine along these lines. We
report initial experience building a first working prototype,
and some early performance experiments.

CCS Concepts - Software and its engineering — Inter-
operability; Virtual machines; Garbage collection; Allocation
/ deallocation strategies.

Keywords Python, FFI, garbage collection, debugging

ACM Reference Format:

Guillaume Bertholon and Stephen Kell. 2019. Towards Seamless
Interfacing between Dynamic Languages and Native Code. In Pro-
ceedings of the 11th ACM SIGPLAN International Workshop on Vir-
tual Machines and Intermediate Languages (VMIL ’19), October 22,
2019, Athens, Greece. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3358504.3361230

1 Introduction

Programming is fragmented by language boundaries. High-
level languages, especially those offering automatic garbage
collection, have traditionally been implemented so as to in-
teroperate with external code only via a ‘foreign function
interface’ (FFI) designed to maximise implementer freedom

“Work carried out during an internship at the University of Kent.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL ’19, October 22, 2019, Athens, Greece

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6987-9/19/10...$15.00
https://doi.org/10.1145/3358504.3361230

Stephen Kell
University of Kent
Canterbury, United Kingdom
S.R.Kell@kent.ac.uk

rather than to help programmers. As has been argued before,
such programmer-facing boundaries ideally ought not to
exist at all [11] and are more cultural norm than technical
necessity [6]. However, viable alternative implementation
approaches remain elusive.

Both older and more recent work towards the elimination
of FFIs has focused on ‘polyglot VMs’ [8, 13, 19], in which a
shared core of compilation and run-time infrastructure hosts
many languages. These are capable of impressive results, in-
cluding high performance in mixed-language code. However,
realising multiple languages atop a single core implementa-
tion has inherent scalability limits: no single such system
will conquer all, and innovation demands freedom to rethink
the core. It also brings difficulties with backwards compati-
bility, on both high- and low-level sides [9]. In order to fully
embrace native code, polyglot VMs must reimplement or
integrate not only support for languages such as C or C++
(or LLVM), but also large parts of the assemble-link-load
toolchain [16].

Other efforts have accepted the presence of FFIs but fo-
cused on mitigating their difficulties, for example by gener-
ating FFI code [1], by automated processing of C header files
[4], and/or by hosting glue logic within the higher-level lan-
guage [12]. These systems are often successful in lowering
the burden, but cannot eliminate it: maintenance difficulties
are inherent (complex per-codebase ‘binding code’ still exists,
and must be adapted as either FFIs or external APIs change),
while the ‘feel’ of the host language is not preserved.

Relative to these two previous approaches, this paper ex-
plores a ‘third way’ distinguished by

1. largely retaining existing language implementations
rather than replacing them (hence allowing a high
standard of compatibility, at source and ABI levels);

2. notwithstanding point 1, extending the native-code
toolchain and its Unix-like run-time services, in order
to support better the needs of high-level languages,
rather than treating those services as a black box;

3. notwithstanding point 1, lightly modifying language
VMs’ implementations, particularly in order to retrofit
them onto the extended runtime of point 2.

Our specific contributions are embodied in a CPython
virtual machine extended towards seamless interoperability
with native (currently C) code, roughly as follows.

https://doi.org/10.1145/3358504.3361230
https://doi.org/10.1145/3358504.3361230
https://doi.org/10.1145/3358504.3361230

VMIL ’19, October 22, 2019, Athens, Greece

e We describe the basic design and construction of an
‘FFI-less’ extension to CPython which builds on libal-
locs [10]. This provides run-time type information (ex-
tracted via postprocessing of compiler-generated na-
tive debugging information) and also abstractions of
allocator and allocation which provide useful building
blocks (§3).

e We describe some idiomatic default ‘language map-
ping’ design choices exploiting the available run-time
type information, and show how these balance a trade-
off between natural usage in simple cases and ‘least
surprise’ in more complex ones (§4).

e We present an approach to mediating reference-coun-
ted memory management with manual use of malloc()
and free(). Unlike previous approaches, we explore the
addition of a pointer write barrier into native code, and
describe how this allows process-wide reference count-
ing (§5). We also briefly describe how this extends to
custom memory allocators or wrappers thereof (com-
mon in C code) and to the idiomatic treatment of C
APIs that involve initialization or finalization.

2 Existing Approaches

Manual FFI coding Some libraries (such as Numpy') are
written as “VM extensions’ coded against the FFI of CPython.
This allows flexibility, including adding native builtin func-
tions or types to the language, but at the cost of manually
wrapping all C-language functions and types exposed by the
library interface (as seen in Listing 1).

static PyObject =
spam_system (PyObject «self, PyObject «args)

const char scommand;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

int sts = system (command);

return PyLong FromLong(sts);

Listing 1. Exposing system() in a CPython extension

Generated FFI code To reduce this burden, some tools such
as cffi behave as code generators for native function wrap-
pers. However, the experience imports a lot of the complexity
of programming in C, such as include files and ahead-of-time
code generation. Most significantly, it remains necessary
to re-declare the interface functions’ arguments and return
types via the code generator’s API (as seen in Listing 2).

from cffi import FFI
ffibuilder = FFI()
ffibuilder .cdef (""" float pi_approx(int n);""")
ffibuilder .set_source (" _pi_cffi", """
#include "pi.h" // the C header of the
library """,

1A very popular numerical library for Python: https://www.numpy.org/.

Guillaume Bertholon and Stephen Kell

libraries =['piapprox ']) # library name,
for the linker
if __name__ == "__main

ffibuilder .compile(verbose=True)

Listing 2. Example of generating wrappers for a C
pi_approx() function using cffi

Data model embedding A similar but more ‘on-line’ ap-
proach is exemplified by ctypes, which embeds the C data
model into Python and hides the step of code generation—
instead, the system dynamically loads the referenced shared
library on request by client Python code. However, the result
is similar: the programmer must annotate or rather (re-)de-
clare any required composite types (like structs, enums, and
unions), as seen in Listing 3. Overall, C-style programming
is still imported into Python.

from ctypes import =«

libc = CDLL("libc.so.6")

libc .strchr.restype = c_char_p
libc.strchr.argtypes = [c_char_p, c_char]

libc . strchr(b'abcde', b'c") => returns b'cde'

Listing 3. Example of a call to libc’s strchr using ctypes

3 Outline Approach

None of the previous approaches offer a ‘Pythonic’ expe-
rience. For example, client code is concerned with passing
variables by copy or by reference, and the ctypes example
clearly shows how the C concept of pointers has become
part of the Python-side data model. We would instead like C
libraries to be seen in Python as regular Python modules, out
of the box, needing little or no wrapper code or annotation.

3.1 Insights

We observe that several useful building blocks exist.

Dynamism in C Dynamism is available in C, albeit in
system-defined interfaces rather than within the language.
Dynamic loading [7] is provided by POSIX’s dlopen() family
of calls. On-line debugging is possible via metadata formats
such as DWARF [5], providing rich descriptions of code, vari-
ables and types; an extended VM may consume these directly,
without user-supplied wrappers or parsing C headers.

Reified type information liballocs [10] postprocesses
DWARF into run-time type information on native libraries.
Like DWARF, it is descriptive: it captures many realisations
of recurring abstractions (such as data types and allocated
memory objects), whereas a language virtual machine de-
fines a single such realisation. This is why native debuggers
need not share code with the compiler, unlike debug servers
in virtual machines. Appendix B gives a condensed overview
of liballocs.

https://www.numpy.org/

Towards Seamless Interfacing between Dynamic Languages and Native Code

Run-time allocator protocol liballocs models memory at
run time as an allocation hierarchy. Arbitrary pointers may
be queried; these queries are dispatched to routines spe-
cific to the allocator managing the target area of memory.
For example, querying a stack pointer dispatches to a stack
walker; a global variable’s address to a symbol table lookup;
a malloc()’d heap chunk to a special ‘index’ maintained via
link-time instrumentation of allocation functions.

3.2 Basic Design

Consider the following fictional example C library.

struct hw {
int hello;
float world;

}s

struct hw hw_zero () {

return (struct hw) {};
}
struct hw «hw_p_zero() {

return calloc (1, sizeof(struct hw));
t
void hw_print(struct hw arg) {

printf ("h%d, w%f\n", arg.hello, arg.world);
}
void hw_p_print(struct hw «arg) {

printf("h%d, w%f\n", arg—>hello, arg—>world)

5

Listing 4. Fictional example C library

Our system is implemented as a CPython extension mod-
ule which allows the example library to be used from Python
as follows.

Import the C library as if it were Python
import elflib.example as lib

Manually allocate a struct hw
vo = 1lib .hw()

v0.hello = 42

v0.world = 3.14

or

v0 = lib.hw(42, 3.14)

Get a struct hw from a C function
Value vs reference is abstracted away in

Python
vl = lib.hw_zero() # Return by value
v2 = lib.hw_p_zero() # Return a reference

Pass a struct to C function

lib .hw_p_print(v0) # Call by reference
lib . hw_print(vl) # Call by value

lib . hw_print(v2)

Pass Python wvalues to a C function
lib . hw_print ((0,0.))

lib . hw_print ({ "hello '=0, 'world'=0.})

VMIL ’19, October 22, 2019, Athens, Greece

Values can be passed structurally by matching
field names
class Hw:
def __init__ (self ,h,w):
self . hello = h
self . world = w
lib . hw_print (Hw(-1, float('nan')))

Listing 5. Python code calling functions from Listing 4
In summary, the following basic techniques enable this.

Shared objects as modules In Python, import is extended
so that it can import native shared objects. Just as naming
conventions are used to map to .py files in the filesystem, so
they may now also locate shared objects. The client does not
specify whether the module is native or in Python.

Functions, globals and types The imported shared ob-
ject’s code, data and types appear in the imported namespace.
Python code may also directly instantiate native data types.

Proxying To allow CPython access to native objects, which
do not conform to its header-based layout, we could ei-
ther relax CPython’s expectations or indirect through a
proxy which does conform. To minimise invasive changes
to CPython, for now we introduce proxy objects, which
point to arbitrary native data. In CPython we create a dis-
tinct proxy class for each distinct composite type descriptor
(struct, union or stack frame) provided by liballocs.

Base-type values as references Base-type values, like in-
tegers, booleans and floats are ‘objects’ in Python, but in C
are bit-patterns in some typed context. Conceptually these
are interchangeable if we view these bit-patterns as refer-
ences to immutable and value-unique objects (e.g. there is
a unique logical instance of the ‘integer 2’ object); they are
interconverted accordingly.

Native structured data Composite types, such as structs
and unions, have a proxy class allowing access to members.
On field access, a new proxy may be created on demand to
wrap the accessed value. It follows that proxies sometimes
wrap interior pointers (see figure 1). To preserve Python
semantics, assignment to a native pointer field stores a ref-
erence to the target object, or a null pointer if None is stored.
Nested structs or arrays appear as ‘references’ that are read-
only, to capture that the nested object instance is fixed in
place.

Functions We define a CPython proxy class for native
function objects. These proxies are Python-callable; when
called, the proxy checks argument types, calls the underlying
function and wraps the result in its Python form (proxy or
native type). These proxies can be created on demand over
any Python callable, creating closures as necessary.

Arrays Native arrays are proxied, behaving as Python ar-
rays but with a fixed length. From Python they may be

VMIL ’19, October 22, 2019, Athens, Greece

Class: Proxy to B
struct C

S.C

Ref. Count
Class: Proxy to C

Python i c
s |
Ref. Count |
Class: Proxy to A |
|
] : struct A
s.a : inta
Ref. Count i struct Bb
float
Class: Integer 3 msigned long 1

Value: 42 |

| struct C* ¢ o
s.b \
Ref. Count i
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 1. lllustration of Python proxies to composite struc-
tures, including interior pointers. Arrows represent pointers.

indexed into, and sliced. When a C library is loaded from
Python, each data or function symbol is wrapped by a proxy
of the appropriate type and is added to the resulting Python
module.

4 Mediating Python and C Idioms

To provide a ‘Pythonic’ view of a typical C API, certain
further techniques have proven necessary.

4.1 Containment Polymorphism

Some C interfaces rely on downcasting pointers, either from
void- or from a smaller (contained) type, to a larger target
type. Since casting is not a Python-language concept, we
require some other approach. Consider a callback interface
such as void on_click (void (+cb)(void +), void «arg); where the
client-supplied callback must downcast arg from void- to a
known type; or a ‘base’ structure type that is the first member
of a number of larger containing types. (This pattern is used
by the CPython VM itself for Python objects!) We resolve
this simply by adopting Python’s usual dynamic semantics:
since run-time type information is available from liballocs,
we query this at the point of proxy creation. (To avoid re-
traversal of contained substructures, a further idiom also
applies—see §4.3 below.)

4.2 Array Length

Arrays originating in C do not store bounds, but Pythonic
behaviour demands raising an exception on indexing out of
bounds. Again, dynamic information from liballocs enables

Guillaume Bertholon and Stephen Kell

this. Given a pointer into an array, querying liballocs yields
the number of elements it contains, and this is recorded in
the proxy.

4.3 Pointers and Arrays

C interfaces passing pointers are intentionally ambiguous
as to whether the target is a single object or an array. Con-
sider struct s «get_ref () ; Versus struct s «get_array () ;—the sig-
natures are identical but the intention is different?. In Python
code, we must resolve the ambiguity since the two cases im-
ply different proxy classes. Our solution is the ‘first element
idiom’: any array proxy also offers immediate access to the
first element of that array, without an explicit index step. To
handle containment polymorphism (mentioned above), this
also applies to structures: a proxy to a containing structure
also offers immediate access to any contained subobject be-
ginning at the same address. More generally: for each type
T, if the address of T is also the address of another smaller
composite type T’ (e.g. T’s first element or member), then
the members and operations of T’ are exposed by the T
proxy. This is arranged by definition of the proxy classes
using CPython’s inheritance mechanism. Fig. 2 shows an
example. Importantly, this idiom preserves the property that
any function ‘returning T*’ yields a proxy usable as a T. By
contrast, under a naive treatment, code whose signature says
T but actually returns a pointer to S (containing a T as its
first element) would require explicit access logic to get at the
T, effectively undoing the intended polymorphism.

struct Polygon

struct Shape base struct Point([]

float f

unsigned long i

float x | | | float x float x

floaty ||| float y float y

struct Point™ pts e

Figure 2. The ‘first element idiom’: accesses on the Polygon
proxy can immediately access fields from Shape. Similarly,
accesses on the array-of-Point proxy can access Point fields.

This allows the client code to manipulate a Polygon as if it
were a Shape, or to use a pointer to an array to directly access
its first element. Note that in the case of containment, the
idiom is transitive: given an address returned by C code, any
member beginning at that address, at any depth of nested con-
tainment, is accessible directly on the proxy. This can suffer
from name clashes, e.g. if an object has the same field names
as its nested structs. Although not currently implemented,
this could be resolved by a name mangling convention defin-
ing alternative unambiguous aliases (roughly analogous to
Java’s super.x and similar).

ZPointer-to-array types do exist in C (struct s (x) []) but are rarely used.

Towards Seamless Interfacing between Dynamic Languages and Native Code

5 Garbage Collection

FFIs’ biggest reason for existence is garbage collection (GC).
GC implementation brings constraints on object layout,
when objects may be deallocated or moved, and what must
happen as pointers are passed around. In C, these are uncon-
strained and may vary by API. Whereas existing FFI systems
typically push this complexity to the programmer, we seek
to handle these automatically in the common case.

5.1 An Essential Conflict

C APIs embody some policy on who (caller or callee) is re-
sponsible for deletion of any object whose address passes
over the interface, and also when and how this may be done—
usually by calling a library routine like free(), but perhaps
by stack re-use. Meanwhile, Python can be seen as enforc-
ing a single policy, at the language level: objects are freed
when they are no longer reachable. These two policies may
disagree on whether an object is ready to be deleted.

FFIs push this conflict to the programmer, who must un-
naturally ‘keep a reference alive’ to any garbage-collected
object referenced from native code, and/or risk crashing the
VM on the mistake of prematurely freeing a native-allocated
object that the VM may yet reach.

5.2 Mediation of Policies

Our approach is instead to mediate the conflict from out-
side. This is achievable within liballocs, whose meta-level
viewpoint already incorporates knowledge of the allocators
coexisting in the process. We extend this to describe also
the various lifetime policies to which an allocation may be
subject. The object’s allocator defines how it may be freed,;
its attached policies determine when. Logically, liballocs in-
tercepts attempts to free an object before all policies agree,
and defers the deallocation until later.

For example, an object allocated by malloc() but later
passed to Python will carry metadata recording both ref-
erence-counted and explicit-free policies. If free() is called
before CPython has signalled it as unreachable (by calling
liballocs to remove the reference-counted policy), liballocs
will arrange to defer the free() until this happens. Symmetri-
cally, if the proxy’s reference count hits zero first, the object
will also not be freed until free() is called. Naturally, objects
allocated other than by malloc() may have different (sets of)
policies attached; for example, objects created from within
Python, even if they are instances of data types defined in C,
are subject only to the reference-counted policy.

We extended liballocs to implement this per-allocation
policy metadata on malloc()-allocated objects. Each object
may have one or more policies; only the two mentioned
above are currently implemented. The per-object metadata
amounts only to one bit per possible policy, since liballocs
already knows which deallocation function may be used
to free any given object (from tracking which allocators

VMIL ’19, October 22, 2019, Athens, Greece

are managing which areas of the address space). These two
policies broadly suffice in our scenario, provided that with
C code we translate address-taken stack storage into a heap
allocation which is freed on return, and disable (as permitted
by POSIX) the ability ofdlclose() to free ‘static’ storage.

Unlike notions of ownership, this ‘policy mediation’ model
accepts that each unit of code—a native library, or a VM, say—
has only partial knowledge of whether the object is ready
to be freed. By contrast, ownership implies that exactly one
party is responsible for deallocation; it fundamentally cannot
resolve the conflict in all cases. Previous work has attempted
to infer ownership by static analysis of escaped pointers,
with partial success [14]. In general, however, while static
optimisations are possible, we believe a dynamic approach
to be more reliable.

5.3 Trapping Pointer Writes

CPython uses reference counting for automatic garbage col-
lection. To provide natural Python semantics, our extension
must also count references created or deleted in native code.
We add a pointer write barrier, logically providing two up-
calls to our Python VM: addref when a new pointer is written,
and delref when an old reference is overwritten or erased.

This barrier degrades the performance of native code
somewhat. Currently it is implemented naively as a source-
to-source pass over C code, adding outcalls whenever a
pointer is written to a global variable or to external memory,
and also on memcpy() and realloc() operations (which may
copy pointers). As an initial exploration of the spread of
compulsory slowdown under this approach, i.e. the penalty
suffered even when there is no Python code involved and
no reference counts are maintained, Table 1 shows some
benchmark data for native workloads instrumented by this
write barrier calling out to a medium-short out-of-line code
path (= 25 instructions), which is also called wordwise on
the payload of realloc() and memcpy(). Only two of around
ten workloads show substantial slowdown from adding the
write barrier. A less naive instrumentation would work at the
binary level and/or with the help of alias analysis to identify
writes whose referents are known not to escape to external
code such as Python). We would expect this to show lower
overheads.

Although a write barrier in a typical VM may amount to
only a few instructions, we use this non-trivial code path
because our approach must work for interior pointers and
for diverse allocations. Unlike write barriers in a typical VM,
it cannot assume a predictable object layout or the presence
of a particular header. Therefore, inherently more work is
involved in locating the metadata that the write barrier must
update. Work remains to be done on exploring exactly what
fast paths turn out to be optimal—for example, perhaps a fast
check could rule out the interior pointer case, after which we
could use prepended metadata much like an object header.

VMIL ’19, October 22, 2019, Athens, Greece

Table 1. Exploration of write barrier ‘compulsory slow-
down’ on the SPEC CPU2006 benchmarks, showing unin-
strumented baseline (gcc 4.9.2 + cil), against with-liballocs
and additionally with the pointer write barrier calling a short
out-of-line code path. Both percentages are relative to the
baseline, run on an Intel Core i7-7700 4-core (8 logical) CPU
at 3.60GHz (8MB cache), 16GB memory, Debian jessie chroot
over Ubuntu 18.04 (Linux 4.15.0-55-generic #60). Medians
of 5 runs shown; run-to-run variance was low in all cases,
although buildwise variance is not characterised—this is ev-
ident in cases where allocs+wb is seen to perform slightly
better than allocs. sphinx3 triggers a known performance
bug in the March 2019 revision of liballocs used. perlbench
suffers additional allocator instrumentation overhead. The
failure of gcc is not yet debugged, although the write barrier
has been successfully applied to that benchmark (in other,
incomparable runs, approx 20% slowdown was seen).

bench baseline/s allocs/s| allocs+wb/s
bzip2 3.23 +0.30% | +4.1%
gobmk 10.3 +51 % | +41 %
h264ref 6.96 +8.4 % +6.5%
hmmer 1.36 +8.9 % +7.4%
Ibm 1.21 +3.9 % +2.2%
mcf 1.4 +4.0 % | +22 %
milc 3.07 +8.3 % +6.6%
sjeng 2.27 +2.0 % +2.9%
perlbench | 3.31 +99 % | +98 %
sphinx3 0.771 +210 % | +190 %
gce 0.652 X X

However, interior pointers are frequently generated by C
code, so it is not clear that this approach will perform well.

Our Python extension is not currently mature enough to
demonstrate useful performance comparisons, although this
is a work in progress.

5.4 Handling Pre-Existing References

Consider attaching a CPython proxy to an object to which
references are already scattered through native data struc-
tures. To initialize the reference count, we would ideally
count these references, requiring a potentially expensive
heap traversal. To avoid this, we follow a pragmatic alter-
native: we undertake to track only references created after
the GC policy was attached to an object. This is sufficient to
ensure that any Python-visible object will not be reclaimed
prematurely; it will be kept alive so long as either there exist
references from Python-created objects, or there exist refer-
ences from native-created objects that were written while the
object was proxied in Python.

In effect, this leads to two kind of references in native data
structures: ‘strong’ (counted) and ‘raw’ (uncounted). Raw
references are those created when the object had only the

Guillaume Bertholon and Stephen Kell

explicit-deletion policy. They do not keep the object alive,
and may become dangling, but are only created by native
code. One surprising consequence is that C code such as
p—>q = p—>q; may have the side-effect of converting a refer-
ence (in «p) from weak to strong (if «p—>q is now proxied).

5.5 Realising the GC Policy Using Proxies

Reference counts live inside our proxy objects. When an
object’s reference count hits zero, the CPython GC lifetime
policy is detached, and it is freed if there is no other attached
policy. Otherwise, the object was created outside Python
and an explicit free() is expected. Note that policies are not
implied by an object’s type: native-type objects created from
Python start their life with only the CPython lifetime policy,
so are managed automatically.

To prevent memory leaks on cycles, we modified
CPython’s cycle collector to follow all strong references
during cycle detection involving a proxy object.

Our GC implementation must be able to identify quickly
whether a target object is proxied. Currently we use two dic-
tionaries: one from allocation base addresses of GC’d objects
to the corresponding proxy object, and the other (rather like
a ‘remembered set’) from strong references to the proxy of
the pointed-to object. Currently these use stock CPython
dictionaries, but since they strongly affect the performance
of write-barriered workloads, work is needed on a custom
structure which separates common-case fast paths.

5.6 Ongoing Work and Open Issues

Our handling of native stack frames has some limitations.
Firstly, native local variables and other stack accesses are
not reference counted, so approximations are necessary to
bump the reference counts when objects are only stack-
reachable. This would perhaps be best addressed by a peri-
odic sweep rather than expensive fine-grained maintenance
of counts. Alternatively, a more clever instrumentation pass
could perhaps minimise count transitions without giving up
fine-grained counts. Secondly, data stored in a C stack frame
but accessible from Python code through closures currently
cannot have its lifetime extended; to allow this it must first
be promoted to heap storage.

Deferred deallocation is sometimes not enough to keep
an object in a usable state, e.g. in the case of APIs having
finalization separate from deallocation. Both finalization and
deallocation should be deferred. Some native code comes
with conventions for finalization (e.g. destructors in C++) so
could be handled automatically. In C, no formal convention
exists, so API-level annotation would be required. Since this
could be useful debugging tools like valgrind, it could per-
haps be packed into the library’s debugging information,
making it easily visible to liballocs.

Overall, in our context, reference counting appears a more
difficult proposition than tracing collection. It is unclear

Towards Seamless Interfacing between Dynamic Languages and Native Code

whether tracing collection can be non-invasively adopted
within CPython.

The proxy-based design stems from our choice not to
disturb the internals of CPython. An extreme alternative
to proxying would be to refactor the VM so that it makes
no a priori assumptions about the layout of even ‘its own’
objects, treating them on par with ‘foreign’ objects. Roughly
this means replacing ‘struct PyObject «* with ‘void «* (a change
documented in earlier work [11]). Then, affected code would
be reworked to make heavy use of liballocs’s meta-level
primitives and meta-allocator, instead of getting metadata
from a VM-defined object header (hence PyObject type).

6 Related Work

Many works have followed a ‘single shared virtual machine’
paradigm [8, 13, 19], where garbage collection is handled by
a common runtime, most recently with a shared compilation
infrastructure that allows fast cross-language performance.
They vary in the sophistication of their language mappings;
in the Truffle-based work of Grimmer et al. [9] these back
onto a fairly sophisticated operational metamodel, albeit
remaining outside the end programmer’s control. Since they
rely on hosting native code unconventionally atop a language
virtual machine, these approaches face compatibility issues
on both native and (sometimes) higher-level code. Whereas
these works have emphasised cross-language performance
and sought to ‘catch up’ on compatibility [9, 15], we prefer
the converse approach by using existing implementations
and evolving a richer shared infrastructure underneath them.

A previous Python prototype exploited DWARF informa-
tion [11] for interoperability, but was otherwise a from-
scratch rewrite, using the Boehm conservative collector [2].

CoLoRS [18] is similar in extending a shared heap be-
tween multiple high-level languages (e.g. Java and Python).
However, it does not explicitly explore native code interop.

Many Lisp and Scheme implementations offer automated
or unusual FFIs. To pick two examples, Larceny’s layered FFI
[12] is designed to preserve efficiency and interact well with
the garbage collector. However, it does not extend collection
to native code, and like Python’s ctypes has limited data-level
interoperability, building instead on a bare pointer primitive
over which library-provided abstractions must be manually
re-built in Scheme (‘staying in the fun world’). A previous
implementation of Scheme [17] provides a similar degree of
wrapper-free integration as we do for Python, but lacking
liballocs or similar mechanisms, does not support dynamism
over native code.

The GNU implementation of Java [3] is noteworthy in
allowing native libraries to be accessed by a linkage con-
vention (CNI) rather than the usual FFI (JNI in Java’s case),
avoiding wrapper code. However, this does not integrate
garbage collection into native code as we have done.

VMIL ’19, October 22, 2019, Athens, Greece

7 Conclusions and Future Work

We have described work towards a new approach in lan-
guage interoperability between Python and C, which com-
bines code instrumentation and additional run-time services
to use native code conveniently within Python, including
with dynamic semantics. Performance is already at a usable
level but remains to be improved, and so far the extension
interfaces of the CPython VM have sufficed, with no modifi-
cations necessary. Overall we have increased confidence that
unnecessarily burdensome FFI approaches can be eliminated
without reimplementing any of the languages concerned,
and look forward to continuing efforts in this direction.

A Working Example (SDL2 & libpng)

The following example is executable by our current proto-
type, and illustrates the state of the work in progress.

from elflib import char

from elflib .1ibSDL2 import =

from elflib .libpng import =

from elflib.libc import fopen, clock
import atexit

import math

cstr = char.array

== MACROS ==
PNG_LIBPNG_VER_STRING = cstr("1.6.37")
PNG_COLOR_TYPE_RGBA = 0x6
SDL_INIT_VIDEO = 0x20
SDL_WINDOWPOS_UNDEFINED = 0x1fff0000
SDL_PIXELFORMAT_RGBA32 = 0x16762004
SDL_TEXTUREACCESS_STATIC = 0
SDL_BLENDMODE_BLEND = 0x1
SDL_QUIT = 0x100
== End of macros ==

png_file = fopen(cstr("dices.png"), cstr("rb"))
if png_file is None:
raise FileNotFoundError("failed to_open_png,
file")

png_reader = png_create_read_struct(
PNG_LIBPNG_VER_STRING, None, None, None)
if png_reader is None:
raise RuntimeError("failed _to_create _png,
read struct")

png_info = png_create_info_struct(png_reader)
if png_info is None:

raise RuntimeError("failed _to_create _png,k
info struct")

png_init_io (png_reader, png_file)
png_read_info (png_reader, png_info)

width = png_get_image width(png_reader,
)

height = png_get_image_height(png_reader,
png_info)

row_bytes = png_get_rowbytes(png_reader,
png_info)

png_info

VMIL ’19, October 22, 2019, Athens, Greece

color_type = ord(png_get_color_type(png_reader,

png_info))

bit_depth = ord(png_get_bit_depth(png_reader,
png_info))

if color_type != PNG_COLOR_TYPE_RGBA and
bit_depth != 38:

raise RuntimeError("png, file do_not_have _the
_right_image_format")

imgbytes = unsigned_char_8.array(row_bytes =«
height)
imgrows = unsigned_char_8.ptr.array (height)
for row in range(height):
imgrows[row] = imgbytes[row_bytes+row:
row_bytes«(row+1)]

png_read_image (png_reader, imgrows)

png_read_end(png_reader, None)
png_destroy_read_struct(png_reader, png_info,
None)

if SDL_Init(SDL_INIT VIDEO) != 0:
raise RuntimeError("failed _to_init_ SDL")
atexit.register (SDL_Quit)

win = SDL_CreateWindow (cstr ("PNG_display "),
SDL_WINDOWPOS_UNDEFINED,
SDL_WINDOWPOS_UNDEFINED, width ,
height, 0)
if win is None:
raise RuntimeError("failed _to_create window"

)

ren = SDL_CreateRenderer(win, -1, 0)
if ren is None:
SDL_DestroyWindow (win)
raise RuntimeError("failed _to_create,
renderer")

img = SDL_CreateTexture (ren,
SDL_PIXELFORMAT_RGBA32,
SDL_TEXTUREACCESS_STATIC, width, height)

SDL_UpdateTexture (img, None, imgbytes, row_bytes
)

SDL_SetTextureBlendMode (img, SDL _BLENDMODE_BLEND

)

while True:
ev = SDL_Event()
if (SDL_PollEvent(ev)):
if ev.type == SDL_QUIT:
break

t = clock () / 100000
r = int((1 + math.sin(t + 0/3 + math.pi)) /

2+ 255)

g = int((1 + math.sin(t + 2/3 » math.pi)) /
2+ 255)

b = int((1 + math.sin(t + 4/3 + math.pi)) /
2+ 255)

SDL_SetRenderDrawColor(ren, r, g, b, 255)

Guillaume Bertholon and Stephen Kell

SDL_RenderClear (ren)
SDL_RenderCopy(ren, img, None, None)
SDL_RenderPresent(ren)

SDL_DestroyTexture (img)
SDL_DestroyRenderer (ren)
SDL_DestroyWindow (win)

Listing 6. Working example calling function inside SDL2
and libpng from Python

Missing C features As the example shows, some corners
of C such as macros and enums are not currently handled.
Macro-defined constants and C-language enumerators are
above redefined in Python code. These can be addressed us-
ing further metadata from the DwaRF information. Strings
are currently not managed very well: Python strings are
immutable while a C function could modify an array of char

(even when it is declared as const). Currently user code
must create temporary char buffers when passed to C code.
However, Python strings could safely be externalized (con-
verted to a fixed representation), and passed to C code in
immutability-preserving fashion using a read-only memory
mapping—only the Python VM would retain access to the
writable mapping. This requires translating any resulting
segmentation faults into exceptions, a technique already em-
ployed by many VMs.

Supporting other languages We would like to support
native code compiled from other languages (such as C+,
Rust). Our source-to-source implementation of the pointer
write barrier is currently C-specific but the idea extends to
other languages, and could be done at the binary level. More
generally, any language whose compilation yields DWARF
metadata may be integrated into the existing liballocs system;
the per-language effort is to describe its allocation functions
(e.g. operator new in C++) to enable the necessary link-time
instrumentation. In other cases such as OCaml, which use
garbage collection and a high allocation rate, the link-time
approach to intercepting allocation calls is not appropriate
and a custom implementation of the meta-level protocol will
be necessary. This also brings the challenge of integrating
multiple garbage collectors, perhaps reified as distinct poli-
cies. This is an interesting topic for future work and entails
the challenge of avoiding ‘meta-cycles’ between heaps.

B Introduction to liballocs

A fuller overview was given previously by [10]. Listing 7
shows a simplified view of liballocs’s meta-level C APIL.

We can think of this API as a protocol which different allo-
cators implement differently, but is collectively implemented
somehow for every allocation in the process. Allocations are
coherent, contiguous subdivisions of the state of a running
program, having a base address and end address in memory.
They constitute units of data meaningful (at some level) in

Towards Seamless Interfacing between Dynamic Languages and Native Code

struct uniqtype; // type descriptor

struct allocator; // heap, stack, static, etc
uniqtype =alloc_get_type(void =obj);

allocator =alloc_get_allocator(void «obj);

void =alloc_get_site(void «obj);

void +alloc_get_base(void xobj); // base address
void =alloc_get_limit(void «obj); // end address
Dl_info alloc_dladdr (void «obj);

Listing 7. A simplified liballocs process-wide metadata API

the program, where their “type” is a reified descriptor of that
meaning, an instance of struct uniqtype. Allocation metadata
also includes the site (instruction address) where allocation
occurred.

The abstraction of allocations is a “common denominator”
across all languages, runtimes and virtual machines, having
both a machine-level view and (often) a direct relationship to
the source program. However, they are lower-level than most
languages’ or VMs’ notions of of “object”: they intentionally
lack any notion of behaviour, such as a system of messaging
or method dispatch.

mmap(), sbrk() ~ stack growth

_— T/ v

libc malloc() custom malloc() custom heap
A A (e.g. V8
\ GC’d heap)
obstack slice A
(+ malloc) &
A A
client client client client client (all code)

Figure 3. Allocator tree in a large C/C++/JavaScript program

Allocations form a hierarchy in a process’s virtual address
space. In a modern Unix, the bulk of a process’s state is cap-
tured by its virtual memory, structured as a flat collection
of mappings. Roughly, these mappings are the first level of
the allocation tree. Mappings are parcelled out to user code
via some arrangement of intermediate groupings which are
also allocations: loaded segments, arenas, memory pools or
slabs, stacks, and so on. These may nest further, for example
when a heap allocator is itself implemented as a client of
malloc(). The leaves of the tree are the units of state speci-
fied by the end programmer: local variables (roughly “stack”
allocations), global variables (“static”) and heap objects. Fig.
3 illustrates how allocators might be arranged hierarchically
in a hypothetical Unix process.

Each allocation is also associated with an allocator, defined
by a specific implementation of the meta-level API, This API
can be thought of as a standard meta-protocol for allocators.
Whereas allocators are intentionally unconstrained at the
base level (they may expose whatever interfaces they choose,
backed by any implementation), liballocs expects them to

VMIL ’19, October 22, 2019, Athens, Greece

implement the meta-level API (or whatever subset of it their
design allows).

At run time, liballocs maintains a collection of associative
data structures. Dispatching queries to individual allocators
is handled by a sparse array storing a 16-bit identifier for
every page. This identifier is a key into the allocation tree.
Only branch-level allocations, i.e. those with suballocations,
need be stored explicitly in the tree. Leaf-level allocations
are exclusively the concern of the given allocator and its
implementation of the meta-level APL

As implemented in the wild, not all allocators maintain the
desired type information or other metadata. Another role of
liballocs is to provide utility code and hooking mechanisms
for maintaining this metadata in side structures where nec-
essary. For example, an associative data structure is used to
record the type of each active malloc() chunk. Calls to mal-
loc() and free(), and any other similar allocators that are de-
clared to liballocs, are hooked by link-time instrumentation,
so that per-chunk records can be maintained. Type informa-
tion for malloc()-style heap allocations is recovered from a
table keyed on the allocation site. For C code, a source-level
analysis is provided, and run when building with the libal-
locs toolchain wrappers, which examines the use of sizeof to
infer the type allocated.

Meanwhile, in the case of stack frames, type queries are
answered without any additional per-allocation metadata.
Instead, when walking the stack the active function’s address
is used as a key to look up the current frame layout. This is
represented much as if it were a C-style struct data type, and
is computed by postprocessing the debugging information
of the containing shared object. Similarly, type information
for “static” allocations, such as global variables, is looked
up in an associative structure keyed by its offset within the
containing dynamically linked object.

The data model representable in uniqtype descriptors fol-
lows that of DwaRF, which can be thought of as a lightly
deduplicated ‘superlanguage’ comprising the data models of
all DwaRrF-described languages. To allow for details within
an allocation to change dynamicaly, such as gaining or losing
fields (e.g. a variant record) or varying length (a variable-
length array), a single uniqtype can encode a bounded degree
of per-allocation variability by providing a make_precise()
function. This takes the object base address and (optionally)
some additional program context, and returns a dynamically
precise snapshot of the uniqtype. In this way, some details
may be deferred until run time without spawning a distinct
uniqtype for every possible case.

References

[1] DM Beazley. 1996. SWIG: An easy to use tool for integrating scripting
languages with C and C++. In Proceedings of the 4th USENIX Tcl/Tk
Workshop. 129-139.

[2] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage collection in an
uncooperative environment. Softw. Pract. Exper. 18, 9 (1988), 807-820.

VMIL ’19, October 22, 2019, Athens, Greece

[10

[11

—

[t

—

https://doi.org/10.1002/spe.4380180902

Per Bothner. 2003. Compiling Java with GCJ. Linux Journal (2003).
Maurizio Cimadamore. 2018. State of the Isthmus. OpenJDK Panama
design document; version 0.3 available at https://cr.openjdk.java.net/
~mcimadamore/panama/panama-binder-v3.html as of 2019/8/3.
Free Standards Group. 2017. DWARF Debugging Information Format
version 5. Free Standards Group.

Richard P. Gabriel. 1994. Lisp: Good News, Bad News, How to Win
Big. AI Expert 6 (1994), 31-39.

Robert A. Gingell, Meng Lee, Xuong T. Dang, and Mary S. Weeks.
1987. Shared Libraries in SunOS. In Proceedings of the USENIX Summer
Conference. 375-390.

Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wiirthinger,
and Hanspeter Mossenbock. 2015. High-performance Cross-language
Interoperability in a Multi-language Runtime. In Proceedings of the
11th Symposium on Dynamic Languages (DLS 2015). ACM, New York,
NY, USA, 78-90. https://doi.org/10.1145/2816707.2816714

Matthias Grimmer, Chris Seaton, Thomas Wiirthinger, and Hanspeter
Méssenbdock. 2015. Dynamically Composing Languages in a Modular
Way: Supporting C Extensions for Dynamic Languages. In Proceedings
of the 14th International Conference on Modularity (MODULARITY 2015).
ACM, New York, NY, USA, 1-13. https://doi.org/10.1145/2724525.
2728790

Stephen Kell. 2015. Towards a Dynamic Object Model Within Unix
Processes. In 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!)
(Onward! 2015). ACM, New York, NY, USA, 224-239. https://doi.org/
10.1145/2814228.2814238

Stephen Kell and Conrad Irwin. 2011. Virtual machines should be
invisible. In Proceedings of the compilation of the co-located workshops
(SPLASH ’11 Workshops). ACM, New York, NY, USA, 289-296. https:

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

Guillaume Bertholon and Stephen Kell

//doi.org/10.1145/2095050.2095099

F.S. Klock II. 2008. The Layers of Larceny’s Foreign Function Interface.
In Proceedings of the Scheme Workshop.

E Meijer. 2002. Technical Overview of the Common Language Runtime.
language 29 (2002), 7.

Tristan Ravitch and Ben Liblit. 2013. Analyzing Memory Ownership
Patterns in C Libraries. In Proceedings of the 2013 International Sympo-
sium on Memory Management (ISMM ’13). ACM, New York, NY, USA,
97-108. https://doi.org/10.1145/2491894.2464162

Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas
Wiirthinger, and Hanspeter Mssenbock. 2016. Bringing Low-level
Languages to the JVM: Efficient Execution of LLVM IR on Truffle. In
Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages (VMIL 2016). ACM, New York, NY, USA, 6-15.
https://doi.org/10.1145/2998415.2998416

Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and
Hanspeter Méssenbdck. [n.d.]. A Survey of x86-64 Inline Assembly in
C Programs. In Proceedings of the ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’18).

J.R. Rose and H. Muller. 1992. Integrating the Scheme and C languages.
In Proceedings of the 1992 ACM conference on Lisp and functional pro-
gramming. ACM, 247-259.

Michal Wegiel and Chandra Krintz. 2010. Cross-language, type-safe,
and transparent object sharing for co-located managed runtimes. In
Proceedings of the ACM international conference on Object oriented
programming systems languages and applications (OOPSLA ’10). ACM,
New York, NY, USA, 223-240. https://doi.org/10.1145/1869459.1869479
M. Weiser, A. Demers, and C. Hauser. 1989. The Portable Common
Runtime Approach to Interoperability. In Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles (SOSP ’89). ACM,
New York, NY, USA, 114-122. https://doi.org/10.1145/74850.74862

https://doi.org/10.1002/spe.4380180902
https://cr.openjdk.java.net/~mcimadamore/panama/panama-binder-v3.html
https://cr.openjdk.java.net/~mcimadamore/panama/panama-binder-v3.html
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1145/2814228.2814238
https://doi.org/10.1145/2814228.2814238
https://doi.org/10.1145/2095050.2095099
https://doi.org/10.1145/2095050.2095099
https://doi.org/10.1145/2491894.2464162
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/1869459.1869479
https://doi.org/10.1145/74850.74862

