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Global financial crisis and multiscale systematic risk: 

Evidence from selected European stock markets 

A. K. Alexandridis*,1 and M. S. Hasan1 

1University of Kent, Kent Business School, Canterbury, Kent, CT2 7PE, UK 

Abstract - In this paper, we have investigated the impact of the global financial 

crisis on the multi-horizon nature of systematic risk and market risk using daily 

data of eight major European equity markets over the period of 2005-2018. The 

method is based on a wavelet multiscale approach within the framework of a 

capital asset pricing model. Empirical results demonstrate that beta coefficients 

have a multiscale tendency and betas tend to increase at higher scales (lower 

frequencies). In addition, the size of betas and R2s tend to increase during the 

crisis period compared with the pre-crisis period. The multiscale nature of the 

betas is consistent with the fact that stock market investors have different time 

horizons due to different trading strategies. Our results based on scale dependent 

value-at-risk (VaR) suggest that market risk tends to be more concentrated at 

lower time scales (higher frequencies) of the data. Moreover, the scale-by-scale 

estimates of VaR have increased almost three fold for every market during the 

crisis period compared with the pre-crisis period. Finally, our approach allows for 

accurately forecasting time-dependent betas and VaR. 

Keywords: Global Financial Crisis; Multiscale Systematic Risk; Wavelet 

Analysis; Wavelet Networks; CAPM 

JEL Classification: C22; G15 

1 Introduction 

In this paper, we investigate the impact of the global financial crisis on the multi-horizon 

nature of systematic risk and market risk. We use daily data from eight major European equity 

markets. Our method is based on a recent and powerful method to estimate both the market 

risk and the systematic risk within the framework of the Capital Asset Pricing Model (CAPM) 

using wavelet analysis (WA). 

Although the major financial US institutions, such as New Century Financial, US holding 

of HSBC, and the world’s top five investment banks suffered huge losses in the subprime 

mortgage and collateralized debt obligation (CDO) transactions by Summer 2007, the world 

financial system observed a period of relative calm with some optimism regarding the outcome 

of the ongoing crisis until the eight months of 20081,2. Figure 1 presents a cursory example of 

several major banks’ exposures to AIG during the time of financial crisis for readers to 

                                                 
* Corresponding author. Email: A.Alexandridis@kent.ac.uk 
1 For example, see the interim report title, “Assessing the impact of the current financial and economic crisis on 

global FDI flows”, UNCTAD, January 2009. 

2 Dowd (2009) noted that the size of the collateralized debt obligations (CDO) market in 2007 was around $500 

billion, and then notional principal of the Credit Default Swaps (CDS) market by the end of 2007 was around $60 

trillion. 



2 

 

understand the magnitude and extent of the problem inherent in the systemic risks associated 

with the financial system and institutions. 

The subprime mortgage crisis eventually erupted when first, major US financial firms, such 

as Lehman Brothers and AIG, and then European financial institutions, such as Northern Rock, 

Fortis, Dexia, and a number of Icelandic banks, showed signs of insolvency.3 The crisis 

exposed the inherent vulnerabilities, systemic risks and a catalogue of regulatory failures in the 

global financial services industries. The meltdown of the subprime crisis of 2007 exerted a 

meteor shower effect across the world’s stock market by the fourth quarter of the 2008. In the 

last quarter of 2008, the stock markets of both developed and emerging economies experienced 

large decline in prices of securities.4 Figure 2 presents movements of stock market indices in 

USA and five European countries namely, Netherlands, United Kingdom, Germany, Greece 

and Spain, during the period of 2005-2012 which uniformly demonstrates a sharp decline of 

share prices during the period of September-November, 2008 for all countries. Although the 

stock markets of United Kingdom, Netherlands and Germany exhibit an upward trend after 

November 2008, the stock markets of Greece and Spain show a persistent downward trend in 

their share prices. It is clearly evident that the Global financial crisis exerts an adverse impact 

on both systematic and market risks for these countries. 

Eichengreen et al. (2012) investigated the impact of subprime crisis on the global banking 

system using a dynamic factor model. The study employed principal components analysis to 

identify common factors in the movement of banks’ credit default swap spread (CDS). The 

study found that the share of the variance accounted by common factors rose steadily to 

exceptional level from the outbreak of the subprime crisis which reflected the heightened 

funding and counterparty risks coupled with the deterioration of banks’ loan portfolio. Vo 

(2014) utilized co-exceedance approach to examine financial contagion in Euro Area and South 

Asian markets using a framework of multinomial logit regression model and daily data 

spanning the period January 2007 to March 2013. Exceedances are defined as extreme negative 

returns that are below a certain threshold (i.e., 5% bottom tail) in one country, whereas co-

exceedances refer to the joint occurrences of exceedances in two or more markets. The study 

documented evidence of co-exceedances during global financial crisis and Eurozone crisis.  

Choudhry and Jayasekera (2015) reported that during the turbulent period of global financial 

crisis, betas increased for most firms in the UK from the pre-crisis to the crisis period and the 

level of market efficiency declined significantly from the pre-crisis to crisis period. Asgharian 

et al. (2017) examined the long-run and short-run components of factor betas using a 

framework of component GARCH model. They have applied an augmented Fama-French asset 

pricing model to industry portfolios using market, SMB and HML as risk factors. The study 

reported that the cross-sectional average and dispersion of the short-run component of betas 

increase in bad states of the economy.  Given the anecdotal evidence of significant deterioration 

of systematic risk and market risk, the findings from these studies indicate that the extent of 

co-movement in stock markets points to tendencies of the degree to which the global financial 

system is perceived to be tied to common factors. Consequently, CAPM and International 

CAPM (ICAPM) provide an appropriate methodological framework to approximate the 

heightened systematic risk underlying the deterioration of common factor in such turbulent 

market conditions. 

                                                 
3 In a revised estimate of the International Monetary Fund, large US and European banks are expected to lose 

nearly 2.6 trillion from 2007 to 2010 where the US banks’ forecasted loss tends to reach $1 trillion and the 

European banks losses were expected to hit $1.6 trillion (see Choudhry and Jayasekera (2012)). 

4 Bartram and Bodnar (2009) noted that the global equity market which stood at an all-time high of $51 trillion in 

October 2007, dropped to $22 trillion by the end of February 2009. 
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One recent research strand of CAPM has built an empirical modelling strategy centering on 

the issue of the multiscale nature of the systematic risk using a framework of WA, Fernandez 

(2006), Gençay et al. (2005), Masih et al. (2010), Norsworthy et al. (2000), and Rua and Nunes 

(2012). WA is often regarded as a “microscope” in mathematics and provides a powerful tool 

to represent nonlinearities and to decompose time-series data into orthogonal components with 

different frequencies and the method can accommodate structural changes, discontinuities and 

regime shifts often found in financial data. Empirical characteristics of financial time-series 

vary depending on the time horizon. As In and Kim (2006) contended, the security markets 

consists of thousands of traders and investors with different time horizons and strategies in 

their mind regarding the investment decision.5 Furthermore, Kamara et al. (2016) argued that 

investors’ view of systematic risk for a given asset is horizon dependent which leads to a 

clientele effect and a phenomenon of horizon pricing. Under this thesis, investors with a 

preference of one horizon clientele underweights certain asset which cause another clientele to 

overweight those assets. For instance, highly leveraged hedge funds are concerned with short-

term liquidity shocks while long-term investors, such as pension funds, endowments, close-

end mutual funds, long-run individual investors are capable of investing in high-yield but less 

liquid assets.6 Given the different pricing kernel and different horizon clienteles, it is important 

to measure both systematic and market risks at different horizons for investors and financial 

practitioners with varying risks and investment preferences. If investors use a shorter time 

horizon than the true one the beta estimates of the CAPM will be biased, Gençay et al. (2005), 

Levhari and Levy (1977). Hence, WA is ideal for studying the multi-horizon properties of time-

series as they can be used to decompose a signal into different time horizon or frequency 

components. Furthermore, the wavelet approach overcomes the data reduction problem 

generally found for low-frequency data, capturing information associated with all available 

data, Conlon et al. (2016). Ramsey (1999) contends that WA has the ability to represent highly 

complex structures without knowing the underlying functional form, which is of great benefit 

in economic and financial research.  

Therefore, in this paper, we are investigating the impact of the global financial crisis on the 

stock markets of eight major European equity markets, such as France, Germany, Greece, Italy, 

Netherlands, Portugal, Spain and the United Kingdom within the framework of CAPM using 

daily data over the period of 2005-2018. The stock exchanges of these countries represent 

major exchanges within the European Union (EU) in terms of both market capitalisation and 

trading volume7. 

We contribute to the relative literature in the following ways. First, we assess the impact of 

the global financial crisis and contagion by investigating the stock markets’ responses in terms 

of their effects both on systematic and market risk in highly correlated markets linked with 

trade and investment. Second, we study the multi-horizon behavior of the systematic and 

                                                 
5 For example, within the speculator group, there are scalpers, day traders and position trader who act in the 

markets ranging from minute by minute, hour by hour, day by day, even month by month. Even within the three 

different types of participants, i.e., hedgers, speculators and arbitrageurs, in the derivative markets, there are long-

horizon traders who concentrate on long-run price fundamental and there are short-term traders who respond to 

information within a short-term horizon [see, Connor and Rossiter (2005) and Fernandez (2008)]. 

6 Kamara et al. (2016) noted that in a well-segmented market, as assets are held by different horizon clienteles, 

different assets are priced with different pricing kernel. They find that liquidity risk is priced over short horizons 

while value risk is priced over intermediate horizons; long horizon investors focus on investing in less liquid but 

high return assets. 

7 Furthermore, the US and European investors hold a large amount of financial assets in their portfolios by 

investing in ADR, GDR, country fund and direct participation in both markets. Given this closer relationship, 

investors and financial institutions from a number of European countries suffered huge losses in the US real estate 

market. 
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market risks in different time-periods and market conditions. The behaviour and performance 

of the CAPM during the pre-crisis, crisis, Euro-crisis and post-crisis periods provides a 

convenient and powerful framework for an empirical assessment of the impact of the crisis on 

the European stock markets. Third, we study the positions of the wavelets of the decomposed 

signal and we identify features of the return series which we match with various economic and 

socio-political events. Finally, we investigate whether we can model the decomposed parts of 

each return signal using a nonlinear nonparametric Wavelet Network (WN) and whether this 

approach can lead to enhanced forecasts for both the systematic risk and market risk. 

In our analysis, we first investigate for possible contagion effects of the U.S. crisis to the 

European stock markets and then we perform a local analysis of each European stock market 

separately by applying a national CAPM. Our results indicate that the correlation between the 

markets increased during the crisis period but significantly decreased when the U.S. market 

started to recover, and correlation increased again when the crisis moved to the Eurozone. Our 

results suggest that the beta coefficients have a multiscale dependency and tend to increase at 

mid to higher scales making CAPM predictions more meaningful for investment horizons of 

8-16 days. In our analysis, the results from the Euro-crisis and post-crisis samples indicate that 

changes of both betas and R2 varies between the two groups of the European markets. The market 

risk tends to be concentrated at lower time scales. In addition, Value-at-Risk (VaR) estimates 

tend to increase threefold almost for every country during the global financial crisis period relative 

to the pre-crisis period. The evidence of multiscale nature of systematic risk and market risk has 

important policy implications for financial practitioners, fund managers, researchers and policy-

makers. It is essential for investors to assess market and systematic risk at scale level and match it 

with their investment horizon. Finally, our results indicate that WNs constitute an accurate tool 

for forecasting the systematic and market risks by capturing their dynamics and their multiscale 

nature. 

The rest of the paper is organised as follows. Theoretical underpinning and implications are 

discussed in section 2. The proposed methodology is presented in section 3 while the data are 

described in section 4. Our empirical results regarding the multiscale systematic risk and the 

multiscale market risk are discussed in section 5. Finally, in section 6 we conclude. 

 

2 Literature review 

2.1 Theoretical underpinning and implication 

The concept and importance of equity market linkage, crisis, contagion and spillovers has 

stimulated substantial research at both a theoretical and an empirical level that extends over 

almost three decades following financial market liberalisation, globalisation and advances in 

communication and information technology.8 One of the main explanations for stock market 

propagation is that, as world equity markets are becoming more integrated, individual stock 

prices share common stochastic trend(s) – a phenomenon which is known as cointegration. The 

long-run co-trending properties of stock indices across markets indicate that stock price 

behaviour in these markets is founded upon the same economic growth factors that underlie 

earnings and dividends. The application of the ICAPM generates theoretical predictions which 

are in accordance with common trend(s). The latent factor model and the recent dynamic factor 

model maintain that stock prices are determined by world and regional factors, as well as a 

                                                 
8 For example, see Masih and Masih (2002) and a list of references therein for research on stock market 

interdependence, see Engle et al. (2012), Engle et al. (1990) and a list of references therein, and Theodossiou and 

Lee (1993) for research on mean and volatility spillovers across markets, see Claessens and Forbes (2001), Forbes 

and Rigobon (2002) and Dungey and Martin (2007) for research issues of crisis and contagion. 
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local factor representing idiosyncratic risk. A special type of cointegration is contagion where 

markets become excessively aligned. Bekaert et al. (2005) defined contagion as correlation 

which is stronger than that based merely upon market fundamentals. A distinction is drawn 

between two factors underpinning a stock return: the US equity market return; and the regional 

equity market return. Within this context, the size and structure of correlations are examined, 

subject to a change in the volatility factor and factor sensitivities. 

 

[Insert Figure 1] 

 

[Insert Figure 2] 

 

Engle et al. (1990) proposed two hypotheses as to how volatility might manifest itself across 

trading centers. The ‘heat wave’ hypothesis asserts that volatility has only location-specific 

autocorrelation, such that a volatile day in New York, for example, would be followed by 

another volatile day in New York. The ‘meteor shower’ hypothesis asserts that intraday 

volatility extends from one trading center to another, so that a volatile day in New York, for 

example, would be followed by a volatile day in London. Engle et al. (1990) described the 

meteor showers in the context of complete access to world-wide news in a market which allows 

for continuous trading. In this model, terrestrial geography plays no role in determining the 

impact of news on the volatility of financial markets. In such a market, volatility spillovers 

occur when uninformed liquidity traders and investors with heterogeneous priors cannot 

efficiently absorb private information in the price formation of securities. 

Given the theoretical foundation and consequences for efficiency, an appreciation of the 

phenomenon of stock market propagation is essential for several reasons. First, recognising the 

existence of stock market propagation is critical to the investors and financial practitioners for 

the purpose of valuing securities, implementing hedging strategies and deciding upon the 

distribution of assets. Second, an awareness of stock market propagation and volatility is 

required by financial sector regulators for the calculation of Minimum Capital Risk 

Requirement (MCRR), and performing stress tests and scenario analysis, founded upon value 

at risk and/or extreme value models. Also, such information is of particular relevance for 

policy-makers with the potential to intervene in financial markets and regulate the operation of 

equity markets. 

2.2 Empirical studies on contagion 

There is a wealth of literature on financial contagion, which has accumulated over the past 

three decades, founded on several financial crises (see, for example, Allen and Gale (2000), 

Chiang et al. (2007), Fry-McKibbin and Hsiao (2014), Gallegati (2012), and Kenourgios et al. 

(2011), and references therein).9 Bekaert et al. (2014) note six channels of contagion. First, as 

the recent global financial crisis originated in the banking sector, the international banking 

sector links transmit shocks from one country to another. Second, as a consequence of the 

implementation of various financial policies (through debt and deposit guarantees and capital 

injection) across countries in order to protect the domestic financial sector.10 Third, in 

                                                 
9 The bulk of the research on contagion is data driven, relying on various types of time series models, such as a 

testing scheme based on changes in correlation coefficients (King and Wadhwani 1990), ARCH and GARCH 

models (Engle et al. 1990), cointegration relationships (Chouliaras et al. 2012), probit/logit models (Eichengreen 

et al. 1996, Kaminsky and Reinhart 2000), regime switching (Boyer et al. 2006, Rodriquez 2007), the factor model 

(Bekeart et al. 2014), the Copula approach (Rodriquez 2007) and the higher moments of probability distributions 

(Fry et al. 2010). 
10 For example, see Federal Reserve Bank of St Louis’ Financial Crisis Timeline (2009). 
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accordance with the globalization hypothesis, in highly integrated international economies, 

contagion occurs through trade and financial linkages. Fourth, during economic crises, 

information asymmetries decrease as investors focus more on publicly available information, 

which may lead to an increase in correlation. Fifth, under the ‘wake-up call hypothesis’, a crisis 

in one market segment or country furnishes new information that motivates investors to 

reassess the vulnerability of other market segments or countries. Finally, there is the potential 

for herding behavior or investors’ risk appetite. 

Bekaert et al. (2014) develop a three-factor model for the pricing of 415 country-sector 

equity portfolios across 55 countries: a U.S.-specific factor; a global financial factor; and a 

domestic factor. The labels which they attach to these are respectively: ‘U.S. contagion’; 

‘global contagion’; and ‘domestic contagion’. The study finds evidence of: modest contagion 

from the US and global financial sector; yet substantial contagion from domestic markets to 

individual domestic portfolios. 

Tabak et al. (2016) investigate contagion in the context of Credit Default Swaps and banking 

and equity markets over the period, January 2006 to August 2013. The study finds evidence of 

strong contagion in these markets in several cases. In particular, it reports widespread contagion 

during the Global Financial Crisis and Eurozone Sovereign debt crisis. 

Fry et al. (2010) proposed a coskewness-based test of contagion to identify transmission 

channels of financial market crises using data on real estate and equity markets following the 

Hong Kong crisis in 1997-1998 and the US subprime crisis in 2007. The results of these tests 

showed linkages across markets that correlation based measure of contagion were unable to 

detect. Fry-McKibbin and Hsiao (2014) examine the issue of contagion during the nine crises 

ranging from Asian crisis in 1997-98 to the recent European debt crisis of 2010-2013. They 

employ a regime-switching model to identify the crises’ dates and a framework of correlation, 

coskewness and covolatility to examine the dependence structure of the equity markets. Their 

empirical results show that finance linkages are more important than trade in crisis 

transmission; emerging market crises were transferred to developed markets and the Great 

Recession is a truly global financial crisis. 

Baur (2012) investigates the issue of financial contagion and the real economy using data 

on ten sectors in 25 major developed and emerging stock markets over the period of Global 

Financial Crisis, 2007-2009. The study finds that the crisis led to an increased co-movement 

of returns among financial sector stocks across countries and between financial sector stocks 

and real economy stocks. 

Interested readers may consult a series of papers, which have documented experience of 

contagion based on other non-European countries. For example, Chiang et al. (2007) examine 

the issue of financial contagion in nine Asian markets using a dynamic conditional-correlation 

model over the period, 1990 to 2003. The study finds evidence of a contagion effect and 

identify two phases of Asian crisis. The first stage demonstrates an increase in correlation 

(contagion), while the second shows a continued high correlation (herding). Samarakoon 

(2011) investigates the transmission of shocks between the US and the emerging and frontier 

markets to delineate interdependence from contagion. The study indicates that interdependence 

is driven more by U.S. shocks, while contagion stems from emerging market shocks. 

Aloui et al. (2011) investigate the extent of the current global financial crisis and the 

contagion effect to examine the extreme financial interdependences using daily return data 

from Brazil, Russia, India and China (BRIC) and the U.S. during the period, 2004-2009. Their 

results, which are based on a multivariate copula approach, show evidence of time-varying 

dependence between each of the BRIC markets and the US market. Kenourgios et al. (2011) 

examine financial crises and stock market contagion among the BRIC markets and two 

developed markets (U.S. and U.K.) during the period, 1995-2006 (which covers five recent 

financial crises). The study also demonstrates that emerging markets are more prone to 
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financial contagion and an industry-specific shock has a larger impact than country-specific 

crises. 

2.3 Empirical studies on global financial crisis 

In the case of the recent global financial crisis, the problem is considered to have emanated 

from the toxic securitized markets, with consequent spillovers to the derivative markets, via, 

for example, CDS, and to equity markets, by virtue of the meteor showers on the global 

financial markets. Consequently, a large body of empirical literature has accumulated in recent 

years regarding the causes and consequences of the global financial crisis on the global 

financial markets.11 The literature review which follows here constitutes merely a few 

representative sample of research that has been focused on the financial markets regarding the 

causes and consequences of the global financial crisis. 

Dorn (2009) contended that U.S. housing policy, along with securitization and easy money 

contributed to the asset price bubble in the housing market.12 The role of government-

sponsored enterprises, flawed financial-risk models, lax regulatory framework, inadequate 

credit rating and innovations that allowed banks to overleverage-all these factors in a body 

contributed to the sub-prime crisis. Schwartz (2009) argued that the process of asset 

securitization produced products that were difficult to price. Calomiris (2009) argued that 

inadequate or inappropriate regulation contributed to the subprime crisis by allowing banks to 

maintain insufficient amounts of equity capital per unit of risk undertaken in their subprime 

holdings. Banti et al. (2012) using proprietary data from a large investment bank reported that 

the magnitude of liquidity risk premium increased substantially after the collapse of Lehman 

Brothers during the period of financial crisis. 

In recent studies Choudhry and Jayasekera (2015) investigated the anomalous behaviour of 

stock prices and asymmetric response of time-varying beta using the data from US-UK bank 

stocks and UK stock markets during the period of global financial crisis, respectively. Their 

empirical results reported that the level of market efficiency declined and the time-varying 

betas for individual firms increased significantly during the crisis period. They rationalized the 

anomalous behaviour of stock prices in terms of two competing hypotheses, i.e., market 

efficiency hypothesis and behavioural finance based explanation. The market efficiency 

hypothesis (EMH) predicts that beta of individual stock rises (fall) in response to abnormally 

negative (positive) returns as an asymmetric response to good and bad news. Regarding the 

behavioural finance explanation, there exists plethora of literature which presents evidence of 

over/under reaction of stock prices to new information.13 

There is a rich array of literature on the asymmetric effect of good and bad news on stock 

prices.  For example, see Black (1976), Cho and Engle (1999), Christie (1982), Glosten et al. 

(1993). The explanation of asymmetric effect on time-varying beta emanates from two 

plausible sources, such as leverage based explanation and volatility based explanation. The 

leverage effect is due to the reduction in the equity value, which would raise the debt-equity 

                                                 
11 Interested readers are referred to samples of few articles from special issues of the following journals on this 

topic: Applied Financial Economics, Vol. 20, Issue 1-2, 2010, Cato Journal, Vol 29, Issue 1, Winter 2009, Journal 

of International Money and Finance, Vol. 49, Part B, December 2014, Multinational Finance Journal, Vol. 18, 

Issue 3 & 4, 2014, pp. 169-336, Journal of International Money and Finance, Vol. 28, Issue 8, December 2009, 

pp. 1243-1472. 

12 Calomiris (2009) noted that total subprime and Alt-A originations grew from $395 billion in 2003 to $715 in 

2004 and increased to $1,005 billion in 2008. 

13 For example, see Dharan and Ikenberry (1995), Frazzini (2006), Loughran and Ritter (1995). 
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ratio, hence raising the riskiness of the firm as a result of an increase in future volatility.14 The 

volatility based explanation posits a positive relation between volatility and expected risk 

premium.15 An increase in volatility raises the expected return by lowering the stock prices 

which in turn contributes to the asymmetric effect in volatility. Consequently, this effect in 

volatility is impacted upon the beta through an asymmetric effect. In a recent study Iqbal and 

Kume (2014) investigated the impact of the recent financial crisis on the capital structure 

decision of UK, French and German firms. Their results indicate that overall leverage ratios 

increased from pre-crisis (2006 and 2007) to crisis (2008 and 2009) period and then decreased 

in the post-crisis (2010 and 2011) period. 

2.4 Empirical studies on CAPM 

Since the seminal contribution made by Sharpe (1964) and Lintner (1965), the notion and 

significance of the CAPM has spawned considerable research at both theoretical and empirical 

levels that spans almost six decades. According to CAPM, in a perfect capital market, the 

excess return of a stock or a portfolio of stocks (return over the riskless rate of return) should 

move in proportion to the market premium (market return over the riskless rate of return). The 

proportionality factor known as ‘beta’ (  ) captures the ‘systematic risk’ of the market.   

Previous studies suggest that the empirical validity of CAPM appears to depend on the 

return interval chosen albeit with mixed results. For example, studies of Kothari et al. (1995), 

and Handa et al. (1993) show that s  from annual returns produce stronger relation between 

beta and average return than s  from monthly return. Frankfurter et al. (1994) contend that 

the mean and variance of   increases from daily returns to yearly returns. A study by 

Brailsford and Faff (1997) suggests that CAPM is rejected when daily returns data is used, 

while CAPM is accepted when weekly returns data is used. In contrast, Fama and French 

(1996) show that annual and monthly βs produce the same inference about the β premium.16 

Given the mixed results regarding the inference about the CAPM and βs, and the multiscale 

nature of the systematic risk (see, Gencay et al. 2005 and others), in this paper, we have 

employed a powerful method to estimate the systematic risk of CAPM using WA to examine 

the meteor shower effects of the global financial crisis on selected European stock markets. 

2.5 Empirical studies using wavelet analysis 

The wavelet technique is currently being used in the field of Finance for the purpose of 

analysing rapidly changing transient signals; in addition, it is a powerful tool for representing 

nonlinearities (Fang and Chow, 2006).17 For example, wavelet technology has been applied in 

order to estimate both the hedge ratio (In and Kim (2006)) and the international CAPM (In and 

Kim (2007)). The estimation of systematic risk is studied in Gençay et al. (2002, 2005), Masih 

                                                 
14 For example, see Black (1976), Cho and Engle (1999), Christie (1982), Glosten et al. (1993). 

15 For example, see Bollerslev et al. (1988), Poterba and Summers (1984). 

16 Several explanations are offered for the interval bias of systematic risk, such as infrequent trading, delays in 

information processing, increase of standard error of the beta as the return interval is lengthened, disproportionate 

move of covariance relative to the variance estimate in the measurement of beta, and seasonality. Masih et al. 

(2010) furnished a good discussion on the issue. 

17Alexandridis and Zapranis (2013, 2014), Fernandez (2006), Gencay et al.(2003, 2005), In and Kim (2006, 2007), 

Kim and In (2005, 2007), Maharaj et al. (2011), Masih et al. (2010), Norsworthy et al. (2000), Ramsey (1999), 

and Rua and Nunes (2012) are a small sample of papers which have adopted the wavelet approach towards 

analysing financial time series. 
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et al. (2010) and Rabeh and Mohamed (2011).  In Maharaj et al. (2011), a comparison is made 

of developed and emerging equity market return volatility at different time scales. In Kim and 

In (2007), consideration is given to the relationship between changes in stock prices and bond 

yields in the G7 countries. Finally, in Kim and In (2005), the connection is examined between 

stock returns and inflation. 

Kim and In (2010) investigate portfolio allocation over various time scales using monthly 

nominal stock, long-term government bond and Treasury bill returns for the US spanning the 

period January 1926 to December 2003. The study finds that stocks are less risky than bonds 

and Treasury bills at longer time scales, relative to shorter time horizons. Gallegati (2012) 

employed a wavelet-based approach to test for financial contagion in G7 countries, Brazil and 

Hong Kong during the US subprime crisis of 2007. The study shows that all stock markets 

have been affected by this event. Results further indicate that contagion occurred at lower 

scales (higher frequencies) and interdependence happened at higher scales (lower frequencies) 

for all markets except Brazil and Japan.  In the case of both Brazil and Japan, contagion is 

observed at all scales. Mensi et al. (2017) investigate the portfolio risk and the co-movement 

between each of the BRIC emerging and South Asian frontier stock markets and each of the 

major developed stock markets (U.S., U.K. and Japan) using the wavelet squared coherence 

approach as well as the wavelet-based Value at Risk (VaR) method. Their results demonstrate 

that the co-movements and diversification benefits between markets vary over time and across 

frequencies. Furthermore, the co-movements are intensified in the wake of the recent global 

financial crisis and the Eurozone crisis. 

Fernandaz-Macho (2012) investigates the level of integration of eleven countries of 

Eurozone stock markets using wavelet correlation and cross-correlations. The study finds 

evidence of perfect integration of these Eurozone stock markets at the longest time scales.  

Wang et al. (2017a) empirically examine the interaction of 457 stocks in 12 clusters in the US 

market in various time horizons from a network perspective using wavelet and topological 

methods of minimum spanning tree (MST) and planner maximum filtered graph (PMFG) over 

the period 2005-2012.  They find that 1) the topological structure and properties of networks 

vary across time horizons, 2) there is a sectoral clustering effect in the networks at small time 

scales.  Wang et al. (2017b) empirically examine the stock market contagion during the global 

financial crisis from the US to other six G7 and BRIC countries using wavelet approach.  The 

study finds that stock market contagion depends on both the recipient country and the time 

scale.  The study also reports that contagion from the US to Japan, China and Brazil occurs at 

a time scales longer than 50 days or more. 

 

3 Methodology 

3.1 The Capital Asset Pricing Model 

The widely presented testing equation for the CAPM is given by: 

  , , , , ,i t f t i m t f t i tE r r E r r            (1) 

where tir , , tfr , and tmr ,  signify rates of return on i-th risky asset, risk-free asset and market 

portfolio, respectively. The CAPM predicts that the return to individual stock is a direct and 

linear function of the investments’ systematic risk and market risk premium. The beta is defined 

as: 

    
, ,

,

( , )

( )

i t m t

i

m t

Cov r r

Var r
       (2) 
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where 
, ,( , )i t m tCov r r  signifies the covariance between the return on asset i and the return on the 

market portfolio and 
,( )m tVar r  denotes the variance of the portfolio return. When beta is found 

to be more than unity, this suggests that the firm under study is perceived more risky than the 

market. Alternatively, if beta is greater than 1, the security is termed to be aggressive, and if it 

is less than 1, it is said to be defensive.   

 

3.2 Wavelet Analysis 

WA is an extension of Fourier analysis. The fundamental idea behind wavelets is to analyse 

according to scale. Low scale represents high frequency while high scales represent low 

frequency. The wavelet transform (WT) not only is localized in both time and frequency but 

also overcomes the fixed time-frequency partitioning. This means that the WT has good 

frequency resolution for low-frequency events and good time resolution for high-frequency 

events. Hence, the WT can be used to analyse time series that contain no stationary dynamics 

at many different frequencies. 

In this study we use the Maximal Overlap Discrete WT (MODWT). The MODWT has many 

desirable properties, Percival and Walden (2000)18. The MODWT can handle any sample size 

of the data and does not suffer from sensitivity to the choice of a starting point for a time series. 

The detail and smooth coefficients of a MODWT multi-resolution analysis (MRA) are 

associated with zero phase filters and the wavelet variance estimator is asymptotically more 

efficient than the same estimator based on the DWT19. 

A time-series ( )f t  can be written as a linear combination of wavelet functions as follows: 

 , , , , 1, 1, 1, 1,( ) ( ) ( ) ( ) ( )J k J k J k J k J k J k k k

k k k k

f t s t d t d t d t             (3) 

where J  is the number of scales and k  indicates the 
thk  coefficient. Τhe wavelet transformed 

coefficients 
, , 1,, ,...,J k J k ks d d  can be approximated by the following integrals: 

   , ,J k J ks t f t dt   and    , ,J k J kd t f t dt   where 1,2,...,j J .  The functions 
,j k  

and 
,j k  are the approximating wavelet functions. By setting , ,( ) ( ) ( )J J k J k

k

S t s t t  and 

, ,( ) ( ) ( )J J k J k

k

D t d t t  the original time-series can be reconstructed: 

 
1 1( ) ( ) ( ) ( ) ( )J J Jf t S t D t D t D t     (4) 

 

This reconstruction is known as multi-resolution analysis (MRA) and is applied in order to 

reconstruct the original time-series from the wavelet and scaling coefficients.  The elements of 

JS  are related to the scaling coefficients at the maximal scale and therefore represent the 

smooth components of ( )f t .  The elements of jD  are the detail (or rough) coefficients of ( )f t  

at scale j . 

                                                 
18So far, the MODWT was successfully applied in many studies in finance.  For example, see In and Kim (2006), 

In and Kim (2007), Gençay et al. (2002, 2005), Masih et al. (2010), Rabeh and Mohamed (2011) and In Maharaj 

et al. (2011). 

19 In this study the LA8 (Least Asymmetric of length 8) wavelet transform filter is used. Our analysis is performed 

in 5 levels of the decomposition and the reflection method was used for the boundary conditions. 
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3.3 Computation of Wavelet Variance and Wavelet Covariance 

WA allows us to decompose the variance of a financial time-series into various parts, each 

one representing the variance at each scale. This wavelet-variance analysis shows us which 

scales are contributing significantly to the overall variability of the time-series, see Percival 

and Walden (2000).  For a stationary process X , the variance 2

X  is given by: 

  2 2

1

X x j

j

  




  (5) 

where  2

x j   is the wavelet variance for scale 
j . Equation (5) is analogous to the relationship 

between the variance of a stationary process and its spectral density function. An unbiased 

estimator of the wavelet variance is given by:  

 

  
1

2 2

,

1

1
ˆ

j

N

X j j t

t Lj

d
N

 


 

   (6) 

where 
2

,j td  is the MODWT wavelet coefficients at scale 
j , n  is the sample size, 

jL  is the 

length of the scale 
j  wavelet filter and 

jN is the number of the MODWT coefficients 

unaffected by the boundary. 

Similarly, an unbiased estimator of the wavelet-covariance between two time-series X  and 

Y  is given by: 

  
1

2 ( ) ( )

, ,

1

1
ˆ

j

N
X Y

XY j j t j t

t Lj

d d
N

 


 

   (7) 

3.3.1 A Wavelet Beta Estimator 

Under the CAPM the wavelet beta estimator for asset i  at scale j  is defined as: 

  
 
 

2

2

ˆ
ˆ

ˆ

i m

m

r r j

i j

r j

 
 

 
  (8) 

where  2ˆ
i mr r j   is the wavelet covariance of asset i  and the market portfolio at scale j , and 

 2ˆ
mr j   is the wavelet variance of the market portfolio at  scale j . Furthermore, according to 

Gençay et al. (2003) a wavelet 2R  estimator for asset i  at scale j  is computed by: 

    
 
 

2

2 2

2

ˆ
ˆ

ˆ

m

i

r j

i j i j

r j

R
 

  
 

  (9) 

3.3.2 Scale Specific Value at Risk 

VaR is a very popular measure that describes the market risk. VaR measures the amount that 

an investor can lose with a given probability over a certain time horizon. We construct a 

portfolio where individual company stocks within each country constitute the portfolio. For 

simplicity we assume an equally weighted portfolio of k  assets where   is vector that contains 

the portfolio weights, i.e. a 1k   vector which each element is 1 k .  Then, the ratio: 
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  (10) 

 

is an estimate of the contribution of scale j to total VaR of an equally weighted portfolio, where 

        2 2 2 2

j i j i j m j           (11) 

and  2

i j   is the variance of stock i at scale j,  i j   is the beta of stock i return at scale j 

and the variance of the market portfolio at scale j is given by  2

m j  , see Fernandez (2006). 

3.4 Forecasting using Wavelet Networks 

The final objective of this paper is to examine whether the decomposed returns produced by 

WA can lead to accurate forecasts of the multiscale systematic risk.  In order to do so, we will 

employ non-linear non-parametric WNs. More precisely, WNs will be used in order to capture 

and forecast the dynamics and the multiscale nature of the systematic risk.20 

We will use one period of our dataset for in-sample training and one period for out-of-

sample forecasting. In order to do so, the third data set that represents the period of Eurozone 

crisis is used to train artificial WNs. Then the trained WNs will be used in order to forecast the 

betas in the out-of-sample period which is the fourth data set ranging from January 1, 2014 to 

August 28, 2018 and represents the post-crisis period. A rolling window with one-step-ahead 

forecasting scheme is applied. 

 

4 Data description 

We are investigating the impact of the crisis on the stock markets of eight European markets. 

The selected markets are distinguished in two groups. The first group consists of four countries 

that at the moment face much European uncertainty and are under a rescue program and under 

the supervision of the International Monetary Fund (IMF) and/or the European Central Bank 

(ECB). These countries are: Portugal, Italy, Greece and Spain. On the other hand, the second 

group consists of four countries whose economies are traditionally considered strong and 

stable. These countries are: Germany, Netherlands, UK and France. The selected countries 

represent major exchanges within the EU in terms of both market capitalization and trading 

volume.21 

Our data set includes the daily values of the main stock index in each country from June 1, 

2005 to August 28, 2018 as well as the daily stock prices of the stocks that constitute each 

                                                 
20 In order to reduce the size of this paper we avoid to present analytically any technical details on WNs. The basic 

mathematical aspects and construction procedures as well as additional information on training and forecasting of 

the WNs are presented in Appendix A. For an analytical treatment of WNs we refer the interested reader to 

Alexandridis and Zapranis (2013), (2014). 

21 The value of stock market capitalization for markets of the United Kingdom, France, Germany, Netherlands, 

Spain, Italy, Portugal and Greece in 2012 were 3019, 1823, 1486, 651, 995, 480, 66 and 45 billion US dollars, 

respectively. 
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index.22 In this study, we estimate the beta of a risky asset at different time-frequencies and in 

different time-periods in order to obtain an estimate of the impact of the U.S. crisis in the 

systematic risk in these markets. 

Narayan and Sharma (2015) and Narayan et al. (2015) suggest that hypotheses tests can be 

data frequency dependent. There are four reasons behind our motivation to use daily data. First, 

daily data contain richer information than weekly or monthly data, Bannigidadmath and 

Narayan (2016). Second, daily data give us a sufficient number of observations both when we 

consider the whole sample and when we consider the four sub-periods. Third, in hedging and 

investment decisions, one needs to match the frequency of the data or the differencing interval 

with the hedging horizon. For example, one needs to use weekly, monthly and annual data to 

obtain hedge ratios, consistent with weekly, monthly and annual investment horizons, 

respectively (Lien and Shrestha (2007)). Alternatively, for a k-period hedging horizon, one 

should use a k-period differencing. This method results in a substantial reduction of the sample 

size when a long-horizon period is assumed.23 Hence, the third reason for using daily data arises 

from the fact that a potential advantage of using wavelet analysis is that it alleviates the sample 

reduction problem. Finally, high frequency data provide additional information (Bollerslev and 

Wright 2001) and high frequency data improve volatility and return forecasts (see Anderson et 

al. 1999, and Maheu and McCurdy, 2011). 

In order to identify periods of turmoil we follow the timelines provided by the Bank of 

International Settlements (BIS (2010)) and the Federal Reserve of St. Louis (2009). This 

approach was followed by Baur (2012).24 Hence, we split our dataset in four periods. The first 

sample corresponds to the pre-crisis period and includes daily stock values from June 1, 2005 

to July 31, 2007. The second sample represents the crisis period and it ranges from August 1, 

2007 to November 4, 2009. The third sample represents the Euro-crisis and it ranges from 

November 5, 2009 to December 31, 2013. Finally, there is a fourth sample from January 1, 

2014 to August 28, 2018 that represents the post-crisis period, specifically a period of 

moderation and restoration. 

In order to avoid survivorship bias only the stocks that survive for each sample period are 

examined.25 Daily return series for each stock as well as the market index were collected from 

each stock market. This resulted in 564 values for the first sample, 591 for the second, 1,084 

for the third, 1,216 for the fourth, giving a total of 3,455 values. The logarithmic returns of the 

stocks, 
,i tr , and of the market index, 

,m tr , were computed. 

For the estimation of model (1) the risk-free rate of return is proxied by the daily rate of 

return from 1-month Euribor offer rate for all countries with an exception in the case of the 

U.K. where it is represented by the daily rate of return from the 1-month U.K. Treasury bill 

rate. 

                                                 
22 The eight indices are the following: AEX25 from Netherlands, FTSE/ATHEX 20 from Greece, CAC 40 from 

France, DAX 30 from Germany, FTSE 100 from UK, IBEX 35 from Spain, MIB 40 from Italy and PSI 20 from 

Portugal. 

23 As Lien and Shrestha (2007, p. 129) noted, one needs to compute approximately 1,000 daily returns or 208 

weekly returns, or 3 annual returns of non-overlapping periods using with 4 years worth of data. 
24 Alternatively, many studies use Markov regime switching model to identify the crisis periods endogenously, 

e.g. Boyer et al. (2006), while other use both statistical and economic approaches, e.g. Baur (2012), Dimitriou et 

al. (2013), Kenourgios (2014). 
25 Pre-crisis: Netherlands: 20, Greece: 20, France: 37, Germany: 27, UK: 83, Spain: 24, Italy: 31, Portugal: 12. 

In-crisis: Netherlands: 20, Greece: 22, France: 39, Germany: 27, UK: 90, Spain: 27, Italy: 35, Portugal: 14. Euro-

crisis: Netherlands: 20, Greece: 23, France: 39, Germany: 27, UK: 91, Spain: 28, Italy: 37, Portugal: 17. Post-

crisis: Netherlands: 20, Greece: 24, France: 39, Germany: 28, UK: 99, Spain: 32, Italy: 40, Portugal: 18. 
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5 Empirical results 

5.1 Preliminary analysis 

In this section we present a preliminary analysis. First, we split the data into four periods 

and then perform a separate WA in each sub-sample. There are two main reasons. First, the 

aim is to study how the beta and VaR estimates changes across periods. Second, we want to 

examine whether the wavelet based estimates of the betas and VaR’s can provide useful 

information to investor regarding the future performance of the European markets. In other 

words the investor has only the information included in the period under consideration and tries 

to devise his strategy based on the estimates of betas and VaR’s at different time-scales and 

frequencies. If the complete time-series is used the beta estimates will be distorted through the 

way the wavelet transform operates essentially using information of future values (outside the 

specific period into consideration). 

A quick inspection of Figure 2 reveals that co-movements of the U.S and the European 

markets are evident although Greece and Spain have a declining course even after the recovery 

of the U.S. market. As a part of the preliminary analysis, we have conducted a correlation 

analysis across sub-periods.  In this paper, we have assumed ‘pure’ contagion which refers to 

the transmission of shocks from one country to another country in excess of what should be 

expected after controlling for fundamental factors (see Bae et al. (2003) and Kumar and 

Persaud (2001)).  This is generally related to investors’ behaviour, such as herding, financial 

panic, loss of confidence, etc., and leads to excessive co-movements (Gallegati 2012, p. 3491-

3492).  Also, Acharya and Pederson (2005) contend that contagion operates through a time-

varying risk-premium channel, where negative returns in the distressed market affect 

subsequent returns in other markets. In Table 1 the correlation between the returns of the S&P 

500 and the selected European stock markets under study is presented. It is clear that the 

correlation coefficients increase as we move from the pre-crisis to the in-crisis period. During 

the Eurozone crisis where the U.S. economy started its recovery it is evident that the correlation 

was further increased for all countries except Greece. The highest values are observed in the 

group of countries with strong economies while lower values are observed for Greece, Spain, 

Italy and Portugal.  Finally, focusing on the post-crisis period the correlation decreased. As it 

can be seen, correlation coefficients show significant instability over the sub-periods.26  

In Figure 3 the wavelet decomposition of the index returns in Greece and Germany is 

presented. The wavelet decomposition was performed at 5 levels for the entire dataset. The red 

vertical lines indicate the different subperiods. It is evident that the volatility of daily stock 

index returns changes over time and over frequency. First, the volatility is concentrated at high 

frequencies. Second, a closer inspection of Figure 3 reveals that the variability of the returns is 

relatively small for both countries in the pre-crisis period with an exception of early 2006. The 

variability has significantly increased during the financial crisis periods. Furthermore, a large 

spike is observed in mid-2008 indicating the start of the global financial crisis. The Eurozone 

crisis and the post-crisis periods are different for the two countries. In Greece, a further increase 

in the variability is observed.  A closer inspection of d2 reveals that large spikes are aligned 

with various events that affected the trust of the investors in the Greek economy27. On the other 

hand, inspecting the wavelet decomposition of the returns of the German index, a significant 

                                                 
26 A two-sample Kolmogorov-Smirnov goodness-of-fit is performed to test the null hypothesis that the returns of 

two different periods come from the same distribution. The null hypothesis is rejected almost always, in 804 out 

of 834 cases. 
27 Indicatively, we mention the following events: the three government elections that took place in 10/2009, 5/2012 

and 6/2012. Also, a large spike is evident before the debt-restructuring deal in 2/2012 and the call for referendum 

from the Greek prime minster in 10/2012 that also led him to resign few days later. 
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decrease in the variability is evident for the last two periods. A period of uncertainty is evident 

in late 2011 following the events in Greece discussed previously.  In the fourth period a further 

decrease in the volatility of the returns is observed indicating the trust of the investors in the 

German economy. 

 

[Insert Table 1] 

 

[Insert Figure 3] 

 

It is worth to mention that the results from the U.K., Netherlands, France and Germany are 

similar, while Spain, Italy and Portugal follow the pattern of Greece. However, it is worth 

mentioning that in Portugal the variability has been significantly decreased after mid-2011. 

Again, the remaining results are available from the authors upon request. 

Finally, following Whitcher et al. (2002) we apply a test for homogeneity of variance on a 

scale-by-scale basis. The test is rejected for all time-series indicating a sudden shift in the 

variance.28 

5.2 Multiscale analysis of betas 

In this section we will focus on the local CAPM of each country. The results for each country 

are presented in Table 2 to Table 5. More precisely, the beta and 2R  at each scale j  are 

presented while in the last two columns the beta and 2R from the classic linear CAPM are 

presented. Analytical tables for each stock are available upon request. Our analysis was 

performed in a depth of 5 scales. Scale 1 corresponds to periods of 2-4 days, scale 2 to 4-8 

days, scale 3 to 8-16 days, scale 4 to 16-32 days and scale 5 to 32-64 days. 

Focusing on the pre-crisis period, Table 2 reveals that the linear relationship between an 

individual stock and the market portfolio becomes stronger as the scale increases, while usually 

a slight decrease is observed at scale 5. In other words the maximum values of beta and 2R  

are observed in scales 3 and 4. Our results accord well with Gençay et al. (2005) and Fernandez 

(2006). We also observe that the systematic risk of almost all stocks and proposed portfolios is 

less than one in the markets of Greece, Netherlands, Germany and Portugal for 2-64 days 

horizon.29 This suggests that the benchmark market indices have a reduced impact on assets in 

these markets in the short to intermediate-run horizons. The 2R  ranges from 0.12 at scale 2 for 

Portugal to 0.41 at scale 5 for Spain. The lower values of 2R  are observed in Portugal, 

Netherlands and Italy while the highest values are observed in Spain, Germany and France. 

During the crisis betas have increased for the stock markets of France, Germany and 

Portugal as it is shown in Table 3. The increased magnitudes of betas reflect heightened 

sensitivity of financial market to the whole range of economic and financial variables, and 

incomplete knowledge regarding the magnitudes to toxic asset positions in the early stage of 

the crisis. The evidence of increased betas during the financial crisis era is consistent with the 

findings of Choudhry and Jayasekera (2015), Asgharian et al. (2017) and others.30 

                                                 
28 More precisely, the test is rejected for all scales for Netherlands and Greece and it is rejected for scales 1, 2, 3 

and 4 for the remaining countries. 
29 Kamara et al. (2016) note that long-horizon institutional investors overweight asset with high short-horizon 

liquidity risk and high intermediate horizon HML risk. However, they appear to be the natural bearers of 

systematic risk. 
30 Rua and Nunes (2012) noted that beta tends to rise during crises period, such as the Mexican crisis in 1994, 

Emerging market crisis in 1998, Turkish crisis in 2006 and recent global financial crisis. 
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During the crisis period, negative information led to a freeze in several markets which may 

have led to decrease in magnitudes of betas in other markets, i.e., the markets for Greece, Italy, 

Spain and the UK. On the other hand, the R2 has increased for all countries. The lower values 

of 2R  observed in UK (0.35) and Portugal (0.34) while the highest one in France (0.50). In 

addition, in contrast to the remaining countries, the beta for Greece fluctuates between 0.77 

and 0.74 for the first three scales and then increases to 0.86 in the last scale. For the remaining 

countries the maximum beta is observed at scales 3 and 4 while the minimum, usually, at scale 

1. 

 

 

[Insert Table 2] 

 

[Insert Table 3] 

 

[Insert Table 4] 

 

[Insert Table 5] 

 

As Table 4 depicts, during the Eurozone crisis the betas are almost 1 for each scale, although 

a slight increase is observed at higher scales, for all countries in the “strong” group, i.e. 

Netherlands, France, Germany and UK. For the reaming countries the betas are around 0.85. 

The increased sizes of the betas again indicate the heightened sensitivities induced by the 

uncertainty of the Eurozone crisis in these markets. For all countries the 2R  has increased with 

an upward trend from scale 1 to scale 3 and then a downward trend until scale 5. 

Table 5 depicts the results from the post-crisis period. An increase is observed in the beta 

values of Greece, Spain and Portugal while betas slightly decreased for the remaining countries. 

Similarly  2R  increased for Greece and Portugal while it decreased in all other countries. 

In summary, WA provides indication of financial instability that is clear only in a frequency 

analysis. We observe a different behaviour of betas for Greece, Portugal and Spain than the 

betas for UK, Germany and France. Overall, beta coefficients show a multiscale tendency. The 

values of betas have increased at low frequencies (higher scale) across periods and markets. 

This result may arise from the fact that long-term investors are more exposed to systematic risk 

than short-term investors. Values of betas have changed during global financial crisis period 

relatively to the pre-crisis period. During the period of Eurozone debt crisis, values of betas 

have increased for the majority of the sample Eurozone countries. The increase of multi-scale 

betas during periods of global financial crisis and Eurozone crisis may be induced by a 

combination of leverage effect and asymmetric response of the market to bad news. In addition, 

a rich array of literature in behavioural finance presented evidence of under/over reaction of 

stock prices to information in such turbulent market condition. The evidence of asymmetric 

effect in time-varying beta is consistent with the findings of Choudhry and Jayasekera (2015) 

and the evidence of leverage effect accords well with the finding of Iqbal and Kume (2014) in 

their study of markets from the UK, France and Germany.  Furthermore, as Braun et al. (1995) 

and Ball and Kothari (1989) contended that an increase (decrease) in market shocks to the firm 

increase (decrease) the beta and lead to a rise (fall) in expected return in market. Therefore, 

asymmetry in volatility in these markets during the crises periods led to asymmetry in time-

varying beta. 
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Chiang et al. (2007) and Syllignakis and Kouretas (2011) provide the evidence of financial 

contagion due to herding behavior during the financial crisis.31 In normal market conditions, 

investors and traders use on some occasions technical analysis such as momentum trading to 

generate above average market return. However, during the crisis, negative information led to 

a freeze in several markets or may have led to a disposition effect. As mean betas in each scale 

are around 1 or slightly above 1 and increase in higher scales, investors and traders should 

employ a contrarian trading strategy across scales. The long-term investors may utilize a buy 

and hold strategy in such a bearish market. Once the market rebound to their long-run mean 

values, the investors may resort to momentum trading strategy. 

5.3 Value-at-Risk at different time-scales. 

In Table 6 the ( )VaR a  at different time scales for an equally weighted portfolio is presented 

for the four different time periods for all countries. The initial value of the portfolio is 1 unit of 

the specific market’s currency invested in 1-day horizon at the 95% confidence interval.  

As we can see from Table 6 the ( )VaR a  declines monotonically as we move to higher scales. 

In other words, the ( )VaR a is higher at lower scales. Similarly, the contribution of the ( )VaR a  

is higher at lower scales and decreases as we move to higher scales. The observation that the 

risk is higher at lower scales appears to be an echo of the property stating that under the random 

walk assumption about logarithmic prices, the wavelet variance for log returns decreases 

exponentially as the scale parameter increases. 

 

[Insert Table 6] 

 

A closer inspection of Table 6 during the pre-crisis period reveals that the total ( )VaR a  is 

relatively low for all countries. More precisely, the lower value is observed in Portugal (0.009) 

while the higher value in Greece (0.0158). On the other hand the ( )VaR a  for Netherlands, 

France, Germany, UK and Spain ranges from 0.0121 to 0.0136. During the crisis time-period 

the ( )VaR a  has grown threefold almost for every country. The effects of the European crisis 

can be found in the estimation of ( )VaR a  in Greece, which was further increased. On the 

contrary, the ( )VaR a  from the remaining countries was decreased. During the post-crisis 

period, Greece and Portugal was facing financial problems while Greece was under strong 

political instability. This can be reflected from the estimated ( )VaR a  in each country. For both 

countries the ( )VaR a  is on almost the same as during the Eurozone crisis. For the reaming 

countries a significant decrease in VaR is observed and the estimated VaRs, although higher, 

are very close to values estimated in the pre-crisis periods. 

A potential loss of the portfolio is higher when we focus on lower scales. Hence, for 

investors with one day position, mean VaR for one-day investment is higher than the mean VaR 

for investors with one-month investment horizon. Finally, we can observe that the ( )VaR a  

estimated using the CAPM to compute the betas on the original returns and the total ( )VaR a  

estimated from the recomposed returns are very close. Our results suggest that risk is 

concentrated at the lower scale of the data. In all time samples, scale 1 contributes with more 

that 42% to the total ( )VaR a  while in some cases reaches up to 55%. As Maharaj et al. (2011) 

                                                 
31 Using the example of US stock market crash of October 1987, Lin et al. (1994) argued that price movements 

driven by fads and herd instinct have the capability of being transmitted across borders when speculative trading 

and noise trading occur in international financial markets. 
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noted, the lower scales capture the activity of speculative traders and the higher scales reflect 

the sentiments of investor with medium to long-term investment horizons. This finding has 

important implications for scalpers, day traders and position traders. 

As Bae et al. (2003) noted, extreme returns occur more frequently in crisis period, 

information is therefore important for all groups of traders, such as hedgers, speculators and 

arbitragers in both cash and derivative markets. The evidence is also consistent with the 

findings of Vo (2014). 

Overall, period specific VaR analysis provides a more detailed breakdown of the market risk 

compared to the whole period. VaR has grown threefold almost for every country during the 

period of global financial crisis. VaRs in debt-ridden countries are larger during Eurozone crisis 

period relatively to pre-global financial crisis period, with the exception of Portugal. 

5.4 Forecasting the Multiscale Nature of Systematic Risk 

In Table 7 we present the forecasted values of the average betas and 2R  for each market for 

each scale as well as the values obtained from the CAPM from the original data. The standard 

deviation, the skewness and the kurtosis are also reported. Comparing the forecasted values 

from Table 7 against the estimated ones presented in Table 5 we can conclude that the WN has 

the ability to forecast accurately both the betas and the 2R . The multiresolution analysis of the 

systematic risk allowed the WN to be efficiently trained. Next, comparing the real and 

forecasted VaR  at different timescales in Table 8 and the post-crisis panel of Table 6 we can 

observe that the WN slightly underestimates the VaR  for all countries. However, the basic 

dynamics of the VaR(s) and the changes of the VaR(s) according to scale were successfully 

captured. Note that the last raw of Table 8 referrers to the VaR computed using the betas that 

were estimated using the CAPM on the forecasted raw (undecomposed) returns. 

 

[Insert Table 7] 
 

[Insert Table 8] 
 

In Figure 4, the 1-period ahead forecast of excess returns of the AEX index is presented. 

The forecasts were based on the multiscale analysis of the WA. Then, WNs were used to learn 

the dynamics of the returns in each scale. The trained networks were used to forecast the 

decomposed excess returns. A one-day-ahead rolling window forecast scheme is used. A closer 

inspection of Figure 4 reveals that the proposed method can track the excess returns. More 

analytically, the normalized mean square error is 0.148 while the mean and maximum absolute 

error is only 0.002 and 0.034 respectively. Due to space limitations we present the results only 

for the AEX index.  The results for the remaining countries and stocks are similar and are 

available upon request from the authors. 
 

[Insert Figure 4] 

 

Finally we evaluate the forecasting performance of the proposed method. We use two 

benchmark forecasting model. The first one is the simple CAPM where betas are obtained 

using a rolling window (denoted as CAPM). The size of the rolling window and the forecasting 

period is the same as in the case of the WN. The second benchmark model is the CAPM were 

we estimate multiscale betas as in section 5 (denoted as CAPM Multiscale). Again a rolling 

window is used in order to estimate the multiscale betas and forecast one day ahead. 
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We use the Campbell and Thompson (2007) out-of-sample 2R , denoted as 2

OOSR . To measure 

the performance of a candidate model relative to the benchmark model we use the following 

formula: 

 2 1 h
OOS

b

MSFE
R

MSFE
    (12) 

2

OOSR  measures the proportional reduction in the Mean Square Forecast Error (MSFE) of model 

h against the MSFE of the benchmark, b. Hence, a positive 2

OOSR  indicates that the competing 

model outperforms the benchmark. The statistical significance of outperformance is assessed 

by the 
adjMSFE  proposed by Clark and West (2007) and it is given by  

 

       
1 2 2 2

1 1 1 1 1 1

1

1 ˆ ˆ ˆ ˆ
T

b h b h

adj t t t t t t

t R

MSFE r f r f f f
P



     

 

           
   

where P  is the number of the out-of-sample observations (P=1215), T is the number of the 

total sample (T=2999), 1tr   is the actual return, 1
ˆ b

tf   is the forecast from the benchmark model 

and 1
ˆ h

tf   is the forecast of the candidate model. 

In Table 9 a summary of results is presented. More precisely, Table 9 depicts the number 

of time the candidate model outperform the benchmark in term of 2

OOSR . It is clear that the 

forecasts obtained from the proposed WN clearly outperforms both benchmarks. The WN 

outperforms the CAPM 265 times out of 290 cases and the CAPM Multiscale 264 times.32 

 

[Insert Table 8] 

6 Conclusions 

The US subprime loan crisis unleashed a series of negative effects on the global economy 

ranging from the stock market collapse, financial institutions failure and global recession. The 

meltdown of the subprime crisis of 2007 exerted a meteor shower effect across the world’s 

stock market by the fourth quarter of 2008. In the last quarter of 2008, the stock markets of 

both developed and emerging economies experienced large decline in prices of securities. In 

this paper, we have investigated the impact of the global financial crisis on the systematic and 

market risks in eight European markets: France, Germany, Greece, Italy, Netherlands, Portugal, 

Spain and the UK using the framework of a capital asset pricing model. 

It is essential for investors to assess market and systematic risk at scale level and match it 

with their investment horizon. In this study we provide the tools to do so. In our analysis we 

first investigated whether the U.S. crisis affected the European stock markets by studying the 

relationship between the U.S market and the eight different European countries. Our results 

indicate that the correlation between the markets increased during the crisis period but 

significantly decreased when the U.S. market started to recover, and correlation increased again 

when the crisis moved to the Eurozone. Our dataset was split in four different sub-periods.  

Next, we have studied the multiscale systematic risk locally by applying a national CAPM. 

Our empirical results indicate that average beta coefficients have a multiscale tendency and 

betas tend to increase at mid to higher scales for the whole period supporting the CAPM at 

                                                 
32 Note that the analysis presented in section 5 was repeated for the period 2005-2012. In this scenario we split 

the data in 4 subperiods: 1) June 1, 2005 to July 31, 2007, 2) August 1, 2007 to September 30, 2009, 3) October 

1, 2009 to November 30, 2011 and 4) December 1, 2011 to September 10, 2012. Regardless the change in the 

sample and the selection of the sub-periods our findings are consistent showing the robustness of our results. 
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medium time horizons. This result may arise from the fact that long-term investors are more 

exposed to systematic risk than short-term investors. 

 During the sub period of financial crisis, the size of betas tends to increase for some 

countries and R2s increase for every country relatively to the pre-crisis period. The increased 

magnitudes of betas reflect heightened sensitivity of financial market to the whole range of 

economic and financial variables, and incomplete knowledge regarding the magnitudes to toxic 

asset positions in the early stage of the crisis. During the crisis period, negative information led 

to a freeze in several markets which may have led to decrease in magnitudes of betas in other 

markets, i.e., the markets for Greece, Italy, Spain and the UK. The increase of multi-scale betas 

during periods of global financial crisis and Eurozone crisis has been induced by a combination 

of leverage effect and asymmetric response of the market to bad news. Moreover, in our 

analysis, the results from the Euro-crisis and post crisis periods, indicate that changes of both 

betas and 2R varies between the two groups of the European markets. From financial 

practitioners and investors point of view, as there are heterogeneous groups of investors, traders 

and the levels of investment horizon and risk appetites vary across them, the relative choice of 

beta depends on investors’ horizon preference.  However, as betas are slightly unstable at lower 

scales and stabilises at higher scale, a number of investors may prefer higher scale betas. 

The scale dependent VaR results suggest that risk is concentrated at the lower scale of the 

data. VaR estimates tend to increase threefold almost for every country during the global 

financial crisis period relative to the pre-crisis period. Therefore, a potential loss of portfolio is 

higher at lower scales; furthermore, a potential loss of portfolio across scales is far higher 

during the crisis period. VaR has grown threefold almost for every country during the period 

of global financial crisis. VaRs in debt-ridden countries are larger during Eurozone crisis period 

relatively to pre-global financial crisis period, with the exception of Portugal. 

Finally, WNs were employed in order to capture the dynamics of the multiscale systematic 

risk. Our results indicate that WNs can accurately forecast both the betas and the VaRs.  

Overall, beta has in sample and out-of-sample predictive content regarding the state of the 

financial markets. Based on analysis of the multi-scale betas and VaRs, the strong and stable 

markets, such as the UK, France, Germany and Netherland show more resilience for portfolio 

invertors’ destination. 
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Appendix A: Wavelet Neural Networks 

WNs are a new class of networks that combine the classic sigmoid neural networks and the 

WA.  WNs have been used with great success in a wide range of applications.  For a complete 

theoretical background and a concise treatment of WNs, readers are referred to Alexandridis 

and Zapranis (2014). 

A WN usually has the form of a three layer network.  In the input layer the explanatory 

variables,  1,.., mx xx , are introduced to the WN.  The hidden layer consists of the hidden 

units (HUs), 
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In the hidden layer the input variables are transformed to dilated and translated version of 

the mother wavelet.  Finally, in the output layer, the approximation of the target values, ˆ( )y x , 

is estimated.  The structure of a single hidden-layer feed forward WN is given in Figure 5 at 

the end of Appendix B. The network output is given by the following expression: 
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[Insert Figure 5] 

 

In that expression, x is the input vector, m is the number of network inputs λ is the number 

of HUs and w stands for a network weight.  Finally, Ψj(x) is a multidimensional wavelet which 

is constructed by the product of m scalar wavelets.  In this study the second derivative of the 

Gaussian, the so-called “Mexican Hat” wavelet is used.  

The complete vector of the network parameters comprises:  [0] [2] [2] [1] [1]

1 ( ) ( ), , , ,i j ij ijw w w w w w  

.  These parameters are adjusted during the training phase.  

A.1. Training and Forecasting 
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First, the WNs, ( ; )g x w , had to be trained.  For each stock, wavelet networks were trained 

for each scale for both the detail 
jD  and the smooth components 

jS .  In order to determine the 

lag series of the training patterns and the network topology, i.e. the number of the HUs, the 

model identification algorithm described in Alexandridis and Zapranis (2014) was followed33.  

The WNs were trained using the data from the first post-crisis period.  The training pairs consist 

of the input values and the target values.  More precisely, in order to train the wavelet network 

on a particular detail 
jD  we use as input values the vector  , , 1 , 1, ,...,j t m j t m j tD D D   x and the 

target values are given by 
,j tDy .  A similar approached was followed for the remaining 

details and the smooth components.  The WNs were trained using the backpropagation 

algorithm as it is described in Alexandridis and Zapranis (2014). 

In order to evaluate the performance of the WNs in predicting the dynamics of the multiscale 

betas the 1-period-ahead forecasting method has been employed.  More precisely the WNs 

were trained on the decomposed data of the first post-crisis period in order to forecast the values 

of the beta on the second post-crisis period.  Note, that the data from the second post-crisis 

period have not been used for training or calibration of the WNs.  Hence, we produced 

recursively using a rolling window of 203 out-of-sample one-period-ahead forecasts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
33 The model identification algorithm is a two-component procedure that consists of the model selection algorithm 

(number of HUs) and the variable selection algorithm (statistical significant variables that will be used for the 

training of the wavelet network, i.e. the number of lags). The algorithm and every aspect of the wavelet networks 

are described in detail in Alexandridis and  Zapranis (2014). 
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Table 1. Correlation between the S&P 500 and the European stock markets in different time-periods. 

 
 

AEX ATHEX CAC 40 DAX 30 FTSE 100 IEX 35 MIB PSI-20 

Pre-crisis 

S
&

P
 5

0
0
 

0.48 0.26 0.50 0.50 0.48 0.48 0.48 0.29 

In crisis 0.59 0.34 0.59 0.64 0.56 0.56 0.55 0.42 

Euro crisis 0.68 0.27 0.69 0.69 0.67 0.60 0.63 0.52 

Post crisis 0.55 0.25 0.55 0.52 0.53 0.50 0.49 0.46 

Whole 0.60 0.26 0.60 0.61 0.58 0.54 0.54 0.44 
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Table 2. Beta and R2 computed from recomposed crystals of each index. Pre-crisis period 

 Beta at each scale R2 at each scale CAPM 

 1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX              

Mean 0.90 0.95 0.90 0.96 0.90 0.28 0.29 0.32 0.33 0.25 0.92 0.30 

SD 0.25 0.26 0.32 0.33 0.33 0.18 0.17 0.18 0.18 0.17 0.24 0.17 

Skew. 0.39 0.03 -0.29 0.30 0.19 1.22 1.20 1.00 0.55 1.29 0.08 1.19 

Kurtosis 2.44 1.90 2.63 2.57 3.29 3.47 3.75 3.85 2.69 4.62 2.07 3.74 

ATHEX                          

Mean 0.86 0.82 0.92 0.94 0.99 0.27 0.28 0.34 0.36 0.36 0.87 0.30 

SD 0.25 0.22 0.26 0.29 0.49 0.17 0.16 0.17 0.18 0.22 0.22 0.16 

Skew. 0.91 1.34 0.22 0.45 -0.05 1.31 1.26 0.63 0.75 0.18 0.89 1.35 

Kurtosis 2.98 5.77 2.37 2.20 2.21 4.08 4.08 2.76 2.91 2.49 3.17 4.19 

CAC 40                         

Mean 0.93 0.96 0.96 1.01 0.99 0.37 0.36 0.39 0.39 0.32 0.95 0.37 

SD 0.23 0.21 0.24 0.28 0.33 0.16 0.14 0.16 0.16 0.16 0.20 0.15 

Skew. -0.01 -0.03 -0.05 0.69 -0.42 0.69 0.51 0.41 0.41 0.01 -0.02 0.73 

Kurtosis 2.11 2.38 2.87 3.60 2.64 2.69 2.79 2.58 2.08 2.02 2.00 2.66 

DAX 30                         

Mean 0.83 0.88 0.90 0.96 0.96 0.32 0.34 0.41 0.40 0.36 0.87 0.35 

SD 0.17 0.17 0.23 0.23 0.25 0.12 0.14 0.17 0.15 0.17 0.16 0.13 

Skew. 0.04 -0.08 -0.23 0.05 0.00 0.65 0.82 0.15 0.15 0.35 -0.01 0.63 

Kurtosis 2.15 2.14 2.35 2.42 2.06 3.27 3.71 2.23 2.31 2.31 1.97 2.96 

FTSE 100                         

Mean 0.95 1.00 1.09 1.05 0.91 0.28 0.28 0.33 0.33 0.28 0.98 0.29 

SD 0.36 0.32 0.41 0.38 0.50 0.14 0.13 0.16 0.16 0.19 0.32 0.13 

Skew. 1.11 1.09 0.72 0.26 0.74 0.25 0.23 0.32 0.39 0.46 1.19 0.23 

Kurtosis 4.84 4.33 3.13 2.53 4.31 2.39 2.56 2.38 2.98 2.72 4.63 2.53 

IBEX 35                         

Mean 0.98 0.95 0.99 1.02 0.98 0.37 0.35 0.36 0.39 0.41 0.97 0.37 

SD 0.28 0.22 0.25 0.27 0.36 0.18 0.18 0.19 0.18 0.19 0.21 0.18 

Skew. 1.42 0.22 -0.11 -0.13 0.60 0.64 0.27 0.04 -0.12 -0.25 0.34 0.37 

Kurtosis 5.52 2.63 2.91 3.29 3.74 2.90 2.96 2.27 2.67 2.71 2.33 2.83 

MIB                         

Mean 0.85 0.86 0.88 0.95 1.04 0.28 0.24 0.27 0.28 0.33 0.87 0.28 

SD 0.35 0.35 0.44 0.43 0.46 0.17 0.13 0.15 0.15 0.16 0.34 0.15 

Skew. -0.39 -0.87 -0.57 0.49 0.97 0.21 0.15 0.39 0.20 -0.14 -0.54 0.16 

Kurtosis 3.04 3.16 3.48 4.32 5.96 2.66 2.75 3.21 2.13 2.31 2.75 2.84 

PSI-20                         

Mean 0.73 0.71 0.79 0.88 0.90 0.13 0.12 0.17 0.25 0.22 0.76 0.16 

SD 0.44 0.51 0.34 0.45 0.60 0.13 0.14 0.15 0.18 0.17 0.37 0.14 

Skew. 0.10 0.34 0.89 0.31 -0.08 0.90 0.90 1.08 -0.05 -0.06 0.21 0.79 
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Kurtosis 1.98 1.64 2.82 2.13 1.86 2.10 2.26 2.81 1.30 1.36 2.11 2.05 

 

 

 
Table 3.  Beta and R2 computed from recomposed crystals of each index. In-crisis period 

 Beta at each scale R2 at each scale CAPM 

 1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX             

Mean 0.87 0.90 0.96 0.98 0.96 0.43 0.44 0.42 0.39 0.49 0.90 0.43 

SD 0.41 0.46 0.53 0.57 0.44 0.16 0.17 0.17 0.19 0.13 0.44 0.15 

Skew. 1.26 1.10 0.90 0.72 0.99 -0.19 -0.25 -0.33 -0.07 -0.04 1.18 -0.20 

Kurtosis 3.53 3.28 2.84 2.49 2.79 2.74 2.14 1.88 1.61 1.45 3.31 2.29 

ATHEX                          

Mean 0.76 0.77 0.74 0.80 0.86 0.37 0.37 0.34 0.44 0.44 0.77 0.38 

SD 0.28 0.30 0.30 0.35 0.31 0.20 0.20 0.20 0.21 0.21 0.29 0.19 

Skew. 0.89 0.80 0.58 0.68 0.33 0.97 0.90 0.86 0.47 0.56 0.84 0.99 

Kurtosis 3.06 3.05 3.04 3.04 1.74 2.89 2.75 3.04 2.77 2.46 3.02 2.97 

CAC 40                         

Mean 0.96 1.01 1.08 1.09 1.10 0.51 0.52 0.46 0.47 0.44 1.00 0.50 

SD 0.29 0.32 0.42 0.46 0.36 0.14 0.14 0.15 0.17 0.13 0.31 0.13 

Skew. 0.72 0.30 0.25 0.26 0.22 0.32 -0.08 -0.61 -0.47 -0.65 0.50 0.20 

Kurtosis 2.74 2.42 2.25 2.37 3.47 2.28 2.52 2.71 2.40 4.38 2.50 2.43 

DAX 30                         

Mean 0.84 0.85 1.02 0.93 0.92 0.35 0.36 0.38 0.41 0.41 0.88 0.37 

SD 0.28 0.31 0.40 0.45 0.43 0.14 0.17 0.17 0.20 0.21 0.31 0.15 

Skew. -0.01 0.03 -0.11 0.05 0.12 -0.22 0.06 0.01 -0.22 -0.31 -0.01 -0.11 

Kurtosis 2.29 2.04 2.32 2.33 2.41 1.98 2.02 2.52 2.41 2.09 2.16 2.03 

FTSE 100                         

Mean 0.92 0.94 1.01 1.06 0.96 0.36 0.37 0.32 0.31 0.31 0.95 0.35 

SD 0.34 0.35 0.45 0.62 0.48 0.14 0.15 0.14 0.15 0.17 0.35 0.13 

Skew. 1.00 1.03 0.66 1.55 0.78 0.12 0.17 0.28 0.32 0.53 0.96 0.24 

Kurtosis 3.40 3.72 3.43 7.55 3.69 2.80 2.56 2.75 2.50 3.13 3.27 2.84 

IBEX 35                         

Mean 0.90 0.88 0.87 0.87 0.94 0.48 0.44 0.44 0.39 0.33 0.90 0.45 

SD 0.30 0.34 0.37 0.42 0.55 0.22 0.22 0.22 0.22 0.24 0.32 0.21 

Skew. 0.11 0.24 0.37 0.37 0.55 0.00 0.17 0.14 0.22 0.28 0.18 0.09 

Kurtosis 2.41 2.00 2.10 2.22 2.93 2.59 2.16 2.22 2.60 2.10 2.13 2.47 

MIB                         

Mean 0.76 0.76 0.84 0.89 0.90 0.37 0.38 0.39 0.40 0.44 0.79 0.38 

SD 0.33 0.34 0.41 0.38 0.41 0.19 0.20 0.19 0.19 0.20 0.34 0.19 

Skew. -0.01 -0.04 -0.06 -0.29 0.38 0.09 0.05 -0.33 -0.26 -0.24 -0.17 -0.10 

Kurtosis 3.27 3.16 2.82 3.08 4.06 2.39 2.56 2.63 2.38 2.48 3.29 2.57 

PSI-20                         

Mean 0.87 0.90 0.91 0.88 1.01 0.38 0.35 0.39 0.34 0.35 0.90 0.38 

SD 0.30 0.31 0.35 0.30 0.38 0.17 0.17 0.16 0.14 0.13 0.29 0.15 

Skew. -0.32 -0.35 -0.67 -0.32 0.67 -0.61 0.00 -0.93 -0.62 0.22 -0.31 -0.60 



30 

 

Kurtosis 2.14 1.97 2.08 1.62 1.95 2.48 2.82 3.00 1.99 3.40 1.91 2.88 

 

 

 
Table 4. Beta and R2 computed from recomposed crystals of each index. Eurozone crisis period 

 Beta at each scale R2 at each scale CAPM 

 1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX             

Mean 0.98 0.99 1.03 1.01 0.96 0.41 0.46 0.51 0.44 0.46 0.99 0.45 

SD 0.47 0.43 0.44 0.41 0.34 0.18 0.17 0.19 0.18 0.20 0.42 0.17 

Skew. 1.13 1.21 0.93 0.79 0.84 -0.20 -0.56 -0.72 -0.50 -0.63 1.11 -0.57 

Kurtosis 3.60 3.83 2.97 2.47 2.98 2.25 2.63 2.58 2.15 2.67 3.45 2.51 

ATHEX                         

Mean 0.79 0.80 0.79 0.86 0.87 0.34 0.36 0.35 0.34 0.43 0.81 0.36 

SD 0.49 0.50 0.48 0.52 0.43 0.19 0.18 0.17 0.16 0.16 0.49 0.18 

Skew. 1.07 1.06 1.03 1.03 0.63 0.15 0.09 -0.03 0.13 -0.12 1.06 0.06 

Kurtosis 2.99 2.88 2.88 2.98 2.42 2.12 2.23 2.10 1.98 2.21 2.95 2.17 

CAC 40                         

Mean 0.97 1.01 1.04 1.01 1.01 0.51 0.55 0.57 0.50 0.51 1.00 0.54 

SD 0.32 0.34 0.38 0.40 0.35 0.15 0.13 0.14 0.16 0.16 0.32 0.14 

Skew. 0.63 0.85 0.56 0.72 0.35 -0.18 -0.04 -0.25 -0.29 -0.30 0.68 -0.18 

Kurtosis 3.25 3.22 2.70 3.12 2.50 2.63 2.54 2.55 2.29 2.93 3.10 2.76 

DAX 30                         

Mean 0.90 0.95 0.96 0.94 0.94 0.41 0.51 0.54 0.43 0.46 0.93 0.47 

SD 0.30 0.30 0.34 0.33 0.29 0.15 0.15 0.17 0.16 0.17 0.29 0.15 

Skew. -0.31 -0.28 -0.17 -0.12 0.00 -0.46 -0.56 -0.53 0.00 -0.24 -0.29 -0.43 

Kurtosis 2.29 2.35 1.91 1.96 2.16 2.57 3.00 2.20 2.20 2.30 2.13 2.59 

FTSE 100                         

Mean 0.97 1.01 1.05 1.00 0.97 0.36 0.41 0.43 0.37 0.42 0.99 0.40 

SD 0.36 0.38 0.43 0.38 0.35 0.14 0.14 0.16 0.15 0.16 0.34 0.13 

Skew. 0.57 0.29 0.42 0.33 0.30 0.13 -0.24 -0.25 0.03 -0.13 0.43 -0.07 

Kurtosis 3.34 3.17 2.42 2.25 2.53 2.85 3.07 2.59 2.40 2.80 2.99 3.12 

IBEX 35                         

Mean 0.81 0.85 0.90 0.87 0.90 0.44 0.51 0.54 0.46 0.50 0.85 0.48 

SD 0.28 0.28 0.28 0.31 0.31 0.23 0.22 0.21 0.22 0.22 0.27 0.22 

Skew. -0.12 -0.15 -0.26 -0.25 -0.24 0.42 0.05 -0.28 0.15 -0.19 -0.23 0.18 

Kurtosis 3.03 2.98 2.87 2.70 2.62 2.84 2.74 2.96 2.60 2.38 3.04 2.81 

MIB                         

Mean 0.85 0.86 0.90 0.84 0.86 0.44 0.46 0.48 0.40 0.36 0.86 0.45 

SD 0.39 0.39 0.41 0.37 0.42 0.20 0.20 0.20 0.20 0.20 0.38 0.20 

Skew. -0.04 -0.15 -0.14 -0.27 0.12 -0.23 -0.37 -0.47 -0.05 -0.05 -0.11 -0.31 

Kurtosis 2.80 2.99 2.82 3.00 2.27 2.88 2.86 2.79 2.72 2.07 2.86 2.92 

PSI-20                         

Mean 0.77 0.78 0.78 0.79 0.80 0.29 0.34 0.35 0.34 0.34 0.79 0.32 

SD 0.34 0.33 0.33 0.30 0.34 0.17 0.18 0.19 0.16 0.17 0.31 0.17 

Skew. 0.12 0.27 -0.32 -0.43 0.02 -0.53 -0.65 -0.61 -0.70 -0.34 0.02 -0.71 
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Kurtosis 3.22 2.85 2.07 2.62 1.84 2.09 2.03 1.92 2.56 1.82 2.88 2.15 

 

 

 
Table 5. Beta and R2 computed from recomposed crystals of each index. Post crisis period 

 Beta at each scale R2 at each scale CAPM 

 1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX             

Mean 0.94 0.98 1.00 0.97 0.98 0.39 0.41 0.43 0.47 0.41 0.97 0.43 

SD 0.24 0.22 0.25 0.25 0.23 0.13 0.13 0.14 0.16 0.15 0.21 0.13 

Skew. 1.05 0.90 1.05 1.19 0.35 -0.61 -1.02 -1.25 -1.35 -0.96 1.16 -1.05 

Kurtosis 3.58 2.79 4.00 4.66 3.37 2.90 3.46 4.23 3.84 3.10 3.79 3.45 

ATHEX                          

Mean 0.90 0.89 0.91 0.90 1.01 0.38 0.40 0.48 0.43 0.46 0.90 0.40 

SD 0.50 0.53 0.56 0.57 0.74 0.16 0.16 0.16 0.16 0.16 0.53 0.15 

Skew. 1.24 1.23 1.27 1.40 1.46 -0.42 -0.36 -0.50 -0.34 -0.65 1.29 -0.52 

Kurtosis 3.46 3.36 3.49 3.92 3.87 2.13 2.01 2.41 2.47 3.21 3.52 2.16 

CAC 40                         

Mean 0.96 0.98 1.01 0.98 0.97 0.47 0.48 0.50 0.52 0.45 0.97 0.49 

SD 0.20 0.20 0.25 0.24 0.24 0.12 0.10 0.10 0.11 0.13 0.19 0.11 

Skew. 0.15 0.48 0.37 0.46 0.37 -0.03 -0.14 -0.10 -0.15 -0.29 0.36 -0.07 

Kurtosis 2.37 2.33 2.36 3.53 2.80 2.13 2.33 2.13 3.29 2.68 2.45 2.22 

DAX 30                         

Mean 0.85 0.91 0.96 0.96 0.97 0.41 0.45 0.49 0.54 0.44 0.90 0.46 

SD 0.16 0.16 0.24 0.22 0.22 0.12 0.14 0.15 0.15 0.15 0.16 0.13 

Skew. -0.39 -0.15 0.24 0.03 0.51 -0.23 0.02 0.08 -0.23 0.22 -0.13 -0.11 

Kurtosis 3.13 2.20 2.01 2.09 3.00 2.41 2.10 2.08 2.51 2.43 2.64 2.23 

FTSE 100                         

Mean 0.94 0.99 1.00 0.92 0.86 0.28 0.29 0.32 0.29 0.25 0.96 0.31 

SD 0.29 0.30 0.33 0.33 0.32 0.12 0.12 0.13 0.15 0.15 0.26 0.12 

Skew. 0.97 0.38 0.74 1.37 0.26 0.11 -0.06 -0.14 0.19 0.31 0.85 -0.07 

Kurtosis 6.09 3.96 4.71 6.28 3.88 2.58 2.82 2.62 2.24 2.01 5.39 2.64 

IBEX 35                         

Mean 0.88 0.90 0.93 0.93 0.91 0.42 0.44 0.47 0.46 0.39 0.90 0.44 

SD 0.27 0.26 0.26 0.26 0.26 0.19 0.18 0.17 0.17 0.17 0.25 0.17 

Skew. 0.48 0.33 0.15 0.22 0.16 0.55 0.46 0.18 0.03 0.39 0.36 0.41 

Kurtosis 2.21 2.23 2.12 2.12 2.29 2.41 2.55 2.41 2.37 2.32 2.10 2.42 

MIB                         

Mean 0.78 0.82 0.85 0.86 0.87 0.38 0.35 0.37 0.36 0.36 0.81 0.38 

SD 0.45 0.48 0.52 0.52 0.58 0.24 0.22 0.22 0.20 0.23 0.45 0.22 

Skew. -0.11 0.10 0.18 0.29 0.42 -0.18 -0.01 -0.11 -0.26 0.06 -0.01 -0.13 

Kurtosis 2.36 2.32 2.32 2.49 2.50 1.98 1.95 2.06 2.03 1.87 2.36 2.00 

PSI-20                         

Mean 0.84 0.86 0.89 0.85 0.90 0.26 0.30 0.37 0.38 0.34 0.86 0.31 

SD 0.42 0.39 0.41 0.40 0.41 0.14 0.15 0.18 0.21 0.16 0.38 0.15 

Skew. 0.48 0.81 0.43 0.78 0.83 -0.65 -0.74 -0.81 -0.33 -0.07 0.54 -0.72 
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Kurtosis 4.07 4.55 3.52 3.67 2.47 2.10 2.13 2.47 1.83 1.82 3.94 2.19 

 

 

 
Table 6. Value At Risk (VaR) at different time scales for an equally weighted portfolio. 

 Pre-Crisis In Crisis Eurozone Crisis Post Crisis 

AEX VaR 
Contribution 

to VaR  
VaR 

Contribution 

to VaR 
VaR 

Contribution 

to VaR 
VaR 

Contribution 

to VaR 

Scale1 0.0089 50% 0.0228 51% 0.0131 47% 0.0113 48% 

Scale2 0.0063 25% 0.0171 28% 0.0101 28% 0.0084 27% 

Scale3 0.0048 15% 0.0114 13% 0.0077 16% 0.0063 15% 

Scale4 0.0035 8% 0.0074 5% 0.0046 6% 0.0047 8% 

Scale5 0.0022 3% 0.0053 3% 0.0033 3% 0.0028 3% 

Recomposed data 0.0126  0.0320  0.0191  0.0163  

CAPM 0.0130  0.0328  0.0198  0.0172  

ATHEX                 

Scale1 0.0107 46% 0.0204 48% 0.0249 49% 0.0226 45% 

Scale2 0.0078 25% 0.0153 27% 0.0190 28% 0.0174 27% 

Scale3 0.0066 18% 0.0103 12% 0.0129 13% 0.0145 19% 

Scale4 0.0046 8% 0.0087 9% 0.0086 6% 0.0083 6% 

Scale5 0.0030 3% 0.0055 4% 0.0068 4% 0.0065 4% 

Recomposed data 0.0158  0.0294  0.0356  0.0337  

CAPM 0.0163  0.0304  0.0365  0.0343  

CAC 40                 

Scale1 0.0098 52% 0.0242 52% 0.0159 48% 0.0123 49% 

Scale2 0.0068 25% 0.0179 28% 0.0124 29% 0.0089 26% 

Scale3 0.0050 14% 0.0112 11% 0.0090 15% 0.0067 15% 

Scale4 0.0035 7% 0.0081 6% 0.0053 5% 0.0048 7% 

Scale5 0.0022 3% 0.0048 2% 0.0036 2% 0.0028 3% 

Recomposed data 0.0136  0.0335  0.0230  0.0175  

CAPM 0.0140  0.0341  0.0237  0.0183  

DAX 30                 

Scale1 0.0095 49% 0.0204 50% 0.0132 44% 0.0117 48% 

Scale2 0.0067 25% 0.0149 27% 0.0110 31% 0.0084 25% 

Scale3 0.0054 16% 0.0107 14% 0.0082 17% 0.0064 15% 

Scale4 0.0037 8% 0.0074 7% 0.0045 5% 0.0050 9% 

Scale5 0.0022 3% 0.0048 3% 0.0032 3% 0.0029 3% 

Recomposed data 0.0135  0.0288  0.0198  0.0168  

CAPM 0.0139  0.0296  0.0206  0.0176  

FTSE 100                 

Scale1 0.0087 51% 0.0213 52% 0.0114 47% 0.0095 49% 

Scale2 0.0059 24% 0.0157 28% 0.0090 29% 0.0071 27% 

Scale3 0.0048 16% 0.0099 11% 0.0067 16% 0.0053 15% 

Scale4 0.0032 7% 0.0070 6% 0.0040 6% 0.0035 7% 

Scale5 0.0019 2% 0.0041 2% 0.0030 3% 0.0021 2% 



33 

 

Recomposed data 0.0121  0.0294  0.0168  0.0136  

CAPM 0.0125  0.0301  0.0175  0.0145  

IBEX 35                 

Scale1 0.0099 53% 0.0218 55% 0.0151 44% 0.0127 49% 

Scale2 0.0065 23% 0.0149 26% 0.0127 31% 0.0093 26% 

Scale3 0.0049 13% 0.0103 12% 0.0093 17% 0.0070 15% 

Scale4 0.0036 7% 0.0065 5% 0.0056 6% 0.0050 7% 

Scale5 0.0025 4% 0.0037 2% 0.0040 3% 0.0029 3% 

Recomposed data 0.0136  0.0294  0.0229  0.0182  

CAPM 0.0139  0.0301  0.0235  0.0188  

MIB                 

Scale1 0.0088 56% 0.0187 50% 0.0169 50% 0.0141 53% 

Scale2 0.0055 22% 0.0135 26% 0.0127 28% 0.0095 24% 

Scale3 0.0041 12% 0.0099 14% 0.0094 15% 0.0070 13% 

Scale4 0.0030 6% 0.0069 7% 0.0053 5% 0.0049 6% 

Scale5 0.0023 4% 0.0048 3% 0.0036 2% 0.0034 3% 

Recomposed data 0.0117  0.0265  0.0240  0.0194  

CAPM 0.0121  0.0274  0.0246  0.0200  

PSI 20                 

Scale1 0.0062 47% 0.0172 49% 0.0124 47% 0.0117 43% 

Scale2 0.0045 24% 0.0125 26% 0.0098 29% 0.0092 27% 

Scale3 0.0035 15% 0.0097 16% 0.0069 15% 0.0074 17% 

Scale4 0.0029 10% 0.0063 6% 0.0043 6% 0.0053 9% 

Scale5 0.0018 4% 0.0044 3% 0.0031 3% 0.0034 4% 

Recomposed data 0.0091  0.0246  0.0180  0.0178  

CAPM 0.0096   0.0256   0.0186   0.0185   
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Table 7. Forecasted values of Beta and R2 for the post-crisis period. 

 Beta at each scale R2 at each scale CAPM 

 1 2 3 4 5 1 2 3 4 5 Beta R2 

AEX             

Mean 0.97 0.98 0.99 0.97 0.98 0.40 0.41 0.43 0.47 0.41 0.98 0.44 

SD 0.25 0.23 0.25 0.26 0.23 0.13 0.13 0.14 0.16 0.15 0.20 0.13 

Skew. 1.05 0.90 1.07 1.15 0.32 -0.63 -1.01 -1.27 -1.36 -0.94 1.21 -1.15 

Kurtosis 3.78 2.84 4.11 4.52 3.13 2.87 3.43 4.23 3.88 3.07 4.06 3.59 

ATHEX                         

Mean 0.91 0.90 0.92 0.91 1.02 0.39 0.41 0.49 0.44 0.47 0.92 0.42 

SD 0.49 0.54 0.58 0.58 0.75 0.15 0.15 0.16 0.16 0.16 0.54 0.14 

Skew. 1.20 1.16 1.23 1.34 1.42 -0.43 -0.46 -0.63 -0.42 -0.67 1.26 -0.63 

Kurtosis 3.35 3.20 3.34 3.70 3.70 2.24 2.17 2.56 2.50 3.17 3.41 2.40 

CAC 40                         

Mean 0.97 0.98 1.01 0.98 0.98 0.48 0.48 0.50 0.52 0.46 0.98 0.50 

SD 0.20 0.20 0.25 0.24 0.23 0.12 0.10 0.10 0.11 0.13 0.18 0.10 

Skew. 0.14 0.46 0.37 0.48 0.36 0.03 -0.09 -0.11 -0.17 -0.27 0.38 -0.04 

Kurtosis 2.59 2.34 2.38 3.49 2.70 2.14 2.30 2.13 3.30 2.62 2.60 2.23 

DAX 30                         

Mean 0.92 0.93 0.97 0.98 0.98 0.44 0.45 0.50 0.55 0.45 0.94 0.49 

SD 0.15 0.15 0.24 0.21 0.21 0.12 0.13 0.14 0.14 0.15 0.15 0.12 

Skew. -0.10 0.00 0.20 0.17 0.67 -0.04 0.08 0.03 -0.15 0.14 0.16 -0.04 

Kurtosis 2.53 2.03 2.00 1.95 3.04 2.16 2.05 2.14 2.58 2.52 2.35 2.25 

FTSE 100                         

Mean 0.93 0.97 0.99 0.92 0.86 0.29 0.29 0.32 0.29 0.25 0.95 0.32 

SD 0.30 0.30 0.32 0.34 0.32 0.13 0.12 0.13 0.15 0.15 0.25 0.12 

Skew. 0.99 0.44 0.82 1.33 0.37 0.07 -0.05 -0.16 0.22 0.34 0.91 -0.09 

Kurtosis 5.77 3.97 4.91 5.84 4.25 2.57 2.75 2.51 2.24 2.04 5.25 2.60 

IBEX 35                         

Mean 0.91 0.91 0.95 0.95 0.95 0.45 0.45 0.47 0.48 0.42 0.93 0.47 

SD 0.27 0.26 0.26 0.26 0.24 0.19 0.18 0.18 0.18 0.16 0.24 0.17 

Skew. 0.39 0.43 0.27 0.36 0.19 0.48 0.40 0.06 -0.10 0.48 0.30 0.26 

Kurtosis 1.94 2.05 1.95 2.08 2.11 2.46 2.54 2.47 2.51 2.27 1.87 2.49 

MIB                         

Mean 0.78 0.78 0.82 0.82 0.82 0.38 0.34 0.35 0.35 0.34 0.81 0.38 

SD 0.45 0.46 0.51 0.51 0.54 0.24 0.22 0.21 0.20 0.22 0.44 0.21 

Skew. -0.18 0.09 0.22 0.33 0.47 -0.18 0.02 -0.09 -0.23 0.11 -0.03 -0.10 

Kurtosis 2.36 2.46 2.44 2.72 2.81 2.04 2.03 2.13 2.03 1.90 2.41 2.06 

PSI 20                         

Mean 0.86 0.85 0.88 0.85 0.92 0.27 0.29 0.37 0.38 0.34 0.87 0.32 

SD 0.44 0.40 0.42 0.41 0.42 0.15 0.15 0.19 0.21 0.17 0.38 0.16 
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Skew. 0.52 0.85 0.43 0.80 0.80 -0.55 -0.63 -0.71 -0.23 -0.11 0.56 -0.63 

Kurtosis 3.92 4.33 3.27 3.53 2.37 2.04 1.96 2.27 1.76 1.73 3.62 2.08 

 

 

 
Table 8. Forecast of Value At Risk (VaR) at different time scales for an equally weighted portfolio. Post-crisis period. 

 VaR 

Contribution 

to VaR VaR 

Contribution 

to VaR VaR 

Contribution 

to VaR VaR 

Contribution 

to VaR 

 AEX  ATHEX  CAC  DAX  

Scale1 0.0086 42% 0.0165 37% 0.0093 44% 0.0091 43% 

Scale2 0.0068 26% 0.0140 27% 0.0071 26% 0.0068 24% 

Scale3 0.0054 17% 0.0125 21% 0.0058 17% 0.0056 16% 

Scale4 0.0045 11% 0.0080 9% 0.0045 10% 0.0048 12% 

Scale5 0.0027 4% 0.0064 6% 0.0028 4% 0.0029 4% 

Recomposed data 0.0133  0.0270  0.0141  0.0138  

CAPM 0.0144  0.0278  0.0150  0.0148  

 
FTSE 100  IBEX 35  MIB  PSI 20  

Scale1 0.0073 44% 0.0098 43% 0.0102 47% 0.0090 38% 

Scale2 0.0057 27% 0.0077 26% 0.0073 24% 0.0074 25% 

Scale3 0.0045 17% 0.0061 17% 0.0058 15% 0.0064 19% 

Scale4 0.0033 9% 0.0048 10% 0.0045 9% 0.0050 12% 

Scale5 0.0021 4% 0.0030 4% 0.0031 4% 0.0035 6% 

Recomposed data 0.0110  0.0150  0.0149  0.0146  

CAPM 0.0121  0.0157  0.0157  0.0155  

CAPM is the VaR computed using the betas that were estimated using the CAPM on the forecasted raw (undecomposed) 

returns. 
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Table 9. Number of times the Competitor model outperforms the Benchmark model in terms of 2

OOSR .  

 
           Competitor 
 

Benchamrk 

CAPM CAPM Multiscale WN 

CAPM - 140 265 

CAPM Multiscale 150 - 264 

WN 25 26 - 
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Figure 1. Selected counterparty exposures to AIG at the time of its failure. 

Sources: American International Group (d) and Capital IQ. 

(a) The chart shows collateral that AIG returned between 16 September and 31 December 2008 to retire CDS obligations 

which existed at the time of its failure. 

(b) Selected counterparties shown. Does not represent total exposure to AIG. 

(c) Tier 1 capital as of 30 June 2008 as reported in each bank’s accounts. Goldman Sachs data are for 29 August 2008. 
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Figure 2. Temporal movements of stock indices for the markets of the U.S.A (S&P 500), Netherlands (AEX), Greece 

(ATHEX), Germany (DAX 30), UK (FTSE 100) and Spain (IBEX 35). 
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Part (a) 
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Part (b) 

 

Figure 3. Wavelet decomposition of the returns in Greece, part (a), and Germany, part (b). From top to bottom are the 

returns, the smooth and the details from level 5 to level 1. The vertical lines indicate the four different sub-periods. 
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Figure 4. The real and forecast of excess returns of the AEX index 
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Figure 5. A Feedforward Wavelet Network. 

 

 


