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NONPARAMETRIC AND
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MULTIVARIATE LOCAL POLYNOMIAL
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ABSTRACT

The asymptotic bias and variance of a general class of local polynomial
estimators of M-regression functions are studied over the whole compact
support of the multivariate covariate under a minimal assumption on the
support. The support assumption ensures that the vicinity of the bound-
ary of the support will be visited by the multivariate covariate. The results
show that like in the univariate case, multivariate local polynomial esti-
mators have good bias and variance properties near the boundary. For the
local polynomial regression estimator, we establish its asymptotic normal-
ity near the boundary and the usual optimal uniform convergence rate over
the whole support. For local polynomial quantile regression, we establish a
uniform linearization result which allows us to obtain similar results to the

3



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

4 YANQIN FAN AND EMMANUEL GUERRE

local polynomial regression. We demonstrate both theoretically and numer-
ically that with our uniform results, the common practice of trimming local
polynomial regression or quantile estimators to avoid “the boundary effect”
is not needed.AQ:1

Keywords: Compact support; boundary effect; pseudo-true value;
Newton–Kantorovich Theorem; regression discontinuity design; trimming

JEL classifications: C12; C14; C21

1. INTRODUCTION

Recent work illustrate the practical relevance of correcting the boundary bias of
kernel estimators. For example, Hickman and Hubbard (2015) demonstrate that
standard kernel procedures used in the estimation of auction models may not be
able to uncover important features due to boundary bias. In the context of regres-
sion discontinuity design (RDD), estimating the parameters of interest involves the
estimation of two conditional expectations or conditional quantiles at the disconti-
nuity point(s), so suffers from the boundary effect if kernel estimators are used. It
is well known in the literature that theoretically one must deal with either the small
denominator problem or the boundary bias for semiparametric estimators and test
statistics involving averages of kernel estimators over all sample points. One way
to address boundary effects is to use boundary kernels as applied in Hickman and
Hubbard (2015). This solution is simple to implement in the univariate case but
can become burdensome in the multivariate case where it may require estimation
of the support or the support is of complicated form. See, for instance, Müller and
Stadtmüller (1999) or Bouezmarni and Rombouts (2010) for the case of a known
support.

Local polynomial estimators are known to have better boundary properties than
the popular kernel estimators – their bias order is the same for interior and boundary
points. This could alleviate the aforementioned technical and practical problems
with kernel estimators. Work in both RDD and semiparametric estimation and
inference using local polynomial estimators have started to appear, see, for exam-
ple, Altonji, Ichimura, and Otsu (2012), Aryal, Gabrielli, and Vuong (2014), Bravo
and Jacho-Chávez (2011), Hoderlein, Su, White, and Yang (2015), Qu and Yoon
(2014), Su and Ullah (2008), and Su and White (2012) for estimation and infer-
ence in semiparametric and nonparametric models; and Hahn, Todd, and Van der
Klaauw (2001), Porter (2003), Frandsen, Frölich, and Melly (2010), Imbens and
Zajonc (2011), and Oka (2009) for the estimation in RDD. However, these works
are either limited to the univariate case or circumvent potential boundary issues by
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Multivariate Local Polynomial Estimators 5

trimming or focusing interest on an inner subset of the covariate support. Notable
exceptions are Banerjee (2007) and Kong, Linton, and Xia (2010), who average
over the whole support (unit hypercube) of a multivariate covariate to estimate,
respectively, regression average derivatives and an additive quantile specification.
More theoretical works in this direction are Ruppert and Wand (1994), Gu, Li, and
Yang (2015), and Chen and Wu (2013), who deal with pointwise bias and variance
expressions for local polynomial regression estimators.

Two important properties of local polynomial estimators are crucial to their suc-
cessful applications in Econometrics: a precise characterization of their boundary
properties including the bias and variance and a uniform asymptotic linear rep-
resentation. For univariate covariate, boundary bias and variance expressions are
well known, see Fan and Gijbels (1996). For multivariate covariate, they become
complicated. The only general paper that deals with boundary bias and variance for
multivariate covariates is Ruppert and Wand (1994). Under the boundary assump-
tion (A4) of their paper, Ruppert and Wand (1994) establish expressions of bias and
variance of local polynomial regression estimators at the boundary points. Specif-
ically, Ruppert and Wand (1994) assumption (A4) considers a boundary point x∂

belonging to a convex neighborhood C such that inf x∈C f (x) > 0, where f (·) is the
probability density function (p.d.f.) of the covariate. Imbens and Zajonc (2011)
apply results in Ruppert and Wand (1994) in the context of RDD with multiple
forcing variables. The local assumption (A4) of Ruppert and Wand (1994) seems
difficult to extend to allow for uniform estimation in the neighborhood of the sup-
port boundary. The uniform results of Kong et al. (2010) are specific to hypercube
supports which, as the half spaces support considered in Gu et al. (2015), may be
too restrictive in practice. We propose instead a uniform version of Chen and Wu
(2013) which accounts for general boundaries.

As seen from Guerre (2000), what matters for consistent estimation is to have
“enough” observations near the estimation location, a condition which involves
the geometry of the support in a more subtle way and is flexible enough to cover
uniform estimation. The first contribution of this paper is to provide expressions for
bias and variance of a general class of multivariate local polynomial estimators of
M-regression functions, including both regression and conditional quantile func-
tions under weaker support assumptions than (A4) in Ruppert and Wand (1994).
Specifically, our support condition does not require the support of the covariate
to be connected and allows it to have holes. Under the new support condition, we
show that the asymptotic order of the bias and variance of the local polynomial
estimators of M-regression functions are not affected by boundary.

The weaker support condition is made possible by our novel application of the
Newton–Kantorovich Theorem1 to local polynomial estimation. The new approach
is in line with White’s (1982) approach and uses a pseudo-true value to cen-
ter the local polynomial estimator. Because the pseudo-true value minimizes the
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6 YANQIN FAN AND EMMANUEL GUERRE

expectation of the objective function and satisfies a key centered score condition,
it provides a more natural centering than the partial derivatives of the function to
be estimated, as in Fan and Gijbels (1996) or Fan, Heckman, and Wand (1995)
and the vast majority of the local polynomial literature. The Newton–Kantorovich
Theorem is then used to study the bias, which is defined here as the difference
between the pseudo-true value and the partial derivatives. The first-order vari-
ance of the estimator can be defined using the usual sandwich formula taken at
the pseudo-true value. An interesting finding is that the bias expression may not
depend on the estimation method, being for instance identical for regression or
quantile local polynomial estimators.

Our results for the bias and variance of multivariate local polynomial estimators
have immediate applications in RDD with multiple forcing variables. First, the
result for regression could be used to relax Assumption (A4) in Ruppert and Wand
(1994) adopted in Imbens and Zajonc (2011) in the context of RDD with multiple
forcing variables. In addition, our result for the conditional quantile could be used
to extend the estimator of quantile treatment effect in RDD with a univariate forcing
variable (see, e.g., Frandsen et al., 2010; Oka, 2009), to allow for multiple forcing
variables.

The second contribution of this paper is to establish asymptotic normality and
uniform consistency over the whole support for local polynomial estimators of
both regression and conditional quantile functions. A simple consistent estima-
tor of the asymptotic variance is also proposed for both models. This requires to
establish a new uniform linearization result for local polynomial quantile regres-
sion which holds over the whole support. In sharp contrast to Corollary 2, ii) in
Masry (1996), which is concerned with multivariate covariates whose support is
the entire Euclidean space and is uniformly valid over a compact subset of the sup-
port, our results deal directly with multivariate covariates with compact supports
and are uniformly valid over the whole supports.

Although the order of bias and variance is not affected by boundary, a quali-
tative conclusion of our results is that the variance may nevertheless significantly
increase near the boundary as well documented in the univariate case. The intu-
ition is that the small denominator problem of the Kernel estimation method is not
specific and should affect any nonparametric methods. Estimating a function in a
narrow area of the support can only be based on few observations so that a high
variance should be effected. Hence, trimming to avoid high estimation variance
may make sense in practice. This issue is investigated through a small simulation
experiment which considers testing, additive, and single-index specifications. It
suggests that although the small denominator problem cannot be completely ruled
out for a simple unit square support, the impact of trimming is mostly negative
with small potential improvements. This is especially true for testing problems
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Multivariate Local Polynomial Estimators 7

where trimming may decrease the power against some standard alternatives, as
well as against more specific boundary alternative which will be poorly detected.

The rest of this paper is organized as follows. The next section introduces the
setup, a general class of local polynomial estimators, and the motivating examples.
Section 3 presents our results for the asymptotic bias and variance for the class
of local polynomial estimators in Section 2. Section 3 establishes asymptotic nor-
mality and uniform convergence of the local polynomial regression over the entire
support. A uniform linearization result for the local polynomial quantile regres-
sion is also derived in Section 4. Section 5 presents results from our simulation
experiment. Section 6 offers concluding remarks and Section 7 collects technical
proofs.

To close this section, we introduce some notations that will be used throughout
the rest of this paper. Let �s� be the lower integer part of the real number s, that is
the unique integer number such that �s� < s ≤ �s� + 1. In what follows, ‖·‖ stands
for the Euclidean or a vector norm and V(x, r) = {z; ‖z − x‖ ≤ r} is the closed
ball with center x and radius r . When M is a matrix, ‖M‖ = Tr1/2(M ′M) is the
Frobenius norm of M . For symmetric matrices A and B, A � B means that A − B

is a positive matrix. The indicator function I(X ∈ A) takes value 1 when X lies in
A and 0 otherwise.

2. M-REGRESSION, MULTIVARIATE LOCAL
POLYNOMIAL ESTIMATION, AND MOTIVATING

EXAMPLES

This section first introduces a general multivariate M-regression and its local
polynomial estimator. It then reviews several examples including the RDD
with multiple forcing variables in Imbens and Zajonc (2011), consistent model
specification testing, additive models, and average derivative estimation, where
estimation of an M-regression either at the boundary or the entire support is needed.

Consider a univariate-dependent variable Y and a d-dimensional covariate X.
We assume that the support of X, denoted as X , is a compact set with a boundary B.
Let ρ(·) be a loss function and define the associated M-regression of Y on X as

μ(X) = arg min
μ∈R

E [ρ(Y − μ)|X] (1)

It is assumed that μ(X) is the unique minimizer of E [ρ(Y − ·)|X]. When
ρ(t) = t2, μ(X) is the regression function E[Y |X] while when ρ(t) = (1 − α)tI(t ≤
0) − αtI(t > 0) for some α ∈ (0, 1), μ(X) is the αth quantile of the conditional dis-
tribution of Y given X. The αth expectile of Newey and Powell (1987) corresponds
to ρ(t) = (1 − α)t2I (t ≤ 0) + αt2I (t > 0).
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8 YANQIN FAN AND EMMANUEL GUERRE

The pth-order local polynomial estimator of μ(·) in Eq. (1) is defined as
follows. Let U (x) be the vector which groups the power xπ = x

π1
1 × · · · × xπd for

all non-negative integer numbers π1, . . . , πd with |π | = π1 + · · · + πd ≤ p accord-
ing to the lexicographic order. Let K(·) be a non-negative kernel function and
h > 0 a bandwidth. The local polynomial estimator of μ(x) = β0(x) and its partial
derivatives

μ(π )(x) = ∂ |π |μ(x)

∂x
π1
1 · · · ∂xπd

= |π |!
π1! × · · · × πd !βπ (x) (2)

are denoted as β̂(x; h) =
(
β̂π (x; h), |π | ≤ p

)′
with

β̂(x; h) = arg min
β

n∑
i=1

ρ
(
Yi − U (Xi − x)′β

)
K

(
Xi − x

h

)
(3)

where a suitable convention is used to break possible ties when the minimizer
β̂(x; h) is not unique as in the case of local polynomial quantile regression.

M-regressions are not only of interest in their own right but also play important
roles in other contexts including estimation of average treatment effect parameters,
semiparametric models, and consistent model specification testing. Throughout
this paper, we use the RDD in Example 1 to illustrate the usefulness of the bias and
variance expressions established in Section 3 and Examples 2–4 to demonstrate the
usefulness of the uniform results of the type established in this paper in the context
of consistent model specification testing and semiparametric estimation involving
(weighted) averages of multivariate local polynomial estimators by avoiding fixed
trimming of the boundary commonly adopted in existing work.

Example 1: Regression discontinuity design. Suppose that the support X is
partitioned into X0 and X1, with boundaries B0 and B1. Let B01 = B0 ∩ B1 be the
frontier between X0 and X1. Suppose that individuals with X = X1 in X1 receive
a treatment and let Y1 be the associated response. Denote (X0, Y0) in X0 × R the
control group variables, and

μj (x) = arg min
μ∈R

E
[
ρ(Yj − μ)|Xj = x

]
, x ∈ Xj for j = 0, 1 (4)

Extending the regression setup of Imbens and Zajonc (2011), we define the
conditional average treatment effect as

τ (x) = μ1(x) − μ0(x), x ∈ B01 (5)

When the treatment has no effect on the conditional parameter μ(·), τ (·) = 0 and
τ (·) 
= 0 otherwise. A potential difficulty with this multivariate setup is that the



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

Multivariate Local Polynomial Estimators 9

conditional average treatment effect is a function, as B01 is in general not a single-
ton. Let xk ∈ B01 for k = 1, . . . , K, where K could be fixed or grow with the sample
size. Simple summaries of the average treatment effect on the boundary B01 such
as

τA = 1

K

K∑
k=1

τ (xk), τM = max
k=1,...,K

τ (xk), τm = min
k=1,...,K

τ (xk) (6)

may be of interest. It is also possible to change the discrete set {x1, . . . , xK} to
the entire frontier B01 but τA should be redefined using an integral instead of a
discrete sum.

Example 2: Significance testing. Consider the null and alternative hypotheses:

H0 : P(μ(X) = 0) = 1, H1 : P(μ(X) = 0) < 1

To avoid boundary issues, trimming is often used to construct test statistics for H0

versus H1. Let Xc be an inner subset of the support X of X, which is for instance
obtained by selecting those x in X at a distance c from the boundary B, where c

is a trimming parameter. The null and alternative hypotheses are

H0c : P (μ(X)I [X ∈ Xc] = 0) = 1

H1c : P (μ(X)I [X ∈ Xc] = 0) < 1

Note that the alternative H1,0 = H1 contains all the alternatives H1c with c > 0,
so that trimming may give a test which is not consistent against the alternatives in
H1 but not in H1c. A possible test statistic is

t̂2
c = 1

n

n∑
i=1

μ̂2(Xi)I [Xi ∈ Xc] (7)

where μ̂(Xi) is a local polynomial estimator of μ(·) in Eq. (1). As is well docu-
mented in the testing literature, such test statistics can also be applied to residuals
to test for more general model specification. The statistic t̂2

c is an average version
of the integral test statistic of Härdle and Mammen (1993) for testing specification
of the regression model. A study of the asymptotic behavior of t̂2

0 for a regression
null hypothesis with a univariate covariate can be found in Li (2005). A similar
test was developed for a linear regression null hypothesis with dependent data by
Hjellvik, Yao, and Tjøstheim (1998). It follows from these authors that for some
�c and σ 2

c which depend upon the distribution of the observations,

nhd/2 t̂2
c − h−d/2�c

d→ N
(
0, σ 2

c

)
(8)
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10 YANQIN FAN AND EMMANUEL GUERRE

under the null. The asymptotic mean h−d/2�c and variance σ 2
c can be consistently

estimated provided that h−d/2 does not diverge too fast, so that Eq. (8) leads
to a rejection region: nhd/2 t̂2

c − h−d/2�̂c ≥ σ̂ 2
c 
(1 − α), where 
(1 − α) is the

standard normal (1 − α)th quantile.
An alternative approach is Fan and Li (1996), who propose a test statistic which

is asymptotically centered, so that �̂c is not needed. In our context, this would
lead to a test statistic of the form:

T̂c =
n∑

i=1

Yiμ̂−i(Xi)I [Xi ∈ Xc] (9)

where μ̂−i(Xi) is a local polynomial leave-one-out estimation of μ(Xi). But T̂c is
asymptotically normal under the null E [Yμ(X)I [X ∈ Xc]] = 0, which is equiva-
lent to H0c in the regression case but not necessarily for alternative choices of ρ(·),
so that Eq. (7) should be preferred for general ρ(·).
Example 3: Additive specification estimation. A useful dimension reduction
technique to estimate a function μ(·) depending upon a high-dimensional covariate
is to impose an additive structure on μ. Suppose that X = (X′

1, X′
2

)′
and that the

function μ(·) of Eq. (1) has an additive decomposition,

μ(X) = m1(X1) + m2(X2)

A popular method for estimating m1(·) is the marginal integration method of Linton
and Nielsen (1995). Let X2c be an inner subset of the support X2 of X2. An estimator
of

μ1,c(x1) = m1(x1) + E [m2(X2)I (X2 ∈ X2c)]

is

μ̂1,c(x1) =
∑n

i=1 I (X2i ∈ X2c) μ̂−i (x1, X2i )∑n
i=1 I (X2i ∈ X2c)

(10)

In a regression setup, Linton and Nielsen (1995) consider an integral version of
Eq. (10) where μ̂−i(·, ·) = μ̂(·, ·) is a standard kernel regression estimator. The role
of the trimming set X2c is to avoid boundary effects. In a quantile setup and for
the support X2 = [0, 1]d2 , Kong et al. (2010) show that trimming is not needed
when using local polynomial estimation. In both papers, the convergence rate of
the additive component is shown to be faster than the ones usually obtained for
the estimation of an unrestricted function μ(·).
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Multivariate Local Polynomial Estimators 11

Example 4: Average derivative estimation. Another popular dimension reduc-
tion approach is based on the single-index specification

μ(X) = g(X′β)

where β is a d-dimensional vector and g(·) a real-valued function. The slope param-
eter β can be identified, up to a scaling coefficient, using the average derivatives
of μ(X) since

E

[
∂μ(X)

∂X

]
= βE

[
g(1)(X′β)

]
where g(1)(·) is the derivative of g(·). See Härdle and Stoker (1989) or Powell,
Stock, and Stoker (1989) for the regression case and Chaudhuri, Doksum, and
Samarov (1997) for quantile functions. As seen from Altonji et al. (2012), average AQ:2
derivatives are also of independent interest in microeconometric issues. Direct
methods average an estimator of ∂μ(X)/∂X over Xc as in

M̂ (1)
c = 1∑n

i=1 I [Xi ∈ Xc]

n∑
i=1

I [Xi ∈ Xc]
∂̂μ

∂X
(Xi) (11)

Chaudhuri, Doksum, and Samarov (1997) consider local polynomial estimators of
∂μ(X)/∂X in a quantile setup while Li, Lu, and Ullah (2003), Banerjee (2007),
and Altonji et al. (2012) implement local polynomial for regressions. Chaudhuri
et al. (1997) use a weighting function instead of trimming and Altonji et al. (2012)
consider Xc = [0.5, 3.5] for a support X = [0, 4].

3. THE BIAS AND VARIANCE OF MULTIVARIATE
LOCAL POLYNOMIAL ESTIMATORS

In this section, we establish results for the asymptotic bias and variance of mul-
tivariate local polynomial estimators of an M-regression that are valid uniformly
over X . First, we introduce the main assumptions including our new support con-
dition and contrast it with Assumption (A4) in Ruppert and Wand (1994), who use
it to develop pointwise results.
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12 YANQIN FAN AND EMMANUEL GUERRE

3.1. Main Assumptions

A key issue that we have to deal with is that β̂(x; h) is an estimator of the pseudo-true
value β̄(x; h) defined as

β̄(x; h) = arg min
β

E

[
ρ
(
Y − U (X − x)′β

)
K

(
X − x

h

)]
(12)

and that β̄(x; h) may differ from β(x), the vector with entries

β∗
π (x) =

{
0 if the partial derivative μ(π )(x) does not exist

βπ (x) defined in Eq. (2) otherwise

The first goal of this paper is to study the bias term
[
β̄(x; h) − β(x)

]
over the

support X of X. This will be done under the assumptions introduced below.

Assumption R. (Loss f unction ρ(·)).
(i) For each x ∈ X , μ ∈ R �→ E [ρ(Y − μ)|X = x] = R(μ|x) is twice continu-
ously differentiable with respect to μ. The second order derivative R(2)( · | · )
satisfies, for some ε > 0,

inf
x∈X

inf
μ∈[μ(x)−ε,μ(x)+ε]

R(2)(μ|x) > 0, sup
x∈X

∣∣R(2)(μ(x)|x)
∣∣< ∞, and∣∣R(2)(μ|x) − R(2)

(
μ′|x)∣∣< C

∣∣μ − μ′∣∣
for all real numbers μ and μ′ in [μ(x) − ε, μ(x) + ε]. (ii) ρ(·) is continuous and
there is a finite collection of intervals (aj , aj+1) with

⋃J
j=0 (aj , aj+1) such that

ρ(·) is continuously differentiable with derivative ρ(1)(·) over each (aj , aj+1).
Moreover,

sup
x∈X

E

[(
ρ(1)(Y − μ(X))

)2 |X = x
]
< ∞

The functions (μ, x) ∈ R×X �→R(2)(μ|x) and E

[(
ρ(1)(Y − μ)

)2 |X = x
]

are

continuous.

Assumption S. (Smoothness of μ(·)).
There is a smoothness index s > 0 such that either S1 or S2 below holds:

S1: s > 1, μ(·) is �s� times differentiable and for some L > 0, the partial
derivatives of order π with |π | = �s� satisfy: for all x, x ′ ∈ X ,∣∣μ(π )

(
x ′)− μ(π )(x)

∣∣≤ L
∥∥x ′ − x

∥∥s−�s�
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Multivariate Local Polynomial Estimators 13

S2: s is an integer and μ(·) is s times continuously differentiable.

Assumption X. (X -boundary).
(i) The marginal probability density function f (·) of the d-dimensional X is
continuously differentiable and bounded away from 0 on its supportX . (ii)There
are some κ0, κ1 in (0, 1] such that for any x ∈ X and all ε in (0, κ0], there is a
x ′ ∈ X satisfying

V
(
x ′, κ1ε

)⊂ V (x, ε) ∩ X (13)

(iii) X is a compact subset of Rd .

Assumption K. (Kernel f unction).
The kernel function K(·) is non-negative and Lipschitz, that is,∣∣K(x) − K

(
x ′)∣∣≤ L

∥∥x − x ′∥∥ for any x, x ′ ∈ Rd . The kernel function K(·)
has a compact support and is bounded away from 0 over the unit ball V(0, 1).
The bandwidth h = hn → 0 as n → ∞.

A brief discussion of the assumptions is in order. Assumption R-(i) is important
to ensure that μ(x) in Eq. (1) and the pseudo-true value β̄(x; h) in Eq. (12) are
unique as implied by R(2)( · |x) > 0 and Assumption K. Indeed this implies that
the Hessian matrix

∂

∂β∂β ′ E
[
ρ
(
Y − U (X − x)′β

)
K

(
X − x

h

)]
is strictly positive and remains so when h → 0. The additional Lipshitz condition on
R(2)(·|x) is used to study β̄(x; h) when h → 0. Assumption R-(i) clearly holds when
ρ(t) = t2. In the quantile case with α in (0, 1), ρ(t) = (1 − α)tI(t ≤ 0) − αtI(t > 0)
and R(2)(μ|x) = f (μ|x), where f ( · |x) denotes the conditional pdf of Y given
X = x, so that Assumption R-(i) holds when inf x∈X f (μ(x)|x) > 0 as standard in
quantile estimation and if μ �→ f (μ|x) is differentiable or Lipschitz in the vicinity
of μ(x). Assumption R-(ii) is used to study the variance of the local polynomial
estimator.

Assumption S describes some smoothness conditions for μ(·). Assumption S1
is from Chaudhuri (1991) or Masry (1996). It allows for a noninteger smoothness
index s as necessary when considering some power functions like |x|s whose
derivatives of order �s� can have a singular behavior in the vicinity of the origin.
Assumption S2 is slightly stronger and implies Assumption S1 when the support
X of the covariate is compact. Note that it is not assumed that p < s as it is also
clear from the definition of the pseudo-true value β∗

π (x) which allows for p ≥ s.
Indeed, nonexistence of the partial derivative μ(π )(x) in the definition of β∗

π (x)
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14 YANQIN FAN AND EMMANUEL GUERRE

should be understood as |π | > �s� under Assumption S1 and as |π | > p under
Assumption S2. Assumption K is rather standard in local polynomial estimation.

Assumption X is our key support condition. Assumption X-(i, iii) are standard
but Assumption X-(ii) seems to be new to the best of our knowledge. Assumption
X-(ii) holds for hypercubes [a, b]d or hyperrectangles, spheres, or supports delim-
ited by smooth boundaries but also for more irregular support shapes. It relaxes
the usual intuition of a connected support with no hole and delimited by a smooth
boundary. In particular, the support X of the covariate X does not need to be
connected and can have holes. The latter possibility extends Assumption (A4) in
Ruppert and Wand (1994), who assume that there is a nontrivial convex set C ⊂ X
with nonempty interior containing x. This restricts the shape of X since there can-
not be a sequence of holes with vanishing size converging to x. In sharp contrast,
under Assumption X-(ii), the boundary of X can be very irregular in the vicinity
of x with many peaks, as illustrated by an example below. In addition, Assump-
tion X-(ii) is suitable for uniform or global studies of local polynomial estimation,
while Ruppert and Wand (1994) only consider pointwise estimation of a regression
function μ(x) for a given x.

The intuition behind Assumption X-(ii) is that a local polynomial estimator
performs well provided that there are many observations close to x, say up to
a distance h → 0 given by a bandwidth, to estimate μ(x). This will hold if it is
possible to find a sequence of balls in the support X with a radius proportional
to h which will converge to x. The key point here is that these balls do not need
to be centered at x, which would be impossible when x is on the boundary of X ,
but can be centered at an interior point x ′ 
= x of X . This is the intuitive content of
Eq. (13), where ε plays the role of a bandwidth. For ε > 0 small enough, Eq. (13)
means that there is a ball V

(
x ′, κ1ε

)
in the support X which is also in the vicinity

set V(x, ε) of x. The fact that the constants κ0 and κ1 in Eq. (13) do not depend
upon x is essential to establish the uniformity results in this paper.

To compare and contrast with Assumption (A4) in Ruppert and Wand (1994),
consider the case d = 2 for the sake of brevity. Like Assumption (A4) in
Ruppert and Wand (1994), Assumption X-(ii) also excludes the support defined
below:

Xb = {x = (x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x2
1

}
due to the origin o = (0, 0)′ and the fast decrease of x2 when x1 → 0. Indeed balls
in V (o, ε) ∩ Xb have a radius which is of order ε2 and therefore not compatible
with Eq. (13). On the other hand, a support like

Xc = {x = (x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ b(x1)} , with b(x1) ≥ b(x1),

where b(x1) = C

∞∑
k=1

|x1| I
(

x1 ∈
[

1

k + 1/2
,

1

k

])
for some C > 0
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Multivariate Local Polynomial Estimators 15

will satisfy Assumption X-(ii) due to the restriction b(x1) ≥ b(x1) with b(x1) =
C |x1| on

[
(k + 1/2)−1, k−1

]
. Indeed, it is sufficient to consider, for all k ≥ 1,

those x ′ with x ′
1 ∈ [(k + 1/2)−1, k−1

]
and x ′

2 ∈ [0, Ck−1
]

and balls V
(
x ′, ε

)
in the

rectangle
[
(k + 1/2)−1, k−1

]× [0, Ck−1] to show that Eq. (13) holds. On the other
hand, when b(x1) = b(x1), Xc does not satisfy Assumption (A4) in Ruppert and
Wand (1994), due to the irregular behavior of b(x1) when x1 → 0. Indeed since
b(x1) = 0 on all

(
(k + 1)−1, (k + 1/2)−1

)
, there is no nontrivial convex set in Xc

which contains the origin o.

3.2. The Bias

Under the assumptions introduced in Section 3.1, it is possible to obtain the
orders of the bias terms:

[
β̄π (x, h) − βπ (x)

]
uniformly over x ∈ X , including the

boundary of X .

Theorem 1. Suppose Assumptions K, R, S1, and X hold with p ≥ �s�. Then for
all π ∈ Nd with |π | ≤ �s� and h small enough,

sup
x∈X

∣∣β̄π (x, h) − βπ (x)
∣∣≤ CLhs−|π |

Theorem 1 extends existing bias results for x in inner subsets of X . See for instance
Chaudhuri (1991) and Guerre and Sabbah (2012) for the quantile case. Theorem
1 therefore shows that, thanks to Assumption X, the order of the bias of the local
polynomial estimator is not affected by boundary. This contrasts with Nadaraya–
Watson Kernel estimators and is a key reason for preferring local polynomial
methods as argued by Fan and Gijbels (1996) for univariate local polynomial
regression. The proof of Theorem 1 works by checking that the tentative limit
βπ (x) approximately satisfies the first-order condition of the minimization (12).
SinceAssumption R ensures that the Hessian of the objective function of Eq. (12) is
full-rank, the Newton–Kantorovich Theorem is then used to show that β̄π (x, h) −
βπ (x) = O

(
Lhs−|π |) uniformly over X as stated in the theorem. As far as we know,

this approach is new in the context of local polynomial estimation.
Theorem 2 gives a uniform expansion of

[
β̄π (x, h) − βπ (x)

]
under the stronger

smoothness Assumption S2 which allows for a better description of the bias.
Theorem 2 also completes Theorem 1 by considering the case where
p ≤ s − 1 = �s�. Define

1(x, h) =
∫

I (x + hz ∈ X ) U (z)U (z)′K(z)dz (14)

Sp
(
−1

1 (x, h)
)= the largest eigenvalue of −1

1 (x, h)
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16 YANQIN FAN AND EMMANUEL GUERRE

bp+1(x, h) =
∑

π∈Nd :|π |=p+1

κπ (x, h)βπ (x), and (15)

κπ (x, h) =
∫

I (x + hz ∈ X ) zπU (z)K(z)dz

Let eπ be the π th element of the canonical basis, that is, the vector with a 1 in the
π th lexicographic position and 0 elsewhere.

Theorem 2. Suppose Assumptions K, R, S2, and X hold and that p satisfies
p ≤ �s� = s − 1. Then for all π ∈ Nd with |π | ≤ p,

β̄π (x, h) = βπ (x) + hp+1−|π |e′
π1(x, h)−1bp+1(x, h) + o

(
hp+1−|π |)

uniformly in x ∈ X with maxx∈X Sp
(
1(x, h)−1

)
< ∞ and maxx∈X

∥∥bp+1

(x, h)‖ < ∞ for h small enough.

A first noticeable fact is that the leading term in the bias expansion in Theo-
rem 2 is independent of the loss function ρ(·). The term e′

π1(x, h)−1bp+1(x, h)
multiplying hp+1−|π | is identical to the one obtained for regression local polyno-
mial estimators which has been already studied by Ruppert and Wand (1994) and
more recently by Gu et al. (2015). Second, the bias boundary effect is captured
through the matrix 1(x, h) and the vector κπ (x, h). When x is an inner point of
X , or, more precisely, when x + hz lies in X for all z in the support of the kernel
function, 1(x, h) = 1 and κπ (x, h) = κπ with

1 =
∫

U (z)U (z)′K(z)dz and κπ =
∫

zπU (z)K(z)dz (16)

in which case bp+1(x, h) = bp+1(x) with,

bp+1(x) =
∑

π∈Nd :|π |=p+1

κπβπ (x)

An important issue is whether the term e′
π1(x, h)−1bp+1(x, h) in front of

hp+1−|π | vanishes or not. This has been recently discussed for the regression
case and a symmetric kernel K(·) by Gu et al. (2015) and, as noted above, their
results can also be applied to a more general ρ(·). When p + 1 − |π | is odd, the
exact order hp+1−|π | holds over the whole support except for those unlikely x

such that bp+1(x, h) = 0. In this case, Theorem 2 can be used in conjunction with
Theorem 4 below to propose an optimal bandwidth for inner x. The situation
differs when p + 1 − |π | is even. When K(·) is symmetric,

∫
zπ1zπ2K(z)dz = 0
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Multivariate Local Polynomial Estimators 17

when |π1| is even and |π2| odd, so that reorganizing the entries of U (z) gives a
block-diagonal . As shown by Gu et al. (2015), this implies that e′

π−1
1 b(x) = 0

when p + 1 − |π | is even. Because 1(x, h) is not similar to a block-diagonal
matrix when x lies on the boundary B, it is unlikely to have e′

π1(x, h)−1b(x, h) = 0
unless the partial derivatives μ(π )(x) take some very specific values. Hence for
inner x, the bias has a smaller order o

(
hp+1−|π |) while for x on the boundary the

bias will be O
(
hp+1−|π |). This shows that the bias can be slightly larger near the

boundary. Under some additional regularity conditions, it is possible to show that
the bias is O

(
hp+2−|π |) for inner x.

Let

R
(2)
f ,μ(x) = R(2)(μ(x)|x)f (x), κπ,j =

∫
zj z

πU (z)K(z)dz and

bp+1(x) =
d∑

j=1

∑
π∈Nd :|π |=p+1

κπ,j
1

R
(2)
f ,μ(x)

∂R
(2)
f ,μ(x)

∂xj

βπ (x)

Proposition 3. Suppose Assumptions K, R, S2, and X hold and that p satisfies AQ:9
p ≤ �s� = s − 1. Assume in addition that K(·) is symmetric and that R

(2)
f ,μ(x),

μ(p+1)(x) are continuously differentiable over X . Then if p + 1 − |π | is even
and if x is in the interior of X ,

β̄π (x, h) = βπ (x) + hp+2−|π |e′
π−1

1

(
bp+2(x) + bp+1(x)

)+ o
(
hp+2−|π |)

Proposition 3 suggests that for an even p + 1 − |π |, the bias grows from
O
(
hp+2−|π |) for those x at a distance O(h) to the higher order O

(
hp+1−|π |) when

x is a boundary point. As in Gu et al. (2015), Ruppert and Wand (1994) or when
d = 1, it is possible to study the bias for a sequence xh = x + hc in the interior of
X and x in B under additional simplifying assumptions on the boundary shape.
Note also that the higher-order expansion of Proposition 3 now depends on the
choice of ρ(·) through the partial derivatives of R

(2)
f ,μ(x) in the term bp+1(x) of the

expansion.

3.3. The Variance

Consider now the variance of the local polynomial estimator. As is well known,
the partial derivative estimators β̂π (x; h) converge with a different rate and should
be first standardized with the diagonal matrix

H = Diag
(
h|π |, |π | ≤ p

)
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18 YANQIN FAN AND EMMANUEL GUERRE

Standard arguments as in Huber (1967) then suggest that the variance of

H
(
β̂(x, h) − β̄(x, h)

)
is close to V (x, h)/nhd , where V (x, h) has the usual

sandwich form

V (x, h) = R
(2)

(x, h)−1S(x, h)R
(2)

(x, h)−1

with

R
(2)

(x, h) = h−dE

[
R(2)

(
U (X − x)′β̄(x, h)|X)U (X − x

h

)
× U

(
X − x

h

)′
K

(
X − x

h

)]
S(x, h) = h−dE

[(
ρ(1)

(
Y − U (X − x)′β̄(x, h)

))2
U

(
X − x

h

)
× U

(
X − x

h

)′
K2

(
X − x

h

)]

where the superscript “−” indicates dependence on β̄(x, h). Since Assumptions
R-(i) and X-(i) give, for 1(x, h) in Eq. (14),

R
(2)

(x, h) � Ch−dE

[
U

(
X − x

h

)
U

(
X − x

h

)′
K

(
X − x

h

)]
= C

∫
U (z)U (z)′K(z)f (x + hz)dz � C1(x, h)

and because max(x,h)∈X×[0,∞) Sp
(
1(x, h)−1

)
< ∞ as stated in Theorem 2,

R
(2)

(x, h) has an inverse for all x ∈ X and h ≥ 0, so that V (x, h) is well defined.
Consider the following approximations for V (x, h):

V (x, h) =
E

[(
ρ(1) (Y − μ(X))

)2 |X = x
]

(
R(2)(μ(x)|x)

)2
f (x)

(x, h)−1 and

V (x) =
E

[(
ρ(1) (Y − μ(X))

)2 |X = x
]

(
R(2)(μ(x)|x)

)2
f (x)

−1
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Multivariate Local Polynomial Estimators 19

where

2(x, h) =
∫

I (x + hz ∈ X ) U (z)U (z)′K2(z)dz

(x, h)−1 = 1(x, h)−12(x, h)1(x, h)−1

2 =
∫

U (z)U (z)′K2(z)dz, −1 = −1
1 2

−1
1

and 1(x, h) and 1 are as in Eqs. (14) and (16), respectively. The next theorem
shows that V (x, h) is a suitable approximation for V (x, h) over X , while V (x) is
a suitable approximation for V (x, h) over interior subsets of X .

Theorem 4. Suppose Assumptions K, R, X hold together with Assumptions S1
or S2. Then maxx∈X Sp (V (x, h)) = O(1) and

sup
x∈X

∥∥V (x, h) − V (x, h)
∥∥= o(1)

Consider a subset X0 of X such that
⋃

x∈X0
V(x, ε) ⊂ X for some ε > 0. Then

sup
x∈X0

∥∥V (x, h) − V (x)
∥∥= o(1)

Theorem 4 shows that the asymptotic variance V (x, h) of (nhd )1/2H (β̂(x, h)−
β̄(x, h)) stays bounded over X so that the order of H (β̂(x, h) − β̄(x, h)) should
be (nhd )−1/2 for all x ∈ X . Combining this result with Theorem 1 gives that
[β̂π (x, h) − βπ (x)] should be of order ((nhd )−1/2 + hs)/h−|π | for all π with |π | ≤ s

and for all x ∈ X including the boundary, that is, there is no boundary effect for
the consistency rate of β̂π (x, h).

As shown as Theorem 4, the variance boundary effect arises because the
limit of (x, h)−1 may differ from −1 when x is close to the boundary as when
x = x∂ + hc where x∂ lies on the boundary. In the univariate case, Ruppert and
Wand (1994) mentioned an increase by a factor 4 when x goes to the boundary
and K(·) is a uniform kernel over [−1, 1]. The situation can be much worse in a
multidimensional case since the variance increase due to boundary is not bounded
and can be made arbitrarily large by considering a support which is very narrow in
the vicinity of some estimation point x. For instance, consider a bivariate covariate
x = (x1, x2)′ and the ray of the unit disk determined by angle θ > 0, that is,

Xθ = {(x1, x2)′; x1 = r cos θ , x2 = r sin θ , (r , θ ) ∈ [0, 1] × [
0, θ
]}
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and estimation at the vertex o = (0, 0). Suppose that K(x1, x2) = K(r) with∫ 1
0 K(r)rdr = 1/(2π ) and U (x) = [1, x1, x2]′. Then for h small enough and θ small,

the symmetric j (o, h), j = 1, 2 satisfy

j (o, h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

2π

(
θ − θ

3

6

)∫ 1

0
rKj (r)dr

θ
2

2

∫ 1

0
rKj (r)dr

×
(

θ − θ
3

3

)∫ 1

0
r2Kj (r)dr

θ
2

2

∫ 1

0
r2Kj (r)dr

× × θ
3

3

∫ 1

0
r2Kj (r)dr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ o

(
θ

3
)

which is such j (o, h) goes to 0 when θ → 0. Further calculations yield that all
the diagonal entries of

(o, h) = 1(o, h)−12(o, h)1(o, h)−1

diverge as 1/θ diverges suggesting estimation of all derivatives becomes imprecise.
In other words, althoughAssumption X implies that (x, h)−1 stays bounded when
x varies over X , this example suggests that (x, h)−1 can be large especially when
the boundary takes the shape of such small angle ray with center x. By contrast, the
leading bias term 1(x, h)−1bp+1(x, h) from Theorem 2 is probably less affected
by such small denominator problems. Indeed, by Eqs. (14) and (15),

1(x, h)−1bp+1(x, h) =
∑

π∈Nd :|π |=p+1

1(x, h)−1κπ (x, h)βπ (x)

and a large 1(x, h)−1 can be compensated by a small κπ (x, h).

4. LOCAL POLYNOMIAL REGRESSION AND
QUANTILE REGRESSION

In this section, we focus on two specific M-regressions, the local polynomial
regression and local polynomial quantile regression. For each case, we establish
asymptotic normality and uniform convergence rate. For local polynomial quantile,
we first derive a uniform Bahadur representation valid over the whole support of
the covariate X. We illustrate its usefulness via Examples 2–4.
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4.1. Local Polynomial Regression

Consider a regression model with a heteroscedastic error term,

Yi = m(Xi) + εi , E [εi |Xi] = 0, Var (εi |Xi) = σ 2(Xi) (17)

and the quadratic loss function ρ(t) = t2. We shall assume that

Assumption E .
The variables

(
Yi , X′

i

)′
, i = 1, . . . , n, are i.i.d. The conditional p.d.f. of εi given

Xi denoted as f (e|x) is continuous with respect to e and x. The variance
function σ 2(·) = Var (εi |Xi = ·) is bounded away from 0 and continuous over X .
Moreover, supx∈X E

[|εi |2+ν |Xi = x
]
< ∞ for some ν > 0.

For a quadratic loss function ρ(·), the local polynomial regression estimator in
Eq. (3) is

β̂(x, h) =
(

n∑
i=1

U (Xi − x)U (Xi − x)′K
(

Xi − x

h

))−1

×
n∑

i=1

U (Xi − x)YiK

(
Xi − x

h

)

= H−1

(
n∑

i=1

U

(
Xi − x

h

)
U

(
Xi − x

h

)′
K

(
Xi − x

h

))−1

×
n∑

i=1

U

(
Xi − x

h

)
YiK

(
Xi − x

h

)
(18)

where H is the diagonal matrix with entries h|π |. The first entry of β̂(x, h), say
m̂h(x), is an estimator of the regression function m(x), whereas the other entries
estimate its partial derivatives. The pseudo-true value β̄(x, h) from Eq. (12) can
be computed explicitly as

β̄(x, h) =
(

E

[
U

(
X − x

h

)
U

(
X − x

h

)′
K

(
X − x

h

)])−1

× E

[
μ(X)U

(
X − x

h

)
K

(
X − x

h

)]
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The asymptotic variance V (x, h) is

V (x, h) = σ 2(x)

f (x)
(x, h)−1

which can be estimated using

V̂ (x, h) = σ̂ 2(x)̂1(x, h)−1̂2(x, h)̂1(x, h)−1

where

̂j (x, h) = 1

nhd

n∑
i=1

U

(
Xi − x

h

)
U

(
Xi − x

h

)
Kj

(
Xi − x

h

)
, j = 1, 2,

σ̂ 2(x) =
∑n

i=1

(
Yi − β̂0(x, h)

)2
K
(

Xi−x

h

)
∑n

i=1 K
(

Xi−x

h

)
which is consistent but with a large O(h) boundary bias. Note that both β̂(x, h)
and V̂ (x, h) depend upon an inverse matrix which may not exist. The next lemma
shows that β̂(x, h) and V̂ (x, h) are well defined with a probability tending to 1.

Lemma 5. Suppose that Assumptions K and X hold and that h = hn → 0 with
log n/(nhd ) = o(1). Then, for j = 1, 2,

sup
x∈X

∥∥∥∥∥ 1

nhd

n∑
i=1

U

(
Xi − x

h

)
U

(
Xi − x

h

)′
Kj

(
Xi − x

h

)

−
∫

U (z)U ′(z)Kj (z)f (x + hz)dz

∥∥∥∥
= OP

((
log n

nhd

)1/2
)

= oP(1) (19)

Moreover, for j = 1, the limit matrix has an inverse and

max
x∈X

Sp

((∫
U (z)U ′(z)K(z)f (x + hz)dz

)−1
)

= O(1)

The next two propositions show that standard asymptotic normality and uni-
form convergence results hold over the whole support. Because, as is well-known,
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the process (nhd )1/2H
(
β̂(·; h) − β̄(·; h)

)
is not tight so that convergence in dis-

tribution to a Gaussian process cannot hold in usual functional sense, Proposition 6

considers the asymptotic normality of (nhd )1/2V̂ (xn, h)−1/2H
(
β̂(xn; h) − β(xn; h)

)
,

where the sequence {xn} ⊂ X can go to the boundary of the support X . Note that
Proposition 6 also establishes the consistency of the variance estimator V̂ (xn, h)
near the boundary. These asymptotic normality and consistency results imply that
each

(nhd )1/2h|π |
(
β̂π (xn; h) − β̄π (xn; h)

)
is asymptotically normal and gives an estimate of its asymptotic variance.

Proposition 6. Suppose that Assumptions E, K, X, and S1 or S2 hold, that
h = hn → 0 with log n/(nhd ) = o(1) and that {xn} ⊂ X is a deterministic
sequence. Then

(nhd )−1/2V̂ (xn, h)−1/2H
(
β̂(xn; h) − β(xn; h)

)
converges in distribution to a standard multivariate normal with

V̂ (xn, h) = V (xn, h) + op(1)

Proposition 7. Suppose that Assumptions E, K, X, and S1 or S2 hold, that
h = hn → 0 with h−d = O

(
n(ν−2)/ν/ log n

)
. Then

sup
x∈X

∥∥∥H(β̂(x; h) − β(x)
)∥∥∥= Op

((
log n

nhd

)1/2

+ hs

)

Example 1 (Cont’d). In this example, the two different regression functions are
estimated using two different and independent samples of observations

(
Xji , Yji

)
,

j = 0, 1, with the same sample size n and the same bandwidth for the sake of
simplicity. The estimator of the average treatment effect in Eq. (5) is then

τ̂h(x) = μ̂1h(x) − μ̂2h(x), x ∈ B01

Proposition 7 implies that τ̂h(x) converges uniformly to τ (x) over B01 with

a rate
[(

log n/(nhd )
)1/2 + hs

]
extending the pointwise result in Imbens and

Zajonc (2011). Proposition 6 easily extends to a vector
(
τ̂h(x1), . . . , τ̂h(xK )

)′
which will be asymptotically independent. It follows that the estimation τ̂Ah of
the average treatment effect mean τA as in Eq. (6) is asymptotically normal
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with a bias which can be derived from Theorems 1 and 2 and an asymptotic
variance of order 1/(nhd ) obtained by averaging the ones from Proposition 6.
Approximation for the asymptotic distribution of τ̂Mh and τ̂mh can also be
easily obtained under the additional condition that the maximum and mini-
mum of the τ (xk)’s are achieved for one xk , say xM and xm. In this case,
(nhd )1/2

(
τ̂Mh − τ̂h(xM )

)
and (nhd )1/2

(
τ̂mh − τ̂h(xm)

)
are both op(1) so that the

asymptotic distribution of (nhd )1/2
(
τ̂Mh − τM

)
and (nhd )1/2

(
τ̂mh − τm

)
are the

ones of (nhd )1/2
(
τ̂h(xM ) − τ (xM )

)
and (nhd )1/2

(
τ̂h(xm) − τ (xm)

)
. Interestingly,

under the assumption of no treatment effect, the estimator τ̂h(x) is asymptotically
unbiased because the same bandwidth is used for the treated and control samples.
This may considerably simplify testing.

Examples 2, 3, and 4 (Cont’d). Although Propositions 6 and 7 do not apply to
these Examples, the proof of these results suggests that our bias and variance results
are sufficient to extend existing results which involve trimming to the bounded
support case under Assumption X. For the full support test statistic t̂0 in Eq. (7),
establishing that nhd/2 t̂0 converges in distribution to a centered normal distribution
can be done with minor modifications of the arguments of Hjellvik et al. (1998).
Studying the full support marginal integration estimator μ̂1,0(x1) in Eq. (10) easily
follows from Kong et al. (2010) while the full support average derivatives estimator
M̂

(1)
0 in Eq. (11) can be studied following Chaudhuri et al. (1997), Li et al. (2003),

or Banerjee (2007).

4.2. Local Polynomial Quantile Regression

Consider the family of loss functions

ρα(t) = t [α − I(t ≤ 0)] , α ∈ [α, a
]⊂ (0, 1)

so that

ρ(1)
α (t) = α − I(t ≤ 0)

For this choice of loss functions, β̂0(α|x, h) = β̂0(x, h) is an estimator of the con-
ditional quantile function Q(α|x) of Yi given Xi = x and β̂π (α|x, h) = β̂π (x, h)
estimates the partial derivative ∂ |π |Q(α|x)/∂xπ . We shall use the following
standard assumption.

Assumption F .
The variables

(
Yi , X′

i

)n
i=1 are i.i.d. The conditional p.d.f. of Y given X = x

denoted as f (y|x) is continuous and differentiable with respect to y
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such that f (y|x) > 0 for all (x, y) ∈ X×R, sup(x,y)∈X×R

∣∣∣ ∂f (y|x)
∂y

∣∣∣< ∞, and

sup(x,y)∈X×R

∣∣∣ ∂f (y|x)
∂x

∣∣∣< ∞.

Under Assumption F, the minimizers Q(α|x) = μ(x) and β̄(α|x, h) = β(x, h)
of Eqs. (1) and (12) are unique. Let F (· | ·) be the cumulative distribution

function of Y given X. The functions R(1)
α (μ|x), E

[(
ρ(1)

α (Y − μ)
)2 |X = x

]
,

E

[(
ρ(1)

α (Y − Q(α|x))
)2 |X = x

]
, R(2)

α (μ|x), V (α|x, h), and V (α|x) are:

R(1)
α (μ|x) = F (μ|x) − α, R(2)

α (μ|x) = f (μ|x)

E

[(
ρ(1)

α (Y − μ)
)2 |X = x

]
= E

[
(I (Y ≤ μ) − α)2 |X = x

]
E

[(
ρ(1)

α (Y − Q(α|x))
)2 |X = x

]
= α(1 − α)

V (α|x, h) = α(1 − α)

f 2 (Q(α|x)|x) f (x)
(x, h)−1, and

V (α|x) = α(1 − α)

f 2 (Q(α|x)|x) f (x)
−1

Hence, Assumption R follows from Assumption F. Since

1

f (Q(α|x)|x)
= ∂Q(α|x)

∂α

a possible estimator of the asymptotic variance V (α|x, h) is

V̂ (α|x, h) = α(1 − α)

(
∂Q̂(α|x)

∂α

)2

(x, h)−1,

where
∂Q̂(α|x)

∂α
= β̂0 (α + η|x, h) − β̂0 (α − η|x, h)

2η
, η = ηn → 0

An important difference between conditional regression and quantile estima-
tion is that the local polynomial quantile regression is neither explicit nor linear
with respect to the Yi . An additionalstep is needed to show that β̂(α|x, h) is



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

26 YANQIN FAN AND EMMANUEL GUERRE

asymptotically linear, see, for example, Chaudhuri (1991), Su and Xiao (2009), or
Guerre and Sabbah (2012). To this aim, define

Ŝ(α|x, h) = 1

(nhd )1/2

n∑
i=1

(
I
(
Yi ≤ U (Xi − x)′β̄(α|x, h)

)− α
)

× U

(
Xi − x

h

)
K

(
Xi − x

h

)
,

Ĵ (α|x, h) = 1

nhd

n∑
i=1

f
(
U (Xi − x)′β̄(α|x, h)|Xi

)
U

(
Xi − x

h

)

× U ′
(

Xi − x

h

)
K

(
Xi − x

h

)
, and

J (α|x, h) = E
[
Ĵ (α|x, h)

]
Lemma 5 and Assumption F ensure that Ĵ (α|x, h) has an inverse asymptotically.
The next linearization proposition is an extension of Guerre and Sabbah (2012,
Theorem 2), which allows for estimation location x close or on the boundary of
X . Note that under Assumption F, the smoothness index s in Assumption S can be
taken greater than 1 as assumed in all the results below.

Proposition 8. Suppose that Assumptions K, F, X, and S1 or S2 hold for some
s ≥ 1, that h = hn → 0 with log n/(nhd ) = o(1). Then

sup
(α,x)∈[α,α]×X

∥∥∥∥∥H(β̂(α|x, h) − β̄(α|x, h)
)

+ Ĵ (α|x, h)−1Ŝ(α|x, h)

(nhd )1/2

∥∥∥∥∥
= Op

((
log n

nhd

) 3
4

)
and

sup
(α,x)∈[α,α]×X

∥∥∥∥∥H(β̂(α|x, h) − β̄(α|x, h)
)

+ J (α|x, h)−1Ŝ(α|x, h)

(nhd )1/2

∥∥∥∥∥
= Op

((
log n

nhd

) 3
4

)

Approximating H
(
β̂(α|x, h) − β̄(α|x, h)

)
with Ĵ (α|x, h)−1Ŝ(α|x, h) as in the

first equation gives an approximation similar to that for a local polynomial regres-
sion estimator. Using the leading term J (α|x, h)−1Ŝ(α|x, h) shows that the local
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polynomial quantile estimator is asymptotically a sum which can be handled with
standard limit theorems. A similar result can be established for a larger class of
loss functions ρ(·) such as the one used in Powell and Newey (1987). However, the AQ:3
rate

(
log n/(nhd )

)3/4
is typical of the quantile check function which is not twice

continuously differentiable and better rates hold for smoother ρ(·).
This linearization result is the key tool to establish a Central Limit Theorem

and uniform consistency for local polynomial quantile regression. The next two
propositions parallel Propositions 6 and 7 for local polynomial regression. Like
Theorems 1, 2, and 4, these results show that the boundary effect can be weak for
local polynomial quantile regression estimators.

Proposition 9. Suppose that Assumptions K, F, X, and S1 or S2 hold
with s ≥ 1, that h = hn → 0 and η = ηn → 0 with log3 n/(nhd ) = o(1),
h + ( log n/(nhd ))1/2 = o(η) and that {xn} ⊂ X is a deterministic sequence.
Then

(nhd )−1/2V̂ (α|xn, h)−1/2 H
(
β̂ (α|xn; h) − β (α|xn; h)

)
converges in distribution to a multivariate normal with

V̂ (α|xn, h) = V (α|xn, h) + op(1)

Proposition 10. Suppose that Assumptions K, F, X, and S1 or S2 hold, that
h = hn → 0 with log3 n/(nhd ) = o(1). Then

sup
(α,x)∈[α,α]×X

∥∥∥H (
β̂ (α|x; h) − β (α|x; h)

)∥∥∥= Op

((
log n

nhd

)1/2

+ hs

)

Example 1 (Cont’d). In the quantile setup, the estimation of the average treatment
effect in Eq. (5) becomes

τ̂h(α|x) = Q̂1h(α|x) − m̂2h(α|x), α ∈ [0, 1], x ∈ B01

Proposition 10 yields that τ̂h(α|x) converges uniformly to τ (α|x) over
[
α, α

]×
B01 with a rate

(
log n/(nhd )

)1/2 + hs extending Imbens and Zajonc (2011) to
quantile setup. The indicators in Eq. (6) can be computed for each quantile levels.
For a given α, they behave as in the regression case. When α varies in

[
α, α

]
,

these indicators should be considered as stochastic processes whose asymptotic
distribution can be derived using the asymptotic expansion stated in Proposition 8.

Example 2 (Cont’d). Proposition 8 is useful to obtain a suitable approximation
of the test statistic t̂2

c . Let μ̃(x) = Q̃(α|x) be the leading term of the conditional
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quantile local polynomial estimator μ̂(x) = Q̂(α|x)

μ̃(x) = Qh(α|x) − e′
1
J (α|x, h)−1Ŝ(α|x, h)

(nhd )1/2
(20)

where e′
1 = [1, 0, . . . , 0] and Qh(α|x) = e′

1β (α|x; h). The “linearized” version of
t̂2
c is

t̃2
c = 1

n

n∑
i=1

μ̃2(Xi)I [Xi ∈ Xc]

Proposition 8 and the triangular inequality yield that

nhd/2
(
t̂2
c − t̃2

c

)= ((nhd/2
)1/2 [

t̂c − t̃c
])×

((
nhd/2

)1/2 [
t̂c + t̃c

])
= (nhd/2

)1/2
Op

((
log n

nhd

) 3
4

)

×
((

nhd/2
)1/2

2t̂c + (
nhd/2

)1/2
Op

((
log n

nhd

) 3
4

))

= Op

⎛⎝( log3 n

nh2d

) 1
4

⎞⎠×
⎛⎝(nhd/2

)1/2
2t̂c + Op

⎛⎝( log3 n

nh2d

) 1
4

⎞⎠⎞⎠
Consider the null hypothesis. Solving the first-order condition for β̄ (α|x; h) gives
β (α|x; h) = 0 when Q(α|x) = 0 for all x in Xc. As a consequence, t̃2

c is a quadratic
form similar for the one obtained in the regression framework, but with the centered
variables I (Yi ≤ 0) − α instead of the regression error terms. It follows that t̃2

c will
satisfy Eq. (8) with a proper choice of standardizing constants. This gives,

nhd/2
(
t̂2
c − t̃2

c

)= Op

⎛⎝( log3 n

nh3d

) 1
4

⎞⎠
which goes to 0 when

(
log3 n

)
/
(
nh3d

)→ 0, a condition which will also ensure
that t̂2

c is asymptotically normal as in Eq. (8) and that normal critical values can
be used to perform the test.

Example 3 (Cont’d). Defining a leave-one-out version of the linear μ̃(x1, x2) as in
Eq. (20) yields for the marginal integration estimator (10) of μ1(x1) and applying
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Proposition 8 suggests,

μ̂1,c(x1) =
∑n

i=1 I (X2i ∈ X2c) μ̃i (x1, X2i )∑n
i=1 I (X2i ∈ X2c)

+ Op

((
log n

nhd

) 3
4

)

with a leading term which can be studied as in Kong et al. (2010), for any c ≥ 0.
The estimator error

(
nhd1

)1/2 (
μ̂1,c(x1) − μ1,c(x1)

)
will satisfies a CLT if the con-

tribution of the linearization remainder term is negligible, yielding the necessary
condition, (

nhd1
)1/2

(
log n

nhd

) 3
4

=
(

log3 n

nh3d−2d1

) 1
4

→ 0

Example 4 (Cont’d). The case of the average derivatives estimator is similar to
Example 3. However, the contribution of the linearization remainder term must
take into account an additional 1/h due to the estimation of a derivative. The n1/2

asymptotic normality of the estimator requests a more drastic bandwidth condition,

n1/2 1

h

(
log n

nhd

) 3
4

=
(

log3 n

nh3d+4

) 1
4

→ 0

The asymptotic bias and variance of the estimator can be obtained from Chaudhuri
et al. (1997) and our bias and variance results to account for the good boundary
properties of the conditional quantile local polynomial estimator.

5. SIMULATION EXPERIMENTS

Our theoretical results have illustrated the good bias and variance boundary prop-
erties of local polynomial estimation for general loss functions. The boundary bias
has the same order as the minimax bias obtained for worst case specifications. The
behavior of the variance is similar, with an order which is not affected by the bound-
ary. However, for the variance, the constant in front of the order may be larger for
points close to the boundary than for points away from the boundary. Preventing
poor estimation induced by such areas may justify trimming in Examples 2, 3, and
4. The purpose of this section is to use a small simulation experiment.to illustrate
how trimming influences inference in various settings.

We will use the setup of Examples 2, 3, and 4. To avoid nonlinearity issues, we
will consider the regression model,

Yi = μ (X1i , X2i ) + εi , i = 1, . . . , 1,000
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Table 1. Trimming Values Used in the Experiment.

Trimming 1 (c = 0) Trimming 2 (c = 0.1) Trimming 3 (c = 0.2)

(X1i , X2i ) ∈ [0, 1]2 (X1i , X2i ) ∈ [0.1, 0.9]2 (X1i , X2i ) ∈ [0.2, 0.8]2

where
{
[X1i , X2i]′

}n

i=1 are i.i.d. Uniform over [0, 1]2 and {εi}ni=1 are i.i.d. centered
normal with standard deviation 0.1. The choice of the regression function μ(·) will
vary across examples. The number of replications is 5,000. The regression local
polynomial estimators of order 1 (linear) and order 2 (quadratic) will be considered
with the kernel:

K(x) = (1 − x2
)
I (x ∈ [−1, 1])

Three trimming values will be investigated, see Table 1, where trimming 1
corresponds to no trimming.

5.1. Example 2: Significance Testing

Instead of Eq. (7), the more popular test statistic T̂c of Eq. (9) is used. This test
statistic can be written as a quadratic form Y ′

nWYn, where the symmetric matrix W

depends on the local polynomial estimator, the bandwidth h, and the trimming
parameter c. Its variance can be estimated using

σ̂ 2
c = 2

∑
i≤i 
=j≤n

W 2
ij ε̂

2
i ε̂

2
j

where the residuals ε̂i are computed from the local polynomial estimation.
The considered bandwidths are

h2 ∈ {0.01, 0.04, 0.07, 0.10, 0.13, 0.16, 0.19}
We estimated the 90%, 95%, and 99% critical values by computing the test statistic
T̂c/σ̂c for each level of trimming and each bandwidth over 5,000 replications of the
null model: μ(·) = 0. This did not show specific impact of trimming with simulated
critical values reasonably close to their nominal counterparts.

The simulated 90% critical values were used to study the power of the tests
using 1,000 replications of the model for the two regression functions below:

m1(x1, x2) = 0.1K
( x1

0.1

)
− 0.1K

(
1 − x2

0.1

)
and

m2(x1, x2) = −0.05 cos (6πx1) + 0.05 cos (6πx2)
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Fig. 1. Power of the Three Trimming 90% Tests as a Function of h2. Left: Alternative m1(·).
Right: Alternative m2(·). Note: Blue: No trimming. Green: Trimming 2. Red: Trimming 3.

The alternative m1(·) consists of two bumps along the boundaries x1 = 0 and x2 = 1
which are difficult to detect with the trimming tests. On the contrary, the alternative
m2(·) violates the null for most x in the support [0, 1]2. Fig. 1 reports the results
of the simulation experiment. As expected the power of the tests against alterna- AQ:4
tive m1(·) deteriorates with the level of trimming and the test without trimming
clearly dominates. The evidence is less clear for alternative m2(·) which periodicity
induces an irregular bandwidth behavior. However, only the test without trimming
achieves a power close to 1. Considering a quadratic local polynomial estimator
gives a much less powerful test for the considered bandwidths. This surprising
finding is however in line with the theoretical results of Guerre and Lavergne
(2002) which shows that lower order methods can have good power properties in
a minimax framework.

5.2. Example 3: Additive Specification Estimation

In this experiment, the regression function is set to m(x1) + m (x2) with m(x1) =
sin(2πx1). The local linear smoother μ̂1,c(x1) from Eq. (10) is an estimator of

μ1,c(x1) = m(x1) + E [m(X2)I (X2 ∈ [c, 1 − c])]
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Fig. 2. Square Root Average Mean-Squared Error of m̂c(·) as a Function of h2. Note: Blue:
No trimming. Green: Trimming 2. Red: Trimming 3.

which includes an expectation term. This term can be removed by imposing an
identification restriction such as m (1/2) = 0. The proposed estimator of m(x1) is
therefore2

m̂c(x1) = μ̂1,c(x1) − μ̂1,c (1/2)

The local linear estimator performs poorly and the reported results are for the local
quadratic estimator. The considered bandwidths are smaller than the ones used in
Example 1. They are:

h2 ∈ {0.02, 0.03, . . . , 0.06}

The performance of the estimator is evaluated using the square root average
mean-squared error (RAMSE):

RAMSE =
⎡⎣ 1

11

10∑
j=0

(
m̂c

(
j

10

)
− mc

(
j

10

))2
⎤⎦

1
2

Fig. 2 shows that the estimator without trimming clearly dominates. RAMSE is
around 0.40 at best, which is quite big but not surprising since the best bandwidth is
h2 = 0.04 implying that only 40 observations are used to estimate each μ1,c(j/10).
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5.3. Example 4: Average Derivative Estimation

For this example, a single-index specification is used and the regression function is

μ(x) = sin3
(π

2

(
x ′ − [1/2, 1/2]

)
β0

)
, β ′

0 = [1, 1/2]

The parameter of interest is δ0 = β02/β01 = 1/2 which is estimated using a ratio of
average derivatives

δ̂c =
∑n

i=1
̂∂μi/∂x2(Xi)I [Xi ∈ Xc]∑n

i=1
̂∂μi/∂x1(Xi)I [Xi ∈ Xc]

The performance of δ̂c is measured using the square root mean squared error
(RMSE). Because estimation of derivatives yields a bigger variance of order
1/
(
nh3

)
compared to estimation of a regression for which the variance order is

1/
(
nh2

)
, the RMSE of δ̂c could be more sensitive than the RAMSE of Example 3

linear local polynomial estimation Quadratic local polynomial estimation
0.09

0.08

0.07

0.06

R
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S
E

0.05

0.04

0.03

0.02

0.09

0.08

0.07

0.06

R
M

S
E

0.05

0.04

0.03

0.02
0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.350.02 0.04 0.06 0.08

h2 h2

0.1 0.12 0.14

Fig. 3. Square Root Mean-Squared Error for the Three Trimming Estimators as a Function
of h2. Left: Linear Local Polynomial. Right: Quadratic Local Polynomial. Note: Blue: No

trimming. Green: Trimming 2. Red: Trimming 3.
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to an increase of the variance near the boundary. The local linear and quadratic
regression estimators perform similarly and both are reported here. The considered
bandwidths are

h2 ∈ {0.015, 0.035, . . . , 0.135} for linear local estimation and

h2 ∈ {0.02, 0.07, . . . , 0.32} for local quadratic estimation

The highest trimming estimator is dominated by lower trimming ones, for both
local linear and quadratic estimation. The trimming 1 and 2 estimators behave
similarly but trimming 2 seems slightly better than no trimming when looking at
the optimal performance. This holds for both local linear and quadratic estimators.
Since the bias of the local quadratic estimator is smaller, this behavior suggests that
there is an optimal level of trimming possibly due to an increase of variance near the
boundary. However, the potential gain seems very small in this experiment (Fig. 3).AQ:5

6. CONCLUSION

In this paper, we have investigated the boundary and uniform asymptotic properties
of multivariate local polynomial estimators of M-regression functions under a
weak condition on the compact support of the multivariate covariate. This is made
possible by a pseudo-true value approach based on a novel application of the
Newton–Kantorovich Theorem in our context. Compared with Assumption (A4)
in Ruppert and Wand (1994) who use it to establish pointwise boundary properties
of local polynomial regression estimators, our support condition allows for more
general support shapes, in particular, it allows the support of the covariate to be
non-connected and have holes. Compared with the uniform result in Corollary 2, ii)
in Masry (1996), our results deal directly with multivariate covariates with compact
support and are uniformly valid over the entire support. As such they should
be useful in contexts where estimation or testing require (weighted) averages of
multivariate nonparametric estimators with compactly supported covariate as in
Examples 2–4.

7. PROOF SECTION

Note that Assumption X ensures that for any h > 0 small enough, any x ∈ X ,
there is a xh ∈ X such that V (xh, κ1h) ⊂ V(x, h) ∩ X . We will use this equivalent
statement of Eq. (13) throughout this section. Also we will use C to denote a
generic positive constant whose value may differ in different places.

We start with Lemma 11 which will be used in many proofs below.
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Lemma 11. UnderAssumptions K and X, there is aC > 1 such that the eigenval-
ues of

∫
U (z)U ′(z)Kj (z)f (x + hz)dz and j (x, h), j = 1, 2, are in [1/C, C]

for all x ∈ X and h ≥ 0 small enough.

Proof of Lemma 11. It is sufficient to consider j = 1. Since∫
U (z)U ′(z)K(z)f (x + hz)dz � Cj (x, h) � C

∫
U (z)U ′(z)K(z)dz

the eigenvalues are in [0, C] for all x ∈ X and h ≥ 0. We now show that the eigenval-
ues can be bounded from below by 1/C. Assumptions K and X-(i) give, uniformly
in x ∈ X , ∫

U (z)U ′(z)K(z)f (x + hz)dz � C(x, h)

� C

∫
U (z)U (z)′ I (x + hz ∈ X , z ∈ V(0, 1)) dz

Assume that h is small enough. Assumption X-(ii) gives, with (t − x)/h = z,∫
U (z)U (z)′ I (x + hz ∈ X , z ∈ V(0, 1)) dz

=
∫

U

(
t − x

h

)
U

(
t − x

h

)′
I (t ∈ V(x, h) ∩ X )

dt

hd

�
∫

U

(
t − x

h

)
U

(
t − x

h

)′
I (t ∈ V (xh, κ1h))

dt

hd

�
∫

U (z)U (z)′ I
(

z ∈ V
(

xh − x

h
, κ1

))
dz

where ‖(xh − x)/h‖ ≤ 1. Hence, the eigenvalues of
∫

U (z)U ′(z)K(z)f (x + hz)dz

and j (x, h) are larger than

inf
y∈V(0,1)

min
b:b′b=1

b′
(∫

U (z)U (z)′ I (z ∈ V (y, κ1)) dz

)
b

Suppose now that this lower bound is equal to 0. This implies that there is a
sequence yn ∈ V(0, 1) and bn with b′

nbn = 1 such that∫ (
U (z)′bn

)2
I (z ∈ V (yn, κ1)) dz → 0
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By compacity and continuity of (b, y) �→ ∫ (
U (z)′b

)2
I (z ∈ V (y, κ1)) dz, this

implies that there is a y ∈ V(0, 1) and b with b′b = 1 such that∫ (
U (z)′b

)2
I (z ∈ V (y, κ1)) dz = 0

Hence, U (z)′b = 0, but this is impossible since b 
= 0. Hence, the eigenvalues of∫
U (z)U ′(z)K(z)f (x + hz)dz are in [1/C, C] for all x ∈ X and h small enough. �

7.1. Theorems 1, 2, and Proposition 3

A technical challenge comes from the fact that β̄(x, h) is not explicit but defined
through Eq. (12). The next lemma is the key tool to study the bias term[
β̄(x, h) − β(x)

]
when using the first-order condition which characterizes β̄ (x, h).

In this lemma, D is an integer number and ‖ · ‖ stands for the Euclidean norm over
RD or for the associated operator norm.

Lemma 12. (Newton–Kantorovich). Let F(·) : RD → R be a twice contin-
uously differentiable convex function with a unique minimizer b. Suppose
that

1. There is b∗∈RD such that
∥∥F (1) (b∗)

∥∥≤ η and
∥∥∥[F (2) (b∗)

]−1
∥∥∥≤ C0;

2.
∥∥F (2)(b) − F (2)

(
b′)∥∥≤ C1

∥∥b − b′∥∥ for all b, b′ ∈ RD;
3. C2

0C1η ≤ 1/4.

Then
∥∥b∗ − b

∥∥≤ 2C0η.

Proof of Lemma 12. This follows from conclusion 3 in the Newton–Kantorovich
Theorem stated in Gragg and Tapia (1974). �

It is convenient to rescale β with H−1 and to set b = H−1β, where H is a
diagonal matrix with entries h|π |. This gives in particular

U (Xi − x)′β = U

(
Xi − x

h

)′
Hβ = U

(
Xi − x

h

)′
b

Lemma 12 will be applied for b = Hβ̄(x; h) = b(x; h), where β̄(x; h) is as in
Eq. (12) and we now define a candidate b∗. Define

sp =
{

s for the proof of Theorem 1

p for the proof of Theorem 2
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and b∗(x, h) = (b∗
π (x, h), |π | ≤ p

)′
with

b∗
π (x, h) =

{
h|π |π1!···πd !μ(π )(x)

|π |! for |π | ≤ ⌊sp

⌋
0 for

⌊
sp

⌋
< |π | ≤ p

In other words, when proving Theorem 1, b∗(x, h) completes the entries
h|π |μ(π )(x)/(π1! · · · πd !), |π | ≤ �s�, with entries equal to 0 whereas in the proof
of Theorem 2 the entries of b∗(x, h) are all the h|π |μ(π )(x)/ (π1! · · · πd !), |π | ≤ p.
The Taylor formula implies, under Assumptions S and X which implies that X has
no isolated points,

max
(x,z)∈X×Supp K ,x+hz∈X

∣∣μ(x + hz) − U (z)′b∗(x, h)
∣∣≤ Chsp (21)

with C = C ′L under Assumption S1.
Define now

Rh(b|x) =
∫

R
(
U (z)′b|x + hz

)
f (x + hz)K(z)dz

where x + hz stands for X. The Lebesgue Dominated Convergence Theorem
gives under Assumptions R, X, and K that b �→ Rh(b|x) is twice continuously
differentiable with first and second derivatives

R
(1)
h (b|x) =

∫
R(1)

(
U (z)′b|x + hz

)
U (z)f (x + hz)K(z)dz and

R
(2)
h (b|x) =

∫
R(2)

(
U (z)′b|x + hz

)
U (z)U (z)′f (x + hz)K(z)dz

The next lemma shows that the matrix R
(2)
h (b|x) satisfies some of the conditions

of Lemma 12.

Lemma 13. Under Assumptions K, R, and X and for h ≤ κ0/κ1, there is a C > 1
such that the eigenvalues of R

(2)
h (b|x) are in [1/C, ∞) for all b and all x ∈ X

and, for all b, b′ and all x ∈ X ,
∥∥∥R(2)

h (b|x) − R
(2)
h

(
b′|x)∥∥∥≤ C

∥∥b − b′∥∥.
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Proof of Lemma 13. The bound for
∥∥∥R(2)

h (b|x) − R
(2)
h

(
b′|x)∥∥∥ follows from

Assumption R:

∥∥∥R(2)
h (b|x) − R

(2)
h

(
b′|x)∥∥∥

≤
∫ ∣∣R(2)

(
U (z)′b|x + hz

)− R(2)
(
U (z)′b′|x + hz

)∣∣
× ∥∥U (z)U (z)′

∥∥ f (x + hz)K(z)dz

≤ C

∫ ∣∣U (z)′
(
b − b′)∣∣ ‖U (z)‖2 f (x + hz)K(z)dz ≤ C

×
∫ ∥∥b − b′∥∥ ‖U (z)‖3 f (x + hz)K(z)dz ≤ C

∥∥b − b′∥∥
since the support of K(·) is compact and f (·) is bounded. For the lower bound of
the eigenvalues of R

(2)
h (b|x), observe

R
(2)
h (b|x) � C

∫
U (z)U (z)′K(z)f (x + hz)dz

so that the result follows from Lemma 11.
Let us now return to the proof of Theorems 1 and 2. Equation (12) gives

β̄(x; h) = arg minβ Rh

(
H−1β|x) so that b(x; h) satisfies the first-order condition:

R
(1)
h

(
b(x; h)|x)= 0 for all x ∈ X (22)

We now study R
(1)
h (b∗(x; h)|x) which satisfies:

R
(1)
h

(
b∗(x; h)|x)= ∫ U (z)R(1)

(
U (z)′b∗(x; h)|x + hz

)
f (x + hz)K(z)dz

=
∫

U (z)R(1)
(
μ(x + hz) + U (z)′b∗(x; h) − μ(x + hz)|x + hz

)
× f (x + hz)K(z)dz



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

Multivariate Local Polynomial Estimators 39

Hence, Eq. (21), Assumption R, and Eq. (1) give, uniformly in x ∈ X

∥∥∥R(1)
h

(
b∗(x; h)|x)∥∥∥≤

∥∥∥∥∫ U (z)R(1) (μ(x + hz)|x + hz) f (x + hz)K(z)dz

∥∥∥∥
+ C max

(x,x+hz,z)∈X 2×Supp K

∣∣μ(x + hz) − U (z)′b∗(x, h)
∣∣

≤ Chsp

Then Lemma 12 shows that Theorem 1 is proved.
For Theorem 2, recall that sp = p. A Taylor expansion of order p + 1 gives

that uniformly in x ∈ X

μ(x + hz) − U (z)′b∗(x, h) = hp+1
∑

|π |=p+1

π1! · · · πd !
(p + 1)! zπμ(π )(x) + o

(
hp+1

)

Recall that R(2)
f ,μ(x) = R(2)(μ(x)|x)f (x) is bounded away from 0. Hence, Eqs. (22),

(1) and standard uniform expansions give, for IX (x + hz) = I (x + hz ∈ X ),

0 =
∫

U (z)R(1)
(
μ(x + hz) + U (z)′b(x; h) − μ(x + hz)|x + hz

)
× f (x + hz)K(z)dz =

∫
U (z)R(1) (μ(x + hz)|x + hz) f (x + hz)K(z)dz︸ ︷︷ ︸

=0

+
∫ (

R
(2)
f ,μ(x + hz) + o(1)

)
U (z)(U (z)′b(x; h)

− μ(x + hz))IX (x + hz)K(z)dz

=
(
R

(2)
f ,μ(x) + o(1)

) ∫
U (z)U (z)′

(
b(x; h) − b∗(x; h)

)
IX (x + hz)K(z)dz

+
(
R

(2)
f ,μ(x) + o(1)

) ∫
U (z)

⎧⎨⎩hp+1
∑

|π |=p+1

π1! · · · πd !
(p + 1)! zπμ(π )(x)

⎫⎬⎭
× IX (x + hz)K(z)dz + o

(
hp+1

)
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Rearranging gives,

b(x; h) − b∗(x; h) = hp+1

(∫
U (z)U (z)′K(z)IX (x + hz)dz

)−1

×
∫

U (z)

⎧⎨⎩ ∑
|π |=p+1

π1! · · · πd !
(p + 1)! zπμ(π )(x)

⎫⎬⎭ IX (x + hz)K(z)dz

+ o
(
hp+1

)
showing that Theorem 2 is proved.

For Proposition 3, performing a Taylor expansion of order p + 2 and arguing
as above gives, for inner x,

b(x; h) − b∗(x; h) = (1 + o(1))

R
(2)
f ,μ(x)

−1B(x; h) + o
(
hp+2

)
where

B(x; h) =
∫

U (z)

⎧⎨⎩hp+1R
(2)
f ,μ(x + hz)

∑
|π |=p+1

π1! · · · πd !
(p + 1)! zπμ(π )(x)

⎫⎬⎭K(z)dz

+
∫

U (z)

⎧⎨⎩hp+2R
(2)
f ,μ(x)

∑
|π |=p+2

π1! · · · πd !
(p + 1)! zπμ(π )(x)

⎫⎬⎭K(z)dz

= hp+1R
(2)
f ,μ(x)bp+1(x) + hp+2

d∑
j=1

∂R
(2)
f ,μ(x)

∂xj

μ(π )(x)
∫

zj z
πU (z)K(z)dz

+ o
(
hp+2

)+ hp+2R
(2)
f ,μ(x)bp+2(x)

This gives the expansion of the proposition since e′
π−1

1 bp+1(x) = 0 by Gu et al.
(2015). �

7.2. Theorem 4

Let

R(2)(x, h) = h−dE

[
R(2) (μ(x)|X) U

(
X − x

h

)
U

(
X − x

h

)′
K

(
X − x

h

)]
,

S(x, h) = h−dE

[(
ρ(1) (Y − μ(X))

)2
U

(
X − x

h

)
U

(
X − x

h

)′
K2

(
X − x

h

)]
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Theorems 1 and 2, Eq. (21), give that

max
(x,z)∈X×Supp K ,x+hz∈X

∣∣U (hz)′ β(x, h) − μ(x + hz)
∣∣= o(1)

Therefore maxx,h Sp
(
h−dE

[
U
(

X−x
h

)
U
(

X−x
h

)′
Kj

(
X−x

h

)])
< ∞, j = 1, 2,

Assumption R-(ii), and uniform continuity of μ(·) over X give when h → 0,

max
x∈X

∥∥∥R(2)
(x, h) − R(2)(x, h)

∥∥∥= o(1), max
x∈X

∥∥S(x, h) − S(x, h)
∥∥= o(1)

A standard change of variable gives

R(2)(x, h) =
∫

R(2) (μ(x)|x + hz) U (z)U (z)′K(z)f (x + hz)dx

= R(2)(μ(x)|x)f (x)1(x, h) + o(1),

S(x, h) =
∫

E

[(
ρ(1) (Y − μ(X))

)2 |X = x + hz
]
U (z)U (z)′K2(z)f (x + hz)dx

= E

[(
ρ(1) (Y − μ(X))

)2 |X = x
]
f (x)2(x, h) + o(1)

uniformly over X by Assumption R-(ii) and X-(i). Hence, Lemma 11 yields that
V (x, h) is equal to

(
R(2)(μ(x)|x)f (x)1(x, h)

)−1
E

[(
ρ(1) (Y − μ(X))

)2 |X = x
]

× f (x)2(x, h)
(
R(2)(μ(x)|x)f (x)1(x, h)

)−1 + o(1)

=
E

[(
ρ(1) (Y − μ(X))

)2 |X = x
]

(
R(2)(μ(x)|x)

)2
f (x)

(x, h)−1 + o(1)

uniformly over X , that is the first approximation in the theorem. The second
approximation follows since (x, h) =  for all x in subset X0 of X as in the
theorem provided h is small enough. �
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7.3. Lemma 5, Propositions 6, and 7

The proof of these results makes use of the Bernstein inequality, which states that
for independent centered real random variables Zi with |Zi | ≤ M ,

P

(∣∣∣∣∣ 1√
n

n∑
i=1

Zi

∣∣∣∣∣≥ t

)
≤ 2 exp

(
− t2/2

1
n

∑n
i=1 Var (Zi) + 1

3
Mt√

n

)
for any t ≥ 0 (23)

Proof of Lemma 5. It is sufficient to consider j = 1. To prove Eq. (19),
it is sufficient to show that for any ε > 0 large enough, all π with |π | ≤ 2p,
Kπ (z) = zπK(z) and rn = (log n/(nhd )

)1/2
,

P

(
sup
x∈X

∣∣∣∣∣ 1

nhd

n∑
i=1

Kπ

(
Xi − x

h

)
−
∫

Kπ (z)f (x + hz)dz

∣∣∣∣∣≥ rnε

)
→ 0 (24)

By Assumptions K, X and 1/hd = O(n/ log n), there is a δ = δn = n−a such that

1. There is an integer number Jn = O
(
nb
)
, b > 0, and some xj ∈ X such that

X =⋃Jn

j=1 VX

(
xj , δn

)
, where VX

(
xj , δn

)= V
(
xj , δn

) ∩ X ;

2. For all x, x ′ with
∥∥x − x ′∥∥≤ δn and all i and n,

∣∣∣Kπ

(
Xi−x

h

)− Kπ

(
Xi−x′

h

)∣∣∣≤
hdrnε/3;

3. For allx, x ′ ∈ X with
∥∥x − x ′∥∥≤ δn and alln,

∣∣∫ Kπ (z)f (x + hz)dz − ∫
Kπ (z)

f
(
x ′ + hz

)
dz
∣∣≤ rnε/3.

This gives

sup
x∈X

∣∣∣∣∣ 1

nhd

n∑
i=1

Kπ

(
Xi − x

h

)
−
∫

Kπ (z)f (x + hz)dz

∣∣∣∣∣
≤ max

j=1,...,Jn

∣∣∣∣∣ 1

nhd

n∑
i=1

Kπ

(
Xi − xj

h

)
−
∫

Kπ (z)f
(
xj + hz

)
dz

∣∣∣∣∣
+ max

j=1,...,Jn

sup
x∈VX(xj ,δn)

∣∣∣∣∣ 1

nhd

n∑
i=1

(
Kπ

(
Xi − x

h

)
− Kπ

(
Xi − xj

h

))∣∣∣∣∣
+ max

j=1,...,Jn

sup
x∈VX(xj ,δn)

∣∣∣∣∫ Kπ (z)
(
f (x) − f

(
xj + hz

))
dz

∣∣∣∣
≤ max

j=1,...,Jn

∣∣∣∣∣ 1

nhd

n∑
i=1

Kπ

(
Xi − xj

h

)
−
∫

Kπ (z)f
(
xj + hz

)
dz

∣∣∣∣∣+ 2

3
rnε
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Hence, Eq. (24) holds if

P

(
max

j=1,...,Jn

∣∣∣∣∣ 1

nh

n∑
i=1

Kπ

(
Xi − xj

h

)
−
∫

Kπ (z)f
(
xj + hz

)
dz

∣∣∣∣∣≥ rn

ε

3

)
→ 0

Since an elementary change of variables gives

E

[
1

hd
Kπ

(
Xi − xj

h

)]
=
∫

Kπ (z)f
(
xj + hz

)
dz and

Var

(
1

hd/2
Kπ

(
Xi − xj

h

))
≤ E

[
1

hd
K2

π

(
Xi − xj

h

)]
≤ C

hd

Equation (24) follows from the Bonferoni inequality and Eq. (23) which give

P

(
max

j=1,...,Jn

∣∣∣∣∣ 1

nhd

n∑
i=1

Kπ

(
Xi − xj

h

)
−
∫

Kπ (z)f
(
xj + hz

)
dz

∣∣∣∣∣≥ rn

ε

3

)

≤
Jn∑

j=1

P

(∣∣∣∣∣ 1√
n

n∑
i=1

h− d
2 Kπ

(
Xi − xj

h

)
−
∫

Kπ (z)f
(
xj + hz

)
dz

∣∣∣∣∣≥ log1/2 n
ε

3

)

≤ 2Jn exp
(

− ε2 log n

C + C/(nhd )1/2

)
≤ 2 exp

(
−ε2 log n − b log n

C

)
→ 0

for ε2 > b. Hence, Eq. (19) is proved. The existence of the inverse matrix stated in
the lemma and the uniform bound for its spectral radius follow from Lemma 11.
�

Proof of Proposition 6. Let

M̂n(x, h) = 1

nhd

n∑
i=1

U

(
Xi − x

h

)
U ′
(

Xi − x

h

)
K

(
Xi − x

h

)
and

M(x, h) = h−dE

[
U

(
Xi − x

h

)
U ′
(

Xi − x

h

)
K

(
Xi − x

h

)]
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We first show that (nhd )1/2V (xn, h)−1/2H
(
β̂(xn; h) − β(xn; h)

)
is asymptotically

a standard normal. Observe that

(nhd )1/2V (xn, h)−1/2H
(
β̂(xn; h) − β̄ (xn; h)

)
= V (xn, h)−1/2M̂n(xn, h)−1

∑n
i=1 U

(
Xi−xn

h

)
ξi(xn; h)K

(
Xi−xn

h

)
(nhd )1/2

+ V (xn, h)−1/2M̂n(xn, h)−1

∑n
i=1 U

(
Xi−xn

h

)
εiK

(
Xi−xn

h

)
(nhd )1/2

where
ξi(x; h) = m(Xi) − U (Xi − x)′β̄(x; h)

Since, for all x ∈ X , β̄(x; h) satisfies the first-order condition

E

[
U (Xi − x)

(
m(Xi) − U (Xi − x)′β̄(x; h)

)
K

(
Xi − x

h

)]
= 0 (25)

the variables U
(

Xi−xn

h

)
ξi(xn; h)K

(
Xi−xn

h

)
are centered. Moreover, Theorems 1

and 2 together with Eq. (21), Assumptions X-(iii) and K and Lemma 5 give that

Var

(
h−d/2U (Xi − x)

(
m(Xi) − U (Xi − x)′β(x; h)

)
K

(
Xi − x

h

))
= O

(
h2s
) ∫

U (z)U (z)′K2(z)f (x + hz)dz = o(1)

uniformly in x ∈ X . Hence,

V (xn, h)−1/2M̂n(xn, h)−1

∑n
i=1 U

(
Xi−xn

h

)
ξi(xn; h)K

(
Xi−xn

h

)
(nhd )1/2

= op(1)

and it is sufficient to show that

V (xn, h)−1/2M̂n(xn, h)−1

∑n
i=1 U

(
Xi−xn

h

)
εiK

(
Xi−xn

h

)
(nhd )1/2

d→ N (0, Id)

This follows from Theorem 4, Assumption E, and the Lindeberg Central Limit
Theorem for triangular arrays. To complete the proof of the proposition, it is now
sufficient to show that V̂ (xn, h) = V (xn, h) + op(1). This follows from Lemma 5



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

Multivariate Local Polynomial Estimators 45

and σ̂ 2 (xn) = σ 2 (xn) + op(1) as established now. Let

σ̃ 2(x) =
∑n

i=1 (Yi − μ(x))2 K
(

Xi−x

h

)∑n
i=1 K

(
Xi−x

h

) and σ 2(x) =
∑n

i=1 σ 2(Xi)K
(

Xi−x

h

)∑n
i=1 K

(
Xi−x

h

)
The asymptotic normality above, Theorems 1 and 2, yields that

∣∣σ̂ (xn) − σ̃ (xn)
∣∣≤
⎛⎜⎝
∑n

i=1

(
β̂0(xn, h) − μ (xn)

)2
K
(

Xi−xn

h

)
∑n

i=1 K
(

Xi−xn

h

)
⎞⎟⎠

1/2

=
∣∣∣β̂0(xn, h) − μ (xn)

∣∣∣= Op

(
1

(nhd )1/2
+ hs

)
= op(1)

Let δi = ε2
i − σ 2(Xi). Observe that

σ̃ 2 (xn) = σ 2 (xn) + Op

(∑n
i=1 (μ(Xi) − μ (xn))

2 K
(

Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

) )

+ Op

(∑n
i=1 δiK

(
Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

) )

with, by uniform continuity of μ(·) over the compact X and since h → 0,

∑n
i=1 (μ(Xi) − μ (xn))

2 K
(

Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

) = o(1)

Let En [·] be the conditional expectation given X1, . . . , Xn and i = √−1. Then,
under Assumption E and assuming w.l.o.g. that ν ≤ 2, Assumptions X-(i) and K,
and by standard manipulations involving uniform O(·) terms, we have for any t ,
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∣∣∣∣∣En

[
exp

(
it

∑n
i=1 δiK

(
Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

) )]∣∣∣∣∣=
∣∣∣∣∣

n∏
i=1

En

[
exp

(
it

δiK
(

Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

))]∣∣∣∣∣
=
∣∣∣∣∣

n∏
i=1

exp

{
ln

(
1 − itEn

[
δiK

(
Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

)]

+ |t |1+ν/2 O

⎛⎝En

⎡⎣∣∣∣∣∣ δiK
(

Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

) ∣∣∣∣∣
1+ν/2

⎤⎦⎞⎠⎞⎠⎫⎬⎭
∣∣∣∣∣∣

≤ exp

⎛⎝−C |t |1+ν/2
n∑

i=1

(
K
(

Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

))1+ν/2
⎞⎠= exp

(
Op

(
(nh)−ν/2

)) p→ 1

This implies that

∑n
i=1 δiK

(
Xi−xn

h

)∑n
i=1 K

(
Xi−xn

h

) d→ 0 and then
p→ 0

so that σ̂ 2 (xn) = σ 2 (xn) + op(1), with σ 2 (xn) = σ 2 (xn) + op(1) by uniform
continuity of σ (·) over the compact X . Hence, σ̂ 2 (xn) = σ 2 (xn) + op(1). �

Proof of Proposition 7. Let Kπ (z) = zπK(z),

Sn(x; h) = 1

(nhd )1/2

n∑
i=1

(ξi(x; h) + εi) Kπ

(
Xi − x

h

)
,

ξi(x; h) = m(Xi) − U

(
Xi − x

h

)′
Hβ(x; h)

Lemma 5 implies that it is sufficient to show that

sup
x∈X

|Sn(x; h)| = Op

(
log1/2 n

)
(26)

Define, for ηi = εiI (|εi | < τn) − E [εiI (|εi | < τn) |Xi],

sn(x; h) = 1

(nhd )1/2

n∑
i=1

(ξi(x; h) + ηi) Kπ

(
Xi − x

h

)
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The Chebychev inequality gives, for τn = Cτn
1/ν ,

P

(
max

i=1,...,n
|εi | ≥ τn

)
≤

n∑
i=1

P (|εi | ≥ τn) ≤ E [|εi |ν]

Cν
τ

which can be made arbitrarily small by increasing Cτ . Arguing as in the proof
of Lemma 5 gives, when maxi=1,...,n |εi | ≥ τn and since −E [εiI (|εi | < τn) |Xi] =
E [εiI (|εi | ≥ τn) |Xi],

sup
x∈X

|Sn(x; h) − sn(x; h)| = sup
x∈X

∣∣∣∣∣ 1

(nhd )1/2

n∑
i=1

E [εiI (|εi | ≥ τn) |Xi] Kπ

(
Xi − x

h

)∣∣∣∣∣
≤ sup

x∈X

1

(nhd )1/2

n∑
i=1

E

[ |εi |ν I (|εi | ≥ τn)

τ ν−1
n

|Xi

] ∣∣∣∣Kπ

(
Xi − x

h

)∣∣∣∣
= Op

(
(nhd )1/2

n1−1/ν

)
= op

(
1

n1/2−1/ν

)
= op(1)

since ν > 2 by Assumption E. Therefore, it is sufficient to show that

sup
x∈X

|sn(x; h)| = Op

(
log1/2 n

)
(27)

to prove Eq. (26). Observe that the expectation of the summands in sn(x; h) is 0
by Eq. (25) and the definition of ηi . Equation (25) also gives

Hβ̄(x; h) =
(

E

[
U

(
Xi − x

h

)
U

(
Xi − x

h

)′
K

(
Xi − x

h

)])−1

× E

[
U

(
Xi − x

h

)
m(Xi)K

(
Xi − x

h

)]
so that Assumption K gives that

∥∥H (
β̄(x; h) − β̄

(
x ′; h

))∥∥≤ Ch−1
∥∥x − x ′∥∥ for

all x, x ′ ∈ X . This also gives, by Eq. (21) which ensures that maxx∈X |ξi(x; h)| ≤ C,∥∥∥∥(ξi(x; h) + ηi) Kπ

(
Xi − x

h

)
− (

ξi

(
x ′; h

)+ ηi

)
Kπ

(
Xi − x ′

h

)∥∥∥∥≤ C
τn

h

∥∥x − x ′∥∥
for all i = 1, . . . , n and all n, all x, x ′ ∈ X ,

∣∣sn(x; h) − sn

(
x ′; h

)∣∣≤ C
n1/2τn

hd/2+1

∥∥x − x ′∥∥
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This together Assumptions K, X and 1/hd = O (n/ log n), there is a δ = δn = n−a

such that

1. There is an integer number Jn = O
(
nb
)
, b > 0, and some xj ∈ X such that

X =⋃Jn

j=1 VX

(
xj , δn

)
, where VX

(
xj , δn

)= V
(
xj , δn

) ∩ X ;
2. For all x, x ′ with

∥∥x − x ′∥∥≤ δn and all i and n,
∣∣sn(x; h) − sn

(
x ′; h

)∣∣≤ 1.

Hence,

sup
x∈X

|sn(x; h)| ≤ max
j=1,...,Jn

∣∣sn

(
xj ; h

)∣∣+ max
j=1,...,Jn

sup
x∈VX(xj ,δn)

∣∣sn(x; h) − sn

(
xj ; h

)∣∣
≤ max

j=1,...,Jn

∣∣sn

(
xj ; h

)∣∣+ 1

As a consequence, Eq. (27) holds if maxj=1,...,Jn

∣∣sn

(
xj ; h

)∣∣= Op

(
log1/2 n

)
.

The Bonferoni inequality and Eq. (23) give, using maxx∈X |ξi(x; h)| ≤ C and
h−d = O

(
n1−2/ν log n

)
,

P

(
max

j=1,...,Jn

∣∣sn

(
xj ; h

)∣∣≥ t log1/2 n

)
≤

n∑
j=1

P
(∣∣sn

(
xj ; h

)∣∣≥ t log1/2 n
)

≤ 2Jn exp

⎛⎜⎝− t log n

C +
(

h−d τ 2
n log n

n

)1/2
t

⎞⎟⎠= exp
(

− (t − C) log n

C ′

)
→ 0

for t > C. This ends the proof of Proposition 7. �

7.4. Propositions 8, 9 and 10

Proof of Proposition 8. Lemma 5, Theorems 1 and 2 which give Eq. (21), imply
that the conclusions of Lemmas A.1, A.2 and A.3 in Guerre and Sabbah (2012)
are true when x ∈ X . Hence, the first equation in Proposition 8 follows from
minor modifications of the proof of Theorem 2 in Guerre and Sabbah (2012).
The second equation follows from max(α,x)∈[α,α]×X

∥∥Ĵ (α|x, h) − J (α|x, h)
∥∥=

OP

((
log n/(nhd )

)1/2
)

and max(α,x)∈[α,α]×X
∥∥Ŝ(α|x, h)

∥∥= Op

(
log1/2 n

)
as estab-

lished below. �

Proof of Proposition 10. Theorems 1 and 2 which give Eq. (21) are sufficient to
show that the conclusion of Lemma A.3 in Guerre and Sabbah (2012) holds for
x ∈ X , that is
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max
(α,x)∈[α,α]×X

∥∥Ŝ(α|x, h)
∥∥= Op

(
log1/2 n

)
Hence, Proposition 8 and Lemma 5 give

sup
(α,x)∈[α,α]×X

∥∥∥(nhd )1/2H
(
β̂(α|x, h) − β(α|x, h)

)∥∥∥
= Op

(
max

(α,x)∈[α,α]×X

∥∥∥∥∥ Ŝ(α|x, h)

(nhd )1/2

∥∥∥∥∥
)

+ Op

((
log n

nhd

)3/4
)

= Op

((
log n

nhd

)1/2
)

Hence, Theorems 1 and 2 show that the Proposition is proved. �

Proof of Proposition 9. As in the proof of Proposition 6, the key issue here is to
show that V̂ (α|xn, h) = V (α|xn, h) + op(1), and Lemma 5 shows that is sufficient
to show that ∂Q̂ (α|xn) /∂α is consistent. This follows from Proposition 10, the
fact that s ≥ 1 and the choice of η which gives under Assumption F which ensures
that (α, x) �→ ∂Q(α|x)/∂α is continuous,

∂Q̂ (α|xn)

∂α
= Q̂ (α + η|xn) − Q̂ (α + η|xn)

2η

= Q (α + η|xn) − Q (α + η|xn)

2η
+ Op

(
1

η

(
h +

(
log n

nhd

)1/2
))

= ∂Q (α|xn)

∂α
+ op(1) �

NOTES

1. We refer interested readers to Gragg and Tapia (1974) for a complete statement of
the Newton–Kantorovich Theorem and to Lemma 7.2 of this paper for the part used in this
paper.

2. When m(x1) = sin (2πx1), E [m(X2)I (X2 ∈ [c, 1 − c])] = 0 so that μ̂1,c(x1) could
also be used. However identifying restrictions such as m (1/2) = 0 seems to be more popular
and does not involve the trimming parameter. Unreported simulation results suggest however
that μ̂1,c(·) may have better performances than m̂c(·).
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