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a b s t r a c t

In this paper, we present a systematic study of partial identification of two general classes of functionals
of the joint distribution of two ‘‘potential outcomes’’ when a bivariate sample from the joint distribution is
not available to the econometrician. Assuming the identification of the conditional marginal distributions
of potential outcomes and the distribution of the covariate vector, we show that the identified sets for
functionals in both classes are intervals and provide conditions under which the identified sets point
identify the true value of the functionals. In addition, we establish sufficient and necessary conditions
for the covariate information to be informative in the sense of shrinking the identified sets. We focus
on the application of our general results to evaluating distributional treatment effects of a binary
treatment in two commonly used frameworks in the literature for evaluating average treatment effects:
the selection on observables framework and a latent threshold-crossing model. We characterize the role
of the propensity score in the selection-on-observables framework and the role of endogenous selection
in the latent threshold-crossing model. Examples of policy parameters that our results apply include the
correlation coefficient between the potential outcomes, many inequality measures of the distribution of
treatment effects, and median of the distribution of the individual treatment effect.

Published by Elsevier B.V.
1. Introduction

Parameters that depend on the joint distribution of two random
variables are identified when a bivariate random sample from the
joint distribution of the two variables is available. In many impor-
tant applications in economics, finance, and other disciplines, how-
ever, such a bivariate random sample is not available. This paper

✩ This is a substantially revised version of the previously circulated paper,
Partial Identification and Confidence Sets for Functionals of the Joint Distribution
of ‘‘Potential Outcomes’’. We thank Stephane Bonhomme, Yingyao Hu, Shih-
Tang Hwu, Simon Lee, Konrad Menzel, Stephen Shore, Kevin Song, Richard
Spady, Joerg Stoye, Tiemen Woutersen, participants of Bates White Sixth Annual
Antitrust Conference 2009, Southern Economics Association Meetings 2009,
International Symposium on Econometrics of Specification Tests in 30 Years at
Xiamen University, 2010, and seminar participants at City University of Hong
Kong, Johns Hopkins University, New York University, University of Kansas, Yale
University, IUPUI, Emory University, Caltech, and Shanghai University of Finance
and Economics for helpful comments and discussions on the previous paper.
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considers this latter situation. Specifically let Y1 ∈ Y1 and Y0 ∈ Y0
denote two real-valued continuous randomvariableswith joint cdf
Fo(y1, y0), y1 ∈ Y1 and y0 ∈ Y0. Let θo denote the parameter of in-
terest. It is defined as1 θo ≡ Eo [µ (Y1, Y0)] ∈ Θ ⊂ R for some
real-valued measurable function µ (·, ·), where Eo denotes the ex-
pectation taken with respect to Fo(·, ·).

Assuming that the conditional marginal distributions of Y1 , Y0
given a vector of covariates (which may contain unobserved
components) and the distribution of the covariates are identified
(Assumption (IC) in Section 3), this paper provides a systematic
study of (partial) identification of θo for two general classes of
functions µ. The first class is characterized by super-modular
functions µ (see Definition 3.1) and the second by what we
call ϕ-indicator functions (µ (Y1, Y0) ≡ I {ϕ (Y1, Y0) ≤ δ}, see
Definition 3.3 or Embrechts et al. (2005)). Building on existing
works in the probability literature on solutions to the general
Fréchet problem including a continuous version of the classical

1 We will introduce and discuss a conditional version of θo later in the paper.
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monotone rearrangement inequality,2 this paper makes two
original contributions. First, we characterize the identified sets
for θo taking into account the covariate information for both
classes of parameters and show that the identified set of the true
parameter in each class is a closed interval. Second, for parameters
corresponding to strict super-modular functions and parameters
corresponding to ϕ functions that are strictly increasing in each
argument, we establish sufficient and necessary conditions for
point identification of the true parameter as well as sufficient and
necessary conditions for the covariate to be informative in the
sense of shrinking the identified set.

These general results have immediate applications in diverse
areas including evaluation of distributional treatment effects
where Y1, Y0 denote the potential outcomes of a binary treatment;
bivariate option pricing where Y1, Y0 are prices of the underlying
assets; and evaluation of the stop-loss premium of a portfolio
of contracts. In this paper, we focus on their applications in the
evaluation of distributional treatment effects and refer interested
readers to the on-line Supplementary Appendices for examples in
finance and insurance as well as related references.

Throughout the paper, we adopt two general frameworks
in the treatment effect literature: the selection-on-observables
framework and the latent threshold-crossing model in Heckman
and Vytlacil (2005) and Carneiro and Lee (2009). Under commonly
used assumptions in existing work to identify average treatment
effects (ATE), both frameworks satisfy our Assumption (IC) and
the general results established in this paper are applicable to both
models. Examples of θo in the first class of parameters include
the correlation coefficient between the potential outcomes, values
of the joint distribution of the potential outcomes, and many
inequality measures of the distribution of treatment effects, see
Examples (i) and (ii) in Section 2. Members of the second class
of parameters include values of the cdf of treatment effects and
quantiles of the distribution of treatment effects.3 Heckman et al.
(1997) and Abbring and Heckman (2007), among others, provide
many examples demonstrating the need for evaluating joint
distributions of potential outcomes, distributions of treatment
effects, or other features of the distributions of treatment effects
than various average treatment effects. Because of the missing
data problem, evaluating these parameters is known to pose more
challenges than evaluating average treatment effects, the latter
being the focus of most works in the treatment effect literature,
see Lee (2005), Abbring and Heckman (2007) and Heckman and
Vytlacil (2007a,b) for discussions and references. The current paper
makes several contributions to the treatment effect literature.

First, it establishes identified sets for the afore-mentioned treat-
ment effect parameters as well as sufficient and necessary condi-
tions for their point identification in the context of selection-on-
observables framework and latent threshold-crossingmodels. Sec-
ond, in the selection-on-observables framework, we characterize
the role of the propensity score and show that in sharp contrast to
the identification of average treatment effects which can be based
on either the observable covariates or the propensity score, the
identified sets of distributional treatment effect parameters such
as the correlation coefficient and the median of the distribution of
treatment effects using the observable covariates could be tighter
than the identified sets based on the propensity score. We provide

2 See Hardy et al. (1934), Cambanis et al. (1976), Tchen (1980), and Rachev and
Rüschendorf (1998) for the first class of parameters; Makarov (1981), Rüschendorf
(1982), and Frank et al. (1987), and Williamson and Downs (1990) for the second
class of parameters.
3 Although quantiles of the distribution of treatment effects cannot be written in

the form of θo ≡ Eo [µ (Y1, Y0)], their bounds follow immediately from bounds on
the cdf of treatment effects and the cdf of the portfolios. So we simply refer to them
as members of the second class of parameters.
sufficient and necessary conditions under which the two identi-
fied sets are the same. Third, we characterize the identified sets for
distributional treatment effect parameters and the role of endoge-
nous selection in the latent threshold-crossing model adopted in
Heckman and Vytlacil (2005) and Carneiro and Lee (2009) to iden-
tify average treatment effect parameters. Fourth, to illustrate the
important role played by the covariate (observable and unobserv-
able), we provide a detailed analysis of the identified set of the cor-
relation coefficient. In particular, we establish sufficient and nec-
essary conditions for its identified set to exclude 0 when there is
one observable covariate and when there is endogenous selection
in the context of a latent threshold-crossing model. These condi-
tions demonstrate clearly the role of the covariate information and
endogenous selection in tightening the identified set. For ideal ran-
domized experiments, Heckman et al. (1997) concluded that the
bounds on the correlation coefficient between the potential out-
comes implied by the result in Cambanis et al. (1976), i.e., with-
out covariate, are often too wide to be informative. Our results
show that (i) by exploiting information in the observable covari-
ate, these bounds can be narrowed greatly andmay be informative
about the sign of the correlation coefficient when the dependence
between the potential outcomes and the observable covariate is
strong enough; and (ii) in the context of latent threshold-crossing
model with endogenous selection, the requirement on the depen-
dence between the potential outcomes and the observable covari-
ate in (i) can be weakened significantly.

This paper is related to several existing works on partial
identification of treatment effects beyond the average treatment
effect such as Manski (1997), Heckman et al. (1997), Fan and Park
(2009, 2010, 2012)), Fan and Wu (2010), Firpo and Ridder (2008),
and Fan et al. (2014). Assuming monotone treatment response,
Manski (1997) developed sharp bounds4 on the distributions
of treatment effects; while assuming the availability of ideal
randomized data, Heckman et al. (1997) used the result in
Cambanis et al. (1976) to bound the correlation coefficient between
the potential outcomes and the variance of the treatment effects.
Fan et al. (2014) examined partial identification of treatment
effects under data combination.

Fan and Park (2009, 2010, 2012), Fan andWu (2010), and Firpo
andRidder (2008) are themost closely relatedpapers to the current
paper. Besides studying a narrower class of parameters in Fan
and Park (2009, 2010, 2012)), they focus on ideal randomized
experiments for which only the marginal cdfs of (Y1, Y0) are
known (Assumption (I) in Section 3) or identified from the sample
information. Within this framework, (i) Fan and Park (2009, 2010)
study sharp bounds (pointwise) on the cdf of ∆ = Y1 − Y0 and
their inference, from which they derive sharp bounds on the class
of D-parameters including the quantile of the distribution of ∆

and the class of D2-parameters including Examples (i) and (ii) in
the current paper; (ii) Fan and Park (2012) develop estimation
and inference procedures for the quantile of the distribution of
∆. While Fan and Park (2009, 2010) briefly mentioned sharp
bounds on the distribution of the treatment effect and their
estimation under the selection-on-observables framework, they
neither characterized its identified set nor investigated the role
of the covariate in shrinking the identified set. In the context
of switching regime models in Heckman (1990), Fan and Wu

4 When we say bounds on a parameter θo , we mean a lower bound and an
upper bound such that θo lies between the lower and upper bounds. When these
bounds are achievable by some data generating process consistent with model
assumptions, they are sharp bounds. These are terminologies used in the statistics
and probability literature. In econometrics, we are interested in the identified set
of a parameter. For example, the closed interval defined by the sharp bounds on a
parameter is its identified set if each and every possible value in the interval can be
realized for some data generating process consistent with model assumptions.
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(2010) studied partial identification and (parametric) inference
for conditional distributions of treatment effects given observable
covariates.

Firpo and Ridder (2008) considered bounding a general
functional of the distribution of treatment effects ∆. Note that the
bounds on a general functional of the distribution of treatment
effects obtained from the bounds on the distribution of treatment
effects in Fan and Park (2009, 2010), and Firpo and Ridder (2008)
are in general not sharp, as the bounds on the distribution
of treatment effects are pointwise sharp, but not uniformly
sharp. Firpo and Ridder (2008) presented a general approach to
establishing bounds on functionals of the distribution of treatment
effects that are tighter than bounds obtained directly from bounds
on the distribution of treatment effects. However, the bounds in
Firpo and Ridder (2008) are not sharp.

The rest of this paper is organized as follows. In Section 2,
we first review the selection-on-observables framework and the
latent threshold-crossing model in Heckman and Vytlacil (2005)
and Carneiro and Lee (2009). Then we present some examples of
the parameter θo measuring treatment effects beyond the ATE.
In Section 3, we characterize the identified sets for the class
of super-modular functions and of ϕ-indicator functions under
Assumption (IC) and establish sufficient and necessary conditions
for (i) the identified sets to be singleton and (ii) the covariate to
shrink the identified sets. Section 4 examines the role of propensity
score in the context of selection-on-observables framework and
the role of endogenous selection in latent threshold-crossing
models in shrinking the identified sets. Section 5 concludes
and presents some extensions. Technical proofs are collected
in Appendix A. Appendix B outlines an inference procedure for
θo when µ is super-modular and the selection-on-observables
assumption holds. Appendix C presents detailed derivations of the
results discussed in Example (i)-(IC) in Section 3 and Example (i)-
(IU) in Section 4. The on-line Supplementary Appendices contain
additional examples, references, and technical proofs for the
results in Appendix B in the current paper.

2. Identification of treatment effects with observational data

Let Y1, Y0 denote the potential outcomes of a binary treatment
with an absolutely continuous joint cdf Fo(y1, y0), y1 ∈ Y1, y0 ∈

Y0. Let Y ≡ Y1D + Y0(1 − D) denote the realized outcome, where
D is the binary treatment indicator such that an individual with
D = 1 receives the treatment and an individual with D = 0 does
not receive the treatment.

For an observable covariate X with support X ⊂ Rd, most
treatment effect parameters of interest can be expressed as θo ≡

Eo [µ (Y1, Y0)] ∈ Θ ⊂ R for some real-valued measurable
function µ (·, ·) or θo (x) ≡ Eo [µ (Y1, Y0) |X = x] for x ∈ X,
where Eo (·) denotes the expectation taken with respect to Fo(·, ·)
and Eo (·|X = x) denotes the expectation taken with respect to the
conditional distribution of (Y1, Y0) given X = x. For example,
the ATE and the conditional ATE correspond to µ (Y1, Y0) =

Y1 − Y0. As discussed in Heckman et al. (1997), many important
policy questions cannot be addressed by ATE parameters alone.
Some examples and the corresponding functions µ are given
in Section 2.2. In Section 2.1, we provide a brief review of the
selection-on-observables framework and the latent threshold-
crossing model in Heckman and Vytlacil (2005) and conditions
under which ATEs are point identified in each framework.

2.1. The selection-on-observables framework and a latent threshold-
crossing model

The Selection-on-Observables Framework To identify various av-
erage treatment effect parameters, the selection-on-observables
framework is commonly adopted in the literature, see e.g., Rosen-
baum and Rubin (1983a,b), Hahn (1998), Heckman et al. (1998a,b),
Dehejia and Wahba (1999), and Hirano et al. (2003), to name only
a few. It is characterized by Assumption (IX).

Assumption (IX). (C1) For all x ∈ X ⊂ Rd, (Y1, Y0) is jointly
independent of D conditional on X = x. (C2) For all x ∈ X,
0 < p(x) < 1, where p(x) = Pr (D = 1|X = x).

In Assumption (IX), (C1) is a conditional independence assump-
tion and (C2) is a common support assumption. Suppose a random
sample on (Y , X,D) is available. Then under Assumption (IX), for
all x ∈ X, the conditional marginal cdfs of Y1, Y0 given X = x de-
noted as F1o(y|x) and F0o(y|x) are point identified:

F1o(y|x) ≡ Pr(Y1 ≤ y|X = x) = Pr(Y ≤ y|X = x,D = 1) and (1)
F0o(y|x) ≡ Pr(Y0 ≤ y|X = x) = Pr(Y ≤ y|X = x,D = 0). (2)

Moreover, since the distribution of X is identified, the uncondi-
tional marginal cdfs F1o(y), F0o(y) are also point identified. As a
result both ATE Eo (∆) and the conditional ATE Eo (∆|X = x) are
point identified.
A Latent Threshold-CrossingModel Consider the semiparametric
latent threshold-crossing model with continuous outcomes in
Heckman (1990), Heckman and Vytlacil (1999, 2001, 2005)):

Y1 = g1(X,U1), Y0 = g0(X,U0), and D = I{g (Z) − ϵ > 0}, (3)

where X ∈ X ⊂ Rdx , Z ∈ Z ⊂ Rdz are observable covariates,
U1,U0, ϵ are unobservable univariate covariates, g1, g0 and g
are unknown functions, and the distribution of the unobserved
error vector (U1,U0, ϵ)

′ is also unknown. Unlike the selection-on-
observables framework, the latent threshold-crossing model in (3)
allows for endogenous selection.

Suppose a random sample on (Y , X, Z,D) is available. Heckman
and Vytlacil (2005) provided conditions under which various
average treatment effect parameters are point identified, while
Carneiro and Lee (2009) extended the results in Heckman and
Vytlacil (2005) to the identification of distributions of (Y1, ϵ)

′ and
(Y0, ϵ)

′ conditional on the observables.We restate these conditions
in Assumptions (IU) and (LS).

Assumption (IU). Assume that (i) g (Z) is a nondegenerate
random variable conditional on X; (ii) (U1, ϵ)

′ and (U0, ϵ)
′ are

independent of Z conditional on X; (iii) the distribution of ϵ
conditional onX, Z and that of g (Z) conditional onX are absolutely
continuous with respect to Lebesgue measure.

Without loss of generality, we normalize the distribution of ϵ
conditional on X and Z to beU (0, 1), implying by Assumption (IU)-
(ii) that the distribution of ϵ conditional on X is also U (0, 1). Let
p (z) = Pr (D = 1|Z = z). Then p (z) = g (z). Let Px denote the
support of p (Z) conditional on X = x ∈ X.

Assumption (LS). For each x ∈ X, the closure of Px is [0, 1].
Let X∗

=

X ′, ϵ

′. It follows from Theorem 1 in Carneiro and
Lee (2009) that under Assumptions (IU) and (LS), F1o (y|x∗) and
F0o (y|x∗) are point identified from the sample information. In
particular, they showed that

F1o

y|x∗


= Pr (Y ≤ y|p (Z) = p, X = x,D = 1)

+ p
∂ Pr (Y ≤ y|p (Z) = p, X = x,D = 1)

∂p
and (4)

F0o

y|x∗


= Pr (Y ≤ y|p (Z) = p, X = x,D = 0)

− (1 − p)
∂ Pr (Y ≤ y|p (Z) = p, X = x,D = 0)

∂p
, (5)
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where x∗
= (x, p). Additionally, owing to the fact that the

distribution of ϵ conditional on X is U (0, 1) (implying that
the distribution of X∗ is identified), it is easy to see that the
unconditional marginal cdfs F1o(y), F0o(y) are also point identified
from the sample information. Again both ATE and the conditional
ATE are point identified.

Remark 2.1. Heckman and Vytlacil (1999, 2001, 2005) and
Carneiro and Lee (2009) discuss in detail Assumptions (IU) and (LS).
The main condition in Assumption (IU) is the exclusion restriction
required to handle endogenous selection. Assumption (LS) is a
large support restriction. When it fails, the conditional marginal
cdfs may not be identified but may be bounded as in Heckman and
Vytlacil (1999).

2.2. Treatment effects beyond ATE

This section provides examples of θo which measure other
treatment effects than the ATE. In contrast to the ATE, these
parameters depend not only on the marginal cdfs of Y1, Y0 but also
their copula function. In all these examples, one can consider the
conditional parameter θo (x) as well.

Example (i) (The Correlation Coefficient). Letµ (Y1, Y0) = Y1Y0 and
σ 2
j = Var


Yj


< ∞ for j = 0, 1. Then the correlation coefficient
between Y1 and Y0 is given by

ρ10 =
Eo [µ (Y1, Y0)] − E (Y1) E (Y0)

σ1σ0
.

Since E

Yj

andVar


Yj

depend on themarginal distributions only,

we sometimes refer to Eo [µ (Y1, Y0)] as the correlation coefficient
in which case µ (Y1, Y0) = Y1Y0.

Example (ii) (Distributional Treatment Effects I). Let ∆ ≡ Y1 − Y0
denote the individual treatment effect and µ (Y1, Y0) = ν (∆) for
some function ν. Many inequality measures of the distribution of
treatment effect ∆ can be expressed as g (Eo [ν (∆)] , µ∆), where
µ∆ ≡ Eo (∆) is the ATE, g (·, ·) is increasing in its first argument,
and ν (·) is continuous and convex, see Stoye (2010) and references
therein. For instance, the coefficient of variation defined as

θCV =

√
Varo (∆)

µ∆

=


Eo

∆2

− µ2

∆

µ∆

can bewritten as g (Eo [ν (∆)] , µ∆), where ν (∆) = ∆2 is continu-

ous and convex and g (z, µ∆) =


z − µ2

∆/µ∆ is increasing in z. A
general class of inequality measures of the distribution of ∆ is that
of generalized entropy measures. Let γ denote an even number,
νγ (∆) = ∆γ , and

gγ (z, µ∆) =
1

γ 2 − γ


z

µ
γ
∆

− 1

.

Then νγ (·) is continuous and convex. Further gγ


Eo

νγ (∆)


, µ∆


is a generalized entropy measure of the distribution of ∆.

Example (iii) (Distributional Treatment Effects II). (a) Let µ (Y1, Y0)
= 1(∆ > 0). The proportion of people who benefit from the
treatment is given by

Eo [µ (Y1, Y0)] = Pr(∆ > 0) = 1 − F∆(0),

where F∆(·) is the cdf of ∆. (b) Let α ∈ (0, 1). Although the α-
quantile of the distribution of∆, F−1

∆ (α), is strictly speaking not an
example of θo, its bounds can be obtained by inverting the bounds
on F∆ (δ) = Eo [µ (Y1, Y0)] with µ (Y1, Y0) = 1(∆ ≤ δ), and thus
we simply refer to F−1

∆ (α) as an example of θo.
Throughout the rest of this paper, we adopt either the selection-
on-observables framework or the latent threshold-crossing model
satisfying Assumptions (IU) and (LS). In either case, the conditional
marginal cdfs of (Y1, Y0) given X∗ and the cdf of X∗ are point
identified, where X∗ is observable in the former case and contains
an unobservable component in the latter model. Although ATE and
the conditional ATE are point identified in both frameworks,
parameters in Examples (i)–(iii) and their conditional versions
are not point identified without further assumptions. This paper
characterizes their identified sets.

3. Partial identification of treatment effects beyond ATE

This section provides a unified analysis of identification of
θo ≡ Eo [µ (Y1, Y0)] under Assumption (IC) in which X∗

∈

X∗
⊂ Rd∗

denotes the vector of covariates which may contain
unobservable components. The corresponding analysis for the
conditional parameter θo (x) = Eo [µ (Y1, Y0) |X = x], where X is
the observed component of X∗, is discussed in Remarks 3.1 and 3.2
for super-modular and ϕ-indicator functions respectively.

Assumption (IC). The conditional marginal cdfs of Y1, Y0 given
X∗

= x∗ denoted as F1o (·|x∗) and F0o (·|x∗) are known for all
x∗

∈ X∗. Moreover the cdf of X∗ denoted as FX∗o (·) is also known.
In stating Assumption (IC) and Assumption (I), we have fol-

lowed the tradition in the literature on identificationby referring to
F1o (·|x∗), F0o (·|x∗), FX∗o (·), F1o (·), and F0o (·) as known. In specific
applications, they are point identified frommodel assumptions and
the sample information such as in the selection-on-observables
framework and latent threshold-crossing models reviewed in Sec-
tion 2.

Let Co (·, ·|x∗) denote the conditional copula of Y1, Y0 given
X∗

= x∗, where x∗
∈ X∗. We note that θo can be expressed as

the following form:

θo = E
 

µ (y1, y0) dFo

y1, y0|X∗


= E

 
µ (y1, y0) dCo


F1o

y1|X∗


, F0o


y0|X∗


|X∗


.

Under Assumption (IC), the identified set for θo is given by

ΘIC ≡


θ ∈ Θ : θ = E

 
µ (y1, y0) dC


F1o

y1|X∗


,

F0o

y0|X∗


|X∗
 

for some C

·, ·|X∗


∈ Ca.s.

 , (6)

where C denotes the class of bivariate copula functions.

Existing works such as Heckman et al. (1997) and Fan and
Park (2009, 2010, 2012) studied specific examples of θo under
Assumption (I).

Assumption (I). The marginal cdfs of Y1, Y0 denoted as F1o (·) and
F0o (·) are known.

Under Assumption (I), the identified set for θo is given by:

ΘI ≡

θ ∈ Θ : θ = E
 

µ (y1, y0) dC (F1o (y1) , F0o (y0))


for some C (·, ·) ∈ C

 .

(7)

The difference between the two identified sets ΘIC and ΘI
reflects the role played by the covariate X∗ in shrinking the
identified set of θo, since Assumption (IC) implies that themarginal
cdfs F1o (·) and F0o (·) are known. In the rest of this section,
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we first characterize the identified set ΘIC for super-modular
functions and ϕ-indicator functions. Then for strict super-modular
and ϕ-indicator functions with ϕ being strictly monotone in each
argument, we establish necessary and sufficient conditions for (i)
ΘIC or ΘI to be a singleton thus point identifying θo and (ii) for X∗

to be informative in the sense of shrinking the identified set for θo,
i.e., for ΘIC to be smaller than ΘI .

3.1. A characterization of ΘIC for super-modular functions and the
role of the covariate

We first present a definition of a super-modular5 function.

Definition 3.1. A function µ (·, ·) is called super-modular if for all
y1 ≤ y′

1 and y0 ≤ y′

0,

µ (y1, y0) + µ

y′

1, y
′

0


− µ


y1, y′

0


− µ


y′

1, y0


≥ 0,

and sub-modular if −µ (·, ·) is super-modular.

If µ (·, ·) is absolutely continuous, then it is super-modular
if and only if ∂2µ(y1,y0)

∂y1∂y0
≥ 0 a.e. Cambanis et al. (1976) pro-

vide many examples of super-modular or sub-modular func-
tions, see also Tchen (1980). The µ functions in Examples (i)
and (ii) are either super-modular or sub-modular. The difference
function µ (y1, y0) = y1 − y0 is also super-modular. Other
examples of super-modular or sub-modular functions include:
µ (y1, y0) = (min (y1, y0) − k)+, µ (y1, y0) = (y1 + y0 − k)+ for
some known number k, where (x)+ = max (x, 0) and µ (y1, y0) =

min

(y1 − k1)+ , (y0 − k0)+


for some known values k1, k0. These

are payoff functions of specific bivariate options, see the on-line
Supplementary Appendices for details.

The function µ (y1, y0) = y1 − y0 is different from the other
functions above in that it is additively separable in its arguments.
The µ functions in Examples (i) and (ii) belong to the class of strict
super-modular or strict sub-modular functions defined below.

Definition 3.2. A function µ (·, ·) is called ‘‘strict super-modular’’
if it is super-modular and for all y1 < y′

1 and y0 < y′

0, it holds that

µ (y1, y0) + µ

y′

1, y
′

0


− µ


y1, y′

0


− µ


y′

1, y0


> 0,

and strict sub-modular if −µ (·, ·) is strict super-modular.

It is clear that a strict super-modular or strict sub-modular
function cannot be additively separable in its arguments, but a
super-modular or sub-modular function can. Other examples of
additively separable super-modular functions includeµ (y1, y0) =

h1 (y1) − h0 (y0) for known measurable functions h1 and
h0, see Firpo and Pinto (2015) for measures of treatment
effects corresponding to such functions µ. In addition to the µ
functions in Examples (i) and (ii), other examples of strict super-
modular or sub-modular functions µ (·, ·) include µ (y1, y0) =

h1(y1)h0(y0), where h1 and h0 are known strictly monotonic
functions. For example, Spearman’s rank correlation, ρS (Y1, Y0) ≡

corr [F1o(Y1), F0o(Y0)], corresponds to µ (y1, y0) = F1o(y1)F0o(y0).

3.1.1. Some basic results on ΘI

For a super-modular and right continuous function µ (·, ·)
satisfying some regularity conditions, the identified set for θo is a
closed interval, see e.g., Cambanis et al. (1976), Tchen (1980), and

5 A super-modular function is also called a quasi-monotone function or a super-
additive function in probability and statistics literature.
Rachev and Rüschendorf (1998).6 To introduce it, let

F (−) (y1, y0) ≡ M (F1o (y1) , F0o (y0)) and
F (+) (y1, y0) ≡ W (F1o (y1) , F0o (y0)) ,

whereM(u, v) ≡ max(u+ v − 1, 0) andW (u, v) ≡ min(u, v) are
the Fréchet–Hoeffding lower and upper bounds for a copula. Then
ΘI =


θ L, θU


, where

θ L
≡ EF (−) [µ (Y1, Y0)] =

 1

0
µ

F−1
1o (u) , F−1

0o (1 − u)

du and

θU
≡ EF (+) [µ (Y1, Y0)] =

 1

0
µ

F−1
1o (u) , F−1

0o (u)

du, (8)

in which EF denotes the expectation takenwith respect to the joint
cdf F and F−1

jo (u) = inf

y : Fjo (y) ≥ u


is the quantile function of

Yj, j = 0, 1.
If µ (·, ·) is additively separable in its arguments, then θ L

=

θU in which case θo is point identified for all the marginal
distribution functions F1o, F0o under Assumption (I). However,
whenµ (·, ·) is not additively separable in its arguments, in general
θ L

≠ θU and θo is only partially identified. Below we show
that under the conditions of Theorem 2 in Cambanis et al. (1976)
restated as conditions (a) and (b) in Theorem 3.1, for strict super-
modular functions µ (·, ·), θo is point identified only in trivial
cases, i.e., when at least one of themarginal distributions F1o, F0o is
degenerate.

Theorem 3.1. Suppose that Assumption (I) holds and let µ (y1, y0)
be a super-modular and right continuous function. Suppose that θ L

and θU exist (even if infinite valued) and that either of the following
conditions is satisfied: (a) µ (y1, y0) is symmetric and E [µ (Y1, Y1)]
and E [µ (Y0, Y0)] are finite (in this case, −∞ ≤ θ L

≤ θU <

+∞); (b) there are some fixed constants y0 and y1 such that
E

µ (Y1, y0)


and E [µ (y1, Y0)] are finite and at least one of θ L

and θU is finite. Then (i) when µ (·, ·) is additively separable, θ L
=

θU ; (ii)whenµ (·, ·) is strict super-modular, θ L
= θU if and only if at

least one of the marginal distributions F1o, F0o is degenerate.

Following discussions in Cambanis et al. (1976), it is clear
that when random variables Y1, Y0 are bounded, condition (b) is
satisfied for locally bounded functions µ (y1, y0) such as those
in Examples (i) and (ii) and payoff functions of specific bivariate
options mentioned above, and if µ (y1, y0) is also symmetric, then
condition (a) is also satisfied.

3.1.2. A characterization of ΘIC and the role of the covariate
Let

θL ≡ E
 1

0
µ

F−1
1o


u|X∗


, F−1

0o


1 − u|X∗


du


and (9)

θU ≡ E
 1

0
µ

F−1
1o


u|X∗


, F−1

0o


u|X∗


du


,

where F−1
jo (u|x∗) = inf


y : Fjo (y|x∗) ≥ u


is the quantile function

of Yj conditional on X∗
= x∗, j = 0, 1. Theorem 3.2

extends Theorem 2 in Cambanis et al. (1976) and Theorem 3.1,
characterizing the identified set for θo under Assumption (IC) for
super-modular and right continuous functions µ.

6 Results for sub-modular functions follow straightforwardly from the corre-
sponding results for super-modular functions. To save space, we will not present
results for sub-modular functions in this paper.
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Theorem 3.2. Suppose that Assumption (IC) holds and let µ (y1, y0)
be a super-modular and right continuous function. Suppose that both
expectations in (9) exist (even if infinite valued) and that either of the
conditions (a) and (b) in Theorem 3.1 (with θL and θU replacing θ L

and θU in condition (b)) is satisfied. Then
(i) the identified set for θo = Eo [µ (Y1, Y0)] is ΘIC = [θL, θU ];
(ii) for a strict super-modular function µ (·, ·), θL = θU if

and only if at least one of the conditional marginal distributions
F1o (·|x∗) , F0o (·|x∗) is degenerate for almost all x∗

∈ X∗.

Note that under Assumption (IC), the joint cdfs of (Y1, X∗) and
(Y0, X∗) are known and we expect the covariate X∗ to contain
information on the dependence between Y1 and Y0. As a result,
compared with ΘI =


θ L, θU


, the identified set ΘIC = [θL, θU ]

should be shrunk. To show that ΘIC ⊆ ΘI , we let7

F (−)
∗

(y1, y0) ≡ E

M

F1o

y1|X∗


, F0o


y0|X∗


and

F (+)
∗

(y1, y0) ≡ E

W

F1o

y1|X∗


, F0o


y0|X∗


.

We can prove that θL and θU are attainedwhen (Y1, Y0) has the cdfs
F (−)
∗ (y1, y0) and F (+)

∗ (y1, y0) respectively and that the identified
set ΘIC = [θL, θU ] is identical to the set of values of EF [µ (Y1, Y0)]
when F ranges over the class of all joint cdfs F(·, ·) with fixed
marginals F1o and F0o satisfying F (−)

∗ (y1, y0) ≤ F (y1, y0) ≤

F (+)
∗ (y1, y0). In other words,

ΘIC

=

 θ ∈ Θ : θ = E
 

µ (y1, y0) dC (F1o (y1) , F0o (y0))


for some C (·, ·) satisfyingM∗ (·, ·) ≤ C (·, ·) ≤ W ∗ (·, ·)

 , (10)

where M∗ (·, ·) and W ∗ (·, ·) are defined as the copulas of the cdfs
F (−)
∗ (y1, y0) and F (+)

∗ (y1, y0) respectively. SinceM (·, ·) ≤ M∗ (·, ·)
andW ∗ (·, ·) ≤ W (·, ·), it holds that ΘIC ⊆ ΘI .

For strict super-modular functions µ, Theorem 3.3 establishes
sufficient and necessary conditions for ΘIC = ΘI or equivalently
for ΘIC to be a proper subset of ΘI .

Theorem 3.3. Suppose that Assumption (IC) holds and let µ (y1, y0)
be a super-modular and right continuous function. Suppose that the
four expectations in (8) and (9) exist (even if infinite valued) and that
either of the conditions (a) and (b) in Theorem 3.1 is satisfied. Then
ΘIC ⊆ ΘI and if µ (·, ·) is strict super-modular, then ΘIC = ΘI iff for
µc-almost all (y1, y0),8 it holds that

Pr

F1o

y1|X∗


+ F0o


y0|X∗


− 1 > 0


∈ {0, 1} and (11)

Pr

F1o

y1|X∗


− F0o


y0|X∗


< 0


∈ {0, 1} . (12)

Obviously, (11) and (12) hold if both Y1 and Y0 are independent
of X∗ in which case the covariate X∗ does not help shrink the
identified setΘI . Also if one of Y1 and Y0, say Y1, is degenerate, then
(11) and (12) hold, so ΘI = ΘIC , but both sets are singleton. When
both Y1 and Y0 are not degenerate but for almost every x∗

∈ X∗,
at least one of the conditional marginal distributions F1o (·|x∗) and
F0o (·|x∗) is degenerate, then (11) and (12) will not hold and in this
case ΘIC is singleton but ΘI is not. For conditional distributions
F1o (·|x∗) and F0o (·|x∗) that violate either (11) or (12), the identified
set ΘIC is a proper subset of ΘI , so incorporating information in

7 Measurability of M (F1o (y1|X∗) , F0o (y0|X∗)) and W (F1o (y1|X∗) , F0o (y0|X∗))
follows from measurability of F1o (y1|X∗) and F0o (y0|X∗).
8 If µ (·, ·) is super-modular and right continuous, then it uniquely determines

a non negative measure µc on the Borel subsets of the plane R2 such that for
all y1 ≤ y′

1 and y0 ≤ y′

0 , µc

y1, y′

1


×

y0, y′

0


= µ (y1, y0) + µ


y′

1, y
′

0


−

µ

y1, y′

0


− µ


y′

1, y0

. See Cambanis et al. (1976) and Rachev and Rüschendorf

(1998).
X∗ helps shrink the identified set ΘI . This can be useful when the
identified setΘI is itself not informative aswe show in Example (i)-
(IC)9 for the correlation coefficient between Y1 and Y0.

Example (i)-(IC) (Correlation Coefficient). Let the covariate X∗ be
univariate. For notational simplicity, we denote X∗ as X in this
example. Suppose the distribution of (Yj, X) is known to be a
bivariate normal distribution:
Yj
X


∼ N


0
0


,


σ 2
j σjρjX

σjρjX 1


, j = 0, 1.

Then Assumption (IC) is satisfied with Yj|X = x ∼ N

σjρjXx, σ 2

j
1 − ρ2

jX


, j = 0, 1, and X ∼ N (0, 1). Obviously, Yj ∼ N


0, σ 2

j


.

Suppose σ 2
j > 0, j = 1, 0. It is known that the identified set

for ρ10 (i.e., the correlation coefficient between Y1 and Y0) under
Assumption (I) is ΘI =


ρL, ρU


= [−1, 1], see also Appendix C. It

cannot identify the sign of ρ10. In Appendix C, we show that under
Assumption (IC), the identified set ΘIC = [ρL, ρU ], where

ρL = ρ0Xρ1X −


1 − ρ2

0X

 
1 − ρ2

1X


and

ρU = ρ0Xρ1X +


1 − ρ2

0X

 
1 − ρ2

1X


,

which identifies the sign of ρ10 as long as the dependence between
(Y1, Y0) and covariate X is strong enough in the sense that ρ2

0X +

ρ2
1X > 1 in which ρjX is the correlation coefficient between Yj and

X , j = 1, 0. In addition, Example (i)-(IC) validates Theorems 3.3 and
3.2 (ii).

Remark 3.1. The results in Section 3.1.2 apply directly to θo under
the two frameworks reviewed in Section 2, i.e., the selection-on-
observables framework and the latent threshold-crossing model.
When the parameter of interest is θo (x) for a given x ∈ X,
the identified sets take different forms under the selection-on-
observables framework and the threshold-crossing model. Under
the selection-on-observables assumption, the identified set for
θo (x) is given by 1

0
µ

F−1
1o (u|x) , F−1

0o (1 − u|x)

du, 1

0
µ

F−1
1o (u|x) , F−1

0o (u|x)

du


;

while in the threshold-crossingmodel, a straightforward extension
of the argument for Theorem 3.2(i) shows that it is the closed
interval with end points given by 1

0

 1

0
µ

F−1
1o (u|x, ϵ) , F−1

0o (1 − u|x, ϵ)

dudϵ and 1

0

 1

0
µ

F−1
1o (u|x, ϵ) , F−1

0o (u|x, ϵ)

dudϵ,

wherewe used the fact that the distribution of ϵ conditional on X is
U (0, 1).

3.2. A characterization of ΘIC for ϕ-indicator functions and the role
of the covariate

Definition 3.3. Let ϕ denote a measurable function and µ (Y1, Y0)
≡ I {ϕ (Y1, Y0) ≤ δ} for a fixed δ in the support of ϕ (Y1, Y0).
Moreover ϕ (·, ·) is monotone in each argument. We refer to this
class of functions µ as the class of ϕ-indicator functions.

9 The on-line Supplementary Appendices offer another example.
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Let Fϕ (·) denote the distribution function of ϕ (Y1, Y0). Then
for a fixed δ, θo = Pr (ϕ (Y1, Y0) ≤ δ) = Fϕ (δ). Building on
the sharp bounds established in Frank et al. (1987), Williamson
and Downs (1990), and Embrechts et al. (2003),10 one can show
that for the class of functions ϕ (·, ·) that are continuous and non-
decreasing in each argument,11 the identified set for θo under
Assumption (I) is the closed interval with end points Fmin,ϕ(δ) and
Fmax,ϕ(δ), i.e., ΘI = [Fmin,ϕ(δ), Fmax,ϕ(δ)], where

Fmin,ϕ(δ) = sup
y∈Y1

max(F1o(y) + F0o(ϕˆ

y (δ)) − 1, 0) and

Fmax,ϕ(δ) = 1 + inf
y∈Y1

min(F1o(y) + F0o(ϕˆ

y (δ)) − 1, 0),

in which ϕˆ
y (δ) ≡ sup {y0 ∈ Y0 : ϕ (y, y0) < δ}.

Making use of the above result for ϕ (Y1, Y0) = Y1 − Y0,
Fan and Park (2009, 2010) provide a systematic study of partial
identification and inference for θo = F∆ (δ), while Fan and
Park (2012) construct inference procedures for F−1

∆ (α) in ideal
randomized experiments.

For a large class of functions ϕ, Theorem 3.4 gives sufficient and
necessary conditions for Fϕ (δ) to be point identified.

Theorem 3.4. Suppose that ϕ is continuous and strictly increasing in
each argument. Then ΘI = [Fmin,ϕ(δ), Fmax,ϕ(δ)] is a singleton for all
δ if and only if at least one of the unconditional marginal distributions
F1o, F0o is degenerate.

Now consider the identified set for θo under Assumption (IC).
Let Y1 (X∗) and Y0 (X∗) be the supports of Y1 and Y0 given X∗,
respectively, and define

Fmin,ϕ(δ|X∗)

= sup
y∈Y1(X∗)

max{F1o(y|X∗) + F0o(ϕˆ

y


δ|X∗


|X∗) − 1, 0} and

Fmax,ϕ(δ|X∗)

= 1 + inf
y∈Y1(X∗)

min{F1o(y|X∗) + F0o(ϕˆ

y


δ|X∗


|X∗) − 1, 0},

(13)

where ϕˆ
y (δ|X∗) = sup


y0 ∈ Y0


X∗


: ϕ

y, y0


< δ


.

Note that for a fixed δ in the support of ϕ (Y1, Y0), the set
{y0 ∈ Y0 (x∗) : ϕ (y, y0) < δ} for some y ∈ Y1 (x∗) and x∗

∈

X∗ may be empty. If so, ϕˆ
y (δ|x∗) is defined as minus infinity.

Theorem 3.5 extends Theorem 1 in Williamson and Downs (1990)
and Theorem 3.4, see also Embrechts et al. (2003).

Theorem 3.5. Suppose that Assumption (IC) holds and that ϕ is
continuous and non-decreasing in each argument. Suppose that both
Y1 (X∗) and Y0 (X∗) are the Borel sets generated by intervals with
both ends beingmeasurable. Then (i) the identified set for θo = Fϕ (δ)

is ΘIC =

FL,ϕ (δ) , FU,ϕ (δ)


, where FL,ϕ (δ) = E


Fmin,ϕ(δ|X∗)


and

FU,ϕ (δ) = E

Fmax,ϕ(δ|X∗)


; (ii) if ϕ is strictly increasing in each

argument, then FL,ϕ (δ) = Fϕ (δ) = FU,ϕ (δ) for all δ if and only if
for almost every x∗

∈ X∗, at least one of the conditional marginal
distributions F1o (·|x∗) , F0o (·|x∗) is degenerate.

10 See Frank et al. (1987) for sharp bounds for the sum of two random variables,
Williamson and Downs (1990) for the four basic arithmetic operations, and
Theorem 5.1 in Frank et al. (1987) and Embrechts et al. (2003) for general non-
decreasing functions.
11 Without loss of generality, we focus on the class of functions ϕ (·, ·) that are
non-decreasing in each argument. The results obtained can be applied to other
types of monotone functions ϕ (·, ·) by redefining either Y1 or Y0 appropriately. For
example, when ϕ (Y1, Y0) = Y1 − Y0 which is decreasing in Y0 , we redefine the two
random variables as Y1 and (−Y0) to obtain a new function which is increasing in
both arguments.
Obviously supports Yj (X∗) that are given by intervals with
both ends being measurable satisfy the conditions of Theorem 3.5.
Theorem 3.5 implies that for 0 < α < 1, F−1

U,ϕ (α) ≤ F−1
ϕ (α) ≤

F−1
L,ϕ (α) extending the bounds on quantiles of treatment effects in
Fan and Park (2012) for ideal randomized experiments.

Similar to Theorem 3.3 for super-modular functions, it is
possible to establish conditions under whichΘIC is a proper subset
of ΘI . To simplify the technical argument, Theorem 3.6 provides
such a result for the case12 that Yj (x∗) = Yj for j = 0, 1 and all
x∗

∈ X∗. In this case, ϕˆ
y (δ|X∗) = ϕˆ

y (δ) with probability one.

Theorem 3.6. Suppose that the conditions of Theorem 3.5 hold and
that Yj (x∗) = Yj for j = 0, 1 and all x∗

∈ X∗. Suppose that
F1o(y) + F0o(ϕˆ

y (δ)) − 1

achieves the maximum and the minimum

values at some y ∈ Y1 and y ∈ Y1, respectively. Then
FL,ϕ (δ) , FU,ϕ (δ)


=

Fmin,ϕ(δ), Fmax,ϕ(δ)


if and only if


F1o(y|x∗) + F0o(ϕˆ

y (δ) |x∗) − 1

achieves the maxi-

mum and the minimum values uniformly at y and y for almost all
x∗

∈ X∗, respectively.

One sufficient condition for the ‘iff’ condition in Theorem 3.6 is
thatX∗ is independent of (Y1, Y0). This implies that in general using
covariates may shrink the identified set for Fϕ(δ). Theorem 3.5(ii)
provides an example demonstrating the importance of this
improvement. It says that when at least one of the potential
outcomes is a deterministic function of X∗, the identified set
FL,ϕ (δ) , FU,ϕ (δ)


is a singleton and point identifies the parameter

Fϕ(δ). However, the interval

Fmin,ϕ (δ) , Fmax,ϕ (δ)


does not

identify Fϕ(δ) except in the trivial case where one of the potential
outcomes is a constant with probability one, see Theorem 3.4.

Remark 3.2. Theorem 3.5 applies directly to θo under the two
frameworks reviewed in Section 2, i.e., the selection-on-
observables framework and the latent threshold-crossing model.
When the parameter of interest is θo (x) for a given x ∈ X,
the identified sets take different forms under the selection-on-
observables framework and the threshold-crossing model. Un-
der the selection-on-observables assumption, the identified set
for θo (x) is the closed interval


Fmin,ϕ(δ|X = x), Fmax,ϕ(δ|X = x)


,

where Fmin,ϕ(δ|X) and Fmax,ϕ(δ|X) are defined in (13) with X∗ re-
placed by X . In the threshold-crossing model, a straightforward
extension of the argument for Theorem 3.5(i) shows that it is the
closed interval

 1
0 Fmin,ϕ(δ|x, ϵ)dϵ,

 1
0 Fmax,ϕ(δ|x, ϵ)dϵ


.

4. The role of the propensity score and the role of endogenous
selection

In the selection-on-observables framework, Rosenbaum and
Rubin (1983a,b) show that (Y1, Y0) is also jointly independent of D
conditional on the propensity score p (X), so the average treatment
effect can be point identified via conditioning on either X or p (X):

µ∆ = E (E [Y1|X,D = 1] − E [Y0|X,D = 0])
= E (E [Y1|p (X) ,D = 1] − E [Y0|p (X) ,D = 0]) .

In contrast, for strict super-modular and right continuous functions
or ϕ-indicator functions, the identified set based on the propensity
score p (X) may be larger than the identified set based on X .

12 By following the proof of Theorem3.6, one can show thatwithout the condition:
Yj (x∗) = Yj for j = 0, 1 and all x∗

∈ X∗ , the stated condition in Theorem 3.6 is still
sufficient but whether it is still necessary needs to be investigated.
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Proposition 4.1 establishes a sufficient and necessary condition13

under which the two sets are identical for strict super-modular
functions.14

Suppose µ is super-modular and right continuous. Using the
propensity score, we get the identified set [θLP , θUP ], where

θLP = E
 1

0
µ

F−1
1o (u|p (X)) , F−1

0o (1 − u|p (X))

du


and

θUP = E
 1

0
µ

F−1
1o (u|p (X)) , F−1

0o (u|p (X))

du


. (14)

If for every x ∈ X, the conditional distribution functions of Y1, Y0
given X = x are the same as the conditional distribution functions
of Y1, Y0 given p (X) = p (x), then the identified set for θo based on
the propensity score is identical to the identified set based on X;
otherwise the former is in general larger than the latter.

Proposition 4.1. Suppose that Assumption (IX) holds. For a strict
super-modular and right continuous function µ (·, ·), suppose that
the four expectations in (14) and (9) with X∗

= X exist (even if in-
finite valued) and that either of the conditions (a) and (b) in Theo-
rem 3.1 (with θLP and θUP replacing θ L and θU in condition (b)) is
satisfied. Then θLP = θL and θU = θUP iff for µc-almost all (y1, y0), it
holds that

Pr (F1o (y1|X) + F0o (y0|X) − 1 > 0|p (X)) ∈ {0, 1} and
Pr (F1o (y1|X) − F0o (y0|X) < 0|p (X)) ∈ {0, 1} . (15)

Proposition 4.1 shows that for parameter θo defined by a strict
super-modular function, the use of the full vector of covariates X
shrinks the identified set using the propensity score p (X) unless
the conditional distributions F1o (y1|X) , F0o (y0|X) satisfy (15)
which holds if the conditional marginal cdfs of Y1, Y0 depend on
X only through p (X).15

In the latent threshold-crossing model (3), X∗
=

X ′, ϵ

′ and
the lower or upper bounds in Theorem 3.2(i) are reached when the
two potential outcomes are perfectly negatively or positively de-
pendent conditional on X∗. For example, if ϵ = F (U1 − U0) (where
F is cdf ofU1−U0) and g1(·, ·), g0(·, ·) are increasing (or decreasing)
respectively in U1 and U0, then Y1, Y0 are perfectly positively de-
pendent conditional on X∗ and the upper bound is reached. When
the distribution of either Y1 or Y0 conditional on X∗ is degenerate,
the lower and upper bounds in Theorem 3.2(i) coincide and thus
point identify θo. The following proposition follows from a similar
proof to that of Theorem 3.3 or Proposition 4.1.

Proposition 4.2. Suppose that Assumptions (IU) and (LS) hold. For a
strict super-modular and right continuous function µ (·, ·), suppose
that the four expectations in (16) exist (even if infinite valued)
and that either of the conditions (a) and (b) in Theorem 3.1 (with
E
 1

0 µ(F−1
1o (u|X), F−1

0o (1 − u|X))du


and E
 1

0 µ

F−1
1o (u|X) , F−1

0o

(u|X)

du

replacing θ L and θU in condition (b)) is satisfied. Then

E
 1

0
µ

F−1
1o


u|X∗


, F−1

0o


1 − u|X∗


du


= E
 1

0
µ

F−1
1o (u|X) , F−1

0o (1 − u|X)

du


and

13 We are grateful to an anonymous referee for pointing out the necessary and
sufficient condition.
14 A similar result can be established for ϕ-indicator functions. To save space, it is
omitted from the paper.
15 For the point identified ATE, it is known that matching on the propensity score
may result in loss of efficiency, see Hahn (1998, 2004).
E
 1

0
µ

F−1
1o


u|X∗


, F−1

0o


u|X∗


du


= E
 1

0
µ

F−1
1o (u|X) , F−1

0o (u|X)

du


(16)

iff for µc-almost all (y1, y0), it holds that

Pr

F1o

y1|X∗


+ F0o


y0|X∗


− 1 > 0|X


∈ {0, 1} and

Pr

F1o

y1|X∗


− F0o


y0|X∗


< 0|X


∈ {0, 1} . (17)

Proposition 4.2 implies that in general taking into account the
self-selection process in addition to the covariate X in the latent
threshold-crossing model is more informative than using X only
unless (17) holds. For instance, if U1 and U0 are independent of ϵ
given X, Z , implying that both the conditional cdfs of Y1, Y0 given
X∗ are the same as those given X , then (17) holds. Note that in the
latent threshold-crossing model, the distribution of ϵ conditional
on X is U (0, 1). Thus both expectations with respect X∗ in (16) can
be expressed as follows:

E
 1

0
µ

F−1
1o


u|X∗


, F−1

0o


1 − u|X∗


du


= E
 1

0

 1

0
µ

F−1
1o (u|X, v) , F−1

0o (1 − u|X, v)

dudv


E
 1

0
µ

F−1
1o


u|X∗


, F−1

0o


u|X∗


du


= E
 1

0

 1

0
µ

F−1
1o (u|X, v) , F−1

0o (u|X, v)

dudv


.

We now provide a detailed analysis of the identified set for
the correlation coefficient in a latent threshold-crossing model
to demonstrate the role of endogenous selection in shrinking
the identified set. When there is one observable covariate X ,
Example (i)-(IC) in Section 3 establishes the condition: ρ2

0X +ρ2
1X >

1 under which the sign of the correlation coefficient is identified.
We show in Example (i)-(IU) that this condition may be weakened
in a specific latent threshold-crossing model with endogenous
selection.16

Example (i)-(IU) (Correlation Coefficient). Consider the following
special case of the latent threshold-crossing model (3):

Y1 = g1(X) + U1, Y0 = g0(X) + U0, and D = I{g (Z) − ϵ > 0}.

Since the distribution of ϵ conditional on X is normalized to be
U (0, 1), the distribution of V ≡ Φ−1(ϵ) conditional on X is
N(0, 1), where Φ(·) is the cdf of N(0, 1). Suppose that (U1,U0, ϵ)

′

is independent of Z conditional on X , implying that Assump-
tion (IU)(ii) holds. Then the joint distribution of (U1,U0, V , X,Z)′

can be expressed as f (u1, u0, v, x, z) = f (u1, u0, v, x)f (z|x). Thus
we only need to consider the joint distribution of (U1,U0, V , X)′.
Let U = (U1,U0)

′, X∗
= (V , X)′ and assume for simplicity that

gi(X) = µi (i = 1, 0) are constants and (U1,U0, V , X)′ follows a
multivariate normal distribution:
U
X∗


∼ N


0
0


,


Σ11 Σ12
Σ21 Σ22


. (18)

In Appendix C, we demonstrate that (1) when there is
endogenous selection, the identified set for ρ10, denoted by Θ∗

IC =
ρ

(2)
L , ρ

(2)
U


given in (C.9) and (C.10), is smaller than that without

16 The on-line Supplementary Appendices offer another such example.
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endogenous selection as in Example (i)-(IC), denoted by ΘIC =
ρ

(1)
L , ρ

(1)
U


shown in (C.7) and (C.8); (2) as long as the correlations

between V ≡ Φ−1(ϵ) and Uj (i.e., ρ1V and ρ0V ) are strong enough
so that ρ2

0V + ρ2
1V > 1, the bounds ρ

(2)
L and ρ

(2)
U with endogenous

selection are able to identify the sign of ρ10 under quite weak
conditions on the dependence between (Y1, Y0) and the observable
covariate X: ρ10 > 0 when ρ0Xρ1X ≥ 0 with ρ1Vρ0V > 0, and
ρ10 < 0 when ρ0Xρ1X ≤ 0 with ρ1Vρ0V < 0; (3) Example (i)-(IU)
also validates Proposition 4.2.

5. Concluding remarks

In this paper, we have provided a comprehensive study of
partial identification of θo ≡ Eo [µ (Y1, Y0)] for two general
classes of functions µ when only partial information on the
joint distribution of (Y1, Y0) is available to the econometrician,
see Assumption (IC). We have shown that the two commonly
used frameworks to identify average treatment effects in the
literature, i.e., the selection-on-observables and latent threshold-
crossing models, satisfy Assumption (IC). The main contributions
of this paper include: (i) we establish the identified sets for
functionals in both classes under various maintained assumptions
and characterize conditions under which our identified sets point
identify the true value of the functionals; (ii) we establish sufficient
and necessary conditions for the covariate information to tighten
the identified sets without the covariate information; and (iii) we
characterize the role of the propensity score in the selection-on-
observables framework and the role of endogenous selection in the
latent threshold-crossing model.

Empirical applications of the results in this paper abound in
economics, finance, and actuarial mathematics. In the context
of evaluating treatment effects using latent threshold-crossing
model, the results in this paper allow us to go beyond the analysis
in Heckman and Vytlacil (2005), Carneiro and Lee (2009). Consider
the labor market setting studied in Vijverberg (1993) in which the
two treatment states are two different labor market sectors and
Yj is the wage offer in sector j, j = 1, 0. Assume Yj is an accurate
measure of productivity. Then the analogs of all the quantities
discussed in Vijverberg (1993) for the Gaussian Switching Regime
Model can be bounded using the results in this paper for the
latent threshold-crossing model. Examples include: (i) out of the
workers who would be more productive in sector 1, i.e., for whom
Y1 > Y0, the share that is actually employed in sector 1; (ii) the
distribution of the potential outcome Y1 (productivity in sector
1) of an individual with an above average Y0 (productivity in
sector 0); and (iii) the distribution of the potential outcome Y1
of an individual with an above average Y0 who selects into the
program.We refer interested readers to Vijverberg (1993) formore
examples.

Extensions of the results in this paper include identification
analysis for the same classes of functions when the sampling
scheme only partially identifies the conditional marginal distribu-
tion of each outcome variable and the development of valid in-
ference procedures for the distributional treatment effect parame-
ters in latent threshold-crossing models. The authors are currently
working on these.

Appendix A. Technical proofs for Sections 3 and 4

Proof of Theorem 3.1. Noting that

θU
=

 1/2

0
µ

F−1
1o (u) , F−1

0o (u)

du

+

 1

1/2
µ

F−1
1o (u) , F−1

0o (u)

du
=

 1/2

0
µ

F−1
1o (u) , F−1

0o (u)

du

+

 1/2

0
µ

F−1
1o (1 − u) , F−1

0o (1 − u)

du

and

θ L
=

 1/2

0
µ

F−1
1o (u) , F−1

0o (1 − u)

du

+

 1/2

0
µ

F−1
1o (1 − u) , F−1

0o (u)

du,

we obtain
θU

− θ L

=

 1/2

0


µ

F−1
1o (u) , F−1

0o (u)

+ µ


F−1
1o (1 − u) , F−1

0o (1 − u)


−µ

F−1
1o (u) , F−1

0o (1 − u)

− µ


F−1
1o (1 − u) , F−1

0o (u)
 du.

(A.1)

(i) If µ (·, ·) is additively separable in its arguments, then θ L
= θU

follows directly from additive separability of µ (·, ·). (ii) If µ (·, ·)
is super-modular, we have

µ

F−1
1o (u) , F−1

0o (u)

+ µ


F−1
1o (1 − u) , F−1

0o (1 − u)


− µ

F−1
1o (u) , F−1

0o (1 − u)

− µ


F−1
1o (1 − u) , F−1

0o (u)


≥ 0,

∀u ∈ [0, 1] . (A.2)

It then follows from (A.1) and (A.2) that θ L
= θU if and only if for

almost all u ∈ [0, 1/2],

µ

F−1
1o (u) , F−1

0o (u)

+ µ


F−1
1o (1 − u) , F−1

0o (1 − u)


− µ

F−1
1o (u) , F−1

0o (1 − u)

− µ


F−1
1o (1 − u) , F−1

0o (u)


= 0.
(A.3)

Obviously, (A.3) holds when one of F1o (·) and F0o (·) is degenerate.
Now we show θ L

= θU implies that at least one of F1o (·) and
F0o (·) is degenerate. Suppose that both F1o (·) and F0o (·) are non-
degenerate. Then there are yj, y′

j (j = 1, 0) satisfying: yj < y′

j and
0 < Fjo


yj


≤ Fjo

y′

j


< 1. Define

u∗ ≡ min

F1o (y1) , 1 − F1o


y′

1


, F0o (y0) , 1 − F0o


y′

0


.

Then 0 < u∗ ≤ 1/2, and for all u ∈ [0, u∗), we have

F−1
jo (u) ≤ yj < y′

j < F−1
jo (1 − u) .

It follows from the ‘‘strict super-modular’’ assumption that

µ

F−1
1o (u) , F−1

0o (u)

+ µ


F−1
1o (1 − u) , F−1

0o (1 − u)


−µ

F−1
1o (u) , F−1

0o (1 − u)

− µ


F−1
1o (1 − u) , F−1

0o (u)


> 0,
∀u ∈ [0, u∗) .

This contradicts with (A.3), a sufficient and necessary condition for
θ L

= θU to hold. �

Proof of Theorem 3.2. (i) For x∗
∈ X∗, let θo (x∗) = Eo


µ (Y1, Y0)

|X∗
= x∗


,

θL

x∗


=

 1

0
µ

F−1
1o


u|x∗


, F−1

0o


1 − u|x∗


du

=

 
µ (y1, y0) dM


F1o

y1|x∗


, F0o


y0|x∗


,

and

θU

x∗


=

 1

0
µ

F−1
1o


u|x∗


, F−1

0o


u|x∗


du

=

 
µ (y1, y0) dW


F1o

y1|x∗


, F0o


y0|x∗


.



Y. Fan et al. / Journal of Econometrics 197 (2017) 42–59 51
Then θL = E [θL (X∗)] and θU = E [θU (X∗)]. It follows from
conditions in (A) and (B) that for almost all x∗

∈ X∗, in case (A)
E [µ (Y1, Y1) |X∗

= x∗] and E [µ (Y0, Y0) |X∗
= x∗] are finite, and

in case (B), E

µ (Y1, y0) |X∗

= x∗

, E [µ (y1, Y0) |X∗

= x∗], and at
least one of θL (x∗) and θU (x∗) are finite. Thus, for both cases
(A) and (B), Theorem 2 in Cambanis et al. (abbreviated to CSS)
(1976) implies: θL (x∗) ≤ θo (x∗) ≤ θU (x∗) for all x∗

∈

X∗. Taking expectations with respect to X∗ leads to ΘIC ⊆

[E(θL (X∗)), E(θU (X∗))] = [θL, θU ].
Now we show that [E(θL (X∗)), E(θU (X∗))] ⊆ ΘIC , that is, for

any given V ∈ [E(θL (X∗)), E(θU (X∗))], there exists a conditional
distribution FV (y1, y0|x∗) ≡ CV (F1o (y1|x∗) , F0o (y0|x∗) |x∗) with
marginals F1o (y1|x∗) and F0o (y0|x∗) such that E

 
µ (y1, y0)

dFV (y1, y0|X∗)


= V . Obviously, if V = E(θL (X∗)) or E(θU (X∗)),
we take CV = M or W . Therefore, without loss of generality,
suppose E(θL (X∗)) < V < E(θU (X∗)). If both E(θL (X∗)) and
E(θU (X∗)) are finite, implying for almost all x∗

∈ X∗ that both
θL (x∗) and θU (x∗) are finite, then we can define

v =
V − E(θL (X∗))

E(θU (X∗)) − E(θL (X∗))
∈ (0, 1) ,

and

FV (y1, y0|x∗) = vW

F1o

y1|x∗


, F0o


y0|x∗


+ (1 − v)M


F1o

y1|x∗


, F0o


y0|x∗


.

Obviously, FV (y1, y0|x∗) is a joint cdf conditional on X∗
= x∗ with

marginals F1o (y1|x∗) and F0o (y0|x∗), and satisfies 
µ (y1, y0) dFV (y1, y0|x∗) = vθU


x∗

+ (1 − v) θL


x∗


and thus

E
 

µ (y1, y0) dFV (y1, y0|X∗)


= vE


θU

X∗


+ (1 − v) E

θL

X∗


= V .

Now we consider the case that either of E(θL (X∗)) and
E(θU (X∗)) is infinite, say, −∞ = E(θL (X∗)) < E(θU (X∗)) < +∞.
Notice that in case (A) we definitely have θU = E(θU (X∗)) < +∞.
To see this, from equation (5) in CSS(1976), we have

2θU

X∗


= E

µ (Y1, Y1) |X∗


+ E


µ (Y0, Y0) |X∗


−


A∗

Wdµc(y1, y0),

where

A∗

W ≡ F1o

y1 ∧ y0|X∗


+ F0o


y1 ∧ y0|X∗


− W


F1o

y1 ∨ y0|X∗


, F0o


y1 ∧ y0|X∗


− W


F1o

y1 ∧ y0|X∗


, F0o


y1 ∨ y0|X∗


.

Taking expectations with respect to X∗ leads to

2θU = E [µ (Y1, Y1)] + E [µ (Y0, Y0)] −


E

A∗

W


dµc(y1, y0),

(A.4)

implying θU < +∞ in case (A) because E [µ (Y1, Y1)] and
E [µ (Y0, Y0)] are finite and A∗

W ≥ 0 for all y1, y0 and X∗
= x∗.

Now we show that there exists a conditional joint distribution
Fα(y1, y0|x∗) with marginals F1o (y1|x∗) and F0o (y0|x∗) such that
−∞ < E(θα (X∗)) < V < E(θU (X∗)) < +∞, where
E(θα (X∗)) ≡ E

 
µ (y1, y0) dFα(y1, y0|X∗)


. Actually, from the

proof of Lemma in CSS(1976), for each α ∈ (0, 1/2] ,we can define

gα


u|x∗


=


F−1
0o


1 − u|x∗


, if α ≤ u ≤ 1 − α,

F−1
0o


u|x∗


, if 0 ≤ u < α or 1 − α < u ≤ 1,
and let Fα(·, ·|x∗) be the joint distribution of

F−1
1o (U|x∗) , gα

(U|x∗)

, where U is a uniform r.v. on (0, 1). It is easy to show that

Fα(y1, y0|x∗) has marginals F1o (y1|x∗) and F0o (y0|x∗), and that

E(θα


X∗

) = E

 1−α

α

µ

F−1
1o


u|X∗


, F−1

0o


1 − u|X∗


du


+ E
 α

0
+

 1

1−α


µ

F−1
1o


u|X∗


, F−1

0o


u|X∗


du


.

Note that the first part changes from zero to E(θL (X∗)) = −∞ as
α decreases from 1/2 to zero, but the second part is always finite
and goes to zero. Thus, there exists an α ∈ (0, 1/2] such that
−∞ < E(θα (X∗)) < V < E(θU (X∗)). Similar to the argument
above, we can define

FV (y1, y0|x∗) = vW

F1o

y1|x∗


, F0o


y0|x∗


+ (1 − v) Fα(y1, y0|X∗)

with v = [V − E(θα (X∗))]/[E(θU (X∗)) − E(θα (X∗))]. These
bounds are sharp, as they are achieved at M(F1o (·|x∗) , F0o (·|x∗)),

W (F1o (·|x∗) , F0o (·|x∗)) respectively.
(ii) Define

∆

u|x∗


≡ µ


F−1
1o


u|x∗


, F−1

0o


u|x∗


+ µ


F−1
1o


1 − u|x∗


, F−1

0o


1 − u|x∗


− µ


F−1
1o


u|x∗


, F−1

0o


1 − u|x∗


− µ


F−1
1o


1 − u|x∗


, F−1

0o


u|x∗


.

Similar to (A.2) and (A.1), we have ∆ (u|x∗) ≥ 0 for all u and x∗,
and

θU − θL = E
 1/2

0
∆

u|X∗


du


=

  1/2

0
∆

u|x∗


du

dFX∗o


x∗


≥ 0.

Obviously, θU = θL if and only if ∆ (u|X∗) = 0 with probability
one for almost all u ∈ [0, 1/2]. When one of F1o (·|x∗) and F0o (·|x∗)
is degenerate for almost all x∗

∈ X∗, we have ∆ (u|x∗) = 0
for almost all u and x∗, implying θU = θL. Now we show under
the ‘‘strict super-modular’’ assumption that if θU = θL, then one
of F1o (·|x∗) and F0o (·|x∗) is degenerate for almost all x∗

∈ X∗.
By contradiction, assuming that there is a set A ⊂ X∗ such that
Pr (A) > 0 and for every x∗

∈ A both F1o (·|x∗) and F0o (·|x∗) are
non-degenerate, then by a similar proof to that of Theorem 3.1(ii),
we have

 1/2
0 ∆ (u|x∗) du > 0 for every x∗

∈ A, implying θU − θL >

0, which is a contradiction. �

Proof of Theorem 3.3. First, we show ΘIC = [θL, θU ] ⊆ ΘI =
θ L, θU


. Recall definitions of F (−)(y1, y0), F (+)(y1, y0), F

(−)
∗ (y1, y0)

and F (+)
∗ (y1, y0) in Section 3.1. For every (y1, y0), by Jensen’s

inequality, we have

F (−) (y1, y0) = max

E

F1o

y1|X∗


+ F0o


y0|X∗


− 1


, 0


≤ E

max


F1o

y1|X∗


+ F0o


y0|X∗


− 1, 0


= F (−)

∗
(y1, y0) , (A.5)

and

F (+) (y1, y0) = E

F0o

y0|X∗


+ min


E

F1o

y1|X∗


− F0o


y0|X∗


, 0


≥ E

F0o

y0|X∗


+ min


F1o

y1|X∗


− F0o


y0|X∗


, 0


= F (+)
∗

(y1, y0) . (A.6)
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Under condition (a) of Theorem 3.1, it follows from Eq. (5) in
CSS(1976) that we have

2θU
= E [µ (Y1, Y1)] + E [µ (Y0, Y0)] −


AWdµc(y1, y0), (A.7)

where

AW = F1o (y1 ∧ y0) + F0o (y1 ∧ y0)

− F (+) (y1 ∨ y0, y1 ∧ y0) − F (+) (y1 ∧ y0, y1 ∨ y0) .

Note that E

A∗

W


in (A.4) can be expressed as

E

A∗

W


= F1o (y1 ∧ y0) + F0o (y1 ∧ y0)

− F (+)
∗

(y1 ∨ y0, y1 ∧ y0) − F (+)
∗

(y1 ∧ y0, y1 ∨ y0) .

By (A.6), we have E

A∗

W


≥ AW for all (y1, y0). Comparing (A.4) and

(A.7) leads to θU ≤ θU . Similarly, we can show θ L
≤ θL by using the

following results:

2θ L
= E [µ (Y1, Y1)] + E [µ (Y0, Y0)] −


AMdµc(y1, y0),

2θL = E [µ (Y1, Y1)] + E [µ (Y0, Y0)] −


E

A∗

M


dµc(y1, y0),

and E

A∗

M


≤ AM for all (y1, y0), where

AM = F1o (y1 ∧ y0) + F0o (y1 ∧ y0) − F (−) (y1 ∨ y0, y1 ∧ y0)

− F (−) (y1 ∧ y0, y1 ∨ y0) ,

E

A∗

M


= F1o (y1 ∧ y0) + F0o (y1 ∧ y0) − F (−)

∗
(y1 ∨ y0, y1 ∧ y0)

− F (−)
∗

(y1 ∧ y0, y1 ∨ y0) ,

and (A.5) is used. Combining θ L
≤ θL and θU ≤ θU implies

ΘIC ⊂ ΘI .
Under condition (b) of Theorem 3.1, it follows from Eq. (9) in

CSS(1976) that

θ L
= E


µ (Y1, y0)


+ E [µ (y1, Y0)] − µ (y1, y0)

+


BMdµc (y1, y0) and (A.8)

θL

X∗


= E

µ (Y1, y0) |X∗


+ E


µ (y1, Y0) |X∗


− µ (y1, y0)

+


B∗

Mdµc (y1, y0) , (A.9)

where for all (y1, y0) ,

BM = M(F1o (y1) , F0o (y0)) − 1 (y1 < y1) F0o (y0)
− F1o (y1) 1 (y0 < y0) + 1 (y1 < y1) 1 (y0 < y0) ,

B∗

M = M

F1o

y1|X∗


, F0o


y0|X∗


− 1 (y1 < y1) F0o


y0|X∗


− F1o


y1|X∗


1 (y0 < y0) + 1 (y1 < y1) 1 (y0 < y0) .

Taking expectations between both sides of (A.9) with respect to X∗,
we also have

θL = E

µ (Y1, y0)


+ E [µ (y1, Y0)] − µ (y1, y0)

+


E

B∗

M


dµc, (A.10)

where E

B∗

M


= F (−)

∗ (y1, y0) − 1 (y1 < y1) F0o (y0) − F1o (y1) 1
(y0 < y0) + 1 (y1 < y1) 1 (y0 < y0) for all (y1, y0). Note from (A.5)
that E


B∗

M


≥ BM for all (y1, y0). Then, by comparing (A.8) and

(A.10), we have θ L
≤ θL. Similarly, for the upper bounds, we can

show θU ≤ θU . Both θ L
≤ θL and θU ≤ θU imply ΘIC ⊂ ΘI .

Now we present sufficient and necessary conditions for ΘIC =

ΘI . If µ (·, ·) is strict super-modular (implying that any rectangle
in (y1, y0)-plane has a positive µc measure), it follows from (A.5)
and (A.6) that in both cases θL = θ L iff F (−)

∗ (y1, y0) = F (−) (y1, y0)
for µc-almost all (y1, y0) and θU = θU iff F (+)

∗ (y1, y0) =

F (+) (y1, y0) for µc-almost all (y1, y0). Furthermore, for µc-almost
every (y1, y0), F

(−)
∗ (y1, y0) = F (−) (y1, y0) iff Pr(F1o (y1|X∗) +

F0o (y0|X∗) − 1 > 0) ∈ {0, 1} and F (+)
∗ (y1, y0) = F (+) (y1, y0)

iff Pr(F1o (y1|X∗) − F0o (y0|X∗) < 0) ∈ {0, 1}. �

Proof of Theorem 3.4. First, we introduce some notation from the
literature, see Frank et al. (1987), Williamson and Downs (1990),
and Embrechts et al. (2003). For any bivariate copula function C
and any univariate cdfs F1, F0, let

σC,ϕ (F1, F0) (δ) ≡


{ϕ(u,v)<δ}

dC(F1(u), F0(v)),

τC,ϕ (F1, F0) (δ) ≡ sup
ϕ(u,v)=δ

C(F1(u), F0(v)), and

ρC,ϕ (F1, F0) (δ) ≡ inf
ϕ(u,v)=δ

Cd(F1(u), F0(v)),

where Cd is the dual of C , Cd(x, y) ≡ x + y − C(x, y) for all
x, y ∈ [0, 1]. Since Y1, Y0 are continuous random variables and ϕ is
continuous, from Theorem 5.1 of Frank et al. (1987), we have

σC,ϕ (F1o, F0o) (δ) = Fϕ (δ) ,

τM,ϕ (F1o, F0o) (δ) = sup
ϕ(u,v)=δ

max {F1o(u) + F0o(v) − 1, 0}

= sup
y

max

F1o(y) + F0o(ϕˆ

y (δ)) − 1, 0


= Fmin,ϕ(δ),

ρM,ϕ (F1o, F0o) (δ) ≡ inf
ϕ(u,v)=δ

[F1o(u) + F0o(v) − M(F1o(u), F0o(v))]

= 1 + inf
y
min


F1o(y) + F0o(ϕˆ

y (δ)) − 1, 0


= Fmax,ϕ(δ),

and for any δ and any copula C(·, ·) or joint distribution F(u, v) =

C(F1o(u), F0o(v)) with marginals F1o and F0o,

Fmin,ϕ(δ) = τM,ϕ (F1o, F0o) (δ) ≤ Fϕ (δ) ≤ ρM,ϕ (F1o, F0o) (δ)

= Fmax,ϕ(δ), (A.11)

where we used the assumption that Y1 and Y0 are continuous ran-
dom variables, implying ρM,ϕ (F1o, F0o) (δ+) = ρM,ϕ (F1o, F0o) (δ).

It is easy to verify that Fmin,ϕ(δ) = Fϕ(δ) = Fmax,ϕ(δ)
for all δ if either F1o or F0o is a degenerate distribution. By
a straightforward extension of the argument used to establish
Corollary 2 of Theorem 9 in Moynihan et al. (abbreviated to MSS)
(1978), it follows that Fϕ (δ) = Fmin,ϕ(δ) implies that at least one of
the marginal distributions F1o, F0o is degenerate, and similarly this
is true for Fϕ (δ) = Fmax,ϕ(δ). Here we only show that if neither F1o
nor F0o is degenerate, then Fϕ (δ) < Fmax,ϕ(δ) for some δ. In fact, by
Corollary of Theorem 3 in MSS(1978), we have

Fϕ = σC,ϕ (F1o, F0o) ≤ ρC,ϕ (F1o, F0o) ≤ ρM,ϕ (F1o, F0o) = Fmax,ϕ .

(A.12)

If C(F1o(u), F0o(v)) = W (F1o(u), F0o(v)) for all (u, v), then
by Theorem 6 and Corollary of Theorem 10 in MSS(1978),
respectively, we have σC,ϕ (F1o, F0o) = ρW ,ϕ (F1o, F0o) and
ρW ,ϕ (F1o, F0o) < ρM,ϕ (F1o, F0o) (because of M(a, b) < W (a, b)
for all (a, b) in (0, 1) × (0, 1)), implying that the inequality in
(A.12) is strict. If C(F1o(u), F0o(v)) < W (F1o(u), F0o(v)) for some
(u, v), then by Theorem 8 in MSS(1978), we have σC,ϕ (F1o, F0) <
ρC,ϕ (F1o, F0o), also implying that the inequality in (A.12) is
strict. �

Proof of Theorem 3.5. First of all, we show that Fmin,ϕ(δ|X∗) and
Fmax,ϕ(δ|X∗) are measurable for each δ. Since the supports of
Y1 and Y0 given X∗, Y1 (X∗) and Y0 (X∗), are the Borel sets,
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without loss of generality, we can assume Y1 (X∗) and Y0 (X∗)
are two intervals. Let Yj (X∗) = (QjL (X∗) ,QjR (X∗)], j = 1, 0;
and suppose that QjL (X∗) and QjR (X∗) are measurable. Obviously,
ϕˆ
y (δ|X∗) is also measurable for each δ. Let Q be the set of

rationale numbers which is such that, for any real y, there is
a sequence {yk} ⊂ Q with y ≤ yk ≤ y + 1/k (take
for instance [ky + 1] /k where [·] is the integer part). Since
P

limk↑∞ I (Y ≤ yk) = I (Y ≤ y)


= 1, the Lebesgue Dominated

Convergence Theorem gives that limk↑∞ F1o(yk|X∗) = F1o(y|X∗),
and since ϕˆ

yk−1/k
(δ|X∗) ≥ ϕˆ

y (δ|X∗) with limk↑∞ ϕˆ
yk−1/k

(δ|X∗) =

ϕˆ
y (δ|X∗), limk↑∞ F0o(ϕˆ

yk−1/k
(δ|X∗) |X∗) = F0o(ϕˆ

y (δ|X∗) |X∗). It
then follows that

Fmin,ϕ(δ|X∗) = lim
k↑∞

sup
y∈(Q1L(X∗),Q1R(X∗)]∩Q

max{F1o(y|X∗)

+ F0o(ϕˆ

y−1/k(δ|X
∗)|X∗) − 1, 0}

= lim
k↑∞

sup
y∈Q

max


F1o(y|X∗) + F0o(ϕˆ

y−1/k(δ|X
∗)|X∗) − 1


× I


y ∈


Q1L


X∗

,Q1R


X∗


, 0


.

This implies that X∗
→ Fmin,ϕ(δ|X∗) is measurable for any given δ,

as obtained by taking limit and supremum of a countable number
of measurable functions. That X∗

→ Fmax,ϕ(δ|X∗) is measurable
similarly follows.

(i) It follows from (A.11) that Fmin,ϕ(δ|X∗) ≤ Fϕ(δ|X∗) ≤

Fmax,ϕ(δ|X∗), and taking expectation with respect to X∗ yields

E

Fmin,ϕ(δ|X∗)


≤ Fϕ (δ) = E(Fϕ(δ|X∗)) ≤ E


Fmax,ϕ(δ|X∗)


,

implying that ΘIC ⊆

E

Fmin,ϕ(δ|X∗)


, E

Fmax,ϕ(δ|X∗)


. Now we

show

E

Fmin,ϕ(δ|X∗)


, E

Fmax,ϕ(δ|X∗)


⊆ ΘIC . Without loss of

generality, suppose E

Fmin,ϕ(δ|X∗)


< E


Fmax,ϕ(δ|X∗)


, and for

any given V ∈

E

Fmin,ϕ(δ|X∗)


, E

Fmax,ϕ(δ|X∗)


, let

α =
E

Fmax,ϕ(δ|X∗)


− V

E

Fmax,ϕ(δ|X∗)


− E


Fmin,ϕ(δ|X∗)

 ∈ [0, 1].

By Theorem 3 of Williamson and Downs (1990), there are copulas
C (t)(u, v) and C (r)(u, v), depending only on the values of t =

Fmin,ϕ(δ|x∗) and r = Fmax,ϕ(δ|x∗) respectively, such that

Fmin,ϕ(δ|x∗) =


{ϕ(u,v)<δ}

dC (t)(F1o(u|x∗), F0o(v|x∗)) and

Fmax,ϕ(δ|x∗) =


{ϕ(u,v)<δ}

dC (r)(F1o(u|x∗), F0o(v|x∗)).

Define FV (u, v|x∗) = αC (t)(F1o(u|x∗), F0o(v|x∗)) + (1 −

α)C (r)(F1o(u|x∗), F0o(v|x∗)), which is a joint distribution condi-
tional on X∗

= x∗ with marginals F1o (y1|x∗) and F0o (y0|x∗). Then

EFV

µ (Y1, Y0) |X∗

= x∗


=


{ϕ(u,v)<δ}

dFV (u, v|x∗)

= αFmin,ϕ(δ|x∗) + (1 − α)Fmax,ϕ(δ|x∗)

and thus

E(EFV

µ (Y1, Y0) |X∗


) = αE


Fmin,ϕ(δ|X∗)


+ (1 − α)E


Fmax,ϕ(δ|X∗)


= V ,

implying V ∈ ΘIC .
(ii) Obviously, the sufficient condition holds. Here we show

the necessary condition, that is, when E

Fmax,ϕ(δ|X∗)


=

E

Fmin,ϕ(δ|X∗)


, at least one of the conditional marginal distribu-

tions F1o (·|x∗) , F0o (·|x∗) is degenerate for almost every x∗
∈ X∗. If

not, then there exists a set A ⊂ X∗ such that Pr(A) > 0 and for all
x∗
∈ A both F1o (·|x∗) and F0o (·|x∗) are not degenerate, implying by

Theorem3.4 thatwe have Fmax,ϕ(δ|x∗) > Fmin,ϕ(δ|x∗) for all x∗
∈ A,

where we used the fact Fmax,ϕ(δ|x∗) ≥ Fmin,ϕ(δ|x∗) for all x∗
∈ X∗.

This leads to E[Fmax,ϕ(δ|X∗) − Fmin,ϕ(δ|X∗)] > 0, a contradiction
with E


Fmax,ϕ(δ|X∗)


= E


Fmin,ϕ(δ|X∗)


. �

Proof of Theorem 3.6. We provide a proof for the lower bounds.
The proof for the upper bounds is similar and thus omitted. By
definitions of FL,ϕ (δ), Fmin,ϕ (δ) and Jensen’s inequality, we obtain:

FL,ϕ (δ) = E

sup
y∈Y1

max

F1o(y|X∗) + F0o(ϕˆ

y (δ) |X∗) − 1, 0


≥ sup
y∈Y1

E

max


F1o(y|X∗) + F0o(ϕˆ

y (δ) |X∗) − 1, 0


≥ sup
y∈Y1

max

E

F1o(y|X∗) + F0o(ϕˆ

y (δ) |X∗) − 1

, 0


= sup
y∈Y1

max

F1o(y) + F0o(ϕˆ

y (δ)) − 1, 0


= Fmin,ϕ (δ) .

Note that Yj (j = 1, 0) are assumed to be continuous random
variables. Then, Fjo(y|X∗) and Fjo(y) are continuous and thus
supy∈Y1

F1o(y|X∗) = 1 and supy∈Y1
F1o(y) = 1, implying

supy∈Y1
{F1o(y|X∗) + F0o(ϕˆ

y(δ)|X
∗) − 1} ≥ 0 and supy∈Y1

{F1o(y) +

F0o(ϕˆ
y(δ)) − 1} ≥ 0. Therefore, the inequality above becomes

FL,ϕ (δ) = E

sup
y∈Y1


F1o(y|X∗) + F0o(ϕˆ

y (δ) |X∗) − 1


≥ sup
y∈Y1

E

F1o(y|X∗) + F0o(ϕˆ

y (δ) |X∗) − 1


= sup
y∈Y1


F1o(y) + F0o(ϕˆ

y (δ)) − 1


= Fmin,ϕ (δ) . (A.13)

Let Gϕ (y, x) = F1o(y|x) + F0o(ϕˆ
y (δ) |x) − 1. Then, supy∈Y1

E[G(y,
X∗)] = E[G(y, X∗)] and it follows from (A.13) that FL,ϕ (δ) =

Fmin,ϕ(δ) iff E[supy∈Y1
G(y, X∗)] = E[G(y, X∗)]. Since supy∈Y1

G(y, x∗) ≥ G(y, x∗) for all x∗
∈ X∗, it implies that

E

supy∈Y1

G(y, X∗)


= E[G(y, X∗)] iff supy∈Y1
G(y, x∗) = G(y, x∗)

for almost all x∗
∈ X∗, that is, F1o(y|x∗)+F0o(ϕˆ

y (δ) |x∗)−1 reaches
its maximum value uniformly at y for almost all x∗

∈ X∗. �

Proof of Proposition 4.1. By using Theorem 3.2(i) with X∗
=

p (X), we see that the identified set for θo is [θLP , θUP ]. Similarly, by
using Theorem 3.2(i) with X∗

= X , we obtain the other identified
set for θo, i.e., [θL, θU ]. Following the proof of Theorem 3.3, we can
show [θL, θU ] ⊆ [θLP , θUP ]. Denote

F L (y1, y0) = E [M (F1o (y1|X) , F0o (y0|X))] ,

F L
P (y1, y0) = E [M (F1o (y1|p (X)) , F0o (y0|p (X)))] ,

FU (y1, y0) = E [W (F1o (y1|X) , F0o (y0|X))] , and

FU
P (y1, y0) = E [W (F1o (y1|p (X)) , F0o (y0|p (X)))] .

It follows from Jensen’s inequality that for all (y1, y0), we have

F L
P (y1, y0) = E [max {F1 (y1|p (X)) + F0 (y0|p(X)) − 1, 0}]

= E [max {E [F1 (y1|X) + F0 (y0|X) − 1|p (X)] , 0}]

≤ E [E [max {F1 (y1|X) + F0 (y0|X) − 1, 0} |p (X)]]

= E [max {F1 (y1|X) + F0 (y0|X) − 1, 0}]

= F L (y1, y0) , (A.14)
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and

FU
P (y1, y0) = E [F0o (y0|p (X)) + min (F1o (y1|p (X))

− F0o (y0|p (X)) , 0)]
= E [E (F0o (y0|X) |p(X)) + min (E (F1o (y1|X)

− F0o (y0|X) |p(X)) , 0)]
≥ E [E (F0o (y0|X) |p(X)) + E (min (F1o (y1|X)

− F0o (y0|X) , 0) |p(X))]
= E [F0o (y0|X) + min (F1o (y1|X) − F0o (y0|X) , 0)]

= FU (y1, y0) .

To save space, we only consider condition (b) and show θLP ≤ θL.
Similar to (A.8) and (A.9), we have

θLP(p (X)) = E

µ (Y1, y0) |p (X)


+ E [µ (y1, Y0) |p (X)]

− µ (y1, y0) +


BPMdµc (y1, y0) and (A.15)

θL (X) = E

µ (Y1, y0) |X


+ E [µ (y1, Y0) |X]

− µ (y1, y0) +


BXMdµc (y1, y0) , (A.16)

where for all (y1, y0) ,

BPM = M(F1o (y1|p (X)) , F0o (y0|p (X)))

− 1 (y1 < y1) F0o (y0|p (X))

− F1o (y1|p (X)) 1 (y0 < y0) + 1 (y1 < y1) 1 (y0 < y0) ,

BXM = M (F1o (y1|X) , F0o (y0|X)) − 1 (y1 < y1) F0o (y0|X)

− F1o (y1|X) 1 (y0 < y0) + 1 (y1 < y1) 1 (y0 < y0) .

Taking expectations for (A.15) and (A.16) with respect to X, we
have

θLP = E [θLP(p (X))] = E

µ (Y1, y0)


+ E [µ (y1, Y0)]

− µ (y1, y0) +


E [BPM ] dµc (y1, y0) and (A.17)

θL = E [θL (X)] = E

µ (Y1, y0)


+ E [µ (y1, Y0)]

− µ (y1, y0) +


E [BXM ] dµc (y1, y0) . (A.18)

Note that for given y0 and y1, E

Fjo

yj|X


|p (X)


= Fjo


yj|p (X)


(j = 1, 0) and thus

E [BPM ] − E [BXM ] = F L
P (y1, y0) − F L (y1, y0) .

By using the fact that F L
P (y1, y0) ≤ F L (y1, y0) for all (y1, y0),

we have E [BPM ] ≤ E [BXM ], implying by comparing (A.17) and
(A.18) that θLP ≤ θL and θLP = θL iff


[F L

P (y1, y0) − F L (y1, y0)]
dµc (y1, y0) = 0. For a strict super-modular function µ (·, ·),
implying that any rectangle in (y1, y0)-plane has a positive µc
measure, we obtain that θLP = θL iff F L

P (y1, y0) = F L (y1, y0) for
µc-almost all (y1, y0). Moreover, from the proof of (A.14), we see
that F L

P (y1, y0) = F L (y1, y0) for µc-almost all (y1, y0) if and only if
Pr{F1o (y1|X)+ F0o (y0|X)−1 > 0|p (X)} ∈ {0, 1} for µc-almost all
(y1, y0). �

Proof of Proposition 4.2. The proof is similar to that of Proposi-
tion 4.1.

Appendix B. Inference for super-modular µ in the selection-
on-observables framework

We have provided a comprehensive study of partial identi-
fication of θo under various scenarios in the paper. In this Ap-
pendix, we illustrate feasibility of inference by constructing con-
fidence sets (CSs) for θo and its conditional version θo (x) for strict
super-modular functionsµ under the selection-on-observables as-
sumption, i.e., Assumption (IX),which implies that Assumption (IC)
holds with X∗

= X . Technical proofs in this Appendix are relegated
to the on-line Supplementary Appendices. Asymptotically valid in-
ference procedures for θo and θo (x) corresponding to functions
µ in other cases studied in the paper including latent threshold-
crossing models remain to be developed.

Throughout this Appendix, we use =⇒ to denote weak
convergence. All the limits are taken as the sample size goes to ∞.

B.1. Estimators of the bounds and assumptions

Suppose µ (·, ·) is strict super-modular and right continuous.
Let Qj (u|x) = F−1

jo (u|x), j = 0, 1 and

θL (x) =

 1

0
µ (Q1 (u|x) ,Q0 (1 − u|x)) du,

θU (x) =

 1

0
µ (Q1 (u|x) ,Q0 (u|x)) du.

An application of CSS conditional on the covariate implies that
θo (x) is partially identified: θL (x) ≤ θo (x) ≤ θU (x) and θL (x) =

θU (x) if and only if at least one of the conditional marginal
distributions F1o (·|x) , F0o (·|x) is degenerate.

Suppose a random sample {Yi, Xi,Di}
n
i=1 on {Y , X,D} is avail-

able. We estimate the conditional quantile function Qj (u|x) of Y
given X = x and D = j using the local polynomial approach. Let

ℓu(t) = t (u − I(t ≤ 0)) , u ∈ [0, 1]

be the quantile check function and Y(1) = mini=1,...,n Yi, Y(n) =

maxi=1,...,n Yi. Consider a kernel function K (·), a bandwidth an > 0,
and an integer s ≥ 1. Let x = (x1, . . . , xd) and P1 (x) be the vector
which stacks the power

xj11 × · · · × xjdd , 1 ≤ j1 + · · · + jd ≤ s − 1,

according to the lexicographic order. Define also P (x) =
1, P1 (x)′

′. The local polynomial estimator of Qj (u|x), j = 0, 1, is
defined asQj (u|x) =b0j (u|x), whereb0j (u|x) andb1j (u|x) achieve
the minimum of
n

i=1

ℓu

Yi − b0 − P1 (Xi − x)′ b1


I {Di = j}

1
adn

K

Xi − x
an


,

b0 ∈

Y(1), Y(n)


,

where an appropriate convention is used to break ties.
The estimators of θL (x), θU (x), θL and θU are,

θL (x) =

 1

0
µ
Q1 (u|x) ,Q0 (1 − u|x)


du,

θU (x) =

 1

0
µ
Q1 (u|x) ,Q0 (u|x)


du,

θL =
1
n

n
i=1

θL (Xi) , θU =
1
n

n
i=1

θU (Xi) .

The restriction that Qj (u|x) = b0j (u|x) ∈

Y(1), Y(n)


is useful in

the extreme cases: u = 0 or u = 1. As discussed in Hall and van
Keilegom (2009), for u = 0, 1, theminimizersb0j (0|x) andb0j (1|x)
may become infinite. The restriction that Qj (u|x) = b0j (u|x) ∈
Y(1), Y(n)


is a sample version of a basic property of the population

conditional quantile Qj (u|x) which lies between the minimal and
maximal values taken by Y . Imposing these restrictions helps to get
consistentθL (x) andθU (x).

We assume that the support of X given D = j is the
same as that of X denoted as X. Let x be any point in X
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including its boundary. To establish the asymptotic distribution
of
θL (x) ,θU (x)

′
and

θL,θU′, we introduce the following
assumptions. Let pj (x) = Pr(D = j|x) and fj(y|x) ≡ ∂Fj(y|x)/∂y,
where Fj(y|x) ≡ Fjo(y|x) is the conditional cumulative distribution
function of Y given X = x and D = j, with support Sj =
(x, y) ; x ∈ X, y ∈ Yj (x) ≡


Qj (0|x) ,Qj (1|x)


. Note that Yj =

infx∈X Qj (0|x) , supx∈X Qj (1|x)

.

(A1) (i) The partial derivatives of Fj (y|x)w.r.t. to x up to order s are
continuous over Sj, (ii) Sj is compact, fj(·|·) is continuously
differentiable over Sj and satisfies: inf(y,x)∈Sj fj (y|x) > 0.

(A2) (i) X |D = j is continuous with continuous probability density
functions fj (·) satisfying infx∈X fj (x) > 0, j = 0, 1. Further,
p (·) ∈ (0, 1) is continuous over X, (ii) There is some κ > 0
such that, for all ϵ > 0 small enough, any x ∈ X, there is
x′

∈ X such that

B

x′, κϵ


⊂ B (x, ϵ) ∩ X,

where B (x, ϵ) is the Euclidean ball with center x and radius
ϵ.

(A3) µ (y1, y0) is twice differentiable on Y1 × Y0 with bounded
second-order partial derivatives.

(A4) (i) The kernel K (·) is non negative and Lipschitz, i.e.,
K (x)−

K

x′
 ≤ L

x − x′
 for any x, x′

∈ Rd. The kernel K (·) has a
compact support and is bounded away from 0 over the unit
ballB (0, 1), (ii) The bandwidth sequence an satisfies an → 0,
nad+s

n / log3 n → ∞, and na2s+d
n → 0.

Assumption (A1)(i) implies that the conditional quantile
functions Qj (u|x), j = 0, 1, are continuously differentiable
with respect to (x, u) up to order s. An important implication
of Assumptions (A1)(ii) and (A2) is that the quantile density
function 1/


fj

Qj (u|x) |x


fj (x)


, which is proportional to the

asymptotic variance of many nonparametric quantile estimators,
stays bounded away from infinity. Assumption (A2)(ii), which is
from Fan and Guerre (2016), ensures that the bias of the local
polynomial quantile estimatorsQj (u|x) is of order O


asn

including

for x on the boundary of X and also u close to 0 and 1, see
Proposition C.3 in online Appendix C. The other assumptions are
standard, except the condition nad+s

n / log3 n → ∞ in Assumption
(A4)(ii). This condition is used to establish the asymptotic
normality ofθL andθU and is briefly discussed after Theorem B.2.

B.2. Asymptotic normality

Let e0 = (1, 0, . . . , 0)′ denote the first vector of the canonical
basis and

V 2
K ,an (x) = e′

0


P (v) P (v)′ K (v) 1 (x + anv ∈ X) dv

−1

×


P (v) P (v)′ K 2 (v) 1 (x + anv ∈ X) dv


×


P (v) P (v)′ K (v) 1 (x + anv ∈ X) dv

−1

e0.

Lemma C.2 in online Appendix C shows that under Assumption
(A2)(ii), V 2

K ,an (x) is well-defined uniformly over the support X
provided that an is small enough. Define also, for µj (y1, y0) =

∂µ (y1, y0) /∂yj,

G0L (u) =
µ0 (Q1 (u|x) ,Q0 (1 − u|x))

f0 (Q0 (1 − u|x) |x)
,

G0U (u) =
µ0 (Q1 (u|x) ,Q0 (u|x))

f0 (Q0 (u|x) |x)
,

G1L (u) =
µ1 (Q1 (u|x) ,Q0 (1 − u|x))

f1 (Q1 (u|x) |x)
,

G1U (u) =
µ1 (Q1 (u|x) ,Q0 (u|x))

f1 (Q1 (u|x) |x)
.

We are now ready to state the joint asymptotic normality ofθL (x) ,θU (x)
′
.

Theorem B.1. Suppose Assumption (IX) and (A1)–(A4) hold. Then,
for any x ∈ X,

nadn
VK ,an (x)

θL (x) − θL (x)θU (x) − θU (x)


=⇒ N


0,


σ 2
L (x) σLU (x)

σLU (x) σ 2
U (x)


,

with

σ 2
L (x) =

 1

0

 1

0

G0L (u)G0L (v)

f0 (x) Pr (D = 0)
{min (1 − u, 1 − v) − (1 − u) (1 − v)} dudv

+

 1

0

 1

0

G1L (u)G1L (v)

f1 (x) Pr (D = 1)
{min (u, v) − uv} dudv,

σ 2
U (x) =

 1

0

 1

0


G0U (u)G0U (v)

f0 (x) Pr (D = 0)
+

G1U (u)G1U (v)

f1 (x) Pr (D = 1)


{min (u, v) − uv} dudv,

and

σLU (x) =

 1

0

 1

0

G0L (u)G0U (v)

f0 (x) Pr (D = 0)
{min (1 − u, v) − (1 − u) v} dudv

+

 1

0

 1

0

G1L (u)G1U (v)

f1 (x) Pr (D = 1)
{min (u, v) − uv} dudv.

Theorem B.1 holds for all x in X, including the boundaries
of the support of the covariate X , showing in particular thatθL (x) ,θU (x)

′
is consistent when x lies on the boundary. The

asymptotic normality stated in Theorem B.1 holds under the
additional condition that the variance dominates the bias, that
is asn = o


1/

nadn


as ensured by Assumption (A4)(ii). The
asymptotic variance of TheoremB.1 involves the partial derivatives
of µ (y1, y0) due to the use of the Functional Delta method, the
inverse of fj


Qj (u|x) |x


which is typical of quantile estimation

asymptotics, and the inverse of fj (x) as expected from a local
polynomial method.

The proof of Theorem B.1 uses a Bahadur representation of
the local linear quantile estimator Qj (u|x) which is also useful in
other econometrics contexts, see Guerre and Sabbah (2012) and
Kong et al. (2010) among others. It is used here to derive sum
approximations forθL andθU ,
θL = θL +

1
n

n
i=1

(θL (Xi) − E [θL (X)] + rL (Wi))

+ OP


asn +


log n
nadn

3/4


+ oP


1

√
n


,

θU = θU +
1
n

n
i=1

(θU (Xi) − E [θU (X)] + rU (Wi))

+ OP


asn +


log n
nadn

3/4


+ oP


1

√
n


,
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where

rL (W ) =

 1

0

µ0 (Q1 (u|X) ,Q0 (1 − u|X))

Pr (D = 0) f0 (Q0 (1 − u|X) |X)
1 (D = 0)

{1 (Y ≤ Q0 (1 − u|X)) − (1 − u)} du

+

 1

0

µ1 (Q1 (u|X) ,Q0 (1 − u|X))

Pr (D = 1) f1 (Q1 (u|X) |X)
1 (D = 1)

{1 (Y ≤ Q1 (u|X)) − u} du,

rU (W ) =

 1

0

µ0 (Q1 (u|X) ,Q0 (u|X))

Pr (D = 0) f0 (Q0 (u|X) |X)
1 (D = 0)

{1 (Y ≤ Q0 (u|X)) − u} du

+

 1

0

µ1 (Q1 (u|X) ,Q0 (1 − u|X))

Pr (D = 1) f1 (Q1(u|X)|X)
1 (D = 1)

{1 (Y ≤ Q1 (u|X)) − u} du.

This gives the next theoremwhich states the asymptotic normality
of
θL,θU.

Theorem B.2. Suppose Assumption (IX) and (A1)–(A4) hold with
na2sn = o (1) and na3dn / log3 n → ∞. Then

√
n
θL − θLθU − θU


=⇒ N (0, Σ) ,where

Σ = Var


θL (Xi) + rL (Wi)
θU (Xi) + rU (Wi)


.

Compared to Theorems B.1 and B.2 includes two additional
bandwidth conditions, na2sn = o (1) and na3dn / log3 n → ∞,
which ensure that the remainder terms in the bias and Bahadur
expansions and of the local polynomial estimators Qj (u|x) are
negligible with respect to 1/

√
n. Note that these two conditions

implicitly impose the smoothness condition s > 3d/2, suggesting
that the order of the local polynomial quantile estimators and
the order of differentiability of the conditional quantile function
must increase with the dimension of the covariate X . This is in
line with the qualitatively similar dependence condition needed in
Powell et al. (1989, Theorem3.3) for average derivative estimation.
Whether the coefficient 3/2 in front of the dimension is outside the
scope of the present paper.

B.3. Variance estimation and asymptotic inference

The asymptotic variance of
θL (x) ,θU (x)

′
can be estimated

by plugging in the expression of σ 2
L (x), σ 2

U (x), σLU (x) estimators
of Pr (D = j), fj (x), and qj (u|x) = 1/fj


Qj (u|x) |x


, j = 0, 1 as

introduced now. Consider a univariate symmetric and Lipschitz
kernel K1 (y) with a compact support and


K1 (y) dy = 1 and a

bandwidth a1n < 1/2. Define

qj (u|x) =


Qj (u + a1n|x) −Qj (u|x)

a1n
, u ∈ [0, 1/2] ,Qj (u|x) −Qj (u − a1n|x)

a1n
, u ∈ (1/2, 1] ,

fj (x) =

n
i=1

1 (Di = j) K


Xi−x
an


adn

n
i=1

1 (Di = j)
, and

Pr (D = j) =
1
n

n
i=1

1 (Di = j) , j = 0, 1
is a modification of an estimator of ∂Qj (u|x) /∂u in Guerre
and Sabbah (2012), see also Hall and Sheather (1988) for an
unconditional version, which is well defined near the boundaries
u = 0, 1. The idea behind qj (u|x) is that Newton’s difference
quotient is an estimator of the derivative

qj (u|x) =
∂Qj (u|x)

∂u
=

1
fj

Qj (u|x) |x

 .
As Qj (u|x) is consistent for all x in X, qj (u|x) is a consistent
estimator of qj (u|x) even when x lies in the boundaries of X and
u is close to the boundary u = 0, 1. This will hold provided a1n
is negligible with respect to the consistency rate of Qj (u|x) as
assumed in the results below.

Let σ 2
L (x) and σ 2

U (x) be the corresponding plug-in estimators
of σ 2

L (x) and σ 2
U (x). It follows from Theorem 3.1 that θL (x) =

θU (x) if and only if at least one of F1 (·|x) , F0 (·|x) is degenerate.
As Assumption (A1) excludes the case that at least one of
F1 (·|x) , F0 (·|x) is degenerate, we only need to consider the case
θU (x) > θL (x). Following Horowitz and Manski (2000), define the
confidence set

CS1−α (x) =

θL (x) −
σL (x)

nadn
z1−α,θU (x) +

σU (x)
nadn

z1−α


,

where z1−α is the (1 − α) quantile of the standard normal
distribution. The next theorem shows that CS1−α (x) contains the
true θo (x) with an asymptotic probability of 1 − α.

Theorem B.3. Suppose the conditions of Theorem B.1 hold with
log n/


nadn
1/2

= o (a1n) and 0 < α < 1. Then for any x in the
interior of X,

lim
n→∞

inf
θL(x)≤θ0(x)≤θU (x)

Pr

θo (x) ∈ CS1−α (x)


= 1 − α.

Compared to Theorems B.1 and B.3 does not allow for x to lie
on the boundary of the support X. This is becausefj (x) is a biased
estimator of fj (x) for those x. Finding a bias correction forfj (x)
is in principle feasible using an estimation of the support X. By
contrast it is possible to find a confidence interval for θo which is
not affected by such issues as detailed now.

Estimation of the asymptotic variance of
θL,θU′ can be done

by plugging Qj (u|x),qj (u|x) and Pr (D = j) in the expression of
rL (w) and rU (w) to obtain some estimatorsrL (w) andrU (w) of
these functions. A natural estimator of Σ is then

Σ =
1
n

n
i=1

 θL (Xi) +rL (Wi) −

θL +rL (W )


θU (Xi) +rU (Wi) −

θU +rU (W )


×

 θL (Xi) +rL (Wi) −

θL +rL (W )


θU (Xi) +rU (Wi) −

θU +rU (W )
′

.

Letσ 2
L ,σ 2

U , andσLU be the entries of Σ . Then a confidence set for θo
is

CS1−α =

θL −
σL
√
n
z1−α,θU +

σU
√
n
z1−α


.

Theorem B.4. Suppose the conditions of Theorem B.2 hold with
nad+1

1n / log n → +∞, log n/

nadn


= o

as1n

, and 0 < α < 1.

Then

lim
n→∞

inf
θL≤θ0≤θU

Pr

θo ∈ CS1−α


= 1 − α.
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Both Theorems B.3 and B.4 are pointwise results in the true
probability measure characterizing the population. To construct
asymptotically uniformly valid CSs, we could follow Imbens and
Manski (2004) and Stoye (2009). To do so, we need to allow for at
least one of F1 (·|x) , F0 (·|x) to be degenerate and strengthen the
asymptotic distribution results so that they hold uniformly over a
class of distributions generating the sample information. This could
be done at the cost of increased technical complexity.

Appendix C. Algebraic derivations for Examples (i)-(IC) and (i)-
(IU)

This Appendix is self-contained. It presents Examples (i)-(IC)
and (i)-(IU) with detailed algebraic derivations.

Example (i)-(IC) (Correlation Coefficient). Let the covariate X∗ be
univariate. For notational simplicity, we denote X∗ as X in this
example. Suppose the distribution of (Yj, X) is known to be a
bivariate normal distribution:
Yj
X


∼ N


0
0


,


σ 2
j σjρjX

σjρjX 1


, j = 0, 1.

Then Assumption (IC) is satisfied with Yj|X = x ∼ N

σjρjXx, σ 2

j
1 − ρ2

jX


, j = 0, 1, and X ∼ N (0, 1). Obviously, Yj ∼ N


0, σ 2

j


.

Suppose σ 2
j > 0, j = 1, 0. Using Theorem 2 in Cambanis et al.

(1976), we get ρ10 ≡ corr(Y1, Y0) ∈

ρL, ρU


= [−1, 1],

so ρ10 is not identified. Now, we know that Yj|X = x ∼

N

σjρjXx, σ 2

j


1 − ρ2

jX


and X ∼ N (0, 1). Theorem 3.2(i) yields:

ρL ≤ ρ10 ≤ ρU , where

ρL = ρ0Xρ1X −


1 − ρ2

0X

 
1 − ρ2

1X


and

ρU = ρ0Xρ1X +


1 − ρ2

0X

 
1 − ρ2

1X


.

Three conclusions are immediate. First, ρL
≤ ρL, ρU ≤ ρU , and at

least one of the inequalities holds as a strict inequality if and only if
ρ0X + ρ1X ≠ 0 or ρ0X − ρ1X ≠ 0, implying that [ρL, ρU ] = [−1, 1]
iff X is independent of (Y1, Y0). This conclusion is consistent with
Theorem 3.3, since we can show that

Pr(F1o (y1|X) + F0o (y0|X) − 1 > 0) ∈ {0, 1}
for all (y1, y0) iff ρ0X + ρ1X = 0 and

Pr(F1o (y1|X) − F0o (y0|X) < 0) ∈ {0, 1}
for all (y1, y0) iff ρ0X − ρ1X = 0.

In fact, noting that Fjo

yj|X


= Φ[


yj − σjρjXX


/σj(1 − ρ2

jX )
1/2

]

(j = 1, 0), where Φ is the cdf of N (0, 1), we conclude that for the
lower bound, F1o (y1|X) + F0o (y0|X) − 1 > 0 is equivalent to

Φ

y1 − σ1ρ1XX

σ1


1 − ρ2

1X

 > Φ

−
y0 − σ0ρ0XX

σ0


1 − ρ2

0X

 ⇔


j=0,1

yj

σj


1 − ρ2

jX

>


j=0,1

ρjX
1 − ρ2

jX

 X .

It follows from X ∼ N (0, 1) that Pr

F1o

y1|X


+ F0o


y0|X


−

1 > 0


∈

0, 1


for all (y1, y0) if and only if ρ1X/


1 − ρ2

1X +

ρ0X/


1 − ρ2

0X = 0, which is a condition equivalent to ρ0X +ρ1X =

0. Similarly, we can show the result for the upper bound. Second,
when ρ0Xρ1X > 0 and ρ2

0X + ρ2
1X > 1, we have 0 < ρL ≤ ρU ,

so ρ10 is positive and when ρ0Xρ1X < 0 and ρ2
0X + ρ2

1X > 1,
we have ρL ≤ ρU < 0, so ρ10 is negative. Third, ρ10 is point
identified (i.e., ρL = ρU = ρ10) if and only if ρ2

0X = 1 or
ρ2
1X = 1; this condition is equivalent to Var [Y0|X = x] = 0 or

Var [Y1|X = x] = 0 for all x, that is, at least one of the conditional
marginal distributions of Y0 and Y1 given X = x is degenerate (at
σ0ρ0Xx and σ1ρ1Xx respectively) for almost all x; in this case, ρ10 is
point identified at either ρ0X sign (ρ1X ) or ρ1X sign (ρ0X ). The third
conclusion confirms that in Theorem 3.2(ii).

Example (i)-(IC) demonstrates that when the dependence
between (Y1, Y0) and covariate X is strong enough in the sense that
ρ2
0X +ρ2

1X > 1, the identified set for ρ10 excludes 0 so identifies the
sign of ρ10.

Example (i)-(IU) (Correlation Coefficient). Consider the following
special case of the latent threshold-crossing model (3):

Y1 = g1(X) + U1, Y0 = g0(X) + U0, and D = I{g (Z) − ϵ > 0}.

Since the distribution of ϵ conditional on X is normalized to be
U (0, 1), the distribution of V ≡ Φ−1(ϵ) conditional on X is
N(0, 1), where Φ(·) is the cdf of N(0, 1). Suppose that (U1,U0, ϵ)

′

is independent of Z conditional on X , implying that Assump-
tion (IU)(ii) holds. Then the joint distribution of (U1,U0, V , X,Z)′

can be expressed as f (u1, u0, v, x, z) = f (u1, u0, v, x)f (z|x). Thus
we only need to consider the joint distribution of (U1,U0, V , X)′.

Let U = (U1,U0)
′, X∗

= (V , X)′ and assume for simplicity that
gi(X) = µi (i = 1, 0) are constants and (U1,U0, V , X)′ follows a
multivariate normal distribution:
X∗


∼ N


0
0


,


Σ11 Σ12
Σ21 Σ22


, (C.1)

where Σ21 = Σ ′

12,

Σ11 =


σ 2
1 σ1σ0ρ10

σ1σ0ρ10 σ 2
0


, Σ12 =


σ1ρ1V σ1σXρ1X
σ0ρ0V σ0σXρ0X


, and

Σ22 =


1 σXρXV

σXρXV σ 2
X


.

Then the conditional distribution of Y ≡ (Y1, Y0)
′ given X∗ is

normal:

Y |X∗
∼ N


µ + Σ12Σ

−1
22 X∗, Σ11 − Σ12Σ

−1
22 Σ21


, (C.2)

where µ = (µ1, µ0)
′ and the expression for Σ11 − Σ12Σ

−1
22 Σ21 is

given as follows:

Σ11 − Σ12Σ
−1
22 Σ21 =


a11 a10
a10 a00


, (C.3)

in which

a11 = σ 2
1


1 − ρ2

XV − ρ2
1V − ρ2

1X + 2ρ1Vρ1XρXV

1 − ρ2
XV


,

a00 = σ 2
0


1 − ρ2

XV − ρ2
0V − ρ2

0X + 2ρ0Vρ0XρXV

1 − ρ2
XV


, and

a10 = σ1σ0


ρ10 −

ρ1Vρ0V + ρ0Xρ1X − ρ0Vρ1XρXV − ρ0Xρ1VρXV

1 − ρ2
XV


.

The fact that −1 ≤ corr(Y1, Y0|X∗) = a10/
√
a11a00 ≤ 1 implies

that ρL ≤ corr(Y1, Y0) ≡ ρ10 ≤ ρU , where

ρL =


ρ1Vρ0V + ρ0Xρ1X − ρ0Vρ1XρXV − ρ0Xρ1VρXV

1 − ρ2
XV



−


1 − ρ2

XV − ρ2
1V − ρ2

1X + 2ρ1Vρ1XρXV
 

1 − ρ2
XV − ρ2

0V − ρ2
0X + 2ρ0Vρ0XρXV


1 − ρ2

XV

(C.4)
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and

ρU =


ρ1Vρ0V + ρ0Xρ1X − ρ0Vρ1XρXV − ρ0Xρ1VρXV

1 − ρ2
XV



+


1 − ρ2

XV − ρ2
1V − ρ2

1X + 2ρ1Vρ1XρXV
 

1 − ρ2
XV − ρ2

0V − ρ2
0X + 2ρ0Vρ0XρXV


1 − ρ2

XV

(C.5)

Case I. Suppose U1 and U0 are jointly independent of V
conditional onX, Z . Then the selection-on-observables assumption
(i.e., Assumption (IX)) holds. It follows from Assumption (IU)(ii)
that U1 and U0 are also jointly independent of V conditional on
X , implying that ρ1V − ρ1XρXV = 0 and ρ0V − ρ0XρXV = 0.
Both constraints follow from the fact that U∗

≡ (U1,U0, V )′|X ∼

N(ΣU∗XX/σ 2
X , ΣU∗ − ΣU∗XΣXU∗/σ 2

X ), where ΣXU∗ = Σ ′

U∗X =
σ1σXρ1X σ0σXρ0X σXρXV


,

ΣU∗ =

σ 2
1 σ1σ0ρ10 σ1ρ1V

σ 2
0 σ0ρ0V

1

 ,

and
ΣU∗ − ΣU∗XΣXU∗/σ 2

X

=

σ 2
1


1 − ρ2

1X


σ1σ0 (ρ10 − ρ1Xρ0X ) σ1 (ρ1V − ρ1XρXV )

σ 2
0


1 − ρ2

0X


σ0 (ρ0V − ρ0XρXV )

1 − ρ2
XV

 .

(C.6)

It follows from ρ1V − ρ1XρXV = 0 and ρ0V − ρ0XρXV = 0 that the
bounds in (C.4) and (C.5) reduce to those in Example (i)-(IC):

ρL = ρ
(1)
L ≡ ρ0Xρ1X −


1 − ρ2

0X

 
1 − ρ2

1X


and (C.7)

ρU = ρ
(1)
U ≡ ρ0Xρ1X +


1 − ρ2

0X

 
1 − ρ2

1X


. (C.8)

It should be noted that the bounds in (C.7) and (C.8) are also those
obtained by using only the conditional distribution information
given X (that is, from −1 ≤ corr(Y1, Y0|X) ≤ 1, we can get
ρ

(1)
L ≤ corr(Y1, Y0) ≡ ρ10 ≤ ρ

(1)
U ).

Case II. We now demonstrate that when there is endogenous
selection, i.e., U1,U0 are not jointly independent of V conditional
on X, Z , the bounds in (C.7) and (C.8) may be tightened. Consider
the special case of ρXV = 0. In this case, the bounds ρL and ρU in
(C.4) and (C.5) reduce to:

ρ
(2)
L ≡ (ρ1Vρ0V + ρ0Xρ1X )

−


1 − ρ2

1V − ρ2
1X

 
1 − ρ2

0V − ρ2
0X


and (C.9)

ρ
(2)
U ≡ (ρ1Vρ0V + ρ0Xρ1X )

+


1 − ρ2

1V − ρ2
1X

 
1 − ρ2

0V − ρ2
0X


. (C.10)

A straightforward calculation shows that (i) ρ
(1)
L ≤ ρ

(2)
L and

ρ
(2)
U ≤ ρ

(1)
U , implying that on the one hand, with endogenous

selection (i.e., ρ1V ≠ 0 and ρ0V ≠ 0) the identified set
would be tightened; on the other hand, the identified set based
on more conditional distribution information (i.e., given X∗

=

(V , X)′) should be smaller than that based on less conditional
distribution information (i.e., given X only), (ii) ρ

(1)
L = ρ

(2)
L

iff ρ1V


1 − ρ2

0X + ρ0V


1 − ρ2

1X = 0 and ρ
(2)
U = ρ

(1)
U iff

ρ1V


1 − ρ2

0X − ρ0V


1 − ρ2

1X = 0.
The result (ii) can also be obtained from Proposition 4.2. Here

we show it only for the case of ρ
(2)
U = ρ

(1)
U . Note from (C.2)

that Yj|X∗
∼ N


µ∗

j , ajj

and Fjo


yj|X∗


= Φ


yj − µ∗

j


/
√
ajj


(j = 1, 0), where µ∗

j ≡ µj +

bjVV + bjXX


with bjV ≡ σj(ρjV −

ρjXρXV )/(1 − ρ2
XV ) and bjX ≡ σj(ρjX − ρjVρXV )/σX


1 − ρ2

XV


, and

ajj (j = 1, 0) are defined in (C.3). Then F1o (y1|X∗)−F0o (y0|X∗) < 0
is equivalent to (y1 − µ∗

1)/
√
a11 < (y0 − µ∗

0)/
√
a00, specifically,

y1 − µ1
√
a11

−
y0 − µ0
√
a00

<


b1V

√
a11

−
b0V

√
a00


V

+


b1X

√
a11

−
b0X

√
a00


X . (C.11)

Obviously, since V |X ∼ N(0, 1) when ρXV = 0, Pr

F1o (y1|X∗)

− F0o (y0|X∗) < 0|X


∈ {0, 1} for all (y1, y0) if and only if the
coefficient of V in (C.11) is equal to zero, that is, b1V/

√
a11 −

b0V/
√
a00 = 0. This condition can be reduced to ρ1V


1 − ρ2

0X −

ρ0V


1 − ρ2

1X = 0 when ρXV = 0. In conclusion, with ρXV = 0

and ρ2
jX < 1, as long as U1 and U0 are not jointly independent of V

conditional on X (i.e., ρ1V ≠ 0 or ρ0V ≠ 0), the identified set can
be strictly tightened.

The bounds ρ
(2)
L and ρ

(2)
U with endogenous selection are able

to identify the sign of ρ10 under quite weak conditions on the
dependence between (Y1, Y0) and the observable covariate X . It
follows from (C.9) and (C.10) that when ρ1Vρ0V + ρ0Xρ1X > 0 and

ρ2
1X


1 − ρ2

0V


+ ρ2

0X


1 − ρ2

1V


+ 2ρ1Vρ0Vρ0Xρ1X

+ ρ2
0V + ρ2

1V − 1 > 0, (C.12)

we have 0 < ρ
(2)
L ≤ ρ

(2)
U , implying that ρ10 is positive; when

ρ1Vρ0V + ρ0Xρ1X < 0 and (C.12) holds, we have ρ
(2)
L ≤ ρ

(2)
U < 0,

implying a negative ρ10. From (C.12), we can see that as long as the
correlations between V ≡ Φ−1(ϵ) and Uj (i.e., ρ1V and ρ0V ) are
strong enough so that ρ2

0V + ρ2
1V > 1, we can identify the sign of

ρ10 under quite weak conditions on ρ0X and ρ1X : ρ10 > 0 when
ρ0Xρ1X ≥ 0 with ρ1Vρ0V > 0, and ρ10 < 0 when ρ0Xρ1X ≤ 0
with ρ1Vρ0V < 0. Obviously, these conditions on ρ0X and ρ1X
(i.e., ρ0Xρ1X ≥ 0 or ρ0Xρ1X ≤ 0) cannot identify the sign of ρ10
without endogenous selection.

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2016.10.005.
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