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Visualization Display Models – ways to classify
visual representations
Jonathan C. Roberts
Computing Laboratory, University of Kent at Canterbury, England, UK, CT2 7NFJ.C.Roberts@ukc.ac.uk

Abstract
Visualizations are generated of diverse data and use many
different techniques and visual methods. It is often ben-
eficial to evaluate what is being visualized and how the
visualization is made-up. Such an analysis may aid the de-
veloper, to understand what ‘tools’ are available, and help
the user to reference and compare different realizations.

Display models specifically classify the data by what
type of output can be created. We review many ‘display
oriented models’ and discuss important aspects of these
methods and ideas. In presenting these models we encour-
age their use. In particular we focus on the symbolic ref-
erence model of Jacques Bertin [2]. He used this model
to describe images and 2D visualizations. We translate
Bertin’s scheme into an algebraic form as a method to de-
scribe visualizations.

Key words: Display models, Visualization reference
models, Bertin’s semiology.

Introduction
Visualization is both a process ofpresentationanddiscov-
ery. Through using different techniques the visualizer dis-
plays the data in such a way as to allow the user to gain
a deep understanding of the underlying information. The
user and visualizer may be the same person, then an ex-
ploration environment is formed, where the user can try
different scenarios and parameters to gain a correct under-
standing of the information.

The original data may be numeric or textual informa-
tion, sampled from the real world, simulated using mathe-
matics or gathered from ideas; whatever its origin the aim
is the same: to present the concept or information in or-
der that insight and understanding is gained by the user or
observer.

There are many diverse data types, data storage meth-
ods, system configurations and dimensions all with differ-
ent names, terminology and described by different models.
Thus, it is beneficial to classify the ‘systems’, so that they
may be grouped and compared. In this paper we focus on
the ‘display methods’ of visualization.

Display models classify the information by what type
of output may be created. For example, it may be possible
to say “this visualization is one of thoseOS(O1)”. Sim-
ple, and complex, classifications exist. For example, it is
possible to use the dimensionality of the data to classify
the images. But it is useful to also use the dimensional-
ity of the output and the primitives used in the realization,
because it is possible to generate different outputs of the
same information (Multiform representations [15]).

In multiform visualization, a three dimensional con-
struction of a building, for example, may be visualized in
two ways (1) using a solid surface rendering that shows a
more realistic representation of the design and (2) with a
wire-frame representation, that allows internal parts of the
construction to be viewed. Both of these examples have
their advantages and disadvantages, occlusion is the ma-
jor problem in the surface view, whilst depth cueing is an
issue in the wire frame.

In this paper we present different display models. Such
models (1) aid the developer and visualizer to understand
what tools and techniques are available, and (2) help the
observer to compare different generated visualizations.
One of the models we review is Bertin’s model. This
model [1, 2] allows ‘image space’ components to be de-
scribed with a graphical method. It is possible to transfer
this method into an algebraic form, and we present one
such algebraic scheme and use it to describe different vi-
sualization techniques.

Visualization – a conceptual Model
Visualization is about seeing the unseen and gaining an
understanding of the underlying information. The Oxford
English Dictionary [17], defines visualization to be “The
action or fact of Visualizing; the power or process of form-
ing a mental picture or vision of something not actually
present to the sight; a picture thus formed”.

In essence there are two main processes (see Figure 1).
One ofvisualizationthat changes data, concepts and infor-
mation into a representation that viewed by the user, and
the other ofperception, where the user tries to understand
the information.

Within visualization, the graphical medium is often
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Figure 1: Thinking about visualizations, an abstract model

used to portray the information. However, other medi-
ums may be used, such as touch – in the form of move-
ment, from (say) force feedback armatures or joysticks –
or sound (known as sonification). The art here is to gen-
erate a representation that may be correctly understood.
Visual cues such as shading, colour, shadows, perspec-
tive [21] may be used to aid the user in the perception task.

In the book ‘The art of thought’ Graham Wallas [20]
distinguishes four thought stages: Preparation, Incubation,
Illumination and Verification. These, represented by the
right side of Figure 1, provide an abstract series of meth-
ods describing one way we ‘think’. At the preparation
stage we are conscious of learning and gaining knowledge,
that perhaps needs to incubate, while we question the phe-
nomena and allow our subconscious to work out the spatial
quantities before illumination occurs. Then we can use our
‘logic’ to question and verify the notions gained.

Display models are the left side of Figure 1 and describe
visual methods that may be employed to generate a visu-
alization. There are many processes involved in generat-
ing a visualization. A commonly adopted reference is the
dataflow model, Figure 2 (Upson [19], and Haber and Mc-
Nabb [8]). Here, the information is said toflow through a
series of processes being changed into a visual represen-
tation that is displayed as an image. Afilter process se-
lects the information required for this representation, the
mapprocess then exchanges the data into an Abstract Vi-
sualization Object (AVO) – an abstract (often geometric)
form representing the selected information – which is then
rendered and displayed as an image. This is a good gen-
eral model and is used in many visualization systems, for
example, AVS [19], IBM Data Explorer [13] and IRIS Ex-
plorer [9].

There are many models that are relevant to visualiza-
tion, including user interaction, user requirements and
communication models, see Figure 3. The ‘display meth-
ods’ focus on how the information is represented, they
consider the visual primitives of the mapping stage (Fig-
ure 3A) and/or the form of the final image (Figure 3B).

We start be looking at the data and dimensionality of the
display, as a simple method of categorizing a visual repre-
sentation. We then describe a ‘display primitive’ classifi-

Data

Filter RenderMap

subset AVO Image

Figure 2: The dataflow model of visualization. The in-
formation is filtered, to select the required information,
mapped into an Abstract Visualization Object (an abstract
geometric representation of the information), and rendered
to generate the image.

Data

Filter RenderMap

subset AVO Image

Communication Models

User Requirements
Modelling

A

User Interaction
Models

Data Models

Programing and
Computation Models

Display Models

B

Figure 3: Models relevant to visualization. They are de-
picted how they relate to the dataflow paradigm.

cation, then include the ‘output primitives’, describe some
‘underlying field’ methods and look at display models for
automated visualization design. Finally, we describe an
algebraic realization of Bertin’s graphical schema. Alter-
natively, the methods may be themselves grouped by their
styles, into catalog and tabular models, graphical and fi-
nally algebraic models.

Data and Dimensionality
Our first classification categorizes the realizations by the
dimensionality of the output. For example, a time line is
a 1D visualization, a scatter plot is represented on a 2D
plane, while a representation of a building is described in
three dimensional space. Note, in this case, we are evaluat-
ing the dimensionality of the representation, and not of the
image – as image space is 2D! The dimension is one clas-
sifier, but is is useful to include other methods to generate a
greater range and therefore a more detailed classification.

Another classifier is the dimensionality of the data.
For example, Earnshaw and Wiseman [6] provide such a
general “Data and Display Dimensionality” classification
scheme, Table 1.

As an additional qualification it is possible to evaluate
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Display Dimensionality of the Data
Dimension 1D 2D 3D nD
0D Points Scatter Plots(S,M) 3D Scatter Plots(S, M)

Tri-Scatter Plot(S)
Dot Surfaces(S)

1D Lines / Contour Maps(S) Vector Arrows(V)/
Curves(S) Streamlines(V)

2D – Height Fields(S) Tiled Surfaces(S) Attribute
Colour Maps(S) Ribbons(V) mapping (S,M)

3D – – Solid (S)/ Glyph (T)
Volume Modelling (S) icon (M)

Table 1: Examples classified by Data and Display Dimensions,after Earnshaw/Wiseman [6]. The table also includes
the Scalar (S), Vector (V) and Tensor (T) categories of Collins [5] and notes some as being Multivariate (M) methods.

what style of data is being represented. For example, an
imaginary dataset of construction materials may include
a list of different parts stored with an associated location
coordinate. This dataset represents scalar (or single valued
data) in position space. In another dataset, air-flow may be
monitored within a room of a building. In this example,
the data is stored as position (3D coordinate) information
with the direction of the air flow represented by three fields
at every position: the data is represented by a vector field.
Finally, the third field-type is named a Tensor, that enables
stretch and compression forces to be stored.

Collins [5] extends Earnshaw and Wiseman’s model to
include the data types of Scalar (S), Vector (V) and Tensor
(T). Table 1 presents these S,V and T classifiers with mul-
tiple display examples; some of these are explained below:

Attribute Mappingmaps attributes to a surface, using
colours and textures.

Colour Maps are formed by mapping colour, from the
range of the data values, onto a 2D image.

Dot Surfacesare surfaces that are made from points.

Glyphs represent symbols that change in appearance de-
pending on the values and position within the data,
and can depict values, vectors and tensors.

Height Fields are generated from creating a height (ter-
rain) at each point on two dimensional data.

Further aspects of the data could be used as classifiers,
such as the organisation of the data: whether regular, ir-
regular, sparse or curvilinear. However, this then becomes
an evaluation of ‘data models’. It is useful to evaluate the
data for use within the ‘display models’ and we revisit this
in the “Underlying Field Models” section. Refer to [7, 18]
for more information about data types, styles and manage-
ment.

Figure 4: Diagrams, Networks, Maps and Symbol display
classification, after Bertin.

This ‘data and dimensionality’ categorization is a use-
ful method. Here every realization may be evaluated and
included in the categorization. The scheme enables visu-
alization methods to be compared. Indeed, it is a good
way to evaluate the functionality of (say) different visu-
alization systems. This is because it is easy toseewhat
‘style’ of data and output the system supports. However,
such tabular techniques have a major disadvantage, that it
is impossible to label individual representations.

Display Primitives
At a more abstract level than the previous tabular method,
we describe the visualizations by their style of represen-
tation, distinguishing between (say) a diagram and a map.
Bertin [1, 2] presents one such ‘display primitive’ model.
He categorizes the displays as Diagrams, Networks, Maps
and Symbols (DNMS) depicted pictorially in Figure 4.

Diagrams include bar charts, scatter plots, histograms
and schematics;

Networks describe trees and path connections, for exam-
ple.
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Figure 5: A mapping of visualization techniques as a
graph, after Lohse [12]. These are similar to Bertin’s Dia-
grams, Networks, Maps and Symbol categories.

Maps include any geographical maps and diagrams that
the positions are constrained by a “real life” object.
The maps often incur a non-uniform spatial projec-
tion that must be understood when reading the map.
For example, the spherical surface of the Earth is of-
ten mapped onto a flat two dimensional geographical
map.

Symbols include signs and icons.

More recently Lohse et al [12], with many volun-
teers, have classified multiple visualization representa-
tions. Subjects sorted the visual representations into clus-
ters of objects, from which a hierarchical tree diagram
was created. The clusters formed groups of graphs, tables,
maps, diagrams, icons and network charts; similar group-
ings to the DNMS classification of Bertin. A scatter plot,
of icons to networks (on one axis) against graphs, tables
to maps and diagrams (on the other axis) was generated,
Figure 5.

Such a DNMS classification is very useful, simple and
the classifications may be labelled on the visualizations
themselves. It is possible to further sub-divide the cate-
gories (such as the diagrams into specific types of schemat-
ics), but the finer detailed categories become more subjec-
tive. Additionally, it is useful to include the dimension, or
number of components of the mapped-data, as shown in
Figure 8.

Output Primitives
In order to generate a more detailed classification we in-
clude the output primitives within the DNMS categoriza-
tion.

As we see from the aforementioned dataflow model,
each component of the data is mapped into the AVO form.

Shape

Orientation

Texture

Value

Size

Point Line Area

Colour

Figure 6: Retinal Variable Examples, after Bertin

Thus, the individual components are exchanged for an out-
put primitive. Bertin [1, 2] describes six such representa-
tion methods, that he namesRetinal Variables. These are
shape, orientation, colour, texture, value and size. He also
describes that the variables may be classified and config-
ured as a point, line or area. Figure 6 describes the retinal
variables aspoints, linesor area. It is also possible to in-
clude a volume configuration, this is relevant for modern
3D visualizations and displays.

In addition to the six retinal variables, Bertin includes
position. Most of his examples were two dimensional pic-
tures, however, it is possible to extend this method to in-
clude three (or possiblyN ) spatial dimensions – if this is
understandable by the user. Other people have extended
these six; indeed, colour may be separated into categories
of Hue, Saturation and Brightness, and attributes such as
transparency and animation (time) may be added to the list
of primitives [11].

Component Organization

Bertin continues by designating a level oforganizationto
each primitive. The level of organization can be compared
with the retinal variables in classifications of point, lineor
area; this is shown, with the planar dimensions, in Table 2.
A primitive can therefore be:

Associative(�) where any object can be immediately iso-
lated as belonging to the same category, and each ob-
ject can be considered assimilar.
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Retinal Point,
Variable Line or � 6= O Q

Area

Shape p,l,a
p

Orientation p
p p

l
p p

a
p

Colour p,l,a
p p

Texture p,l,a
p p p

Value p,l,a
p p

Size p,l,a
p p p

Planar
Dimensions

–
p p p p� Associative,6= Selective,O Ordered,Q Quantitative

Table 2: Retinal Variables, after Bertin

Selective(6=) where each object can be grouped into a cat-
egorydifferencedby this variable (forming families).

Ordered (O) that allows each element to be grouped into
an order of scale.

Quantitative (Q) where each element can be compared to
be greater or less than another element. This includes
values as percentagesQ% and logarithmslogQ.

Utilization of the Image Space

Additional to theretinal variables, the configuration(as
points, lines or areas) and theirorganization, it is possi-
ble to describe how the mapped parameters utilize the im-
age space. Indeed, Bertin describes different arrangements
such as circular and irregular, and how the quantities are
repeated or use the dimension of the plane. He represents
these as lines, arcs and arrows, Figure 7.

An Iconic representation

Each image (or visualization) may be represented by an
icon, made from theconfiguration, organizationanduti-
lization of the image space.

We extend Bertin’s representation to include a Com-
posite classification and allow the perspective drawing
method (of Bertin) to represent three-dimensional space.
This Composite category includes images that use multiple
primitives, such as, a diagram of glyphs or a map (show-
ing geometric information) with a network (showing con-
nectivity information). Figure 8 shows some visualization
techniques within Bertin’s classification structure.

xn

Perspective
Drawing

Circular
Arrangement

Irregular
Arrangement

Regular
Arrangement

Map

GEO

Dimension 
of the plane

Categories
repeated several
times (e.g. Bar chart)

A number 
of images

Cumulative 
quantities on
this dimension

Figure 7: Utilization of the image space, after Bertin

The Organization of each component is not depicted in
this large diagram, to keep the clarity of the schematic.
However, this information can easily be included but the
component of Organization often depends on the data be-
ing represented and on the method of representation. Fig-
ure 9 shows some examples with one particular Organiza-
tion classification.

Bertin’s ‘icon’ representation and classification mode
are very useful. The icons may be described on a per-
image basis, which allows the classification to be trans-
mitted with the realization. Although it is more difficult to
compare different representations using the symbolic rep-
resentation, the categorization itself aids the developerto
‘evaluate’ and generate different representations (by, for
example, exchanging the retinal variables). This model
is able to categorize diverse methods such as pie and bar
charts, scatter plots and three dimensional isosurface dia-
grams.

Underlying Field Models
Display models that evaluate solely the output image are
fine, but perhaps the underlying data-fields should have
more prominence within a display model. Brodlie [4] de-
scribes a classification model that “models the underlying
field rather than the dimensionality and order of the sam-
pled data”, creating a conceptual model, Figure 10. He
uses an algebraic expression to describe the underlying
field and display.

Brodlie splits the data into two cases ofordinal (O)and
nominal (N)which describe order and no associated order,
respectively. Scalar, Vector and Tensor details are refer-
enced as S, V and T, that represent the type of the data, and
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Figure 8: Output Classification Model, after Bertin, diagram representations by Roberts
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Histogram

GEO
x n

Multiple stacked
grey scale slices.

Network Diagram Diagram Network Map

1 Component 2 Components 3 Components 4 Components

Pie Chart

2 Components

Figure 9: Output Classification Model with Component Organization, after Bertin

are applied to the basic type (N or O) as superscripts. Inde-
pendent variables are noted inside parenthesis and a range,
or an aggregate, is labelled inside square brackets. The di-
mensions of each variable is noted as subscripts; positions
in two dimensional space can be represented byO2; sim-
ilarly the number of components of a Vector (V), such as
two, is represented byV2 and the components of a Tensor
(each separated by colons), such as a three by three dimen-
sional tensor, are represented byT3:3. Some examples are
described in Table 3.

Brodlie, in his model, distinguishes Ordered and Nomi-
nal categories, these are comparable to the Associative�,
Selective6=, OrderedO and QuantitativeQ categories of
Bertin. It is worth to highlight the fact – as mentioned by
Hibbard et al [10] – that scalar quantities in the data map to
primitives that represent continuous values (such as time to
animation or position) and data that is discrete is mapped
to discrete display variables. Likewise, the ordered quan-
tities may appropriately map onto orderable display prim-
itives.

Further, when data is depicted with multiple variables
it is mapped onto many different retinal variables. Now,
some of the mappings are better at representing different
styles of data (e.g. nominal or ordered), as seen in Table 2.
Indeed, perception rules have been developed that address
this issue – these are used in the Automated Visualization
systems, see section below. It is possible to see that the
representations of the information are more or less accu-
rate to an ‘ideal display’. Indeed the representations are
‘approximations’ as they are displayed with a finite reso-
lution in space. Thus it is possible to form a Lattice of dif-
ferent realiztions ‘ordered according to their information
content’ [10] to provide a notion of how precise the repre-
sentations are compared to an ‘ideal display’. Moreover,
we could explain that the multiforms – generated through
mapping different display primitives – are more, less or
equal abstractions of the underlying information.

These ‘underlying field’ models enable the user to eval-
uate the data to provide an appropriate representation, in-

Data Modelling Underlying
Field

Viewing Image

Field Classification Display Classification

Figure 10: Underlying Field Visualization Process Model

Output Field Display
Method Classification Classification
Histogram OS(O1) OS([O1℄)
Bar Chart OS(N1) OS(N1)
2D Contouring OS(O2) OS(O1)
Surface Rendering
(from 3D data)

OS(O3) OS(O2)
Volume Rendering OS(O3) OS(O3)
3D wind, arrow plot OV3(O3) OV3(O3)

Ordinal(O), Nominal(N), Dimensions 1, 2, 3 etc.,
Scalar(S), Vector(V), Tensor(T)

Table 3: Visualization Classification Examples, after
Brodlie
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Object Classes Operation Classes

scalar identify
scalar field locate
nominal distinguish
direction categorize

direction field cluster
shape distribution

position rank
spatially extended object compare

structure within and between relations
associate
correlate

Table 4: Object and Operation Classes, after Wehrend and
Lewis

deed, its not the data itself, we wish to represent, but
the underlying phenomena. Such models form a useful
grounding for the ‘display models’. Additionally, with
Brodlie’s method, individual representations may be la-
belled. Brodlie explains that this system allows the under-
lying data field and the display technique to be classified,
but it does not classify multiple techniques. For example,
“temperature over an aircraft wing, is a two dimensional
subspace within three dimensional space”.

Categorize by tasks
A user observes the visualization by using ‘perception
tasks’. These may be described as the operations required
to understand the retinal variables, such as working out a
length of an object or its position in regard to the axis.

Such tasks are used by Wehrend and Lewis [22] who
generate a matrix of display techniques of ‘Object Classes’
against ‘Operation Classes’. Object Classes are defined by
the nature of the target domain, such as a scalar value and
the shape of an object. The Operation Classes define the
user’s goal, whether to read off an actual value (Identify)
or to compare two such values (Compare), for example.
Table 4 lists the Object and Operation Classes.

This ‘catalog’ of techniques does not hold information
about the difference, similarity or merits of each tech-
nique, but can be used as a reference into techniques that
are available.

Display Models for Automated Visualization
Design
Some visualization systems automatically create the visu-
alizations from a database of knowledge (metadata infor-
mation) and user requirements. These tools classify the
display variables to generate an appropriate visualization
automatically.

The Vista tool [16], for example, creates appropriate vi-
sualizations by asking the user to preference each variable.
Perception rules are applied to the variables such as “posi-
tion is more effectively perceived than colour” and quan-
titative information is easier to perceive “by using geom-
etry rather than colour”. Vista divides the primitive visu-
alization techniques into Positional, Temporal and Retinal
variables. Positional is divided further into one, two and
three dimensions. Animation is used to depict the Tem-
poral variables and the Retinal variables are divided (like
Bertin) into colour, shape, size, orientation and texture.

Mackinlay [14] designed APT (A Presentation Tool),
based on terminology from Bertin [2] and the effective-
ness of visual perception from the work of Cleveland and
McGill. Mackinlay composes complex presentations from
simpler presentations, where each less complex presenta-
tion displays a subset of the overall information. The tool
can create effective displays of bar charts, scatter plots and
connected graphs. Beshers and Feiner [3] discuss many
other Automated Visualization Design tools.

Algebraic Extension to Bertin’s Model
Bertin’s model uses a graphical notation to describe the
different display techniques. He encodes the type of the
display, utilization of the image space and the organisation
of the component. This classification scheme could be rep-
resented in algebraic notation. We propose one method to
encode the type of the display and the utilisation of the im-
age space. The organisation of the component depends on
the data and the type of retinal variable used to display the
component, so it is not encoded in this scheme.

Classifiers

We break, as before, the images into: Diagrams (D), Net-
works (N ), Maps (M ) and Symbols (S). ThereforeD,N ,M andS represent the classifiers. However within an im-
age display some of the components are represented by the
retinal variables (such as size, shape and colour). The clas-
sifiers are extended to include these Retinal Variables (R).
The scheme encodes no distinction between the types of
the retinal variables, but does encode the total amount of
retinal variables used in a particular view. (See Classifier
Quantity, section ).

Multiple images, or multiple views [15], such as a ma-
trix of histograms, are represented by Bertin with ‘�n’
symbols. Our scheme represents these by the letterX.

Symbols (including icons and glyphs) and Retinal vari-
ables can be explained as describing the same component.
For example, a glyph, such as a temperature gauge, is rep-
resented by the retinal variable size. In some instances the
reverse is also possible where, for example, every point in
a diagram is represented by a circle symbol. Our scheme
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therefore overloads the retinal operator (R) to represent
both retinal variables (R) and the symbol (S) classifiers.
Moreover, the classifiers now only includeD, N , M , X
andR; i.e. S is excluded.

Classifier Quantity

Bertin represents each component as a single closed arrow,
the total number of components therefore being calculated
from the number of arrows in the graphical representation.
We represent the number of components (for a particular
classifier) as a power. A scatter plot diagram (ofx compo-
nent against ay component) could then be represented byD2.

The total number of components for a particular display
can be calculated by adding the powers together.

Moreover, if the Symbol (S) classifier was included
(with the Retinal VariableR), the quantity classifier would
need to represent zero components. The example of a tem-
perature gauge (with the retinal variable size) could be rep-
resented by (the composite form of)S0R1.

Utilization of the Image Space

Bertin describes the utilization of the image space in cat-
egories of: regular, irregular, circular and perspective ar-
rangement; our scheme divides them similarly, and names
them:r, i, 
 andp respectively.

The symbols, for example, do not easily fall under this
classification as not having any particular arrangement;
however, we represent the symbols under the irregular
classification.

Expression Form

The algebraic expressions are formed from Classifiers and
a ‘Method of utilizing the image space’ and a power rep-
resents the number of components for this classifier. For
example, a circular network of objects depicting their con-
nectivity with one retinal variable (representing the num-
ber of elements in the object) is represented byN
1R1,
the total amount of components being two.

Composite forms are generated by joining the single ex-
pressions together. Brackets are used to disambiguate the
scope of the the multiple classifierX. For example a group
of stacked grey scale slices (maps) can be represented byX1(Mr2R1).
Examples and Summary

Table 5 lists some display methods with their appropri-
ate Algebraic notation; the algebraic display methods are
taken from the schematics in Figure 8.

The algebraic form allows complicated displays to be
described as composite groups of statements, but the

Algebraic
Display Methods

Form

Time Line Dr1
Histogram Dr2D
Stacked Histogram X1Dr2
Matrix of Histograms X2Dr2
List of Groups Nr1
Circular Group Connections N
1
Venn Network Nr1N
List of Group and Sizes Nr1R1
Network of Groups and Sizes N
1R1
Network of Groups,Sizes, Texture N
1R2
Binary Threshold Slice Mr2
Grey level Slice Mr2R1

M
Stacked, Grey level Slices X1(Mr2R1)
Volume Rendering Mp3R1
Road Sign R1

S
Temperature Gauge R1

C Network with Size, inside 3D Map Mp3Nr1R1
D Diagrams,N Networks,M Maps,

S Symbols,C Composites

Table 5: Display Methods with an equivalent algebraic
form.

scheme disregards information about the organization of
each component (whether selective, ordered or associa-
tive). The origin of the data and the exact description of
the display is not represented; for example, both an X-Ray
image and a two dimensional slice (throughreal-life data)
are represented asMr2R1, both having a total of three
components. Also the temporal domain is not explicitly
included, this could be represented by theX quantity or
another symbol added. However, this algebraic form pro-
vides a useful method to classify different visualizations.

Conclusion
Within this paper we have described many display models.
The tabular methods are useful to categorize and compare
the functionality of (say) a visualization system. Whereas
Bertin’s symbolic form and the algebraic methods enable
individual images to be labelled.

The perception rules, of the automatic presentation
tools, are extremely useful, and allow the developer to cre-
ate appropriate representations.

Bertin developed some nice models for image classifi-
cation and labelling, which are relevant for today’s modern
visualizations (perhaps with some minor adjustments and
extensions). His symbolic representation, albeit descrip-
tive, is probably not so practical, but an algebraic repre-
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sentation, such as presented within this paper, provides a
useful equivalent labelling strategy.
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