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Abstract

This thesis considers algebraic properties of differential equations, and can be divided into
two parts. The major distinction among them is that the first part deals with the theory of
linear ordinary differential equations, while the second part deals with the nonlinear partial
differential equations.

In the first part, we present a method to transform the Green’s operator into the Green’s
function. This transformation is already known in the classical case of well-posed two-point
boundary value problems, here we extend it to the whole class of Stieltjes boundary problems.
In comparison, Stieltjes boundary problems have more freedom from which stems more
difficulties. In view of the specification of the boundary conditions: (1) they allow more
than two evaluation points. (2) they allow derivatives of arbitrary order; (3) global terms in
the form of definite integrals are also allowed. Our results show that the resulting Green’s
function is not only a piecewise function but also a distribution. Using suitable differential
and Rota-Baxter structures, we aim to provide the algebraic underpinning for symbolic
computation systems handling such objects. In particular, we show that the Green’s function
of regular boundary problems (for linear ordinary differential equations) can be expressed
naturally in the new setting and that it is characterized by the corresponding distributional
differential equation known from analysis.

In the second part we concern ourselves with integrable systems. A system of partial
differential equations is called integrable if it exhibits infinitely many symmetries. Master
symmetries provide a tool which guarantees the existence of infinitely many symmetries and
thus help in determining proof of integrability. Using the O-scheme developed by Wang
(2015), we compute master symmetries for three new two-component third order Burgers’
type systems with non-diagonal constant matrix of leading order terms. These systems
can be found in the work of Talati and Turhan (2016). Two more systems with the same
dimension are also presented from the ongoing work of Wang et al. In the end, we compute
a master symmetry for a Davey–Stewartson type system which is a (2+ 1)-dimensional
system.
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Chapter 1

Introduction

It is indisputable that differential equations are absolutely fundamental to modern science
and engineering. They provide mathematical methods that can be used in medicine (cancer
growth), engineering (movement of electricity), chemistry (chemical reactions), economics
(optimum investment strategies) and of course, physics (motion of waves, pendulums or
chaotic systems). However, these mathematical models can fail to provide the whole picture.
Therefore, to comprehend differential equations, it is important to investigate them not
only analytically, but also algebraically as they can provide exact solutions. In this thesis,
we concern ourselves with two different topics on differential equations focusing on their
algebraic aspects.

A boundary value problem (bvp) is a differential equation together with additional
constraints, called the boundary conditions. A solution to a bvp is a solution to the differential
equation subjected to the corresponding boundary conditions. For instance, a classical well-
posed bvp can take the below form

u′′+u = 0,
u(0) = 0,u(π/2) = 2.

(1.1)

A general solution to the differential equation is

u(x) = Asin(x)+Bcos(x),

where A and B are constants. On satisfying the boundary conditions one gets u(x) = 2sin(x)
as a unique solution to the bvp (1.1). Here, the term well-posed means that there exists a
unique solution to a given bvp.

Different techniques can be employed to solve a boundary problem, we are interested in
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a method that uses the so-called Green’s function. If T is a linear differential operator, then
the Green’s function is the solution for u of the equation Tu = δ , where δ is a Dirac delta
function defined by ∫ +∞

−∞

f (t)δ (t−a)dt = f (a).

On the operator level, we call the Green’s function the Green’s operator. Rosenkranz and
Regensburger presented a method in [39, 40] for solving a linear bvp using the Green’s
operator.

In the first part of this thesis, we present a method to transform the Green’s operator into
the Green’s function for linear order differential equations (LODEs). This transformation
is already known in the classical case of well-posed two-point boundary value problems,
here we extend it to a more general class of linear bvps. In comparison, we allow boundary
conditions with more than two evaluation points, derivatives of arbitrary order or global terms
in the form of definite integrals (see Eq. (1.6)). Our results show that the resulting Green’s
function is not only a piecewise function but also a distribution (Chapter 2). Using suitable
differential and Rota-Baxter structures, we aim to provide the algebraic underpinning needed
for symbolic computation systems handling such objects. In particular, we show that the
Green’s function of regular boundary problems (for linear ordinary differential equations)
can be expressed naturally in the new setting and that it is characterized by the corresponding
distributional differential equation known from analysis (Chapter 3).

In the second part we concern ourselves with integrable systems. A system of partial
differential equation (PDE) is called integrable if it exhibits infinitely many symmetries;
loosely speaking this means that there exists infinitely many functions that maps one solution
to another solution of the system. Master symmetries provide is a tool which guarantees the
existence of infinitely many symmetries and thus help in determining proof of integrability.
Using the O-scheme developed by Wang (2015), we compute master symmetries for three
new two-component third order Burgers’ type systems with non-diagonal constant matrix of
leading order terms. These systems can be found in the work of Talati and Turhan (2016).
Two more systems with the same dimension are also presented from the ongoing work of
Wang et al. In the end, we compute a master symmetry for a Davey–Stewartson type system
which is a (2+1)-dimensional system.

Now let us discuss the different parts of the thesis one by one. In the next section, we
give a brief introduction to the problems that we will investigate in Chapters 2 and 3.
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1.1 An algebraic setting for Green’s functions and Dirac
distributions

As differential equations arise naturally in many disciplines, it is important to find an
algorithmic approach to solve them using computer algebra systems. So far, the treatment
of boundary problems has been done using analysis. For that reason, we present a method
to solve boundary problems in a symbolic way; and the first step is to transform our
knowledge from analysis to an algebraic setting. This systematic treatment was carried out
by Rosenkranz and Regensburger in their papers [39, 40], where they presented a method
for solving regular boundary value problems for linear ordinary differential equations in
terms of the Green’s operator1. Their inspiration comes from the paper [17] which describes
the use of noncommutative Gröbner bases for simplifying huge terms arising in operator
control theory. This new approach has some advantages as it has a greater potential for
generalisation. For example, the theory of Green’s functions presupposes the linear structure
on differential operators and thus, it is far less apparent to the nonlinear partial differential
operators. Here, we restrict ourselves to linear ordinary differential equations; for partial
differential equations, see [36].

Rosenkranz and Regensburger worked on the level of operators and thus did not provide
a way to determine the Green’s function for a given boundary value problem. We tackle
this problem in the Chapter 2, where we present a method to transform the problem to a
functional setting and provide an algorithm to extract the Green’s function of a boundary
value problem from its Green operator. This transformation is already known in the classical
case of well-posed two point boundary value problems which we describe below with a
simple example.

Given a function f ∈C∞[0,1], we want to find a function u ∈C∞[0,1] such that

u′′ = f ,

u(0) = u(1) = 0,
(1.2)

where ′ is the usual notation representing derivative of u with respect to the variable x ∈ [0,1].
Then the Green’s operator G : C∞[0,1]→ C∞[0,1] of this problem is the right inverse of
the differential operator d2 u

dx2 such that G f = u and (u, f ) satisfy (1.2). Using the standard

1The operator is called the Green’s operator, because it is the integral operator induced by the Green’s
function. This name was introduced by Neumann [31] and Riemann [18, Sect. 23] in honor of the mathematician
George Green (1793–1841), who invented the concept in [15, p. 12].
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reduction system2 of [40], we obtain the Green’s operator as

G = x
∫ x

0
−
∫ x

0
x+ xE1

∫ x

0
x− xE1

∫ x

0
. (1.3)

where Eα denotes the evaluation functional f → f (α) for any real number α ∈ R. However
it is easy to extract the Green’s function if we use the form after substituting Eα

∫ x
0 =

∫ x
0 −

∫ x
α

in (1.3), which in turn yields

G = x
∫ x

0
x−

∫ x

0
x− x

∫ x

1
x+ x

∫ x

1
.

If we rewrite the above expression in the form

G f (x) =
∫ 1

0
g(x,ξ ) f (ξ )dξ , (1.4)

then g(x,ξ ) is found to be

g(x,ξ ) =

(x−1)ξ for 0≤ ξ ≤ x≤ 1,

x(ξ −1) for 0≤ x≤ ξ ≤ 1,
(1.5)

which is nothing but its Green’s function.
Now, the question arises as to how do we extend this transformation to ill-posed boundary

problems. Loosely speaking, this means that we allow boundary conditions with integrals
and higher order derivatives compared to the operator of the problem. For example, consider
the following boundary problem

u′′−u = f ,

u′′′(−1)−
∫ 1

0 u(ξ )ξ dξ = 0,
u′(−1)−u′′(1)+

∫ 1
−1 u(ξ )dξ = 0.

(1.6)

Here, we have boundary conditions of order 3 for a boundary problem of order 2, along with
nonlocal terms (integrals).

2This algorithm is mentioned in the Sec. 2.3
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Let us summarise this—for a boundary problem with differential operator T of order n

and boundary conditions β1, · · · ,βn.

Tu = f ,

β1u = · · ·= βnu = 0,
(1.7)

first we find an “inverse” operator of T called the Green’s operator G such that G f = u, and
then extract the Green’s function form its Green’s operator. We present this result in the
Structure Theorem 2.3.

Our result proves that the Green’s function is not only a piecewise function (continuous/
smooth), but moreover, a proper distribution in the case of ill-posed boundary problems
(see Example 2.4.4). It encouraged us to further investigate an algebraic setting for treating
distributions which we describe in Chapter 3.

Interestingly, the theory of distributions has received little attention in symbolic analysis,
even though in modern analysis it provides a solid background to support the theory of linear
(ordinary and partial) differential equations. One reason for this might be the widespread
limitation of differential algebra to structures having only derivations, as in differential
rings/fields/algebras/modules. In such a setting one can only treat the Dirac distribution as
a differential indeterminate, and cannot say anything more than that a distribution δa has
arbitrary formal derivatives δ ′a,δ

′′
a , · · · . Here, we developed algebraic structures involving

not only derivatives but also integrals, which allows us to explore the algebraic properties
of distributions. The Heaviside function H(x−a) := Ha is the integral of the Dirac delta
distribution, so let us recall its definition before further discussion. When a = 0, it is defined
as H(x) : K→ K by

H(x) =

0 if x≤ 0,

1 if x > 0.

If a > 0 then the graph of Ha can be obtained by shifting the graph of H(x) by a units along
the positive x-axis. Similarly, if a < 0 then we shift the graph a units along the negative
x-axis. We revisit the definition in detail in Chapter 3 (Def. 3.7). We also consider piecewise
functions as they can be built using the Heaviside function. This may tempt one to build
up distributions via this route— adding a derivation that maps Ha to δa—but it fails to
capture the essence of distributions (see Remark 3.3). Instead, we introduce distributions

as a differential Rota-Baxter module, following an independent route, but such that the
piecewise functions reappear as a Rota-Baxter subalgebra (Thm. 3.1).

In short, we show that the Green’s function of a regular boundary problem (for a linear

5



ordinary differential equation) can be expressed naturally in the new setting, and that it is
characterized by the corresponding distributional differential equation known from analysis.

1.2 Symmetry structures for nonlinear partial differential
equations

The second part of the thesis is devoted to integrable systems or exactly solvable equations.
These systems are essential to theoretical and mathematical physics. In fact, one may argue
that they constitute the “mathematical nucleus" of theoretical physics with an aim to describe
real classical or quantum systems. Yet, it is hard to define the notion of integrability. This
has led to a discussion among scientists which resulted into the book, “What Is integrability”
[6].

Several methods can be employed to define integrability of a system, for example,
reductions to known integrable systems, bilinear (Hirota) representation, the Painléve test
and the symmetry approach. Throughout this thesis, we follow the symmetry approach where
a system of partial differential equations is called integrable if it exhibits infinitely many
higher order3 symmetries. Before we begin, we first give a sketch of the development of this
field based on [6, 44, 51] and the references therein. The purpose is purely motivational, we
do not intend to give a complete historical survey of the field. For references to some of the
original sources, see Table 1.1.

In 1834, John Scott Russell, a Scottish naval engineer was observing the passage of a
boat along a canal and noticed a very strange type of wave travelling along the canal. His
famous—often repeated—summary of the event states [43]-

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped—not so the mass of
water in the channel which it had put in motion; it accumulated round the prow
of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I
followed it on horseback, and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure some thirty feet long and
a foot to a foot and a half in height. Its height gradually diminished, and after

3Order of a differential equation is the highest order of derivative in the equation.
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a chase of one or two miles I lost it in the windings of the channel. Such, in
the month of August 1834, was my first chance interview with that singular and
beautiful phenomenon which I have called the Wave of Translation.

The mathematical theory explaining the existence of these solitary heaps of water was first
developed by Boussinesq in 1871 and, independently, by Rayleigh in 1876. Later in 1895,
Korteweg and de Vries derived a model equation for water waves in shallow channels which
first appeared in the work of Boussinesq as a footnote. The equation now is named after
them and known as the KdV equation, given by

ut = u3 +uu1, (1.8)

where ui =
∂ iu
∂xi . It is probably one of the most celebrated evolution equations. They showed

that periodic solutions could be found in closed form without any approximations. This
is arguably the first stage of discovery of solitary waves but it was not until 1955 that this
subject formally began. In 1955, Fermi, Pasta and Ulam (FPU) undertook a numerical
study of the one-dimensional harmonic chain model that provided the required thrust to
investigate such systems—all thanks to the Maniac I computer. In their study, they expected
the nonlinear interactions to result in thermal equilibrium but the system returned to its
originally excited state and a few nearby modes. This strange behaviour attracted Kruskal
and Zabusky. In 1965, they tackled the FPU problem from the continuous viewpoint and
amazingly rediscovered the KdV equation. They found stable pulse-like waves with computer
simulation and named them solitons. They had a remarkable property— after collision, they
preserved their shapes and speeds, and simply spread apart again.

It was around this time that many physicists and mathematicians took interest in the
subject and soon, the KdV equation started to appear everywhere—in fluid dynamical
applications, plasma physics and the study of dispersive waves in elastic rods. The situation
changed dramatically in 1967, when Gardner, Greene, Kruskal and Miura introduced a new
and very powerful method—the inverse scattering transform (IST). They used this method
to solve the KdV equation and showed that any finite number of solitons can be expressed
in closed form. The following year, Lax provided a clear interpretation of their result in
terms of the notion of a Lax pair (or L-A pair). It played an important role in extending
the applicability of the method. Later in 1971, Zakharov and Shabat made an influential
contribution and showed that IST is indeed a method and not a trick suitable only for a single
equation.

An explanation was needed to explain the existence of solitons exhibiting this remarkable
stability and it came in the form of conservation laws and consequently the notion of
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symmetry was developed. Originally, the symmetry approach began from the work of
Sophus Lie. He studied the symmetry groups of differential equations and developed a
more universal method for solving differential equations rather than the familiar cookbook

methods. Roughly speaking, a symmetry group of a system consists of transformations on
the space of independent and dependent variables which leave the system invariant; such
transformations lead to so-called geometric symmetries.

Generalised symmetries first appeared in the fundamental work of Noether in 1918. The
difference with the classical Lie symmetries (geometric symmetries) is their dependence
on the highest derivatives of u and thus they lack proper geometrical meaning. She proved
the remarkable theorem, giving a one-to-one correspondence between symmetry groups
and conservation laws, now known as the Noether’s theorem. Unfortunately, her work was
neglected for many years and rediscovered several times since.

Magri [28] studied the connections between conservation laws and symmetries from the
geometric point of view in terms of Hamiltonian and symplectic operators. He found that
some systems admit two distinct but compatible Hamiltonian pairs (they are bi-Hamiltonian),
and showed that KdV is in fact a bi-Hamiltonian equation. It can be written as-

ut = Dx

(
u2 +

1
2

u2
)
=

(
D3

x +
2
3

uDx +
1
3

u1

)
u.

However, these operators had already been observed by Lenard [35], who used them to
redrive the KdV hierarchy. This construction is now called the Lenard scheme, formulated
in [13]. In 1977, Olver presented the theory of recursion operators which can generate a
hierarchy of generalised symmetries, originally due to Lenard. A recursion operator for the
KdV equation is

D2
x +

2
3

u+
1
3

u1D−1
x , (1.9)

with D−1
x being the left inverse of Dx.

Later on, at the first Kiev conference in September 1979, Mikhailov, Shabat and Sokolov
altered the symmetry approach based on explicit integrability conditions [23]. In 1980,
Fokas [10] also discussed the symmetry approach, where, he found all equations of the form

ut = u3 + f (u,u1)

having one nonclassical symmetry of a fixed order. However, the first publication [23] on
the formal symmetries of evolution equations with explicit integrability conditions is due to
Ibragimov and Shabat, 1980. After this time, there has been a significant development of the
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1834 · · · · · ·• John Scott Russell discovered a physical soliton [43].

1871,76 · · · · · ·• Boussinesq and Rayleigh [3, 49].

1895 · · · · · ·• Korteweg and de Vries derived the famous KdV
equation ut = u3 +uu1 [25].

1918 · · · · · ·• Emmy Noether showed the correspondence between
symmetry groups and conservation laws [32].

1955 · · · · · ·• Fermi, Pasta and Ulam (FPU problem) [9].

1965 · · · · · ·• Kruskal and Zabusky tackled the FPU problem from
the continuum viewpoint [53].

1967 · · · · · ·• Gardner, Greene, Kruskal and Miura developed the
Inverse Scattering Transform (IST) method [12].

1968 · · · · · ·• Lax introduced the so called L-A pair [27].

1971 · · · · · ·• Zakharov and Faddeev introduced bi-Hamiltonian
system [55].

1977 · · · · · ·• Olver introduced the recursion operator [33].

1983 · · · · · ·• Fuchssteiner introduced master symmetry [11].

Table 1.1 Timeline of the development of the field of integrable systems.

theory. Of course, the development of this field has seen other milestones, but we mention
only few of them in the timeline below as appropriate to this thesis, see Table 1.1.

The notion of the master symmetry first appeared in the work of Fuchssteiner [11] where
he treated the Benjamin-Ono and the KP equation. In his own words—

With the new discovery of so many completely integrable evolution equations,
there is a growing demand for simple, transparent and direct methods to obtain
these quantities in an explicit form. In order to contribute to a partial satisfaction
of this demand, we introduce in this paper the notion of master symmetry.

The notion of integrability can be classified into “C-integrability" and “S-integrability",
which was introduced by Calogero in his 1987 paper [5]. S-integrable equations are those
solvable via the IST method whereas C-integrable equations are those solvable via an
appropriate change of variables; they are therefore generally easier to investigate. The
first three examples considered in this thesis (5.4.2, 5.4.3, 5.4.4) are in fact C-integrable.
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Following the symmetry approach, we construct master symmetries for nonlinear partial
differential equations.

1.3 Overview and a suggestion for the reader

The two main topics—LODEs and PDEs—discussed in this thesis are somewhat independent
of each other and thus can be read separately. The first topic comprises of Chapter 2 and 3,
which are recommended to be read in sequence. Chapter 4 and 5 make up the second half
of this thesis focusing on integrability. Readers familiar with vector fields and the concept
of symmetry in differential equations can easily skip the introductory Chapter 4 and move
directly to Chapter 5.

Let us end our introduction with an overview of all chapters.

Chapter 2

We begin this chapter by setting up an algebraic structure for the treatment of boundary
value problems (bvp) (Sec. 2.1). In the following (Sec. 2.2), we construct the ring of
integro-differential operators in which the Green’s operator resides. The Green’s operators
are introduced explicitly in the next section (Sec. 2.3), together with the algorithm for their
construction. We end this chapter with the Structure Theorem (Thm. 2.3) which fulfils our
goal of extracting the Green’s function from its corresponding Green’s operator, alongside
some examples.
Goal: To extract the Green’s function from the Green’s operator of a boundary value
problem.
Concepts: Differential algebra (F ,∂ ) (Def. 2.1).
Integro-differential algebra (F ,

r
,∂ ) (Def. 2.2).

Rota-Baxter (RB) algebra (F ,
r
) (Def. 2.6).

Differential RB algebra:= Differential algebra with RB algebra (F ,∂ ,
r
) (Def. 2.7).

Integro-differential operators FΦ[∂ ,
r
] (Def. 2.8).

Equitable integro-differential operators F [∂ ,
r

Φ
] (Def. 2.9).

Green’s operator G = (1−P)T♢ (Def. 2.15).
Results: Extraction of the Green’s function (Thm. 2.3).
New examples.
Observation: The Green’s function of a boundary problem is a piecewise function or even a
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distribution in the case of ill-posed boundary problems. This observation becomes the theme
for the next chapter.

Chapter 3

We briefly review the theory of the Rota-Baxter algebra and modules (Sec. 3.1) which forms
the basic algebraic framework for the rest of chapter. In the next section (Sec. 3.2), we treat
piecewise functions and show that they are Rota-Baxter extension of the ground algebra
which generalise the familiar setting of smooth functions. Distributions are introduced in the
following section as a differential Rota-Baxter module (Def. 3.11), and we also show that
the piecewise functions reappear as a Rota-Baxter subalgebra. We see that the distributions
even form an integro-differential module (Prop. 3.3) and that they can be characterised
by a universal property (Prop 3.4). Afterwards, we introduce the bivariate distributions

which contain the bivariate piecewise functions as a subalgebra relative to both Rota-Baxter
structures (Def. 3.31). Using these tools, we provide applications in the theory of LODE
boundary problems (Sec. 3.4.1).
Goal: Develop a new algebraic model to accommodate piecewise and distribution nature of
the Green’s function corresponding to a boundary problem.
Concepts: Differential Rota Baxter module (Def. 3.4).
Evaluations.
Construct Piecewise extension PF (Def. 3.8) for treating piecewise nature of the Greens’
function using Heaviside functions.

• Introduce derivation ∂ and integral
r

on PF (Eq. (3.10))
∂Ha = 0,

r
f Ha = (

r
a f )Ha + H̄(a)

r a
0 f .

•(PF ,∂ ,
r
) is a differential RB algebra (Prop. 3.1).

Construct Distribution module DF for treating Dirac distributions appearing in the Green’s
functions using the sifting property f δa = f (a)δa (Def. 3.11 ).

• Introduce derivation ð and integral
∮

on DF (Eq. (3.22))
ðHa = δa

∮
δa = Ha− H̄(a).

•(DF ,
∮
,ð) is an integro-differential module over (Prop. 3.3)

Construct Bivariate distribution module D2F for treating elements like δ (x−ξ ) and H(x−
ξ ) (Eq. (3.31))

D2F := Dxξ F ⊕Dx−ξ F .

• Introduce derivations ðx,ðξ and integrals
∮ x,
∮

ξ on D2F (Eq. (3.32))
•(D2F ,ðx,ðξ ,

∮ x,
∮

ξ ) is a duplex differential RB module.
Results: Express the Green’s functions in this algebraic language (Thm. 3.3).
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Characterisation of the Green’s function (Thm. 3.4).
Allowing a piecewise function to be a forcing function for a boundary problem.

Chapter 4

This chapter covers essential terminology required to understand the concept of integrability.
We begin by defining a vector field and its prolongation (Sec. 4.2), and then use the concept
of prolongation to define a symmetry (Sec. 4.3) of a system of differential equations. We
introduce a Lie bracket on the differential algebra of vector fields using the Fréchet derivative,
which in turn makes it a Lie algebra (Sec. 4.4). The relation between prolongation and the
Fréchet derivative (Prop.4.2) helps us to rewrite the symmetry condition in terms of the Lie
bracket (Def. 4.8). We end this chapter by giving an example of the second order Burgers’
equation.
Goal: To introduce notations, terms and concepts in order to understand partial differential
equations via master symmetry.
Concepts: One parameter group of transformations (Eq. 4.1).
Infinitesimal form (Eq. (4.6)).
Symmetry (Def. 4.1).
Generalised vector field (Def. 4.2).
Prolongation (Eq. (4.17), (4.19)).
Evolutionary vector field and its characteristic (Def. 4.3).
Generalised symmetry (Eq. (4.27)).
Fréchet derivative (Eq. (4.41)).
Lie bracket (Def. 4.7).
Conclusions: Symmetry method is a powerful technique to solve ordinary differential
equations. Generalised symmetries can be used to explicitly determine special type of
solutions of PDEs (see Example 4.3.1). However, this method has the drawback of not
generating infinitely many symmetries at once for integrable systems.

Chapter 5

In this chapter, we shall see how we can use the algebra sl(2,C) to compute a master
symmetry and time dependent symmetries for a given evolution equation. We begin this
chapter by giving some motivation (Sec. 5.1) for the appearance of sl(2,C) in integrable
systems. We consider sl(2,C) modules which live in the Bernstein-Gelfand-Gelfand (BGG)
category, which is briefly explained in Section 5.2. In the next section, we describe the main
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theorem, which provides an algorithmic approach to compute master symmetry (Thm. 5.1).
In the following section on applications, we present new results—master symmetries for
three new two-component Burgers’ type (1+1)-dimensional systems that appeared in [50]
(Examples 5.4.2, 5.4.3, 5.4.4) and for two new systems from the ongoing work of Wang et
al. [29] (Examples 5.4.5, 5.4.6). We end this chapter by introducing quasilocal polynomials
which provides an algebraic framework to deal with (2+1)-dimensional systems together
with an example of a Davey-Stewartson type system (Example 5.5.1).
Goal: To compute master symmetries of nonlinear partial differential equations using
sl(2,C) algebra.
Concepts: Lie algebra (Def. 5.1).
BGG category O of sl(2,C) modules (Sec. 5.2.1).
Homogeneous evolution equation (Def. 5.3).
Master symmetry (Def. 5.4).
Construction of master symmetries (Thm. 5.1).
O-scheme (Dia. 5.1).
Construction of time-dependent symmetries (Thm. 5.2).
Results: Master symmetries for five new two-component (1+ 1)-dimensional systems
(Examples 5.4.2 - 5.4.6).
Master symmetry for a two-component (2+1)-dimensional Davey-Stewartson type system
(Example 5.5.1).
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Chapter 2

Symbolic Solution of Boundary
Problems

Boundary problems for linear ordinary differential equations (LODEs) or partial differential
equations (LPDEs) are among the most important model types in the engineering sciences.
However, their systematic treatment in symbolic computation is rather recent; carried out
by Rosenkranz and Regensbuger [39, 40]. They present a new approach for expressing and
solving a linear boundary problem in the language of differential algebras. Taking an algebra
F together with a derivation and integration operator, they construct an algebra of linear
integro-differential operators. In such a setting, one can discuss regular boundary problems
along with their solution operator in an algebraic manner.

An abstract boundary problem can be defined as a pair (T,B) consisting of a surjective
linear map T (differential operator) and an orthogonally closed subspace (boundary condi-
tions) of the dual space of F . The Green’s operator G is the right inverse of T mapping
forcing function f to solution u of a given bvp, that is, G f = u. It is called the Green’s
operator since it is the integral operator induced by the Green’s function. In the case of
LODEs, where the “industrial standard” for solving boundary problems is via the Green’s
function. The algorithm of [39, 40] computes the solution of a boundary problem in the form
of its Green’s operator. Nonetheless, most engineers prefers the language of the Green’s
function.

In the classical case of well-posed two-point boundary value problems, it is known how to
transform the Green’s operator into the corresponding Green’s function (Chapter 1, [48]). In
this chapter, we extend this transformation to the whole class of Stieltjes boundary problems.
In view of the specification of the boundary conditions they have more freedom in the
following sense: (1) they allow more than two evaluation points. (2) they allow derivatives
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of arbitrary order; (3) global terms in the form of definite integrals are also allowed. The
structure theorem depicting this result is published in [41] and is explained in the Section
2.4.

A detailed outline of this chapter is as follows. The goal here is to extract the Green’s
function from the Green’s operator of a boundary value problem. We introduce the notions
of a differential algebra (F ,∂ ) (Def. 2.1), an integro-differential algebra (F ,

r
,∂ ) (Def.

2.2) and a Rota-Baxter (RB) algebra (F ,
r
) (Def. 2.6), followed by that of a differential

RB algebra, which is a differential algebra together with an RB algebra (F ,∂ ,
r
) (Def.

2.7). Next, we define integro-differential operators FΦ[∂ ,
r
] (Def. 2.8) along with the

equitable integro-differential operators F [∂ ,
r

Φ
] (Def. 2.9) which contains the Green’s

operator G = (1−P)T♢ (Def. 2.15). In Section 2.4, we present our main result, the structure

theorem (Thm. 2.3) which depicts an algorithm for extracting the Green’s function from its
corresponding Green’s operator. At the end, we demonstrate this algorithm with some new
examples of boundary problems.

2.1 Algebraic setting

In what follows we take F to be an algebra over a fixed commutative ring K.
We begin this section by defining a differential algebra (F ,∂ ) which is well explained in
the literature [38]. It is well known that they provide rich algebraic properties capturing
essential properties of a derivation which helps in understanding differential equations. But
this is not the case for integrals. Therefore our main focus here is to lay foundation for the
treatment of integrals. We will see that one can define a similar object (F ,

r
) which we call

a Rota-Baxter algebra.
Since a boundary problem involves both the operations, a derivation and an integral—we

need to understand how one can combine these two structures systematically. Here, we will
describe two different algebraic ways to construct such objects; an integro-differential algebra
and a differential Rota-Baxter algebra denoted by (F ,

r
,∂ ) and (F ,∂ ,

r
) respectively.

Definition 2.1. A differential ring (F ,∂ ) is a ring F together with a derivation ∂ : F →F

meaning, ∂ is a linear map and satisfies the Leibniz rule, ∂ ( f g) = ∂ ( f )g+ f ∂ (g). One calls
(F ,∂ ) a differential algebra if F is an algebra over K and ∂ is a K-derivation.

In the following definition we incorporate the integral operation in a differential algebra.

Definition 2.2. Let F be a commutative K-algebra with K-linear operations ∂ and
r

. Then
the triple (F ,

r
,∂ ) is an integro-differential algebra over K if the operations satisfy the

axioms below:
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• Section axiom
(
r

f )′ = f , (2.1)

• Leibniz axiom
( f g)′ = f ′g+ f g′, (2.2)

• Strong Rota-Baxter axiom

f
r

g =
r

f g+
r
( f ′

r
g), (2.3)

with the usual notation ∂ =′.

An integro-differential algebra is called ordinary if dimK Ker(∂ ) = 1.

We refer to ∂ and
r

respectively as the derivation and integral of F . Axiom (2.1)
is called section axiom since ∂ ◦

r
= 1,i.e,

r
is a right inverse of ∂ . The product rule of

differentiation which is commonly called the Leibniz axiom is Axiom (2.2) and Axiom
(2.3) captures integration by parts which was introduced by Rosenkranz in [39]. The usual
formulation

r
f G′ = f G−

r
f ′G is only satisfied “up to a constant”, or if one restricts G to

Im(
r
). On substituting G =

r
g one can obtain the strong Rota-Baxter axiom. The notion of

strong will become clearer later. For the future we denote
r

f
r

g :=
r
( f

r
g) implying that

multiplication has precedence over integration.

Definition 2.3. We call a right inverse operator
r

of ∂ a section of ∂ and the pair (
r
,∂ ) is

called a section pair.

Example 2.1.1. Let F be the algebra of holomorphic functions on a simply connected
domain S, where S is a subset of the complex plane C. For a fixed point z0 ∈ S, define
r

f =
r z

z0
f (ζ )dζ in the sense of a complex integral along any path within S that connects z0

and z together with the derivation ∂ f = d f
dz . Then (F ,

r
,∂ ) is an integro-differential algebra.

For any section pair between modules, we can construct two complementary associated
projectors [2, p.209]. As in our setting, the operations ∂ and

r
always form a section pair, so

we shall see what are the complementary projectors in this case.

Definition 2.4. Let (F ,∂ ) be a differential algebra and
r

a section of ∂ . Then

j=
r
◦∂ and E= 1−j (2.4)

are respectively called the initialization and the evaluation of F .
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Notice that initialisation is not an identity map since for ∂ = d
dx and

r
=

r x
a, we obtain

j f (x) =
r x

a f ′(x) = f (x)− f (a).
It is easy to check that they are indeed projectors since j◦j=

r
◦(∂ ◦

r
)◦∂ = j by (2.1),

which implies E◦E= 1−j−j+j◦j= E. It is well known that every projector induces a
unique direct decomposition of the module into two submodules characterised by its kernel
and image.

Definition 2.5. Let (F ,
r
,∂ ) be an integro-differential algebra. Then the modules

C = Ker(∂ ) = Ker(j) = Im(E) and I = Im(
r
) = Im(j) = Ker(E)

are respectively called the constant functions and the initialized functions with the direct
decomposition

F = C ⊕I .

If we consider smooth functions F =C∞[a,b] with ∂ = d
dx and

r
=

r x
a, then (F ,

r
,∂ )

is a standard model of an integro-differential algebra. In this case, C consists of constant
functions f (x) = c with c ∈ C, while I consists of those f ∈ C∞[a,b] that satisfy the
homogeneous initial condition f (a) = 0. Now the terminology for the projectors also makes
sense, since E f = f (a) evaluates f at the initialization point a, and j f = f − f (a) enforces
the initial condition.

Lemma 2.1. For an integro-differential algebra (F ,
r
,∂ ) the following results always hold:

1. Module C is a subalgebra of F and module I is an ideal in F .

2. The projector E is multiplicative.

Proof. Since the submodule C is the image of the algebra endomorphism, that is Im(E) =C ,
therefore it is straightforward that C is a subalgebra, whereas the claim that I is an ideal
follows directly from the strong Rota-Baxter axiom (2.3).

For the Item 2, we write functions f ,g ∈F as f = fC + fI and g = gC +gI . Then

E( f g) = E(( fC + fI )(gC +gI ))

= E( fC gC + fC gI + fI gC + fI gI )

= E( fC gC ),

because the last three summand must vanish since I is an ideal. Moreover, C is a subalgebra
and E is a projector with image C . Hence, E( fC gC ) = E( fC )E(gC ).
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Corollary 2.1. Let (F ,∂ ) be a differential algebra with a section
r

of ∂ . Then (F ,
r
,∂ ) is

an integro-differential algebra iff its evaluation E is multiplicative iff I = Im(
r
) is an ideal.

In general the ideal I corresponding to an integral is not a differential ideal of F . It is
easy to see in the standard example (F ,

r x
0,

d
dx), where I consists of all f ∈C∞[0,1] with

f (0) = 0. Here x ∈I but x′ = 1 ̸∈I implying I is not a differential ideal.

Corollary 2.2. An integro-differential algebra is never a field.

Proof. It is immediate from Corollary 2.1. Since then the only possibilities for I would be
0 and F . In the first case when I = 0 meaning Im(

r
) = 0 we have Ker(∂ ) = F , which

contradicts the surjectivity of ∂ . Whereas in the second case of I = F implies Ker(∂ ) = 0,
which is not possible because ∂1 = 0.

In some sense, this observation ensures that all integro-differential algebras are fairly

complicated. The next result points in the same direction.

Proposition 2.1. The iterated integrals 1,
r

1,
r r

1, . . . are all linearly independent. Hence

every integro-differential algebra is infinite-dimensional.

Proof. Denote 1,
r

1,
r r

1, . . . by u0,u1,u2 · · · ,i.e, un is the sequence of iterated integrals.
Use induction on n. The base case when n = 0 is trivial. For the induction step from n

to n+ 1, assume c0u0 + · · ·+ cn+1un+1 = 0. Applying ∂ n+1 yields cn+1 = 0. But by the
induction hypothesis, we already have c0 = · · ·= cn = 0 therefore u0, . . . ,un+1 are linearly
independent.

In view of Corollary 2.1, if we extract the differential part from an integro-differential
algebra (F ,∂ ,

r
), then we can retain the structure of differential algebra (F ,∂ ), meaning

a K-algebra F with a K-linear operation ∂ that satisfies the Leibniz axiom (2.2). But in
general one cannot expand a given differential algebra to an integro-differential algebra. For
example, the differential algebra (K[x2],x∂ ) cannot be a integro-differential algebra since
the derivation x∂ is not surjective (1 /∈ Im(x∂ )) and thus there is no section satisfying Axiom
(2.1).

However, it is not straightforward to extract the integro part. To isolate the integro part
from an integro-differential algebra we need to introduce the Rota-Baxter algebra which
captures the property of integrals.

Definition 2.6. Let F be a K-algebra and
r

a K-linear operation satisfying the weak Rota-
Baxter axiom

(
r

f )(
r

g) =
r

f
r

g+
r

g
r

f . (2.5)
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Then (F ,
r
) is called a Rota-Baxter algebra.

The terminology for strong/weak originates from the fact that (2.5) is a consequence of
the strong Rota-Baxter axiom if one replaces f by

r
f in (2.3).

It seems natural to think that an integro-differential algebra (F ,
r
,∂ ) is a differential

algebra (F ,∂ ) combined with a Rota-Baxter algebra (F ,
r
) such that the section axiom (2.1)

is satisfied, but this is not the case. In fact, we define this new structure below where (F ,∂ )

and (F ,
r
) are coupled only by the section axiom ∂ ◦

r
= idF .

Definition 2.7. The triple (F ,∂ ,
r
) is called a differential Rota-Baxter algebra if (F ,∂ ) is

a differential algebra together with the Rota-Baxter algebra (F ,
r
) such that ∂ ◦

r
= idF .

Because of the Equation (2.3), the coupling is a little stronger in an integro-differential
algebra (F ,

r
,∂ ). Therefore, there are Rota-Baxter algebra which are not integro-differential

algebra. The first such example was found by G. Regensburger in [40, Ex. 3] which is
presented here as Example 2.1.2.

Recall that both ∂ and
r

were introduced as K-linear operations on F . Using the Leibniz
axiom (2.2), one sees immediately that ∂ is C -linear. It is natural to expect the same from

r
,

but this is exactly the difference between (F ,∂ ,
r
) and (F ,

r
,∂ ). Moreover, the I is not

an ideal in (F ,∂ ,
r
) as a direct consequence of the Lemma 2.1.

Proposition 2.2. Let (F ,∂ ) be a differential algebra and (F ,
r
) a Rota-Baxter algebra

then (F ,
r
,∂ ) is an integro-differential algebra iff (F ,∂ ,

r
) is a differential Rota-Baxter

algebra and
r

is C -linear

Proof. =⇒We only need to verify the second part of the statement—
r

is C -linear. Since
it is already given that (F ,∂ ) is a differential algebra and (F ,

r
) is a Rota-Baxter algebra,

therefore their coupling (F ,∂ ,
r
) is a differential Rota-Baxter algebra by definition. For

c ∈ C and any function f ∈F , strong Rota-Baxter axiom (2.3) implies

r
c f = c

r
f −

r
c′

r
f = c

r
f .

⇐= Conversely, it suffices to prove the strong Rota-Baxter axiom for f ,g ∈ F . Since
F = C ⊕I , we may first consider the case f ∈ C and then the case f ∈I . But the first
case follows from C -linearity; the second case means f =

r
f̃ for f̃ ∈F . Then the weak

Rota-Baxter axiom (2.5) becomes the strong Rota-Baxter (2.3) for f̃ and g.

Now for the promised counterexample to the claim that there are differential Rota-Baxter
algebra which are not integro-differential algebra.
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Example 2.1.2. Consider the ring R = K[y]/y4 with K being a field of characteristic zero.
Set F = R[x] and define the usual derivation ∂ = ∂

∂x , then (F ,∂ ) is a differential algebra.
Define a K-linear map

r
on F by

r
f =

r ∗ f + f (0,0)y2. (2.6)

with
r ∗ being the usual integration meaning xk 7→ xk+1/(k + 1), Since the second term

vanishes under ∂ , we see immediately that
r

is a section (right inverse) of ∂ . For verifying
weak Baxter axiom (2.5), we compute

(
r

f )(
r

g) = (
r ∗ f )(

r ∗g)+ y2 r ∗ (g(0,0) f + f (0,0)g
)
+ f (0,0)g(0,0)y4,

r
f
r

g =
r

f
(r ∗g+g(0,0)y2)= r ∗ f

r ∗g+g(0,0)y2 r ∗ f .

Since y4 ≡ 0, and the ordinary integral
r ∗ already fulfills the weak Baxter axiom, this implies

immediately that the
r

does also. However, it does not fulfill the strong Rota-Baxter Baxter
axiom (2.3) because it is not C -linear: Observe that C is here Ker(∂ ) = R, so in particular
we should have

r
(y ·1) = y

r
1. But one checks immediately that the left-hand side yields xy,

while the right-hand side yields xy+ y3.

2.2 Integro-differential operators

Our goal of this section is to build an algebra of operators which encodes boundary conditions
of a boundary problem and provides a way to represent its Green’s operator. The algebra
of integro-differential operators offers a unified language which provides a solid algebraic
structure for constructing the Green’s operator but before this we recall the familiar algebra
of differential operators.

For a given differential algebra (F ,∂ ) over a ground field K, a differential operator T of
degree n ∈ N can be written as

T =
n

∑
i=0

ci∂
i,

with coefficients c0, . . . ,cn ∈F . The collection of these operators becomes a K-algebra
F [∂ ] by defining addition and scalar multiplication in the obvious way along with the
commutator relation ∂c = c∂ +∂ (c). For the obvious reason we call this relation the Leibniz
rule.

The algebra F [∂ ] contains all arithmetic terms in ∂ like ∂ 2c0(∂ +2∂c1), and together
with the Leibniz rule it provides canonical forms for them. Furthermore, the Leibniz rule
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extracts all the essential algebraic properties that we know from analysis.
We want to do the same for integro-differential algebras (F ,

r
,∂ ), so our notion of

integro-differential operator should capture arithmetic terms in ∂ and
r

. In the standard
model where F =C∞[a,b], one may encounter boundary conditions like u′(0)−3u(1) = 0
or even

r 1/2
0 u(ξ )dξ = 0 as a composition of

r
=

r x
0 and evaluation at 1/2. To formulate

such boundary conditions, our natural choice is to consider all characters on F since they
are algebraic counterparts of point evaluation. By a character of F we mean an algebra
homomorphism F → K. Now we construct this algebra of integro-differential operators
which we will denote by FΦ[∂ ,

r
].

As for the differential operators in F [∂ ] we had only one relation, namely the Leibniz
rule, but of course in the case of FΦ[∂ ,

r
] we have more relations. There are four types of

basic operators: derivation ∂ , integral
r

, multiplication operators f , and characters ϕ . We
need appropriate relations so that we can write operators in a canonical form which captures
essential algebraic properties from analysis.

Let us describe how one can derive these rules for few of the entries in the table. For
example, the relation

r
f
r
→ (

r
f )

r
+

r
(
r

f )

comes from the weak Rota-Baxter axiom if one substitutes g = 1 in (2.5). Similarly, the
reduction

r
f ϕ→ (

r
f )ϕ stems from the fact that ϕ maps any function to a constant. Since

r

is linear over constants so ϕ can be pulled out from the integral. The relation ϕψ→ ψ is the
easiest one to understand. We find that ϕψ f = ϕ(ψ( f )) = ψ( f ), since ψ( f ) is a constant
and a character maps a constant to itself.

There are nine such relations which are required for the construction of integro-differential
operators (for detail please see [40, §3]). We list them in the table below along with the
formal definition of FΦ[∂ ,

r
].

For K-algebra F , we fix a set F # of F such that {1}∪F # is a K-basis of F , that is a
basis of F over the field K. Denote the space of all non-zero characters on F by F •. We
shall make a distinction here, the projector E = 1−

r
◦ ∂ will be a called a distinguished

character for a section pair ∂ and
r

.

Definition 2.8. Let(F ,
r
,∂ ) be an ordinary integro-differential algebra over a field K and

Φ⊆F •. The integro-differential operators FΦ[∂ ,
r
] are defined as the K-algebra generated

by the symbols ∂ and
r

, the “functions” f ∈F # and the “characters” ϕ ∈Φ∪{E}, modulo
the rewrite rules given in Table 2.1.
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f g → f g ∂ f → ∂ ( f )+ f ∂
r

f
r
→ (

r
f )

r
−

r
(
r

f )

ϕψ → ψ ∂ϕ → 0
r

f ∂ → f −
r
(∂ ( f ))−E( f )E

ϕ f → ϕ( f )ϕ ∂
r
→ 1

r
f ϕ → (

r
f )ϕ

Table 2.1 Rewrite Rules for Integro-Differential Operators

Remark Notice that, in the above table we distinguish ∂ f from ∂ ( f ). The expression
∂ ( f ) denotes derivation of f , whereas ∂ f represents action on the operator level which
simplifies to ∂ ( f )+ f ∂ . The first entry in the table simply means that the product of two
functions remains the same, that is, f g→ f g. We follow this notation through out this
chapter.
The algebra FΦ[∂ ,

r
] has a standard decomposition

FΦ[∂ ,
r
] = F [∂ ]⊕F [

r
]⊕ (Φ). (2.7)

The above ring structure seems promising to give the symbolic representation for the
Green’s operators. However, to understand the relationship between the Green’s operators
and Green’s functions, we view the latter as a certain canonical form. Therefore, we equip
the ring of integro-differential operators with a slightly different set of reduction rules leading
to the ring of equitable integro-differential operators F [∂ ,

r
Φ
]. The notation is used to

emphasize that the integral operators are parametrized by Φ in contrast to FΦ[∂ ,
r
] where

its dependence is based on the chosen set of characters Φ.
The fundamental theorem of calculus provides a passage to move from the integro-

differential operator ring FΦ[∂ ,
r
] to its equitable clone F [∂ ,

r
Φ
]. The theorem states that

for any function f ∈C∞(R) and initialization point ϕ ∈ R,

r x
ϕ

f ′(ξ )dξ = f (x)− f (ϕ).

Therefore, for an integro-differential algebra (F ,
r
,∂ ) we can rewrite this in the operator

form
r

ϕ
∂ = 1−ϕ.

which gives
r

ϕ
:= (1−ϕ)

r
.

We shall understand the integral
r

ϕ
=

r x
ϕ

as it provides a way to distinguish in the case of a
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bivariate function where one can also introduce an operator like
r y

ϕ
. We shall see this in the

next chapter where we introduce bivariate Green’s function (3.4). With this understanding it
is easy to see that for any other character ψ , one can obtain the relation

ψ
r

ϕ
=

r
ψ
−

r
ϕ
=

r
ψ

ϕ
. (2.8)

It is immediate that (F ,∂ ,
r

ϕ
) is also an ordinary integro-differential algebra. To obtain the

algebra of equitable integro-differential operators F [∂ ,
r

Φ
] we can adjoin all

r
ϕ

to F [∂ ].
As in the case of FΦ[∂ ,

r
], here we also need to introduce essential relations which we list

in the table below. For the precise formulation of F [∂ ,
r

Φ
] as a quotient ring please see [37,

§5.1].

Definition 2.9. Let (F ,
r
,∂ ) be an ordinary integro-differential algebra. The equitable

integro-differential operators F [∂ ,
r

Φ
] are defined as the K-algebra generated by ∂ and

r x
ϕ

and f with ϕ ranging over Φ and f over F #, modulo the rewrite rule given in Table 2.2.

f g → f g ∂ f → ∂ ( f )+ f ∂ ∂
r x

ϕ
→ 1

r x
ϕ

f
r x

ψ
→ (

r x
ϕ

f )
r x

ψ
−

r x
ϕ
(
r x

ϕ
f )

r x
ϕ

f ∂ → f −
r x

ϕ
(∂ ( f ))−ϕ( f )+ϕ( f )

r x
ϕ

∂

Table 2.2 Equitable Integro-Differential Relations

Since the algorithm in Section 2.3 computes the Green’s operator in the algebra FΦ[∂ ,
r
],

we introduce the so-called translation isomorphism to rewrite the operator in F [∂ ,
r

Φ
],

which makes it easy to extract the corresponding Green’s function.

Definition 2.10. The translation isomorphism ι : FΦ[∂ ,
r
]→F [∂ ,

r
Φ
] fixes f ∈F and ∂

while using the above fundamental relation in the form

ι(ϕ) = 1−
r

ϕ
∂ and ι

−1(
r

ϕ
) = (1−ϕ)

r
. (2.9)

Note that this includes also the character E := 1−
r

∂ associated to the distinguished inte-
gral

r
=

r
E underlying FΦ[∂ ,

r
].

Now we are ready to describe an algorithm to compute the Green’s operator, but before
that let us define a boundary problem formally.
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Definition 2.11. Let (F ,
r
,∂ ) be an ordinary integro-differential algebra. A n-th order

boundary problem is given by a pair (T,B), where T is a monic differential operator T ∈
F [∂ ] of order n and the boundary space B ∈F • is the linear span B = [β1, . . . ,βn] of n

linearly independent boundary conditions. We represent such a boundary problem by

Tu = f ,

β1u = · · ·= βnu = 0.
(2.10)

We say that u is a solution of (T,B) for a given f ∈F if

Tu = f and u ∈B⊥, (2.11)

where B⊥ is an orthogonal complement of B containing all functions u ∈F which satisfy
the given boundary conditions, i.e, B⊥ = {u ∈F | β (u) = 0 for all β ∈B}. A boundary
problem (T,B) is regular if

Ker(T )⊕B⊥ = F . (2.12)

Regularity guarantees that the boundary problem (2.10) has a unique solution u ∈F for all
given f ∈F . To check if the boundary problem is regular we make use of the following
evaluation matrix

β (u) =


β1(u1) · · · β1(un)

... . . . ...
βn(u1) · · · βn(un)

 ∈ Kn×n (2.13)

where u1, . . . ,un ∈F forms the fundamental system for T , that is, it is a basis for Ker(T ). If
the evaluation matrix is regular (non singular) then so is (2.10) and vice-versa.

Construct another space of boundary conditions B̃ as a linear span B̃ = [β̃1, . . . , β̃n]

where
(β̃i, . . . , β̃n)

t = β (u)−1(β1, . . . ,βn)
t (2.14)

and t stands for transpose of a matrix. It is always possible to find such boundary conditions
for a regular boundary problem because β (u) is invertible. The advantage of this is Ker(T ) =
[u1, · · · ,un] and B̃ = [β̃1, . . . , β̃n] form a biorthogonal system meaning

β̃i(ui) = δi j. (2.15)

We will find its use later in the Theorem 2.1.
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In the introduction we have already mentioned the nature of Stieltjes boundary prob-

lems. To define these problems formally first we need to give an algebraic meaning to the
corresponding boundary conditions.

Definition 2.12. The right ideal |Φ) = Φ ·FΦ[∂ ,
r
] is defined as the ideal of Stieltjes

conditions and a boundary problem (2.10) is called a Stieltjes boundary problem if the
boundary space B is the linear span of n linearly independent Stieltjes conditions.

From the viewpoint of applications, Stieltes conditions β ∈ (Φ) are easier to comprehend
in terms of their FΦ[∂ ,

r
]-normal form: They can be described uniquely as sums

β = ∑
ϕ∈Φ

∑
i≥0

aϕ,iϕ∂
i + ∑

ϕ∈Φ

ϕ
r

fϕ (2.16)

with only finitely many aϕ,i ∈ K and fϕ ∈F nonzero. The double sum involving derivation
in (2.16) is called the local part of β and the subsequent sum its global/nonlocal part. In the
important C∞(R) case with distinguished integral

r
=

r x
0, this yields

β (u) = ∑
ϕ,i

aϕ,iu(i)(ϕ)+∑
ϕ

r
ϕ

0 fϕ(ξ )u(ξ )dξ ,

for certain aϕ,i ∈ R and fϕ ∈C∞(R).

Definition 2.13. A Stieltjes boundary problem (T,B) of order n with B = [β1, . . . ,βn] is
called well-posed if it is regular and the βi can be chosen with all derivatives having order
below n; otherwise it is called ill-posed.

Well-posed: In the standard model (C∞(R),
r x

0,
d
dx = D), consider a boundary problem

u′′ = f (x),

u′(0)−u(1) = 0,u′(1) = 0,

which can be denoted by (D2, [E0D−E1,E1D]). The notation is clear here, Ea is the evalua-
tion at point a. The fundamental system of this problem is {1,x} leading to the evaluation
matrix

β (u) =

(
0 −1
1 0

)
which is invertible. Hence, it is a well-posed two-point boundary value problem.
Ill-posed: Our next example is totally unclassical (despite being a regular boundary
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problem)—ill-posed—it involves more than two evaluation points with a third order bound-
ary condition for a second order differential operator, and have non-local conditions. Later
in the applications section we compute its Green’s operator along with its Green’s function,

u′′−u = f ,

u′′′(−1)−
∫ 1

0 u(ξ )ξ dξ = 0,
u′(−1)−u′′(1)+

∫ 1
−1 u(ξ )dξ = 0,

(2.17)

2.3 Green’s operator

Definition 2.14. Let (F ,
r
,∂ ) be an ordinary integro-differential algebra. Then the operator

G is called the Green’s operator of a regular boundary problem (T,B) if T G = 1 and
Im(G) = B⊥.

To construct this operator we borrow a result from abstract algebra. For proof, see [37,
Prop. 4.1]

Proposition 2.3. Let T be a surjective linear map between modules M and N

T : M→ N

so that M = Ker(T )+I with I being a complement of Ker(T ) in M. Then there exists a

unique section G of T with Im(G) = I . Moreover, G is the unique solution of the equation

GT = 1−P (2.18)

for projector P with Im(P) = Ker(T ) and Ker(P) = I .

Notice that if G̃ is any section meaning T G̃= 1 then GT G̃=G=(1−P)G̃. We formulate
this as a corollary.

Corollary 2.3. Given any section G̃ of T , the section G corresponding to a complement I

of Ker(T ) is given by
G = (1−P)G̃,

where P is the projector with Im(P) = Ker(T ) and Ker(P) = I .

In view of the above corollary—for a regular boundary problem (T,B) if we can find a
section G̃ and projector P such that

T G̃ = 1 with Im(P) = Ker(T ) = C ,Ker(P) = B⊥ = I ,
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then we can easily construct its Green’s operator.

Theorem 2.1. Let (T,B) be a regular boundary problem with u1, . . . ,un and β1, . . . ,βn be

respectively a basis for Ker(T ) and B. Then P : F →F is the projector defined by

Pu =
n

∑
i=1

β̃i(u)ui

where (β̃i, . . . , β̃n)
t = β (u)−1(β1, . . . ,βn)

t with Im(P) = Ker(T ) and Ker(P) = B⊥.

Proof. Since the boundary conditions are linear functionals, we can write

P(Pu) =
n

∑
i=1

β̃i(u)P(ui).

By biorthogonality of {ui} and {̃β j} (2.15), we get P(ui) = ui and thus P2 = P. From the
construction of the projector P, it is clear that Im(P) = Ker(T ) and Ker(P) = B⊥.

Example 2.3.1. Lets compute this projector for a well-posed two point boundary value
problem which was mentioned before

u′′ = f (x),

u′(0)−u(1) = 0,u′(1) = 0.

Here boundary conditions are β1 = E0D−E1,β2 = E1D with D = d
dx , and the fundamental

system is {x,1} meaning Ker(T ) is the linear span Ker(T ) = [u1,u2] = [1,x]. To find the
required boundary conditions β̃i as in the theorem, we first find its evaluation matrix

β (u) =

(
β1(u1) β1(u2)

β1(u2) β2(u2)

)
=

(
0 −1
1 0

)
,

which yields (
β̃1

β̃2

)
= β (u)−1

(
β1

β2

)
=

(
β2

−β1

)
.

From Theorem 2.1, we know that the projector is

P = xβ̃1 + β̃2

= xE1D−E0D+E1.
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Now we have the projector which satisfies the necessary conditions of the Corollary 2.3.
Similarly, can we find a section G̃? As it turns out we can always construct a section for a
differential operator T . The following theorem describes such a construction which is well
known as “variation of constants". For the proof, see Theorem 3.30 in [37].

Theorem 2.2. Let (F ,
r
,∂ ) be an ordinary integro-differential algebra and let be T ∈F [∂ ]

monic with regular fundamental system u1, . . . ,un. Then its fundamental right inverse is

given by

T♢ =
n

∑
i=1

ui
r

d−1di ∈F [∂ ,
r
]

where d denotes the determinant of the Wronskian matrix W associated with u1, . . . ,un

W (u) =


u1 · · · u
... . . . ...

u(n−1)
1 · · · u(n−1)

n


and di the determinant of the matrix Wi obtained from W by replacing the i-th column by the

n-th unit vector.

Furthermore, for an initial value problem

Tu = f ,

u(0) = u′(0) = · · ·= u(n−1)(0) = 0,

the operator T♢ is in fact its Green’s operator.
Bringing all pieces together we can define the Green’s operator for a regular boundary

problem in a constructive way.

Definition 2.15. The Green’s operator G ∈ F [∂ ,
r
] for any regular boundary problem

(T,B) is given by
G = (1−P)T♢, (2.19)

where the operators P and T♢ are as in the Theorem 2.1 and 2.2 respectively.

Example 2.3.2. Let us compute the Green’s operator for the same problem 2.3.1

u′′ = f (x),

u′(0)−u(1) = 0,u′(1) = 0.
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We have already computed the projector for this problem. To find di as in the Theorem 2.2,
write the Wronskian matrix for the corresponding fundamental system {x,1} which is

W (u) =

(
x 1
1 0

)
.

This provides d =−1,d1 =−1 and d2 = x with the fundamental right inverse

T♢ =
2

∑
i=1

ui

∫
d−1di.

After substitution we find that T♢ = x.A−A.x where A is the usual integral operator
r x

0.
Using the result from the previous example we find that the Green’s operator is

G =(1−P)T♢

=xA−Ax+(−1− x)E1A+E1Ax

2.4 Extraction of Green’s function

We now turn to the central task of this chapter, the extraction of the Green’s function g(x,ξ )

corresponding to the Green’s operator Gxξ . Notice that here we used the notation Gxξ for
the Green’s operator in the equitable ring F [∂ ,

r
Φ
] as compared to the Green’s operator G

in the ring FΦ[∂ ,
r
].

In the case of ill-posed boundary problems where we also allow a nonlocal part in bound-
ary conditions, the corresponding Green’s function in general contain Dirac distributions and
their derivatives [48, §2]. Since all boundary problems considered in this chapter have only
finitely many evaluation points α ∈Φ⊂ R, one may choose an interval J ⊂ R containing
all the α and denote continuous functions on a rectangular region J2 ∈ R2 by C(J2). Hence
the C(J2)-module G ⊂D ′(J2) generated by the Dirac distributions δα and their derivatives
will be sufficient to capture all Green’s functions. We will follow the common practice of
denoting this “function” as

δα = δ (ξ −α) if x ̸= α, (2.20)

with the defining property

r
J δ (ξ −α) f (ξ )dξ = f (α). (2.21)
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The transformation from the Green’s operators to Green’s functions

F [∂ ,
r

Φ
]→ G , G 7→ Gxξ

is clearly an R-linear map, hence it will be sufficient to define it on the canonical R-basis

of FΦ[∂ ,
r
] ∼= F [∂ ,

r
Φ
]. Following the strategy of the example in the Introduction, the

easiest part is F [
r
]⊆FΦ[∂ ,

r
], which is handled by setting

( f
r

g)xξ = f (x)g(ξ ) [0≤ ξ ≤ x]− f (x)g(ξ ) [x≤ ξ ≤ 0],

where we use the Iverson bracket notation [P] signifying 1 if the property P is true and zero
otherwise. Note that at most one of the two summands above is nonzero for fixed (x,ξ ).
Since (Φ)⊂FΦ[∂ ,

r
] is a left F -module over |Φ), we settle this part via

( f Eα∂
i)xξ = (−1)i f (x)δ

(i)(ξ −α),

( f Eα

r
g)xξ = sgn(α) f (x)g(ξ ) [0≤ ξ ≤ α].

Finally, on F [∂ ] we define

( f ∂
i)xξ = f (x)δ

(i)(x−ξ ),

and the definition is complete.
In order to accommodate these Dirac distributions we introduce two lemmas below

which will help us to prove the main Theorem 2.3.

Lemma 2.2. Let T ∈F [∂ ] be any monic differential operator of order n, and choose a

fundamental system u1, . . . ,un for T with Wronskian matrix W. Then we have

∂
kT 3 =

n

∑
j=1

u(k)j
r d j

d
+

k

∑
j=1

∂
k− j

ρ j with (2.22)

ρk :=
1
d

n

∑
j=1

u(k−1)
j d j ∈F .

Here d = det(W ) and d j = det(Wj), where Wi denotes the matrix resulting from W when

replacing the j-th column by the n-th unit vector of Kn.

Proof. Before we begin the proof of this theorem, notice that ρ1 = · · · = ρn−1 = 0 and
ρn = 1, by the definition of d j and d respectively. So equivalently, we can say that the second
sum in (2.22) survives only for k > n.

31



Let us prove our claim using induction on k. The base case k = 0 follows from the
Theorem 2.2. By the induction hypothesis we obtain

∂
kT 3 =

n

∑
j=1

u(k)j
r d j

d
+

k

∑
j=1

∂
k− j

ρ j,

which in turn after taking derivation gives

∂
k+1T 3 =

n

∑
j=1

u(k+1)
j

r d j

d
+

1
d

n

∑
j=1

u(k)j d j +
k

∑
j=1

∂
k− j+1

ρ j.

This is just (2.22) for k + 1 since the middle sum is ρk+1 and can be absorbed into the
third.

Lemma 2.3. The Green’s operator of any regular Stieltjes boundary problem is contained

in F [
r

Φ
]+L , where L denotes the left F -module generated by the local Stieltjes condi-

tions. Therefore, the Green’s operator can be written in the form G = G̃+ Ĝ with G̃∈F [
r

Φ
]

and Ĝ ∈L .

Proof. For a regular Stieltjes boundary problem (T,B) of order n, we showed in Section
2.3 that its Green’s operator G = (1−P)T 3 with operators

T♢ =
n

∑
i=1

ui
r

d−1di and P =
n

∑
i=1

uiβ̃i,

where
β̃ (u) = ∑

ϕ,i
aϕ,iu(i)(ϕ)+∑

ϕ

r
ϕ

0 fϕ(ξ )u(ξ )dξ .

Since T 3 clearly resides in F [
r

Φ
] so it suffices to show PT 3 ∈F [

r
Φ
]+L . Notice that

every summand of P is either of the form f Eα ∂ k or f Eα

r
where the latter is an expression

in F [
r

Φ
]. It remains to prove f Eα ∂ kT 3 ∈F [

r
Φ
]+L . From (2.22) we see that

f Eα ∂
kT 3 =

n

∑
j=1

f u(k)j (α)
r

α d j

d
+

k

∑
j=1

f Eα ∂
k− j

ρ j.

The first sum is clearly contained in F [
r

Φ
], while the second is in L because ∂ k− jρ j ∈F [∂ ]

and thus the result follows.

We are now ready to state the main structure theorem for Green’s functions of regular
Stieltjes boundary problems.
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Theorem 2.3. The Green’s function of any regular Stieltjes boundary problem with m evalua-

tions α1, . . . ,αm has the form g(x,ξ ) = g̃(x,ξ )+ ĝ(x,ξ ), where the functional part g̃∈C(J2)

is defined by the 2(m−1) case branches

ξ ∈ [αi,αi+1] (0 < i < m),x≤ ξ ;

ξ ∈ [αi,αi+1] (0 < i < m),ξ ≤ x,

while the distributional part ĝ(x,ξ ) is an F -linear combination of the δ (ξ −αi) and their

derivatives.

Proof. Recalling the notation for the Green’s operator in F [∂ ,
r

Φ
] and using Lemma 2.3 we

can write Gxξ = G̃xξ + Ĝxξ with G̃xξ ∈F [
r

Φ
] and Ĝxξ ∈L . To extract the corresponding

parts of the Green’s function we first begin with the ĝ(x,ξ ). We may write

G̃ =
r

∑
i=1

fi
r

αi
gi,

where αi = α j is possible for i ̸= j. Using the transformation F [∂ ,
r

Φ
]→ G , we obtain

g̃(x,ξ ) as

r

∑
i=1

(
fi(x)gi(ξ ) [αi ≤ ξ ][ξ ≤ x]− fi(x)gi(ξ ) [ξ ≤ αi][x≤ ξ ]

)
=

r

∑
i=1

(
∑

α j≤αi

f j(x)g j(ξ )
)
[α j−1 ≤ ξ ≤ α j][ξ ≤ x]

−
r

∑
i=1

(
∑

α j≥αi

f j(x)g j(ξ )
)
[α j ≤ ξ ≤ α j+1][x≤ ξ ],

where the two inner sums are restricted by j > 0 and j < n. Collecting terms, this is a
sum of 2(m−1) characteristic functions over disjoint domains in R2, hence one may also
write g̃(x,ξ ) in terms of a corresponding case distinction with 2(m−1) branches.

The distributional part ĝ(x,ξ ) is even easier. Writing Ĝ as an F -linear combination of
local conditions we obtain ĝ(x,ξ ) via

Ĝxξ =
(
∑
α,i

fi,αα∂
i
)

xξ
= ∑

α,i
(−1)i fi,α(x)δ

(i)(ξ −α),

which is clearly of the stated form.

Remark 2.1. In the case of the standard model the distinguished character E = 1−
r
◦ ∂

is simply an evaluation at 0. If it is not used in the boundary conditions, a straightforward
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translation of the Green’s operator G may introduce two spurious extra case branches in the
Green’s function Gxξ since

r x
0 occurs in the formula for G. For avoiding this, one has to

use a different version of T 3 that replaces E0 by any one of the characters Eα used in the
boundary conditions.

2.4.1 Examples for Stieltjes boundary problems

From the view point of applications here we only consider the standard model

(
C∞(R),

r x
0,

d
dx = D

)
.

For easy comprehension we recall all necessary identities and terminologies which we will
use extensively in the rest of this section.

Let (T,B) be a regular boundary problem of order n with the regular fundamental system
u1, . . . ,un and B as the linear span of n linearly independent boundary conditions β1, . . . ,βn.
Then the boundary conditions β̃i can be found by (2.14)

(β̃1, . . . , β̃n)
t = β (u)−1(β1, . . . ,βn)

t ,

such that {ui} and {β̃ j} form a biorthogonal system. In order to compute the corresponding
Green’s operator and Green’s function for (T,B), we summarise the whole procedure in
five steps:

1. Construct the fundamental right inverse T♢ = ∑
n
i=1 ui

∫
d−1di ∈ F [∂ ,

∫
] as in the

Theorem 2.2.

2. Determine the projector P = ∑
n
i=1 uiβ̃i ∈F [∂ ,

∫
] by Theorem 2.1.

3. Compute the Green’s operator G = (1−P)T♢.

4. Find Gxξ as an equitable integro-differential operator equivalent of G using the trans-
lation isomorphism (Definition 2.10).

Eα

r
→

r
0−

r
α
. (2.23)
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5. Finally, extract the Green’s function from respective functional and distributive part of
Gxξ by the following maps (Theorem 2.3).

g̃→ f
r

α
g = f (x)g(ξ ) [α ≤ ξ ][ξ ≤ x] (2.24)

ĝ→ f Eα∂
i = (−1)i f (x)δ

(i)(ξ −α). (2.25)

Having this algorithm to hand we are ready to move towards examples.

Example 2.4.1. Consider, the boundary problem (T,B) with T = D3−6D2−6 and B =

[β1,β2,β3] for β1 = E0,β2 = E0D+E1D2 and β3 = E1D2:

u′′′−6u′′+11u′−6u = f (x),

u(0) = 0,u′(0)+u′′(1) = 0,u′′(1) = 0.

Observe that for the corresponding homogeneous differential equation the characteristic
polynomial has no repeated roots, giving {ex,e2x,e3x} as a fundamental system for the
operator T . Following the algorithmic steps, first we compute the fundamental right inverse

T♢ =
3

∑
i=1

ui

∫
d−1di,

where di are as in Theorem 2.2. The Wronskian matrix for the fundamental system
{ex,e2x,e3x} is

W =

ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x


with determinants d = 2e6x,d1 = e5x,d2 =−2e4x and d3 = e3x. Consequently, we obtain the
fundamental right inverse as

T♢ =
1
2

exAe−x− e2xAe−2x +
1
2

e3xAe−3x,

where A is the usual integral operator
∫ x

0 .
For the second part of the algorithm above, first we compute the evaluation matrix

β (u) =

 1 1 1
3+9e3 1+ e 2+4e2

9e3 e 4e2


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which has inverse

β (u)−1 =
−1
ρ

6(2e−3e2) 9e2−4e 4e− e−1−9e2

3(3e2−1) 1−9e2 2e−1 +9e2−1
−2(2e−1) 4e−1 1− e−1−4e


with ρ = 9e2−8e+1. From Theorem 2.1, we know that P = u1β̃1+u2β̃2+u3β̃3. Using the
relation (β̃1, . . . , β̃n)

t = β (u)−1(β1, . . . ,βn) we find that the projector

P =
1
ρ

(
p1E0 + p2E0D+ p3E1D2)

where

p1 =−9e2x+2 +4e3x+1 +18ex+2−12ex+1 +3e2x−2e3x,

p2 =−9e2x+2 +4e3x+1 +9ex+2−4ex+1 + e2x− e3x,

p3 =−2e2x−1 + ex−1 + e3x−1.

To compute the Green’s operator we use the identity G = (1−P)T♢, which in our case after
reduction becomes

G =
1
2

e3xAe−3x +
1
2

exAe−x− e2xAe−2x

+g1E1Ae−3x +g2E1Ae−x +g3E1Ae−2x,

where g1(x) = −9
2ρ

ex+2(e2x−2ex +1), g2(x) = −1
2ρ

ex(e2x−2ex +1)

and g3(x) = 4
ρ

ex+1(e2x−2ex +1).

To rewrite G as an equitable integro-differential operator, we replace each evaluation E by
1−AED which comes from the step 4. In our case, we just need to replace each E1 by
1−A1D. After this translation we find that

Gxξ =
1
2

e3xAe−3x +
1
2

exAe−x− e2xA0e−2x +g1Ae−3x +g2Ae−x

+g3Ae−2x−g1A1e−3x−g2A1ex−g3A1e−2x.
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Finally, to extract the Green’s function we use the step 5 which yields

g(x,ξ ) =

{
1
2e3x−3ξ + 1

2ex−ξ − e2x−2ξ +g1e−3ξ +g2e−ξ +g3e−2ξ 0≤ ξ ≤ x≤ 1,
g1e−3ξ −g2eξ −g3e−2ξ 0≤ x≤ ξ ≤ 1.

Notice that since the problem is well-posed therefore the distributional part ĝ of the Green’s
function is zero.

Example 2.4.2. Consider another well-posed two point boundary problem (T,B) with T =

D3−12D2 +45D−50 and B = [β1,β2,β3] for β1 = E0,β2 = E0D+E1D2 and β3 = E0D2:

u′′′−12u′′+45u′−50u = f (x),

u(0) = 0,u′(0)−u′′(1) = 0,u′′(0) = 0.

The fundamental system for this problem is {e2x,e5x,e5xx} and we find that the corresponding
fundamental right inverse

T♢ =
1
9

e2xAe2x− 1
3

e5xAe−5xx+
1
9

e5x(3x−1)Ae−5x.

Following the same procedure as in Example 1, we compute the evaluation matrix 1 1 0
2−4e2 5−25e5 1−35e5

4 25 10


and its inverse

1
ρ

 25(1+25e5) −10 1−35e5

−4(4−10e2 +35e5) 10 −1+35e5

10(3−10e2 +10e5) −21 3−25e5 +4e2


with ρ = 9+485e5 +40e2. Using the relation P = ∑

3
i=1 uiβ̃i, we find the projector

P =
1
ρ

(
p1E0 + p2E0D+ p3E0D2 + p4E1D2) ,
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where

p1 =100e5x+5x−100e5x+2x+30e5xx−140e5x+5

+625e2x+5 +40e5x+2 +25e2x−16e5x,

p2 =−21e5xx+10e2x−10e5x,

p3 =−25e5x+5x−4e5x+2x−3e5xx−35e5x+5

+35e2x+5− e2x + e5x,

p4 =21e5xx+10e2x−10e5x.

Using the identity G = (1−P)T♢, we find that the Green’s operator

G =
1
9

e2xAe−2x− 1
3

e5xAe−5xx+
1
9

e5x(3x−1)Ae−5x +g1e2RAe−2x

+g2e5RAe−5xx+g3e5RAe−5x

with

with g1 =
−4
9ρ

(21e5xx−10e5x +10e2x),g2 =
25
3ρ
(21e5xx−10e5x +10e2x),

and g3 =
−80
9ρ

(21e5xx−10e5x +10e2x).

In this case, we see that the Green’s operator G in equitable integro-differential operator is

Gxξ =
1
9

e2xA0e−2x− 1
3

e5xA0e−5x +
1
9

e5x(3x−1)A0e−5x +g1e2A0e−2x +g2e5A0e−5xx+

g3e5A0e−5x−g1e2A1e−2x−g2e5A1e−5xx−g3e5A1e−5x.

with the Green’s function

g =


1
9e2x−2ξ − 1

3e5x−5ξ + 1
9e5x−5ξ (3x−1)+g1e2−2ξ

+g2e5−5ξ ξ +g3e5−5ξ ;0≤ ξ ≤ x≤ 1,
g1e2−2ξ +g2e5−5ξ ξ +g3e5−5ξ ;0≤ x≤ ξ ≤ 1.

Above examples are relatively easy where all the computations can be carried out by hand.
But for all the following examples we use the Maple package IntDiffOp [24] for computing
the Green’s operator. On top of this, we write an extra code to extract the corresponding
Green’s function which is described in the Appendix A.
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Example 2.4.3. Unlike our examples so far, this example is special in the sense that it is a
four point boundary value problem:

−u′′ = f ,

u(0)+u
(1

3

)
= u(1)+u

(2
3

)
= 0.

This is a boundary problem (T,B) with T = −D2 and B = [β1,β2] for β1 = E0 + E1/3
and β2 = E2/3+E1. Since the fundamental right inverse does not depends up on boundary
conditions, we obtain T♢ = xA0−A0x as in the Example 2.3.2. In this case, the evaluation
matrix is

β (u) =

(
1
3 2
5
3 2

)
.

We find that the projector

P =

(
5
8
− 3

4x

)
E0 +

(
5
8
− 3

4x

)
E(1

3

)+
(
−1
8

+
3
4x

)
E1 +

(
−1
8

+
3
4x

)
E(2

3

),
and the Green’s operator

G = x
r
−

r
x+
(
−5
24

+
x
4

)
E(1

3

)r +

(
5
8
− 3x

4

)
E(1

3

)r x

+

(
1
8
− 3x

4

)
E1

r
x+
(

1
12
− x

2

)
E(2

3

)r +

(
−1
8

+
3x
4

)
E(2

3

)r x.

Here, it is not straightforward to extract the Green’s function as in Example 2.4.1. Our Maple
code which is based on the Step 5 of the algorithm gives g(x,ξ ) = g̃(x,ξ ) with 6 cases

Case Term

0≤ ξ ≤ 1/3,ξ ≤ x (−1/8− x/4)+(5/8−3x/4)ξ

0≤ ξ ≤ 1/3,x≤ ξ −1/8−5x/4+13ξ/8−3xξ/4

1/3≤ ξ ≤ 2/3,ξ ≤ x 1/12− x/2

1/3≤ ξ ≤ 2/3,x≤ ξ −3x/2+1/12+ξ

2/3≤ ξ ≤ 1,ξ ≤ x (1/8−3x/4)ξ

2/3≤ ξ ≤ 1,x≤ ξ −x− (3x/4−9/8)ξ
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Example 2.4.4. As promised before, we look at the ill-posed boundary problem

u′′−u = f ,

u′′′(−1)−
∫ 1

0 u(ξ )ξ dξ = 0,
u′(−1)−u′′(1)+

∫ 1
−1 u(ξ )dξ = 0,

(2.26)

for functions u, f ∈C∞[−1,1]. Here, the Green’s operator is

σG = σ/2(exr e−x− e−xr ex)

+2(−ex+3 + ex+2− ex+1 + e−x+2− e−x+1)(E−1∂ +E1
r

x)

+(e−1)(−ex+2−2ex+1 + e−x+1)(E−1
r
+E1

r
)

+(3ex+2− ex+1−3e−x+1 +3e−x)E1
r

ex

+(2ex+2−3ex+1)(e−1E−1
r

e−x + eE−1
r

ex)

+(−ex+3− ex+2 +2ex+1 + e−x+2− e−x+1)E1

using the abbreviation σ := 2(2e−3)(e−1) while collecting and factoring some terms for
enhanced readability.

Case Term

−1≤ ξ ≤ 0

ξ ≤ x

}
3ex+2+ξ +3ex−ξ −2ex+1−ξ −2e3+x+ξ

+e3+x + e−x+1 + ex+2− e−x+2−2ex+1

−1≤ ξ ≤ 0

x≤ ξ

} −2ex+1 +2e−x+2+ξ −5e−x+1+ξ −2ex+2−ξ

−2e3+x+ξ +3e−x+ξ + e−x+1 + ex+2

+e3+x +3ex+1−ξ +3ex+2+ξ − e−x+2

0≤ ξ ≤ 1

ξ ≤ x

} −2e3+xξ −2e−x+1ξ +2ex+2ξ +2e−x+2ξ

−2ex+1ξ +3ex+2+ξ +3ex−ξ −5ex+1−ξ

+2e−x+1+ξ − ex+1+ξ −2e−x+2+ξ +2ex+2−ξ

−e3+x− e−x+1− ex+2 + e−x+2 +2ex+1

0≤ ξ ≤ 1

x≤ ξ

} −2e3+xξ −2e−x+1ξ +2ex+2ξ +2e−x+2ξ

−2ex+1ξ +3e−x+ξ +3ex+2+ξ − e3+x

−e−x+1− ex+2 + e−x+2 +2ex+1

−3e−x+1+ξ − ex+1+ξ

After transforming this to equitable form (which is again straightforward), we can
then apply Theorem 2.3 to extract the Green’s function g(x,ξ ) = g̃(x,ξ )+ ĝ(x,ξ ) with the
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distributional part

σ ĝ(x,ξ ) = (−ex+3− ex+2 +2ex+1 + e−x+2− e−x+1)δ (ξ −1)

+2(−ex+3 + ex+2− ex+1 + e−x+2− e−x+1)δ
′(ξ −1)

coming from the (. . .)E1 and (. . .)E−1∂ terms, and with the functional part defined by the
case distinction for σ g̃(x,ξ ) as given in the table above. This example shows also that
the representation of Green’s operators in terms of the Green’s functions is not always the
most useful and economical way of representing the Green’s operator. For many purposes
it is better to take the Green’s operator just as an element of the operator ring FΦ[∂ ,

r
]

or F [∂ ,
r

Φ
].

2.5 Conclusions

It was already known, how one can extract the Green’s function from the corresponding
Green’s operator for a well-posed two-point boundary problem. In this chapter, we extended
this transformation to a more general class of linear bvps, namely to the Stieltjes boundary
problems (Def. 2.12). In particular, we allowed boundary problems with boundary conditions
having more than two evaluation points, derivatives of arbitrary order and global terms in
the form of definite integrals (See e.g. (1.6)). The extraction algorithm is mentioned at the
beginning of Section 2.4.1, followed by some examples demonstrating this procedure. The
main result of this chapter is the Structure theorem 2.3.

Our results showed that the resulting Green’s function is not only a piecewise function
but also a distribution. This observation encouraged us to look for a suitable differential
and Rota-Baxter structures handling such Green’s functions. In the next chapter, we aim to
provide the algebraic underpinning needed for symbolic computation systems handling such
objects.
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Chapter 3

Algebraic Diracs

In modern analysis, the theory of distributions provides a solid footing in order to understand
the theory of linear differential equations. Distributions make it possible to differentiate
functions whose derivatives do not exist in the classical sense and any locally integrable func-
tion has a distributional derivative. The most basic application is the use of the fundamental
solution (Green’s function for bvps) to solve inhomogeneous linear problems.

If convolution ∗ among two functions f ,g is defined by

f ∗g =
∫

∞

−∞

f (s−a)g(s)ds,

and if δ is the Dirac delta function then, δ ∗ f = f (sifting property (3.17)) for all functions
f continuous at s = a. On the other hand, if L is a linear differential operator (ordinary or
partial) then Lu∗ f = L(u∗ f ). This means that if you could find solution to Lu = δ then on
convoluting both sides with f gives L(u∗ f ) = f . So v = u∗ f is solution to Lv = f whenever
u is a solution to Lu = δ . This u is called the fundamental solution for the operator L. This
example shows the importance of distributions.

It is evident that differential algebra has made outstanding contributions to the theory
of differential equations—yet distributions have received little attention from algebraic
vantage point, possibly because integration has not found its place in algebraic structures.
However, derivations are widespread in differential algebras, differential rings and differential
modules. In such structures one cannot say more than that a distribution δ has arbitrary
formal derivatives δ ′,δ ′′, · · · . Here we investigate an algebraic setting including integrals to
accommodate distributions.

We developed a method in Theorem 2.3 which provides an algorithmic approach to
extract the Green’s function for a regular Stieltjes boundary problem from its Green operator.
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As seen in the Example 2.4.4 before, the Green’s function is naturally a piecewise function
or even a proper distribution in the case of ill-posed boundary problems. Here, we provide
an algebraic model of the bivariate Green’s function corresponding to a given boundary
problem. In view of this, we develop a new algebraic setting for treating piecewise functions
and distributions together with suitable differential and Rota-Baxter structures. Our aim
is not only to show that the Green’s function of a regular boundary problem (for a linear
ordinary differential equation) can be expressed naturally in this new setting, but also to
provide the algebraic underpinning needed for symbolic computation systems handling such
objects. These results are published in [42].

A detailed outline of this chapter is as follows. The goal is to develop a new algebraic
model to accommodate piecewise and distribution nature of the Green’s function correspond-
ing to a boundary problem. To achieve this, we define notions of a differential Rota Baxter
module (Def. 3.4) and evaluations, followed by that we construct a Piecewise extension
PF for treating piecewise nature of Greens’ function using Heaviside functions (Def. 3.7).
To introduce distributions in our setting, we construct a distribution module DF (Def. 3.11)
for treating Dirac distributions appearing in the Green’s functions using the sifting property
f δa = f (a)δa. Finally, we introduce a Bivariate distribution module D2F for treating
elements like δ (x−ξ ) and H(x−ξ ) (Eq. (3.31)). At the end, we present some applications
of our new algebraic setting to express the Green’s functions in this algebraic language (Thm.
3.3, Thm. 3.4).

Since our algebraic setting is heavily based upon the differential and Rota-Baxter struc-
tures, we begin this chapter with a short review of them.

3.1 Differential Rota-Baxter algebras and modules

Let us begin with reviewing the definition of a Rota-Baxter algebra and a differential Rota-
Baxter algebra from the last chapter.

Definition 3.1. Let F be a K-algebra and
r

a K-linear operation satisfying the weak Rota-
Baxter axiom

(
r

f )(
r

g) =
r

f
r

g+
r

g
r

f . (3.1)

Then (F ,
r
) is called a Rota-Baxter algebra.

Now we combine this Rota-Baxter algebra with a differential algebra to give rise to a
differential Rota-Baxter algebra.
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Definition 3.2. The triple (F ,∂ ,
r
) is called a differential Rota-Baxter algebra if (F ,∂ ) is

a differential algebra together with the Rota-Baxter algebra (F ,
r
) such that ∂ ◦

r
= idF .

We discussed the difference between a differential Rota-Baxter algebra and an integro-
differential algebra [Cor. 2.1, Prop.2.2]. To recall: in an integro-differential algebra
(F ,

r
,∂ ), the image of the integral operator Im

r
⊂F is an ideal rather than a subalgebra.

Moreover, the operator
r

is linear not only over the ground ring K but also over Ker(∂ ). This
means that an integro-differential algebra has more structure compared to a differential Rota-
Baxter algebra, implying that all integro-differential algebras are differential Rota-Baxter
algebra but not vice-versa, see Example 2.1.2.

If the evaluation E := 1F −
r

∂ is multiplicative in a differential Rota-Baxter algebra
(F ,∂ ,

r
) then it becomes an integro-differential algebra (F ,

r
,∂ ). For more information

review Definition 2.7 and the following text. The notation is motivated by the fact that in an
integro-differential algebra, the integral

r
appears first and thus we write (F ,

r
,∂ ), where

as for a differential Rota-Baxter algebra we write (F ,∂ ,
r
).

Since our focus here is to understand Dirac distributions algebraically, we begin with a
key observation from analysis.

Evaluations: The characteristic feature of the Dirac distribution δa is that it effects an
evaluation at a when it appear under the integral

∫ −∞

∞

f (s)δ (s−a)ds = f (a).

To make this idea precise one must provide an algebraic treatment of evaluations. In the
more general setting of a plain Rota-Baxter algebra (F ,

r
), an evaluation is defined as

any character E : F → K such that E
r
= 0. We can think of a Rota-Baxter operator

r
as

integration
r x

α
with initialization point α , therefore we can introduce as many Rota-Baxter

operators as there are choices for an initialization point. We think of evaluation as evaluating
at a certain point α , namely the initialization point of the Rota-Baxter operator

r
=

r x
α

.
Therefore, the evaluation for the operator

r x
α

will be Eα since Eα

r x
α
=

r
α

α
= 0. In this

context we will often use f (α) as a suggestive notation for Eα .
To reiterate, we begin with defining an evaluation E on a structure with integration

r

only.

Definition 3.3. In a Rota-Baxter algebra setting (F ,
r
), an evaluation is defined as any

character E : F → K such that E
r
= 0.
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Example 3.1.1. The standard example from analysis is when we take the algebra of smooth
functions F = C∞(R) with the derivation ∂ f (x) = d f/dx and the Rota-Baxter opera-
tor

r
f (x) =

r x
0 f (s)ds. Here, the initialized functions f (x) are those with f (0) = 0, corre-

sponding to the distinguished evaluation E( f ) = f (0). Any other evaluation Ec( f ) := f (c)

may be used for generating additional Rota-Baxter operators
r

c f =
r x

c f (x)dx.

All the ring-theoretic structures that we have discussed in the previous chapter—differential
algebras (F ,∂ ), Rota-Baxter algebras (F ,

r
), differential Rota-Baxter algebras (F ,∂ ,

r
),

integro-differential algebras (F ,
r
,∂ )—have natural module-theoretic analogues.

Definition 3.4. The triple (M,ð,
∮
) is a differential Rota-Baxter module over a differential

Rota-Baxter algebra (F ,∂ ,
r
) if the derivation ð : M→M satisfies

ð f ψ = (∂ f )ψ + f ðψ, (3.2)

and a Rota-Baxter operator
∮

: M→M is characterized by the (weak) Rota-Baxter axiom
(see (2.5))

r
f ·
∮

ψ =
r

f
∮

ψ +
∮
(
r

f )ψ, (3.3)

for f ∈F and ψ ∈M.
We call (M,ð,

∮
) ordinary if and only if Ker(ð) = K.

We will see that the distribution module (3.11) is in fact a differential Rota-Baxter module.
Similarly one can define module-theoretic analogues for remaining structures. However, the
notion of integro-differential module (Def. 3.12) is slightly more subtle since we must now
distinguish the strong Rota-Baxter axiom (see (2.3)) for coefficients and the one for module
elements. We shall postpone this discussion to later when it is needed (Lemma 3.2).

Now when both the operations, derivation ∂ and integral
r

are present in an algebraic
structure. We see that they induce an evaluation and we call it an induced evaluation denoted
by Ê (algebra setting) or é (module setting).

Definition 3.5. Let (F ,∂ ,
r
) be a differential Rota-Baxter module then

Ê := 1F −
r

∂ (3.4)

is called an induced evaluation of F .

Remark 3.1. If an (induced) evaluation is not multiplicative then we call it a pseudo-
(induced) evaluation.
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Note, however, that we have already defined induced evaluation in Definition 2.4 of the
previous chapter and simply called it an evaluation, but this distinction between an induced

evaluation and an evaluation is needed here.

3.2 Piecewise extension

Our goal in this section is to describe the passage from smooth functions F = C∞(R) to
piecewise smooth functions PF in an abstract algebraic manner. One should be careful
with the notations here; we will use the notation PF to denote the algebraic construction
of the piecewise extension of F , whereas PC for the standard notion of piecewise functions
in real analysis. See Example 3.2.2.

To accommodate piecewise functions we extend our ground algebra by adjoining the
characteristic functions for all intervals [a,b]⊂ R, and these can in turn be generated by the
well-known Heaviside function H(x) in the sense that

1[a,b](x) = H(x−a)H(b− x)

Before we begin the formal treatment, let us introduce some notations and terminologies.
The Heaviside function requires an ordered field, so we begin by taking the ground

algebra F over a fixed ordered field (K,<)1. The minimum and maximum of two ele-
ments a,b ∈ K are denoted by a⊓ b and a⊔ b respectively, and we agree that the opera-
tors ⊓,⊔ have precedence over +,−. Notice that these binary operations are associative
which reminds us of the following structure.

Definition 3.6. A semigroup is a set S together with a binary operation · : S→ S that satisfies
the associative property

(a ·b) · c = a · (b · c)

for all a,b,c ∈ S.

Therefore, (K,⊔) and (K,⊓) are semigroups. Moreover, every element a in K can be
divided into its positive and negative part given by a+ := a⊔ 0 and a− := a⊓ 0, so that
a = a++ a−. In the following we denote semigroups (K,⊔) and (K,⊓) by K⊔ and K⊓
respectively.

1Distributions are usually defined as generalizations of functions of a real variable, meaning either Rn→ R
or Rn → C. The case of a complex variable Cn → C is effectively treated as R2n → C, ignoring the field
structure of C∼= R×R. Starting from an ordered field thus seems plausible.
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Definition 3.7. We define the Heaviside function H(x) : K→ K by

H(x) =


0 if x < 0,

η if x = 0,

1 if x > 0,

along with the dual Heaviside function H̄(x) := 1−H(x). Shifted function H(x−a) will be
denoted by Ha and its dual with H̄a.

The choice of η ∈ K is somewhat subtle; in fact we can have three distinguished cases
(the terminology is again motivated by the case K = R):

• The left continuous convention uses η = 0.

• Similarly for the right continuous choice, we put η = 1.

• Whereas η = 1/2 yields a symmetric setting which is neither left nor right continuous.

Here we use the left continuous case η = 0, unless stated otherwise.
To extend the ground algebra to its piecewise extension, we make use of so called

semigroup algebra.
Let A be a commutative ring. Let G be a semigroup written multiplicatively.
Let A[G] be the set of all maps γ : G→ G such that γ(x) = 0 for almost all x ∈ G, that is
γ(x) ̸= 0 for finitely many x ∈ G. Define addition in A[G] to be the ordinary addition of
mappings. If α,β ∈ A[G], we define their product αβ by the rule

αβ (z) = ∑
xy=z

α(x)β (y).

This sum is finite since there are finitely many pairs (x,y) ∈ G×G such that α(x)β (y) ̸= 0.
One calls A[G] the semigroup algebra of G over A. For more information please see [26,
p. 104].

In the definition below, we define the piecewise extension in terms of the semigroup

algebra for the semigroup K⊔. We write F [K⊔] for the semigroup algebra of K⊔ over F .

Definition 3.8. Let F be an algebra over an ordered ring (K,<). Then we define its
piecewise extension as PF := F [K⊔].

We denote the identity element of PF by 1 and the other generators by Ha(a ∈ K).
Then, one can view PF as the quotient ring of the polynomial ring F [Ha],

PF = F [Ha]
/
< HaHb−Ha⊔b >, (3.5)
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where < HaHb−Ha⊔b > denotes the ideal generated by the relations HaHb−Ha⊔b for all
a,b∈K. In relation to the semigroup K⊓, we see that the piecewise extension PF =F [K⊔]

is in fact isomorphic to its dual F [K⊓] under the map Ha 7→ 1− H̄a, H̄a denote the generator
of the dual. This can also be seen from the exchange law which stems from the linearity of
the order on K:

Ha⊔b +Ha⊓b = Ha +Hb. (3.6)

We will restrict ourselves to the setting PF = F [K⊔]. In the sequel, we will use the
notation H(x−a) := Ha and H(a−x) := H̄a interchangeably. With this, the relation HaHb−
Ha⊔b can be written as

H(x−a)H(x−b) = H(x−a⊔b).

Similarly the other relations becomes

H(a− x)H(b− x) = H(x−a⊓b), (3.7)

H(a− x)H(x−b) = 0 if a < b. (3.8)

We can generalise this setting and provide an algebraic characterisation.

Definition 3.9. We call an algebra order-related if it encodes the order of the ground ring K

within its multiplicative structure, that is, if there exists a semigroup embedding

H : (K,⊔) ↪→ (F , ·) so that HaHb = Ha⊔b (a,b ∈ K).

An order-related morphism between order-related rings is an algebra homomorphism
ρ : F → F̃ such that ρ(Ha) = H̃a (a ∈ K). Then the piecewise extension PF can be
characterized as the universal order-related extension algebra of F , meaning every em-
bedding F ↪→ A into an order-related algebra A factors through the algebra embedding
F ↪→PF via a unique order-related morphism PF → A.

To define a Rota-Baxter operator (integration) on PF , we need an algebraic domain
with multiple evaluation points. Intuitively, this is because integrating against a step function
based at a∈K =R amounts to starting off the integral at a, with integration constant induced
by evaluation at a, see (3.10). To make it precise we introduce a shift map Sc for shifting
evaluations with Ec := E◦Sc and define a shifted Rota-Baxter algebra as below.

Definition 3.10. By a shift map on an algebra F we mean a group homomorphism

S : (K,+)→
(
AutK(F ),◦

)
such that Sa f = f (x+a) for a ∈ K, f ∈F .
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If F is equipped with ∂ and
r

then we require the following compatibility conditions. We
use the usual notation for the commutator of operators [P,Q] := PQ−QP.

1. We call (F ,
r
,S) a shifted Rota-Baxter algebra if S is a shift map on a Rota-Baxter

algebra (F ,
r
) with evaluation E such that [Sc,

r
] = Ec

r
for all c∈K, where Ec := E◦Sc

is called the evaluation at c.

2. We call (F ,∂ ,S) a shifted differential algebra if S is a shift map on a differential
algebra (F ,∂ ) such that [Sc,∂ ] = 0 for all c ∈ K.

3. We call (F ,∂ ,
r
,S) a shifted differential Rota-Baxter algebra if (F ,∂ ,

r
) is a differ-

ential Rota-Baxter algebra such that both (F ,
r
,S) and (F ,∂ ,S) are shifted.

In the sequel, we suppress the shift map S when referring to structures such as (F ,∂ ,
r
,S).

Example 3.2.1. The two most important examples are the Rota-Baxter algebra
(
C(R),

r x
0

)
and the integro-differential algebra

(
C∞(R),

r x
0 ,

d
dx

)
. Both structures satisfies the above

conditions with a shift map f (x) 7→ f (x+a) and an evaluation Ec f (x) = f (c).
Using evaluations, we can introduce shifted Rota-Baxter operators

r
c : F →F and the

definite integrals
r d

c : F → K by

r
c := (1−Ec)

r
and

r d
c := Ed

r
c.

One checks immediately that
r

c = S−c
r

Sc and
r d

c =
r

c−
r

d are equivalent definitions. Now
of course, each (F ,

r
c) is a shifted Rota-Baxter algebra with evaluation Ec for c ∈ K.

Let us bring our attention to the main task of this section—defining the Rota-Baxter
operator on PF . First, we observe that every element ν ∈PF can be written uniquely as

ν = f + ∑
a∈K

faHa (3.9)

with finitely many fa ̸= 0. Since by assumption (F ,
r
) is a shifted Rota-Baxter algebra, it

suffices to define
r

: PF →PF as the unique extension of
r

: F →F such that

r
f Ha = (

r
a+ f )Ha− (

r 0
a− f ) H̄a = (

r
a f )Ha + H̄(a)

r a
0 f (3.10)

for all f ∈F and a ∈ K. Equivalently, we can define

r
f H̄a = (

r
a− f ) H̄a− (

r 0
a+ f )Ha = (

r
a f ) H̄a +H(a)

r a
0 f . (3.11)
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The motivation for this definition comes from the standard Riemann integral
r
=

r x
0 . For

instance, if we take f (x) = coshx then
r

f Ha can be visualised with four different cases
depending upon the sign of x and a. This is illustrated in Figure 3.1.

In the standard example, the shift map Sa( f ) = f (x+a) shifts the graph of f by a units
to the left. Similarly, in the case of the piecewise functions, we can define Sa : PF →PF

by Sa(Hb) := Hb−a.
Finally, we can extend the character E uniquely from the ground algebra by defining

E : PF → K such that E(H̄a) = H(a).

This gives Ec(Ha) = H̄(a− c) and Ec(H̄a) = H(a− c). Since the relation HaHb = Ha⊔b

implies that H̄(a) H̄(b) = H̄(a⊔b) which in turn yields H̄(0)2 = H̄(0). Therefore H̄(0) ∈
{0,1}, and thus this set up works for both the cases η = 0or1, but it rules out the symmetric
setting η = 1/2.

Proposition 3.1. Let (F ,
r
) be an ordinary shifted Rota-Baxter algebra over an ordered

field K. Then (PF ,
r
) is a shifted Rota-Baxter algebra extending (F ,

r
).

Proof. To prove it is a Rota-Baxter algebra, we need to show

(
r

f Ha)(
r

gHb) =
r

f Ha
r

gHb +
r

gHb
r

f Ha (3.12)

holds (Def. 3.1), for all f ,g ∈F . Since PF is commutative and the right-hand of the
above expression suggests that order of the functions does not matter, so it suffices to prove

(
r

f Ha)
2 = 2

r
f Ha

r
f Ha (3.13)

for f ∈F and a ∈ K. Since Ha is idempotent, the definition of
r

: PF →PF and the
Rota-Baxter axioms of

r
a+ and

r
a− give 2(

r
a+ f

r
a+ f )Ha + 2(

r 0
a− f

r
a− f ) H̄a for the left-

hand side of (3.13). Likewise, we get 2(
r

a+ f
r

a+ f )Ha−2(
r 0

a− f
r

a+ f ) H̄a on the right-hand
side of (3.13), using twice the definition of

r
: PF →PF . It remains to check that

the second terms are equal on both sides. For a≥ 0 both terms vanish while for a < 0 the
problem reduces to checking

r 0
a f

r
a f =

r a
0 f

r
f . Splitting the inner integral

r
a f =

r 0
a f +

r
f

on the left-hand side yields (
r a

0 f )2−
r a

0 f
r

f since
r 0

a is K-linear and
r 0

a f ∈ K by (F ,
r
)

being ordinary. Then the result follows from the Rota-Baxter axiom of (F ,
r
). From the

construction, it is clear that (PF ,
r
) is a Rota-Baxter extension of (F ,

r
).

To show that it is indeed a shifted Rota-Baxter extension, it is enough to prove the
compatibility relation [Sc,

r
] = Ec

r
(Def. 3.10) for the induced evaluations Ec = E ◦ Sc.

51



y = f (x) Ha(x)

x

y

a=a+ xa-=0

a>0, x>0:

y = f (x) Ha(x)

x

y

a=a+x a-=0

a>0, x<0:

y = f (x) Ha(x)

x

y

a=a- xa+=0

a<0, x>0:

y = f (x) Ha(x)

x

y

a=a-x a+=0

a<0, x<0:

Fig. 3.1 Integrating piecewise continuous functions.
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By (3.9), it is enough to verify this relation on the elements of the form f Ha, since it is
already satisfied for f ∈Fdue to the shift relation on F . From the Figure 3.1, one can
derive the generic identities which are valid for Rota-Baxter algebras over ordered fields,

r
s+ =

r
+H(s)

r 0
s ,

r
s− =

r
+ H̄(s)

r 0
s and

r 0
s+ = H(s)

r 0
s ,

r 0
s− = H̄(s)

r 0
s ,

(3.14)
together with the simple consequence

r a−c
0 Sc f =

r a
c f of the shift relation on F . Doing so

yields
r c

0 f +H(a)
r 0

a f +H(a− c)
r a

c f for both sides of [Sc,
r
] f Ha = Ec

r
f Ha.

The above proposition gives an algebraic description of integration on piecewise func-
tions. Now, our next aim here is to add a derivation on this structure, and then, as discussed
before, the pair (

r
,∂ ) induces an evaluation

Ê= 1−
r
◦∂ . (3.15)

In the next proposition we prove that the induced evaluation Ê is not multiplicative and hence
we will call it induced pseudo-evaluation.

We can extend the derivation from the ground algebra F to PF in two different ways:
either we set ∂ (Ha) = 0 or we define ∂ (Ha) = δa. It is tempting to use the second option
and build distributions via this route as a differential ring extension of PF , but this gives
rise to some complications, see Remark 3.3 below.
Therefore, here we define ∂ : PF →PF by setting ∂Ha = 0 for all a ∈ K. Observe
that the ring of constants is enlarged to Ker(∂ ) = K[Ha | a ∈ K]. In the proposition below,
we extend the ordinary shifted differential Rota-Baxter algebraic structure of (F ,∂ ,

r
) to

(PF ,∂ ,
r
) using the derivation defined above.

Proposition 3.2. Let (F ,∂ ,
r
) be an ordinary shifted differential Rota-Baxter algebra over

the ordered field (K,<). Then (PF ,∂ ,
r
) is a shifted differential Rota-Baxter extension

algebra whose induced pseudo-evaluation

Ê( f Ha) = Ea( f )Ha +E0( f )−Ea−( f ) =

E0( f )−Ea( f ) H̄a if a≤ 0,

Ea( f )Ha if a≥ 0,
(3.16)

is not multiplicative. Hence (PF ,
r
,∂ ) is not an integro-differential algebra.

Proof. From the definition it is clear that
r

: PF →PF is a section of ∂ : PF →PF ,
so (PF ,∂ ,

r
) is a differential Rota-Baxter algebra by Proposition 3.1. For showing that
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it is shifted, it remains to prove the compatibility relation [Sc,∂ ] = 0. Since it is true by
hypothesis on F , we need only check that Sc∂ f Ha = f ′(x+ c)Ha−c = ∂Sc f Ha.

One checks immediately that the pseudo-evaluation of PF is given by (3.16), using the
relation Ea = Ea+−E0 +Ea− . As for every integro-differential algebra, we have (K[x],

r
)⊆

(F ,
r
). Since K ⊇Q is an ordered field, we have 0 < 1 < 2 so that

Ê(xH1 · xH2) = Ê(x2H2) = 4H2 ̸= 2H2 = H1 ·2H2 = Ê(xH1) · Ê(xH2),

which shows that Ê fails to be multiplicative.

From (3.16), it is clear that Ê(Ha) = Ha, which is in agreement with the fact that Ha ∈
Ker(∂ ). We should not confuse this evaluation with the distinguished evaluation E(Ha) =

H̄(a), which has image K rather than K[Ha | a ∈ K].

Example 3.2.2. Let us describe the piecewise extension of continuous functions F =C(R)
and smooth functions F =C∞(R) simultaneously.

Let f : D→ R be continuous/smooth function on an open set D⊆ R. Then f is called a
piecewise continuous /smooth if D has finite complement in R and f has one-sided limits at
each x ∈ R\D. We call x ∈ R\D regular if f can be extended continuously/smoothly to
the domain D∪{x}. In this case, we define f (x) = limξ→x f (ξ ) and write f̃ for its maximal
extension. With this understanding, we define2 PC(R) and PC∞(R) as the set of piecewise
functions f : D→ R with f̃ = f . They both become rings under the operations

f1 + f2 := f̃1⊕ f2, f1 · f2 = f̃1⊙ f2,

where f1⊕ f2 and f1⊙ f2 denote the pointwise sum and product of functions fi : Di→ R
after restricting each to their common domain D1∩D2. Naturally, the usual Rota-Baxter
operator

r
=

r x
0 yields Rota-Baxter algebras (PC∞(R),

r
) ⊂ (PC(R),

r
). Moreover, the

derivation ∂ = d
dx on the piecewise smooth function gives rise to a differential Rota-Baxter

algebra (PC∞(R),∂ ,
r
).

There is an algebra homomorphism π : PC(R)→ PC(R) that fixes C(R) and that
sends each Ha (a ∈ R) to H(x− a) ∈ PC(R). Clearly, we have also PC∞(R)→ PC∞(R)
by restriction. We show that both homomorphisms π are surjective: Each f ∈ PC(R) or

2Note the difference between P and P in this example; the latter stands for the algebraic construction
described above while the former denotes the standard notion of piecewise functions in real analysis.
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f ∈ PC∞(R) with regular part f : D→ R can be written as

f (x) =
n

∑
i=0

fi(x)H(x− xi)H(xi+1− x)

where R \D = {x1 < · · · < xn} and fi : R→ R is an arbitrary continuous/smooth exten-
sion of the function pieces f |(xi,xi+1). Here we set x0 = −∞ and xn+1 = +∞ with the
understanding that H(x+∞) = H(∞− x) = 1. With this choice of pieces f0, . . . , fn we
have f = π

(
∑i fi HxiH̄xi+1

)
, so π is indeed surjective. However, π is not injective: it has

respective kernels

R := Ker(π : PC(R)→ PC(R)) and R∞ := Ker(π : PC∞(R)→ PC∞(R)).

These ideals encode the algebraic relations between continuous /smooth functions and
Heavisides, for instance b(x)H(x− 2) = 0 where b(x) is any bump function supported
in [−1,1]. Only when we quotient these kernels out, we get isomorphisms PC(R) ∼=
PC(R)/R and PC∞(R)∼= PC∞(R)/R∞.

3.3 The Distribution module

Our construction of the distribution module is based on a free differential module over F ,
rather than a module over PF (see Remark 3.3). Here we introduce distributions using the
derivation ∂ (Ha) = δa := δ (x−a). The aim of this section is to start from an ordinary shifted
integro-differential algebra (F ,

r
,∂ ), and obtain the distribution module (DF ,

∮
,ð), which

is an ordinary shifted integro-differential module over F . This section is rather technical.
Therefore, for an easy comprehension we give an outline of our approach.

1. Construct the differential module DF over F as a quotient module by extending the
derivation on the ground algebra (F ,∂ ) (Def. 3.11).

2. Find a “normal form” for elements in the distributional module (Lemma 3.1).

3. Introduce a Rota-Baxter operator (“integral”) on the distributional module (Eq. (3.22)).

4. Show that if (F ,
r
,∂ ) is an ordinary shifted integro-differential algebra then

(a) (DF ,ð,
∮
) is a differential Rota-Baxter module over (F ,

r
,∂ ) (Thm. 3.1) .

(b) (DF ,
∮
,ð) is an ordinary integro-differential module over (F ,

r
,∂ ) (Prop. 3.3).
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(c) (DF ,
∮
,ð) is an ordinary shifted integro-differential module over (F ,

r
,∂ )

(Thm. 3.2).

In the theory of distributions, δa is considered not a function in itself but only in relation to
how it affects other functions when “integrated” against them. Its basic property is that f δa

vanishes identically when f (a) = 0. That is, f δa only depends on f (a) and not on all of f .
One may define it using its sifting property∫

∞

−∞

f (s)δ (s−a)ds = f (a), (3.17)

which reflect that it helps in “extracting” the source value. We use f δa = f (a)δa as the basis
for our algebraic construction.

If (F ,∂ ) is a differential algebra, we denote as usual f ′ := ∂ ( f ) and f (i) := ∂ i( f ) for
the derivatives of an element f ∈F . We also employ the abbreviation δa := ∂ (Ha) = H ′a,
and for their higher order derivatives we write δ (i) and H(i)

a . For a set of differential
indeterminates X , the algebra of differential polynomials F{X} is the free object in the
category of differential F algebras. Similarly the F -submodule F{X}1 consisting of affine

differential polynomials, that is, those having total degree atmost 1, is the free object in
category of differential F -modules. Affine differential polynomials are required so that we
can avoid terms consisting of (δ ′a)

2, f (δ ′′a )
3 and so on.

Definition 3.11. Let (F ,∂ ) be a differential algebra over a ring K. We define the distribution

module (DF ,ð) as the differential F -module F{Ha | a ∈ K}1/Z, where Z denotes the
differential F -submodule generated by { f δa−Ea( f )δa | f ∈F , a ∈ K}.

Using the order on K, we can induce the ranking ≺ on F{Ha | a ∈ K}. We say

H(m)
a ≺ H(n)

b iff a < b or a = b and m < n. (3.18)

Moreover, the direct sum decomposition

F{Ha | a ∈ K}1 =
⊕
a∈K

F{Ha}1

of differential F -modules induces the direct decomposition Z =
⊕

Za, and we write

ζ = ∑
a∈K

ζa (ζa ∈ Za)
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for the corresponding sum representation of an arbitrary ζ ∈ Z. We can use the ranking ≺
to get a kind of Gröbner basis for Z which is mentioned in the lemma below. This lemma
provides a way to write elements in the distribution module DF .

Lemma 3.1. The differential F -module Z in Definition 3.11 is generated as an F -module

by {
f δ

(k)
a −

k

∑
i=0

(
k
i

)
(−1)iEa( f (i))δ

(k−i)
a

∣∣∣a ∈ K, f ∈F ,k ≥ 0
}
, (3.19)

which forms a Gröbner basis of Z. For every element ζ ∈ Z, the leading coefficient fa of

each ζa has the property Ea( fa) = 0. Relative to this Gröbner basis, the elements ψ +Z ∈
DF of the quotient have the canonical representatives

ψ = f + ∑
a∈K

faHa + ∑
a∈K

∑
k≥0

λa,k δ
(k)
a ( f , fa ∈F ; λa,k ∈ K) (3.20)

with only finitely many fa and λa,k nonzero.

Proof. We split the proof into several steps.

1. Let us first show that Z contains the F -module generated by (3.19). Since the
components Za are independent, we fix an a ∈ K and write the corresponding elements
of (3.19) by ζ f ,k. We prove by induction on k that all ζ f ,k are contained in Z. For k = 0
this is clear since ζ f ,0 is a (differential) generator of Z. Assume that all ζ f , j with j < k

and arbitrary f ∈F are contained in Z; we show that ζ f ,k ∈ Z for a fixed f ∈F .
Differentiating an arbitrary generator f δa−Ea( f )δa of Z, we obtain

ðk
ζ f ,0 = f δ

(k)
a +

k−1

∑
i=0

(
k
i

)
(∂ k−i f )δ

(i)
a −Ea( f )δ

(k)
a ∈ Z.

Eliminating the terms f (i) δ
(k−i)
a yields

ðk
ζ f ,0−

k−1

∑
i=0

(
k
i

)
ζ f (k−i),i = f δ

(k)
a +

k−1

∑
j=0

k−1

∑
i= j

(
k
i

)(
i
j

)
(−1)i+ jEa( f (k− j))δ

( j)
a −Ea( f )δ

(k)
a
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after an index transformation. The double sum simplifies to

k−1

∑
j=0

k−1

∑
i= j
· · ·=

k−1

∑
j=0

(−1) jEa( f (k− j))δ
( j)
a

k−1

∑
i= j

(
k
i

)(
i
j

)
(−1)i

= (−1)k+1
k−1

∑
j=0

(
k
j

)
(−1) jEa(∂

k− j f )δ
( j)
a

=−
k

∑
j=1

(
k
j

)
(−1) jEa( f ( j))δ

(k− j)
a ,

using the fact that the inner sum above evaluates to (−1)k+1(k
j

)
. Extending the range

of the last sum to include j = 0 incorporates the remaining term so that

ðk
ζ f ,0−

k−1

∑
i=0

(
k
i

)
ζ f (k−i),i = f δ

(k)
a −

k

∑
j=0

(
k
j

)
(−1) jEa( f ( j))δ

(k− j)
a = ζ f ,k, (3.21)

which shows that ζ f ,k ∈ Z since all ζ∂ k−i f ,i ∈ Z by the induction hypothesis.

2. For the converse that Z is contained in the F -module generated by (3.19), it suffices
to show that all the derivatives ðkζ f ,0 are F -linear combinations of the ζ f , j. But this
is clear from (3.21).

3. We proceed now to the statement about the leading coefficients. To this end, we rewrite
the module generators as

ζ f ,k = ( f −Ea f )δ
(k)
a −

k

∑
i=1

(
k
i

)
(−1)iEa( f ( j))δ

(k−i)
a ,

from which the claim is evident.

4. Next we must show that (3.19) forms a Gröbner basis for the F -module Z. This
involves a slight variation of the usual setting of Gröbner bases for commutative
polynomials [4] since we have infinitely many indeterminates and the coefficient
ring F may have zero divisors (it is certainly not a field). Since we need only the
linear fragment of the polynomial ring, we may use the approach of [1, §9.5a], which
also allows for infinitely many generators. In the notation of [1, §9.5a], we set k = K

and R = F with trivial presentation (every element of F is a generator, and there are
no relations) and the module M = Z with generators δ

(k)
a and relations (3.19). The

only S-polynomials σ arise from the self-overlaps of (3.19), namely f f̄ δ
(k)
a , and this
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yields

σ =
k

∑
i=0

(
k
i

)
(−1)i

(
Ea( f (i)) f̄ −Ea( f̄ (i)) f

)
δ
(k−i)
a

→
k

∑
i=0

k−i

∑
j=0

(
k
i

)(
k− i

j

)
(−1)i+ jEa( f (i) f̄ ( j)− f̄ (i) f ( j))δ

(k−i− j)
a

= ∑
i+ j≤k

ei j ηi j,

which vanishes since the summation is over a triangle i+ j≤ k, symmetric with respect
to i↔ j, while the evaluation term ei j = Ea(. . .) is antisymmetric and the trinomial
term ηi j = k!

/
i! j!(k− i− j)!(−1)i+ j δ

(k−i− j)
a symmetric.

5. The analog of the Diamond Lemma in [1, §9.5a] ensures that the normal forms of (3.19)
are canonical representatives of the congruence classes ψ +Z ∈DF . Hence it suffices
to characterize the normal forms of an arbitrary (noncanonical) representative ψ .
Clearly, every such ψ is reducible as long as it contains any δ

(k)
a with a coefficient

in F \K; hence we can achieve (3.20), which is clearly irreducible with respect
to (3.19).

This completes the proof of the Presentation Lemma.

Now we can endow (DF ,ð) with a Rota-Baxter operator. We define
∮

: DF →DF

as an extension of
r

: PF →PF via the recursion

∮
f δ

(k)
a =

Ea( f )
∮

δa for k = 0,

f δ
(k−1)
a −

∮
f ′δ (k−1)

a for k > 0,
(3.22)

where Ea denotes the evaluation in F and

∮
δa = Ha− H̄(a) = H(a)− H̄a, (3.23)

which may also be written symmetrically as
∮

δa = H(a)Ha− H̄(a) H̄a. If we set f = 1
in (3.22) then we obtain

∮
δ
(k)
a = δ

(k−1)
a for k > 0. Hence, the induced evaluation é =

1DF −
∮
ð gives

é(Ha) = Ha−
∮

δa = H̄(a) and é(δ (k)
a ) = 0 (k ≥ 0). (3.24)
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Remark 3.2. The definition of the Rota-Baxter operator
∮

: DF →DF in (3.10) and (3.22)–
(3.23) can be combined together to form the single formula

∮
f H(k+1)

a = f H(k)
a −

∮
f ′H(k)

a (k ∈ N). (3.25)

It is obvious for k > 0. It can be proved for k = 0 by using the relation Ea = Ea+−E0 +Ea−

and the fact that f (a+) = f (a)H(a) + f (0) H̄(a). However, we prefer to use the split
definition (3.22)–(3.23) as it is more intuitive.

Since the derivation of Ha is different in both the modules PF and DF , we can
view PF ⊂DF as plain F -modules but not as differential F -modules. Our next result
states that the distribution module DF is an extension of the ground algebra F that contains
the piecewise extension PF as a Rota-Baxter module. See the figure below, where ι

is the embedding of Rota-Baxter F -modules while uP and uD are the structure maps of
the F -modules PF and DF , respectively.

PF � � ι // DF

F

uP

OO

uD

88

Fig. 3.2 Embedding of Rota-Baxter F -modules.

Theorem 3.1. Let (F ,
r
,∂ ) be an ordinary shifted integro-differential algebra. Then the

distribution module (DF ,ð,
∮
) is a differential Rota-Baxter module over F that extends

(PF ,
r
) as a Rota-Baxter module.

Proof. It suffices to prove the following statements:

1. The map
∮

: DF →DF is well-defined. For this we have to show that
∮

Z ⊆ Z, which
we do with the help of Lemma 3.1. For fixed a ∈ K, we prove

∮
ζ f ,k ∈ Z for all f ∈F

and k ≥ 0. Using induction on k, the base case k = 0 follows immediately from (3.22).
For the induction step it is enough to prove that

∮
ζ f ,k+1 = ζ f ,k−

∮
ζ f ′,k for all f ∈F .
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Using the generators (3.19) we have

∮
ζ f ,k+1 =

∮
f δ

(k+1)
a −

k+1

∑
i=0

(
k+1

i

)
(−1)iEa( f (i))

∮
δ
(k−i+1)
a ,

which simplifies by (3.22) and the binomial recursion
(k+1

i

)
=
(k

i

)
+
( k

i−1

)
to

f δ
(k)
a −

k

∑
i=0

(
k
i

)
(−1)iEa( f (i))δ

(k−i)
a −

(∮
f ′ δ (k)

a −
k

∑
i=0

(
k
i

)
(−1)iEa( f ′(i))

∮
δ
(k−i)
a

)
= ζ f ,k−

∮
ζ f ′,k

and thus completes the induction.

2. The map
∮

: DF →DF is a Rota-Baxter operator. Hence we must prove the weak
RB axiom, for any f ,g ∈F and a ∈ K and k ≥ 0,

r
f ·
∮

gδ
(k)
a =

∮
f
∮

gδ
(k)
a +

∮
(
r

f )gδ
(k)
a . (3.26)

We fix a ∈ K and use induction on k to prove (3.26) for all f ,g ∈F . In the base case,
exploring definition (3.22) reveals that Ea(g) factors on both sides of (3.26); hence it
suffices to take g = 1. The left-hand side is then

r
f ·
∮

δa while we obtain

(
H(a)

r
f Ha− H̄(a)

r
f H̄a
)
+

r a
0 f ·

∮
δa

for the right-hand side. Using the definition (3.10), (3.11) of the Rota-Baxter operator
on the piecewise extension PF ⊂ DF and properties of the Heaviside function,
the first summand becomes

r
a f ·

∮
δa and then combines with the remaining term

to
r

f ·
∮

δa; this completes the base case of the induction. Assume now that (3.26)
holds for k; we show that it holds for k+ 1. Using the definition (3.22) once, the
left-hand side is

r
f · (gδ

(k)
a −

∮
g′ δ (k)

a ). On the right-hand side we use (3.22) on each
term to get

∮
f gδ

(k)
a −

∮
f
∮

g′ δ (k)
a +(

r
f )gδ

(k)
a −

∮
f gδ

(k)
a −

∮
(
r

f )g′ δ (k)
a

= (
r

f )gδ
(k)
a −

∮
f
∮

g′ δ (k)
a −

∮
(
r

f )g′ δ (k)
a .

Canceling the first terms on both sides, we end up with (3.26) where g is replaced
by g′, and this holds by the induction hypothesis.
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3. The map ð : DF → DF is a well-defined derivation. In fact, it suffices to prove
well-definedness since the derivation property then follows immediately from the
definition of DF as a quotient of a differential module. Hence we must prove ∂Z ⊂ Z,
but this follows directly from ðζ f ,k = ζ f ,k+1 + ζ f ′,k, obtained by differentiating the
identity of Item (1).

4. The Rota-Baxter operator
∮

is a section of the derivation ð. We start by showing
that ð

∮
f Ha = f Ha holds for all f ∈F . Using definition (3.10) for the Rota-Baxter

operator on PF and the Leibniz rule together with the basic relation f δa = Ea( f )δa

of Z yields
ð
∮

f Ha = f Ha +
(r a

a+ f
)

δa +
(r 0

a− f
)

δa (3.27)

whose last two terms combine to 0+0 in the case a≥ 0 and again to
r a

0 f +
r 0

a f = 0 in
the case a≤ 0. Hence the right-hand side of (3.27) is indeed f Ha. Now for elements
of the form f δ

(k)
a we use induction on k. In the base case we have

ð
∮

f δa = Ea( f )ð
(
Ha−H(a)

)
= Ea( f )δa = f δa,

where the last step uses again the basic relation of Z. Now assume ð
∮

f δ
(k)
a = f δ

(k)
a

for a fixed k. Then we have

ð
∮

f δ
(k+1)
a = ð( f δ

(k)
a )−ð

∮
f ′δ (k)

a = f δ
(k+1)
a ,

where the last step uses the Leibniz rule for ð and the induction hypothesis. This
completes the proof of the section axiom for

∮
.

Now we address the remark promised earlier on the “construction design” of DF . We
mention a complication that can arise if one constructs DF by simply defining derivation
H ′a = δa in PF .

Remark 3.3. Let us pose our problem as a question: Why can we not introduce distributions
as a differential ring extension of PF ? The problem stems from the fact that H2

a = Ha

in PF . If we employ the derivation H ′a = δa in PF instead of H ′a = 0, then after
differentiating H2

a = Ha, we obtain 2Ha δa = δa. This in turn implies that

δa = 2Ha δa = 2Ha (2Ha δa) = (4H2
a )δa = 4Ha δa = 2δa,

meaning δa = 0 which gives us an absurd result DF = PF .
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It is now clear why our construction of DF was based on a free differential mod-
ule over F rather than some module over PF . It should be clear that PF ⊂ DF

together with the relation H2
a = Ha ∈DF but we are barred from differentiating this relation

since DF is a differential module over F and not over PF . This is in accordance with
the famous result due to Schwartz that distributions cannot be multiplied [47].

The distribution module do, in fact, have a richer structure, more than was stated in
Theorem 3.1. To capture this we need to introduce the module-theoretic analogue of the
integro-differential algebra.

Definition 3.12. We call a module (M,
∮
,ð) an integro-differential module over an integro-

differential algebra (F ,
r
,∂ ) if the induced evaluation é := 1M−

∮
ð is multiplicative in the

following sense:
é( f ψ) = E( f ) é(ψ), (3.28)

where E := 1F −
r

∂ is the evaluation on the ground algebra F .

In the following lemma we characterise this module.

Lemma 3.2. Let (M,ð,
∮
) be a differential Rota-Baxter module over the integro-differential

algebra (F ,
r
,∂ ). Then we have the following equivalences (where f ,c ∈F and ψ,γ ∈M):

1.
∮

cψ = c(
∮

ψ) (for all c ∈ Ker(∂ )) ⇔
∮

f ψ = f
∮

ψ−
∮

f ′
∮

ψ

2.
∮

f γ = (
r

f )γ (for all γ ∈ Ker(ð)) ⇔
∮

f ψ = (
r

f )ψ−
∮
(
r

f )ψ ′

3. é( f ψ) = E( f ) é(ψ) ⇔ (1a) & (2a) ⇔ (1b) & (2b)

If M is ordinary, then properties (1a) and (1b) are immediate; if F is ordinary, the same

holds for properties (2a) and (2b).

Proof. The implications are similar to the corresponding ones given in [16, Thm. 2.5] for
noncommutative rings, provided one splits the properties of the ring into its left-hand and
right-hand versions.

Let us start with (1). The implication from right to left is obvious, so assume the
homogeneity condition (1a) for c ∈ Ker(∂ ). Then we have

f
∮

ψ = ( f −
r

f ′)
∮

ψ +(
r

f ′)(
∮

ψ) =
∮

f ψ−
∮
(
r

f ′)ψ +(
r

f ′)(
∮

ψ),

where we have used the homogeneity condition for c = f −
r

f ′ ∈ Ker(∂ ). By the (plain)
Rota-Baxter axiom the last term above is (

r
f ′)(

∮
ψ) =

∮
(
r

f ′)ψ +
∮

f ′
∮

ψ , hence one im-
mediately obtains (1b). The proof of the equivalence (2a)⇔ (2b) is completely analogous.
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Turning to (3), let us first assume the multiplicativity condition é( f ψ) = E( f ) é(ψ). Special-
izing to f = c ∈ Ker(∂ ) yields

∮
cψ ′ = c

∮
ψ ′, which is (1a) since ð is surjective; likewise

specializing to ψ = γ ∈ Ker(ð) gives
∮

f ′γ = (
r

f ′)γ , which is (2a) since ∂ is surjective as
well. For the converse statement, we may assume (1b) and (2b) to prove the multiplicativity
condition for the evaluations. From the plain Rota-Baxter axiom we have

(
r

f ′)(
∮

ψ
′) =

∮
(
r

f ′)ψ
′+
∮

f ′
∮

ψ
′ =

(
(
r

f ′)ψ−
∮

f ′ψ
)
+

(
f
∮

ψ
′−
∮

f ψ
′
)
,

where the first and the second parenthesized terms come from applying (2b) and (1b),
respectively. Subtracting f ψ from both sides of the above identity and rearranging, one
obtains exactly é( f ψ) = E( f ) é(ψ).

Now, we can prove our claim that DF of Theorem 3.1 is indeed an ordinary integro-
differential module.

Proposition 3.3. If (F ,
r
,∂ ) is an ordinary shifted integro-differential algebra, (DF ,

∮
,ð)

is an ordinary integro-differential module over F .

Proof. Let us first prove that DF is ordinary, meaning Ker(ð) = K. Hence assume ðψ = 0
for an arbitrary element ψ ∈DF . By Lemma 3.1 we may assume

ψ = f + ∑
a∈K

faHa + ∑
a∈K

∑
k≥0

λa,k δ
(k)
a

for some f , fa ∈F and λa,k ∈ K so that

f ′+ ∑
a∈K

( f ′aHa + faδa)+ ∑
a∈K

∑
k≥0

λa,k δ
(k+1)
a = 0.

In view of Lemma 3.1, we obtain f ′ = f ′a = fa = λa,k = 0. But then we have ψ = f ∈
Ker(∂ ) = K, so the differential module (DF ,ð) is ordinary. From Lemma 3.2 it follows
immediately that (DF ,

∮
,ð) is also an integro-differential module.

To show that the module DF inherits all the properties from the ground algebra we
introduce shifted evaluations on it by extending the shift map of the ground algebra. If we
define Ś : K→ AutK(DF ) such that

Śc Ha = Ha−c and Śc δa = δa−c (a,c ∈ K),

and extend it through linearity and multiplicativity, then Ś is a shift map on DF . Similarly
one can obtain the shifted evaluations on D by setting éc := é◦ Śc. Clearly, this yields écHa =
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H̄(a− c) and écδ
(k)
a = 0 on the generators as per (3.24). As usual we write

∮
b (b ∈ K) for

the resulting shifted Rota-Baxter operators.

Theorem 3.2. If (F ,
r
,∂ ) is an ordinary shifted integro-differential algebra, (DF ,

∮
,ð) is

an ordinary shifted integro-differential module over F . Its shifted Rota-Baxter operators are

given by the recursion (3.22), with
∮

replaced by
∮

b, and by the base case (3.23), with H̄(a)

replaced by H̄(a−b) or H(a) replaced by H(a−b).

Proof. The recursive description of the shifted Rota-Baxter operators follows immediately
from the definition

∮
b := (1− éb)

r
. In view of Proposition 3.3, it then remains to prove the

compatibility relations [Śc,
∮
] = éc

∮
and [Śc,ð] = 0. Let us start with the former.

Since Śc and
∮

as well as éc agree on PF ⊂DF by definition, it suffices to consider
elements of the form f δ

(k)
a (k ≥ 0). We apply induction on k. For the base case k = 0,

we obtain Ea( f )
(
H̄(a− c)− H̄(a)

)
for both the left-hand and the right-hand side of the

relation [Śc,
∮
] = éc

∮
applied to f δa. Now assume the relation for all f δ

(k)
a with fixed k≥ 0;

we must show it for f δ
(k+1)
a . A straightforward computation, using the induction hypothesis

on
∮

f ′δ (k)
a , yields − éc

∮
f ′δ (k)

a for both sides of [Śc,
∮
] = éc

∮
as applied to f δ

(k+1)
a .

Let us now turn to the commutation identity Ścð = ðŚc. Since F is a shifted integro-
differential algebra by hypothesis, we need only consider elements of the form f H(k)

a (k≥ 0).
For those one obtains indeed Ścð f H(k)

a = ðŚc f H(k)
a = Sc( f ′)δ

(k)
a−c +Sc( f )H(k+1)

a−c , making
use of the commutation identity on F .

The distribution module DF is a universal object, that is, we can characterize it in terms
of a universal mapping property. Let us briefly review this universal property in terms of
initial and terminal object.

An initial object A in a category C is an object such that for any object X of C , there
is a unique morphism f : A→ X . An initial object, if it exists is unique up to isomorphism.
Initial objects are the dual concept to terminal objects, meaning an object B is called terminal
if for every object X ∈ C there is a unique morphism g : X → B.

The existence of a unique morphism is the same as saying that the corresponding Hom
set consists of a single element. Therefore, in both the cases here, the sets HomC (A,X) and
HomC (X ,B) are singletons. We already know of some universal objects; let us consider a
few examples below.

In the category of sets, the single element set is a terminal object since there is only one
set-function to a single element set. However, there are infinitely many singleton sets but
they all are isomorphic. On the other hand, the empty set is an initial object, since the “empty
function” is the only set-mapping from the empty set to any set. Notice that the initial object
here is truly unique and not just up to isomorphism.
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In the category of groups, the identity group or trivial group {1} is both an initial and a
terminal object, since group homomorphism must preserve the identity element. Here, this
trivial group is not unique but unique up to isomorphism.

For a slightly more interesting example, consider the category of rings. If R is any
ring with identity element 1R then the map f : Z→ R defined by f (n) = n.1R is a unique
morphism, hence this makes the ring of integers Z an initial object in the category of rings.

Now we come back to the task at hand. To characterize universality of the Dirac module
first we need to fulfil the following requirements:

• first, we adjoin a family of distributions δa (a ∈ K) to the given integro-differential
algebra (F ,∂ ,

r
) and then,

• algebraically characterize them by the sifting property (3.17) and the integro-differential
relation

δ
(k)

ð
⇄∮ δ

(k+1) for k ≥ 0,

together with the conditions H ′a = δa and
∮
= Ha− H̄(a).

• finally, the multiplication of distributions is not allowed.

Definition 3.13. Let (F ,
r
,∂ ) be an integro-differential algebra. An integro-differential

module (M ,
∮

M ,ð) over F is called a Dirac module if PF ↪→M as Rota-Baxter
modules such that (3.17) holds and δa := ðM Ha satisfies

∮
M δa = Ha − H̄(a) as well

as
∮

M δ
(k+1)
a = δ

(k)
a , for all a ∈ K and k ≥ 0.

With the above definition, we are equipped to show that the distribution module DF is an
initial object in the category of Dirac modules.

Proposition 3.4. The differential Rota-Baxter module (DF ,ð,
∮
) is the universal Dirac

module over (F ,∂ ,
r
) that extends (PF ,

r
) as a Rota-Baxter module. In other words, for

every Dirac module M there is a unique integro-differential morphism Ψ : DF →M that

respects the canonical embedding of PF .

Proof. Let κ : PF ↪→M be the embedding of Rota-Baxter modules from Definition 3.13,
and let uP , uD , ι be as in the diagram below.
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F

uP

��

uD

++
PF � � ι //

� y

κ

,,

uM

''

DF

Ψ

��

M

Fig. 3.3 Universal mapping property of distribution module.

Furthermore, we will write uM for the structure map of the F -module M . We construct a
morphism of integro-differential modules Ψ : DF →M that makes the right-hand diagram
commute. It suffices to show Ψι = κ since then ΨuD = uM follows from the module
structures ιuP = uD and κuP = uM .

If the required map Ψ exists, it must be F -linear and send (ιHa)
(k) to (κHa)

(k). But
this defines Ψ uniquely because DF is generated by (ιHa)

(k) as an F -module. Defining
first Ψ̃ : F{Ha | K}1 →M by these requirements, it follows at once that Ψ̃ is in fact a
morphism of differential F -modules. To see that it lifts to a map Ψ : DF →M , we must
show Ψ̃(Z) = 0. Since Ψ respects the derivation, it suffices to prove that Ψ annihilates
the differential generators f δa−Ea( f )δa or, more precisely, the corresponding elements
uD( f ) ι(Ha)

′−Ea( f ) ι(Ha)
′. But this follows immediately from the sifting property (3.17)

of the Dirac module M .
We have now a differential morphism Ψ : DF →M that clearly satisfies the required

commutation property Ψι = κ . Moreover, it is clear from the construction that Ψ is unique.
Hence it only remains to prove that Ψ is also a morphism of Rota-Baxter algebras over F .
To this end, we show first that

∮
M Ψ( f ιHa) = Ψ

∮
( f ιHa). (3.29)

Note that the left-hand side may be written as
∮

M κ( f ιHa) since Ψι = κ . Since by hypothe-
sis we have PF ↪→M as Rota-Baxter F -modules, we may now apply

∮
M κ = κ

r
and
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then expand the integral
r

of PF to obtain

κ

(
(
r

a+ f )Ha− (
r 0

a− f ) H̄a

)
= Ψ

(
(
r

a+ f ) ιHa− (
r 0

a− f ) ιH̄a

)
for the left-hand side of (3.29), using again Ψι = κ for the last step. Recalling that

∮
on DF

was defined as an extension of
r

on DF , this yields the right-hand side of (3.29). It remains
to prove ∮

M Ψ( f δ
(k)
a ) = Ψ

∮
( f δ

(k)
a ) (3.30)

for all k ≥ 0. By the sifting property (3.17), valid in DF as well as M , we may replace f

by Ea( f ) on both sides of (3.30). Hence we may set f = 1 for the proof of (3.30). For k = 0,
we use the antiderivative relation of the Dirac module M in the precise form

∮
(κHa)

′ =

κHa− H̄(a) to obtain

∮
M Ψδa =

∮
(κHa)

′ = κ
(
Ha− H̄(a)

)
= Ψ(ιHa− H̄(a)) = Ψ(

∮
δa)

as required. For k > 0, Equation (3.30) follows immediately from
∮

M (κHa)
(k) = (κHa)

(k−1),
which holds since M is a Dirac module.

3.4 Bivariate distributional module and applications

From the point of view of applications, we need to find an algebraic setting where the
functions δ (x− a), δ (ξ − b) and δ (x− ξ ) “live”. The construction of the distributional
module was the first step in this direction and now we expand it via the tensor product to
achieve our goal. This construction was carried out by Rosenkranz. Here we rewrite the
description of this construction without including rigorous proofs. For a detailed description,
please read [42].

To accommodate the distributions δ (ξ −b), it is enough to introduce the tensor product
and build functions in the variable ξ . To do this, we define F2 := F ⊗K F and then
introduce the corresponding differential operators ∂x,∂ξ , together with the Rota-Baxter
operators

r x
,
r

ξ . This is the first essential tensor product that is required on the ground
algebra and then slowly we expand it to the piecewise extension and the distributional
module.

However, it is tricky to find a setting for “diagonal distributions” δ (x−ξ ) and “diagonal
Heavisides” H(x−ξ ). To construct such elements, first we need to introduce a slim distri-

butional module where we get rid of the whole gamut of Ha and retain a single Heaviside
Ĥ. Taking motivation from analysis then we introduce an algebraic setting which contains
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δ (x−ξ ) and H(x−ξ ). Finally, we bring together all these structures to build the bivariate
distributional module. Let us begin this construction step by step.

1. Slim distribution module
For our purpose we need only a few Heavisides rather than the whole range of
Ha(a ∈ K). To get rid of all such Heavisides and pick their one representative, we
construct a quotient module.

Let ND be the differential Rota-Baxter submodule generated by the set {Ha | a ∈ K×}.
Then the module

D̂F = DF/ND

is called the slim distributional module. The Heaviside is denoted by Ĥ := H0 +ND

and consequently we write δ̂ := Ĥ ′. Similarly one can obtain the slim piecewise

extension

P̂F = PF/NP ,

where NP is the ideal generated by {Ha | a ∈ K×}. We may view D̂F as a module
over P̂F . In fact, we shall only need the K-subspace generated by Ĥ and its
derivatives; let us denote this space by D̂K ⊂ D̂F . Likewise, we shall write P̂K ⊂
P̂F for the K-subalgebra generated by Ĥ alone.

2. F -bimodule with differential and Rota-Baxter operators
To introduce the counterparts of univariate H(x−a) and its derivatives, we take the
tensor product on the ground algebra F2 := F ⊗K F with the following derivations
and RB operators

∂x( f1⊗ f2) = (∂ f1)⊗ f2, ∂ξ ( f1⊗ f2) = f1⊗ (∂ f2),
r x
( f1⊗ f2) = (

r
f1)⊗ f2,

r
ξ
( f1⊗ f2) = f1⊗ (

r
f2).

We have two embeddings ιx, ιξ : F →F2 with ιx( f ) = f ⊗1 and ιξ ( f ) = 1⊗ f ; we
denote their images by Fx and Fξ , respectively. For a ground element f ∈F , their
embeddings are also written as f (x) := ιx( f )∈Fx and f (ξ ) := ιξ ( f )∈Fξ . It is clear
that both the structures (F2,∂x,

r x
) and (F2,∂ξ ,

r
ξ
) are integro-differential algebras

over K. Although, they are not the ordinary ones since Ker(∂x) = Fξ and Ker(∂ξ ) =

Fx. One can also extend the shift operators as Sx
a( f1⊗ f2) := (Sa f1)⊗ f2 and Sξ

a ( f1⊗
f2) := f1⊗ (Sa f2). If τ : F2→F2 is the usual exchange automorphism τ( f1⊗ f2) =

f2⊗ f1 then the derivations, Rota-Baxter and shift operators are conjugate under τ ,
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meaning
∂ξ = τ∂xτ,

r
ξ
= τ

r x
τ,Sξ

a = τSx
aτ.

3. Pure distributional module and bivariate piecewise extension
The natural thing is to extend the structure (F2,∂x,

r x
) and (F2,∂ξ ,

r
ξ
) such that the

resulting setting also contains Heavisides and Diracs.

Definition 3.14. The pure distribution modules are introduced by DxF :=D(F2,∂x,
r x
)

and Dξ F := D(F2,∂ξ ,
r

ξ
). We write H(x− a) ∈ DxF and H(ξ − a) ∈ Dξ F for

the corresponding differential generators (a ∈ K).

It should be clear that we view H(x− a) ∈PxF and H(ξ − a) ∈Pξ F . One can
induce a duplex structure by defining the action of ðx,

∮ x, Śx
a on Dξ F by regarding

“foreign” factors as constants.

ðx f H(k)
a := (∂x f )H(k)

a ,
∮ x f H(k)

a := (
r x f )H(k)

a , Śx
a f H(k)

a := (Sx
a f )H(k)

a .

Analogously, one can define ðξ ,
∮

ξ , Śξ
a on DxF . Altogether, this gives duplex shifted

differential Rota-Baxter modules, (DxF ,ðx,ðξ ,
∮ x,
∮

ξ ) and (Dξ F ,ðx,ðξ ,
∮ x,
∮

ξ ).

Their induced evaluations are written as éx := 1−
∮ xðx and éξ := 1−

∮
ξ ðξ , along

with the shifted versions évx
a := éx Śx

a and évξ
a := éξ Śξ

a .

One can identify the corresponding piecewise extension as PxF ⊂DxF and Pξ F ⊂
Dξ F . With this understanding, we can introduce the bivariate piecewise extension

Pxξ F := PxF ⊗F Pξ F .

This setting is helpful to represent a rectangular region (x,ξ ) ∈ [a,b]× [c,d] in the
R2 plane. With the same analogy as in F2 , we shall drop the ⊗ symbol and write
H(x−a)H(ξ −b) for Ha⊗Hb. Now we can represent the characteristic function3 in
our language

[a≤ x≤ b]⊗ [c≤ ξ ≤ d] := H(x−a)H(b− x)H(ξ − c)H(d−ξ ) ∈Pξ F .

4. Diagonal distribution module
The algebraic description of the diagonal Heavisides H(x−ξ ) and diagonal Diracs

3As in [41] we use the Iverson bracket notation [14, §2.2]
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δ (x−ξ ) is somewhat more complicated, so we turn to analysis for better understand-
ing. In analysis (K =R), with fixed a ∈R and variables x,ξ ranging over R. We have
the relation

(x≥ a)∧ x(≥ ξ )⇐⇒ (x≥ a∧a≥ ξ )∨ (x≥ ξ ∧a≤ ξ ),

since we may split the case a < ξ and a > ξ , while the case a = ξ holds in both the
above cases. In our algebraic language this translates to

H(x−a)H(x−ξ ) = H(x−a)H(a−ξ )+H(x−ξ )H(ξ −a)

or Ha(x) Ĥ = Ha(x) H̄a(ξ )+Ha(ξ ) Ĥ where Ha(x) := Ha⊗1 ∈Pxξ F and Ha(ξ ) :=
1⊗Ha ∈Pxξ F . With this understanding, we can formulate the diagonal distributions.

Let Ẑ be the Pxξ F -submodule of Pxξ F⊗K D̂K that is generated by the set {
(
Ha(x)−

Ha(ξ )
)
Ĥ−Ha(x) H̄a(ξ ) | a ∈ K}. Then the Pxξ F -module

Dx−ξ F :=
Pxξ F ⊗K D̂K

Ẑ

is called the diagonal distribution module. We shall denote the (congruence class
of) its slim generator Ĥ ∈ D̂K by H(x−ξ ), and its derivative δ̂ ∈ D̂K by δ (x−ξ ).
Analogously to the univariate case, we set also H(ξ − x) := 1− Ĥ.

We emphasize again that the submodule Ẑ is not differentially generated. In other
words, one is not supposed to differentiate the relation (4) as this would once again
lead to inconsistencies (Remark 3.3).

5. Bivariate distributional module
To obtain the bivariate distributional module, first we need to introduce the tensorial

distribution module. It can be done by combining the univariate distribution module
DxF and Dξ F along with the bivariate piecewise extension Pxξ F into a single
module given by

Dxξ F :=
(
DxF ⊗F Pξ F

)
⊕
(
PxF ⊗F Dξ F

)
.

Following the same routine (comments after Def. 3.14), we can combine all struc-
tures into a duplex shifted differential Rota-Baxter module (Dxξ F ,ðx,ðξ ,

∮ x,
∮

ξ )
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over F2, which is also a module over Pxξ F . So far, the situation is parallel to that of
Theorem 3.1.

At this point we have two Pxξ F -modules, Dxξ F and Dx−ξ F . Since F2 ⊂Pxξ ,
we may also view them as F2-modules. They are both free modules just as Pxξ

itself is free as an F2-module. Indeed, the bivariate piecewise extension Pxξ

has the F2-basis B := {1,Ha(x),Ha(ξ ),Ha(x)Hb(ξ ) | a,b ∈ K}, while the tensorial
distribution module Dxξ F has Bxξ := B ∪{Ha(x)δ (n)(b− ξ ),Ha(ξ )δ (n)(b− x) |
a,b ∈ K;n ∈ N} as an F2-basis. Finally, using the relation (4), the diagonal dis-
tribution module Dx−ξ F can be equipped with the “left-focused” F2-basis Bx :=
B∪{H(n)(x−ξ ),Ha(x)H(n)(x−ξ ) | a ∈ K,n≥ 0} or with its “right-focused” com-
panion Bξ := B∪{H(n)(x−ξ ),Ha(ξ )H(n)(x−ξ ) | a ∈ K,n≥ 0}. Now we can put
together the tensorial and the diagonal distribution module to obtain the full bivariate

distribution module

D2F := Dxξ F ⊕Dx−ξ F (3.31)

as a direct sum of Pxξ F -modules. We use the basis mentioned above to define
operators on D2F .

Dxξ F is already equipped with a duplex differential Rota-Baxter structure. Therefore,
to extend derivation to D2F , first we need to define derivation on Dx−ξ F . To do this,
we use the F2-basis Bξ := B∪{H(n)(x− ξ ),Ha(ξ )H(n)(x− ξ ) | a ∈ K,n ≥ 0} of
Dx−ξ F , by setting

ðxH(n)(x−ξ ) := H(n+1)(x−ξ ),

ðxHa(ξ )H(n)(x−ξ ) := Ha(ξ )H(n+1)(x−ξ ).

Then, the derivative map ðx : Dx−ξ F → D2F is uniquely determined as an exten-
sion of ðx : Pxξ →Dxξ ⊂D2F . Analogously, the derivative ðξ : Dx−ξ F →D2F

is introduced as an extension of the derivative ∂ξ : Pxξ →Dxξ ⊂D2F

with ðξ H(n)(x−ξ ) :=−H(n+1)(x−ξ ), via the F2-basis Bx. Now, the resulting
maps can be combined together with the existing derivation on Dxξ F which will
provide a canonical derivation on the direct sum D2F := Dxξ F ⊕Dx−ξ F .

To introduce RB operaotors on the diagonal Heavisides and its derivatives, we de-
fine

∮ x : Dx−ξ F → D2F using the F2-basis Bξ . If we view “foreign” factors as
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constants then we can settle the base case similar to (3.10)–(3.11):

∮ x f (x)H(x−ξ ) :=
(r x

ξ
f (x)

)
H(x−ξ )+

(r
ξ f (x)

)
H̄0(ξ ), (3.32)

likewise,
∮

ξ g(ξ )H(x−ξ ) :=
(r

ξ

x g(ξ )
)

H(x−ξ )+
(r xg(ξ )

)
H0(x), (3.33)

with abbreviation
r

ξ f (x) := τ
(r x f (x)

)
∈Fξ and

r xg(ξ ) := τ
(r

ξ g(ξ )
)
∈Fx. We

have then
r x

ξ
f (x) = (1−τ)

r x f (x) and
r

ξ

x g(ξ ) = (1−τ)
r

ξ g(ξ ). Here it is important
to distinguish carefully H(x− ξ ) = Ĥ ∈ Dxξ F and H(ξ − x) = 1− Ĥ ∈ Dxξ F

from H0(ξ ) = 1⊗H0 ∈Pxξ F ⊂ Dxξ F and H0(x) = H0⊗ 1 ∈Pxξ F ⊂ Dxξ F .
Furthermore, it should be noted that while the x-integral (3.32) corresponds to (3.10),
the ξ -integral (3.33) corresponds to (3.11) since H(x−ξ ) behaves like H̄x(ξ ) from
the ξ perspective; this is the reason for having H0(x) in (3.33) as opposed to H̄0(ξ )

in (3.32).

Before we complete our definition of RB operators on Dx−ξ F , we present the diagonal

piecewise extension as the Pxξ F -submodule

Px−ξ F :=
Pxξ F ⊗K KĤ

Ẑ
⊂ Dx−ξ F , (3.34)

where KĤ ⊂ D̂K is the K-subspace generated by Ĥ = H(x− ξ ) ∈ D̂K. It is clear
that Px−ξ F is free over F2 with basis B0

x := {H(x−ξ ),Ha(x)H(x−ξ ) | a ∈ K} ⊂
Bx or again alternatively B0

ξ
:= {H(x−ξ ),Ha(ξ )H(x−ξ ) | a∈K}⊂Bξ . In analogy

to Definition 3.31, the bivariate piecewise extension P2F := Pxξ F ⊕Px−ξ F is
a Pxξ F -module consisting of tensorial and diagonal components. If (F ,

r
) is an

ordinary shifted Rota-Baxter algebra over an ordered field K then (P2F ,
∮ x,
∮

ξ ) is a
duplex Rota-Baxter algebra that extends (F2,

r x
,
r

ξ
).

We return now to the definition of the Rota-Baxter operators
∮ x and

∮
ξ on the bivariate

distribution module Dxξ F , which is in fact dictated by the Rota-Baxter axiom for
modules. Having settled the base case in (3.32)–(3.33), we apply the reasoning of
Remark 3.2 to continue the definition by setting

∮ x f (x)H(n+1)(x−ξ ) := f (x)H(n)(x−ξ )−
∮ x f ′(x)H(n)(x−ξ ), (3.35)

−
∮

ξ g(ξ )H(n+1)(x−ξ ) := g(ξ )H(n)(x−ξ )−
∮

ξ g′(ξ )H(n)(x−ξ ) (3.36)

for all f (x) ∈Fx,g(ξ ) ∈Fξ and n ∈ N. Note the distinct sign in (3.36), due to the
fact that ðξ =−ðx on the diagonal distribution module Dx−ξ F .
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One can also define evaluation operators éx
a : D2F →Dξ F and éξ

a : D2F →DxF

by
éx

a H(x−ξ ) := H̄(ξ −a), éξ
a H(x−ξ ) := H(x−a). (3.37)

For evaluating diagonal Diracs, we use again the analogy to our earlier definition
éa δ

(k)
ξ

:= 0 set up earlier (see the paragraph before Theorem 3.2). Thus setting

éx
a δ

(k)(x−ξ ) = 0 éξ
a δ

(k)(x−ξ ) = 0, (3.38)

completes the definition of éx
a and éξ

a on the diagonal distribution module Dx−ξ F ⊂
D2F . If (F ,

r
,∂ ) be an ordinary shifted integro-differential algebra. Then the

bivariate distribution module (D2F ,ðx,ðξ ,
∮ x,
∮

ξ ) is a duplex differential Rota-Baxter
module containing two isomorphic copies (DxF ,ðx,

∮ x) and (Dξ F ,ðξ ,
∮

ξ ) of the
given (F ,∂ ,

r
). As a duplex Rota-Baxter module, D2F extends P2F .

3.4.1 Applications to boundary problems

We have developed a rather modest algebraic structure to handle Heavisides and Diracs.
This construction stems from the fact that the Green’s function can also be a distribution.
Since our theory concerns the treatment of boundary value problems, we can think of three
essential applications of our new theory:

• Express the Green’s functions in the algebraic language of Heavisides and Diracs.

• Characterisation of the Green’s function by the corresponding distributional differential
equation known from analysis.

• Allowing a piecewise function to be a forcing function for a boundary problem.

The first item is the generalisation of the structure theorem mentioned in the previous chapter.
We shall provide a purely algebraic framework for accommodating the Green’s function.
In particular, we present that the Green’s function of a regular Stieltjes boundary problem
that lies in the bivariate distributional module D2F , while for well-posed problems in the
bivariate piecewise extension P2F .

The procedure is similar to that in the structure theorem (Thm. 2.3) of the previous
chapter. Here, we need to interpret Heavisides and Diracs in the sense of D2F . When a < b

and a < x, we write [a≤ ξ ≤ b] := H(ξ −a) H̄(ξ −b) for the characteristic function of the
interval [a,b] and similarly for [a,x] we write [a≤ ξ ≤ x] := H(ξ −a)H(x−ξ ). To take the
relative order in account, we can define [a≤ ξ ≤ b]± := [a≤ ξ ≤ b]− [b≤ ξ ≤ x] and [a≤
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ξ ≤ x]± := [a≤ ξ ≤ x]− [x≤ ξ ≤ a] so that we do not need to worry about by the ordering
of the field elements. With this notation, one can immediately check that

[a≤ ξ ≤ b]± := [a≤ ξ ≤ b]− [b≤ ξ ≤ x]

= H(ξ −a)(1−H(ξ −b))−H(ξ −b)(1−H(ξ −a))

= H(ξ −a)H(ξ −b)

Similarly, [a≤ ξ ≤ x]± = H(x−ξ )+H(ξ −a)−1. With this we are equipped with Heavi-
sides to replace characteristic functions. In the case of Diracs, the rule is

∮
β

α
δ
(i)(x−ξ ) f (ξ ) = f (i)(x),

which is written as
r

∞

−∞
δ
(i)(ξ − x) f (ξ )dξ = (−1)i f (i)(x)

in analysis.

Remark 3.4. In our original formulation [41], there was an extra alternating sign present
erroneously which we have corrected here.

G ∈FΦ[∂ ,
r
] Gxξ ∈D2F

u∂ i u(x)δ (i)(x−ξ )

u
r

v u(x)v(ξ ) [o≤ ξ ≤ x]±
uEa∂ i (−1)i u(x)δ (i)(ξ −a)

uEa
r

v u(x)v(ξ ) [o≤ ξ ≤ a]±

Table 3.1 Extraction Map η : FΦ[∂ ,
r
]→D2F

To show that g(x,ξ ) ∈D2F , one needs to go through the elements of the Table 3.1 row
by row. The action of the element on the left-hand side must coincides with the action of
the corresponding right-hand side element. For example, the left-hand side of the first row
yields Gf (x) = u(x) f (i)(x), whereas the right-hand side provides u(x)

∮
β

α
f (ξ )δ (i)(x−ξ ).

Therefore, one needs to show that

f (i)(x) =
∮

β

α
f (ξ )δ

(i)(x−ξ ) on [α,β ]. (3.39)

Theorem 3.3. Let F be an ordinary shifted integro-differential algebra over any ordered

field K, and let η : FΦ[∂ ,
r
]→D2F be as in Table 3.1. Choose α,β ∈ K with α ≤ a1 <
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· · ·< ak ≤ β then we have

Gf (x) =
∮

β

α
g(x,ξ ) f (ξ ) ∈ Fx (3.40)

on [α,β ], for all f ∈F and G∈FΦ[∂ ,
r
] with extraction g(x,ξ ) := Gxξ . If G is the Green’s

operator of a regular Stieltjes boundary problem, g(x,ξ ) is thus its Green’s function.

Now for the second part of the result—g(x,ξ )∈P2F for well-posed boundary problems—
we use the previous result from the structure theorem that the Green’s function splits as

g(x,ξ ) = g̃(x,ξ )+ ĝ(x,ξ )

with a functional part g̃(x,ξ )∈P2F and a distributional part ĝ(x,ξ )∈D2F \P2F . Since
ĝ(x,ξ ) = 0 or Ĝ = 0 for well-posed problems, we obtain g(x,ξ ) ∈P2F .

Proposition 3.5. Let F and η : FΦ[∂ ,
r
]→ D2F be as in Theorem 3.3. If the regular

boundary problem (T,B) is well-posed, then we have g(x,ξ ) ∈P2F for the Green’s

function g(x,ξ ) = Gxξ extracted from its Green’s operator G = (T,B)−1.

The second item of interest in this section is to characterize the Green’s function and
Dirac by the corresponding differential equation known from analysis. To do so, first we
show that the function δ (x−ξ ) has essential properties required from analysis and then in the
similar fashion we extend our result for the Green’s function. We call a differential algebra
(F ,∂ ) strongly ordinary if dimKer(T ) is finite for any differential operator T ∈F [∂ ]. We
shall point out that all the usual examples of ordinary differential algebras in analysis are
strongly ordinary.

To recover Dirac distributions uniquely, we need to define degenerate functions; this
definition plays the role of the fundamental lemma of the variational calculus.

Definition 3.15. We call a function ø ∈F degenerate on [α,β ] if

r
β

α
ø(ξ ) f (ξ ) = 0

for all f ∈F .

In the same vein, we call k(x,ξ )∈D2F nondegenerate if there is no degenerate function
ø(ξ ) ∈ Fξ . If (F ,

r
,∂ ) is a strongly ordinary shifted integro-differential algebra and

choose any bivariate distribution k(x,ξ ) ∈ D2F that is nondegenerate on [α,β ]. Given∮
β

α
k(x,ξ ) f (ξ ) = f (x) on [α,β ] for all f ∈F , then necessarily k(x,ξ ) = δ (x− ξ ). Now,

we can say the following and have achieved our second goal.
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Theorem 3.4. Let (F ,
r
,∂ ) be a strongly ordinary shifted integro-differential algebra and

(T,B) a regular Stieltjes boundary problem over (F ,∂ ,
r
). Then there exists a bivariate

distribution g(x,ξ ) ∈D2F such that

Tx g(x,ξ ) = δ (x−ξ ),

βx g(x,ξ ) = 0 (β ∈B).
(3.41)

Moreover, this g(x,ξ ) coincides with the Green’s function of Theorem 3.3.

Our last goal—allowing a piecewise forcing function for boundary problems—is imme-
diate but with a reservation. Since the multiplication of Dirac and Heaviside is undefined,
we need to restrict ourselves to well-posed boundary problems so that g(x,ξ ) ∈P2F (see
Prop.3.5). Now we can easily apply the same method for handling piecewise functions. We
end this chapter by iterating this result below.

If (F ,
r
,∂ ) is a strongly ordinary shifted integro-differential algebra and let (T,B) be

a well-posed Stieltjes boundary problem, then (1.7) admits exactly one solution u ∈PF

for any given forcing function f ∈PF . If G ∈FΦ[∂ ,
r
] is the corresponding Green’s

operator with the Green’s function g(x,ξ ), we can compute the solution either via u = G f

or via u(x) =
∮

β

α
g(x,ξ ) f (ξ ).

3.5 Conclusions

The treatment of boundary problems (linear ordinary differential equations) is a major appli-
cation area for our algebraic approach to piecewise smooth functions and Dirac distributions.
This algebraic treatment is only a starting point for algebraic characterization of distributions
and Heavisides. We established their relationship with the only link among them H ′a = δa.
The multiplication of Heavisides (Eq. (3.7)) reflects an order structure in the ground field
whereas multiplication of distributions is not allowed (Rmk. 3.3).

We generalised the algorithm (Thm. 2.3) of extracting the Green’s function from the
Green’s operators to bivariate distributions over ordinary shifted integro-differential algebras
(Thm. 3.3). We showed that the Green’s function satisfies an algebraic version of well-known
distributional differential equations with δ (x−ξ ) on the right-hand side (Thm. 3.4). Finally,
we confirmed that the corresponding Green’s operator of an arbitrary well-posed boundary
problem may actually be applied to piecewise functions.

In future, one might investigate allowing piecewise continuous coefficients in the dif-
ferential operator T . However, it would be difficult to adapt such a setting in our present
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approach. This will require the ground algebra F to be a differential Rota-Baxter algebra
rather than an integro-differential algebra, and it will result in losing the strong Rota-Baxter
axiom. As a result, the Green’s operator/functions cannot be computed in the usual way—it
might need a different justification.
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Chapter 4

Symmetries and Generalised
Symmetries

Integrable nonlinear equations play an important role in understanding coherent structures
and patterns arising in many phenomena in nature. Moreover, they are interesting by
themselves as they possess rich algebraic and analytic structures. One of the criteria used to
establish integrability is through the existence of infinitely many commuting symmetries.
Master symmetry provides a tool which guarantees this existence for these equations and
thus helps in constructing hierarchies of integrable evolution equations.

This chapter is arranged as follows. The goal is to introduce notations, terms and
concepts in order to understand partial differential equations via the master symmetry
approach that is carried out in the next chapter. We begin by defining the one parameter
group of transformations (Eq. (4.1)) and the infinitesimal form of a group (Eq. (4.6)). In the
next section, we define a generalised vector field (Def. 4.2) in n variables and some results
around vector fields—prolongation (Eq. (4.17)) and characteristic (Def. 4.3). Then, we
specialise our theory to differential functions u = u(x, t) of two independent variables. Later,
in the following Section 4.3, we compute generalised symmetries for Burgers’ equation.
Finally, we end the chapter by defining a Lie bracket (Def. 4.7) on differential functions so
that we can construct Lie algebras, which will be exploited in the next chapter.

4.1 A brief introduction

There are many ingenious techniques/tricks available for solving differential equations, but
they usually works for a limited class of problems. Fortunately, it was discovered that
these techniques essentially exploit symmetries of differential equations. The concept of
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one-parameter transformation groups which leave the differential equation invariant provides
the unified understanding of special solution techniques. This subject was initiated by
Sophus Lie over a century ago, who put forward many of the fundamental ideas behind
symmetry methods. Let us begin by defining a one-parameter group of transformation since
symmetries1 of a differential equation form such a group.

In the case of (x,y) plane, we say that the transformation

x1 = f (x,y,ε), y1 = g(x,y,ε) (4.1)

is a one-parameter group of transformation if it satisfies the following conditions:

• Identity: ε = 0 characterizes the identity transformation,

x = f (x,y,0), y = g(x,y,0).

• Inverse: −ε characterizes the inverse transformation

x = f (x1,y1,−ε), y = g(x1,y1,−ε).

• Closure: Product of two transformation is characterised by the sum of parameters,
meaning, if

x2 = f (x1,y1,δ ), y2 = g(x1,y1,δ ),

then it can be rewritten as

x2 = f (x,y,ε +δ ), y2 = g(x,y,ε +δ ).

We remark that the associativity law follows from the closure property.

Example 4.1.1. The following transformation forms a one-parameter group.

• Translation group
x1 = x, y1 = y+ ε. (4.2)

• Stretching group
x1 = eεx, y1 = eεy. (4.3)

1This is not always the case. For example, one can consider discrete symmetries which fails to form a
one-parameter group of transformation.
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• Rotation group
x1 = xcosε− ysinε, y1 = xsinε + ycosε. (4.4)

• Projective group
x1 =

x
1− εx

, y1 =
y

1− εx
. (4.5)

The functions f (x,y,ε) and g(x,y,ε) in (4.1) are called the global form of the group. We
obtain the so-called infinitesimal form of a group by Taylor expansion of (4.1). Since ε = 0
gives the identity element, the expansion yields

x1 = x+ ε
dx1

dε

∣∣∣
ε=0

+O(ε2), y1 = y+ ε
dy1

dε

∣∣∣
ε=0

+O(ε2). (4.6)

We introduce functions

dx1

dε

∣∣∣
ε=0

= ξ (x,y) and
dy1

dε

∣∣∣
ε=0

= η(x,y)

then (4.6) can be rewritten as

x1 = x+ εξ (x,y)+O(ε2), y1 = y+ εη(x,y)+O(ε2), (4.7)

which is the infinitesimal form of the group. The vector (ξ ,η) is the tangent vector at the
point (x,y), to the curve described by the transformed points (x1,y1). The crucial property
of a one-parameter transformation group is that given the infinitesimal form, one can deduce
the global form by solving the following system

dx1

dε
= ξ (x,y),

dy1

dε
= η(x,y), (4.8)

with initial conditions
x1(0) = x, y1(0) = y. (4.9)

The converse is also true since there is a unique local solution of the first order equation (4.8)
subject to the initial conditions (4.9).

Example 4.1.2. For the rotation group (4.4), we have the global form

x1 = xcosε− ysinε, y1 = xsinε + ycosε.
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To obtain the infinitesimal form, we compute

dx1

dε
=−xsinε− ycosε and

dy1

dε
= xcosε− ysinε

subjected to ε = 0, which yields

ξ (x,y) =−y, η(x,y) = x,

and therefore, the infinitesimal form is

x1 = x− εy+O(ε2), y1 = y+ εx+O(ε2). (4.10)

To retrieve back the global form we solve the initial value problem

dx1

dε
=−y1,

dy1

dε
= x1 with

x1(0) = x, y1(0) = y.

For easy computation, we introduce the complex variable z = x+ ι̇y and z = x1 + ι̇y1, then

dz1

dε
=

dx1

dε
+ ι̇

dy1

dε
,

=− y1 + ι̇x1 = ι̇z,

which upon solving gives
z1 = eι̇εz.

On comparing the corresponding parts—real and imaginary—after applying the formula
eι̇ε = cosε + ι̇ sinε gives back the original global form.

To find symmetries of a differential equation, one needs to satisfy the corresponding
symmetry condition. Let us make this clear for a general first order differential equation.

Definition 4.1. A general first order equation

dy
dx

= f (x,y) (4.11)

is said to be invariant under the transformation (x1,y1), if it satisfies the following the
symmetry condition

dy1

dx1
= f (x1,y1). (4.12)
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Collection of such transformations form the corresponding symmetry group or simply one
can say, a symmetry group of the system of differential equations is a one parameter
transformation group which maps any solution to another solution of the equation.

In the next example we show that how one can use the knowledge of symmetry to solve
a first order differential equation.

Example 4.1.3. Consider the first order differential equation

dy
dx

=
y2

x3 +
2y
x
+ x. (4.13)

If we apply the transformation

x1 = xeα , y1 = yeβ (for real parameters α and β ),

to Equation (4.13) then it gives

eα−β dy1

dx1
= e3α−2β y2

1

x3
1
+2eα−β y1

x1
+ e−αx1,

=⇒ dy1

dx1
= e2α−β y2

1

x3
1
+2

y1

x1
+ eβ−2αx1.

Therefore, Equation (4.13) is invariant under this transformation iff 2α = β , that is,

x1 = xeα , y1 = xe2α .

We observe that
y1

x2
1
=

ye2α

x2e2α
=

y
x2 .

Hence, the function ν(x) = y
x2 is an invariant of the Equation (4.13). Substituting y(x) =

x2ν(x) in (4.13) yields

2xv+ x2 dv
dx

= x(v2 +2v+ x),

=⇒ dv
dx

=
1+ v2

x
,

=⇒ v(x) = tan( lnx+ c),
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where c is the constant of integration and thus the general solution is

y(x) = x2 tan(lnx+ c).

Remark 4.1. In general, a symmetry group of an ordinary differential equation leads to a
simplification of the equation. If the equation is of first order then it becomes separable
and so is solvable by quadrature. For higher order, use of an invariant typically allows a
reduction in the order of the equation by one.

More details on this subject can be found in [22, 18], where authors have well explained
the group method, especially for ODEs. Since our main focus is to find symmetries for
partial differential equations, so in the next section we begin by describing vector fields and
their prolongation. They serve as essential tools in the classical Lie group method.

4.2 Vector fields and prolongation

A general system of partial differential equations involves p independent variables on the
Euclidean space X ∼= Rp and q dependent variables on U ∼= Rq. The total space is the Eu-
clidean space E = X×U ∼= Rp+q coordinated by the independent and dependent variables.
A differntial function is defined on this total space. In particular, a function P(x,u(n)) is
called a differential function if it is a smooth function of x,u and derivatives of u up to order
n. Through out this chapter, we only consider the scalar case with p = 2 and q = 1, i.e,
u = u(x, t). We will denote such a function by P[u] where the square brackets will serve us
to remind that P depends on x,u and derivatives of u. We let A denote the space of all such
differentials functions. Note that A is an algebra over R, moreover, we can turn this in to a
differential algebra with the derivation defined as below.
Given P[u], the i-th total derivative of P with respect to x and t is defined as

DxP =
∂P
∂x

+ux
∂P
∂u

+uxx
∂P
∂ux

+uxt
∂P
∂ut

+ · · · , (4.14)

DtP =
∂P
∂ t

+ut
∂P
∂u

+utt
∂P
∂ut

+uxt
∂P
∂ux

+ · · · , (4.15)

respectively. For instance, if P = xuxuxt then

DxP = uxuxt + xuxtuxx + xuxuxxt and DtP = xu2
xt + xuxuxtt .
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Now, we are ready to define one of the main tool that will be required for our investigation
of integrability.

Definition 4.2. A generalised vector field is defined to be a formal expression of the form

v = ξ
1[u]

∂

∂x
+ξ

2[u]
∂

∂ t
+ϕ[u]

∂

∂u
, (4.16)

where ξ i[u] and ϕ[u] are smooth differential functions. If all ξ i = ξ i(x, t,u) and ϕ =ϕ(x, t,u),
that is they depends only on x, t and u then it is called a geometric vector field.

For every generalised vector field v there is an induced function pr (n)v called the n-th
prolongation which is given by the prolongation formula (Theorem 2.36, [34])

pr (n)v = v+∑
J

ϕ
J[u]

∂

∂uJ
, (4.17)

where, for J = ( ji, j2); 1≤ jk ≤ 2, 1≤ k ≤ n and n is the highest order appearing in (4.17).
The coefficient functions ϕJ of pr (n)v are given by the following formula:

ϕ
J[u] = DJ

(
ϕ−ξ

1 ∂u
∂x
−ξ

2 ∂u
∂ t

)
+

2

∑
i=1

ξ
i ∂uJ

∂xi . (4.18)

For more details, please see the Theorem 2.36 in [34].
In the above formula, if we do not restrict the value of n and let n≥ 0, then the corre-

sponding prolongation is called infinite prolongation (or prolongation for short). This formal
infinite sum is written as

pr v = ξ
1[u]

∂

∂x
+ξ

2[u]
∂

∂ t
+∑

J
ϕ

J[u]
∂

∂uJ
. (4.19)

Example 4.2.1. Let us develop our understanding on the prolongation formula when p =

q = 1, i.e, u = u(x). Let

v =−u
∂

∂x
+ x

∂

∂u
, (4.20)

be a vector field then by (4.17)

pr (2)v = v+ϕ
x ∂

∂ux
+ϕ

xx ∂

∂uxx
,
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with ϕx = Dx(x− (−uux))−uuxx = 1+u2
x and ϕxx = 3uxuxx. Upon substitution, we obtain

pr (2)v =−u
∂

∂x
+ x

∂

∂u
+(1+u2

x)
∂

∂ux
+3uxuxx

∂

∂uxx
.

Example 4.2.2. We repeat a similar example as before but this time, let us consider a more
general geometric vector field

v = ξ (x, t,u)
∂

∂x
+ τ(x, t,u)

∂

∂ t
+ϕ(x, t,u)

∂

∂u
. (4.21)

Then its prolongation is

pr (1)v = v+ϕ
x ∂

∂ux
+ϕ

t ∂

∂ut

with ϕx = Dx(ϕ− (ξ ux + τut))+ξ uxx + τuxt and ϕ t = Dx(ϕ− (ξ ux + τut))+ξ uxt + τutt .
After expanding, we obtain

ϕ
x =ϕx +ϕuux−ξxux−ξuu2

x−ξ uxx− τxut− τuutux− τuxt +ξ uxx + τuxt

=ϕx +(ϕu−ξx)ux− τxut−ξuu2
x− τuuxut

and ϕ t = ϕt−ξtux +(ϕu− τt)ut−ξuuxut− τuu2
t .

Similarly, we can compute the second prolongation,

pr (2)v = v+ϕ
xx ∂

∂uxx
+ϕ

xt ∂

∂uxt
+ϕ

tt ∂

∂utt

with
ϕ

xt = DxDt(ϕ− (ξ ux + τut))+ξ uxxt + τuxtt . (4.22)

In practice, it is easy to work with so called evolutionary vector fields, specifically with
their corresponding characteristic. We introduce them in the definition below.

Definition 4.3. For a generalised vector field v given by (4.16), we define the corresponding
evolutionary vector field

vQ = Q[u]
∂

∂u
, (4.23)

where Q[u] ∈A is called its characteristic with

Q = ϕ−ξ
1 ∂u

∂x
−ξ

2 ∂u
∂ t

, (4.24)
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Now, we notice that the prolongation takes a simpler form for vQ compared to (4.17),

pr vQ = ∑
J

DJQ[u]
∂

∂uJ
. (4.25)

Example 4.2.3. Let v = 4tx ∂

∂x +4t2 ∂

∂ t − (x2 +2t) ∂

∂u be a generalised vector field then we
compute the characteristic using (4.24). Since q = 1, we simply obtain Q =−(x2 +2t)−
4txux−4t2ut , which further implies that

vQ = (−x2−2t−4txux−4t2ut)
∂

∂u
(4.26)

is the associative evolutionary representative of v.
Similarly, we find the corresponding evolutionary vector field of the vector field (4.21),

vQ = (ϕ− (ξ ux + τut))
∂

∂u with characteristic Q = ϕ− (ξ ux + τut).

Remark 4.2. It is always possible to go from v→ vQ but the reverse direction is possible
only for the geometric vector fields ((4.21)). Also, notice that characteristic functions of
evolutionary vector fields forms a Lie algebra, see Definition 4.7

It is now clear that we can always write a vector field in the evolutionary form.

4.3 Generalised symmetries

Definition 4.4. Given a system of differential equations

△ν [u] =△ν (x,u(n)) = 0,

a generalised vector field v is a generalised symmetry if and only if

pr v[△ν ] = 0, (4.27)

for every smooth solution of the equation, where ν = 1, · · · , l. If there exists infinitely many
symmetries then we call that system to be integrable.

We already mentioned in the previous section that it is easy to work with evolutionary
vector fields rather than generalised vector fields, and the following proposition illustrates
how evolutionary vector fields can be exploited.

Proposition 4.1. A generalised vector field v is a symmetry of a system of differential

equations if and only if its evolutionary representative vQ is a symmetry.
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Proof. If we substitute (4.18) in (4.19) and expand, then we obtain

pr v =
p

∑
i=1

ξ
i[u]

∂

∂xi +
q

∑
α=1

∑
J

(
DJ

(
ϕα −

p

∑
i=1

ξ
i ∂uα

∂xi

)
+

q

∑
i=1

ξ
i ∂uα

J
∂xi

)
∂

∂uα
J

(4.28)

=
p

∑
i=1

ξ
i[u]

∂

∂xi +
q

∑
α=1

∑
J

(
DJ

(
ϕα −

p

∑
i=1

ξ
i ∂uα

∂xi

))
∂

∂uα
J
+

q

∑
i=1

ξ
i ∂uα

J
∂xi

∂

∂uα
J

(4.29)

=∑
α,J

D jQα

∂

∂uα
J
+

p

∑
i=1

ξ
i

(
∂

∂xi +∑
α,J

∂uα
J

∂xi
∂

∂uα
J

)
, (4.30)

where the last equality is obtained by rearranging the terms and using 4.24 and Definition
4.2. Now, if we compare the above result with (4.25) then we deduce that

pr v = pr vQ +
p

∑
i=1

ξ
iDi. (4.31)

Since Di △ν= 0 on all solutions of △ν , we obtain pr v[△ν ] = 0 if and only if pr vQ[△ν ] = 0
and hence, follows the result.

Now, we demonstrate briefly a general method to compute generalised symmetries. For
more information, please see the Section 5.1 of [34]. It proceeds in the same way as one
computes geometrical symmetries which is well explained in the Section 2.4 of [34]. Here,
we start with the evolutionary representative vQ of the generalised symmetry v. This gives
us the advantage of reducing unknown function from p+ q to q, simultaneously giving
a simpler computation for the prolongation of vQ. Before we start the computation, we
fix the order of derivatives of the function u in Q. Consider an example of scalar case
with p = 2 and q = 1. To compute a second order symmetry we assume characteristic
Q = Q(x,u,ux,ut ,uxx,uxt ,utt). Before we move to examples, we shall define the type of

equations we want to investigate. From now on, we will denote
∂ nu
∂xn by un.

Definition 4.5 ([52, Section 3]). An equation of the form

ut = K[u]

is called an evolution equation, where K[u] is a differential function in A . We call an
equation (n+1)−dimensional, if it involves n spatial variables and a time variable t.

The below example is (1+1)-dimensional, that is u = u(x, t) and we will also consider
an example of (2+1)-dimensional system in the next chapter where u = u(x,y, t).
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The goal of this section is to demonstrate the complexity of computing symmetries for a
given problem without getting in to much details.

Example 4.3.1. Consider the following non-linear wave equation

ut = uu1.

Notice that any t-derivatives of u can be replaced by their corresponding x− derivatives of u.
For example, by differentiating the given equation with respect to x, one can replace uxt by
uu2 +u2

1. To compute the second order generalised symmetry vQ in the evolutionary form,
we suppose vQ = Q[u] ∂

∂u with Q = Q(x, t,u,u1,u2). We find the prolongation of vQ

pr (1)vQ = Q
∂

∂u
+DxQ

∂

∂u1
+DtQ

∂

∂ut
,

then by Symmetry condition (4.27), we get,

DtQ = uDxQ+u1Q (4.32)

where all the total derivatives can be computed using (4.14), for example,

DtQ =
∂Q
∂ t

+uu1
∂Q
∂u

+(u2
1 +uu2)

∂Q
∂u1

+(3u1u2 +uu3)
∂Q
∂u2

.

Notice that all the occurrence of t-derivatives of u have been replaced by their corresponding
x-derivatives of u. Upon substitution in (4.32) and after simplification we obtain

∂Q
∂ t
−u

∂Q
∂x

+u2
1

∂Q
∂u1

+3u1u2
∂Q
∂u2

= u1Q.

Corresponding characteristic system of this first order partial differential equation is,

∂ t
∂ s

= 1,
∂x
∂ s

=−u,
∂u
∂ s

= 0,
∂u1

∂ s
= u2

1,
∂u2

∂ s
= 3u1u2.

This gives that, Q is of the form

Q = u1R
(

x+ tu,u, t +
1
u1

,
u2

u3
1

)
.

If we focus only on the projectable symmetries, in which the action on the independent
variables does not depend on the dependent variables, meaning the characteristic takes the
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form Q = ϕ(x, t,u)−ξ 1(x, t)u1−ξ 2(x, t)uu1 (see (4.24)), then one can find 8 such functions
which spans this subgroup of symmetries. Here it looks like

Q = u1 (tϕ(x+ tu,u)+ψ(x+ tu,u))+ϕ(x+ tu,u)

for some ψ such that ψ + tϕ = ξ 1(x, t). Imposing Symmetry condition (4.32) yields

ϕt = uϕx, ξ
1
t −uξ

1
x = ϕ.

Assuming ϕ = 0 allows ξ 1 to be any constant, so Q can be u1. If ϕ = x+ tu then Q becomes
−(xt + t2u). Similarly one can find all eight generators for projectable symmetry group

u1, uu1,

xu1 + tuu1, xu1−u,

tu1 +1, xuu1−u2,

x+ tu+ xtu1 + t2uu1, x2u1 + xtuu1− (x+ tu)u.

In the next example, complexity of the problem becomes more apparent.

Example 4.3.2. Consider the Burgers’ equation in potential form

ut = u2 +u2
1. (4.33)

Let vQ = Q ∂

∂u be a generalised symmetry of (4.33) in the evolutionary form. Proceeding
similarly to our previous example, here we compute third order symmetries. Since we can
replace all the t- derivatives of u using (4.33), we can assume Q = Q(x, t,u,u1,u2,u3). In
this case, Symmetry condition (4.27) is

DtQ = D2
xQ+2u1DxQ. (4.34)

Consider the higher order terms occurring in (4.34)

DtQ = Qu3u3xt + · · · ,

DxQ = Qu3u4 + · · · ,

D2
xQ = Qu3u5 +Qu3u3u2

4 + · · · ,

where u3xt = u5+6u2u3+2u1u4. Upon substitution in (4.34), we notice that the coefficients
of u5 cancel and since, u2

4 does not appear on the right hand side of (4.34), we obtain
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Qu3xu3x = 0 which implies that

Q = F(x, t,u,u1,u2)u3 +F ′(x, t,u,u1,u2)

Now working with the above form of Q and repeating all the steps again, we find that

Q = α(t)u3 +G(x, t,u,u1,u2). (4.35)

Proceeding with this equation, we find that the only term involving u2
3 must have coefficient

equal to zero i.e Gu2u2 = 0. Therefore, we can assume G to be a function of G1 and G2 such
that

G = G1(x, t,u,u1)u2 +G2(x, t,u,u1). (4.36)

Simultaneously comparing the coefficients of u3 appearing in (4.34), we get

6αu2 +αt = 2Gu1u2u2 +2Guu2u1 +2Gxu2,

which gives
6α = 2Gu1u2, 2Guu2 = 0 and 2Gxu2 = αt (4.37)

Now from Equation (4.36) together with (4.37), we can find that

G = 3αu1u2 +(
1
2

αtx+β (t))u2 +G2(x, t,u,u1)

Now the coefficient of u2
2 in (4.34) reads as

6αu1 +αtx+2β = G2
u1u1

.

On integrating the above equation and putting together in (4.35) gives

Q = α(u3 +3uxu2 +u3
1)+(

1
2

αtx+β (t))(u2 +u2
1)+A(x, t,u)ux +B(x, t,u). (4.38)

Applying the same method continuously we can find different possible values for Q. For
example, it can be

u1, u2 +u2
1, t2(u2 +u2

1)+ txu1 +
1
2

t +
1
4

x2, · · · (4.39)

One can continue in the same fashion to obtain higher order symmetries but the computations
will grow more and more complex. Again, this is to remind that our goal here is not to
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compute all symmetries but rather to demonstrate the process and complexity involved.
In the next chapter we will provide a more systematic approach to deal with this problem

where we can find higher order symmetries by simply taking Lie brackets with a special
vector field. So far our theory is worked out in the language of prolongation, but fortunately
it can be simplified in terms of Lie brackets. This is done in the below section.

4.4 Lie Brackets

We equip our algebra A of differential functions with a Lie bracket. To do this, we need to
define the concept of Fréchet derivative.

Definition 4.6. Let P[u] ∈A be a differential function then the Fréchet derivative P∗ is the
differential operator defined as

P∗(Q) =
∂

∂ε

∣∣∣
ε=0

P[u+ εQ[u]]. (4.40)

For example, if P[u] = uux +uxx then

P∗(Q) =
∂

∂ε

∣∣∣
ε=0

(u+ εQ)(ux + εDxQ)+(uxx + εD2
xQ) = uxQ+uDxQ+D2

xQ,

therefore as an operator, P∗ = ux +uDx +D2
x . This definition can be easily generalised, such

that for any differential function P[u]

P∗ = ∑
j

∂P
∂u jx

D j
x. (4.41)

Now, we are ready to define a Lie bracket on the algebra A .

Definition 4.7. For any two evolutionary vector fields with characteristics P and Q, we
define a bracket as

[P,Q] = Q∗(P)−P∗(Q). (4.42)

This is a Lie bracket as it satisfies the following properties for any differential functions
P,Q,R ∈A -

(i) Bilinear
[cP+ c′Q,R] = c[P,R]+ c′[Q,R], c,c′ ∈ R

(ii) Skew-Symmetry
[P,Q] =−[Q,P]
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(iii) Jacobi Identity
[P, [Q,R]]+ [R, [P,Q]]+ [Q, [R,P]] = 0.

The proposition given below is the key observation which will help us to work with the
language of Lie brackets instead of prolongation.

Proposition 4.2. Let P,Q ∈A , then

P∗(Q) = pr vQ(P).

Proof. We already know from the Equation (4.41) and (4.25) that

P∗ = ∑
j

∂P
∂u j

D j
x and pr vQ = ∑

j
D j

xQ
∂

∂u j
, (4.43)

which simply gives P∗(Q) = pr vQ(P).

Now, we can rewrite the symmetry condition in terms of the Lie bracket. If ut = K[u],
then Symmetry condition (4.27) will become pr vQ(ut−K) = (ut−K)∗Q = DtQ−K∗Q = 0.
Since,

DtQ = Qt +∑
i≥0

∂Q
∂ui

Di
xut = Qt +∑

i≥0

∂Q
∂ui

Di
xK = Qt +Q∗(K),

we obtain that Qt +Q∗(K)−K∗(Q) = Qt +[K,Q] = 0. From now on, we will use this as a
symmetry condition. Let us define this formally.

Definition 4.8. An evolution vector field with a characteristic Q is a symmetry of an evolution
equation ut = K[u] if and only if

∂Q
∂ t

+[K,Q] = 0. (4.44)

We also define the adjoint action of K on Q by adKQ = [K,Q].

Notice that if Q does not depend on t explicitly then the symmetry condition reduces to
[K,Q] = 0.

Now we have completely defined symmetry in terms of the Lie bracket. We give an
example below to illustrate this. We provide symmetries for the Burgers’ equation without
explicitly showing the process which is detailed in the next chapter.

Example 4.4.1. Consider the second order Burgers’ equation

ut = u2 +uu1. (4.45)
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Its master symmetry (see Section 5.3) is

τ =x(uu1 +u2)+
1
2

u2 +
3
2

u1

=xut +
1
2

u2 +
3
2

u1

which helps us to to generate symmetries by its adjoint action on ut . We denote these
symmetries by Sn = adn

τ K. For example, we compute a third and a fourth order symmetry as

S1 =2u3 +3uu2 +
3
2

u2u1 +3u2
1,

S2 =6u4 +12uu3 +3u3u1 +9u2u2 +18uu2
1 +30u1u2,

and the direct computation of Lie bracket gives [ut ,S1] = [ut ,S2] = 0 which agrees with our
Definition 4.8.

This equation also have infinitely many t-dependent symmetries Qn. To systematically
compute such symmetries we state a theorem in the next chapter, one can also look in to [45].
We list few of them here to check validity of the condition (4.44). Each Qn is a polynomial
in t of degree n.

Q1 = tu1 +1,

Q2 = t2(u2 +uu1)+ t(xu1 +u)+ x,

Q3 = t3
(

u3 +
3
2

uu2 +
3
2

u2
1 +

3
4

u2u1

)
+

3
2

t2
(

xu2 + xuu1 +2u1 +
1
2

u2
)

+
3
4

t(x2u1 +2xu+2)+
3
4

x2.

We find that

∂Q2

∂ t
= 2tut + xu1 +u and [ut ,Q2] =−(2tut + xu1 +u)

which implies that Q2 satisfies Symmetry condition (4.44). Similarly, one can check for Q1

and Q3.
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4.5 Conclusions

Symmetry method is a powerful technique to solve ordinary differential equations. Other
well-known techniques are special cases of a few symmetry methods. Unfortunately, for
systems of partial differential equations, the symmetry group is usually of no help in
determining the general solution. However, generalised symmetries can be used to explicitly
determine special type of solutions which are invariant under some subgroup of the full
symmetry group of the system (see Example 4.3.1). However, our approach in this example
has the drawback of not generating infinitely many symmetries at once. We tackle this
problem in the next chapter.

In the last Example 4.4.1, we computed three symmetries Q1,Q2,Q3 for the Burgers’
equation ut = u2 +uu1. We had a hidden motive to list these symmetries here. The coeffi-
cients of the linear terms in Q1,Q2 and Q3 with constant factors form an sl(2,C) Lie algebra,
meaning, if

e = u1, h = 2(xu1 +u), f =−(x2u1 +2xu+2),

then the Lie bracket

[e,h] = [ux, 2(xux +αu)]

= 2(xD+α)(ux)−D(2(xux +αu))

= 2xuxx +2αux−2(ux + xuxx +αux) =−2e.

Similarly, it is easy to check that [e, f ] = h and [h, f ] =−2 f . Hence e, f ,h generates sl(2,C)
Lie algebra (see (5.4)). This property is exploited in the next chapter; moreover, we will find
that we can always construct sl(2,C)-modules of an integrable system.
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Chapter 5

sl(2,C) Representation and Master
Symmetry

In the previous chapter, we described a method in Section 4.3 which gives a systematic
approach to compute the generalised symmetries of a system of differential equations but
it requires the order of the symmetry to be defined in advance. Thus, it has the drawback
of not generating infinitely many symmetries simultaneously. As promised earlier, here
we will formally define a master symmetry which will help us to generate infinitely many
symmetries at once. We shall see how we can incorporate our understanding of sl(2,C) Lie
algebra in constructing master symmetry and time dependent symmetries. More details can
be found in [45, 52] and references therein.

A detailed outline of this chapter is as follows. Our goal is to compute master symmetries
of nonlinear partial differential equations using sl(2,C) algebra. We introduce the notions
of a Lie algebra (Def. 5.1) and the Bernstein-Gelfand-Gelfand (BGG) category O of sl(2,C)
modules (Sec. 5.2.1), followed by the definition of a homogeneous evolution equation
(Def. 5.3) and a master symmetry (Def. 5.4). Next, we present a theorem for constructing
master symmetries (Thm. 5.1) along with the so-called O-scheme which illustrates the
role of sl(2,C) modules, see Dia. 5.1. A method to construct time-dependent symmetries
is depicted in Thm. 5.2. Using this powerful approach we construct master symmetries
for five new two-component (1+1)-dimensional systems (Examples 5.4.2 - 5.4.6) and a
master symmetry for a two-component (2+1)-dimensional Davey-Stewartson type system
(Example 5.5.1).
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5.1 Motivation

We recall Symmetry condition (4.44) which tells us that Q ∈ A is a symmetry for an
evolution equation ut = K[u] if

∂Q
∂ t

+adKQ = 0. (5.1)

Then, it is natural to look for a function Q such that ∂Q
∂ t =−adKQ. Keeping this in mind, we

consider the function
Q = exp(−t adK)Q0 (5.2)

with adm+1
K Q0 = 0 for some m ∈ N, so that the above sum is finite and topology becomes

irrelevant. Then Q is a symmetry of K and moreover, ∂ rQ
∂ tr is also a symmetry, since

∂ r+1Q
∂ tr+1 +adK

∂ rQ
∂ tr =

∂ r

∂ tr

(
∂Q
∂ t

+adKQ
)
= 0. (5.3)

Notice that, this argument works only when the differential functions K and Q are inde-
pendent of the variable t. In particular, if Q is a polynomial of degree p in t, then ∂ pQ

∂ t p is a
time-independent symmetry of K.

If m is minimum possible such that adm+1
K Q0 = 0 then we call Q0 to be a K- generator

of degree m. This condition reminds us of the representation theory of sl(2,C). In particular,
we will like to scrutinize the vector space spanned by the set {ad j

KQ | j = 0, · · · ,m}. In the
previous chapter we mentioned that the coefficients of the linear terms appearing in the
t-dependent symmetries Sn of the Burgers’ equation form an sl(2,C) algebra (see Example
4.4.1). In fact, the vector space spanned by all the linear terms of Sn is an infinite-dimensional
sl(2,C)-module in the Bernstein-Gelfand-Gelfand (BGG) category O .

This gives us enough reason to investigate the role of sl(2,C) algebra in order to under-
stand nonlinear integrable system.

5.2 The BGG category O of sl(2,C)-modules

We begin this section by a short review of the Lie algebra sl(2,C) and its representations.

Definition 5.1. A Lie algebra is simple if it has no non-trivial ideals and is not abelian. It is
called semisimple if it is isomorphic to a direct sum of simple Lie algebras.

The special linear Lie algebra sl(n,C) is the semisimple Lie algebra of n×n matrices
with zero trace and the Lie bracket is given by [X ,Y ] = XY −Y X for all matrices X ,Y in
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sl(n,C). As our subject of interest is sl(2,C) we begin with its standard basis which consists
of

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Then, we have
[h,e] = 2e, [h, f ] =−2 f , [e, f ] = h. (5.4)

Definition 5.2. A vector space V together with an operation · : L×V → V is called an
L-module (or equivalently a representation of L) if the following conditions are satisfied:

• (ax+by) · v = a(x · v)+b(y · v),

• x · (av+bw) = a(x · v)+b(y ·w),

• [x,y] · v = x · (y · v)− y · (x · v),

for x,y ∈ L; v,w ∈V and a,b ∈ C.
A nonzero L-module V is called irreducible if it has precisely two L-submodules, i.e., 0

and L.

5.2.1 Nonisomorphic indecomposable modules in O

Before we start discussing the modules in the category O , we reiterate our motivation. In Ex-
ample 4.4.1, the vector space spanned by all the linear terms of the symmetries of the Burgers’
equation is an infinite-dimensional sl(2,C)-module in the Bernstein-Gelfand-Gelfand (BGG)
category O . Therefore, there knowledge may shed more information in understanding the
nonlinear integrable equations. So here we will describe the indecomposable modules in the
BGG category O .

Let V be an arbitrary sl(2,C)-module over C. Since C is algebraically closed and h

is semisimple, we can infer that h acts diagonally on V (Section 6.4, [21]). This yields
an eigenspace decomposition of V i.e. V =

⊕
Vλ with finitely many Vλ = {v ∈V | h · v =

λv}, λ ∈ C. If λ is not an eigenvalue of the representation h·, then Vλ = {0}. Whenever,
Vλ ̸= 0, we call λ a weight of h in V and Vλ its associated weight space.

Lemma 5.1. If v ∈Vλ then e · v ∈Vλ+2 and f · v ∈Vλ−2.

Proof. By the Jacobi identity,

h · ( f · v) = [h, f ] · v+ f ·h · v =−2 f · v+λ f · v = (λ −2) f · v.

Similarly, one can show that h · (e · v) = (λ +2)e · v.
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A highest weight vector of weight λ is an element v ∈V such that e ·v = 0 and h ·v = λv,
and the corresponding weight space is called highest weight module.
The objects of the BGG category O of sl(2,C)-Modules are M such that

• M is finitely generated

• M is a weight module, i.e., M is the direct sum of weight spaces, and

• all weight spaces of M are finite-dimensional.

Notice that all finite dimensional modules are in this category O and every module can
be written as the direct sum of indecomposable modules. Some basic results for these
indecomposable modules are listed below. To read more on this please refer to [20].

The finite dimensional simple module L(λ )

For λ ∈ N, L(λ ) is the finite dimensional simple module of dimension λ + 1 with
basis vectors {vi | 0≤ i≤ λ} and action of sl(2,C) as-

f .vi = vi+1, h.vi = (λ −2i)vi, e.vi = i(λ − i+1)vi−1 with e.v0 = f .vλ = 0.

Its one dimensional weight space has weights λ ,λ −2, · · · ,−(λ −2),−λ .

The Verma module M(λ )

The Verma module is a maximal highest-weight module with a highest weight vector
v0. That is, every other highest-weight module with highest weight λ is a quotient of
the Verma module. Its weights are λ ,λ −2,λ −4 · · · each with multiplicity one. This
module M(λ ) is an infinite dimensional module with basis vectors {vi | i≥ 0} with

f .vi = vi+1, h.vi = (λ −2i)vi, e.vi = i(λ − i+1)vi−1.

If λ ∈ N then for i = λ + 1, e.vλ+1 = 0 and the maximal submodule of M(λ ) is
M(−λ −2). Moreover, L(λ )∼= M(λ )/M(−λ −2).

Remark 5.1. When λ ∈ N then M(−λ −2) is the only non-trivial subspace of M(λ ),
else M(λ ) is a simple module.

The dual Verma module M∨(λ )

This is also an infinite dimensional weight module with basis vectors {vi(i≥ 0)} such
that

e · vi = vi−1, h · vi = (λ −2i)vi, f · vi = (i+1)(λ − i)vi+1, e · v0 = 0.
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Observe that the highest weight vector v0 can be reached from any other vector by the
action of e whereas in the case of Verma module it can be achieved by the action of f

which indicates the duality property.

When λ ∈ N, then for i = λ , f · vλ = 0 which implies that L(λ ) is the maximal
submodule of M∨ and consequently, the Verma module M(−λ −2)∼= M∨(λ )/L(λ ).

The projective module P(λ −2)
When λ ∈ N then there exists a nontrivial projective module P(λ − 2). Its weights
with multiplicity one are λ ,λ − 2, · · · ,−λ and the weights −λ − 2,−λ − 4, · · · are
with multiplicity two. It is generated by the basis vectors {vi | i≥ 0} and {w j | j ≥ 0}
such that

f .vi = vi+1, h.vi = (λ −2i)vi, e.vi = i(λ − i+1)vi−1 and,

f .w j = w j+1, h.wi = (−λ −2−2i)wi, e.wi =−i(λ + i+1)wi−1, e ·w0 = vλ .

From the actions defined above, it is clear that the projective module P(λ −2) has the
Verma submodules M(λ ) and M(−λ −2). Moreover, we have

P(λ −2)/M(λ )∼= M(−λ −2),

P(λ −2)/M(−λ −2)∼= M∨(λ ).

In the next section, we give examples of such modules.

5.3 Master symmetries

Here, we will consider only homogeneous evolution equations ut = K[u] (defined below)
with restriction on the differential function K[u] such that it depends only on u and the
x-derivatives of u up to a finite order. This is needed to make sure that ux is a symmetry
for the given evolution equation, so that we can always construct an sl(2,C) algebra. It is
explained in the lemma below.

Definition 5.3. Equation ut = K[u] is said to be homogeneous (or α- homogeneous) if
[xux +αu,K] = κK for some constants α and κ .

Lemma 5.2. For an homogeneous equation with a scaling h = 2(xux +αu), where α =

constant, the elements e = ux, f =−(x2ux +2αxu) and h form an sl(2,C) algebra.
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Proof. [e,h] = [ux, 2(xux+αu)]= 2(xD+α)(ux)−D(2(xux+αu))= 2xuxx+2αux−2(ux+

xuxx +αux) =−2e. Similarly, it is easy to check that [e, f ] = h and [h, f ] =−2 f .

Observe that the element f in the above lemma is not unique for given elements h and
e. In fact any element f ′ = f + f0 will suffice given [e, f0] = 0 and [h, f0] = −2 f0 so that
condition 5.4 is satisfied.

It is now clear that we can always construct an sl(2,C) algebra for a given homogeneous
evolution equation regardless of its integrability.

Now we will construct an infinite dimensional sl(2,C)-module in the BGG category O .
We begin by noticing that for any element w ∈A

adew = [ux,w] = ∑
j≥0

∂w
∂u j

D j(ux)−
∂w
∂x
−∑

j≥0

∂w
∂u j

D j(ux) =−
∂w
∂x

. (5.5)

Therefore, for any given element g ∈A , we can find w ∈A such that adew = g, i.e, we can
compute the inverse action of e.

Lemma 5.3. Let w = (x3ux +3αx2u)/3. Then, adew = f and

adn
f w =

n!
3
(xn+3ux +(n+3)αxn+2u), n = 0,1,2, · · · (5.6)

with adhadn
f w =−2(n+2)adn

f w.

Proof. We showed above adew =−∂w
∂x , therefore

adew =−1
3

∂x3ux +3αx2u
∂x

=−(x2ux +2αxu) = f .

Other results can also be proved by an easy induction on n and using the definition of Lie
bracket. For the complete proof please see [52].

Similar to the element f in Lemma 5.2, the element w also have freedom. For example,
any element w+w0 satisfying adew= f and adhw=−4w can be chosen such that adew0 = 0
and adhw0 =−4w0. Lemma 5.3 tells us ad f w =

∫
wdx and adew =−∂w

∂x , therefore, we can
say that adead f w =−w.

Since adn
f w represents a polynomial in x of order n, therefore it is clear that {adn

f w,n =

0,1,2, · · ·} generate an infinite-dimensional space over C with the highest weight vector w.
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The immediate consequence of Lemma 5.2 is we can construct the below sl(2)-module

f
⇆
e

f ←
e

w
e
⇆

f
ad f w

e
⇆

f
ad2

f w
e
⇆

f
· · · (5.7)

where the q
p→ r means adp q = γr with γ ̸= 0 This module and its freedom over choosing

f and w plays an important role in constructing master symmetries and time-dependent
symmetries for homogeneous evolution equations.

Definition 5.4. Master symmetry is an evolution vector field τ whose adjoint action adτ =

[τ, ·] maps a symmetry to a new symmetry.

The following theorem provides a constructive approach to find a master symmetry. Its
proof can be found in Theorem 2 [52].

Theorem 5.1. For a homogeneous evolution equation ut = K[u] satisfying

[ux,K] = 0, [xux +αu,K] = κK,κ > 1,

with a certain constant α , let

τ =
1

2κ
[x2ux +2αxu,K] (5.8)

and an+1 = [τ,an] with a0 = e = ux. If

• [[τ,K],K] = 0 and

• there is a Lie subalgebra h such that an ∈ h for all n = 0,1,2, · · · and, moreover, for

any P,Q ∈ h satisfying [P,e] = [Q,e] = [P,K] = [Q,K] = 0, it follows that [P,Q] = 0,

then τ is a master symmetry of the equation ut = K[u], i.e., all an mutually commute.

The factor 1
2κ

in τ ((5.8)) does not plays any important role. It is needed to avoid
unwanted constant factor appearing in the master symmetry.

Since in our case the second condition in the theorem is always satisfied so we can define
master symmetry alternatively.

Definition 5.5. A t-independent evolution vector field τ is a master symmetry of ut = K if
and only if

[[τ,K],K] = 0 provided [τ,K] ̸= 0. (5.9)
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Lemma 5.3 and Theorem 5.1 helps us to develop the O-scheme (see Diagram 5.1 below).
It also includes the τ-scheme formulated by Dorfman [8] which can be seen in the elements
in the first vertical line.
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Some notes on the O-scheme

• Each an is a highest weight vector therefore we can construct an infinite dimensional
Verma module < adi

f an | i≥ 0 >.

• If there exists a k such that adk+1
f an = 0 then < adi

f an | 0 ≤ i ≤ k > is a finite di-
mensional simple module isomorphic to L((λ − 2)n+ 2). In this case, we can find
a vector w such that ade = w. Then < adi

f an,ad
j
f w | 0 ≤ i ≤ k, j = 0,1,2 · · · > is a

sl(2)-module isomorphic to P(−(λ −2)n−4)/M(−(λ −2)n−4).

• Elements on the edge of Diagram 5.1 generate t-dependent symmetries.

ux

K

τ

?
h

f
-

a2

τ

?
τ

f
-

f

f
-

a3

τ

?
ad f a2

f
-

ad2
f a1

f
-

w

e

�

f

-

f

-

f

-

f

-
τ

?

Diagram 5.1 O-scheme for constructing a master symmetry for ut = K[u]

Remark 5.2. Two symmetries are said to be dependent if their difference can be expressed
as sum of lower order symmetries. For example, the following two symmetries are dependent

∂

∂ t

(
exp(−tadK)ad2

f a1
)
, exp(−tadK)ad f a2. (5.10)

Therefore, for a given degree in t and order of the polynomial, there is a unique independent
symmetry which can be generated by the elements on the edge in the O-scheme.

To find t-dependent symmetries, the element w (5.3) needs to satisfy some necessary condi-
tions which are mentioned in the theorem below. Its proof can be found in Theorem 3 of
[52].
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Theorem 5.2. Let the homogeneous equation ut = K[u] satisfy the conditions in Theorem

5.1. Let the evolution vector field w satisfy

adew = f , adKw =
1

2−4κ
ad2

f K

Then
∂ j

∂ t j exp(−tadK)(adn
f w),n = 0,1,2, · · · j = 0,1,2, · · · ,n+2

are t-dependent symmetries of the equation.

Most of the theory developed so far boils downs to computing Lie brackets for construct-
ing master symmetries. To do this, we turn towards computer algebra system to help us in
this endeavour. For the case of (1+1)-dimensional case, we successfully implemented the
algorithm of Theorem 5.1 in Maple. But, the (2+1)-dimensional case is problematic as it
involves local terms. Therefore, we describe a natural grading on differential functions in A

so that it can help us to simplify cumbersome calculations.
Consider the system of 2 components u and v with weights λ1 and λ2 respectively. Such

a system of order n can be written as

ut
∂

∂u
+ vt

∂

∂v
= ∑

i, j
K(i, j)

n−iλ1− jλ2
, i, j ≥−1, (5.11)

where K(i, j) indicates degree i in u and j in v with m number of x-derivatives altogether.
The term K(i, j) makes sense only when n− iλ1− jλ2 ∈ N and can appear in the sum. We
read ut = K[u] ∂

∂u and vt = Q[u] ∂

∂v therefore, degree can be −1, eg: K(−1,0)
0 = ∂

∂u . For a
non-negative degree example,

K(2,0) =

(
u1θ−1(uθ−1u)

3vθ−1(u1θ−1u)

)
.

Notice that as a result on taking the Lie brackets of two differential functions, corresponding
degrees get added, i.e, [K(m1,n1),Q(m2,n2)]∼ R(m1+m2,n1+n2).

We will use this grading for calculating Lie brackets in Section 5.5.2. More details on
this can be found in [46].
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5.4 Applications

We have gathered enough information to proceed with our goal to construct master symme-
tries for new systems. First we compute master symmetries for three new two-component
Burgers’ type (1+1)-dimensional systems that appeared in [50] and then two new systems
from the ongoing work of Wang (et al.) [29].

Talati and Turhan [50] classified (1,1)-homogeneous third order Burgers’ type systems
with weight 3 having nondiagonal constant matrix of leading order terms

J(a,ε) =

(
a ε

0 a

)
, ε ̸= 0. (5.12)

The class of such systems with undetermined constant coefficients have the form

ut = l1
1uxxx + l1

2vxxx + l1
3uuxx + l1

4uvxx + l1
5vuxx + l1

6vvxx + l1
7u2

x + l1
8uxvx

+ l1
9v2

x + l1
10u2ux + l1

11u2vx + l1
12vuux + l1

13uvvx + l1
14v2ux

+ l1
15v2vx + l1

16u4 + l1
17u3v+ l1

18u2v2 + l1
19uv3 + l1

20v4,

vt = l2
1uxxx + l2

2vxxx + l2
3uuxx + l2

4uvxx + l2
5vuxx + l2

6vvxx + l2
7u2

x + l2
8uxvx

+ l2
9v2

x + l2
10u2ux + l2

11u2vx + l2
12vuux + l2

13uvvx + l2
14v2ux

+ l2
15v2vx + l2

16u4 + l2
17u3v+ l2

18u2v2 + l2
19uv3 + l2

20v4.


= K (5.13)

They set l1
1 = l2

2 = 1, l2
1 = 0, l1

2 = ε ̸= 0, i.e., (J(1,ε)) in (5.13) and looked for systems
possessing a symmetry from the class of (1,1)-homogeneous systems of weight 5. Then
they found that the class of systems (5.13) is equivalent to only eight systems up to a linear
change of variables u and v, and rescaling of x and t. For the list please see [50, Proposition
2]. All the systems obtained having a higher symmetry turned out to be systems admitting
the Hopf-Cole transformation u = ln(w)x after which the coefficient matrix of leading order
terms becomes the identity matrix. Since they are C-integrable, therefore they could be
useful nonlinear forms of some linear systems.

Here we will compute master symmetries for three systems in Examples 5.4.2, 5.4.3 and
5.4.4. These systems appears to be new among the list of eight systems found by Talati and
Turhan. They also obtained the master symmetries of these systems by investigating their
t-dependent symmetries but here we use the O-scheme. All the calculations in this section
are carried out in the Maple software and the required code can be found in Appendix B.

Before we proceed with two-component systems, we give an easy example in the scalar
case.
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Example 5.4.1. Consider the Burgers’ equation of order 3,

ut = B3[u] = u3 +3uu2 +3u2ux +3u2
x . (5.14)

It is an homogeneous equation for α = 1 (5.3), as for h = xux +u we obtain,

[h,ut ] = 9u2ux +9uu2 +9u2
x +3u3 = 3K.

Therefore, according to Theorem 5.1

τ =
1
6
[x2ux +2xu,K]

= 3xu2ux +3xuu2 +3xu2
x +u3 + xu3 +5uux +2u2

is a master symmetry if [[τ,K],K] = 0, which is indeed the case as

[τ,K] =−15u4ux−30u3u2−90u2u2
x−30u2u3−150uuxu2

−45u3
x−15uu4−45uxu3−30u2

2−3u5,

and the further computations shows [[τ,K],K] = 0.

Now, we look at the two component systems of non-linear partial differential equations.
For such systems, we can extend the definition of Lie brackets (4.7).

Definition 5.6. For any two evolutionary vector fields with characteristics

(
P

Q

)
and

(
J

K

)
,

the Lie bracket takes the form[(
P

Q

) (
J

K

)]
=

(
J∗u(P)+ J∗v (Q)−P∗u (J)−P∗v (K)

K∗u (P)+K∗v (Q)−Q∗u(J)−Q∗v(K)

)
.

where A∗u(B) means the Fréchet derivative of A with respect to u acting on B.

Example 5.4.2. This examples comes from a new system which appears as System (12) in
[50],

ut = B3[u]+2ε(v2 +3uvx +2vu1 +2u2v)x

vt = v3 +3uv2 +6uxvx +3u2vx− ε(4vv2− v2
x +8uxv2 +8uvvx +4u2v2)

}
= K. (5.15)

For easy comprehension, we divide this example into subsections.
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Construction of master symmetry
It is (1,1) homogeneous, i.e, the following Lie brackets gives,[(

xux +u

xvx + v

) (
ut

vt

)]
= 3

(
ut

vt

)

and the underlying Lie algebra (5.2) is generated by the elements

e =

(
ux

vx

)
, h = 2

(
xux +u

xvx + v

)
, f =−

(
x2ux +2xu−1
x2vx +2xv+ γ

)
.

Notice that f =

(
f1

f2

)
has a free parameter γ .

Now, we compute a master symmetry τ =

(
τ1

τ2

)
using Theorem 5.2. Please be aware

that the theorem make use of − f to avoid the minus sign. However, we simply use the
original f as in the Lie algebra above, then(

τ1

τ2

)
=

1
6

[(
f1

f2

) (
ut

vt

)]
,

which gives a one parameter family of master symmetries with

τ1 =−xut− 2
3γεu2− 3

2u2−3εv2− 4
3γεuux−6εvux

−4uux−8εuvx−4εu2v−u3,

τ2 =−xvt +
2
3γεv2− 3

2v2 +
8
3γεvux−2vux +

4
3γεuvx

+2εvvx−4uvx +
4
3γεu2v+4εuv2−u2v.
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Moreover, if we put γ = 3
4 then we obtain the same master symmetry M =

(
M1

M2

)
(up to

sign) as in [50] where,

M1 = xu3 +2εxv3 +4εxvu2 +3xuu2 +2u2 +6εxuv2 +3εv2

+3xu2
x +10εxuxvx +8εxuvux +3xu2ux +6εvux

+5uux +4εxu2vx +8εuvx +4εu2v+u3,

M2 = xv3−4εxvv2 +3xuv2 + v2 +6xuxvx−8εxv2ux

+ εxv2
x−8εxuvvx +3xu2vx−2εvvx +3uvx

−4εxu2v2−4εuv2.

Since, M and τ are dependent master symmetries (see Remark 5.2), we can construct a lower
order master symmetry M = M+ τ with

M1 =−2
3γεu2 +

1
2u2− 4

3γεuux +uux

M2 =−1
2v2 +

2
3γεv2−2vux +

8
3γεvux−uvx +

4
3γεuvx

−u2v+ 4
3γεu2v.

Observe that, M1 depends only on the variable u and M2 is linear in v, i.e, we have found
a triangular master symmetry. Moreover, it generates triangular symmetries by a suitable
linear combination of symmetries obtained from τ and M . For example, the following linear
combination

S =

(
8
3

γε
2−12ε

)
[M ,K]−

(
8
3

γε
2−2ε

)
[τ,K], (5.16)
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generates a triangular symmetry S =

(
S1

S2

)
with

S1 = 8ε
2u5−6εu5 +40γε

2uu4−30εuu4 +120γε
2u3u1−90εu3u1

+80γε
2u2u3−60εu2u3 +80γε

2u2
2−60εu2

2 +400γε
2uu2u1

−300εuu2u1 +80γε
2u3u2−60εu3u2 +120γε

2u3
1−90εu3

1

+240γε
2u2u2

1−180εu2u2
1 +40γε

2u4u1−30εu4u1,

S2 = 8γε
2v5−6εv5 +40γε

2uv4−30εuv4 +80γε
2u3v1

−60εu3v1 +120γε
2v3u1−90εv3u1 +80γε

2u2v3

−60εu2v3 +120γε
2u2v2−90εu2v2 +240γε

2uu2v1

−180εuu2v1 +320γε
2uv2u1−240εuv2u1 +80γε

2u3v2

−60εu3v2 +280γε
2u2

1v1−210εu2
1v1 +320γε

2u2u1v1

−240εu2u1v1 +40γε
2u4v1−30εu4v1.

This means that we can find a suitable transformation to linearise this system.
Hierarchy of symmetries
By the property of Master symmetry, the adjoint action of τ on K, i.e, adn

τK generates
infinitely many symmetries, each of order 3+2n.

Theorem 5.3. adn
τ K generates symmetry of order 3+2n for a positive integer n.

Proof. We need to find the order of symmetries, therefore we focus only on the highest order
terms appearing in the equation. For example, we write

K =

(
u3 +2εv3

v3

)
and τ =

(
−xu3−2εxv3

−xv3

)
, (5.17)

and forget about the lower order terms, then

adτ K =

(
−3u5−12εv5

−3v5

)
, (5.18)

which is a symmetry of order 5.
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We prove the theorem by induction on n. The above equation shows that our hypothesis
is true for n = 1. Assume, the result holds for arbitrary n, then for n+1 we have

adn+1
τ K = [τ,adn

τ K].

By induction hypothesis, adn
τK = S is a symmetry of order 3+2n, therefore we can write,

adn+1
τ K =[τ,S]

=

[(
−xu3−2εxv3

−xv3

) (
au3+2n

bv3+2n

)]

=

(
−a(3+2n)u3+2(n+1)+2aε(3+2n)v(3+2(n+1))

−b(3+2n)v(3+2(n+1))

)

where a and b are constants. It is now clear that the highest order is (3+2(n+1)) and thus,
the result follows.

Time dependent symmetries
For time-dependent symmetries we make use of Theorem 5.2. It requires us to find an
element w such that

adew = f , adKw =
1

2−4κ
ad2

f K.

Keeping in mind Lemma 5.3, we find this element w =−
r

f dx which provides(
w1

w2

)
=

(
1
3x3ux + x2u− x

1
3x3vx + x2v+ γx

)
,

with adew = f . To satisfy the second condition we need to find a value of γ such that
the following identity holds, we already know that 1

6 [ f ,K] = τ , therefore condition 5.4.2
becomes [(

ut

vt

) (
w1

w2

)]
− −3

5

[(
f1

f2

) (
τ1

τ2

)]
= 0.

On inspection we find that for γ = 0 and γ = 3, i.e,(
w1

w2

)
=

(
1
3x3ux + x2u− x

1
3x3vx + x2v

)
,and

(
w1

w2

)
=

(
1
3x3ux + x2u− x

1
3x3vx + x2v+3x

)
,
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satisfies all the necessary conditions of Theorem 5.2. Therefore,

∂ j

∂ t j exp(−t adK)(adn
F W )

are time-dependent symmetries for n = 0,1, · · · and j = 0,1, · · ·n+2.

Above example illustrates in detail how we can compute master and t-dependent symme-
tries. In the following examples we continue in the same fashion without providing much
details.

Example 5.4.3. Consider the System

ut = B3[u]+ ε(v2 +2uvx + vux +u2v)x,

vt = v3 +6uxvx− ε(vv2− v2
x + v2ux).

}
= K (5.19)

It is also (1,1) homogeneous with[(
xux +u

xvx + v

) (
ut

vt

)]
= 3

(
ut

vt

)

Similar technique as in the previous example suggests f =
∫

hdx which gives,

f =−

(
x2ux +2xu−2
x2vx +2xv+6

)
.

This produces a master symmetry τ ,

1
6

[(
f1

f2

) (
ut

vt

)]
=

(
τ1

τ2

)

provided [[τ,K],K] = 0, i.e, we need to show [τ,K] is a symmetry of the system. We find
that

τ1 =−xu3− εxv3− εxvu2−3xuu2−2u2−2εxuv2− 4
3εv2

−3xu2
x−3εxuxvx−2εxuvux−3xu2ux− 4

3εvux

−5uux− εxu2vx− 7
3εuvx− εu2v−u3,

τ2 =−xv3 + εxvv2− v2−6xuxvx + εxv2ux− εxv2
x +

1
3εvvx

−2uvx +
1
3εuv2,
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and the maple computation (see code in B) indeed shows [[τ,K],K] = 0.
Master symmetry M computed by Talati and Turhan [50] is

M1 = xu3 + εxv3 + εxvu2 +3xuu2 +2u2 +2εxuv2 +3εv2

+3xu2
x +3εxuxvx +2εxuvux +3xu2ux +6εvux

+5uux + εxu2vx +8εuvx +4εu2v+u3,

M2 = xv3− εxvv2 + v2 +6xuxvx− εxv2ux

+ εxv2
x−2εvvx +3uvx−4εuv2.

Similar to the previous example, here we can also find a lower order master symmetry
M = M+ τ with order 2

M1 =
5
3εv2 +

14
3 εvux +

17
3 εuvx +3εu2v,

M2 =uvx− 5
3εvvx− 11

3 εuv2.

In this case, adn
M generates symmetry of order 3+n whereas adn

τ generates symmetry
of order 3+2n. Proofs are similar to Theorem 5.3 in Example 5.4.2.

Example 5.4.4. The following system

ut = B3[u]+3ε(v2− vux)x +3ε
2(4vv2 +3v2

x− v2ux)+12ε
3v2vx,

vt = v3−3(uvx−u2v)x +3ε(3vv2 +3v2
x−2(v2u)x +21ε

2v2vx.

}
= K (5.20)

is (1,1) homogeneous similar to our previous examples with the same κ factor,[(
xux +u

xvx + v

) (
ut

vt

)]
= 3

(
ut

vt

)

With f =−

(
x2ux +2xu+1

x2vx +2xv

)
, the following Lie bracket

1
6

[(
f1

f2

) (
ut

vt

)]
=

(
τ1

τ2

)
,
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provides a master symmetry τ with

τ1 =−xu3−3εxv3 +3εxvu2−3xuu2− 5
2u2−12ε

2xvv2−6εv2

−3xu2
x +3εxuxvx +3ε

2xv2u1−3xu2ux +4εvux−6uux−9ε
2xv2

x

−12ε
3xv2vx−18ε

2vvx + εuvx−4ε
3v3 + ε

2uv2−u3,

τ2 =−xv3−9εxvv2 +3xuv2− 3
2v+3xuxvx +6εxv2ux−6xuvux

−9εxv2
x−21ε

2xv2vx +12εxuvvx−3xu2vx−13εvvx +3uvx

−7ε
2v3 +6εuv2−3u2v.

After comparing the master symmetry M as in [50],

M1 = xu3 +3εxv3−3εxvu2 +3xuu2 +2u2

+12ε
2xvv2 +3εv2 +3xu2

x−3εxuxvx

−3ε
2xv2ux +3xu2ux +6εvux +5uux

+9ε
2xv2

x +12ε
3xv2vx +8εuvx +4εu2v+u3

M2 = xv3 +9εxvv2−3xuv2 + v2−3xuxvx

−6εxv2ux +6xuvux +9εxv2
x

+21ε
2xv2vx−12εxuvvx

+3xu2vx−2εvvx +3uvx−4εuv2,

we find a lower order master symmetry M = M+ τ of order 2,

M1 =− 1
2u2−3εv2−uux +10εvux +9εuvx

−18ε
2vvx +4εu2v−4ε

3v3 + ε
2uv2

M2 =− 1
2v2 +6uvx−15εvvx−3u2v

+2εuv2−7ε
2v3.

Here again we find that adn
M generates symmetry of order 3+ n whereas adn

τ generates
symmetry of order 3+2n.

For time-dependent symmetries we find the element w =−
r

f dx which provides(
w1

w2

)
=

(
1
3x3ux + x2u+ x

1
3x3vx + x2v

)
.
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Notice that the required constant of integrations are 0 so that the following conditions are
satisfied

adew = f ,

[(
ut

vt

) (
w1

w2

)]
− −3

5

[(
f1

f2

) (
τ1

τ2

)]
= 0.

Now,
∂ j

∂ t j exp(−t adK)(adn
f w)

are time-dependent symmetries for n = 0,1, · · · and j = 0,1, · · ·n+2.

So far all the two-component systems that we have considered have appeared in [50].
The following two examples are from current work (in progress) of Wang et al. [29].

Example 5.4.5. Consider the following system,

ut =u3 +(λ −1)
[
2(u+ v)v2 +6u2v1−12uvv1−10v2v1 +(u− v)2(u+3v)(v+3u)

]
+6uu2 +9u2

1−6(vu1)x +(λ +2)
[
−v2

1 +4(u2 + v2)u1
]
+8(λ −4)uvu1,

vt =λv3 +(λ −1)
[
2(u+ v)u2 +10u2u1 +12uvu1−6v2u1 +(u− v)2(u+3v)(v+3u)

]
+(2λ +1)

[
u2

1 +4(u2 + v2)v1
]
+3λ

[
2(uv1)x−2vv2−3v2

1
]
−8(4λ −1)uvv1,

λ ∈ C\{0,1},


=K

(5.21)
which is (1,1) homogeneous with weight 3. We find a master symmetry τ by(

τ1

τ2

)
=−1

6

[(
x2u1 +2xu− 1

4

x2v1 +2xv+ 1
4

) (
ut

vt

)]

with,

τ1 =−xut− 3
2u2 +6vu1−10uu1 +3uv1 +3vv1−λuv1−λvv1 +11u2v

−5uv2−λu3 +3λv3−3u3−3v3−3λu2v+λuv2,

τ2 =−xvt− 3
2λv2 + vu1 +uu1−3λuu1−3λvu1−6λuv1 +10λvv1

+u2v−3uv2−3λu3−3λv3 +3u3− v3−5λu2v

+11λuv2 +4xu3v−14xu2v2 +4xuv3.

Since the order of the master symmetry is 3, one can prove that adn
τ generates symmetry of

order 3+2n.
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Example 5.4.6. The following system

ut =u3 +3((u2 + v2)u1)x−2(λ −1)uvv2 +(λ +2)uv2
1 +3(u4 + v4)u1

+3uu2
1−2(λ −1)(u2 +3v2)uvv1−2(2λ −5)u2v2u1− (λ −1)uv2(u2 + v2)2,

vt =λ (v3)+2(λ −1)uvu2 +6λuu1v1 +9λvv2
1 +3λ (u2 + v2)v2

+(2λ +1)vu2
1 +2(λ −1)uv(v2 +3u2)u1 +3λ (u4 + v4)v1 +2(5λ −2)u2v2v1

+(λ −1)u2v(u2 + v2)2.


= K

(5.22)
is the only system so far which is (1

2 ,
1
2) homogeneous with weight 3. Here, we find a master

symmetry as

−1
6

[(
x2u1 + xu

x2v1 + xv

) (
ut

vt

)]
=

(
τ1

τ2

)
,

with

τ1 =−xut− 3
2u2−5u2u1−3v2u1−2u3v2− 3

2uv4− 1
2u5

+λuvv1 +λu3v2 +λuv4−3uvv1,

τ2 =−xvt− 3
2λv2− 3

2λu4v−2λu2v3−3λu2v1−5λv2v1 +uvu1

− 1
2λv5 +u4v+u2v3−3λuvu1.

which generates symmetries Sn = adn
τ of order 3+2n.

5.5 Two-component (2+1)-dimensional partial differential
equations

The O-scheme (Diagram 5.1) is a powerful tool for testing the integrability of (1+ 1)-
dimensional nonlinear partial differential equations. We wish to extend this method for
the (2+1)-dimensional case but we encounter few obstacles, chiefly non-locality, i.e, the
appearance of the formal integral D−1

x or D−1
y . The higher order symmetries and the equation

themselves are non-local in their evolutionary form for integrable equations. This was
noted by Mikhailov and Yamilov in [30], where they introduced a concept of quasi-local

polynomials to characterize nonlocalities. The appearance of such operators forces us to
extend the differential algebra A which is defined in the Section 4.2. The naive approach is
to adjoin all possible integrals, i.e, to construct the differential algebra A (D−1

x ,D−1
y ). But
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now, any f ∈A (D−1
x ,D−1

y ) is a total derivative f ∈ DA (D−1
x ,D−1

y ) and consequently,

A (D−1
x ,D−1

y )/DA (D−1
x ,D−1

y ) = C.

This implies that all conservation laws are trivial. Therefore, such a construction seems not
to be very fruitful.

Mikhailov and Yamilov also made another very important observation that the operators
D−1

x and D−1
y never appear alone, but always in pairs like D−1

x Dy and D−1
y Dx for all known

integrable equations and their hierarchies of symmetries. Based on this observation they
introduced operators

θ = D−1
x Dy and θ

−1 = D−1
y Dx, (5.23)

then many classes of equations and their symmetry hierarchies can be written without D−1
x

and D−1
y . In the following section we construct not only such an extension but also the base

ring A formally.

5.5.1 Quasi-local polynomials

Quasi-local polynomials are elements in the non-local extension of a base differential ring.
We discuss the base ring first and then show how to construct such an extension.

Differential polynomials over an algebra K forms a differential ring

A =
⊕
k≥1

A k,

where A k denotes the set of differential polynomials of degree k. Notice that since k ≥ 1,
A is a non-unital ring. We consider two derivations on this ring, total x-derivation and
y-derivation given by

Dx =
∞

∑
i=0

∞

∑
j=0

ui+1, j
∂

∂ui j
and Dy =

∞

∑
i=0

∞

∑
j=0

ui, j+1
∂

∂ui j
. (5.24)

This base ring is A (non-) commutative if the given algebra K is (non-) commutative.
To extend this ring non-locally, we introduce new operators

θ = D−1
x Dy and θ

−1 = D−1
y Dx (5.25)

with
θA = {θ f : f ∈A } and θ

−1A = {θ−1 f : f ∈A }.
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With this notation in hand we can construct the ring of quasi-local polynomials in a recursive
manner. Define A0(θ) = A and Ak(θ) as the ring closure of the union given below

Ak−1(θ)
⋃

θAk−1(θ)
⋃

θ
−1Ak−1(θ). (5.26)

It is clear that Ak−1 ⊂Ak. Now we can define the non-local extension of A as A (θ) =

limk→∞ Ak such that for every f ∈A there exists a k such that f ∈Ak. There is a natural
gradation on this extension given by number of u and its derivatives

A (θ) =
⊕
l≥1

A l(θ), A p(θ).A q(θ) ∈A p+q(θ). (5.27)

We should note that Ak(θ) is not invariant under change of variables. For instance, if

x′→ x+ y and y′→ y

then
θ = D−1

x′ Dy′ → (D−1
x +D−1

y )Dy′ = 1+θ

Thus, θ−1→ (1+θ−1)−1 which is not in Ak(θ).

5.5.2 Davey-Stewartson type system

Classical Davey–Stewartson system first appeared in [7], it provides a canonical description
of the evolution of surface waves with slowly varying amplitude is written in the form

iψt = ψxx +ψyy +2ψϕ, ϕxy = |ψ|2xx + |ψ|2yy. (5.28)

Here, we will consider a Davey-Stewartson type system from the work of Huard and Novikov
[19]. They classified integrable dispersive (2+1)- dimensional equations of second order
Davey-Stewartson type, which are of the form

ut =F(u,v,w,Du,Dv,Dw), wy = ux (5.29)

vt =G(u,v,w,Du,Dv,Dw). (5.30)

Here u(x,y, t),v(x,y, t),w(x,y, t) are scalar variables with Du,Dv,Dw as the collection of par-
tial derivatives of u,v,w with respect to x,y up to the second order, and F,G are polynomials
in derivatives with coefficients depending only on u,v,w.
System (5.28) can be transformed into a system of the form (5.29) by a change of variables
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u and v, and rescaling of x and t. This connection is shown by Zakharov in [54]. We will
compute a master symmetry for such a system in Example 5.5.1 but before that we introduce
some results that are helpful in computing Lie brackets.

For a differential function P which is independent of x and t, i.e, if P = P(u,u1, ..un)

then one may find the below equality useful,

[xP,P] =P∗(xP)− (xP)∗(P),

=
n

∑
j≥0

∂P
∂u j

D j(xP)−
n

∑
i≥0

∂xP
∂ui

Di(P),

=
n

∑
j≥1

j
∂P
∂u j

D j−1(P),

where we used the fact that (xP)∗ = xP∗ and Dm(xP) = mDm−1(P)+ xDm(P) for m ≥ 0.
This result can be generalised easily in the (2+1)- dimensional case.

Similarly, one may come across terms like θ−1(u1θ−1u), θ−1(xu1θ−1u) and θ−1(xkum)

which requires simplified form for the calculations. Let us prove them one by one in the
following proposition.

Proposition 5.1. Following results holds,

1. θ−1(xkum) = kxk−1θ−1um−1 + xkθ−1um for integers k,m≥ 1.

2. θ−1(u1θ−1u) = θ−1(u1)θ
−1(u).

3. θ−1(xu1θ−1u) = 1
2(θ
−1u)2 + xθ−1(u1)θ

−1(u).

Proof. We list the proof corresponding to the items.

1. This item is straightforward, first we replace the θ−1 by DxD−1
y and pull out xk since it

acts as a constant for the operator D−1
y . Finally expand the resulting expression using

the product rule of Dx.

θ
−1(xkum) = DxD−1

y (xkum),

= Dx

(
xkD−1

y um

)
,

= kxk−1
θ
−1um−1 + xk

θ
−1um.

2. For Item 2 we use the integration by parts in (5.31), then on replacing D−1
y u1 =

D−1
y Dxu = θu and cancelling D−1

y with Dy we obtain (5.32). Now we can expand
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using the linearity and product rule of the operator Dx and up on bringing the second
term on the left hand side we obtain the desired result

θ
−1(u1θ

−1u) = DxD−1
y (u1θ

−1u),

= Dx
(
(θ−1u)D−1

y u1−D−1
y
(
Dy(θ

−1u)(D−1
y u1)

))
, (5.31)

= Dx
(
(θ−1u)2−D−1

y (u1θ
−1u)

)
, (5.32)

= 2(θ−1u)(θ−1u1)−θ
−1(u1θ

−1u).

3. Proof of the item (3) is also very similar.

θ
−1(xu1θ

−1u) = DxD−1
y (xu1θ

−1u) (5.33)

= Dx

(
1
2

x(θ−1u)2
)

(5.34)

=
1
2
(θ−1u)2 + xθ

−1(u1)θ
−1(u), (5.35)

where we used the fact that D−1
y (u1θ−1u) = 1

2(θ
−1u)2.

Now we are ready to extend our theory for the (2+ 1)-dimensional case. The below
example can be found in the Huard and Novikov [19].

Example 5.5.1. We follow the same routine procedure as before based on Theorem 5.1.
The following system,

ut = uxθ
−1u+ εu2 +(uv)x,

vt = (vθ
−1u)x− εv2 + vvx.

}
= K (5.36)

is homogeneous with [(
xux

xvx + v

) (
ut

vt

)]
= 2

(
ut

vt

)
. (5.37)

We obtain a master symmetry by the following action(
τ1

τ2

)
=

[(
x2ux

x2vx +2xv

) (
ut

vt

)]

=4

(
xut +

1
2εux +

1
2uv

xvt + vθ−1u− 3
2εvx +

1
2v2

)
.
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Once we have a master symmetry τ , we can proceed to compute a symmetry by comput-
ing the action of τ on the K, which yields

S =


2ε2u3 +3ε(u1v1 +u2v+u2θ−1u+u1θ−1u1)+3(uv)xθ−1u

+3
2uvθ−1u1 +

3
2u1θ−1(uv)+3uvv1 +

3
2u1v2 + 3

2u1(θ
−1u)2

2ε2v3−3ε(u2v+ v2
1 + v2θ−1u+ v1θ−1u1)

3vv1θ−1u+ 3
2v2θ−1u1 +

3
2vθ−1(uv)x +

3
2v1θ−1(uv)

+3
2v1v2 +3vθ−1uθ−1u1 +

3
2v1(θ

−1u)2

 (5.38)

It is indeed a symmetry since one can compute that [τ, [τ,K] = 0.
In the following an attempt is made to give an idea how such calculations were carried

out. If one wishes to find a second order symmetry S for 5.36, then we use the grading on A

mentioned in the beginning of the application section. It tells us that S can be written in the
form

S = S(0,0)+S(0,1)+S(1,0)+S(1,1)+S(0,2)+S(2,0). (5.39)

To compute S we need to compute the each Lie bracket relative to their grading. For example,
the zero degree term corresponds to S(0,0) = [τ(0,0),K(0,0)]. For our purpose, we only present
the computation for S(2,0). Since K(2,0) = τ(2,0) = 0, what remains is S(2,0) = [τ(1,0),K(1,0)]

with

τ
(1,0) =

(
xu1θ−1u

(xvθ−1u)x

)
and K(1,0) =

(
u1θ−1u

(vθ−1u)x

)
. (5.40)

It makes it easy to compute the Lie brackets and one finds that

S(2,0) =

(
3
2u1θ−1(uθ−1u)

3vθ−1(u1θ−1u)+ 3
2v1θ−1(uθ−1u)

)
. (5.41)

5.6 Conclusions

We showed that regardless of integrability, there exists a natural sl(2,C) algebra for a
homogeneous equation and moreover, we can construct an infinite dimensional module
in the BGG category. Based on these observations, we presented a new structure, called
the O scheme. This method can be used to construct master symmetries and consequently
symmetries for homogeneous equations under some technical conditions. We present new
results—master symmetries for three new two-component Burgers’ type (1+1)-dimensional
systems that appeared in [50] (Examples 5.4.2, 5.4.3, 5.4.4) and for two new systems from
the ongoing work of Wang et al. [29] (Examples 5.4.5, 5.4.6). Towards the end of the chapter
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we introduce quasilocal polynomials which provides an algebraic framework to deal with
(2+1)-dimensional systems together with an example of a Davey-Stewartson type system
(Example 5.5.1). In our results, we observed that for an evolution equation ut = K[u], their
master symmetry takes the form τ = xut + r with some “remaining” differential function
r ∈A . So for a future project, it might be interesting to start with an integrable equation
explicitly depending on the space variable x and study the structure of its master symmetry.

Bi-Hamiltonian systems cover a high percentage of the known integrable systems but
there are integrable equations like Burgers’ equation and Ibragimov-Shabat equation which
fall outside of this category. Our approach can be used to construct time-dependent sym-
metries for these equations. These symmetries can be seen as a part of sl(2,C)-module,
however our understanding of their appearance in the construction of symmetries is still
limited. Constructing a scheme based on algebra of higher rank is a promising direction
of research which would allow us to study a wider class of PDEs. In future, extending
this approach to integrable differential-difference and discrete systems could also be very
important.
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Appendix A

Maple Code for Green’s Function

This chapter provides the details on the extra code needed to extract Green’s function in
Examples 2.4.1−2.4.4.

[breaklines=true]

create_cond1 := proc(P)

local rng, fnc, cond;

rng := P[1];

fnc := P[2];

cond:= x <= xi and (xi<=lhs(rhs(rng)));

[cond, -fnc]

end proc:

create_cond2 := proc(P)

local rng, fnc, cond;

rng := P[1];

fnc := P[2];

cond:= (lhs(rhs(rng)) <= xi) and xi <=x;

[cond, fnc]

end proc:

create_piecewise1 := proc(L)

local L0;

L0 := map(create_cond1, map(Reverse, L));

piecewise(op(Flatten(L0)));

end proc:
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create_piecewise2 := proc(L)

local L1;

L1 := map(create_cond2, map(Reverse, L));

piecewise(op(Flatten(L1)));

end proc:

Greenop_eq:=proc(Gop)

local G1, G2, G3;

G1:=expand(subs(int=Int,Gop &* f(x)));

G2:=eval(G1, x=y);

G3:=value(evalindets(evalindets(G2,specfunc(Int),

x->IntegrationTools:-Split(x, y)),And(specfunc(Int),

satisfies(x->type(op([2,2,1],x),identical(y)))),IntegrationTools:-Flip));

expand(eval(G3, y=x));

end proc:

extract_gf:=proc(Gfeq, evpts)

local Gf1, Gf2, Gf3, L1, L2, L3, i, cn1, cn2, S, con1,

func1, pair1, con2, func2, pair2, S1, S2;

Gf1:= eval(Gfeq, x=y);

Gf2 := subs(x=xi, Gf1);

Gf3 := eval(Gf2, y=x);

L1:=convert(combine(Gf3),list);

L2:=map(‘[]‘@op,L1);

L3:=subs(f(xi)=1, L2);

S1:=0;

S2:=0;

for i from 1 while i<= nops(L3)

do

cn1[i]:=xi-lhs(rhs(L3[i,2]));

# To get conditions for Green’s function

cn2[i]:=lhs(rhs(L3[i,2]))-xi;

S1:=(Heaviside(cn1[i])*L3[i,1])+S1;

# To get respective terms in Green’s function
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S2:=(Heaviside(cn2[i])*(-L3[i,1]))+S2;

end do;

for i from 1 while i<= nops(L3)-1

do

con1[i]:= (evpts[i]<=xi and xi<=evpts[i+1] and xi<=x);

func1[i]:=(S1 assuming evpts[i]<xi and xi<evpts[i+1]);

pair1[i]:=con1[i], simplify(func1[i]);

con2[i]:= (evpts[i]<=xi and xi<=evpts[i+1] and x<=xi);

func2[i]:=(S2 assuming evpts[i]<xi and xi<evpts[i+1]);

pair2[i]:=con2[i], simplify(func2[i]);

end do;

piecewise(op(Flatten(convert(pair1, list))),

op(Flatten(convert(pair2, list))));

end proc:

regular_part := proc(G)

applyrule(t::EVDIFFOP=EVDIFFOP(), G)

end proc:

distributional_part := proc(G)

G-regular_part(G)

end proc:

renaming_apply := proc(G,f)

local xi;

subs(xi=x,subs(x=xi, G) &* f)

end proc:

safe_apply := proc(G,f)

local Greg,Gdist;

Greg := regular_part(G);

Gdist := distributional_part(G);

renaming_apply(Gdist,f)+ApplyOperator(Greg,f)

end proc:
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Following code is used to obtain the third order differential equation from a given set of
fundamental solution. It is used to cross check the examples.

with(VectorCalculus):

ode2sol:= proc(v)

local W, Wr, d, Wk, M, W1, W2, W3, q1, q2, q3;

W:=Vector([v], readonly=true);

Wr:=wronskian(W,x);

d:=det(Wr);

Wk:=Vector([y(x), v], readonly=true);

M:=Matrix(wronskian(Wk,x));

W1:=Adjoint(M)(1,3);

W2:=Adjoint(M)(1,2);

W3:=Adjoint(M)(1,1);

q1:=-W1/d;

q2:=-W2/d;

q3:=-W3/d;

diff(y(x), x, x, x)*1 + q1*(diff(y(x), x, x))+ q2*diff(y(x), x)+ q3*y(x)

end proc:
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Appendix B

Maple Code for Computing Lie Brackets

This chapter provides details on the Maple code used to compute master symmetries and
time-dependent symmetries in the examples of Chapter 4. The following code is used for
scalar case in Example 5.4.1.

restart:

DD:=proc(f,n)#function to compute total derivative of f of order n

local w,ii,i,vv,ll;

w:=f;

for ii to n do

vv:=0;

ll:=sort(convert(map(op,indets(w)),list)):

for i in ll do #this loop differentiate wrt u[i]

vv:=vv+u[i+1]*diff(w,u[i]);

od;

w:=diff(w,x)+vv; #this just do extra diff wrt x

od;

RETURN(sort(expand(w)));

end:

LieBracket:=proc(P,Q)

# computing Lie bracket of the given funxtions P and Q (By Myself)

local n1,n2,i, A, B;

n1:=max(convert(map(op,indets(P,name)),set) minus indets(P,name));

#highest order derivative appearing in P

n2:=max(convert(map(op,indets(Q,name)),set) minus indets(Q,name));

A:=0; B:=0;
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for i from 0 to n2 do

A:=A+diff(Q,u[i])*DD(P,i);#Frechet derivative of acting on P ie P_*(Q)

od;

for i from 0 to n1 do

B:=B+diff(P,u[i])*DD(Q,i);

od;

return(expand(A-B));#[P,Q]=D[Q](P)-D[P](Q)

end:

LieBracketSys:=proc(P,Q,R,T)

# computing Lie bracket for a system (a11=P, a12=R, a21=Q, a22=T)

local n1,n2,i, A, B;

n1:=max(convert(map(op,indets(P,name)),set) minus indets(P,name));

#highest order derivative appearing in P

n2:=max(convert(map(op,indets(Q,name)),set) minus indets(Q,name));

A:=0; B:=0;

for i from 0 to n2 do

A:=A+diff(Q,u[i])*DD(P,i);#Frechet derivative of acting on P ie P_*(Q)

od;

for i from 0 to n1 do

B:=B+diff(P,u[i])*DD(Q,i);

od;

return(expand(A-B));#[P,Q]=D[Q](P)-D[P](Q)

end:

We use the below code for generalised two-component systems as in Examples 5.4.2−5.5.6.

restart:

DD:=proc(f,n)#function to compute total derivative of f of order n

local w,ii,i,vv,ll;

w:=f;

for ii to n do

vv:=0;

ll:=sort(convert(map(op,indets(w)),list)):

for i in ll do #this loop differentiate wrt u[i]

vv:=vv+u[i+1]*diff(w,u[i])+v[i+1]*diff(w,v[i]);

od;

w:=diff(w,x)+vv; #this just do extra diff wrt x
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od;

RETURN(sort(expand(w)));

end:

LieBracketFre:=proc(P,Q,R,T)# computing Lie bracket for

a system (a11=P, a12=R, a21=Q, a22=T)

local hdu,hdv,i, A,L,K, B,hdU,hdV,j, C, D,M,N;

L:=convert(map(op,subs(seq(u[i]=0, i = 0 .. 10),indets(P,name))),set)

minus subs(seq(u[i]=0, i = 0 .. 10),indets(P,name));

L:={op(L),0};

hdv:=max(L);#highest order derivative of v appearing in P

K:=convert(map(op,subs(seq(v[i]=0, i = 0 .. 10),indets(P,name))),set)

minus subs(seq(v[i]=0, i = 0 .. 10),indets(P,name));

K:={op(K),0};

hdu:=max(K);#highest order derivative of u appearing in P

A:=0; B:=0;

for i from 0 to hdu do

A:=A+diff(P,u[i])*DD(R,i);#Frechet derivative of P wrt u acting on R

od;

for i from 0 to hdv do

B:=B+diff(P,v[i])*DD(T,i);#Frechet derivative of P wrt v acting on T

od;

return(simplify(A+B));

#[P,Q]=D[Q](P)-D[P](Q)

end:

LB:=proc(P,Q,R,T)

return(<LieBracketFre(P,Q,R,T),LieBracketFre(Q,P,R,T) >);#<P,Q>_*

end:

LieBracketSys:=proc(P,Q,R,T)

return(-LB(P,Q,R,T)+LB(R,T,P,Q));

end:

collectsort:=proc(f)#sorting with order u[i+1]>u[i] and u[i]=v[i]

local g,In,h;

h:=expand(f);
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In:=seq([u[i],v[i]][],i=20..1,-1);

g:=sort(h, order=plex(In));

return(g);

end:

adjointP:=proc(n,p,q,r,t)#to compute adnP i.e n times

adjoint of P=<p,q> first two components

local M,L,i,j;

M:=LieBracketSys(p,q,r,t);

L:=convert(M,list);

for i from 1 to n-1 do

j:=nops(L);

L:=[op(L),op(convert(LieBracketSys(p,q,L[j-1],L[j]),list))];#recursion

od;

return(<collectsort(L[-2]),collectsort(L[-1])>);

end:
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