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ABSTRACT
With the increasing popularity of consumer wearable devices
augmented with sensing capabilities (smart bands, smart
watches), there is a significant focus on extracting mean-
ingful information about human behaviour through large
scale real-world wearable sensor data. The focus of this work
is to develop techniques to detect human activities, utilis-
ing a large dataset of wearable data where no ground truth
has been produced on the actual activities performed. We
propose a deep learning variational auto encoder activity
recognition model - Motion2Vector. The model is trained us-
ing large amounts of unlabelled human activity data to learn
a representation of a time period of activity data. The learned
activity representations can be mapped into an embedded
activity space and grouped with regards to the nature of the
activity type. In order to evaluate the proposed model, we
have applied our method on public dataset - The Heterogene-
ity Human Activity Recognition (HHAR) dataset. The results
showed that our method can achieve improved result over
the HHAR dataset. In addition, we have collected our own
lab-based activity dataset. Our experimental results show
that our system achieves good accuracy in detecting such ac-
tivities, and has the potential to provide additional insights
in understanding the real-world activity in the situations
where there is no ground truth available.
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1 INTRODUCTION
With the increasing popularity of consumer wearable devices
augmented with sensing capabilities (smart bands, smart
watches), there is a significant focus in extracting mean-
ingful information about human behaviour through large
scale real-world wearable sensor data [13]. Human activ-
ity recognition (HAR) through wearable devices is recently
considered a vital tool for future healthcare applications,
especially in support for elderly people and patients with
certain long-term conditions [2–4]. HAR can help patients
with continuous care and rehabilitation needs at home and
provides clinicians with additional insight of the patients’
performance.
Traditional approaches in developing HAR systems, rely

on the collection of properly labeled training datasets, where
the actual activities of the users are captured accurately ei-
ther through controlled experiments, or through self reports
[1, 12, 14]. These approaches however suffer from scalabil-
ity issues as the process of collecting ground truth through
self-report cannot be employed on a large scale and over
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long periods of time. In order to progress with the wider
application of HAR systems there is a need for developing
techniques were human activity classifiers can be developed
with minimum need for accurate ground truth from the par-
ticipants.
In this work we aim to explore the development of an

unsupervised model to infer what people do from wearable
sensor data. Our focus is on the use of large scale wearable
datasets, which do not contain any prior labeling of the ac-
tivities that users perform. Interpreting and using such data
imposes significant challenges in developing appropriate hu-
man activity recognition techniques, without the need for
accurately labelling data to produce a training dataset.

Specifically, we focus on the analysis of a large dataset of
activities captured through wearable wrist-bands (Microsoft
Band 2) as part of the Innovate UK funded project "Epilepsy
Networks". The dataset was produced by a cohort of 37 pa-
tients suffering from epilepsy, using wearable wrist-bands
during their daily lives, for a long period of time (approxi-
mately 6500 days in total, with an average of 112 days per
participant). The dataset consists of raw accelerometer, gyro-
scope readings along with physiological data (i.e. heart rate)
as captured by the wearable device. During the deployment
the participants were not required to submit any ground
truth about their daily activities.
Our aim is to develop a technique to detect the daily ac-

tivities of participants through this unlabeled dataset. To do
this we propose an approach based on an auto-encoder deep
learning model, called Motion2Vector, which is developed
through unsupervised training on this large dataset. The pur-
pose of the model is to convert a time period of activity data
into a movement vector embedding within a multidimen-
sional space, as a representation of a certain activity type.
That representation helps us group similar activities together
within the embedded space. The technique can help iden-
tify when and for how long similar activities take place, but
the actual meaning/context for such activities requires lim-
ited knowledge of ground truth. We evaluate the approach
through public dataset - HHAR and our own lab-based ac-
tivity dataset. The core contribution of this work includes:

• Wepropose a variational autoencoder (VAE) deep learn-
ing technique to train a model using a large wrist-band
dataset of real-world activities, without labelling. The
proposed model enables movement embedding utilis-
ing the raw input from wearable sensor data.

• We deploy our data collection system and collect the
datasets in lab-based session in order to evaluate our
trained model. The lab-based session is accurately la-
belled by the researcher who is carrying out the exper-
iment.

• We validate our trained model on both public datasets
and our collected datasets.

2 RELATEDWORK
Significant work in HAR focuses on the use of inertial sensor
to detect human activities [10, 16, 18]. This is motivated pri-
marily by the wide availability of such sensors on consumer
devices such as smartphones and smart watches. Most of
these systems rely heavily on well labeled training datasets,
generated mostly through controlled lab experiments. The
development and training of appropriate machine learning
classifiers typically involves the extraction of hand-crafted
features from the raw data before being used to train an ap-
propriate classifier. Manual extraction of features from raw
data typically requires appropriate domain knowledge on
the type of activity that should be detected, or would require
extensive human observation.
With the increased popularity in deep learning models

in machine learning, there has been also a shift in applying
deep learning techniques in HAR [13]. In [17], a CNN model
is used to automate the feature extraction under the supervi-
sion of output labels. [5], a LSTM-RNN model is created in
order to explore the time dependencies of the human motion
data. Supervised deep learning models can save development
time in creating the appropriate features, however, it still
requires accurately labelled datasets to train the model. Semi-
supervised models aim to integrate the supervised learning
and unsupervised learning. They generally rely on small
amounts of labelled data [6, 8]. However, in situations where
the collection of ground truth is not realistic or possible,
semi-supervised models are still not feasible solutions.
When considering scenarios where sensor data has been

collected already, but without any prior ground truth, ex-
ploring unsupervised learning techniques is the only viable
approach. In unsupervised learning there is no requirement
for labelled data. The purpose is to find hidden patterns
within the data, and identify groups of similar activities [11].
Evaluating an unsupervised model is challenging when no
labeled data is available. In our work, we exploit a small set
of labeled activity dataset as part of the evaluation of the
produced model.

3 DEEP LEARNING ARCHITECTURE
Our objective is to develop a HAR system that is trained on
a large unlabeled dataset of sensor data captured by smart
wrist bands. The purpose of the HAR system is to be able to
group similar activities together. In order to achieve this we
first need to train a model to encode raw inertial sensor data
into a vector that represents the movement characteristics
captured by the sensor data.
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Figure 1: Deep learning architecture

Model Overview
The deep learning model used in this study is inspired by
the variational autoencoder proposed by Hu et.al [7] which
is applied in generating sketch drawings in a vector format
using a recurrent neural network (RNN). In our work, we
have made certain modifications to make the deep learn-
ing architecture fit with the context of our problem. Figure
1 shows this deep learning architecture. Raw sensor data
is pre-processed and fed into an encoder neural network.
The hidden layer is N-dimensional encoded vector which
is used as the representation of the activity. The decoder
neural network decodes the encoded vector and creates an
output which has the exact same size as the input. The cost
function is trying to minimize the difference between the
input and output. The details of the deep learning network
are described in the following subsections. After the model
has been trained, the encoded vector is used as a good repre-
sentation of the blocks of activity in the embedded space.

Input Data Preparation
The input data for the training model, and the validation
dataset, consist of raw accelerometer and gyroscope data
captured from the wearable wrist band. These datasets are
pre-processed as described below.

Accelerometer and Gyroscope Sensors. In processing the sen-
sor data, our aim is to convert every sensor data point with
raw accelerometer and gyroscope data, into a data point that
represents the relative change of the position and orienta-
tion of the sensing device. Essentially each data point is to
be converted into a vector M=(∆Px , ∆Py , ∆Pz , gx , gy , gz )
where ∆Px,y,z represent the change in position, and gx,y,z
represent change in orientation. Activity within a short time
period is composed of a set of points.

Calculating the relative change of position. Extracting gravity
from the raw data is used to identify a global reference frame.
Extracting gravity from accelerometer data can be done using

a low-pass / moving average filter: ∆G = G · α + (1 − α) ·
Accinput · (x)

The relative change of position is to calculate the position
relative to the previous position with respect to the global
reference frame. In order to calculate the 3D relative posi-
tion, the first step is to compute the linear acceleration from
raw acceleration and the second step is to double integrate
the linear acceleration. The input data to the auto encoder
consists of a time window of multiple sensor data points (M1,
M2,. . . , Mn ).

Auto Encoder
The auto encoder consists of an encoder model that “com-
presses” the input data into a vector representation, and a
decoder that uses the generated vector to “decompress” the
data to its original form. The auto encoder is trained using a
cost function that evaluate how well the encoding-decoding
process works.
For our encoder, we use a bidirectional Long Short-Term

Memory (LSTM) to encode the input blocks of pre-processed
data.

Figure 2: bidirectional LSTM
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As seen in Figure 2, two hidden states hf and hb are gen-
erated. Then the concatenation of these hidden states will
be used to generate two embedded vectors through a fully
connected layer.

The embedded vector µ is our target in this study, it is a 128
dim vector and it is considered an appropriate representation
of the input movement within a particular time period.
As part of the training process, the µ vector is used by

the decoder which is responsible for regenerating the input
data. In order to prepare the inputs for the decoder, a random
vector υ is created using µ and δ following a unit normalised
distribution. The decoder takes the created vector ν and all
the inputs to generate the outputs.

Cost function and training details
Our model is trained through a combination of two parts of
loss - content loss and KL-divergence loss [9]. As described
in Equation 1, the content loss is to minimize the difference
between the input M and output M’.

Lc =
1
N

N∑
i=1

(M ′ −M)2 (1)

The KL divergence loss is described in the Equation 2
below:

LKL = −
1
2N

N∑
i=1

(1 + lnσi − µ2i − σi ) (2)

The final loss is the optimisation of the content loss and
the KL-divergence loss (Equation 3).

L = Lc + γLKL (3)

Annealing technique is used to adjust the latent lost: 0.1<γ<1.
The training result is shown in Figure 3. In each subplot, the
x-axis is the number of the training iterations and y-axis is
the value of training loss.

4 EVALUATION
Training Dataset
The training data has been captured as part of an Innovate
UK funded project. The aim of the project was to provide
support for people suffering from epilepsy, and it included a
large deployment of wrist-worn devices to patients. During
the study, each of the participants was given a Microsoft
Band 2 and installed a mobile app able to log data from their
wearable device. The app was also designed to collect the
patients’ self-reports on potential epileptic seizures; how-
ever, no other ground truth was captured regarding the daily
activities of the participants. Wristband sensor data has been
collected on 37 patients from May 2017 until August 2018.

Figure 3: Loss graph for our model trained using our large
cohort of data

Sensor data included tri-axis accelerometer and tri-axis gy-
roscope data, sampled at 31Hz. In this study, we use this
dataset as our training datasets.

Figure 4: The system structure of the wearable data collec-
tion system

Evaluation Dataset
In evaluating our trained model, we needed wearable data
with ground truth so as to evaluate the accuracy of the
trained model. We relied on a combination of public HAR
datasets, and in lab experiments.

Public Dataset. In order to evaluate our model, we selected
the public HHAR dataset [15], a dataset collected from 9 par-
ticipants. It contains data from 4 different models of smart-
watches (2 LGwatches, 2 Samsung Galaxy Gears). The sensor
readings contain both accelerometer and gyroscope.

Data collection. Most of the public available datasets are
focused in collecting general motion of the human during
walking, running, cycling, sitting, etc. However, since our
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Figure 5: Data collection details for lab-based data collection

Table 1: The F1 Performance of different Datasets

Classifier Public Dataset Our lab dataset

C4.5 86.91 % 84.63%
KNN 90.21 % 75.73 %

Random Forest 91.54% 88.75%

wrist sensor is worn by the participant all the time, we are
able to track some finer motion of the hand activity including
drinking, waving hand, typing, etc. In order to explore a
wider range of activities we generated our own labeled data,
through a controlled experiment. 10 participants were invited
for a 15 mins lab-based session where they were asked to
perform certain tasks wearing a wristband.
The lab-based session experiment was carried out in a

research room at the University of Kent. During this experi-
ment session, the participants were asked to complete a range
of different human daily activity including walking, running,
typing, writing, etc. Figure 5 shows the experimental flow of
the lab-based session. The ground truth was captured by the
pad operated by the observer researcher. The app developed
for capturing the activity was able to record the start and
end time of each of the specific activities.

Evaluation Methods
For each dataset, through applying the trained model, we
have gained 128 dimensional encoded vectors. One method
to evaluate the performance is to use 128 dimension vectors
as features. Three different classifiers have been used and
the classification results are presented using F1 score. A
comparison has been made with other researcher’s work on
the same dataset using hand crafted features.

Table 2: Activity recoginition Performance based on embed-
ding dictionary

Performance Public Dataset Our lab dataset

Precision 87% 73%
Recall 88 % 73%

F1-Score 87% 72 %

Additionally, another method based on the Euclidean dis-
tance have been proposed to evaluate the results of the Em-
bedding. 30% of data is used to create the word embedding
dictionary, and the Euclidean distance is calculated using
Equation (4) below for the distance between the test dataset
and the embedding dictionary. The activity predicted on the
test dataset is estimated as the activity of the closest vector
in terms of Euclidean distance.

D =

√√
n∑
i=1

(xi − yi )2 (4)

Results
Results Visualisation. In Figure 6, a visualisation of the Em-
bedded space has been presented. Different activities are
grouped together in the space and from the left to right, the
activity type is less active. t-NSE is applied to reduce the
dimenstions and visulise the 128 dimension vectors in the
embeded space.

Classifier Validation. For both datasests, we have implement
the first evaluation method using the embedded 128 dimen-
sion vectors as the features. We train 3 different classifiers
and the performance F1 score is presented in Table 1. It is
noted that the classifiers trained by using the embedded vec-
tors as the features outperform the standard approaches with
the handcrafted features from a previous study where the F1
scores of KNN and Random Forest are all below 90% while
the F1 score of C4.5 is less than 85%. The F1 score of the
lab-based dataset is slightly lower than that of the Public
Dataset due to the fact that our collected lab-based dataset
is much more noisy and contains more activities.

Euclidean Distance Validation. For both datasets, we have
also implemented the evaluation using the Euclidean based
method as described in the above Evaluation Methods sec-
tion. The results of the performance are presented in Table 2
for two different datasets.

5 CONCLUSIONS
In this paper, we present a deep learning model for unsu-
pervised activity recognition. The model has been trained
using a large dataset from epileptic patient activity data. The
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Figure 6: Visualisation of resutls in Embedded Space

experiments on public datasets and our collected datasets
demonstrate the proposed model performance. In particu-
lar when limited labeled data is available, our model can
achieve higher performance than traditional classification
techniques, using hand-crafted features. In a fully unsuper-
vised mode, our model can achieve accuracy of higher than
87% when tested on public datasets.
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