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    Abstract 

In this thesis I utilise a combination of newly advanced methodological and 

statistical approaches to assess knowledge gaps concerning biodiversity in human-

modified tropical landscapes. Specifically, I use cutting-edge LiDAR technology, 

occupancy modelling and soundscape analysis to document the responses of tropical birds 

to land-use change in Borneo.  

I first evaluate the contribution that riparian reserves – protected natural vegetation 

around waterways in production landscapes – have in supporting biodiversity. By 

assessing the avian community structure and richness of riparian reserves I demonstrate 

that these landscape features can offer significant biodiversity benefits, and support 

comparable levels of species diversity to logged riparian forests provided they are of 

sufficient size (>80 m in total width) and habitat quality (>75 tC ha-1 of tree biomass). I 

show that in oil palm estates riparian reserves would need to be >200 m in total width (i.e. 

100 m from each riverbank) to preserve comparable numbers of forest specialist bird to 

logged riparian forest.  

I then examine whether responses of species and trait groups to habitat disruption 

follow linear trajectories or non-linear responses whereby abrupt changes to occupancy 

and diversity occur once thresholds of disturbance are exceeded. Habitat disruption across 

a land-cover gradient from intact forest to oil palm plantations was characterised via 

LiDAR metrics that quantify habitat structure in three dimensions. By scrutinising the 

individual responses of 171 bird species and 17 different multi-species trait groups to these 

metrics via hierarchical multi-species occupancy modelling, I show that the majority of 

species respond to habitat degradation in a non-linear fashion. I demonstrate that 

thresholds in species response scale up to abrupt changes in trait group richness, 

particularly those associated with important ecosystem functions such as pollination, seed 
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dispersal and insectivory. I find trait groups exhibit highly varied thresholds from one 

another. I also highlight how exceeding particular thresholds of degradation in human 

modified tropical landscapes could result in abrupt changes to ecosystem functioning, 

thereby making human-modified tropical landscape less resilient to further perturbations.   

Last, I seek to test the application of recently developed acoustic approaches for 

monitoring biodiversity in human-modified tropical landscapes. I assess the performance 

of five commonly used ‘soundscape’ indices in corresponding to variation in observed or 

estimated bird diversity from field data. I find that sources of acoustic bias in production 

landscapes (including human produced noise and the sound of running), make broad 

application of acoustic monitoring technologies to heavily disturbed habitats such as 

intensive farmland challenging. I demonstrate that controlling for time-of-day, using 

noise-reduction algorithms and excluding certain habitat types, improves the capacity of 

acoustic indices to reflect both observed bird richness, and estimates of species numbers 

derived from occupancy models.  

Taken together, the three studies in this thesis reveal the biodiversity value of 

riparian areas, the potential for non-linear responses of species to habitat change, and the 

efficacy of novel monitoring techniques applied to biodiversity monitoring in human-

modified tropical landscapes. I offer a number of recommendations and applications of 

these three sets of findings and explore their implication for biodiversity conservation in 

tropical regions.  By addressing these three knowledge gaps using a combination of newly 

available innovations I demonstrate not only the importance of the findings themselves, 

but also highlight how innovations in technology, analytical technique and monitoring 

approach when used in conjunction can elucidate biodiversity patterns that were otherwise 

less well known.    
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 Introduction 

 

A global environmental and biodiversity crisis 

Anthropological degradation of the biosphere continues unabated, with 

societies continuing to operate beyond the planetary boundaries required to sustain 

human civilisation (Butler, 2017), 35% of non-human species (Thomas et al., 2004) 

and potentially human life (Stern Review, U.K Treasury, 2007). Currently, 

biodiversity loss, climate forcing and nitrogen pollution all exceed what is deemed the 

‘safe operating space for humanity’ (Rockström et al., 2009), with levels of ocean 

acidification and phosphorus pollution also approaching these boundaries (Carpenter 

& Bennett, 2011; Kawaguchi et al., 2013) The scale of effects on the biosphere are 

now so pervasive that there is growing concern the planet could become almost 

uninhabitable to humans in a few generations (Barnosky et al., 2012), especially when 

overall patterns of resource use and degradation are accelerating (Steffen, Broadgate, 

Deutsch, Gaffney, & Ludwig, 2015). Increasingly, civil unrest and war (Kelley et al., 

2015), famine (Barnett & Adger, 2007) and the rise of authoritarianism (Steinhardt & 

Wu, 2015) are being driven in part, by societal responses to environmental 

degradation.   

Of the planetary boundaries currently being exceeded, biodiversity loss is 

occurring at levels furthest beyond those considered ‘safe’ (Rockström et al., 2009). 

Rates of vertebrate extinction during the last hundred years are at least ~100 times 

those of the background rate of extinction, suggesting a six major extinction event is 

already underway (Ceballos et al., 2015). It is estimated that the amount of genetic 
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diversity already lost would take over 200,000 human generations to be regained 

through evolutionary processes (Myers, 1993). This unprecedented pace of 

biodiversity loss (Pimm et al., 1995), is eroding the capacity of natural ecosystems to 

provide goods and services which benefit human wellbeing (Diaz et al., 2006).  

Biodiversity underpins the fundamental characteristics of ecosystems, and 

species losses can compromise ecosystem function and resilience to external 

perturbations (Cardinale et al., 2006). Species losses worldwide are already having 

comparable effects upon primary productivity to other forms of environmental change 

(Hooper et al., 2012).  Since 1500 there have been 338 documented vertebrate 

extinctions (Young et al., 2016). However, the majority of historic and prehistoric 

extinctions caused by humans probably went unnoticed. Modelled estimates suggest 

that close to 1000 species of non-passerine land bird went extinct in the Pacific region 

alone (Duncan et al., 2013).  It is projected that a further 130,000 species could become 

extinct across all taxa by 2060 (Pimm & Raven, 2000). The accelerating crises in 

biodiversity loss specifically, and environmental degradation more generally, make 

directing effective and prescient conservation interventions to the most important 

regions and habitats of the world all the more important. 

 

The degradation and destruction of tropical forests, and implications for biodiversity 

Biodiversity is patchily distributed across the planet and highly concentrated 

in the tropics, where around two-thirds of all life on earth occurs, particularly in humid 

rainforests (Pimm & Raven, 2000). The tropics in general are hyperdiverse and 

account for 90% of terrestrial bird species, virtually all shallow-water corals, and over 
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75% of known amphibians, freshwater fish, ant, terrestrial mammals and flowering 

plants (Barlow et al., 2018). Within tropical regions forests are the most diverse 

habitats, with about half of the world’s known taxa occurring (Scheffers et al., 2012). 

The distribution of these forests largely mirror 25 biodiversity hotspots, where around 

30-50% of plant, amphibian, reptile and bird species occur (Pimm & Raven, 2000). 

However, these same regions have some of the highest human population densities 

and growth rates globally (Cincotta, et al., 2000), as well as the most rapid rates of 

landuse change (Jantz et al., 2015). Since 1990, around five million hectares of 

tropical forest have been lost per year (Keenan et al., 2015). Landuse change in the 

tropics has been the single greatest driver of biodiversity loss (Baille et al., 2004).  

Remote sensing analyses reveal 80% of the world’s tropical forests to already 

be somewhat degraded (Potapov et al., 2017). Conservation scientists have argued 

that, in this context, primary forest conservation is paramount, since it is irreplaceable 

for biodiversity (Gibson et al., 2011). Undisturbed forests may be especially important 

in the context of climate change, given the thermal buffering capacity of forests is 

compromised by edge effects (Ewers & Banks-Leite, 2013). However, intact tropical 

forests continue to be cleared at an accelerating rate, with the global extent reduced by 

8.4% between 2000 and 2013 (Potapov et al., 2017). 

Drivers of deforestation and forest degradation vary in terms of their relative 

importance globally, but 70% of overall forest loss is attributable to direct human land 

use conversion (Song et al., 2018) and agriculture is the strongest driver of tropical 

forest loss globally (Gibbs et al., 2010). Commercial agriculture is a stronger driver 

than subsistence farming, whilst mining operations, infrastructural expansion and 

urban development also contribute significantly (Hosonuma et al., 2012). Human 



4 

 

 

populations are predicted to continue to expand to around 9-11 billion people by 2050 

(Vörösmarty et al., 2000) and a 70-100% increase in agricultural production is 

expected to be necessary in order to satisfy the additional population as well as 

increases in consumption (Tilman et al., 2001; Godfray et al., 2010). Projections 

estimate natural vegetative cover in biodiversity hotspots will be reduced by a further 

26-58% by 2100, precipitating hundreds or thousands of extinctions in tetrapods alone 

(Jantz et al., 2015).  

In the last decade, the value of degraded tropical forests for biodiversity 

conservation has become more widely recognised. In part, this is an enforced 

pragmatic approach on the part of conservation scientists, since the proportion of 

primary forest is declining, and the alternative to retaining degraded forest is often 

more intensive agricultural landuse (Lindenmayer & Franklin, 2002; Meijaard & 

Sheil, 2007). However, the proportion of species from primary forests that persist in 

heavily logged areas is often substantial, even if those species persist at reduced 

abundances. Whilst the levels of species numbers retained are highly taxon and region 

specific (Gibson et al., 2011), for twelve out of fifteen taxonomic groups assessed in 

Amazonia more than half the species found in primary forest persisted in logged forest 

areas (Barlow, et al., 2007). In Borneo, studies have also concluded that >75% of bird 

and dung beetle species from unlogged forest are still present within forest logged 

multiple times (Edwards et al., 2010). Similarly, research on insectivorous bats 

showed no definitive effect of logging on site-level richness (Struebig et al., 2013). 

Additional justifications for the conservation and restoration of logged and degraded 

forests have been offered in terms of the provision of ecosystem services (Chazdon, 

2008), including carbon sequestration (Chazdon et al., 2016).  
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Forest degradation in the context of Southeast Asia’s biodiversity crisis 

Sodhi first highlighted the biodiversity crisis in Southeast Asia in 2004 (Sodhi 

et al., 2004). The Southeast Asia region has perhaps the greatest degree of endemism 

of anywhere in the world (Kier et al., 2009). Both current and projected rates of forest 

loss are higher here than for the global average in the tropics (Laurance, 2007), and 

the extent of lowland primary forest is vanishingly small. The yield and value of timber 

in Southeast Asia is higher than anywhere else in the world, resulting in major 

incentives for the unsustainable logging. In Borneo, in particular, the value of timber 

extracted between 1980 and 2000 was greater than that of tropical Africa and Latin 

America combined (Curran et al., 2004), and around 1.6% of forest is lost per year 

(Wilcove et al., 2013). Modelled estimates suggest that 7-52% of lowland forest bird 

species and 9-36% of lowland forest mammals are likely to go extinct under business 

as usual logging scenarios (Wilcove et al., 2013). Biodiversity loss in the region is 

also compounded by high hunting pressures (Harrison et al., 2016) due in part to 

geographic proximity to Chinese markets, where demand for rare species causes an 

‘anthropic allee’ for several Southeast Asian taxa (Courchamp et al., 2006). Uniquely 

for the tropics many bird species are also in high demand, either as pet songbirds or 

for use in traditional medicine (Nijman, et al., 2018). Southeast Asia is currently one 

of the regions with most taxa on the IUCN Red List, with 3,319 species listed as 

Vulnerable, Endangered or Critically Endangered, including 318 species of birds 

(IUCN, 2018). 

In recent years, the expansion of oil palm (Elaeis guineensis) agriculture has 

been one of the leading drivers of deforestation in Southeast Asia. Oil palm is among 

the most profitable production land uses in the tropics and now covers an estimated 
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18.7 million ha globally (Meijaard et al., 2018). At least 522 Mha of tropical forest 

was converted to oil palm between 1980 and 2000 (Gibbs et al., 2010) and an 

additional 150 Mha was cleared between 2000 and 2012 (Hansen et al. 2013). In 

Kalimantan, Indonesian Borneo, 90% of oil palm expansion from 1990 to 2010 

replaced some type of forest; (47% intact forest, 22% logged forest, and 21% 

agroforest) (Carlson et al., 2012). Demand is expected to continue to increase with a 

growing global population and affluence (Sayer et al., 2012). Expansion to meet this 

demand could extend the oil palm footprint to 800,000 ha of forest in Colombia by 

2020 (Garcia-Ulloa et al., 2012), and more than 6.5 million ha by 2080 on Borneo 

(Struebig et al., 2015). Since the climatic niche for cultivating oil palm is similar to 

that of tropical forests (Pirker et al., 2016), oil palm expansion is also likely to continue 

in other hyper-diverse ecoregions. Therefore, understanding the extent to which 

biodiversity can be preserved within oil-palm landscapes and how best to manage the 

competing demands of oil palm production and conservation efforts to maximise both 

biodiversity protection and human wellbeing is of paramount importance.  

 

Biodiversity in human-modified tropical landscapes 

Given that over 40% of the earth’s terrestrial land surface is currently under 

agricultural management (Perfecto & Vandermeer, 2010), and virtually all tropical 

habitats are either managed or exploited by people (Kareiva et al., 2007) there has 

been increasing research focus on biodiversity in rural landscapes which undergo 

active management or modification by people (Gardner et al., 2009). Since a mere 

10% of tropical forests are formally protected (Schmitt et al., 2009), the capacity of 

reserves to provide adequate protection to tropical fauna and flora is strongly 
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influenced by anthropogenic activities in adjacent land (Wittemyer et al. 2008). On 

this basis, it is argued that conservation science needs to adopt a systematic approach 

which incorporates the socio-ecological interplay between rural human populations 

and protected lands in order to offer more holistic solution to problems of biodiversity 

conservation (Liu et al. 2007). 

 In human-modified tropical landscapes any remaining forest is typically 

limited to remnants surrounded by agriculture, with such patches comprising native 

vegetation, secondary regrowth and pioneer vegetation (Laurance et al., 2014). The 

status of biodiversity in these landscapes, and the factors that most affect it, remain 

poorly understood (Chazdon et al., 2009), but a combination of the spatial extent and 

configuration of remnant natural vegetation are thought to be the main drivers of 

biodiversity patterns (Ewers, & Didham, 2006), as well as both the intensity of landuse 

(Tscharntke et al., 2012) and the structural and ecological characteristics of crop 

species (Phalan, 2011). Recent research has highlighted that such landscapes, 

particularly those that occur along a gradient between undisturbed tropical forest and 

agriculture, may have comparable levels of alpha (i.e. within site) and beta (i.e. 

between site) diversity to undisturbed habitats, but distinctly lower levels of gamma 

(i.e. landscape) diversity (de Castro Solar et al., 2015). Biodiversity is thought to be 

critically important for the maintenance and resilience of ecosystem function in these 

systems (Lohbeck et al., 2016). 

The patchwork nature of human-modified tropical forests means research on 

the responses of biodiversity to fragmentation is highly relevant to understanding these 

systems fully. However, when trying to address ecological questions over human-

modified tropical landscapes holistically, the idea of isolated habitat patches located 
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in an inhospitable matrix may represent an incomplete way of understanding the 

system. Fragmentation models assume that there is a clear contrast between human-

defined patches and the rest of the landscape and that multiple organisms perceive this 

as suitable habitat, which may not always be the case in landscapes where agriculture 

or extraction is of low intensity or fragments are also highly degraded (Fischer & 

Lindenmayer, 2006). The amount and structure of native vegetation, prevalence of 

anthropogenic edges, degree of landscape connectivity and structure and heterogeneity 

of modified areas all affect species assemblages in fragmented systems (Fischer & 

Lindenmeyer, 2007) and these can be useful properties to consider in human-modified 

landscapes more generally. It is still relevant that the highest levels of biodiversity in 

agricultural landscapes tend to be in the largest remnant fragments (Heegaard et al., 

2007) with the greatest degree of structural similarity to continuous undisturbed 

forests (Decaëns et al., 2018), since even landscape-wide conservation interventions 

should necessarily prioritise the preservation of the areas with the highest levels of 

richness alongside other management approaches adopted. 

Land-sparing and sharing frameworks are also useful when considering the 

overall efficacy of different approaches to protect biodiversity in human-modified 

tropical landscapes. Land-sparing approaches focus on attempts to maintain refuges 

for biodiversity separate from croplands (Fischer et al., 2008; Edwards et al., 2010; 

Phalan, 2011), whilst land sharing focuses on employing wildlife-friendly farming 

methods to enhance (or preserve) biodiversity on productive lands (Clough et al., 

2011; Pywell et al., 2012). The trade-off between two the approaches appears to be 

mediated by regional context and crop type as land-sparing is fairly successful in 

preserving biodiversity in coffee and cacao dominated landscapes (Gobbi, et al., 2000; 
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Clough et al., 2001), but generally less successful in oil palm areas (Edwards et al., 

2010). The success of land-sharing may also be affected by the type and proximity of 

surrounding habitats (Gilroy et al., 2014).   

Oil palm plantations typically support very low levels of biodiversity. Large 

reductions in diversity are reported for birds (Edwards et al., 2010); bats in forest 

(Danielsen & Heergaard, 1995); mammals (Scott et al., 2004) beetles (Chung et al., 

2000) and ants (Brul 2001). Among 25 studies comparing biodiversity between logged 

forest and oil palm, 23 found significant negative effects (Savilaasko et al., 2014).  

However, the majority of these studies focussed strictly upon plantation areas. When 

considered as whole landscapes, oil palm estates frequently include remnant forest 

fragments of varying size. These areas are known to support considerable biodiversity 

from studies of forest birds (Edwards et al., 2010), bats (Struebig et al., 2008) and ants 

(Bruhl et al., 2003), for example. A recent multi-taxa synthesis suggested that 

fragments in oil palm landscapes need to be a minimum of 200 ha in size in order to 

maintain a ‘minimum viable core’ area (defined as supporting at least 60% of species 

found in continuous forest) (Lucey et al., 2017).  The landscape-scale differences 

between industrial and smallholder oil palm agriculture remain uncertain, although the 

latter appears to have a lower overall negative effect on birds (Azhar et al., 2011). 

Understanding the landscape-wide potential for biodiversity conservation in 

oil palm estates requires ecological valuation of native forests retained not only in 

‘conventional’ fragments, but also in riparian forest remnants. In many oil palm 

landscapes, riparian forest remnants comprise the majority of natural vegetation (pers. 

obs.), meaning their contribution to landscape-wide patterns of biodiversity in oil palm 

landscapes is potentially considerable. Whilst riparian reserves may in some ways be 
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considered in the framework of fragmentation as long, linear fragments, the ecology 

of riparian forests is somewhat distinct from that of non-riparian forest. For example, 

some taxa are riparian or non-riparian specialists and occur as obligates in their 

respective habitats (Naiman et al, 1998) and the resulting community overlaps with 

that of the surrounding landscape in terms of species composition, but also contains 

unique species. The biodiversity value for riparian forest remnants in oil palm 

landscapes has already been demonstrated for dung beetles, ants (Gray, 2014) and fish 

(Giam et al., 2015), but remains poorly assessed for other taxa.  

 

Birds as biodiversity indicators  

Globally, patterns of avian biodiversity mirror those of other taxa, with the 

greatest biodiversity in the tropics (Jetz, 2012). Global threats facing the birds are also 

well understood. Of a global estimate of ~10,000 species 1,492 are currently listed as 

vulnerable, endangered or critically endangered (IUCN, 2018). 

Landuse change is the most significant threat to birds around the world. Even 

in scenarios that assume no additional affects from climate change, at least 400 of 

8750 modelled species are projected to experience >50% range reductions by the year 

2050 (Jetz et al., 2007). The Red List Index for birds, (which provides an indexed 

metric of the changing levels of endangerment of extinction) showed a 7% worsening 

in the status of the world birds between 1988 and 2004 (Butchart et al., 2004). 

Disaggregated indices showed deteriorations across all major ecosystems, but the 

steepest declines occurred in the indices for Sundaic birds (i.e. those found in the 
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Malay peninsula, Sumatra, Java and Borneo), which were driven by intensifying 

destruction of lowland forests (Butchart et al., 2004).  

Birds exhibit many of the features required of biodiversity indicators: they are 

diverse (Jetz et al., 2012); respond to multiple environmental changes in similar 

patterns to the majority of other taxa; and can be surveyed more cost-effectively than 

many other taxa (Gardner et al., 2008). Birds (alongside mammals) are also the 

world’s best-studied taxonomic group (Costello, 2015), which means new research 

findings are often more easily contextualised in terms of their broader significance 

than might be the case for other taxa. However, accurately surveying tropical bird 

communities is often more difficult than generally appreciated by researchers who do 

not specialise in these taxa (Robinson et al.,  2018). The challenge of accurately 

identifying and counting birds in typically dark, structurally complex rainforest 

environments where upwards of 95% of species are only encountered aurally, is often 

underestimated (Robinson et al., 2018). Many species have varied acoustic repertoires 

including multiple short vocalisations, which can lead to difficulty in avoiding false 

negative detections by non-experts (Robinson et al., 2018). The utility of studies with 

systematic false-negative detections can potentially be compromised (Remsen, 1994).  

 

Survey and monitoring challenges for birds 

In the context of the challenges highlighted above, the monitoring and 

assessment of both temporal and spatial patterns of biodiversity generally, and bird 

diversity specifically, is increasingly important in conservation. Without adequate 

monitoring and assessment efforts, predictions of impending species declines, 
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extinctions, and subsequent recommendations for intervention are compromised. Nor 

is it possible to reliably assess the effectiveness of management practices or 

conservation efforts without appropriate data for evaluating those practices 

(Lindenmayer et al., 2010). Monitoring biodiversity also provides a potential first 

warning for the collapse of associated ecosystems, which underpin societal well-being 

(Rowland et al., 2018; Scholes et al. 2008). The Aichi Biodiversity Targets specify 

goals such as “improving the status of biodiversity by safeguarding ecosystems, 

species and genetic diversity.” Evaluations to date show that these global targets have 

so far been largely missed (Tittensor et al., 2014). Implementing new conservation 

efforts to meet them, necessarily involves biodiversity monitors. Given the available 

funding for biodiversity conservation globally is insufficient to meet all conservation 

needs (McCarthy et al., 2012), using the most effective methods of monitoring and 

assessing biodiversity is highly important (Balmford et al., 2000). Monitoring efforts 

should also yield data that are accurate and as ecologically relevant as possible, in 

order to detect the effects of often cryptic stressors or patterns, which may have 

profound effects when upscaling study outcomes across large spatial or temporal 

scales.   

In the last 20 years a significant number of innovations have increased our 

capacity to monitor and assess the responses and patterns of biodiversity in relation to 

environmental variation in tropical forests, as well as improve the efficiency and cost 

of monitoring efforts (Pimm et al., 2015). Broadly, these fall into categories of new 

methods and means of capturing biodiversity data, new methods of assessing and 

measuring environmental variation, and improved analytical approaches for 

comparing and integrating biodiversity and environmental data. New methods of 
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characterizing biodiversity include autonomous camera traps and acoustic recorders 

(Steenweg et al., 2017) while environmental DNA monitoring is moving from lab-

based to field-based assessment techniques (Thomsen & Willerslev, 2015).  

One example of a novel technological approach to biodiversity which has 

resulted in significant increases in efficiency in capturing species data is that of 

autonomous acoustic monitoring techniques. These techniques have only become 

feasible recently on large scales through the reduced cost of recording technology (Hill 

et al., 2018). Soundscape ecology covers a number of techniques that focus on 

analysing the interaction of organisms, environmental drivers and human impacts 

based on their associated acoustic properties (Gasc et al., 2013). Such approaches 

allow the assessment and monitoring of biodiversity in a highly passive manner, with 

potentially little need for human expertise or effort once autonomous acoustic sensors 

can be set up.  

 The means to capture environmental data affecting biodiversity also advanced 

very rapidly over the last two decades. Freely-available remote sensed datasets were 

limited to Landsat satellite imagery at the turn of the century (Nagendra, 2001; Wang, 

et al., 2010). As well as vastly improvement in fine-grain resolution of existing 

technologies the addition of Synthetic Aperture Radar (SAR) and aerial Light 

Detection And Ranging (LiDAR) allows the ability to assess structural aspects of 

vegetation. Advances in drone technology, combined with the algorithms and 

computing power now also make forest canopy mapping in three dimensions possible 

via photogrammetry (Saarinen et al., 2017). 

Perhaps the most notable single advance comes from hyper-spectral LiDAR, 

which provides the ability to map the fine-scale structure of vegetation in three 
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dimensions and thereby offers the potential to analyse patterns of faunal distribution 

and association which were previously unachievable.  In tropical forests assessing 

vegetation in three dimensions is especially relevant, since vertical components in 

these landscapes are inherently important, with up to 70% of species utilising the upper 

forest strata on a facultative basis (Kays & Allison, 1975). Vertical dimensions are 

even more important for taxa such as birds and flying insects, and communities often 

change markedly from terrestrial-feeders to arboreal specialists (Chmel et al., 2016; 

Stork et al., 2015).  LiDAR-based studies have addressed the effects of habitat extent, 

canopy height, canopy heterogeneity, vertical canopy distribution, understory density, 

aspect, elevation, slope and ruggedness have described responses in taxa as diverse as 

birds, mammals, insects and fish (Davies, et al., 2014).  

Novel analytical approaches include a vast range of techniques such as 

improvements in accounting for specific challenges such as imperfect species 

detection (Jennelle, Runge, & MacKenzie, 2002), advances in meta-analytic 

approaches to determine effects across multiple systems (Pardo et al., 2013), rapid 

advances in GIS and spatial statistical approaches such as the development of MaxEnt 

for distribution modelling (Elith et al., 2011), the application of deep learning 

computing techniques in analysing ever larger datasets such as those collected through 

citizen science (Kelling et al., 2013), or to deal with advances in population genetics 

via environmental DNA (Cordier et al., 2017) or classify remote sensed data (Hethcoat 

et al., 2018). Other techniques which have been refined and/or adopted more widely 

include new ways of conceptualising biotic communities, from approaches such as 

functional diversity (Cadotte, Carscadden, & Mirotchnick, 2011), to phylogenic 
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diversity (Tucker et al., 2017) and the analyses of potential thresholds in species and 

community responses (Ficetola & Denoe, 2009).   

One innovation which could potentially facilitate the detection of far more 

cryptic responses of species and communities is the increase in data power and error 

estimation associated with occupancy modelling. Virtually all methods of biodiversity 

surveying suffer from imperfect detection and complete species surveys are often 

unfeasible (Iknayan et al. 2014). Traditional rarefaction methods have focused on 

measures which account for the difficulty in detecting rare species by offering the 

means to assess when communities have been adequately sampled (Chao & Jost, 

2012), and extrapolating species accumulation curves to estimate metrics such as 

species richness and community Hill numbers (Palmer, 1990; Chao et al., 2014). 

Occupancy modelling uses repeat sampling to estimate the probability of false 

negative detections and then controls for these in overall models (Jennelle, 2002). 

Concerns have been raised that in some cases gearing study design toward these 

analyses may result in focusing finite survey effort inefficiently or inappropriately. 

This is because the amount of data required to obtain ‘naïve’ estimates is generally 

substantially lower than that required for estimates which adjust for imperfect 

detection, when in fact, improved study design can surmount problems of imperfect 

detection (Banks-Leite et al., 2014). Other authors have suggested that although good 

survey design is fundamental, it will not necessarily solve all detection problems or 

control for all variation in detectability (Guillera-Aroita, 2017). 
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Thesis structure  

In this thesis I integrate the use of recent advances in biodiversity monitoring 

in order to address practical knowledge gaps relevant to conservation management in 

human-modified tropical landscapes. I combine multiple novel approaches to assess 

the relative biodiversity value of different habitats and provide management 

recommendations to optimise biodiversity provision in a tropical production 

landscape, elucidate hitherto unrecognised ecological patterns and refine novel 

analytical approaches themselves. I focus on Southeast Asia throughout, with a 

specific research focus in the lowlands of Eastern Sabah, Malaysian Borneo.  

In Chapter 1, I examine the species diversity present in riparian reserves 

compared to riparian forest controls. I also determine the proportion of forest-

specialist species remaining in these reserves. I use LiDAR derived remote-sensing 

data to measure the widths and carbon densities of riparian reserves within oil palm 

estates. Using these data I estimate the optimal riparian reserve widths and carbon 

densities necessary to support a similar level of species richness to riparian forest 

controls in continuous forests. 

I use Chapter 2 to focus on the ecological patterns exhibited by the avifaunal 

community along a continuous gradient of forest degradation using a trait-based 

approach. I combine a Bayesian occupancy model, parameterised with LiDAR-

derived vegetation structure data, with piece-wise regression analyses to assess 

thresholds in both species and trait group responses to habitat change. Using this 

approach I infer likely species response thresholds to multiple environmental variables 

and am able to elaborate on the way particular trait groups have previously been 
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observed to respond to changes in forest structure by identifying points of abrupt 

change in these responses.  

In Chapter 3 I seek to improve the application of soundscape analysis to 

biodiversity monitoring by offering recommendations to optimise how well acoustic 

indices reflect bird communities as measured by conventional point count approaches 

and species richness as defined by the occupancy model described in Chapter 2. By 

assessing the influence of controlling for time-of-day and background noise in 

recordings, and removing habitats where certain indices are non-functional, I am able 

to offer recommendations as to which indices are most robust for assessing 

biodiversity in human modified tropical landscapes.  

In the Introduction and Discussion sections of this thesis I have adopted a first 

person singular style. However, given the collaborative nature of the data chapter, I 

switch to a combination first person plural or passive voice throughout these sections. 

 

 

 

 

 

 

 

 



18 

 

 

References 

Azhar, B., Lindenmayer, D. B., Wood, J., Fischer, J., Manning, A., McElhinny, C., & 

Zakaria, M. (2011). The conservation value of oil palm plantation estates, 

smallholdings and logged peat swamp forest for birds. Forest Ecology and 

Management, 262(12), 2306–2315.  

Baillie, J., Hilton-Taylor, C., & Stuart, S. N. (Eds.). (2004). 2004 IUCN red list of 

threatened species: a global species assessment. IUCN 

Balmford, A., Gaston, K. J., Rodrigues, A. S., & James, A. (2000). Integrating Costs of 

Conservation into International Priority Setting. Conservation Biology, 14(3), 597-

605. 

Banks-Leite, C., Pardini, R., Boscolo, D., Cassano, C. R., Püttker, T., Barros, C. S., & 

Barlow, J. (2014). Assessing the utility of statistical adjustments for imperfect 

detection in tropical conservation science. Journal of Applied Ecology, 51(4), 849–

859.  

Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., … 

Graham, N. A. J. (2018). The future of hyperdiverse tropical ecosystems. Nature, 

559(7715).  

Barlow, J., Mestre, L. A. M., Gardner, T. A., & Peres, C. A. (2007). The value of primary, 

secondary and plantation forests for Amazonian birds. Biological Conservation, 

136(2), 212–231.  

Barnett, J., & Adger, W. N. (2007). Climate change, human security and violent conflict. 

Political Geography, 26(6), 639–655.  

Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., 

… Smith, A. B. (2012). Approaching a state shift in Earth’s biosphere. Nature, 

486(7401), 52–58.  

Brühl, C. A. 2001. Leaf litter ant communities in tropical lowland rain forests in Sabah, 

Malaysia: effects of forest disturbance and fragmentation. Thesis. University of 

Würzburg, Würzburg , Germany  



19 

 

 

Butchart, S. H. M., Stattersfield, A. J., Bennun, L. A., Shutes, S. M., Akçakaya, H. R., 

Baillie, J. E. M., … Mace, G. M. (2004). Measuring global trends in the status of 

biodiversity: Red list indices for birds. PLoS Biology, 2(12).  

Butler,C. D. (2017). Limits to growth, planetary boundaries, and planetary health. Current 

Opinion in Environmental Sustainability, 25, 59-65. 

Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional 

diversity and the maintenance of ecological processes and services. Journal of Applied 

Ecology, 48(5), 1079–1087.  

Cardinale, B. J., Srivastava, D. S., Duffy, J. E., Wright, J. P., Downing, A. L., Sankaran, 

M., & Jouseau, C. (2006). Effects of biodiversity on the functioning of trophic groups 

and ecosystems. Nature, 443(7114), 989. 

Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, 

G. P., ... & Rodrigues, H. O. (2012). Committed carbon emissions, deforestation, and 

community land conversion from oil palm plantation expansion in West Kalimantan, 

Indonesia. Proceedings of the National Academy of Sciences, 109(19), 7559-7564. 

Carpenter, S. R., & Bennett, E. M. (2011). Reconsideration of the planetary boundary for 

phosphorus. Environmental Research Letters, 6(1).  

Ceballos, G., García, A., Pringle, R. M., Ceballos, G., Ehrlich, P. R., Barnosky, A. D., … 

Palmer, T. M. (2015). Accelerated modern human – induced species losses : Entering 

the sixth mass extinction. Science Advances, 1(June), 1–6.  

Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing 

samples by completeness rather than size. Ecology, 93(12), 2533–2547.  

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, 

A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for 

sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 

45–67.  

Chazdon, R. L. (2008). Beyond deforestation: restoring forests and ecosystem services on 

degraded lands. Science, 320(5882), 1458-1460. 



20 

 

 

Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., Zambrano, A. M. A., 

Aide, T. M., … Poorter, L. (2016). Carbon sequestration potential of second-growth 

forest regeneration in the Latin American tropics. Science Advances, 2(5).  

Chazdon, R. L., Harvey, C. A., Komar, O., Griffith, D. M., Ferguson, B. G., Martínez‐

Ramos, M., ... & Philpott, S. M. (2009). Beyond reserves: A research agenda for 

conserving biodiversity in human‐modified tropical landscapes. Biotropica, 41(2), 

142-153. 

Chmel, K., Riegert, J., Paul, L. & Novotný, V. (2016) Vertical stratification of an avian 

community in New Guinean tropical rainforest. Population Ecology, 58, 535–547. 

Chung, A. Y. C., Eggleton, P., Speight, M. R., Hammond, P. M., & Chey, V. K. (2000). 

The diversity of beetle assemblages in different habitat types in Sabah, 

Malaysia. Bulletin of entomological research, 90(6), 475-496. 

Cincotta, R. P., Wisnewski, J., & Engelman, R. (2000). Human population and biodiversity 

hotspots. Nature, 404(April), 990–992. 

Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T. C., Anshary, A., ... & 

Erasmi, S. (2011). Combining high biodiversity with high yields in tropical 

agroforests. Proceedings of the National Academy of Sciences, 108(20), 8311-8316. 

Clough, Y., Faust, H., & Tscharntke, T. (2009). Cacao boom and bust: sustainability of 

agroforests and opportunities for biodiversity conservation. Conservation 

Letters, 2(5), 197-205. 

Cordier, T., Esling, P., Lejzerowicz, F., Visco, J., Ouadahi, A., Martins, C., … Pawlowski, 

J. (2017). Predicting the Ecological Quality Status of Marine Environments from 

eDNA Metabarcoding Data Using Supervised Machine Learning. Environmental 

Science and Technology, 51(16), 9118–9126.  

Costello, M. J. (2015). Biodiversity: The known, unknown, and rates of extinction. Current 

Biology, 25(9), 368–371.  

Courchamp, F., Angulo, E., Rivalan, P., Hall, R. J., Signoret, L., Bull, L., & Meinard, Y. 

(2006). Rarity value and species extinction: The anthropogenic allee effect. PLoS 

Biology, 4(12), 2405–2410.  



21 

 

 

Curran, L. M., Trigg, S. N., McDonald, A. K., Astiani, D., Hardiono, Y., Siregar, P., … E., 

K. (2004). Lowland forest loss in protected areas of Indonesian Borneo. Science, 

303(5660), 1000–1003.  

Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., & Hansen, M. C. (2018). 

Classifying drivers of global forest loss. Science, 361(6407), 1108-1111. 

Danielsen, F., Heegaard, M., & Sandbukt, Ø. (1995). Management of tropical forests: 

towards an integrated perspective. 

Davies, A.B. & Asner, G.P. (2014) Advances in animal ecology from 3D-LiDAR 

ecosystem mapping. Trends in Ecology and Evolution, 29, 681–691. 

Decaëns, T., Martins, M. B., Feijoo, A., Oszwald, J., Dolédec, S., Mathieu, J., … Lavelle, 

P. (2018). Biodiversity loss along a gradient of deforestation in Amazonian 

agricultural landscapes. Conservation Biology, 32(6), 1380–1391.  

Díaz, S., Fargione, J., Chapin III, F. S., & Tilman, D. (2006). Biodiversity loss threatens 

human well-being. PLoS biology, 4(8), e277. 

Didham, R., Ewers, R. M., & Didham, R. K. (2006). Confounding factors in the detection 

of species responses to habitat fragmentation Confounding factors in the detection of 

species responses to habitat fragmentation. Biological Reviews., 81, 117–142.  

Duncan, R. P., Boyer, A. G., & Blackburn, T. M. (2013). Magnitude and variation of 

prehistoric bird extinctions in the Pacific. Proceedings of the National Academy of 

Sciences, 110(16), 6436–6441.  

Edwards, D. P., Hodgson, J. A., Hamer, K. C., Mitchell, S. L., Ahmad, A. H., Cornell, S. 

J., & Wilcove, D. S. (2010). Wildlife-friendly oil palm plantations fail to protect 

biodiversity effectively. Conservation Letters, 3(2007), 236–242.  

Edwards, D. P., Larsen, T. H., Docherty, T. D., Ansell, F. A., Hsu, W. W., Derhé, M. A., 

... & Wilcove, D. S. (2010). Degraded lands worth protecting: the biological 

importance of Southeast Asia's repeatedly logged forests. Proceedings of the Royal 

Society B: Biological Sciences, 278(1702), 82-90. 



22 

 

 

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A 

statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 

43–57.  

Ewers, R. M., & Banks-Leite, C. (2013). Fragmentation impairs the microclimate buffering 

effect of tropical forests. PLoS ONE, 8(3).  

Ewers, R.M. & Didham, R.K. 2006. Confounding factors in the detection of species 

responses to habitat fragmentation. Biological Reviews, 81, 117-142. 

Ficetola, G. F., & Denoe, M. (2009). Ecological thresholds: an assessment of methods to 

identify abrupt changes in species habitat relationships. Ecography, 32(6), 1075–1084.  

Fischer, J., & B. Lindenmayer, D. (2006). Beyond fragmentation: the continuum model for 

fauna research and conservation in human‐modified landscapes. Oikos, 112(2), 473-

480. 

Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat 

fragmentation: a synthesis. Global ecology and biogeography, 16(3), 265-280. 

Fischer, J., Brosi, B., Daily, G. C., Ehrlich, P. R., Goldman, R., Goldstein, J., ... & 

Ranganathan, J. (2008). Should agricultural policies encourage land sparing or 

wildlife‐friendly farming?. Frontiers in Ecology and the Environment, 6(7), 380-385. 

Garcia‐Ulloa, J., Sloan, S., Pacheco, P., Ghazoul, J., & Koh, L. P. (2012). Lowering 

environmental costs of oil‐palm expansion in Colombia. Conservation Letters, 5(5), 

366-375. 

Gardner, T. A., Barlow, J., Araujo, I. S., Ávila-Pires, T. C., Bonaldo, A. B., Costa, J. E., … 

Peres, C. A. (2008). The cost-effectiveness of biodiversity surveys in tropical forests. 

Ecology Letters, 11(2), 139–150.  

Gardner, T. A., Barlow, J., Chazdon, R., Ewers, R. M., Harvey, C. A., Peres, C. A., & 

Sodhi, N. S. (2009). Prospects for tropical forest biodiversity in a human‐modified 

world. Ecology Letters, 12(6), 561-582. 

Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., … Pavoine, S. 

(2013). Assessing biodiversity with sound: Do acoustic diversity indices reflect 



23 

 

 

phylogenetic and functional diversities of bird communities? Ecological Indicators, 

25, 279–287.  

Giam, X., Hadiaty, R. K., Tan, H. H., Parenti, L. R., Wowor, D., Sauri, S., … Wilcove, D. 

S. (2015). Mitigating the impact of oil-palm monoculture on freshwater fishes in 

Southeast Asia. Conservation Biology, 29(5), 1357–1367.  

Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & 

Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land 

in the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 

1–6.  

Gibson, L., Ming Lee, T., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., … Sodhi, 

N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity.  

Nature, 478(7369), 378–381.  

Gilroy, J. J., Edwards, F. A., Uribe, C. A. M., Haugaasen, T., & Edwards, D. P. (2014). 

Surrounding habitats mediate the trade-off between land-sharing and land-sparing 

agriculture in the tropics. Journal of Applied Ecology, 51, 1337–1346.  

Gobbi, J. A. (2000). Is biodiversity-friendly coffee financially viable? An analysis of five 

different coffee production systems in western El Salvador. Ecological 

Economics, 33(2), 267-281. 

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... 

& Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. 

Science, 327(5967), 812-818. 

Gray, C. L., Slade, E. M., Mann, D. J., & Lewis, O. T. (2014). Do riparian reserves support 

dung beetle biodiversity and ecosystem services in oil palm-dominated tropical 

landscapes? Ecology and Evolution, 4(7), 1049–60.  

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., . 

. . Townshend, J.R.G. 2013. High-resolution global maps of 21st-century forest cover 

change. Science, 342, 850-853. 



24 

 

 

Harrison, R. D., Sreekar, R., Brodie, J. F., Brook, S., Luskin, M., O’Kelly, H., … Velho, 

N. (2016). Impacts of hunting on tropical forests in Southeast Asia. Conservation 

Biology , 30(5), 972–981.  

Heegaard, E., Økland, R. H., Bratli, H., Dramstad, W. E., Engan, G., Pedersen, O., & 

Solstad, H. (2007). Regularity of species richness relationships to patch size and shape. 

Ecography, 30(4), 589–597.  

Hethcoat, M., Edwards, D., Carreiras, J., Bryant, R., França, F., & Quegan, S. (2018). A 

machine learning approach to map tropical selective logging. Remote Sensing of 

Environment, 2211–6.  

Hill, A. P., Prince, P., Piña Covarrubias, E., Doncaster, C. P., Snaddon, J. L., & Rogers, A. 

(2018). AudioMoth: Evaluation of a smart open acoustic device for monitoring 

biodiversity and the environment. Methods in Ecology and Evolution, 9(5), 1199-

1211. 

Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, 

K. L., … Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major 

driver of ecosystem change. Nature, 486(7401), 105–108.  

Hosonuma, N., Herold, M., De Sy, V., De Fries, R. S., Brockhaus, M., Verchot, L., … 

Romijn, E. (2012). An assessment of deforestation and forest degradation drivers in 

developing countries. Environmental Research Letters, 7(4).  

Iknayan, K. J., Tingley, M. W., Furnas, B. J., & Beissinger, S. R. (2014). Detecting 

diversity: emerging methods to estimate species diversity. Trends in Ecology & 

Evolution, 29(2), 97-106. 

IUCN 2018. The IUCN Red List of Threatened Species. Version 2018-2. 

http://www.iucnredlist.org. Downloaded on 14 November 2018. 

Jantz, S. M., Barker, B., Brooks, T. M., Chini, L. P., Huang, Q., Moore, R. M., … Hurtt, 

G. C. (2015). Future habitat loss and extinctions driven by landuse change in 

biodiversity hotspots under four scenarios of climate-change mitigation. Conservation 

Biology, 29(4), 1122–1131.  



25 

 

 

Jennelle, C. S., Runge, M. C., & MacKenzie, D. I. (2002). The use of photographic rates to 

estimate densities of tigers and other cryptic mammals: a comment on misleading 

conclusions. Animal Conservation, 5(2), 119–120.  

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global 

diversity of birds in space and time. Nature, 491(7424), 444–448.  

Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and landuse 

change on the global diversity of birds. PLoS biology, 5(6), e157. 

Kareiva, P., Watts, S., McDonald, R., & Boucher, T. (2007). Domesticated nature: shaping 

landscapes and ecosystems for human welfare. Science, 316(5833), 1866-1869. 

Kawaguchi, S., Ishida, A., King, R., Raymond, B., Waller, N., Constable, A., … Ishimatsu, 

A. (2013). Risk maps for Antarctic krill under projected Southern Ocean acidification. 

Nature Climate Change, 3(9), 843–847.  

Kays, R. & Allison, A. 2001. Arboreal tropical forest vertebrates: current knowledge and 

research trends. Plant Ecology, 153, 109-120. 

Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. 

(2015). Dynamics of global forest area: Results from the FAO Global Forest 

Resources Assessment 2015. Forest Ecology and Management, 352, 9–20.  

Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., & Kushnir, Y. (2015). Climate change 

in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of 

the National Academy of Sciences, 112(11), 3241-3246. Kelling, S., Lagoze, C., 

Wong, W., Yu, J., Damoulas, T., Gerbracht, J., … Gomes, C. (2013). eBird : A Human 

/ Computer Learning Network to Improve Biodiversity Conservation and Research. 

AI Magazine, 10–20. 

Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., ... & Barthlott, W. 

(2009). A global assessment of endemism and species richness across island and 

mainland regions. Proceedings of the National Academy of Sciences, 106(23), 9322-

9327. 

Laurance, W. F. (2007). Forest destruction in Tropical Asia. Current Science, 93(11). 



26 

 

 

Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its 

impacts on tropical nature. Trends in Ecology and Evolution, 29(2), 107–116. 

doi:10.1016/j.tree.2013.12.001 

Lindenmayer, D. B., & Franklin, J. F. (2002). Conserving forest biodiversity: a 

comprehensive multiscaled approach. Island press. 

Lindenmayer, D. B., & Likens, G. E. (2010). The science and application of ecological 

monitoring. Biological Conservation, 143(6), 1317-1328. 

Liu, J., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., ... & Taylor, W. 

W. (2007). Coupled human and natural systems. AMBIO: a journal of the human 

environment, 36(8), 639-649. 

Lohbeck, M., Bongers, F., Martinez‐Ramos, M., & Poorter, L. (2016). The importance of 

biodiversity and dominance for multiple ecosystem functions in a human‐modified 

tropical landscape. Ecology, 97(10), 2772-2779.Lucey, J. M., Palmer, G., Yeong, K. 

L., Edwards, D. P., Senior, M. J., Scriven, S. A., ... & Hill, J. K. (2017). Reframing 

the evidence base for policy‐relevance to increase impact: a case study on forest 

fragmentation in the oil palm sector. Journal of Applied Ecology, 54(3), 731-736. 

McCarthy, D. P., Donald, P. F., Scharlemann, J. P., Buchanan, G. M., Balmford, A., Green, 

J. M., ... & Leonard, D. L. (2012). Financial costs of meeting global biodiversity 

conservation targets: current spending and unmet needs. Science, 338(6109), 946-

949.Meijaard, E., & Sheil, D. (2007). A logged forest in Borneo is better than none at 

all. Nature, 446(7139), 974. 

Meijaard, E., Garcia-Ulloa, J., Sheil, D., Wich, S. A., Carlson, K. M., Juffe-Bignoli, D., & 

Brooks, T. M. (2018). Oil palm and biodiversity: A situation analysis by the IUCN Oil 

Palm Task Force. 

Myers, N. (1993). Biodiversity and the precautionary principle. AMBIO: a journal of the 

human environment, 74-79. 

Nagendra, H. (2001). Using remote sensing to assess biodiversity. International Journal of 

Remote Sensing, 22(12), 2377–2400.  



27 

 

 

Naiman, R. J., Fetherston, K. L., McKay, S. J., & Chen, J. (1998). Riparian forests. In River 

ecology and management: lessons from the Pacific Coastal Ecoregion, (pp. 289–323). 

Nijman, V., Langgeng, A., Birot, H., Imron, M. A., & Nekaris, K. A. I. (2018). Wildlife 

trade, captive breeding and the imminent extinction of a songbird. Global Ecology and 

Conservation, 15.  

Palmer, M. W. (1990). The estimation of species richness by extrapolation. Ecology, 71(3), 

1195-1198. 

Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the land-

sparing/agriculture intensification model. Proceedings of the National Academy of 

Sciences, 200905455. 

Phalan, B. (2011). Reconciling Food Production and Biodiversity Conservation : Land 

Sharing and Land Sparing Compared. Science, 333, 1289.  

Pimm, S. L., & Raven, P. (2000). Extinction by numbers. Nature, 403(2), 843–845.  

Pimm, S. L., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z., ... & Loarie, S. (2015). 

Emerging technologies to conserve biodiversity. Trends in Ecology & 

Evolution, 30(11), 685-696. 

Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of 

biodiversity. Science, 269(5222), 347-350. 

Pirker, J., Mosnier, A., Kraxner, F., Havlík, P., & Obersteiner, M. (2016). What are the 

limits to oil palm expansion?. Global Environmental Change, 40, 73-81. 

Porta-Pardo, E., & Godzik, A. (2014). e-Driver: a novel method to identify protein regions 

driving cancer. Bioinformatics, 30(21), 3109-3114. 

Potapov, P., Hansen, M. C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., … 

Esipova, E. (2017). The last frontiers of wilderness: Tracking loss of intact forest 

landscapes from 2000 to 2013. Science Advances, 3(1).  

Pywell, R. F., Heard, M. S., Bradbury, R. B., Hinsley, S., Nowakowski, M., Walker, K. J., 

& Bullock, J. M. (2012). Wildlife-friendly farming benefits rare birds, bees and 

plants. Biology Letters, 8(5), 772-775. 



28 

 

 

Remsen, J. V. (1994). Use and misuse of bird lists in community ecology and 

conservation. The Auk, 111(1), 225-227. 

Robinson, W. D., Lees, A. C., & Blake, J. G. (2018). Surveying tropical birds is much 

harder than you think: a primer of best practices. Biotropica, 50(6), 846–849. 

doi:10.1111/btp.12608 

Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., Lambin, E. F., … Foley, 

J. A. (2009). A safe operating space for humanity. Nature, 461(24), 472–475. 

Rowland, J. A., Nicholson, E., Murray, N. J., Keith, D. A., Lester, R. E., & Bland, L. M. 

(2018). Selecting and applying indicators of ecosystem collapse for risk assessments. 

Conservation biology, 32(6), 1233-1245.Saarinen, N., Vastaranta, M., Näsi, R., 

Rosnell, T., Hakala, T., Honkavaara, E., … Hyyppä, J. (2017). UAV-based 

photogrammetric point clouds and hyperspectral imaging for mapping biodiversity 

indicators in boreal forests. International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences 42(3W3), 171–175.  

Savilaakso, S., Garcia, C., Garcia-Ulloa, J., Ghazoul, J., Groom, M., Guariguata, M. R., ... 

& Zrust, M. (2014). Systematic review of effects on biodiversity from oil palm 

production. Environmental Evidence, 3(1), 4. 

Sayer, J., Ghazoul, J., & Nelson, P. N. (2012). Oil palm expansion transforms tropical 

landscapes and livelihoods. Global Food Security, 1–6.  

Scheffers, B. R., Joppa, L. N., Pimm, S. L., & Laurance, W. F. (2012). What we know and 

don’t know about Earth's missing biodiversity. Trends in Ecology & Evolution, 27(9), 

501-510. 

Schmitt, C. B., Burgess, N. D., Coad, L., Belokurov, A., Besançon, C., Boisrobert, L., ... & 

Kapos, V. (2009). Global analysis of the protection status of the world’s 

forests. Biological Conservation, 142(10), 2122-2130. 

Scholes, R. J., Mace, G. M., Turner, W., Geller, G. N., Jürgens, N., Larigauderie, A., ... & 

Mooney, H. A. (2008). Toward a global biodiversity observing system. Science, 

321(5892), 1044-1045. 



29 

 

 

Scott, D., Gemita, E., & Maddox, T. (2004). Small cats in human modified habitats 

landscapes in Sumatra. Cat News, 40. 

Sodhi, N. S., Koh, L. P., Brook, B. W., & Ng, P. K. L. (2004). Southeast Asian biodiversity: 

An impending disaster. Trends in Ecology and Evolution, 19(12), 654–660.  

Solar, R. R. D. C., Barlow, J., Ferreira, J., Berenguer, E., Lees, A. C., Thomson, J. R., ... & 

Chaul, J. C. (2015). How pervasive is biotic homogenization in human‐modified 

tropical forest landscapes?. Ecology Letters, 18(10), 1108-1118. 

Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. 

F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 

560(7720), 639–643.  

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., … Rich, 

L. N. (2017). Scaling-up camera traps: monitoring the planet’s biodiversity with 

networks of remote sensors. Frontiers in Ecology and the Environment, 15(1), 26–34.  

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory 

of the anthropocene: The great acceleration. Anthropocene Review, 2(1), 81–98.  

Steinhardt, H. C., & Wu, F. (2015). In the Name of the Public: New Environmental Protest 

in China. The China Journal, (75), 61–82.  

Stern, N. (2007). The Economics of Climate Change: The Stern Review. Cambridge: 

Cambridge University Press.  

Stork, N.E., Stone, M. & Sam, L. (2016) Vertical stratification of beetles in tropical 

rainforests as sampled by light traps in North Queensland, Australia. Austral Ecology, 

41, 168–178. 

Struebig, M. J., Fischer, M., Gaveau, D. L., Meijaard, E., Wich, S. A., Gonner, C. & 

Kramer‐Schadt, S. (2015). Anticipated climate and land‐cover changes reveal refuge 

areas for Borneo's orang‐utans. Global Change Biology, 21(8), 2891-2904. 

Struebig, M. J., Turner, A., Giles, E., Lasmana, F., Tollington, S., Bernard, H., & Bell, D. 

(2013). Quantifying the biodiversity value of repeatedly logged rainforest: gradient 

and comparative approaches from Borneo. Advances in Ecological Research, 48, 183–

224.  



30 

 

 

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. 

C., ... & Hughes, L. (2004). Extinction risk from climate change. Nature, 427(6970), 

145.  

Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA–An emerging tool in 

conservation for monitoring past and present biodiversity. Biological 

Conservation, 183, 4-18. 

Tilman, D., Fargione, J., Wolff, B., D'antonio, C., Dobson, A., Howarth, R., ... & 

Swackhamer, D. (2001). Forecasting agriculturally driven global environmental 

change. Science, 292(5515), 281-284. 

Tittensor, D. P., Walpole, M., Hill, S. L., Boyce, D. G., Britten, G. L., Burgess, N. D., ... & 

Baumung, R. (2014). A mid-term analysis of progress toward international 

biodiversity targets. Science, 346(6206), 241-244.  

Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., ... & 

Whitbread, A. (2012). Global food security, biodiversity conservation and the future 

of agricultural intensification. Biological conservation, 151(1), 53-59. 

Tucker, C. M., Cadotte, M. W., Carvalho, S. B., Jonathan Davies, T., Ferrier, S., Fritz, S. 

A., … Mazel, F. (2017). A guide to phylogenetic metrics for conservation, community 

ecology and macroecology. Biological Reviews, 92(2), 698–715. 

doi:10.1111/brv.12252 

Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water 

resources: vulnerability from climate change and population 

growth. Science, 289(5477), 284-288. 

Wang, K., Franklin, S. E., Guo, X., & Cattet, M. (2010). Remote sensing of ecology, 

biodiversity and conservation: A review from the perspective of remote sensing 

specialists. Sensors, 10(11), 9647–9667. 

Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B., & Koh, L. P. (2013). Navjot’s 

nightmare revisited: Logging, agriculture, and biodiversity in Southeast Asia. Trends 

in Ecology and Evolution, 28(9), 531–540. doi:10.1016/j.tree.2013.04.005 



31 

 

 

Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O., & Brashares, J. S. (2008). 

Accelerated human population growth at protected area edges. Science, 321(5885), 

123-126. 

Young, H.S., McCauley, D.J., Galetti, M. & Dirzo, R. 2016. Patterns, causes, and 

consequences of anthropocene defaunation. Annual Review of Ecology, Evolution, and 

Systematics, 47, 333-358. 

 

 



32 

 

 

 Riparian reserves help protect forest bird 

communities in oil palm dominated landscapes 

 

Simon L. Mitchell1, David P. Edwards2, Henry Bernard3, David Coomes4, Tommaso 

Jucker4, Zoe G. Davies1, Matthew J. Struebig1 

 

1Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and 

Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK 

2
 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 

2TN, UK 

3Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota 

Kinabalu, Sabah, Malaysia 

4Forest Ecology and Conservation Group, Department of Plant Sciences, University 

of Cambridge, Downing Street, Cambridge CB2 3EA, UK 

 

 

Manuscript published as: 

Mitchell, S. L., Edwards, D. P., Bernard, H., Coomes, D., Jucker, T., Davies, Z. G., & 

Struebig, M. J. (2018). Riparian reserves help protect forest bird communities in oil 

palm dominated landscapes. Journal of Applied Ecology 55.6 (2018): 2744-2755. 



33 

 

 

Abstract 

1. Conversion of forest to oil palm agriculture is a significant and continuing 

threat to tropical biodiversity. Despite this, little is known about the value of 

riparian reserves in oil palm and how these conservation set-asides might best 

be managed to maintain biodiversity. 

2. We characterised bird communities of 28 sites in an oil palm-forest mosaic in 

Sabah, Malaysia using 6104 encounters from 840 point counts. Sites included 

oil palm riparian reserves of various vegetation quality and reserve widths, 

which were compared to oil palm streams without a riparian reserve as well as 

riparian and non-riparian control areas in continuous logged forest. 

3. Riparian reserves, oil palm waterways, and control sites in riparian and non-

riparian forest supported distinct avifaunal communities. Riparian reserve 

width, forest quality and amount of forest cover were the strongest predictors 

of bird species richness. For forest-dependent species, each of these predictors 

had stronger effect size when compared with all species. On average, reserves 

held 31% of all species and 30% of forest specialists, whereas riparian forest 

controls averaged 32% of all species, but 38% of forest species. 

4. Riparian reserves with >40 m of natural vegetation on each bank supported 

similar bird diversity to riparian forest control habitats found in continuous 

logged forest. However, to support equivalent numbers of forest-dependent 

species and species of conservation concern, reserves would need to be at least 

100 m wide on each bank. The highest numbers of species were found in 

riparian reserves with above-ground carbon densities exceeding 75 tC ha-1, 



34 

 

 

highlighting the importance of forest quality, as well as width, in supporting 

riparian bird communities. 

5. Synthesis and applications. If designed and protected appropriately, riparian 

reserves in oil palm estates support diverse bird communities, including many 

species of conservation concern. This can be achieved by designating large 

reserves (80-200 m total width), but to maximize species numbers forest 

disturbance should also be minimised prior to conversion as well as during 

plantation operations.   

 

Key-words: agriculture, riparian buffer, riparian zone, biodiversity, landuse change, 

fragmentation, landscape configuration, forest management.  

 

Introduction 

Human activities are causing unprecedented biodiversity decline (Pimm et al. 

2014), with agricultural expansion being a primary cause of tropical species loss 

(Gibson et al. 2011). At least 522 Mha of tropical forest was converted between 1980 

and 2000 (Gibbs et al. 2010) and a further 150 Mha was lost between 2000 and 2012 

(Hansen et al. 2010). A major contributor to this problem has been oil palm cultivation 

(Elaeis guineensis), which is now one of the most profitable landuses in the tropics, 

with continued demand (Vijay et al. 2016). Meeting this demand will require 

improved productivity on existing estates, as well as expansion of the crop into new 

areas.    
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Tropical production landscapes harbour significantly less biodiversity than 

native forest (Gibson et al. 2011); a pattern documented in many agricultural landuses, 

including fruit orchards (Round et al. 2006), rubber plantations (Warren-Thomas et 

al. 2015), and oil palm under both smallholder cultivation (Azhar et al. 2011) and 

industrial production (Edwards et al. 2010). Retaining forest remnants within human-

modified tropical landscapes can therefore enhance biodiversity levels (Laurance et 

al. 2018), although crop yields are likely to be reduced as a consequence (Edwards et 

al. 2010). Forest patches are maintained typically on slopes, floodplains, or along 

waterways.  

Waterways and riparian areas are often afforded legal protection in tropical 

countries to mitigate flooding and sedimentation (Mayer et al. 2007). In Malaysia, for 

example, agricultural companies are required to maintain riparian reserves of between 

5 and 50 m from each riverbank, with most being 20-30 m (Government of Malaysia, 

2012). In Brazil reserves can be 30-500m wide depending on channel width, but recent 

policy changes drastically reduce the prescribed widths (da Silva et al., 2017). In 

addition, oil palm companies that adhere to guidelines under the Roundtable for 

Sustainable Palm Oil (RSPO), the primary environmental certification scheme for this 

crop, agree to retain riparian reserves, and there are ambitions to increase the width 

requirements (Luke et al. Submitted). 

While the main rationale for protecting riparian reserves is hydrological, these 

habitats may also be important for maintaining wildlife populations. In Sumatra, 

riparian reserves in paper-pulp plantations support large-mammal communities 

comparable to those in continuous forest (Yaap et al. 2016), and in Amazonia large 

and undisturbed riparian reserves retain near-complete mammal and bird assemblages 
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when compared to large forest patches (Lees & Peres, 2008; Zimbres et al. 2017). In 

Borneo, fish (Giam et al. 2015), dung beetle and leaf-litter ant (Gray et al. 2014, 2016) 

assemblages in oil palm riparian reserves are more similar to those in contiguous 

logged forests than the surrounding oil palm matrix in terms of composition, species 

diversity and functional group diversity.  

The species composition of riparian remnants is likely to be influenced by 

many of the processes associated with habitat fragmentation, such as area, isolation 

and edge effects (Laurance et al. 2018). Area, or width of the riparian remnant, is 

expected to be a primary determinant of diversity, yet few researchers have 

documented this in tropical regions, and even fewer provide explicit width 

recommendations to inform riparian reserve design (Luke et al. Submitted). In the 

Neotropics, riparian zones are reported to extend to 60-250 m for plants (Schietti et al. 

2014), 100 m for snakes (de Fraga et al. 2011) and 140 m for understory birds (Bueno 

et al. 2012), but since these studies were undertaken in forested areas it is unclear 

whether the same width thresholds would apply in fragmented habitats or agricultural 

systems, or indeed to other tropical regions (van der Hoek et al., 2015).  

Here, we explore the relationships between riparian reserve width, forest 

quality, and the birds present in a modified tropical landscape of Southeast Asia. 

Specifically, we characterised bird communities in riparian reserves set in forest or oil 

palm to evaluate the relative value for riparian and non-riparian biodiversity. Reserve 

width, the main criterion stipulated in environmental policy, is expected to correlate 

positively with species richness, with more species supported in wider reserves (e.g. 

Lees and Peres, 2008; Gray et al. 2014; Zimbres et al. 2017). However, the expected 

levels of species richness might not be supported if the habitat quality is low (Luke et 
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al. Submitted). Given the roles of other confounding variables in the fragmentation 

literature (Laurance et al. 2018), it is important to understand how measures of patch 

size (i.e. width) and quality affect riparian remnant biodiversity in the context of the 

wider landscape covariates (e.g. elevation, isolation). There is also fundamental policy 

interest in establishing whether the largest riparian reserves can support similar levels 

of biodiversity to continuous forest sites, since protecting larger/wider reserves 

involves a trade-off between conservation interests and making land available for 

agriculture. We sought to address these questions, while also examining whether 

riparian reserves are valuable for forest-dependent species and species of conservation 

concern, since these taxa are the focus of environmental policy in the certification 

sector.  

Methods 

Study system 

The study was set in and around the Stability of Altered Forest Ecosystems 

(SAFE) project (117.5°N, 4.6°E) in Sabah, Malaysian Borneo (Fig. 2.1, Ewers et al, 

2011). The 80,000 ha area comprises both forest and plantations of oil palm and 

Acacia, with all matrix study sites surrounded by oil palm. Most of the remnant forest 

has been logged two to four times over 30 years and contains few mature trees 

(Struebig et al. 2013), although some parts are less disturbed and are formally 

protected. The surrounding agricultural matrix comprises multiple oil palm estates 

with trees planted 8-12 years before the study. Within this matrix, remnants of logged 

forest are protected alongside watercourses as riparian reserves. Reserves typically 

extend ca. 50 m on each bank from the river channel, but vary between 10 and 470 m 

(median=54 m,  SD=135 m) across the landscape. Reserves also vary in altitude, 
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topographic ruggedness and substrate (rocky to sandy).  

 

Figure 2.1 Map of the Stability of Altered Forest Ecosystems (SAFE) Landscape.  

Twenty-eight bird sample sites in riparian (n=20) and non-riparian (n=8) habitat types in the 

SAFE landscape and surrounding agricultural matrix in Sabah, Malaysian Borneo. A site 

comprised ten point count stations (indicated by points on the map), each of which were 

sampled for birds on three separate occasions. Forest is shown in grey; tree plantations 

(predominantly oil palm), and cleared areas in white. Forest cover was derived from Hansen 

et al. (2013) and updated to represent the landscape in 2014 accurately. Black lines denote the 

river courses. Names for each site are displayed and correspond to those listed in Fig 2.3. 

 

We sampled bird communities alongside 20 rivers. Ten of the rivers were 
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within oil palm plantation and had riparian reserves (RR), two were in the oil palm 

with no riparian reserve and were used as controls (OPR), and a further eight rivers 

were used as controls within the logged forest (hereafter riparian forest control; RFC). 

The rivers sampled in oil palm were selected to represent the range and distribution of 

reserve widths present across the study area and plantations elsewhere in Southeast 

Asia. Larger riparian reserves were scarce and only one site of >100m was available 

in our study area (RR17, width = 470 m). Forest quality, indicated by above-ground 

carbon density measured via LiDAR (Jucker et al. 2018), also varied substantially 

across the landscape. Finally, to document any differences between riparian and non-

riparian bird communities, we also surveyed eight non-riparian control sites in 

continuous forest (hereafter forest control; CF), all of which had also been previously 

logged, reflecting the dominant remnant forest type in lowland Southeast Asia.  

 

Bird sampling 

At each riparian site, birds were sampled via ten point counts set at 180-220 m 

intervals (Euclidian distance) along a 2 km transect following the course of the river. 

The stations were situated up to 10 m up the riverbank to minimise interference from 

the sound of running water. During each count, a single experienced observer (SLM) 

recorded all bird species heard or seen within a 50 m radius of the point for 15 minutes 

including fly-overs. Average river width ranged between 5 and 13 m, meaning that the 

detection radius encompassed both terrestrial vegetation and the river. However, the 

river itself never accounted for more than 5% of the total point count area. Counts 

were conducted between 05:50 and 11:00 in clear weather, and were repeated on three 
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separate occasions at each site between 2014 and 2016. For non-riparian sites, the ten 

point counts were spatially configured at comparable distances along access trails. 

Sites were sampled at mean intervals of 72 days between visits (Table S2.1). Three 

species of swift (Aerodramus maximus, A. salangana and A. fuciphagus) could not be 

reliably separated and are considered as Aerodramus spp. The bird sampling data from 

the three surveys were pooled across the ten stations at each site. Taxonomic 

nomenclature follows Eaton et al. (2017). 

 

Environmental predictors of bird community structure 

For each site above-ground carbon density (mean values across the ten point 

counts sites) were derived from remotely sensed data, and used as a proxy for overall 

forest quality, since lower carbon densities were evident in areas that experienced the 

most degradation via logging (Jucker et al., 2018). Similarly, we also calculated 

altitude and topographic ruggedness for each site as an average of values extracted 

within a 50 m radius of each of our ten point stations. Above-ground carbon density 

was extracted from LiDAR-derived datasets (30 x 30 m), which were gathered in 

November 2014 using a Leica ALS50-II sensor (Jucker et al. 2018). Altitude (30 x 30 

m) was estimated from the Shuttle Radar Topography Mission (SRTM; 

http://www2.jpl.nasa.gov). Likewise, topographic ruggedness was derived using the 

SRTM, according to Wilson et al. (2007). Average values for each raster layer were 

calculated within the buffer radius of each station using the R 3.2.3 (R Core 

Development Team, 2015) packages ’raster’, ‘sp’, ‘rgdal’, ‘gtools’ ‘doMC’ and 

‘maptools’ (Hijmans & van Etten, 2002; Pebesma & Bivand, 2005; Bivand et al., 

2016; Analytics Revolution, 2014; Bivand & Levin-Koh, 2013) 
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For each riparian reserve sampled, we estimated reserve width at each station 

from the LiDAR canopy height layer (5 m resolution). The width of the river channel 

was included in this remote measurement as vegetation often obscured the riverbanks. 

River channel width was recorded in the field, between the high water marks of the 

two banks, using a laser rangefinder (Leica Rangemaster CRF 1000). Subsequently, 

this value was subtracted from the reserve width estimate to determine the actual land 

surface within each reserve. Mean bank reserve width is typically referenced within 

environmental policy documents, so we use this metric throughout the paper.   

As a measure of landscape-scale forest availability, we also calculated 

percentage forest cover within a 1000 m radius of each point count station, capturing 

the availability of forest in the landscape without overlapping forest associated with 

other sample sites. All environmental predictors were average values across the ten 

point count stations per site. 

 

Statistical analyses 

Species accumulation curves were constructed for each site and habitat type, 

and inspected for being close to asymptote to confirm that sampling was adequate 

(Fig. S2.1). Rarefied curves, based on 100 iterations, were produced using the ‘vegan’ 

package in R (Dixon, 2003). We used the number of bird encounters, rather than 

absolute numbers, to generate curves, as early morning roost flights of Sunda yellow-

vented bulbul (Pycnonotus analis) occasionally resulted in >100 individuals recorded 

from a single point. In this case, large numbers of a single species recorded within one 

visit were treated as a single encounter.  
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We used a generalised linear modelling (GLM) framework in ‘lme4’ to explore 

the partitioning of species abundance and richness by habitat type. Spatial 

autocorrelation was assessed using a Moran’s I test on the residuals of the GLM for 

richness across all riparian sites to test for unforeseen associations between nearby 

sites. The package ‘multcomp’ was used to perform Tukey tests between pairwise 

habitat combinations (RFC vs. CF, RFC vs. OPR, etc.), and the procedure repeated for 

two subsets of our community: forest-dependent species (defined by consensus of five 

expert ornithologists in Southeast Asia, Nick Brickle, Frank Rhiendt, Dave Bakewell, 

Craig Robson and Simon Mitchell), and species of conservation concern (status of 

near-threatened through to critically endangered, IUCN, 2017).  

To visually demonstrate the associations between both carbon density and 

reserve width, and community structure we plotted the relationships graphically. 

Community integrity was measured using the Bray Curtis dissimilarity index on an 

abundance matrix (sensu Banks-Leite et al.2014).  We used mean differences in 

species composition between riparian reserves (RR) and each of the riparian forest 

controls (RFC) to reflect reductions in community integrity.  

Ordinations were used to explore bird species composition in relation to habitat 

type and our environmental predictors. Pairwise Bray Curtis dissimilarity coefficients 

were calculated between species abundances pooled from across the three visits at 

each site and non-metric multidimensional scaling (NMDS) ordinations generated 

using PC-ORD 6.07 (McCune & Mefford 2011), to organise sites by similarity in 

species composition. The reliability of the ordinations was determined by comparing 

NMDS solutions produced from 250 runs of real data, with those produced from 

randomised species-site matrices using a Monte Carlo test. The ordinations were then 
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repeated to ensure that they reflected representative signals in community data and 

were not being disproportionately impacted by either rare (by removing species 

recorded only once within the dataset) or highly abundant species (by square-root 

transformation of all abundances) following Struebig et al. (2013). Non-parametric 

permutations tests (ADONIS, in ‘vegan’) were used to examine compositional 

differences between habitat types. We also investigated which species were most 

associated with particular habitat types using the indicator species analysis INDVAL 

in PC-ORD (Dufrene & Legandre, 1997).  

GLMs were used to determine whether species richness was driven by our 

potential environmental predictors (river channel width, riparian reserve width, 

landscape-scale forest cover and above-ground carbon density) at our 20 riparian sites. 

We selected Gaussian family models, as this best reflected the probability distribution 

of species richness. All predictor variables were tested for collinearity. As ruggedness 

and altitude were correlated (r > 0.18), ruggedness was retained in the riparian reserve 

models, because the range of values was greater than for altitude, and altitude was 

retained in the other models for the same reason.  

To examine the influence of the environmental predictors on species 

composition, we constructed generalised linear mixed effects models (GLMMs) for 

our two NMDS axes for all habitat types. Habitat type was included as a random 

variable. Oil palm river communities were excluded from these analyses as species 

composition was very different from that in other habitat types and this signal obscured 

any other potential patterns of interest. Parameters were model-averaged across all 

models within ΔAIC<4 of the best model. The modelling process was repeated for 

forest-dependent species and species of conservation concern separately. 



44 

 

 

Results  

Species abundance and richness 

Across the 28 sites, we detected 8784 individual birds (6104 encounters), of 

202 species, including 133 forest-dependent species (3838 encounters, 4939 

individuals) and 62 (821 encounters, 1094 individuals) species of conservation 

concern. Our species accumulation curves approached an asymptote for both site and 

habitat type, confirming that we had sampled the avifauna well enough to assess 

differences in richness and community structure between them (Fig. S2.1).  

Birds were more abundant in riparian reserves than riparian forest controls and 

oil palm rivers, but similar to those in non-riparian forest controls (Fig. 2.2a). Riparian 

reserves supported similar levels of bird species richness to riparian forest controls, 

and double that recorded in oil palm rivers (Fig. 2.2b). 

Forest-dependent species accounted for 65% of all individuals across the 

whole community, and were significantly more prevalent in both non-riparian and 

riparian forest controls than in riparian reserves or oil palm rivers  (70% in CF; 74% 

in RFC; 54% in RR; 20% in OPR; Fig. 2.2c). Forest-dependent species richness was 

highest in both forest control types and significantly lower in oil palm rivers (Fig. 

2.2d).  

Species of conservation concern comprised 13% of all individuals across the 

landscape, and formed a larger component of the bird community in riparian (18%) 

and non-riparian forest controls (16%), compared to those in riparian reserves (11%) 

and oil palm rivers (2%). There was no significant difference in the number of species 
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of conservation concern found in riparian reserves and riparian forest control sites in 

terms of either abundance or richness (Fig. 2.2 f, g). 

 

Figure 2.2. Boxplots showing median and inter-quartile values of site-level bird 

abundance and species richness.Abundance and richness shown across the different 

habitat types for: all species; forest-dependent species; and species of conservation 
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concern. General linear model derived linear hypothesis Tukey tests revealed 

significant differences in richess (P<0.05) between all habitat types except for those 

cases marked non-significant (n.s). 

Species richness was not influenced by spatial autcorrelation (Moran’s I test; observed 

= -0.04, P=0.80 of GLM residuals for model including habitat type, above-ground 

carbon density and reserve width). 
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Figure 2.3. Nonmetric multidimensional scaling ordinations of bird community 

structure. Riparian and non-riparian habitat types are shown. Plots show dissimilarity 

across (a) all species; (b) forest-dependent species; and (c) species of conservation 

concern. Oil palm river sites were excluded from (b) and (c) because they included 

only seven forest-dependent species and three species of conservation concern, and 

therefore could not be plotted within the same ordination space. Axis scores denote R2 

values. Names for each site are displayed and correspond to those listed in Fig 2.1. 
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Bird community composition 

Our NMDS ordination of community composition performed better than those 

based on randomised data (Monte Carlo test: observed stress=12.4; simulated 

stress=28.7; P=0.004; Fig. 2.3a), and showed four clear habitat groupings. The most 

divergent were the oil palm rivers, which supported an almost entirely different bird 

community to other sites. Communities in riparian reserves were more similar to those 

in riparian and non-riparian controls, but still distinct from both habitat types in terms 

of species composition. Since the oil palm rivers had such a strong influence on the 

landscape-wide ordination, we removed them in our subsequent analyses to better 

discriminate between the remaining habitat types. Our subsequent NMDS represented 

89% of the variation in bird community structure (stress=14.8). None of the models 

were improved significantly after removal of singletons and square-root 

transformation of species abundance; as indicated by an increase in stress (16.35). 

Species composition was significantly different across all four habitat types 

(ADONIS: R2=0.11, P=0.01). The same pattern was evident when restricted to just 

forest-dependent species and species of conservation concern (Fig. 2.3; forest-

dependent species: R2=0.13 P=0.01; species of conservation concern: R2=0.14, 

P=0.01).  

Community integrity in riparian sites showed similar patterns to our 

ordinations, in that riparian reserves were intermediate to riparian forest controls and 

oil palm rivers (Fig. 2.2c, e, h).  

Indicator species analysis revealed 13 significant associations between 

particular bird species and habitat types, including four species associated with non-
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riparian forest controls, seven of oil palm rivers, and one each for riparian reserves 

and the riparian forest controls (Table S2.2). 

 

Environmental predictors of riparian reserve communities 

Our GLMMs demonstrated that riparian reserve width was an important 

predictor of bird species richness and avian community composition (Table 2.1; Fig. 

2.4). Reserve width and above-ground carbon density affected bird richness in a 

consistent manner. None of the other environmental metrics we tested had  

demonstrable effect in our final models.  

 

Figure 2.4. Observed species richness for riparian reserves and oil palm river sites. Circles 

denote riparian reserves and squares denote oil palm river sites in relation to reserve width (on 

each bank) for all species; forest-dependent species; and species of conservation concern (a, 
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b, c). Richness values are expressed as percentages of the median richness from the eight 

riparian forest control (RFC) sites. Observed species richness was also significantly positively 

associated with above-ground carbon density (d, e, f). Horizontal red shading demonstrates 

the first and third quartile in the distribution of species richness across all RFC contol sites, 

with median shown as the black dotted line.  Grey shading around trend lines denotes 95% 

confidence intervals. One riparian reserve (RR17) was excluded from the models because of 

missing environmental data for the site. 

 

Riparian reserve width, above-ground carbon density and forest cover were all 

significant positive predictors of observed species richness for the full community 

(Table 2.1). This pattern was the same for forest-dependent species, though did not 

apply to species of conservation concern. Across all riparian habitats, above-ground 

carbon was a significant positive predictor of species richness for both forest-

dependent taxa and species of conservation concern. However, our final model for 

riparian habitats did not reveal any significant predictors across all species. Forest 

cover was an important predictor of community structure as reflected by the NMDS 

axis 1 for species of conservation concern. The second axes of our NMDS analyses 

exhibited no significant relationship with the environmental predictors.  

Table  2.1. Outputs of generalised linear models (GLM) and generalised linear mixed effects 

models (GLMM). Model averaged parameter estimates, standard error and confidence 

intervals for important predictors of observed species richness and community structure are 

listed. The ∆AIC<4 model set was used to estimate averaged outputs. n represents the number 
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of sites included in each model. One riparian reserve (RR17) was excluded several 

environmental predictors were missing for this site. 

Predictor Parameter estimate SE Lower 

95% CI 

Upper  95 

% CI 

GLM: Richness in riparian reserves and oil palm rivers (RR, OPR, n=11) 

All species  

Intercept 63.8 1.1 61.2 66.4 

Above-ground carbon density 6.1 2.2 0.9 11.3 

Forest cover 8.3 2.3 2.9 13.8 

Riparian reserve width 8.6 2.5 2.9 14.3 

Forest-dependent species 

Intercept 36.7 1.3 33.6 39.8 

Above-ground carbon density 6.6 2.6 0.5 127 

Riparian reserve width 10.3 3.0 3.4 17.2 

Forest cover 8.9 3.0 1.9 15.9 

Species of conservation concern 

Intercept 13.4 0.9 11.4 15.4 

      

GLM: Richness in riparian habitats (RR, OPR, RFC, n = 19) 

All species 

Intercept 59.6 2.5 54.3 64.9 

Forest-dependent species 

Intercept 36.1 2.0 31.9 40.3 

Above-ground carbon density 156.0 5.3 5.0 27.0 

Species of conservation concern 
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Intercept 13.3 0.8 11.6 15.0 

Above-ground carbon density 5.2 2.6 1.8 10.0 

 

 

GLMM: Community structure (NMDS axis 1) in all forest or riparian reserve (RR, 

RFC, CF, n = 26) 

All species 

Intercept 0.0 0.0 -0.1 0.0 

Above-ground carbon density -0.2 0.1 -0.3 -0.1 

Forest cover -0.4 0.1 -0.5 -0.3 

 

Forest-dependent species 

Intercept 0.1 0.4 -0.7 0.9 

 

Species of Conservation Concern 

Intercept -0.0 0.1 -0.2 0.1 

Forest cover -1.1 0.2 -1.6 -0.7 

       

 

  

Community subsets for all species, forest-dependent species and species of 

conservation concern differed in the reserve width at which richness was equal to that 

found in riparian forest controls (Fig. 2.4). Trend lines intersected mean richness levels 

for riparian controls at ca. 40 m when all species were examined. However, for forest-
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dependent taxa and species of conservation concern, riparian reserves did not reach 

equivalent richness levels to that found at control sites. The extent of this pattern with 

above-ground carbon density also varied between community subsets (Fig. 2.4d, e, f). 

Notably, reserve richness reached equivalent levels to control sites at around 65 tC ha-

1 for all species, but at around 100 tC ha-1 for forest- dependent and species of 

conservation concern subsets. 

 

Discussion 

We found that riparian reserves in oil palm, supported comparable levels of 

bird diversity to sites in continuous forest (both CF and RFC), especially when 

reserves are wide and comprise high carbon forest. However, these reserves contained 

fewer forest-dependent taxa and species of conservation concern, which likely require 

larger tracts of continuous forest for long-term population viability. These results 

suggest that the mandated reserve width in many tropical countries should be 

increased. In tandem, forest quality in riparian reserves should be improved: in new 

plantations by delineating reserves prior to clearance and preventing additional 

logging within them; in existing heavily degraded reserves via vine cutting and 

planting with native trees, plus by replanting in areas where crops were planted to river 

banks and no riparian reserves retained. Our appraisals of forest-dependent taxa and 

species of conservation concern also demonstrate that not all species are well 

represented in riparian reserves and it is likely that these taxa require larger tracts of 

continuous forest for long-term population viability.  
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Despite a growing number of ecological studies on tropical riparian reserves, 

there is still little information regarding which features have the greatest benefit for 

biodiversity (Luke et al., 2018.). For birds in oil palm, we find that riparian reserve 

width is an important predictor of overall number of species, with reserves at least 40 

m wide (i.e., 80 m total width) supporting comparable numbers of species to riparian 

forest controls. Nonetheless, to support equivalent numbers of forest-dependent taxa 

and species of conservation concern, riparian reserves would need to be much larger - 

at least 100 m wide (200 m total width), based on extrapolation of observed trend lines 

(Fig. 2.4b, c). We can only extrapolate, as large riparian reserves are scarce in our 

study system and oil palm landscapes in general. It therefore remains to be seen 

whether all forest-dependent taxa and species of conservation concern present in 

logged forest would actually use riparian reserves even if they were of substantial 

width and close to continuous forest.  

Uniquely for oil palm landscapes, our results demonstrate the influence of 

forest quality (as measured by above-ground carbon density), as well as reserve width, 

on the riparian reserve avifauna. These finding suggests that protecting reserves of 

poor forest quality will offer few conservation gains without habitat restoration. 

Similar findings have been reported from cattle ranching areas in Amazonia, where 

riparian reserve width and percentage canopy cover were both positively related to 

bird and mammal richness (Lees & Peres, 2008; Zimbres et al. 2017). This result 

implies that approaches to restore biodiversity in agricultural areas may be less 

successful than sparing areas for conversion in the first place, especially because small 

forest patches, such as riparian reserves, are susceptible to further degradation via edge 

effects (Laurance et al. 2018). Disentangling this relationship is difficult, however, as 
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both larger fragments and reserves tend to be of higher forest quality than smaller ones 

(e.g. Lees and Peres 2008). 

Many previous studies have only compared riparian reserves with the 

communities of continuous non-riparian forest controls (e.g. Gray et al., 2014). We 

show that, while overall richness remains comparable to non-riparian control sites in 

continuous forest, bird community composition in riparian reserves is intermediate 

between that of riparian controls (RFC) and oil palm rivers (OPR) (Fig. 2.2, 2.3). 

While there were many species shared between riparian reserves and riparian forest 

habitat, reserves also had some generalist species (e.g Spilopelia chinensis [spotted 

dove], Geopelia striata, [zebra dove] Copsychus saularis, [oriental magpie robin] and 

Pycnonotus analis sunda [yellow-vented bulbul]) that were rare or absent in both 

riparian and non-riparian forests controls (i.e. CF and RFC). These matrix-dwelling 

species are known to be abundant in both industrial oil palm plantations (Edwards et 

al. 2010) and mixed smallholder cultivation (Azhar et al. 2011). Riparian reserves also 

lacked several forest-dependent taxa and species of conservation concern, in 

accordance with previous studies, which found small forest fragments to support few 

specialist species (Laurance et al. 2018). Across all riparian reserves, we recorded over 

70% of the community found in non-riparian forest and over 80% (Fig. S2.1) of the 

community found in riparian forest control areas. However, the highly different 

community composition (Fig. 2.3) and lower site-level species richness (Fig. 2.2) 

suggests that such forest species are found in greatly reduced numbers in riparian 

reserves. 

We found that bird communities around oil palm rivers without a reserve were 

highly depauperate, consistent with species richness observed in previous oil palm 
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studies (Edwards et al. 2010; Azhar et al. 2011). Thus, the presence of rivers per se 

appears to have little effect on bird diversity in the absence of significant amounts of 

natural vegetation. This stark difference was clear even for sites with degraded 

reserves, highlighting that narrow, low quality riparian reserves can still have a 

significant positive effect on bird community structure albeit a small one. Crucially, 

narrow and degraded reserves still held more forest-dependent taxa and species of 

conservation concern than oil palm on its own, although at much lower numbers than 

in large riparian forest areas.  

It is possible that species recorded in riparian habitats are not part of a viable 

population and that the reserves are sinks (Gilroy & Edwards, 2017). For example, 

Weldon & Haddad (2005) demonstrated that indigo buntings (Passerina cyanea) in 

small fragments continued to nest in patches with greater forest edge despite increased 

mortality. Likewise, small fragmented areas of habitat are far more susceptible to 

further perturbations and edge effects than large continuous forests (Ewers et al. 

2007), which can result in extinction cascades long after fragmentation has taken place 

(Kitzes and Hartle, 2015).  Alternatively, riparian reserves could act as movement 

corridors between larger, higher quality, areas of forest. In the context of landuse 

change, facilitating species dispersal in this way could be vital in maintaining viable 

populations in otherwise isolated remnant habitat fragments (Capon et al. 2013), 

particularly for interior forest bird species (Gillies & St. Clair, 2008).  

Riparian forest in both riparian controls and riparian reserves held distinct bird 

communities to other sites. For instance, Butorides striatus and Alcedo meninting were 

only recorded in riparian habitats, while Enicurus ruficapillus, a species of 

conservation concern (near-threatened), was identified as an indicator of riparian 
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forest controls (Table S2.2). Microclimate, vegetation structure and prey abundance 

have been found to differ between riparian and non-riparian habitats in Hong Kong, 

and these changes correlated with differences in bird species richness and abundance 

(Chan et al. 2008). This emphasises the value of including a riparian forest as a 

comparator, rather than just non-riparian continuous forest. It also demonstrates that 

spatial turnover in species composition between riparian and non-riparian sites is 

greater than that within just one habitat type, indicating that riparian areas have an 

additional effect on regional species richness (Sabo et al. 2005). 

 

Management recommendations 

Our results warrant several recommendations for the improved management 

of riparian reserves in the tropics. These are not mutually exclusive, but each would 

have different outcomes for bird communities if adopted. First, increasing minimum 

reserve widths to at least 40 m on each bank would improve bird diversity to levels 

typical of riparian areas in large forest blocks. In tandem with the vine cutting and 

replanting of native tree species, this could also benefit forest-dependent species, since 

reserve width showed a stronger relationship with forest species richness than it did 

for overall community richness. 

Second, the greatest gains in species richness for the smallest loss of cultivated 

area could be achieved by replanting vegetation in reserves narrower than 30 m to 

meet existing legislative guidelines. This is because the relationship between reserve 

width and species richness is non-linear, with the greatest gains in richness occurring 

at small widths. However, this would only maximise species richness at the level of 
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individual rivers, whereas effects on landscape-scale richness and the benefit to forest-

dependent species would be less significant.  

 Finally, the biodiversity protection of any future riparian reserves could be 

greatly improved by increasing the quality of reserve habitat. This is not just achieved 

by restoring degraded habitat in existing plantations, but also by ensuring that 

contractors follow environmental regulations while forests are being converted. In 

countries such as Malaysia, these restrictions already exist for conventional logging 

operations (Forest Enactment for Sabah, 1968). However, narrow riparian reserves are 

difficult to define and map prior to clearance and may endure opportunistic removal 

of valuable timber as a result. Once land has been re-designated after logging for 

plantation, this can result in riparian reserves of substandard forest quality. By 

improving the enforcement of riparian reserve policy prior to and during conversion 

operations, riparian areas of higher forest quality could be maintained. This is likely 

to not only benefit threatened biodiversity, but could also have knock on benefits to 

other wildlife, hydrological regimes, and water quality downstream.  
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Supplemental Materials 

Figure S 2.1. Rarefied bird species accumulation curves for each riparian and control 

habitatAccumulations for each type based on 100 iterations. Grey buffers denote one 95% 

confidence intervals either side of mean richness values.  
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Table S 2.1. Sampling dates and mean intervals for each site. 

 

Habitat Site Visit 1 Visit 2 Visit 3 

CF A 09/05/2014 07/07/2014 04/08/2015 

CF B 15/05/2014 05/06/2014 03/03/2015 

CF C 29/04/2014 30/06/2014 16/05/2015 

CF D 07/05/2014 10/06/2014 10/03/2015 

CF E 17/05/2014 12/06/2014 25/06/2015 

CF F 23/05/2014 06/07/2014 23/06/2015 

CF LF1 05/03/2015 24/07/2015 25/07/2015 

CF LFE 15/07/2015 16/08/2015 25/08/2015 

RCF R0 26/05/2014 10/02/2015 19/02/2015 

RCF R120 28/05/2014 17/02/2015 26/02/2015 

RCF R15 21/05/2014 13/02/2015 24/02/2015 

RCF R30(OLD) 06/06/2014 18/02/2015 27/02/2015 

RCF R5/30 27/05/2014 11/02/2015 20/02/2015 

RCF R60 19/05/2014 14/02/2015 23/02/2015 

RCF RLF 01/05/2014 12/02/2015 22/02/2015 

RCF VJR 30/07/2015 11/07/2015 06/08/2015 

RR RR10 29/10/2016 14/11/2016 15/11/2016 

RR RR12 14/07/2015 28/07/2015 03/08/2015 

RR RR14 27/06/2015 30/06/2015 27/07/2015 

RR RR16 28/06/2015 10/07/2015 07/08/2015 

RR RR17 21/11/2016 23/11/2016 24/11/2016 

RR RR19 20/11/2016 05/12/2016 05/12/2016 
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RR RR2 22/07/2016 23/07/2016 19/11/2016 

RR RR20 28/11/2016 30/11/2016 02/12/2016 

RR RR3 19/07/2016 20/07/2016 21/07/2016 

RR RR7 06/06/2014 24/05/2015 24/06/2015 

OPR ROP10 27/11/2016 29/11/2016 30/11/2016 

OPR ROP2 16/11/2016 17/11/2016 18/11/2016 
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Table S 2.2 . Indicator species for each of four different habitat types.Thirteen indicator bird 

species showing significant associations (p<0.05) with different habitat types (continuous 

forest, CF; logged forest riparian, LFR; riparian reserves, RR; oil palm riparian controls, OPR), 

according to the INDVAL algorithm (Dufrene & Legrandre, 1997). Relationships with non-

metric multidimensional scaling axes (Axis 1=A1, Axis 2=A2) for each species are shown as 

R2 and Tau correlation coefficients. 

Species Habitat IV Mean SD A1 R2 
A1 

Tau 

A2 

R2 

A2 

Tau 

Malacopteron magnirostre CF 61.4 29.1 10.43 0.242 -0.48 0.32 -0.46 

Pycnonotus simplex CF 54.7 29.4 9.65 0.015 -0.03 0.31 -0.43 

Copsychus pyrropygus CF 50 20.6 12.46 0.774 0.69 0.003 -0.04 

Phaenicophaeus diardi CF 43.1 21.5 11.66 0.028 -0.15 0.3 -0.44 

Enicurus ruficapillus LFR 61.6 25.1 12.08 0.212 -0.46 0 0.06 

Pelargopsis capensis RR 40 20.7 12.12 0.017 0.22 0.1 0.22 

Geopelia striata OPR 100 16.3 12.43 0.503 0.36 0 0.08 

Cinnyris ornatus OPR 88.9 18.9 13.02 0.279 0.21 0 0.14 

Lonchura fuscans OPR 70.6 27.8 12.99 0.358 0.47 0 -0.14 

Egretta garzetta OPR 41.7 18.8 12.23 0.303 0.37 0.02 0.14 

Actitis hypoleucos OPR 45.5 16.2 12.28 0.252 0.28 0.02 0.16 

Chrysocolaptes validus OPR 46.9 16.7 11.82 0.28 0.3 0.01 0.15 

Centropus bengalensis OPR 40.8 18.9 12.12 0.21 0.26 0.01 0.076 
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Abstract 

In the context of rapid environmental change it is import to understand how 

state-shifts in ecosystems manifest via changes to ecological communities at the 

species and functional levels. Assessing these patterns may be particularly useful for 

predicting abrupt thesholds or ‘tipping points’ in ecological responses after which 

ecosystems are more vulnerabale to collapse. Here, we assess the responses of 171 

tropical birds species to environmental changes associated with forest degradation by 

applying occupancy modelling to field ornithological data, together with habitat 

structure information from hyper-spectral LiDAR. Across a land-cover gradient of 

intact forest to oil palm plantations, we demonstrate that the majority of species 

respond to habitat degradation in a non-linear fashion. These abrupt responses in 

species occupancy scale up to abrupt changes to the composition of trait groups 

associated with ecosystem functions such as pollination, seed dispersal and 

insectivory. We show that disturbance responses at the trait-group level do not 

necessarily follow threshold levels of all component species, since many species have 

idiosyncratic responses. Nonetheless, several trait groups exhibit markedly differing 

threshold levels from one another, for example the frugivores and nectarivores 

responded more strongly until canopy height reached 10 – 18 m, whereas both 

terrestrial and sallying insectivores continued to respond strongly until canopy height 

reach ~24 m. This suggests that, just as trait-based approaches have proven useful in 

generalising overall effects in a linear framework, they offer a potentially useful way 

of generalising non-linear response thresholds and that traditional analyses have 

masked important species-specific and trait-group responses. These responses 

demonstrate that passing particular thesholds could result in disproportionate losses of 
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biodiversity in human-modified tropical landscapes  Our findings suggest that the use 

of non-linear response models offer a framework to reduce false-negative errors in 

detecting species responses, optimise indicator species used for particular trait groups 

and understanding fine-scale habitat assocations, especially for highly specialised 

species.  

Introduction 

Global environmental changes are causing mass species extinctions (Ceballos 

et al., 2015) and increasing the vulnerability of ecosystems to collapse (Scheffer et al., 

2001; Cardinale et al., 2012). In terrestrial ecosystems, the leading cause of these 

processes is direct anthropogenic modification of vegetation through landuse change, 

including habitat conversion, degradation and fragmentation (Ellis, 2011; Newbold et 

al., 2015). An extensive literature has established links between shifts in ecological 

communities and landuse change (Gerstner et al., 2014), forest degradation (Gibson 

et al., 2011) and habitat configuration (Haddad et al., 2015), with many species being 

reduced in abundance as a consequence of these activities (Phalan, 2011), but a few 

increasing significantly (Deviktor et al., 2008).  Given the enormous global impacts 

that habitat alterations can have on biodiversity and the functions and services that 

biodiversity provides, further scrutiny of how land-cover change processes influence 

species is paramount to conservation. 

Functional ecology frameworks allow predictions about how whole groups of 

species shift by measuring associations between species ecological traits and their 

responses to environmental change. For example, poorer dispersal capability and 

larger body size predict range contraction in butterflies (Mattila et al., 2011), and life-

history strategies associated with greater specialisation predict greater sensitivity to 
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landuse change for dung-beetles (Barragán et al., 2011), and birds (Newbold et al., 

2013), as well as increased extinction risk in birds (Sekercioglu et al., 2007), terrestrial 

mammals (Davidson et al., 2009), and bats (Jones et al., 2003). Traits have also been 

shown to mediate the effects of particular drivers of decline, such those induced by 

the novel the Chytridiomycosis pathogen in amphibians (Murray et al., 2010), or by 

climate change in amphibians, reptiles (Pearson et al., 2014) and birds (Pacifici et al., 

2017). Trait-based approaches are also useful in predicting patterns of ecosystem 

function (Lavorel & Garnier, 2002).  However, to date, trait-based approaches have 

focussed predominantly on simple linear associations between trait and response (e.g 

Williams et al., 2010; but see Sasaki et al., 2011) or upon changes in overall functional 

diversity, which is assessed based on the overall diversity and representation of 

multiple traits within a community (Magioli et al., 2014). To fully understand the 

responses of different trait groups, assessments need to take account of both the 

variation of responses between member species of particular trait groups, and the 

potential for those responses to be non-linear.     

Relationships between changes in environment and subsequent responses of 

communities and ecosystems are frequently non-linear (Groffman et al., 2006; 

Andersen et al., 2009). The associated inflection points may constitute critical 

thresholds beyond which more abrupt, often irrevocable, changes can occur (Scheffer 

et al., 2001). Such ‘state shifts’ can occur at the ecosystem, community and species 

levels. For example, sudden transitions between tropical forest and savannah 

ecosystems, are associated with small changes in precipitation (Hirota et al., 2011); 

abrupt changes in community-level responses to habitat loss for bats (Muylaert et al., 

2016), reptiles (Lindenmayer et al., 2005), amphibians (Riley et al., 2005), mammals 
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(Silva et al., 2005) and birds (Martensen et al., 2012); and some bird temperate species 

exhibit thresholds in their response to habitat loss (Radford & Bennet 2004; Betts et 

al. 2007). However, these studies focus either on a few detailed species responses, or 

in patterns of overall richness. As yet, no assessments have been made that 

demonstrate the relative contribution of each species response to producing non-linear 

patterns at the level of the whole community. 

Identifying such thresholds in ecological processes and ecosystem responses 

could have profound implications for the ways the environment is managed. In the 

context of the global biosphere, exceeding dangerous thresholds may in fact present 

an existential threat to human civilisation (Rockstrom et al., 2009). Furthermore, 

ecosystems and functions may become difficult or impossible to restore once certain 

thresholds are crossed (e.g. Carpenter et al., 1999). Applying information from 

thresholds in diversity responses to landscape change has useful applications for 

conservation planning, as demonstrated for Atlantic forest birds (Banks-Leite et al., 

2014). However, examining species numbers alone misses important information on 

ecological processes that tend to manifest at lower hierarchical levels, building from 

individuals, to species, to communities, to ecosystem processes (DeAngelis 2018). 

The extent of, and way in which, thresholds in ecological responses scale between 

these different levels is poorly understood.  Understanding non-linear responses at the 

levels of species, guilds and communities is therefore a vital underpinning of our 

ability to recognise how species can be maintained at the levels of landscapes to global 

ecosystems.  

There are a number of impediments faced in assessing how species response 

thresholds scale to functional groups and community richness. Compared to traditional 
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assessments that simply seek to demonstrate the existence and direction of species 

responses to environmental change, identifying thresholds in these responses requires 

far larger datasets of a high resolution for each species as well as relevant 

environmental metrics. Statistical approaches to address this have been proposed 

(Baker & King, 2010), but remain contentious (Cuffney & Qian, 2013). Occupancy 

modelling approaches may help overcome data limitations concerning rarer species by 

controlling for imperfect detection. However, occupancy approaches have been used 

in very few threshold studies to date (e.g. Betts et al., 2010). Traditional remote 

sensing techniques can expedite the gathering of large datasets on landscape-scale 

environmental gradients, but in the past have generally been limited to fairly 

rudimentary two-dimensional landscape-scale measurements. Landscape metrics have 

been used in the majority of community threshold studies thus far, resulting in a clear 

emphasis upon responses to landscape configuration and habitat loss within the 

literature (Melo et al., 2018).  

Despite the focus on landscape-scale factors, abrupt declines in species 

richness have also been documented with small increases in habitat disturbance 

intensity for dung beetles (Franca et al., 2017), and in response to changes in nutrient 

levels and turbidity for aquatic invertebrates (e.g. Evans-White et al., 2008), 

suggesting similar non-linear responses to fine-scale habitat characteristics and 

structural properties also exist. To better examine tipping points in relation to the 

structural properties of tropical forests, utilising data from remote-sensed Light 

Detection and Ranging (LiDAR) offers a promising way forward. Hyper-spectral 

LiDAR provides the ability to map the fine-scale structure of vegetation in three 
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dimensions and so offers the potential to analyse patterns of faunal distribution and 

association which were previously unachievable.   

Here, we couple occupancy modelling across multiple species with data 

derived from high resolution LiDAR to examine thresholds in the effects of 3D 

structure and landscape metrics associated with tropical forest degradation. Where 

previous studies have focused on single species (Garabedian et al., 2017), we assess 

thresholds in response at the level of species, trait-groups and entire communities 

simultaneously. Using a large dataset (n = 1404 point counts) of bird observations as 

an established indicator taxon (Gardner et al., 2008), we are able to trace how abrupt 

responses of individual taxa contribute to thresholds among trait groups, ensembles 

and the community at large. We explore whether each species responses is better 

predicted with or without a threshold included in the model. The responses of species 

with shared traits to environmental gradients are often similar, as trait-group members 

respond similarly to a single underlying mechanism, such as the availability of a 

particular niche (e.g. Williams et al., 2010). This suggests that species with shared 

traits will not only demonstrate similar responses to environmental changes, but that 

where these responses are non-linear, they also exhibit similar threshold levels. 

 

Materials and methods 

Study system 

Between 2010 and 2017, we sampled bird communities via repeated point 

counts at 356 localities across a gradient of habitat degradation in the dipterocarp 

forests of Sabah, Borneo (Fig. 3.1). Old growth forest was sampled at 47 point count 
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localities across three landscapes at Sepilok Forest Reserve (19 localities), Danum 

Valley (20) and Maliau Basin (8). The majority of point count localities (309) were 

located around the Stability of Altered Forest Ecosystem (SAFE) project landscape. 

Of these, 38 were in continuous forest of the Ulu Segama Forest Reserve, which was 

logged twice since the 1970s, but now protected and recovering. The remaining 156 

localities were in the neighbouring SAFE landscape in forest that had been logged 

several times since the 1970s and salvage-logged ahead of conversion to plantation. A 

further 115 localities comprised forest remnants within two large oil palm estates 

surrounding the SAFE project area. This provided respresentative sampling across the 

complete range of environmental variables we assessed. Sample sites were a minimum 

of 180 m apart, and grouped into transects of 8-16 point count locations (see Chapter 

2; Mitchell et al., 2018; Fig. 2.1). 
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Figure 3.1. Map of Sabah showing four study landscapes. Forest cover is shown in a 

green. The darkest pixels represent the highest carbon densities (maximum: 303.98), 

and the palest areas associated with the lowest carbon forest (minimum: 0); plantation 

areas also are masked in white. Carbon density is derived from Asner et al., (2018). 

The SAFE landscape and surrounding area (inset) show the detailed configuration of 

points. Red dots indicate sampling locations. 

 

Bird sampling 

Each point count locality was sampled three to five times by a single 

experienced observer (SLM or DPE) who recorded all bird species seen or heard 

within a 50 m radius of a stationary position for 15 minutes, including fly-overs. 
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Counts were conducted between 05:50 and 11:00, on mornings without rain or high 

winds. The 50 m radius around the points comprised a range of habitat types, including 

both entirely and partly forested habitat, oil palm plantations, rivers channels, bare 

ground and early regenerating tropical scrub. Counts were recorded and a random sub-

sample of recordings later re-checked to ensure species were not overlooked. 

 

LiDAR-based forest structure and configuration predictors 

Across all sites we generated five metrics from remotely-sensed data to 

quantify forest structure and configuration. Four measures were derived from LiDAR 

point clouds gathered in November 2014 using a Leica ALS50-II sensor (Jucker et al. 

2018), and reflected mean values within a 50 m radius of each sampling locality. We 

quantified mean canopy height as well as the standard deviation in canopy height (as 

a measure of structural heterogeneity). To avoid multicollinearity with canopy height, 

we included plant area index per metre canopy height, giving an effective measure of 

vegetation density. We also quantified skewness of the vertical distribution of 

vegetation density. Finally, as a measure of landscape-scale habitat availability, we 

included the proportion of forest cover within 100 m radius of each point count, 

extracted from the forest cover layer produced by Gaveau et al., (2014), using the 

classification of multiple land cover data sources. There was no strong correlation 

between these five variables - Variance Inflation Factors in relation to canopy height 

were all below four (canopy heterogeneity, 1.32; plant area density, 1.23; skew, 1.22; 

forest cover, 1.11).  
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Occupancy modelling 

To model avian responses to habitat degradation, we constructed multispecies 

hierarchical occupancy models. Community models are comprised of multiple single 

species occupancy-detection models that hierarchically partition the ecological and 

sampling processes underpinning the data to differentiate true absence from non-

detection (Dorazio & Royle, 2005; Deere et al., 2017). Single-species models were 

linked via an additional hierarchical component that modelled community-level 

regression coefficients from a common distribution with estimable hyper-parameters. 

Consequently, species responses are partially informed by the community average, 

which provides more robust parameter estimates for rare species that are infrequently 

detected during sampling (Pacifici et al., 2014). This means that species have similar, 

but not identical, environmental responses across the community. To reduce model 

uncertainty, we excluded 35 species that were detected at fewer than three sites, as 

changes in occupancy and detection cannot be reliably uncoupled when detection data 

are this sparse, thus resulting in a total community of 171 species (Table S3.1, 

Supporting information). Whilst this results in the exclusion of the rarest species, 

community occupancy models necessarily involve a trade off between representing as 

many species as possible and excluding species for which there is insufficient data to 

make robust inferences. A further assumption is that variation in abundances do not 

effect species detection probabilities (Royle & Dorazio, 2008).  

Our multispecies model controlled for the effects of date and time-of-day. We 

applied the R function ‘scale’ (R Core Team, 2014) to standardise our five predictor 

variables and two detection variables (using root-mean-squares) prior to analysis. This 

was undertaken to ensure that the influence of different variables upon a species 
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occupancy could be properly compared. Occurrence probabilities were modelled for 

each species i at each point count site j via a logit link function: 

𝐿𝑜𝑔𝑖𝑡 (𝜑𝑖,𝑗) =  𝛼𝑖,𝑠 + 𝛽1𝑖 ∙ canopy height𝑗 + 𝛽2𝑖 ∙ canopy heterogeneity𝑗 + 𝛽3𝑖

∙ skew𝑗 +  𝛽4𝑖 ∙ density𝑗 +  𝛽5𝑖 ∙ forest cover𝑗 

Our multispecies model was then fitted to an observation matrix 𝑋𝑖,𝑗,𝑘 . This 

reflects the number of occasions on which each species i was detected at each site j on 

each visit k of the total number of visits (K). By specifying our observed data as the 

sum of K Bernoulli trials with detection probability  𝜃𝑖,𝑗,𝑘 we estimated true 

occurrences 𝑧𝑖,𝑗  as follows:  

 𝑋𝑖,𝑗,𝑘 ~ Bern (𝜃𝑖,𝑗,𝑘 ∙   𝑧𝑖,𝑗)   

To account for greater detectability associated with higher avian activity 

around dawn, we modelled standardised time as influencing detection probability. 

Similarly, as our study took place across multiple seasons, we included standardised 

date as a parameter. This also allowed us to model occupancy without directly 

accounting for potential immigration and emigration of birds to/from sites. Detection 

probability was modelled for each species 𝜃 with a logit link function: 

𝐿𝑜𝑔𝑖𝑡 (𝜃𝑖,𝑗,𝑘) = 𝜆𝑖,𝑠 + 𝛽7𝑖 ∙ 𝑡𝑖𝑚𝑒𝑗,𝑘 +  𝛽8𝑖 ∙ date𝑗,𝑘   

Using a Bayesian framework we specified three Markov chains per parameter, 

consisting of 120,000 iterations, with a burn-in of 30,000 iterations and thin rate of 10. 

We assigned diffuse uniform priors for hyper-parameter means and inverse-gamma 

priors for hyper-parameter variances (Dorazio et al. 2006) in order to provide an 

uninformative start point that made no assumption or use of a priori occupancy 
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estimates. Our models were fitted using JAGS v4.3.0 (Plummer, 2017) and called in 

R with “rjags” (Plummer, 2013), using the wrap-around “jagsUI” (Kellner 2015). We 

confirmed convergence numerically by inspecting Bayesian P values and lack of fit 

statistics for each species.  

We compared species occupancy probabilities to each of our five 

environmental variables. Effect sizes of each variable upon each species were assessed 

in the occupancy model. For community-level effect sizes we measured the 

community-level hyper-parameter for each metric, which is an averaged effect size 

informed by all species, weighted according to the number of times they were detected 

(i.e. abundant species contribute more than rare species). 

 

Testing for thresholds in species response to forest structure and configuration 

We identified thresholds in occupancy response to the environmental 

covariates using the R package ‘segmented’ (Muggeo, 2008), which identifies the 

point of maximum likelihood of a break in otherwise linear relationships. To test for 

breakpoints between each species occupancy response and each of our five predictor 

variables, we used 100 random draws of estimated occupancy probability for each 

species across all 356 sites. For every species i, we regressed each random draw m of 

all 356 sites against each of our five independent variables x. For each random draw, 

we used segmented logistic regression (Muggeo, 2003) to test for a single break point 

(threshold) 𝜑 where (𝑥 − 𝜑)+ =  (𝑥 − 𝜑)𝑋𝐼(𝑥 − 𝜑). The intercept 𝛽0, slope of left 

line 𝛽1 and difference between the slopes 𝛽2  were estimated through an iterative 

process of fitting following the equation:     
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𝑝̂ = exp (
𝛽0 +  𝛽1𝑥 +  𝛽2 (𝑥 − 𝜑)+

1 + exp (𝛽0 +  𝛽1𝑥 +  𝛽2 (𝑥 − 𝜑)+)
) 

For each draw m, we also obtained confidence intervals around the maximum 

likelihood estimate for each threshold 𝜑, via linear approximation of the ratio of two 

random variables via the delta method (Muggeo 2003; Betts et al., 2003) and derived 

Akaike Information Criterion (AIC) values to measure the relative quality of each 

model. We repeated both these processes for 100 samples M of each species i. This 

provided us with mean thresholds, mean confidence intervals, and mean AIC of 100 

samples for each species: 

𝑥̅𝑖 =

(𝑝̂ = exp (
𝛽0 +  𝛽1𝑥 +  𝛽2 (𝑥 − 𝜑)+

1 + exp (𝛽0 +  𝛽1𝑥 +  𝛽2 (𝑥 − 𝜑)+)))
𝑚

𝑀 𝑖
 

For each sample m we also computed a linear regression, which calculated 

AIC. To determine whether our segmented model represented an improvement, we 

compared mean AIC of M samples between our linear and segmented models. Any 

species where AIC was not reduced by >4 was considered to be better represented by 

a model without a break point. Species which did not show thresholds were excluded 

from further analyses regarding the average level of thresholds (Fig.  S3.6), but 

retained within analyses assessing cumulative trait-group responses (Fig. 3.2 - 3.5). 

We assumed only a single break-point for each species in order to allow for coherent 

summarising of threshold patterns to group level. To ascertain cumulative group 

response thresholds and confidence intervals (and trait group averages – see later), we 

performed a single segmented linear regression on all samples M of all species I within 

each trait group t. Since the initial value 𝜑 has the potential to influence the value of 

maximum likelihood of a break-point (Muggeo, 2003), we defined the initial value of 
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𝜑 as the mean of each environmental metric. We compared this to break-point tests 

with 𝜑 taken via random draws from a uniform distribution of full environmental 

range, which made no discernible difference. Bayesian piecewise regression (Hutter 

2005) could, in theory, be performed within the occupancy model itself. However, 

nesting a further iterative fitting process to an already computational intensive model 

was not feasible.  

 

Species trait groups 

To assess the responses and non-linear thresholds of different trait groups we 

employed two approaches. First, we aggregated both the effects and thresholds of all 

species which showed non-linear responses and estimated the median and quartile 

distributions for each group (Fig. S3.6). Separately, we added the responses of all 

species in each trait group (including those with linear responses) and calculated 

break-points in overall group responses (Fig. 3.2). We used three categories of species 

groups relating to feeding guilds as well as associations with habitat and vegetation 

strata. Each species was defined as a member of only one particular group within each 

category, ensuring maximum differentiation of group. We examined the thresholds 

associated with 18 ecologically relevant trait groups. Three groups comprised 

inventories of association with vertical strata following Chapman et al., (2017), but 

were edited with reference to del Hoyo et al., (2018) to make groups non-overlapping 

and reflect only primary associations.  Habitat association comprised the same species 

lists defined for Borneo by Styring et al., (2007), whilst feeding guilds were those used 

by Sheldon et al. (2010) (Table S3.3; Supporting Information). These authors used 
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additional trait groups which we also assessed, but we do not report averages or 

thresholds for groups with fewer than four member species. 

 

Deriving group-level richness from occupancy models  

For each site, we calculated the estimated richness of each trait group as the 

sum of the median occupancy probability from 1000 random draws of estimated 

occupancy probability for each species in the group. To assess whether the average 

thresholds of member species within each group, and thresholds for cumulative group 

richness were associated, we performed correlation tests in R. Thresholds in group 

richness were calculated using the R package ‘segmented’ (R Core Team, 2014) to 

assess their relationship to canopy height and forest cover. This followed the same 

methods as for individual species  

 

Results 

Effect sizes of occupancy responses to forest cover and structure 

Community-average effects of environmental variables were largest for forest 

cover (0.379; C.I. 0.217-0.5434), followed by canopy height (0.293; C.I 0.117–0.477), 

vegetation density (0.174; C.I. 0.05-0.292) and skew (0.158, C.I. 0.054-0.260). 

Canopy heterogeneity showed no significant average effect across the whole 

community (0.068; C.I. -0.013-0.147). Of the 171 species included within our 

occupancy model, we found significant positive effects of forest cover on the 

occupancy of 36 species (i.e. 21% of the community more prevalent in forest), and 

significant negative effects for 16 species (9% less prevalent in forest; Fig S3.2). 
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Occupancy of 44 species (26%) responded positively to canopy height, while 14 (8%) 

responded negatively (Fig S3.1).  Greater vegetation density led to increased 

occupancy of 20 species (12%), but reduced occupancy for two species (1%; Fig. 

S3.3), while 14 species were positively affected by canopy vegetation skewed towards 

greater height, while none responded negatively (Fig S3.4). Three species (2%) 

exhibited positive effects of canopy heterogeneity, whilst none showed a negative 

effect (Fig S3.5). Although effect sizes varied greatly between species, we did not 

detect clear differences between trait groups according to strata-association, feeding 

guilds or habitat-association (Fig. S3.6).  

 

Group richness effects and thresholds 

The effects of canopy height and forest cover on occupancy-derived richness 

varied between guilds, trait groups and habitat groups (Fig 3.2; Fig 3.3). Canopy height 

and forest cover had consistently positive effects upon richness for all trait-group, 

except in the case of edge species, for which richness was negatively associated with 

both.  

 

Table 3.1. Threshold levels in trait group richness. Threshold given for each different strata-

association groups, feeding guilds and habitat-association groups in relation to canopy height 

(within 50 m radius) and forest cover (within 100 m radius) with median (Med) and 95% lower 

(Lwr CI) and Upper (Upr CI) confidence intervals. ΔAIC values show the reduction in AIC 

from linear models to segmented models.  

 

 

Mean Canopy Height 

 in 50 m radius 

Proportion forest cover  

in 100 m radius 
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 Group Med Lwr 

CI 

Upr 

CI 

ΔAIC Med Lwr 

CI 

Upr 

CI 

ΔAIC 

S
tr

a
ta

 

 Canopy 

 

9.75 7.05 12.46 12.26 0.84 0.72 0.95 4.66 

Understorey 25.61 21.70 29.52 21.03 0.62 0.53 0.71 49.23 

 

Ground 

 

25.33 

 

19.94 

 

30.74 

 

9.13 

 

0.81 

 

0.69 

 

0.92 

 

8.45 

F
e
e
d
in

g
 g

u
il

d
s 

 

Arboreal frugivore 

 

18.83 

 

15.81 

 

21.86 

 

37.10 

 

0.74 

 

0.66 

 

0.82 

 

42.18 

 

Arboreal gleaning 

insectivore 

 

22.71 

 

19.23 

 

26.20 

 

22.52 

 

0.78 

 

0.63 

 

0.94 

 

5.51 

 

Arboreal gleaning 

Insect / frugivore 

 

29.41 

 

21.64 

 

37.19 

 

4.10 

 

0.78 

 

0.73 

 

0.84 

 

55.90 

 

Sallying insectivore 

 

25.32 

 

22.46 

 

28.19 

 

40.50 

 

0.78 

 

0.68 

 

0.89 

 

16.17 

 

Terrestrial 

insectivore 

 

25.33 

 

21.69 

 

28.98 

 

24.20 

 

0.79 

 

0.65 

 

0.93 

 

6.86 

 

Terrestrial 

insectivore. / 

frugivore 

 

42.75 

 

33.37 

 

52.14 

 

6.18 

 

0.78 

 

0.62 

 

0.94 

 

5.15 

 

Nectarivore / 
insectivore/ 

frugivore 

 

10.08 

 

8.209 

 

11.96 

 

20.85 

 

0.79 

 

0.66 

 

0.91 

 

10.58 

 

Insectivore / 

pescivore 

 

35.45 

 

29.39 

 

41.51 

 

17.67 

 

0.74 

 

0.68 

 

0.81 

 

56.05 

 

Raptor 

 

9.94 

 

9.125 

 

10.76 

 

94.50 

 

0.09 

 

0.07 

 

0.11 

 

243.2 

H
a

b
it

a
t 

a
ss

o
ci

a
ti

o
n

s 

 

Forest-specialist 

 

22.61 

 

16.52 

 

28.71 

 

4.81 

 

0.78 

 

0.70 

 

0.87 

 

26.85 

 

Edge-tolerant forest 

 

25.52 

 

19.70 

 

31.34 

 

7.51 

 

0.77 

 

0.69 

 

0.85 

 

30.49 

 
Edge species 

 
20.09 

 
18.24 

 
21.94 

 
87.30 

 
0.81 

 
0.63 

 
0.99 

 
1.16 

 

Open species 

 

31.78 

 

26.40 

 

37.16 

 

16.69 

 

0.89 

 

0.79 

 

0.99 

 

2.11 

 

Generalist species 

 

36.15 

 

28.69 

 

43.61 

 

10.85 

 

0.79 

 

0.72 

 

0.87 

 

27.58 

          

 

For canopy height and forest cover, trait groups demonstrated markedly 

different response thresholds in richness (Table 3.1). For example, thresholds in group 

richness differed between strata-association groups in relation to both canopy height 

and forest cover (Fig. 3.2). Canopy species had the lowest threshold with canopy 

height (median 9.75 m, C.I 7.05 m-12.46 m), followed by Ground species (25.33 m, 
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C.I 19.94 m–30.74 m) and Understorey species (25.61 m, C.I 21.70 m-29.52 m). The 

change in the magnitude of response (i.e. the change in the steepness of the lines), was 

also markedly different. Canopy species went from a rate for increase of ~1 additional 

species per metre (spp./m) below the threshold to ~0.24 additional spp./m   above the 

threshold, Understorey species ~0.25 spp./m below the threshold to ~0.03 spp./m 

above the threshold and Ground species went from ~0.25 spp./m below the threshold 

to ~0.09 spp./m above (Fig. 3.2).  Richness thresholds of different guilds also varied 

in relation to canopy height (Fig. 3.3). However, group richness thresholds in relation 

to forest cover were consistently around 73-78% of forest cover for feeding guilds 

(with the exception of raptors; Table 3.1). Groups of species associated with different 

habitat types exhibited somewhat differing thresholds in response to canopy height, 

but either did not differ, or did not exhibit thresholds, in relation to forest cover (Table 

3.1).  
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Figure 3.2. Species richness predicted by the segmented models for strata associations. Three 

different groupings of species are reported depending on strata associations and related to both 

mean canopy height and proportion of forest cover. Median occupancy values of each species 

are used. Thresholds displayed are calculated from median values, with confidence intervals 

(shaded) calculated by the segmented package in R. All segmented relationships are ΔAIC>4 

improvement from linear models. 
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Figure 3.3. Species group richness predicted by the best segmented models for nine avian 

feeding guilds. Richness reported in relation to mean canopy height. Median occupancy values 

of each species are used. Thresholds are calculated from median values, with confidence 

intervals (shading) calculated by the segmented package. All segmented relationships are 

ΔAIC>4 improvement from linear models. 
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Figure 3.4. Segmented models for different species of the arboreal frugivore feeding 

guild. Occupancy probability responses to mean canopy height, together with 

predicted richness resulting from all eight species. Vertical lines denote species 95% 

Bayesian credible intervals. Median occupancy values of each species are used for 

predicted richness. Thresholds displayed calculated from median values, with 
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confidence intervals (shading) calculated by the segmented package. All segmented 

relationships are ΔAIC>4 reduction from linear models.  
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Figure 3.5. Segmented model for different species within the arboreal gleaning 

insectivores / frugivores guilds. Occupancy reponses shown in relation to proportion 

of forest, together with predicted richness resulting from all twenty species. 
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Vertical lines denote species 95% Bayesian confidence intervals. Median occupancy 

values of each species are used for predicted richness. Thresholds displayed calculated 

from median values, with confidence intervals (shading) calculated by the segmented 

packaged. Segmented relationships are ΔAIC>4 reduction from linear models.  

 

Species thresholds 

Occupancy changes in relation to environmental covariates were better 

explained by segmented models than linear ones. Associations between species 

occupancy (derived from our model) and forest cover were better explained by 

segmented models with a single breakpoint than by linear models for 139 species (i.e. 

for 139 of 171 species the segmented model yielded a reduction of >ΔAIC=4 

compared to the linear model for the same dataset). The same was true for 166 species 

for canopy height, 129 species for vegetation density, 120 species responses to skew, 

and 151 species for canopy heterogeneity (Table S3.3). Average reductions in model 

AIC were 54.6 for forest cover, 86.4 for canopy height, 33.1 in density, 17.6 in skew 

and 56.6 in canopy heterogeneity.  

Between groups, the average threshold levels in the responses of member 

species (i.e., thresholds in each species response to a given environmental variable, 

taken as the median across all group member species) did not differ significantly 

between the various strata groups, feeding guilds or habitat groups. Separating 

member species of trait groups into further sub-groups depending on whether their 

overall response was positive or negative, or whether they showed increasing or 

decreasing strength of response, did not highlight any significant variation between 

trait-groups or sub-groups (Fig. S3.6; Table S3.5). 
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Thresholds of richness in relation to canopy height differed significantly 

between different trait groups (Fig. 3.3), but were not correlated with the average 

thresholds of the species within those groups (p=0.69). Nor were group richness 

thresholds for forest cover associated with the median values for member species 

thresholds (p=0.51).  

 

Discussion 

Our study demonstrates both variation and similarity in thresholds of species 

responses to changes in forest cover and three dimensional structure - features known 

to shift following tropical forest degradation. While the concepts of tipping points 

(Folke et al., 2004) and non-linear responses (Meron, 2015) to environmental change 

are fairly well established in the ecological literature, most observational studies 

address these on broad scales, such as in the functioning of entire ecosystems (e.g 

Nobre & Bourma, 2009), or changes of overall species richness or community 

integrity (e.g. Banks-Leite et al., 2014). Our data on palaeotropical birds reveal a 

number of tipping-points which appear to be common across multiple trait groups, but 

also highlight idiosyncratic threshold levels for other species groups. We examined 

the responses of almost every species in the bird community individually to discern 

where unexpected responses of particular taxa might otherwise be overlooked by 

grouping species together. Previous assessments that have tracked individual species 

thresholds to their contribution to community-level effects either focussed on very 

simple communities (Dieleman et al., 2015), selected groups of species (Betts et al., 

2010), or used species abundance (Suarez-Robio & Lookingbill, 2016) or naïve 

occupancy (Bergman et al., 2004) as their response measure.  Our study reveals how 
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thresholds in the responses of trait groups manifest, by examining how the differences 

in thresholds between up to 48 different member species contribute to overall group 

thresholds in richness. This multi-level examination allows us to address the efficacy 

of applying the concept of thresholds to species trait groups. 

 

Pervasive non-linear responses to habitat change in the tropical bird community 

We found relationships between most species occupancy and environmental 

variables were better described by models that included non-linear thresholds. Whilst 

previous studies found individual species respond in a non-linear manner to two-

dimensional landscape scale changes (e.g. Betts et al., 2010), we assessed the 

thresholds of responses to structural vegetation metrics, captured in three dimension 

using hyperspectral LiDAR. Thresholds at the species level were most common in 

responses to canopy height (Table 3.1).  A few species also showed response 

thresholds to explicitly three dimensional forest structure characteristics of skew and 

vegetation density. For example, Blue-throated Bee-eater, Merops viridis increased in 

occupancy probability with increased skew (vegetation density skewed towards the 

higher vegetation strata). This was of a greater magnitude once skew increased above 

a threshold of 0.9. Blue-throated Bee-eaters specifically hunt for insects from perches 

on tall trees (del Hoyo et al., 2019), and prefer areas of mixed forest or open habitat 

where vegetation is concentrated to higher canopy strata, since this maximises the area 

of open storey where they predominantly forage. Conversely, other species (e.g. 

Cream-vented Bulbul, Pycnonotus simplex) were only recorded in areas where skew 

was below a threshold of 0.5. This species is described as favouring “lower and middle 

storeys along forest trails, especially in more open areas” (del Hoyo et al., 2019), 
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which suggests that the species tolerates a maximum level of upwards vegetation 

skew. The use of LiDAR data allows us to reveal several relationships like these across 

a whole community for the first time. 

 

Patterns in trait-group responses to forest disturbance 

We found differing threshold levels in the 18 different trait groups we assessed, 

both as member species-averages (Fig. S3.6), and when assessed as whole-group (Fig. 

3.3; Fig 3.4). For example, principally nectarivorous species exhibited lower 

thresholds in their response to canopy height than solely insectivorous guilds, both in 

terms of member species averages (Fig. S3.6), and in the responses of group richness 

derived from cumulative predicted occupancy (Fig. 3.3). Elsewhere on Borneo, Cleary 

et al. (2007) demonstrated terrestrial insectivores to be more strongly negatively 

affected by logging activities than nectarivores and frugivores, a finding associated 

with reduced canopy height. We are able to elaborate on this assertion more 

specifically by demonstrating that increases in canopy height from only 5 m to 10 m 

result in an increase of 2-4 species detected (i.e. 0.4 additional species per metre 

height). Once the canopy reaches 10 m in height, species richness gains are quite 

minor: for example, an average of one nectarivorous bird for the next 50 m of 

additional gain in canopy height (0.02 additional spp/m) (Fig. 3.3).  

Contrary to this pattern, terrestrial insectivores increased at rate of 0.11 

additional spp./m between 5 m and 25 m in canopy height (a much higher threshold 

than nectarivores) after which only an average rate of 0.04 additional spp./m between 

25 m and 60 m was observed (Fig. 3.3). Terrestrial insectivores have previously been 
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found to be largely absent from heavily logged forests (which are characterised by 

reduced canopy height), apparently due to associated changes in microclimate and 

leaf-litter (Stratford & Stouffer, 2012). By contrast, many principally nectarivorous or 

frugivorous species are more abundant in logged forests (Cleary et al., 2010; Edwards 

et al., 2009). Further to these basic ecological patterns, we can reveal specific, 

contrasting cut-off points in canopy height below which terrestrial insectivores and 

nectarivores decline at a more rapid rate. 

Thresholds in the responses of feeding guilds to forest cover were remarkably 

consistent, with eight out of nine feeding guilds showing abrupt changes in response 

to forest cover at between 73% and 79%. Whilst this is higher than most previous 

thresholds in the relationship between forest cover and overall community richness 

(Melo et al., 2009), our higher threshold does not necessarily mean that feeding guilds 

rapidly declined in species numbers once forest cover drops below ~75%. In fact, 

increases in forest cover above 75% were associated with greater increases in species 

richness than below this level. Since a number of forest specialist species across 

several feeding guilds are known to exhibit strong preferences for forest interior 

(Laurance, 2012), we suspect that the added contribution of these species, which are 

absent in degraded or semi-open habitat (Peh et al., 2005), drive this pattern. 

Inspecting the responses of forest specialist and edge tolerant forest species within 

particular feedings guilds demonstrated this was the case. For example, Crested Jay 

(Platylophus galericulatus), is defined as a forest specialist and Red-throated Barbet 

(Psilopogon mystacophanos) as an edge-tolerant forest species (Styring et al., 2007), 

but both are included within the Arboreal foliage-gleaning insectivore/frugivore guild. 

Crested Jay occupancy increased slowly below 75% forest cover to 20% occupancy, 
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but after this threshold, increased more rapidly to 55% occupancy with 100% forest 

cover. Similarly, Red-throated Barbet increased from 20% occupancy with 77% forest 

cover to 50% occupancy with 100% forest cover (Fig. 5).  Similar patterns were found 

for each feeding guild where richness increased above a threshold of 70 – 80%.  

The uncertainty around occupancy responses of individual species means that 

thresholds generated from such interpolated data ought to be regarded with a degree 

of caution. However, when species are accumulated together, such as in trait groups, 

occupancy responses are supported by a greater number of both model samples and 

species, such that inferences regarding abrupt changes in species’ occupancy 

probability (which haven’t been nullified by variation of member species responses), 

are more robust.  

 

Idiosyncratic species responses 

Trait groups are useful in generalising species responses to environmental 

variables. However, relying solely upon trait groups may obscure patterns of 

individual species responses (Laurance, 2012). Similarly, we found trait groups 

provide a useful way of understanding the general patterns of community break-points, 

but member species within groups should not necessarily be assumed to have similar 

thresholds to one another. We found that in species trait groups, both the overall effects 

and thresholds in responses for individual species were sometimes lost. For example, 

arboreal frugivores showed no increase in richness until a canopy height of ~18 

metres. However, our capacity to break down this pattern to the individual species 

level revealed that two species (Little Green Pigeon, Treron olax; Green Broadbill, 
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Calyptomena viridis), were unlikely to be present until the forest canopy was tall, 

exceeding 30 m (Fig. 3.4). The utility of our approach, therefore, is that not only is it 

possible to identify the thresholds associated with the loss or decline of particular 

guilds or functional groups, but also which species responses are most responsible for 

driving these changes. 

 

Detecting species responses in narrow ranges of environmental change 

A number of species demonstrated what would be significant relationships 

with skew over part of the gradient captured, but did not exhibit significant responses 

overall. For example, Blue-headed Pitta (Hydrornis baudii) responded strongly to 

changes in skew between values of 0.6 and 2.5, but show no relationship overall (Fig. 

S3.4). This demonstrates that, where species respond through only part of the overall 

environmental range, it is possible for type II errors to occur, due to the non-

significance of an effect overall. Abrupt increases in response magnitude in our study 

were often associated with entirely flat response curves where the confidence bounds 

for occupancy crossed zero (which includes the possibility a species is absent), 

followed by an increase once certain levels of an environmental metric was reached. 

It seems likely that in these cases, species are often absent in particular habitats until 

niche requirements are met (e.g. Michael et al., 2015; Pica-Roca et al., 2018). Once a 

habitat meets a species minimum requirements and the area is colonised, further 

improvements in suitability are likely to result in an increase of abundance (Fuller, 

2012), reflected by increased occupancy probability in our model. Based on visual 

inspection of occupancy plots, this was the case for 34 species in relation to canopy 

height and 57 species for forest cover.  
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Implications for biodiversity assessment, forest management and conservation 

planning 

Our approach offers an increased capacity for understanding the underlying 

mechanisms of thresholds in community responses to environmental change. We show 

that, while particular trait groups may respond in broadly similar ways overall, 

individual species exhibit idiosyncratic thresholds. For conservation this is of value 

since the most fundamental unit of interest in planning and monitoring has tended to 

be species (Riddle & Hafner, 1999). Indicator species are widely used as proxies of 

overall community health or ecosystem integrity, as they are believed or demonstrated 

to have similar responses to the overall ecological community (Siddig et al., 2016).  

The best indicators should allow continuous assessment by responding to a wide range 

of intensity to stressors (O’Connell et al., 1998), and not bottom out or plateau once 

certain thresholds are reached (Gibbs et al., 1999; Carginan & Villard, 2002). 

However, if selected indicator species have markedly different thresholds compared 

to the overall community, then inappropriate management practices could be 

implemented. 

Understanding how species responses vary within environmental ranges offers 

a significant advantage for management. Identifying where species, trait groups, or 

communities respond at the greatest magnitude within different ranges of the same 

environmental gradient, allows the prioritisation of both conservation and ecological 

restoration efforts based on specific management aims. Response thresholds provide 

a definite management target, as well as the potential to predict the economic 

efficiency of interventions at different points on an environmental gradient.  One clear 
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example of where this approach has already been successfully applied to provide 

management guidance is in Brazil’s Atlantic forest, where Banks-Leite et al. (2014), 

used a threshold in phylogenetic integrity to spatially prioritise cost-effective 

restoration scenarios via a payment for ecosystem service framework. 

Identifying thresholds for particular trait groups is also highly relevant to 

ecological management, since certain species guilds are linked to particular ecosystem 

functions (Hevia et al., 2017). A threshold approach allows the exploration of non-

linear changes in ecosystem functions (e.g. pollination, insectivorey, seed dispersal) 

to be understood in the context of the species groups which provide them. The 

identification of thresholds for trait groups could facilitate the identification of crucial 

points for management intervention to avoid abrupt ecosystem change or restore 

ecosystems most effectively. Our framework allows ecosystem function to be 

characterised, not only in comparison to the thresholds of particular associated trait 

groups, but with reference to particular member species. Not all species within trait 

groups contribute equally to linked ecosystem functions (Maas et al., 2015), meaning 

thresholds of some species may be of more interest to an environmental manager than 

others.  

Utilising a combination of occupancy modelling and LiDAR data to undertake 

threshold assessments for almost all members of an ecological community offers 

numerous advantages for statistical rigour, ecosystem management, biodiversity 

conservation and species protection. Whilst there may still be room to improve the 

methodological approaches for collecting and assessing these data, the utility of such 

an overall framework is clear. Further application of this modelling approach could 

help reduce type II statistical errors, predict the efficiency of conservation investment, 
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identify better suited indicator species, and offer specific insights about otherwise 

overlooked habitat associations, particularly for specialist species.  
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Supplementary information 

 

Table S 3.1. Vegetation strata associations, feeding guilds and habitat associations of the birds 

of lowland Sabah. Strata associations follow Chapman et al., (2018) del Hoyo et al., (2018). 

Feeding guilds and habitat assocations follow Lambert (1992), Styring (2004) and Sheldon 

(2010). Feeding guild and habitat association codes are detailed in Table S3.2. 

English name Latin name Strata  Guild Habitat 

Arctic Warbler Phylloscopus borealis Understorey AFGI ETF 

Ashy Tailorbird Orthotomus ruficeps Understorey AFGI ES 

Asian Brown Flycatcher Muscicapa dauurica Understorey SI ES 

Asian Fairy Bluebird Irena puella Canopy AF ES 

Asian Glossy Starling Aplonis panayensis Canopy AFGI G 

Asian Paradise Flycatcher Terpsiphone paradisi Canopy SI ETF 

Red-eyed Bulbul Pycnonotus brunneus Understorey AFGIF ETF 

Banded Bay Cuckoo Cacomantis sonneratii Understorey AFGI ETF 

Banded Broadbill Eurylaimus javanicus Canopy NA ETF 

Banded Pitta Pitta guajana Ground TI FS 

Banded Woodpecker Picus mineaceus Canopy AFGI FS 

Barred Eagle Owl Bubo sumatranus Canopy NA ETF 

Bar-winged Flycatcher-shrike Hemipus picatus Canopy SI ETF 

Black Eagle Ictinaetus malayensis Ground R OS 

Black Hornbill Anthracoceros malayanus Canopy NA ETF 

Black Magpie Platysmurus leucopterus Understorey SI FS 

Black-and-red Broadbill Cymbirhynchus macrorhynchos Canopy NA OS 

Black-and-yellow Broadbill Eurylaimus ochromalus Canopy NA ETF 

Black-bellied Malkoha Phaenicophaeus diardi Understorey AFGI ETF 

Black-capped Babbler Pellorneum capistratum Ground TI ETF 

Black-headed Bulbul Pycnonotus atriceps Understorey AFGIF ES 

Black-headed Pitta Pitta ussheri Ground TI ETF 

Black-naped Monarch Hypothymis azurea Canopy AFGI ETF 

Black-throated Babbler Stachyris nigricollis Understorey SI ETF 

Black-throated Wren-babbler Turdinus atrigularis Ground TI FS 

Black-winged Flycatcher-shrike Hemipus hirundinaceus Canopy SI ETF 

Banded Kingfisher Lacedo pulchella Ground MIP FS 

Blue-banded Kingfisher Alcedo euryzona Understorey MIP FS 

Blue-banded Pitta Pitta arcuata Ground TI FS 

Blue-crowned Hanging Parrot Loriculus galgulus Canopy NIF ETF 

Blue-eared Barbet Megalaima australis Canopy AF G 

Blue-eared Kingfisher Alcedo meninting Understorey MIP ETF 



105 

 

 

Blue-headed Pitta Pitta baudii Ground TI FS 

Blue-rumped Parrot Psittinus cyanurus Canopy AF FS 

Blue-tailed Bee-eater Merops philippinus Canopy SI OS 

Bold-striped Tit-Babbler Macronous bornensis Understorey AFGI ES 

Bornean Blue Flycatcher Cyornis superbus Understorey SI FS 

Bornean Bristlehead Pityriasis gymnocephala Canopy AFGI FS 

Bornean Ground-cuckoo Carpococcyx radiatus Ground TI FS 

Bornean Wren-Babbler  Ptilocichla leucogrammica Ground TI FS 

Brahminy Kite Haliastur indus Ground R OS 

Bronzed Drongo Dicrurus aeneus Canopy NA ETF 

Brown Barbet Calorhamphus fuliginosus Canopy AFGIF ETF 

Brown Fulvetta Alcippe brunneicauda Canopy AFGIF FS 

Brown-throated Sunbird Anthreptes malacensis Understorey NIF OS 

Buff-necked Woodpecker Meiglyptes tukki Canopy NIF OS 

Buff-rumped Woodpecker Meiglyptes tristis Canopy NIF OS 

Buff-vented Bulbul Iole olivacea Understorey NIF OS 

Bushy-crested Hornbill Anorrhinus galeritus Canopy NA FS 

Cattle Egret Bubulcus ibis Ground TI OS 

Changeable Hawk-eagle Nisaetus cirrhatus Canopy R G 

Checker-throated Woodpecker Picus mentalis Canopy AFGI FS 

Chestnut Munia Lonchura atricapilla Ground NA OS 

Chestnut-backed Scimitar Babbler Pomatorhinus montanus Canopy NA FS 

Chestnut-breasted Malkoha Phaenicophaeus curvirostris Canopy AFGI ETF 

Chestnut-capped Thrush Zoothera interpres Ground TI FS 

Chestnut-naped Forktail Enicurus ruficapillus Ground MIP FS 

Chestnut-necklaced Partridge Arborophila charltonii Ground TIF FS 

Chestnut-rumped Babbler Stachyris maculata Canopy AFGI ETF 

Chestnut-winged Babbler Stachyris erythroptera Understorey AFGI ETF 

Cinammon-rumped Trogon Harpactes orrhophaeus Understorey NA FS 

Collared Kingfisher Todiramphus chloris Ground MIP OS 

Hill Myna Gracula religiosa Understorey AF G 

Cream-vented Bulbul Pycnonotus simplex Understorey AFGIF ES 

Crested Fireback Lophura ignita Ground TIF FS 

Crested Goshawk Accipiter trivirgatus Canopy R ETF 

Crested Jay Platylophus galericulatus Understorey AFGIF FS 

Crested Partridge Rollulus rouloul Ground TIF FS 

Crested Serpent-eagle Spilornis cheela Canopy R G 

Crimson Sunbird Aethopyga siparaja Understorey NIF G 

Crimson-winged Woodpecker Picus puniceus Canopy NA ETF 

Dark-necked Tailorbird Orthotomus atrogularis Understorey AFGI ES 

Dark-sided Flycatcher Muscicapa sibirica Understorey SI ES 

Dark-throated Oriole Oriolus xanthonotus Understorey AFGI ETF 

Diards Trogon Harpactes diardii Understorey NA FS 

Dusky Broadbill Corydon sumatranus Canopy SI ETF 

Dusky Munia  Lonchura fuscans Ground SI ETF 
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Emerald Dove Chalcophaps indica Ground NA ETF 

Ferruginous Babbler Trichastoma bicolor Understorey AFGI FS 

Fiery Minivet Pericrocotus igneus Canopy AFGI ETF 

Finschs Bulbul Alophoixus finschii Understorey AFGIF ES 

Fluffy-backed Tit-babbler Macronous ptilosus Understorey AFGI ETF 

Giant Pitta Pitta caerulea Ground TI FS 

Golden-whiskered Barbet Megalaima chrysopogon Canopy NA ETF 

Great Argus Argusianus argus Ground TIF FS 

Great Slaty Woodpecker Mulleripicus pulverulentus Canopy AFGI FS 

Greater Coucal Centropus sinensis Ground TI OS 

Greater Green Leafbird Chloropsis sonnerati Canopy NIF ETF 

Greater Racquet-tailed Drongo Dicrurus paradiseus Canopy NA ETF 

Green Broadbill Calyptomena viridis Canopy AF FS 

Green Imperial Pigeon Ducula aenea Canopy AF FS 

Green Iora Aegithina viridissima Canopy AFGI ETF 

Grey-and-buff Woodpecker  Hemicircus concretus Canopy AFGI ETF 

Grey-bellied Bulbul Pycnonotus cyaniventris Understorey AFGIF ETF 

Grey-capped Pygmy Woodpecker Dendrocopos canicapillus Canopy AFGI ETF 

Grey-cheeked Bulbul Alophoixus bres Understorey AFGIF FS 

Grey-chested Jungle-Flycatcher  Rhinomyias umbratilis Understorey NA FS 

Grey-headed Babbler Stachyris poliocephala Understorey AFGI FS 

Grey-headed Canary-flycatcher Culicicapa ceylonensis Canopy SI ES 

Grey-rumped Treeswift Hemiprocne longipennis Canopy NA OS 

Hairy-backed Bulbul Tricholestes criniger Understorey AFGIF FS 

Helmeted Hornbill Rhinoplax vigil Understorey NA ETF 

Hooded Pitta Pitta sordida Ground TI ETF 

Horsfields Babbler Malacocincla sepiaria Ground TI ETF 

Indian Cuckoo Cuculus micropterus Canopy NA OS 

Jerdon's Baza Aviceda jerdoni Understorey R ES 

Large Frogmouth Batrachostomus auritus Canopy AFGI FS 

Large Green Pigeon Treron capellei Canopy AF ETF 

Large Woodshrike Tephrodornis gularis Canopy AFGI ETF 

Large-billed Blue Flycatcher Cyornis caerulatus Understorey SI FS 

Lesser Coucal Centropus bengalensis Ground TI OS 

Lesser Cuckooshrike Coracina fimbriata Canopy AFGI ETF 

Lesser Fish-Eagle Ichthyophaga humilis Ground R OS 

Lesser Green Leafbird Chloropsis cyanopogon Canopy NIF ETF 

Little Bronze Cuckoo Chrysococcyx minutillus Canopy AFGI ETF 

Little Egret Egretta garzetta Ground NA OS 

Little Green Pigeon Treron olax Canopy AF ETF 

Little Spiderhunter Arachnothera longirostra Understorey NIF G 

Long-billed Spiderhunter Arachnothera robusta Canopy NA ETF 

Long-tailed Parakeet Psittacula longicauda Canopy AF ETF 

Malayian Eared-nightjar Eurostopodus temminckii Understorey SI ES 

Malaysian Blue Flycatcher Cyornis turcosus Understorey SI ETF 
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Malaysian Hawk-cuckoo Hierococcyx fugax Understorey AFGI ETF 

Mangrove Blue Flycatcher Cyornis rufigastra Understorey SI ETF 

Maroon Woodpecker Blythipicus rubiginosus Canopy NA ETF 

Maroon-breasted Philentoma Philentoma pyrhoptera Understorey SI FS 

Moustached Babbler Malacopteron magnirostre Understorey AFGI ETF 

Moustached Hawk-cuckoo Hierococcyx vagans Understorey AFGI FS 

Narcissus Flycatcher Ficedula narcissina Understorey SI ETF 

Olive-backed Pipit Anthus hodgsoni Ground TI ES 

Olive-backed Sunbird Nectarinia jugularis Understorey NIF OS 

Olive-backed Woodpecker Dinopium rafflesii Canopy NA FS 

Olive-winged Bulbul Pycnonotus plumosus Understorey AFGIF ES 

Orange-backed Woodpecker Reinwardtipicus validus Canopy NA FS 

Orange-bellied Flowerpecker Dicaeum trigonostigma Canopy NIF G 

Orange-breasted Trogon Harpactes oreskios Understorey SI FS 

Oriental Dollarbird Eurystomus orientalis Canopy SI ES 

Oriental Dwarf-kingfisher Ceyx erithaca Understorey NA FS 

Oriental Honey Buzzard Pernis ptilorhyncus Canopy R ES 

Oriental Magpie-Robin Copsychus saularis Ground AFGI OS 

Oriental Pied Hornbill Anthracoceros albirostris Canopy NA OS 

Pale Blue Flycatcher Cyornis unicolor Understorey SI FS 

Pied Fantail Rhipidura javanica Understorey SI ES 

Plain Sunbird Anthreptes simplex Understorey NIF ETF 

Plaintive Cuckoo Cacomantis merulinus Understorey AFGI G 

Puff-backed Bulbul Pycnonotus eutilotus Understorey AFGIF FS 

Purple-naped Sunbird Hypogramma hypogrammicum Understorey NIF ETF 

Purple-throated Sunbird Nectarinia sperata Understorey NIF ETF 

Raffles's Malkoha Phaenicophaeus chlorophaeus Understorey AFGI ETF 

Red-bearded Bee-eater  Nyctyornis amictus Canopy SI FS 

Red-naped Trogon Harpactes kasumba Understorey NA FS 

Red-throated Barbet Megalaima mystacophanos Canopy AFGIF ETF 

Red-throated Sunbird Anthreptes rhodolaemus Understorey NIF ES 

Rhinoceros Hornbill Buceros rhinoceros Canopy NA ETF 

Ruby-cheeked Sunbird Anthreptes singalensis Understorey NIF ES 

Rufous Piculet Sasia abnormis Understorey AFGI ETF 

Rufous Woodpecker Celeus brachyurus Canopy AFGI ETF 

Rufous-bellied Hawk-Eagle Lophotriorchis kienerii Ground R ETF 

Rufous-chested Flycatcher Ficedula dumetoria Understorey SI FS 

Rufous-crowned Babbler Malacopteron magnum Understorey AFGI FS 

Rufous-fronted Babbler Stachyris rufifrons Canopy AFGI ETF 

Rufous-tailed Shama Trichixos pyrropygus Ground AFGI FS 

Rufous-tailed Tailorbird Orthotomus sericeus Understorey AFGI ES 

Rufous-winged Philentoma Philentoma velata Understorey SI FS 

Scaly-crowned Babbler Malacopteron cinereum Understorey AFGI FS 

Scarlet Minivet Pericrocotus flammeus Canopy AFGI ETF 

Scarlet rumped Trogon Harpactes duvaucelii Understorey NA FS 
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Scarlet-breasted Flowerpecker Prionochilus thoracicus Canopy NIF ETF 

Short-tailed Babbler Malacocincla malaccensis Ground TI ETF 

Short-toed Coucal Centropus rectunguis Ground AFGI FS 

Siberian Blue Robin Luscinia cyane Ground TI FS 

Slender-billed Crow Corvus enca Ground AFGIF OS 

Sooty-capped Babbler Malacopteron affine Understorey AFGI ETF 

Spectacled Bulbul Pycnonotus erythropthalmos Understorey AFGIF ETF 

Spotted Dove Stigmatopelia chinensis Ground NA OS 

Spotted Fantail Rhipidura perlata Understorey SI FS 

Square-tailed Drongo-Cuckoo Surniculus lugubris Canopy AFGIF ETF 

Storm's Stork Ciconia stormi Ground NA FS 

Streaked Bulbul Ixos malaccensis Understorey AFGIF ETF 

Streaky-breasted Spiderhunter Arachnothera affinis Understorey NIF FS 

Striped Wren-babbler Kenopia striata Ground TI FS 

Thick-billed Green Pigeon Treron curvirostra Canopy AF ETF 

Thick-billed Spiderhunter Arachnothera crassirostris Canopy NIF ETF 

Tree Sparrow Passer montanus Ground NA OS 

Velvet-fronted Nuthatch Sitta frontalis Canopy NA FS 

Verditer Flycatcher Eumyias thalassinus Canopy SI ETF 

Violet Cuckoo Chrysococcyx xanthorhynchus Canopy AFGI ETF 

Wallace's Hawk-Eagle Nisaetus nanus Canopy R ETF 

Whiskered Treeswift Hemiprocne comata Canopy SI OS 

White-bellied Erpornis  Erpornis zantholeuca Understorey AFGI FS 

White-bellied Munia Lonchura leucogastra Ground TIF OS 

White-bellied Woodpecker Dryocopus javensis Canopy AFGI ETF 

White-breasted Waterhen Amaurornis phoenicurus Ground MIP OS 

White-chested Babbler Trichastoma rostratum Ground TI ES 

White-crowned Forktail Enicurus leschenaulti Ground TI FS 

White-crowned Hornbill Aceros comatus Canopy NA FS 

White-crowned Shama Copsychus stricklandii Understorey AFGI ETF 

Wreathed Hornbill Aceros undulatus Canopy NA ETF 

Yellow-bellied Bulbul Alophoixus phaeocephalus Understorey AFGIF FS 

Yellow-bellied Gerygone Gerygone sulphurea Canopy SI ETF 

Yellow-bellied Prinia  Prinia flaviventris Understorey AFGI OS 

Yellow-breasted Flowerpecker Prionochilus maculatus Canopy AFGIF ETF 

Yellow-crowned Barbet Megalaima henricii Canopy AF ETF 

Yellow-eared Spiderhunter Arachnothera chrysogenys Canopy NIF FS 

Yellow-rumped Flowerpecker Prionochilus xanthopygius Canopy NIF G 

Yellow-vented Bulbul Pycnonotus goiavier Understorey AFGIF G 
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Table S 3.2. Details of feeding guild and habitat association codes used in the study. 

Trait groups follow Styring (2004) and Sheldon (2010). 

AF Arboreal frugivore 

AFGI Arboreal foliage-gleaning insectivore 

AFGIF Arboreal foliage-gleaning insectivore / frugivore 

SI Sallying Insectivore 

TI Terrestrial Insectivore 

TIF Terrestrial Insectivore / Frugivore 

NIF Nectivore / Insectivore / Frugivore 

MIP Miscellaneous Insectivore / Pecivore 

R Raptor 

FS Forest specialist 

ETF Edge-tolerant forest 

OS Open habitat species 

G Generalist 

NA Information Not Available / Not assessed 
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Table S 3.3. Median thresholds points with confidence intervals in relation to mean canopy 

height and canopy hereogeneity.Canopy heterogenity is stardard deviation of canopy height. 

Both metrics calculated from mean LiDAR values within a 50 m radius. Lower 95% 

confidence interval; Lw CI, Upper 95% confidence interval; Up CI. Model ΔAIC denotes the 

reduction in AIC between linear model and segmented model. Negative ΔAIC signifies that 

the linear model out performed the segmented one. G+ denotes whether thresholds were 

associated with a strengthing (increasing gradient G+ = True), or weakening (more negative 

G+ = False) response after the threshold point. 

 
 
 

Species Canopy Height Canopy Heterogeneity 

 

Med Lw 

CI 

Up 

CI 

 ΔAIC G

+ 

Med Lw 

CI 

Up 

CI 

 ΔAIC G

+ 

Arctic Warbler 28 22 34.3 40.7 F 3 3.6 2.2 69.1 F 

Ashy Tailorbird 21.5 14.2 28.5 62.6 F 2.5 6.5 -1.2 -2 F 

Asian Fairy Bluebird 33.9 14.4 43.3 101.9 T 3 5.2 1.1 48.6 T 

Asian Glossy Starling 33.9 17.9 44.9 39.8 T 5.7 7.8 2.8 28.9 F 

Asian Paradise Flycatcher 32.3 16 43.8 9.3 T 3.3 4.9 1.9 13.8 F 

Banded Bay Cuckoo 28.9 20.7 37.9 132.1 F 3 4 1.9 52.9 F 

Banded Broadbill 33.9 24.6 41.2 35.5 F 2.9 4.2 1.7 31.6 F 

Banded Kingfisher 32.3 -40.5 106 78.4 T 3.5 14.7 -7.2 6.3 F 

Banded Pitta 29.4 6.1 45.5 112.8 T 3.2 6.3 0.9 8 F 

Banded Woodpecker 10 5.7 15.3 53.7 F 3.9 8.6 -0.4 6.4 F 

Bar-winged Flycatcher-shrike 26.4 18.4 34 22.7 F 3 3.8 2.1 55.1 F 

Black Hornbill 32.1 0.6 59.5 310.6 T 3.6 8.2 -0.2 0.1 F 

Black Magpie 32.3 19.4 42.7 58.4 F 2.9 5.3 0.9 27.8 F 

Black-and-yellow Broadbill 22.3 5.3 31.9 14.3 T 3.4 6.1 1.1 43.6 T 

Black-bellied Malkoha 10.3 5.9 15.6 7.3 T 5.7 10.4 -0.1 -2 F 

 

Black-capped Babbler 
32.2 12.6 55.7 195.8 T 3.2 5 1.8 6 F 

Black-headed Bulbul 29 12.4 44.2 39.6 T 3.4 6.8 0.6 52.5 T 

Black-headed Pitta 26 12 40.3 352.9 F 3 3.9 2 62.2 F 

Black-naped Monarch 33.9 10.8 60.8 373.7 T 4.3 6.3 2 0.6 F 

Black-winged Flycatcher-shrike 31.2 -3.2 59.8 208.1 T 3.3 5.1 1.7 22 F 

Blue-banded Kingfisher 28.8 9.6 41.4 39.6 F 3 5.5 1 44.4 F 

Blue-banded Pitta 24.7 13.5 32.2 33.3 F 3 4.1 1.9 61.6 F 

Blue-crowned Hanging-parrot 25.4 8.8 45.6 3.8 T 3 4.4 1.8 26.9 F 

Blue-eared Barbet 33.8 20 44.1 20.7 T 2.9 4.1 1.7 20.9 F 
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Blue-eared Kingfisher 31.2 18.6 42.8 148.8 F 3.3 7.1 0 6.5 F 

Blue-headed Pitta 25.2 7.4 39.4 13.8 F 3 6.2 0.4 -0.6 T 

Blue-throated Bee-eater 9.3 5 14.6 14.5 F 4.3 6.1 3 14.9 F 

Bold-striped Tit-babbler 34.9 14.3 67.9 723 T 4.4 5.9 2.5 3.1 F 

Bornean Blue Flycatcher 22.5 8.7 31.5 62.6 F 3.4 6.1 1.3 29 F 

Bornean Bristlehead 27.3 16.5 36.9 61 F 3.1 4.6 1.8 76.5 F 

Bornean Ground-cuckoo 35 4.7 62 58 T 3.2 7.3 -0.3 50.5 T 

Bornean Wren-babbler 15.3 3.2 35.4 157.6 T 3.4 6 0.9 343 T 

Bronzed Drongo 23.4 16.3 30.7 88.5 F 3.4 5.6 1.3 173 F 

Brown Barbet 29 8.8 41.5 67.8 T 3.1 6.7 0.5 19.1 T 

Brown Flycatcher 34.6 18.7 57.8 38.7 T 3 5 1.3 5.5 F 

Brown Fulvetta 11.4 4.6 31.2 109.7 F 3.2 5.6 1 106 F 

Brown-throated Sunbird 31.9 5.4 51.4 205.2 T 3.2 5.6 1.5 5.2 F 

Buff-rumped Woodpecker 35.2 21.4 53.5 78.1 T 3 4.2 1.9 10 F 

Buff-vented Bulbul 22.9 6.7 32.3 58.4 F 3.2 5.2 1.4 176 F 

Bushy-crested Hornbill 34 18.2 47.2 14 T 3 5.2 0.7 21.6 T 

Checker-throated Woodpecker 22.7 11.4 31.9 17.4 T 3.1 4.5 1.7 77.3 T 

Chestnut Munia 22.9 8.5 33.5 16.6 T 2.7 4.7 0.9 38 T 

Chestnut-backed Scimitar-babbler 33.9 19 45.9 130.6 T 2.8 3.9 1.8 36.5 T 

Chestnut-breasted Malkoha 27.9 6.3 42.2 32.8 F 3.3 6.6 0.5 81.1 F 

Chestnut-naped Forktail 32.3 0.9 56.5 54.6 T 3.4 11.1 -3 14.3 T 

Chestnut-necklaced Partridge 20.2 7.9 26 53.4 F 3.2 4.6 2.1 63.8 F 

Chestnut-rumped Babbler 26.1 6.9 41.8 23.1 F 3.2 5.4 1.4 77.5 F 

Chestnut-winged Babbler 35.2 8.2 70.9 346 T 4.4 6.7 1.7 3.5 F 

Collared Kingfisher 31.7 16 45.7 55.9 T 3 4.4 1.7 10.3 F 

Cream-vented Bulbul 24.6 4.8 41.6 154.6 T 3.8 6.3 1.4 244 T 

Crested Fireback 29.1 17.2 40.4 48.1 T 3.2 5 1.6 111 T 

Crested Goshawk 21.4 0.7 44.3 -3.3 T 3.3 7.1 0 131 F 

Crested Jay 34 26 40 34.7 F 3 3.9 2 37.3 F 

Crested Serpent-eagle 11.2 6.9 20.7 155.4 F 3.3 5 1.8 304 F 

Crimson Sunbird 25.2 17.6 32 22.3 F 3 4 2.2 41.1 F 

Crimson-winged Woodpecker 25.6 12 37.5 0.5 T 3 4.4 1.8 26.2 F 

Dark-necked Tailorbird 33.9 18.6 42.9 41.7 F 3 5.4 0.9 16 F 

Dark-sided Flycatcher 31.2 13.1 42.5 206.4 F 3.2 6.1 1.2 71.4 F 

Dark-throated Oriole 33.9 21.6 42.7 4.7 F 3 4.1 1.8 30.2 F 

Diards Trogon 31.5 19 42.9 14.3 F 2.9 4.2 1.6 33.9 F 

Drongo Cuckoo 25.6 20.3 32.7 64.3 F 3 4.2 2 81 F 

Dusky Broadbill 9.8 4.7 14.7 197.9 F 3.4 4.7 2.1 295 F 

Dusky Munia 25.3 15.5 34.5 52.6 F 3 3.7 2.2 45.6 F 

Emerald Dove 28.2 20.1 35.6 44.8 T 3.2 4.5 2 90 T 

Ferruginous Babbler 25.5 15.1 33.8 58.2 F 3.1 4.3 1.9 122 F 

Fiery Minivet 21.2 10.1 27.8 49.7 F 3.2 4.2 2.2 111 F 

Finschs Bulbul 26.6 18.8 34.3 95.2 T 2.8 3.7 2 56.8 T 

Fluffy-backed Tit-babbler 9.9 8.1 19.1 12.8 F 3.2 4.2 2.3 40.6 F 

Golden-bellied Gerygone 26.5 8.5 40.6 34 T 3.1 4.4 2.1 24.9 F 
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Gold-whiskered Barbet 31.5 8.2 53.5 239.5 T 3.6 7.6 0.1 -2.5 F 

Great Argus 27.3 5.3 50.8 95.3 T 3 7.6 -0.6 -1.6 F 

Great Slaty Woodpecker 24.6 13.8 33.3 96.3 F 3.7 6.3 1.1 220 F 

Greater Coucal 34 17.7 52.2 199.4 T 3 4.4 1.8 5.1 F 

Greater Green Leafbird 25.3 7.4 36.6 61.9 F 3.2 6.6 0.9 12.3 F 

Greater Racket-tailed Drongo 28.7 15.5 39.9 11.5 T 2.8 4.1 1.6 38.4 T 

Green Broadbill 34 21.2 46.9 57.7 T 3 4.4 1.5 8.7 F 

Green Imperial Pigeon 33.9 20 44.6 34.5 T 3 4.2 1.7 15.1 F 

Green Iora 25.4 19 32.2 88.7 F 3.2 4.6 1.8 130 F 

Grey Wagtail 25.6 18.3 37.2 12.2 F 3 4 2 29.7 F 

Grey-and-buff Woodpecker 10.2 6.1 17.8 61.2 F 3.2 4.8 1.8 209 F 

Grey-bellied Bulbul 25.3 14.5 35.2 67.7 T 3.2 4.2 2.2 143 T 

Grey-cheeked Bulbul 25.3 7 36 11.3 T 3.1 5.9 1 -3.4 T 

Grey-chested Jungle-flycatcher 34.7 23.8 50.6 35.6 T 3.1 4.3 2 7.6 F 

Grey-headed Babbler 31.7 10.3 48.4 44.6 F 3 7.1 -0.7 19.1 F 

Grey-headed Canary-flycatcher 25.6 12.2 34.4 29.8 F 3 3.8 1.9 77.8 F 

Grey-rumped Treeswift 32.5 9.6 47.4 213.1 T 3.3 5.5 1.6 6.1 F 

Hairy-backed Bulbul 25.4 7.3 41.4 26.9 T 3 4.1 2.1 16.1 F 

Helmeted Hornbill 25 4.3 41.5 621.6 T 3 5.4 1.1 48 T 

Hill Myna 25.3 10 35.2 11.9 F 3.1 5.4 1.2 35 F 

Hooded Pitta 34.1 25.1 41.4 62.5 F 3 4.2 1.8 36.7 F 

Horsfields Babbler 21.7 7.3 33.2 10.5 F 3.8 8.1 0.5 12 F 

Large Green Pigeon 25.3 4.6 39.1 207.8 T 3.6 5.9 1.4 241 T 

Large Woodshrike 35.5 19 66.2 232.1 T 4.4 6.8 1.9 -1.1 F 

Lesser Coucal 21 6.4 30.8 44.6 F 3.4 5.5 1.9 179 F 

Lesser Green Leafbird 34 15.5 44.3 18.7 F 5.4 7.2 2.8 71.2 F 

Little Egret 28.8 21.2 36 81.5 F 3 3.9 2.1 79.5 F 

Little Green Pigeon 35.6 16.6 68 332.3 T 4.4 6.2 1.9 2.5 F 

Little Spiderhunter 26.5 14.5 37.7 129.1 F 3 4.1 1.9 56.1 F 

Long-billed Spiderhunter 31.5 8.2 43.6 8.6 T 4.2 6.6 1.7 16.5 F 

Long-tailed Parakeet 28 21.8 35 63.3 F 3 3.8 2.1 62.1 F 

Malaysian Blue Flycatcher 34.4 25.8 41.7 14.4 F 3 3.8 2.1 35.6 F 

Maroon Woodpecker 14 5.3 31.6 151.6 F 3.1 4.8 1.6 193 F 

Maroon-breasted Philentoma 33.9 10 56.5 97.5 T 4.4 11.6 -1.3 -3.1 F 

Moustached Babbler 25.3 15.4 35.4 18.8 F 3 4.1 2 62.1 F 

Olive-backed Woodpecker 10.3 4.4 19.9 244.4 T 3.5 5.3 1.8 294 T 

Olive-winged Bulbul 25.4 16.2 33 131.7 F 3.2 4.5 1.9 116 F 

Orange-backed Woodpecker 25 9.2 34.3 2.2 F 3 4.3 1.8 56.1 F 

Orange-bellied Flowerpecker 34.2 20.5 47.4 7.7 T 3 4.6 1.7 14.7 F 

Oriental Dwarf Kingfisher 31.8 11.5 45.7 37.5 T 4.4 6.5 2.2 13.1 F 

Oriental Honey Buzzard 29.3 -0.2 51.3 16.9 F 3.6 10.3 -1.5 4.2 T 

Oriental Magpie Robin 28.5 13.2 42.3 1.9 F 3 4.7 1.6 34.4 F 

Pied Fantail 31.1 10.9 45.4 311.4 F 3.2 5.6 1.8 13.7 T 

Plain Sunbird 25.4 20.4 31.9 34.6 F 3 3.7 2.2 52.2 F 

Plaintive Cuckoo 34.2 27.2 40.9 8.7 F 2.9 3.9 2 22.9 F 
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Puff-backed Bulbul 25.3 15.2 32.6 34.2 F 3.1 5.7 0.6 9.9 F 

Purple-naped Sunbird 15.6 3.8 34.7 18.2 F 3 6.6 -0.4 2.2 T 

Pygmy White-eye 33.1 -15.1 78.3 144.9 T 3.4 11.9 -5 49.5 T 

Raffless Malkoha 33.2 12.9 46.7 30.3 F 3 4 2 40.2 F 

Red-bearded Bee-eater 28.8 5.2 45 53.5 F 3 9.6 -1.5 13.3 F 

Red-billed Malkoha 22.9 4.8 36.4 50.2 F 3.2 7.6 -0.8 3.7 F 

Red-eyed Bulbul 24 12.4 30.5 24.2 F 3 4.1 1.8 57.8 F 

Red-naped Trogon 34.1 20.5 43.7 3.3 F 3 4 1.9 33.7 F 

Red-throated Barbet 34.1 26.5 41.1 4.5 F 3 3.9 2 28.9 F 

Red-throated Sunbird 32.7 16.3 43.9 17.9 F 3.2 4.4 2 17.9 T 

Rhinoceros Hornbill 26.6 20.6 35.6 20 F 3 3.8 2.2 51.8 F 

Ruby-cheeked Sunbird 33.9 22.7 42.2 25.4 F 3 4.3 1.7 37.9 F 

Rufous Piculet 9.4 6.4 13.7 18.4 F 3.2 4 2.3 99.1 F 

Rufous Woodpecker 10.6 6 18.8 37.2 F 3.8 7 1.4 20.9 F 

Rufous-chested Flycatcher 32 11.9 54.2 128.8 T 4.3 9.2 -0.7 -3.3 F 

Rufous-crowned Babbler 33.9 19.2 43.6 4.5 T 3 4.1 2 18.1 F 

Rufous-fronted Babbler 25.4 5.6 42.5 41.8 F 3.1 5.9 0.1 2.9 F 

Rufous-tailed Shama 31.2 4.3 46.2 266.8 T 3 6.5 0.1 16.9 T 

Rufous-tailed Tailorbird 34.3 20.7 44.3 22.1 F 3.8 5.6 2.1 19.8 T 

Rufous-winged Philentoma 23.1 5.9 35.6 101.8 F 3.1 5.8 1.1 198 F 

Scaly-crowned Babbler 22.7 16.8 30.3 57 F 3.2 4.7 1.8 66.8 F 

Scarlet Minivet 20.9 -2.2 44.3 379.1 F 3 4.8 1.2 58.9 F 

Scarlet-rumped Trogon 28.4 13.8 40.8 22.3 F 3 5.6 0.6 4.1 T 

Short-tailed Babbler 31.8 16.4 45.1 14.9 T 3.8 5.6 2.1 12 F 

Short-toed Coucal 25.2 9.5 33.4 17.7 F 4.3 8.5 1.3 2.3 F 

Slender-billed Crow 29.1 3.6 48.5 32.1 F 3.1 7.9 -0.8 53.2 F 

Sooty-capped Babbler 28 24 32.5 65.4 F 3 3.7 2.2 46.4 F 

Spectacled Bulbul 22.8 5.5 34.8 96 F 3.2 5.7 1 292 F 

Spectacled Spiderhunter 33.9 24.9 40.2 40.4 T 2.8 3.7 1.9 40.9 T 

Spotted Dove 9.5 2.7 18.8 193 T 3 3.9 2.2 116 T 

Spotted Fantail 28.8 18.7 41.2 38 F 2.8 3.9 1.8 30.6 F 

Stork-billed Kingfisher 26.3 18.4 34.9 87.8 T 2.8 3.7 1.9 25.6 T 

Streaked Bulbul 28.2 21 34.6 72.8 F 3 3.9 2.1 68.8 F 

Streaky-breasted Spiderhunter 10 6.2 16.6 62.7 F 3.5 5.4 2 162 F 

Striped Wren-babbler 34 22.3 44.9 10 T 3 4.5 1.5 8.9 F 

Thick-billed Green-pigeon 29.4 16.8 43.1 63.8 F 3.2 5.9 1.3 -3.3 T 

Tree Sparrow 29.3 6.8 46.6 240.5 T 3.2 7 0.5 69.4 T 

Van Hassalts Sunbird 31.5 14 42.7 40 F 3 5 1.3 68.9 F 

Velvet fronted Nuthatch 28.5 5.6 46.3 30.6 T 3 4.6 1.6 21.9 F 

Verditer Flycatcher 26.4 19.4 33.2 21.1 F 3 3.7 2.3 65.6 F 

Violet Cuckoo 25.4 17.9 33.5 78.4 F 3 4.5 1.6 72.5 F 

Wallacess Hawk-Eagle 27.9 20.3 36.6 49.7 F 2.9 4 1.8 59.2 F 

Whiskered Treeswift 25.4 17.6 33.3 66.2 F 3.1 5.5 0.7 27.9 F 

White-bellied Erpornis 32.6 21.4 43.4 133 T 4.4 5.9 3 2.8 F 

White-bellied Woodpecker 27.3 6.5 48.4 63.9 F 3.1 7.3 -0.3 35.9 F 
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White-chested Babbler 28.1 22 36.1 48.1 F 2.9 3.8 2 47.9 F 

White-crowned Forktail 25.3 18.7 33.6 44.9 F 3 4.2 1.7 37.4 F 

White-crowned Shama 21.9 8.1 31.8 38.5 F 3 4 2.1 105 F 

Wreathed Hornbill 34 18.1 60.5 701.5 T 3.5 5.7 2.1 2.7 F 

Yellow-bellied Bulbul 25.6 13 40 26.3 F 3 4.7 1.2 36.3 F 

Yellow-bellied Prinia 31.5 10.4 45.7 53.6 F 2.9 4.3 1.5 13.2 F 

Yellow-breasted Flowerpecker 33.9 13.3 46.7 145.6 T 3.3 4.8 1.9 117 T 

Yellow-crowned Barbet 26 10.8 38.1 1.6 F 3.2 6.6 0.9 3.4 F 

Yellow-eared Spiderhunter 15.9 6.6 28.7 89.5 F 3.3 5.1 1.7 252 F 

Yellow-rumped Flowerpecker 32.3 21.2 39.8 36.9 F 3 5.5 0.7 13.3 F 

Yellow-vented Bulbul 25.5 16 32.7 35.3 F 3 3.7 2.2 72.1 F 

Yellow-vented Flowerpecker 34 21.6 41 53.7 F 3 3.8 2.1 50 F 

Zebra Dove 31.6 14.1 47.4 10.8 T 3.2 4.7 2.2 14 F 
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Table S 3.4. Median thresholds points with confidence intervals in relation to density height 

and skew. Both metrics calculated from mean LiDAR values within a 50 m radius. Lower 95% 

confidence interval; Lw CI, Upper 95% confidence interval; Up CI. Model ΔAIC denotes the 

reduction in AIC between linear model and segmented model. Negative ΔAIC signifies that 

the linear model out performed the segmented one. G+ denotes whether thresholds were 

associated with a strengthing (increasing gradient G+ = True), or weakening (more negative 

G+ = False) response after the threshold point. 

 

 

Species 
Density 

 

Skew 

 

Med 
Lw 

CI 

Up 

CI 

 -Δ 

AIC 
G+ Med 

Lw 

CI 

Up 

CI 

- Δ 

AIC 
G+ 

Arctic Warbler -0.1 0 -0.2 20.6 T 4 5.8 2 10.8 F 

Ashy Tailorbird 0 0.2 -0.2 67.4 F 6 8.2 4 11.5 F 

Asian Fairy Bluebird 0 0.3 -0.3 68.3 F 2 5 0.5 12.6 T 

Asian Glossy Starling 0 0.4 -0.3 4.7 F 3.6 8 -0.3 -1.3 T 

Asian Paradise Flycatcher 0 0.2 -0.2 28.4 T 4 6.5 1 9.1 F 

Banded Bay Cuckoo -0.1 0.2 -0.4 50 T 1.8 2.9 0.7 26.6 F 

Banded Broadbill 0 0.4 -0.4 65.9 T 5.2 9.1 0.8 11 F 

Banded Kingfisher 0 1.5 -1.4 12 T 4.5 18.2 -8.6 0.5 F 

Banded Pitta 0 0.4 -0.4 35 T 4.4 8.4 0.2 7.1 F 

Banded Woodpecker 0 0.5 -0.5 67.9 F 6.7 9.8 3.7 13.2 F 

Bar-winged Flycatcher-shrike -0.1 0.3 -0.3 14.7 T 1.8 2.8 0.8 7.2 F 

Black Hornbill 0 0.4 -0.4 34.5 T 4.9 8.4 -0.2 3.9 F 

Black Magpie 0 0.5 -0.4 49.3 T 4.8 9.6 -0.6 12.5 F 

Black-and-yellow Broadbill 0 0.3 -0.4 2.8 T 3.6 7.8 0.2 6.8 F 

Black-bellied Malkoha 0 0.2 -0.3 47.7 F 2.1 5 -0.3 6.8 T 

Black-capped Babbler 0 0.3 -0.3 93.7 T 4.6 7.1 2.3 6.6 F 

Black-headed Bulbul 0.1 0.5 -0.3 -2.6 T 3.3 7.1 -0.5 2.3 T 

Black-headed Pitta -0.1 0.1 -0.2 41.8 T 1.8 2.5 1.1 39.4 F 

Black-naped Monarch 0 0.3 -0.3 151.8 T 5.1 7.7 2.1 2.3 F 

Black-winged Flycatcher-shrike 0 0.3 -0.3 71.3 T 4.5 8.1 1.1 4.2 F 

Blue-banded Kingfisher 0 0.5 -0.4 6.3 T 4 7.6 -0.1 9.8 F 

Blue-banded Pitta 0.2 0.6 -0.3 -1.7 F 6 9.3 0.6 -0.1 F 

Blue-crowned Hanging-parrot -0.1 0.2 -0.5 30.6 T 1.8 3.7 0.5 5.2 F 

Blue-eared Barbet 0 0.3 -0.4 66.2 T 4.5 7 1.5 16.5 F 

Blue-eared Kingfisher 0 0.4 -0.3 35.8 F 5 9 -0.1 -3.6 F 
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Blue-headed Pitta 0 0.3 -0.3 61.5 F 5.6 8.9 1 19.9 T 

Blue-throated Bee-eater 0 0.4 -0.3 18.1 F 6.7 10.4 2.4 169.1 T 

Bold-striped Tit-babbler 0 0.2 -0.2 50.9 T 4.5 6.8 2.4 -0.1 F 

Bornean Blue Flycatcher 0 0.3 -0.3 32.2 F 5.5 9.1 0.7 2.3 F 

Bornean Bristlehead -0.1 0.3 -0.3 8.5 T 2.1 5.9 0.4 7.8 F 

Bornean Ground-cuckoo 0.1 0.6 -0.5 2.9 F 2.3 6.9 -1.4 0.2 T 

Bornean Wren-babbler 0.1 0.4 -0.3 -0.8 F 1.8 4.5 -0.5 75.8 T 

Bronzed Drongo -0.1 0.2 -0.3 11.6 F 7.2 11.2 2.9 114 F 

Brown Barbet 0 0.4 -0.4 78.2 F 3.6 8.5 -0.1 6.4 T 

Brown Flycatcher -0.1 0.3 -0.5 4.4 T 4.3 9.7 1.1 -1.9 F 

Brown Fulvetta 0 0.3 -0.2 2.6 T 1.9 3.5 0.5 54.5 F 

Brown-throated Sunbird 0 0.4 -0.3 91.2 T 4.6 7.6 1 7.1 F 

Buff-rumped Woodpecker -0.1 0.2 -0.4 28.2 T 4.1 6.6 1.5 1.4 F 

Buff-vented Bulbul 0 0.3 -0.3 -1.9 T 1.9 3.5 0.2 50 F 

Bushy-crested Hornbill 0 0.6 -0.6 68.1 F 4.5 10.5 -1.1 4 T 

Checker-throated Woodpecker 0.4 0.6 0.2 -1.4 F 3.4 7.4 -0.6 4.9 T 

Chestnut Munia 0 0.4 -0.3 1.4 F 2.6 6.4 -0.8 1.7 T 

Chestnut-backed Scimitar-babbler 0 0.2 -0.2 60.4 F 5.4 8 1.6 28.4 T 

Chestnut-breasted Malkoha 0 0.4 -0.4 43.1 F 2.2 5.9 0 32.6 F 

Chestnut-naped Forktail 0 0.7 -0.6 31 F 3.9 11.1 -2.8 5.2 T 

Chestnut-necklaced Partridge -0.1 0 -0.3 13 F 7.1 9.8 3.8 22.9 F 

Chestnut-rumped Babbler 0 0.3 -0.4 12.6 T 2.1 4.8 0.2 19.1 F 

Chestnut-winged Babbler 0 0.4 -0.3 31.3 T 4.4 8.1 1.1 -1.3 F 

Collared Kingfisher 0 0.3 -0.3 63.5 T 4.4 6.9 1.1 12.5 F 

Cream-vented Bulbul 0.1 0.4 -0.3 -0.3 F 1.6 3.5 -0.3 75.7 T 

Crested Fireback 0.1 0.5 -0.2 -0.5 F 3.4 5.7 0.2 18.2 T 

Crested Goshawk 0.2 0.7 -0.4 25.3 T 3.4 8.9 -1.6 2.2 F 

Crested Jay -0.1 0.3 -0.5 40.6 T 3.9 6.7 1.1 7.8 F 

Crested Serpent-eagle 0.1 0.3 -0.2 -0.9 T 6.5 8.5 0.9 92.8 F 

Crimson Sunbird 0.2 0.5 -0.2 -2.7 F 6.3 8.9 2.7 -0.2 T 

Crimson-winged Woodpecker -0.1 0.3 -0.4 18.4 T 3.6 6.5 0.4 2.4 F 

Dark-necked Tailorbird 0 0.3 -0.3 373.7 T 6.2 9.9 0.9 -2.2 F 

Dark-sided Flycatcher 0 0.4 -0.3 21 T 2.1 5.1 0.5 24.2 F 

Dark-throated Oriole -0.1 0.3 -0.5 26.4 T 4 8 0.7 5.7 F 

Diards Trogon 0 0.3 -0.3 69.4 T 4.6 7.6 0.9 26.1 F 

Drongo Cuckoo -0.1 0 -0.2 0.8 F 6.1 9.1 1 6.1 F 

Dusky Broadbill 0.1 0.3 -0.1 NA F 1.7 2.7 0.5 71.2 F 

Dusky Munia -0.2 0.1 -0.4 58.8 T 4 6 1.6 15.9 F 

Emerald Dove -0.1 0.1 -0.2 -2.4 F 3.2 5.7 0.4 5.7 T 

Ferruginous Babbler 0 0.4 -0.3 2.7 T 1.9 3.6 0.4 20 F 

Fiery Minivet -0.1 0 -0.3 -0.9 F 1.2 2.8 0.4 19.5 F 

Finschs Bulbul -0.1 0 -0.2 58.2 F 4 6 1.2 24.6 T 

Fluffy-backed Tit-babbler -0.1 0.3 -0.3 3.2 F 6.6 9.6 2.8 4 T 

Golden-bellied Gerygone -0.1 0.2 -0.4 23.9 T 3.8 6.6 0.6 -0.7 F 

Gold-whiskered Barbet 0 0.3 -0.3 86.6 T 5.3 8.7 0.9 3.5 F 
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Great Argus 0 0.3 -0.4 54.1 T 5.5 8.5 0.8 -1 F 

Great Slaty Woodpecker -0.1 0.2 -0.3 0.6 F 6.8 12.5 0.1 142 F 

Greater Coucal 0 0.2 -0.3 52.6 T 4.4 6.7 2 5.2 F 

Greater Green Leafbird 0 0.4 -0.4 46.1 F 3.8 7.7 0.1 -1.9 T 

Greater Racket-tailed Drongo 0 0.3 -0.3 53.6 F 4.5 7.5 0.7 23.7 T 

Green Broadbill -0.1 0.3 -0.4 18.5 T 4.2 7.3 1.2 3.3 F 

Green Imperial Pigeon -0.1 0.2 -0.4 38.7 T 4.2 6.8 1.4 6.5 F 

Green Iora -0.1 0.1 -0.3 NA F 3.8 7.1 0.3 25 F 

Grey Wagtail -0.1 0.2 -0.5 0.6 T 7.3 10.2 3.1 -2.8 F 

Grey-and-buff Woodpecker 0.1 0.3 -0.3 -1.2 T 1.7 3.2 0.3 57.8 F 

Grey-bellied Bulbul -0.1 0 -0.2 3.9 F 1.1 2.1 0.4 25.1 T 

Grey-cheeked Bulbul -0.1 0.2 -0.3 51.8 F 2.1 5.5 0.5 5.2 T 

Grey-chested Jungle-flycatcher -0.1 0.2 -0.4 18.1 T 4 6.6 1 0 F 

Grey-headed Babbler 0 0.7 -0.7 28.1 T 4.3 11.2 -1.3 14.6 F 

Grey-headed Canary-flycatcher -0.1 0.2 -0.3 8.3 T 1.7 2.7 0.7 14 F 

Grey-rumped Treeswift 0 0.2 -0.2 62.2 T 4.4 7.4 1 10.9 F 

Hairy-backed Bulbul -0.1 0.2 -0.3 42.4 T 4 6.3 1 10.4 F 

Helmeted Hornbill 0 0.2 -0.3 32.1 F 2 3.5 0.7 36.9 T 

Hill Myna 0 0.3 -0.3 1.2 F 5.8 9 0.6 -0.5 T 

Hooded Pitta -0.1 0.2 -0.5 62.1 T 1.9 3.6 0.7 6.8 F 

Horsfields Babbler 0 0.3 -0.4 17.8 F 6.4 10.2 0.2 12 F 

Large Green Pigeon 0.1 0.4 -0.3 -0.5 F 1.8 3.8 0.1 33.5 T 

Large Woodshrike 0 0.3 -0.3 16.6 T 4.4 7.9 0.9 -2.5 F 

Lesser Coucal 0.1 0.5 -0.3 -1.2 F 3.6 7.1 0 93.5 F 

Lesser Green Leafbird 0 0.3 -0.3 9.3 F 1.4 3.1 0.1 24.8 F 

Little Egret -0.1 0 -0.3 24.3 T 1.7 2.5 0.5 18.8 F 

Little Green Pigeon 0 0.2 -0.3 21.4 T 4.4 7.2 1.5 -1.7 F 

Little Spiderhunter -0.1 0.2 -0.3 46.3 T 1.9 2.8 0.9 26.5 F 

Long-billed Spiderhunter 0 0.5 -0.4 4.4 F 4.2 9.1 0.1 46.7 T 

Long-tailed Parakeet -0.1 0 -0.3 43 T 1.8 2.8 0.7 18.4 F 

Malaysian Blue Flycatcher -0.1 0.2 -0.5 29.9 T 3.8 7.4 1 4 F 

Maroon Woodpecker 0 0.3 -0.2 2.6 T 1.9 3.1 0.4 61 F 

Maroon-breasted Philentoma 0 0.4 -0.3 31.9 T 3.2 8.4 -0.7 -1.9 F 

Moustached Babbler -0.1 0.2 -0.4 10.4 T 1.8 3.3 0.7 2.1 F 

Olive-backed Woodpecker 0.1 0.3 -0.2 0 F 1.7 3.3 0.1 33.3 T 

Olive-winged Bulbul -0.1 0 -0.2 0.9 T 5.7 9.2 0.7 22.5 F 

Orange-backed Woodpecker 0.2 0.6 -0.3 -0.1 T 3.8 7 0.3 -0.6 F 

Orange-bellied Flowerpecker -0.1 0.2 -0.4 11.8 T 4.4 8.5 1.9 0.4 F 

Oriental Dwarf Kingfisher 0 0.3 -0.4 0.3 T 4.3 7.4 0.6 1.5 T 

Oriental Honey Buzzard 0 0.6 -0.5 23.9 F 3.3 9.2 -2.8 1.1 T 

Oriental Magpie Robin -0.1 0.3 -0.4 24.2 T 3.6 6.7 0.5 4.4 F 

Pied Fantail 0 0.2 -0.2 60.9 F 5.2 7.5 1.9 12.8 T 

Plain Sunbird -0.1 0.2 -0.5 33.1 T 1.8 4.1 0.6 7.4 F 

Plaintive Cuckoo -0.1 0.2 -0.4 29.3 T 4 6.9 1.6 7.2 F 

Puff-backed Bulbul 0 0.3 -0.3 8.4 T 4.8 9.2 0.1 10.2 T 
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Purple-naped Sunbird 0 0.2 -0.3 73 F 1.9 4 0.5 4.1 T 

Pygmy White-eye 0 1 -0.9 9.9 F 2.2 10.3 -5.5 6.1 T 

Raffless Malkoha -0.2 0.1 -0.4 72.8 T 4 6 1 14.8 F 

Red-bearded Bee-eater 0 0.8 -0.7 8.8 T 4.5 11.2 -3.3 8.6 F 

Red-billed Malkoha 0 0.6 -0.5 38.6 F 6.2 11.2 -1.6 18.5 T 

Red-eyed Bulbul 0 0.4 -0.2 -2.6 T 3.9 7.2 0.5 1.7 F 

Red-naped Trogon -0.1 0.3 -0.5 20.9 T 4 7.4 0.5 2.3 F 

Red-throated Barbet -0.1 0.3 -0.5 61.4 T 4 6.2 1.9 12.2 F 

Red-throated Sunbird 0 0.2 -0.2 37.8 F 4.4 7 1.7 8.5 T 

Rhinoceros Hornbill -0.1 0.2 -0.5 24.4 T 3.9 6.2 1 3.2 F 

Ruby-cheeked Sunbird -0.1 0.3 -0.5 51.9 T 4 8.1 0.6 11.5 F 

Rufous Piculet -0.1 0.1 -0.3 0.4 T 1.1 2.1 0.2 12.5 F 

Rufous Woodpecker 0 0.4 -0.4 37.3 F 6.6 9.9 3.2 21 F 

Rufous-chested Flycatcher 0 0.4 -0.3 64.3 T 5.5 9.8 -0.3 -2 F 

Rufous-crowned Babbler -0.1 0.2 -0.4 17.5 T 4.2 7.4 1.9 0.3 F 

Rufous-fronted Babbler 0 0.4 -0.4 38.2 F 3.1 8.2 -0.1 33.8 T 

Rufous-tailed Shama 0 0.2 -0.3 41.9 F 2 3.4 0.7 28.2 T 

Rufous-tailed Tailorbird 0 0.2 -0.2 22.6 F 5.1 7.5 1.4 7.4 T 

Rufous-winged Philentoma 0 0.3 -0.3 -1.8 T 3 7.6 0.3 48 F 

Scaly-crowned Babbler -0.1 0.1 -0.3 16.8 F 6.7 10.1 3.1 12.1 F 

Scarlet Minivet 0 0.2 -0.2 30.9 T 1.9 3 0.7 37.3 F 

Scarlet-rumped Trogon 0 0.2 -0.2 40.8 F 5.4 7.9 1.3 18.3 T 

Short-tailed Babbler -0.1 0.2 -0.4 0.5 T 4.1 7.8 1.1 -3.5 T 

Short-toed Coucal 0 0.4 -0.3 54.1 F 4 8.5 0.2 2.6 T 

Slender-billed Crow 0 0.7 -0.6 23.6 T 4.4 12.2 -2.2 14.3 F 

Sooty-capped Babbler -0.1 0 -0.3 56.5 T 3.8 5.6 1.2 16.1 F 

Spectacled Bulbul 0.1 0.4 -0.3 -1.4 T 2.2 6.3 -0.5 93.4 F 

Spectacled Spiderhunter -0.1 0.2 -0.3 67.3 F 4.5 6.5 2.2 24.8 T 

Spotted Dove -0.1 0.2 -0.2 17.9 F 1.7 2.6 0.9 36.5 T 

Spotted Fantail 0 0.2 -0.2 58.1 T 4.6 7.1 2.1 23.9 F 

Stork-billed Kingfisher -0.2 0.1 -0.4 66.7 F 4.5 6.4 3.1 22.7 T 

Streaked Bulbul -0.1 0 -0.3 16.5 T 1.7 2.8 0.6 15.6 F 

Streaky-breasted Spiderhunter 0.1 0.4 -0.3 -0.1 F 1.7 3.7 0.1 67.6 F 

Striped Wren-babbler -0.1 0.2 -0.5 13.6 T 4 6.8 1.2 3.4 F 

Thick-billed Green-pigeon 0 0.2 -0.2 67.7 F 5.8 8.6 1.7 10.1 T 

Tree Sparrow 0 0.4 -0.4 52 F 2.5 8.4 -0.4 22.4 T 

Van Hassalts Sunbird 0 0.4 -0.4 14.9 T 4.7 9.3 0.3 7 F 

Velvet fronted Nuthatch -0.1 0.2 -0.4 43.4 T 1.9 3.8 0.8 9.4 F 

Verditer Flycatcher -0.1 0.2 -0.3 9.3 T 3.4 5.6 0.6 1.5 F 

Violet Cuckoo -0.1 0.2 -0.3 -1.2 F 6.7 11.3 2 7.3 F 

Wallacess Hawk-Eagle 0 0.6 -0.4 21 T 3.7 6.1 0.1 10.6 F 

Whiskered Treeswift -0.1 0.4 -0.6 10.9 F 6.7 10 3.5 4.9 F 

White-bellied Erpornis 0 0.1 -0.2 22.9 T 4.4 6.7 1.7 -3.3 T 

White-bellied Woodpecker 0 0.5 -0.5 22.9 T 4.5 10 -0.8 2 F 

White-chested Babbler -0.1 0.3 -0.4 45 T 1.8 3.3 0.7 17.8 F 



119 

 

 

White-crowned Forktail 0 0.3 -0.3 39.5 T 6.3 9.8 2.5 -0.7 F 

White-crowned Shama -0.1 0.1 -0.3 2.8 T 1.1 2.2 0.3 20.6 F 

Wreathed Hornbill 0 0.2 -0.2 58.5 T 4.5 6.7 2.4 1.8 F 

Yellow-bellied Bulbul 0.2 0.7 -0.5 2.7 T 6.5 12.1 -0.2 0.1 F 

Yellow-bellied Prinia 0 0.1 -0.2 54.7 T 5.4 7.7 2.4 22.3 F 

Yellow-breasted Flowerpecker -0.1 0 -0.3 12.9 F 1.2 2.5 0.5 13.9 T 

Yellow-crowned Barbet 0 0.4 -0.3 72.3 F 5.1 8.9 0.4 8 F 

Yellow-eared Spiderhunter 0.1 0.3 -0.3 -0.8 T 3.1 6 0.4 99.8 F 

Yellow-rumped Flowerpecker 0 0.3 -0.3 414.9 T 6.4 10.2 2.1 -1.7 F 

Yellow-vented Bulbul -0.1 0.1 -0.3 17.1 T 1.2 2.6 0.7 11.3 F 

Yellow-vented Flowerpecker -0.1 0.1 -0.4 76.3 T 3.8 5.9 1 17.5 F 

Zebra Dove -0.1 0.2 -0.4 1.1 T 4 7.4 0.9 -3 F 
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Table S 3.5. Median thresholds points with confidence intervals in relation to density height 

and skew. Forest calculated from mean values of Gaveau et al, (2014)., forest cover layer 

within a 50 m radius. Lower 95% confidence interval; Lw CI, Upper 95% confidence interval; 

Up CI. Model ΔAIC denotes the reduction in AIC between linear model and segmented model. 

Negative ΔAIC signifies that the linear model out performed the segmented one. G+ denotes 

whether thresholds were associated with a strengthing (increasing gradient G+ = True), or 

weakening (more negative G+ = False) response after the threshold point. 

 

 

Species 
Forest Cover 

 

 

  

Med 
Lw 

CI 

Up 

CI 

 -Δ 

AIC 
G+ 

Arctic Warbler 0.8 1.3 0.2 131.7 T 

Ashy Tailorbird 0.8 1.1 0.4 3.6 F 

Asian Fairy Bluebird 0.6 1.2 0 3 F 

Asian Glossy Starling 0.1 0.5 -0.2 3.7 F 

Asian Paradise Flycatcher 0.1 0.6 -0.2 6 T 

Banded Bay Cuckoo 0.8 1.2 0.1 2.2 T 

Banded Broadbill 0.6 1.4 -0.4 21.3 T 

Banded Kingfisher 0.8 3 -1.4 12.8 T 

Banded Pitta 0.2 1.1 -0.1 3.5 T 

Banded Woodpecker 0.3 0.9 -0.2 10 F 

Bar-winged Flycatcher-shrike 0.6 1.3 -0.1 143.3 T 

Black Hornbill 0.1 1 -0.1 -1 F 

Black Magpie 0.6 1.6 -0.4 28.4 T 

Black-and-yellow Broadbill 0.1 1.1 -0.2 6.2 F 

Black-bellied Malkoha 0.8 1.1 0.3 0 F 

Black-capped Babbler 0.8 1.3 0.2 10.8 T 

Black-headed Bulbul 0.1 0.5 -0.2 6.4 T 

Black-headed Pitta 0.1 0.3 -0.1 0.3 F 

Black-naped Monarch 0.2 1.1 -0.1 -1.3 T 

Black-winged Flycatcher-shrike 0.8 1.6 -0.1 7.6 T 

Blue-banded Kingfisher 0.6 1.3 -0.2 195 T 

Blue-banded Pitta 0.6 1.5 -0.2 46.7 T 

Blue-crowned Hanging-parrot 0.8 1.2 0.3 8.8 T 

Blue-eared Barbet 0.8 1.3 0.1 25.3 T 

Blue-eared Kingfisher 0.1 0.7 -0.2 NA F 
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Blue-headed Pitta 0.5 1.2 -0.2 -0.9 F 

Blue-throated Bee-eater 0.8 1.2 0.2 -1 T 

Bold-striped Tit-babbler 0.8 1.2 0.4 5.9 T 

Bornean Blue Flycatcher 0.6 1.2 -0.1 8.7 F 

Bornean Bristlehead 0.5 1.1 -0.1 11.7 T 

Bornean Ground-cuckoo 0.1 0.7 -0.3 12.2 T 

Bornean Wren-babbler 0.1 0.4 -0.2 472.4 T 

Bronzed Drongo 0.1 0.4 -0.2 138.9 F 

Brown Barbet 0.4 1 -0.1 11.2 F 

Brown Flycatcher 0.8 1.6 0 23.4 T 

Brown Fulvetta 0.1 0.2 -0.1 103.7 F 

Brown-throated Sunbird 0.6 1.2 -0.1 5.8 T 

Buff-rumped Woodpecker 0.8 1.4 0.2 29.3 T 

Buff-vented Bulbul 0.1 0.4 -0.2 175.8 F 

Bushy-crested Hornbill 0.6 1.4 -0.2 12.9 F 

Checker-throated Woodpecker 0.1 1 -0.2 18.5 F 

Chestnut Munia 0.6 1.2 -0.2 10.6 F 

Chestnut-backed Scimitar-babbler 0.8 1.3 0.4 3.5 F 

Chestnut-breasted Malkoha 0.1 1 -0.2 106 F 

Chestnut-naped Forktail 0.6 1.4 -0.5 8.7 F 

Chestnut-necklaced Partridge 0.1 0.7 -0.3 7.1 F 

Chestnut-rumped Babbler 0.2 1.1 -0.1 6.6 F 

Chestnut-winged Babbler 0.8 1.4 0.2 11 T 

Collared Kingfisher 0.8 1.3 0 18.8 T 

Cream-vented Bulbul 0.1 0.5 -0.4 543.5 T 

Crested Fireback 0.1 0.7 -0.3 398.5 T 

Crested Goshawk 0.1 0.7 -0.3 24 T 

Crested Jay 0.8 1.2 0.3 15.8 T 

Crested Serpent-eagle 0.1 0.3 -0.1 373.2 F 

Crimson Sunbird 0.8 1.2 0.2 51.3 T 

Crimson-winged Woodpecker 0.7 1.4 -0.1 33 T 

Dark-necked Tailorbird 0.5 1.2 -0.3 4.2 T 

Dark-sided Flycatcher 0.1 0.8 -0.1 12.8 F 

Dark-throated Oriole 0.7 1.5 -0.2 41 T 

Diards Trogon 0.8 1.3 -0.1 11.9 T 

Drongo Cuckoo 0.6 1.3 -0.2 -1.7 F 

Dusky Broadbill 0.1 0.2 -0.1 362.4 F 

Dusky Munia 0.8 1.2 0.4 24.4 T 

Emerald Dove 0.5 1.1 -0.1 17.8 F 

Ferruginous Babbler 0.1 1 -0.1 8.3 F 

Fiery Minivet 0.1 0.4 -0.3 22.8 F 

Finschs Bulbul 0.8 1.2 0.4 18 F 

Fluffy-backed Tit-babbler 0.8 1.2 0.4 23.4 T 

Golden-bellied Gerygone 0.8 1.3 0 28.8 T 

Gold-whiskered Barbet 0.1 1 -0.1 1.5 F 
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Great Argus 0.8 1.1 0.3 0.3 T 

Great Slaty Woodpecker 0.1 0.6 -0.3 209.2 F 

Greater Coucal 0.8 1.3 0.3 17.5 T 

Greater Green Leafbird 0.5 1.2 -0.2 6.7 F 

Greater Racket-tailed Drongo 0.5 1.3 -0.2 24.3 F 

Green Broadbill 0.8 1.4 0.2 16.1 T 

Green Imperial Pigeon 0.8 1.3 0.1 20.9 T 

Green Iora 0.1 1.2 -0.3 101.2 F 

Grey Wagtail 0.8 1.4 0.2 58.2 T 

Grey-and-buff Woodpecker 0.1 0.3 -0.1 310 F 

Grey-bellied Bulbul 0.6 1.2 -0.2 78 T 

Grey-cheeked Bulbul 0.6 1.1 -0.1 2.5 F 

Grey-chested Jungle-flycatcher 0.8 1.4 0.2 39.6 T 

Grey-headed Babbler 0.6 1.6 -0.5 11.1 T 

Grey-headed Canary-flycatcher 0.1 1.1 -0.2 22.9 T 

Grey-rumped Treeswift 0.1 0.4 -0.1 -0.7 T 

Hairy-backed Bulbul 0.1 0.5 -0.1 9.1 T 

Helmeted Hornbill 0.1 0.3 -0.1 17.3 T 

Hill Myna 0.3 1.2 -0.2 0.9 T 

Hooded Pitta 0.8 1.1 0.4 4.9 T 

Horsfields Babbler 0.8 1.2 0.4 10.9 F 

Large Green Pigeon 0.1 0.6 -0.3 528.9 T 

Large Woodshrike 0.8 1.3 0.2 8.4 T 

Lesser Coucal 0.1 0.6 -0.2 161.3 F 

Lesser Green Leafbird 0.1 0.3 -0.1 36 F 

Little Egret 0.6 1.3 -0.1 20.8 T 

Little Green Pigeon 0.8 1.3 0.2 9.1 T 

Little Spiderhunter 0.5 1.1 -0.1 2.8 T 

Long-billed Spiderhunter 0.6 1.3 -0.2 12.2 T 

Long-tailed Parakeet 0.8 1.3 0.1 31.3 T 

Malaysian Blue Flycatcher 0.6 1.3 0 29.5 T 

Maroon Woodpecker 0 0.2 -0.1 175.8 F 

Maroon-breasted Philentoma 0 0.2 -0.1 13.1 F 

Moustached Babbler 0.8 1.2 0.2 20.4 T 

Olive-backed Woodpecker 0.1 0.3 -0.2 606.6 T 

Olive-winged Bulbul 0.1 0.6 -0.1 23.5 F 

Orange-backed Woodpecker 0.1 1.3 -0.4 102.1 T 

Orange-bellied Flowerpecker 0.8 1.4 -0.1 29.5 T 

Oriental Dwarf Kingfisher 0.6 1.3 -0.1 20.9 T 

Oriental Honey Buzzard 0.6 1.3 -0.3 1.5 F 

Oriental Magpie Robin 0.7 1.2 -0.1 22 T 

Pied Fantail 0.2 0.9 0 -0.3 F 

Plain Sunbird 0.8 1.2 0.4 28.5 T 

Plaintive Cuckoo 0.8 1.3 0.2 30 T 

Puff-backed Bulbul 0.3 1.2 -0.2 2.7 T 



123 

 

 

Purple-naped Sunbird 0.8 1.2 0.4 2.7 F 

Pygmy White-eye 0.1 1.8 -0.8 -0.1 T 

Raffless Malkoha 0.8 1.2 0.4 5.1 T 

Red-bearded Bee-eater 0.1 1.8 -0.9 6.5 T 

Red-billed Malkoha 0.3 1.3 -0.4 -0.6 F 

Red-eyed Bulbul 0.6 1.2 -0.3 153.5 T 

Red-naped Trogon 0.8 1.3 0.2 42.7 T 

Red-throated Barbet 0.8 1.2 0.3 19.6 T 

Red-throated Sunbird 0.1 1.1 -0.1 9.5 F 

Rhinoceros Hornbill 0.6 1.3 0.1 44.6 T 

Ruby-cheeked Sunbird 0.8 1.3 0.1 19.4 T 

Rufous Piculet 0.1 0.5 -0.3 1.1 F 

Rufous Woodpecker 0.6 1.1 0.1 8 F 

Rufous-chested Flycatcher 0.1 0.6 -0.1 9 F 

Rufous-crowned Babbler 0.8 1.3 0.1 27.7 T 

Rufous-fronted Babbler 0.1 1.1 -0.3 -2.6 F 

Rufous-tailed Shama 0.6 1.1 0 4.3 T 

Rufous-tailed Tailorbird 0.1 0.3 -0.1 -2.3 F 

Rufous-winged Philentoma 0.1 1.1 -0.1 220.9 F 

Scaly-crowned Babbler 0.3 1.2 -0.3 5.4 F 

Scarlet Minivet 0 0.2 -0.1 18.2 F 

Scarlet-rumped Trogon 0.1 0.6 0 NA F 

Short-tailed Babbler 0.8 1.3 0 34.7 T 

Short-toed Coucal 0.6 1.1 0.1 4.9 F 

Slender-billed Crow 0.1 1.4 -0.5 67.4 T 

Sooty-capped Babbler 0.8 1.2 0.4 16.3 T 

Spectacled Bulbul 0.1 0.4 -0.2 373.5 F 

Spectacled Spiderhunter 0.8 1.5 0 40.5 F 

Spotted Dove 0 0.2 -0.1 25.2 T 

Spotted Fantail 0.6 1.2 -0.1 19.5 T 

Stork-billed Kingfisher 0.8 1.2 0.5 16.8 F 

Streaked Bulbul 0.7 1.3 0 18.1 T 

Streaky-breasted Spiderhunter 0.1 0.3 -0.1 112.2 F 

Striped Wren-babbler 0.8 1.4 0.3 27 T 

Thick-billed Green-pigeon 0.1 0.5 0 5 T 

Tree Sparrow 0.1 1.1 -0.2 NA F 

Van Hassalts Sunbird 0.5 1.4 -0.3 47.1 T 

Velvet fronted Nuthatch 0.8 1.2 0.3 5.2 T 

Verditer Flycatcher 0.6 1.4 -0.1 93.6 T 

Violet Cuckoo 0.1 1.2 -0.4 -2.6 F 

Wallacess Hawk-Eagle 0.6 1.6 -0.5 73.3 T 

Whiskered Treeswift 0.1 0.5 -0.3 5 F 

White-bellied Erpornis 0.8 1.2 0 10.2 T 

White-bellied Woodpecker 0.4 1.3 -0.3 7.1 T 

White-chested Babbler 0.8 1.4 0.2 41.3 T 
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White-crowned Forktail 0.5 1.3 -0.3 24 T 

White-crowned Shama 0.1 0.5 -0.3 11.4 F 

Wreathed Hornbill 0.8 1.1 0.4 5.5 T 

Yellow-bellied Bulbul 0.8 2.3 -1.2 102.7 T 

Yellow-bellied Prinia 0.1 0.7 0 -1 T 

Yellow-breasted Flowerpecker 0.6 1.3 -0.1 13.4 T 

Yellow-crowned Barbet 0.1 0.6 -0.1 47.7 F 

Yellow-eared Spiderhunter 0.1 0.5 -0.1 327.7 F 

Yellow-rumped Flowerpecker 0.1 1 -0.6 3.9 T 

Yellow-vented Bulbul 0.6 1.2 -0.1 58.3 T 

Yellow-vented Flowerpecker 0.8 1.2 0.4 11.7 T 

Zebra Dove 0.8 1.3 0.3 26.9 T 
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Figure S 3.1. Occupancy-modelled species-level effects of mean canopy height within 50 m 

radius. Median values with 95% Bayesian credible intervals are displayed for each species. 

Significant positive associations are denoted in red, significant negative assocations in blue. 

95% Bayesian credible intervals for whole community-average effect (model effect 

hyperparameters) denoted by pink band.  
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Figure S 3.2. Occupancy-modelled species-level effects of canopy heterogeneity with 50 m 

radius. Median values with 95% Bayesian credible intervals are displayed for each species. 

Significant positive associations are denoted in red. 95% Bayesian credible intervals for whole 

community average effect (model effect hyperparameters) denoted by pink band. 
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Figure S 3.3. Occupancy-modelled species-level effects of mean vegetation density within 50 

m radius. Median values with 95% Bayesian credible intervals are displayed for each species. 

Significantly positive associations are denoted in red, significant negative assocations in blue. 

95% Bayesian credible intervals for whole community average effect (model effect 

hyperparameters) denoted by pink band. 
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Figure S 3.4. Occupancy-modelled species-level effects of mean vegetation skew 

within 50 m radius. Median values with 95% Bayesian credible intervals are displayed 

for each species. Significantly positive associations are denoted in red. 95% Bayesian 

credible intervals for whole community average effect (model effect hyperparameters) 

denoted by pink band. 
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Figure S 3.5. Occupancy-modelled species-level effects of forest cover within 100 m radius. 

Median values with 95% Bayesian credible intervals are displayed for each species. 

Significantly positive associations are denoted in red, significant negative assocations in blue. 

95% Bayesian credible intervals for whole community average effect (model effect 

hyperparameters) denoted by pink band. 
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Figure S 3.6. Boxplots showing the distribution of threshold levels for different strata 

associatons, feeding guilds and habitat assocations (pale blue, pale green and dark blue 

respectively) listed for each environmental metric: a) mean canopy height in 50 m radius; b) 
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canopy heterogeneity in 50 m radius; c) mean vegetation density in 50 m radius; d) mean skew 

in 50 m radius; e) mean forest cover in 50 m radius. Red dots indicate species with significant 

positive effects. Blue dots are species with significant negative effects. Grey dots indicate no 

significant effect. The size of dots correspond to the abundance of each species across the 

global dataset. Larger sub-panels for each metric (left side) denote all species for which 

segmented models had reduction in ΔAIC >4. Upper right panels denote the subset of species 

where thresholds were associated with decreasing gradient of reponse. Lower right panels 

denote the subset of species where thresholds were associated with increasing gradient of 

reponse. 
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Table S 3.6. Results of Kruskal Wallis tests for differences in group average effects and 

threshold levels between trait groups (Fig. S6). Results are given for each environmental 

metric included in the overall occupancy model. 

Environmental metric / group statistic parameter p value 

Canopy height effects strata 1.5 2 0.472 

Canopy height effects guilds 1.47 5 0.916 

Canopy height effects habitat groups 9.54 4 0.049 

Canopy height +g  thresholds strata groups 0.49 2 0.784 

Canopy height +g thresholds guilds 4.84 5 0.435 

Canopy height +g thresholds habitat groups 6.66 4 0.155 

Canopy height  -g thresholds strata groups 1.84 2 0.399 

Canopy height -g thresholds guilds 3.52 5 0.62 

Canopy height -g thresholds habitat groups 5.93 4 0.205 

Canopy heterogen. effects strata 2.39 3 0.495 

Canopy heterogen. effects guilds 1.54 4 0.819 

Canopy heterogen. effects habitat groups 2.56 4 0.634 

Canopy heterogen. +g  thresholds strata groups 5.45 3 0.142 

Canopy heterogen. +g thresholds guilds 2.33 4 0.675 

Canopy heterogen. +g thresholds habitat groups 0.96 4 0.916 

Canopy heterogen. -g thresholds strata groups 2.02 3 0.568 

Canopy heterogen. -g thresholds guilds 1.62 4 0.805 

Canopy heterogen. -g thresholds habitat groups 3.24 4 0.518 

Vegetation density effects strata 2.04 2 0.36 

Vegetation density effects guilds 3.85 5 0.571 

Vegetation density effects habitat groups 2.88 4 0.578 

Vegetation density +g  thresholds strata groups 1.45 2 0.485 

Vegetation density +g thresholds guilds 3.43 5 0.634 

Vegetation density +g thresholds habitat groups 2.11 4 0.716 

Vegetation density  -g thresholds strata groups 3.97 2 0.138 

Vegetation density -g thresholds guilds 4.26 5 0.513 

Vegetation density -g thresholds habitat groups 6.37 4 0.173 

Vegetation skew effects strata 5.38 2 0.068 

Vegetation skew effects guilds 8.53 6 0.202 

Vegetation skew effects habitat groups 5.53 4 0.237 

Vegetation skew +g  thresholds strata groups 2.87 2 0.238 

Vegetation skew +g thresholds guilds 3.45 5 0.631 

Vegetation skew +g thresholds habitat groups 1.11 4 0.893 

Vegetation skew  -g thresholds strata groups 2.21 2 0.331 

Vegetation skew -g thresholds guilds 5.89 5 0.317 

Vegetation skew -g thresholds habitat groups 5.2 4 0.268 

Forest cover (100m r) effects strata 0.44 2 0.804 

Forest cover (100m r) effects guilds 1.52 5 0.911 
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Forest cover (100m r) effects habitat groups 4.34 4 0.362 

Forest cover (100m r) +g  thresholds strata groups 0.81 2 0.669 

Forest cover (100m r) +g thresholds guilds 4.73 5 0.45 

Forest cover (100m r) +g thresholds habitat groups 2.95 4 0.567 

Forest cover (100m r)  -g thresholds strata groups 0.31 2 0.855 

Forest cover (100m r) -g thresholds guilds 4.7 5 0.453 

Forest cover (100m r) -g thresholds habitat groups 3.63 4 0.458 
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Abstract 

Approaches to characterise and monitor biodiversity based on the sound 

signals of ecosystems appear to offer great potential, with acoustic indices reflecting 

avian species richness in a variety of environments. However, to date validation 

studies of how well acoustic indices reflect observed patterns of biodiversity have 

tended to use relatively low levels of spatial replication and have focussed on habitats 

with similar underlying anthropological and geophysical sound characteristics. For 

acoustic indices to be broadly applicable to biodiversity surveys and monitoring, their 

capacity to measure the ecological facets of soundscapes must be robust to these 

potential sources of bias. We examined the efficacy of five commonly used acoustic 

indices to reflect patterns of observed and estimated avian species richness across a 

land-cover gradient in Northeast Borneo. The gradient comprised intact forests to oil 

palm plantations, thus providing a highly variable anthrophonic and geophonic 

soundscape. We found that Acoustic Complexity had the strongest relationship with 

observed bird richness in old growth forest and logged forest, but that Acoustic 

Evenness had the strongest (negative) association with observed richness in riparian 

areas. No acoustic indices were associated with observed richness in oil palm riparian 

areas. We attempted to improve the associations between acoustic indices and species 

richness by digitally reducing background noise outside of the vocal frequency range 

for birds, controlling for time-of-day, and removing a habitat with high anthropogenic 

influence. Our Adjusted Bioacoustic Index was better than unaggregated point counts 

at capturing changes in species richness associated with changing canopy height, and 

the association between the Adjusted Bioacoustic Index and canopy height was 

comparable to that when species richness was estimated via occupancy-modelling. 
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Our findings underscore the potential utility of soundscape approaches to characterise 

biodiversity patterns in human-modified tropical landscapes, but demonstrate that for 

acoustic indices to be more effective the bias introduced by time-of-day, geophonic 

noise, cicada choruses and human voices needs to be better accounted for. 

  

Introduction 

In the midst of the current environmental crisis (Rockstrom et al., 2009; Ripple 

et al., 2017) conservation practitioners are seeking more efficient and cost-effective 

ways of monitoring biodiversity (Bustamante et al., 2015). Recent advances have 

included the application of new remote sensing technologies (Pettorelli et al., 2014), 

such as the use of  Light Detection And Ranging (LiDAR; Guo et al., 2017) and 

Synthetic Aperture Radar (Villard et al., 2016) to identify species habitat associations 

(Taft et al., 2003). Additional developments include, new statistical approaches to 

derive robust estimates of species occupancy from sparse data for rare species (Royle 

& Kery, 2007), novel methods environmental DNA procedure facilitating rapid impact 

assessments (Valentini et al., 2006), and the use of autonomous wildlife surveillance 

methods, such as camera traps and sound-recorders (Harrison et al., 2012). 

The increased availability and reduced cost of sound-recorders has opened up 

an entirely new field of conservation research and practice. Soundscape ecology is 

concerned with the same basic principles and questions as landscape ecology, 

including a focus on how acoustic signals in a particular location change with time, 

habitat-disturbance, and patterns of biological and human activity (Gasc et al., 2016).  

One of the main focuses of soundscape assessments is to discern patterns of 
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biodiversity (Pijanowski et al., 2006). This differs from the field of bioacoustics, 

which tends to focus on the physics and variation of biological sound production 

among organisms. 

Birds are excellent surrogates for wider patterns of biodiversity (Lewandowski 

et al., 2008; Gardner et al., 2008) and are also one of the most dominant terrestrial 

taxonomic groups in terms of abundance, biomass and contribution to soundscapes 

(Gasc et al., 2016). Due to these characteristics, they have been a focus of efforts to 

characterise or estimate species richness and community structure from soundscape 

recordings. A large number of indices have been developed to statistically describe 

the distribution of acoustic information in a given recording. Some of these acoustic 

indices seek to determine variation in anthropogenic disturbance (i.e. ‘anthrophony’; 

Kasten et al., 2012), or acoustic dissimilarity between recordings (Sueur et al., 2008), 

whilst the majority are designed to reflect the richness and complexity of ecological 

communities, such as total acoustic complexity, entropy or bioacoustic activity (e.g 

Pieretti et al., 2011; Sueur et al., 2008; Depraetere et al., 2012). Acoustic indices have 

been applied across a wide variety of habitats and environmental contexts, including 

investigating patterns of species richness in temperate reefs (Harris et al., 2016), 

detecting the response of tropical wildlife to haze caused by forest fires (Lee et al, 

2016), assessing avian richness in tropical open woodland savannah (Alequzar & 

Machado 2015), monitoring freshwater lakes for invasive Tilapia (Kottege et al., 

2015), and quantifying patterns of species diversity in tropical forest (Mammides et 

al., 2017). 

A central assumption behind the application of acoustic indices is that greater 

acoustic diversity reflects more vocal species in a given community (Gage et al., 
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2001). It is also assumed that acoustic diversity is positively correlated with measures 

of biodiversity and ecosystem functioning (Pijanowski et al 2011). For birds, 

validation studies have compared acoustic indices directly with two established 

methods for assessing species richness: point count data and expert identification of 

birds from recordings (Darras et al., 2018). Acoustic indices correlate with avian 

richness in temperate (Depraetere et al., 2012; Eldridge et al., 2018), sub-tropical 

(Fuller et al., 2015) and tropical (Mammides et al., 2017) environments. Proponents 

of soundscape ecology tend to advocate the use of sound-recorders as a more efficient 

way of measuring bird diversity than expert ornithologists collecting survey data 

(Eldrige et al., 2018). However, to date, acoustic validation attempts have used fairly 

small datasets in terms of their spatial replication. For instance, Mammides et al. 

(2017) used 97 sampling points for the deployment of autonomous recorders, across 

seven landuse categories, Eldridge et al. (2018) used 90 sampling points, and Izaguirre 

et al. (2018) used 60 sampling points. Other studies have concentrated on comparing 

two different habitat types, which are often highly distinct from one another, such as 

gallery forest compared to cerrado vegetation in Brazil (Machado et al., 2017). Thus, 

while validations have provided useful insights into which metrics best correlate with 

observed avian richness, it remains unclear whether such patterns remain consistent 

over large spatial scales and complex environmental gradients. Similarly, the extent to 

which such indices perform as reliable proxies for actual richness across habitats 

containing varying levels of other acoustic signals, such as those from anthropogenic 

and geo-physical sources, is uncertain. For example, recent work from urban areas in 

the UK suggests that many acoustic indices do not perform well in landscapes with a 

high contribution of anthrophonic signal (Fairbrass et al., 2017). Therefore, 

determining which indices are consistently robust remains a research priority, as does 
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finding ways to optimise existing indices to avoid the biases introduced by potentially 

confounding acoustic signals. 

Here, we assess the performance of five commonly used acoustic indices in 

reflecting variation in avian diversity across a land-cover gradient in Sabah, Malaysian 

Borneo – a region characterised by exceptional levels of biodiversity, and intense 

forest degradation and deforestation. Our species data were generated from point 

counts conducted simultaneous with sound recordings, as well as highly precise 

estimates of richness derived from a Bayesian occupancy model that accounts for 

differences in species detection. Accounting for variation in detection probability is 

currently another hurdle in improving the effectiveness of acoustic methods, since 

detection probabilities vary between species and are not accounted for within indices. 

We test a number of approaches to improve the potential association between acoustic 

indices and diversity data, and compare the ability of each of these indices to capture 

patterns of species richness across the landscape gradient. We also compare the 

performance of acoustic indices in capturing changes in species richness associated 

with canopy height across tropical forests, as derived from high-resolution LiDAR 

data, to determine whether soundscape indices reflect habitat structure.  

 

Methods 

Bird sampling 

Birds were sampled via 15-minute 50 m radius point counts at 373 localities 

in five habitat types in Sabah, with three or four visits to each site between 2014 and 

2017 (1,259 point counts in total; Chapter 3). These were carried out by a single 
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experienced observer (SLM) between 05:50am and 11:00am on days without rain. 

Temporal independence between repeated point counts at a given site was ensured as 

repeat counts at sites were always undertaken on different days. Spatial independence 

was ensured by all sites being located at least 180 m from one another. Sound 

recordings were taken simultaneously alongside each point count, using a single field 

recorder (Olympus LS-11/LS-12) comprising dual cardioid microphones positioned 

perpendicular to one another. In riparian areas, where background geophonic sound 

from running water was sometimes significantly higher, the recorder was placed at 

least 10 m from the fastest flowing sections of watercourses and oriented away from 

areas producing the most noise.  

Point count localities (total n=373) covered a gradient of habitat degradation 

and increasing human presence, from unlogged old-growth dipterocarp forest to oil 

palm plantations (Fig. 3.1, Chapter 3). Old-growth forests (n=50 point count locations) 

were sampled at Danum Valley Conservation Area (n=20), Sepilok Forest Reserve 

(n=20) and Maliau Basin Conservation Area (n=10). We surveyed riparian areas in 

continuous logged forest (riparian forest; n=80), isolated riparian reserves within oil 

palm plantations (riparian reserves, n=100), and riparian areas without natural 

vegetation in oil palm estates (oil palm riparian; n=20) in and around the Stability of 

Altered Forest Ecosystems (SAFE) landscape. Additionally, we sampled non-riparian 

areas within the continuous logged forests within the SAFE area and the adjacent Ulu-

Segama Forest Reserve (logged forest; n=123).  

Each habitat type supported not only a different ecological community 

(Chapters 2 and 3), but also a different acoustic context. Anthropogenic noise levels 

varied for each of these habitats, being associated with distant machinery from 
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adjacent logging, or agricultural operations and road and trail maintenance, the latter 

being especially prominent within oil palm. Old-growth and selectively logged forests 

comprised terra-firma lowland dipterocarps with low geophonic sound, while riparian 

forests were situated on fast-flowing streams with variable levels of peak discharge 

and high levels of background geophonic noise. Riparian reserves (i.e. those in the oil 

palm estates) consisted of a few high-noise fast-flowing streams, but in general were 

slower-flowing alluvial areas with few riffles or cascades resulting in lower levels of 

geophonic noise than counterpart localities in the riparian forest.  Although oil palm 

riparian sites were located along water courses, these were all very small slow-flowing 

streams with no significant sounds of running water (low geophonic influence). 

Riparian forest and old-growth sites were located along streams or trails in transects 

comprising 10 point counts, whilst point counts at logged forest sites followed the 

SAFE fractal design (Ewers et al., 2015). This design uses constellations of points 

spaced at least 180 m apart in groups of 16, which were undertaken as intersecting 

transects of 8 points on separate days.  

 

Acoustic Indices 

The first minute of each sound recording included the observer stating the date, 

time and location, and then moving away from the recorder. This sequence was  

therefore cut from all recordings prior to analysis. We assessed five commonly used 

acoustic indices over the remaining 14-minute portion of each recording: Acoustic 

complexity (AC); Bioacoustic Index (BA); Acoustic Diversity (AD); Acoustic 

Evenness (AE) and the Normalised Difference in Soundscape Index (NDSI). The 
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indices were quantified using the packages soundecology (Villanueva Rivera and 

Pijanowski, 2013) and seewave-R (Sueur et al., 2008) in R (R Core Team, 2014).  

Acoustic complexity is designed to capture the intricacy of biophonic signals, 

while ignoring the influence of many anthrophonic and geophonic noises. It is based 

on the premise that biotic sounds intrinsically encompass a large variety of intensities, 

whereas sounds such as overflying airplanes or running water are associated with 

constant intensity values (Pieretti & Morri, 2011). The Bioacoustic Index (BA) 

describes mean spectral power between 2,000 kHz and 8,000 kHz, as this frequency 

range covers most infrasonic ecological sound, but excludes many anthropogenic 

noises which, in general, register below 2,000 kHz (Boelman et al., 2007). Acoustic 

Diversity calculates Shannon’s diversity index for each recording based on the power 

of each 1 kHz frequency band.  Acoustic Evenness measures evenness between ten 

equal frequency bands 0 – 22,050 kHz as the proportion of the signals in each band 

above a -50 dBFS threshold, where dBFS is decibels relative to the ‘full scale’ 

maximum amplitude within a given file (Villanueva-Rivera et al. 2011). We also 

computed the Normalised Difference in Soundscape Index (NDSI), which is simply 

the ratio of biotic to anthropogenic signal (Kasten et al., 2012).  

Acoustic Diversity is based on the Shannon-Wiener index (Jost, 2006) whereas 

Acoustic Evenness, which is based on the Gini-Simpson index (Gini, 1997). These two 

indices therefore characterise inverse soundscape properties to one another (Eldridge 

2018).  Therefore, after confirming this was also the case in our results (Table 4.1), 

we opted to use only Acoustic Evenness since it showed stronger associations with 

point count richness than Acoustic Diversity.  
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 A pre-processing procedure was run on each of 1,299 recordings, following 

the protocol used by Arnold (2013) to maximise the clarity of recordings for human 

hearing. Using the free audio editing software Audacity (1999-2013 Audacity Team; 

SourceForge.net), we first removed frequencies of >10,000kHz and <800kHz, using 

high- and low-pass filters to remove extreme unwanted anthrophonic sounds, such as 

traffic noise (e.g. Eldridge et al. 2018). We also added a small notch filter to remove 

a narrow range of frequencies that included the commonest cicada chorus (7,950 - 

8,050 kHz). In order to remove background noise we selected a two-minute section of 

one of our riparian recordings in which only river sounds (and no biological signals) 

could be detected by human examination. Using Audacity’s  proprietary noise removal 

process, we set this as a background ‘noise profile’ and used the specific profile to 

determine where spectral power exceeded those of the background noise profile for 

each 100 kHz frequency band in a recording (i.e not background signals that were 

assumed as biologically relevant). Signals exceeding those in the noise profile were 

subsequently set to 0 dB gain (no change in volume). Where spectral power fell below 

those of the background noise profile this was assumed to be background noise and a 

-12 dB gain (volume reduction of 12 decibels) was applied to suppress it. Effectively, 

this procedure selects a single portion of one recording containing high background 

noise, but no apparent biological signal, and uses this to inform which signals are less 

relevant in the target recordings, eliminating noise above and below certain 

frequencies, as well as in a small envelope at around 8,000 kHz.  Using the ‘chain’ 

function in Audacity, we applied this process in batch to 1,259 out of 1299 recordings 

(errors in processing occurring in 40 recordings).   
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Our results indicated that no relationships existed between any of our acoustic 

indices and species richness in oil palm (Fig. S4.2). We therefore removed this data 

from this habitat type from our analysis relating to estimate species richness. 

 

Estimated species richness 

To compare the acoustic indices with avian diversity, we used an occupancy 

modelling approach to estimate species richness at every point count location based 

on the occupancy probabilities of each species and controlling for differing detection 

probabilities between species. Occupancy was estimated using a Bayesian hierarchical 

community model, whereby each species could be affected by five structural 

vegetation metrics and overall community means, and detection probability was 

influenced by time-of-day and survey date (Chapter 3). Estimated richness was 

calculated from the model as the sum of the median probabilities of each species being 

present at a particular site. Thirty two species recorded during our survey were only 

encountered on three or less occasions and, therefore, were excluded from the model 

and assumed that they did not contribute to richness at any given site.  

 

LiDAR forest metrics  

To measure canopy height at each site we used data derived from LiDAR point 

clouds. These data were gathered in November 2014 with a Leica ALS50-II sensor 

aboard a light aircraft (Asner et al. 2018). Canopy height values were taken as the 

mean within a 50 m radius of each point count location, mirroring our survey radius 

(Chapter 3). We used canopy height as it has been shown previously to strongly 
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influence tropical bird communities (Cleary et al., 2005), as well as reflecting other 

forest quality metrics such as biomass and carbon density (Jucker et al., 2018).  

 

Statistical analyses 

To test the relative performance of indices based on adjusted and unadjusted 

recordings in reflecting habitat, time-of-day and observed richness, we ran a series of 

GLMs using the appropriate link function for each index derived from the package 

‘fitdistrplus’ (Delignette-Muller & Dutang, 2015). We fitted Acoustic complexity and 

Bioacoustic Index with Gamma family models, while Acoustic Diversity, Acoustic 

Evenness, NDSI, Adjusted Acoustic Complexity, Adjusted Acoustic Diversity, Adjusted 

Acoustic Evenness and Adjusted NDSI were fitted with Beta distribution models. 

Values acquired for the Adjusted Bioacoustic Index followed a Gaussian distribution. 

Beta distributions were not supported by base R and were standardised using the 

package ‘reghelper’ (Hughes & R. Core Team, 2017). The relative performance of 

models using indices derived from unadjusted versus adjusted recordings was 

compared via their relative AIC values. 

  To understand the relationship between acoustic metrics and observed species 

numbers from the point counts or species richness estimates from the occupancy 

modelling, we fitted a series of linear regressions. We then repeated this process for 

each index via models restricted to individual habitats. We also assessed the effects of 

time-of-day upon each index using linear regressions. In order to compare model 

improvements using indices based on adjusted versus unadjusted recordings we re-

tested the acoustic indices from our adjusted recordings to examine whether this 
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altered the relationships with point count richness, time-of-day and habitat. We used 

this process to identify the best performing indices to assess further.  We used linear 

regressions to demonstrate associations since this provided information on the pattern 

of the relationships between observed species richness and each acoustic index, as well 

as the level of correlation. To confirm levels of correlation we also computed 

Pearson’s coefficient for the associations between each index and both observed 

richness and time of day.  

Both acoustic indices and richness of individual point counts are likely to be 

affected by time-of-day, following the diurnal variation in activity for many species. 

However, the effects of time on each measure are not necessarily equal since point 

counts rely on visual as well as audio detection. Therefore, we sought to uncouple the 

relationship between acoustic indices and species richness from the effects of time-of-

day. We did this by performing linear regressions of point count richness and acoustic 

indices against time in order to obtain the residuals of these relationships. This was 

done for indices based on adjusted or unadjusted recordings depending on which best 

reflected species richness (i.e. the greatest value of R2 in linear models across all 

habitats; Table 4.1). We then re-ran linear regressions between acoustic index 

residuals and point count richness residuals, to confirm this increased the associations 

between them. 

Using additional linear regressions, we determined the performance of our best 

time-controlled indices in reflecting estimated richness. We compared the 

relationships of estimated richness and time-controlled acoustic indices with canopy 

height to examine the capability of soundscape analysis to capture real-world patterns 
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of biodiversity associated with variation in the structure of forest.  All statistical 

analyses were undertaken using R (R Core Team, 2014).  

 

Results 

Assocations between acoustic indices and point count richness 

We found significant associations between observed species numbers at point 

counts and the acoustic indices derived from simultaneous sound recordings (Table 

4.1). Acoustic Complexity was most strongly associated with richness, followed by 

Acoustic Evenness, Bioacoustic Index and NDSI. Acoustic Diversity exhibited a very 

weak but significant relationship with observed richness. Acoustic Complexity and 

Bioacoustic Index were also negatively associated with time-of-day (AC; R2= 0.047, 

F= 56.97, p<0.001; BA R2=0.013, F= 15.98, p<0.001) with higher values during 

recordings shortly after dawn and lower values for those later in the morning. NDSI 

showed a positive association with time-of-day (R2=0.049, F=58.71, p<0.001), whilst 

Acoustic Diversity and Acoustic Evenness were not significantly associated. We also 

found a number of significant relationships between acoustic indices and time-of-day 

(Table 4.1)  
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Table 4.1. Linear regression model statistics of observed bird richness and time-of-day Results 

listed for each acoustic index (adjusted or non-adjusted), with intercept, F-statistic, p value, 

R2, residual standard error, and degrees of freedom for each. Indices assessed as are follows: 

Acoustic Complexity (AC); Adjusted Acoustic Complexity (ACa); Acoustic Diversity (AD); 

Adjusted Acoustic Diversity (ADa); Acoustic Evenness (AC); Adjusted Acoustic Evenness 

(ACa); Normalised Difference in Soundscape Index (NDSI); Adjusted Normalised Difference 

in Soundscape Index (NDSIa).  

Linear Model Intercept F p value R2 

Residual 

standard 

error 

Degrees 

of 

Freedom 

Pearson 

Coeff. 

AC ~ Richness 23.76 54.79 <0.001 0.046 517.7 1132 0.214 

ACa ~ Richness 16.067 6.5957 <0.001 0.006 1116 1145 0.068 

AD ~ Richness -0.009 7.374 <0.001 0.006 0.562 1132 -0.080 

ADa ~ Richness -0.011 60.8 <0.001 0.05 0.264 1145 -0.241 

AE ~ Richness 0.007 25.74 <0.001 0.021 0.27 1145 -0.080 

AEa ~ Richness 0.01 111.2 <0.001 0.088 111.2 1145 0.312 

BA ~ Richness 0.04 6.537 0.05 0.005 2.69 1145 0.121 

BAa ~ Richness 0.083 8.742 0.05 0.006 5.134 1145 0.103 

NDSI ~ Richness 0.006 14.17 <0.001 0.012 0.295 1145 0.117 

NDSIa ~ Richness 0.011 29.11 <0.001 0.024 0.388 1145 0.170 

AC ~ Time-of-day -1.515 56.97 <0.001 0.047 517.2 1132 -0.219 

ACa ~ Time-of-day -1.301 9.131 0.002 0.007 1115 1145 -0.085 

AD ~ Time-of-day 0.0001 0.487 0.485 <0.001 0.563 1132 0.021 

ADa ~ Time-of-day 0.0005 32.56 <0.001 0.027 0.268 1145 0.162 

AE ~ Time-of-day -0.0002 3.508 0.061 0.003 359.4 1132 -0.056 

AEa ~ Time-of-day -0.0004 42.41 <0.001 0.035 0.177 1145 -0.184 

BA ~ Time-of-day -0.004 15.98 <0.001 0.013 2.679 1145 -0.084 

BAa ~ Time-of-day -0.021 135.7 <0.001 0.106 4.872 1145 -0.325 

NDSI ~ Time-of-day 0.0009 58.71 <0.001 0.049 0.289 1132 0.222 

NDSIa ~ Time-of-day 0.0006 15.77 <0.001 0.013 0.39 1145 0.120 
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Figure 4.1. Relationships between acoustic indices and observed avian richness. 

Observed richness derived from point counts over a landuse gradient in Sabah, Borneo. Each 

plot is based on 1,259 recordings from multiple habitat types. The line-of-best-fit is derived 
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from a linear regression model. Shaded areas around the trend lines denote 95% confidence 

intervals.  

 

Effects of habitat type 

Linear models revealed that the associations between acoustic indices and bird 

richness was strongly mediated by habitat type (Table 4.2; Fig S4.1; Fig S4.2). 

Differences between habitat types were particularly strong for Acoustic Complexity, 

Bioacoustic index and Acoustic Evenness.  The effect of habitat type was greater for 

adjusted indices than untransformed ones (Table 4.2; Fig. S4.1). We partitioned our 

data between the five habitat types in our study (Fig. S4.1) and found that bird diversity 

could be predicted by one or more acoustic indices in every habitat type except for oil 

palm riparian reserves, where no relationship was found.   

 

Table 4.2. General linear models for each acoustic index in relation to richness, time-

of-day, and habitat types covariates. Intercepts, standard errors and p values are listed for 

each parameter. Model AIC and degrees of freedom (DF) are present for each model. For 

negative intercepts < signifies values closer to zero. Indices assessed as are follows: Acoustic 

Complexity (AC); Adjusted Acoustic Complexity (ACa); Acoustic Diversity (AD); Adjusted 

Acoustic Diversity (ADa); Acoustic Evenness (AC); Adjusted Acoustic Evenness (ACa); 

Normalised Difference in Soundscape Index (NDSI); Adjusted Normalised Difference in 

Soundscape Index (NDSIa).  

Model (family) Parameter Intercept p value DF AIC 

AC 

(Gamma) 

observed richness <-0.001 <0.001 1127 17258 

 Time <0.001 <0.001   

 logged forest <-0.001 <0.001   

 riparian forest <-0.001 <0.001   
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 riparian oil palm <-0.001 <0.001   

 riparian reserve <-0.001 0.004   

 

AD 
(Beta) 

 

observed richness 

 

<-0.001 

 

0.840 

 

1127 

 

1691 

 Time <-0.001 0.919   

 logged forest 7.58E-02 0.131   

 riparian forest 5.20E-01 <0.001   

 riparian oil palm -0.445 <0.001   

 riparian reserve 0.251 <0.001   

 
AE 

(Beta) 

 
observed richness 

 
4.069 

 
0.071 

 
1127 

 
16166 

 Time -0.053 0.667   

 logged forest -67.043 0.024   

 riparian forest -458.597 <0.001   

 riparian oil palm 216.904 <0.001   

 riparian reserve -227.573 <0.001   
 

BA 

(Gamma) 

observed richness <-0.001 0.694 1118 4584 

 Time <0.001 0.052   

 logged forest 0.033 <0.001   

 riparian forest 0.139 <0.001   

 riparian oil palm -0.016 0.030   

 riparian reserve 0.036 <0.001   
 

NDSI 

(Beta) 

observed richness 0.007 <0.001 1127 304 

 Time 0.001 <0.001   

 logged forest -0.012 0.642   

 riparian forest -0.153 <0.001   

 riparian oil palm 0.050 0.237   

 riparian reserve -0.132 <0.001   

 

ACa 
(Beta) 

 

observed richness 27.767 <0.001 1127 19000 

 Time -0.643 0.137   

 logged forest 1048.209 <0.001   

 riparian forest 1208.966 <0.001   

 riparian oil palm 739.726 <0.001   

 riparian reserve 1174.684 <0.001  

 

 

ADa 

(Beta) 

observed richness -0.004 <0.001 1127 -25 

 Time <-0.001 <0.001   

 logged forest -0.167 <0.001   
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 riparian forest 0.084 <0.001   

 riparian oil palm -0.186 <0.001   

 riparian reserve 0.097 <0.001  

 

 

AEa 

(Beta) 

observed richness -0.004 <0.001 1127 1074 

 Time <-0.001 <0.001   

 logged forest 0.102 <0.001   

 riparian forest -0.097 <0.001   

 riparian oil palm 0.117 <0.001   

 riparian reserve -0.081 <0.001  

 

 

BAa 

(Gaussian) 

observed richness -0.128 <0.001 1118 6507 

 Time -0.025 <0.001   

 logged forest -6.093 <0.001   

 riparian forest -6.749 <0.001   

 riparian oil palm -7.716 <0.001   

 riparian reserve -7.061 <0.001  
 

 

NDSIa 

(Beta) 

observed richness 0.012 <0.001 1127 969 

 Time <0.001 <0.001   

 logged forest 0.008 0.818   

 riparian forest -0.149 <0.001   

 riparian oil palm 0.073 0.195   

 riparian reserve -0.194 <0.001   

 

Effects of noise-reduction processing 

Following our pre-processing adjustments, the strength of association with 

point count richness was weaker for Adjusted Acoustic Complexity, but increased for 

Adjusted Acoustic Evenness, Adjusted Bioacoustic Index and Adjusted NDSI all 

showed relationships of increasing strength (Table 4.1). After adjustment, the effect 

of time-of-day was weaker for Adjusted Acoustic Complexity and Adjusted NDSI but 

stronger for Adjusted Acoustic Evenness and Adjusted Bioacoustic Index (Table 4.1; 

Fig 4.1).  We found no associations between indices based on either adjusted or 
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unadjusted recordings with richness or time-of-day in oil palm riparian areas, and these 

data were therefore excluded from analysis with estimate richness and canopy height.  

Assocations between time-controlled indices, estimated richness and canopy height 

After adjustment for time and the exclusion of oil palm riparian data points, 

we found no association between estimated richness and Acoustic Complexity time 

residuals (R2<0.001, F= 0.01632, p=0.898). Adjusted Acoustic Evenness time 

residuals showed a negative relationship with estimated richness, (R2=0.08259, 

F=70.76, p<0.001), whereas Adjusted Bioacoustic Index time residuals showed a 

strong positive relationship (R2= 0.1581, F=147.6, p<0.001). Acoustic Complexity 

time residuals were negatively associated with canopy height (R2=0.07872, F=67.16, 

p<0.001), Adjusted Acoustic Evenness time residuals showed no association, while 

Adjusted Bioacoustic Index time residuals showed significant positive association 

(R2= 0.267, F=286.3, p<0.001). Observed point count richness was associated with 

estimated richness (R2=0.08002, F=68.37, p<0.001), but not with canopy height (Fig. 

4.2, R2=0.000174, F=0.1368, p=0.712). The strength of association between estimated 

richness and canopy height was stronger than for any indices metrics (R2=0.31, 

F=367.8, p<0.001), although not markedly different from those revealed by Adjusted 

Bioacoustic Index time residuals (Fig. 4.2).  
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Figure 4.2. Time-controlled versions of the three best performing indices in predicting 

estimated richness of birds and canopy height. Blue lines denote trendlines, shaded areas mark 
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95% confidence intervals. Data points are different visits (n=1,229), with a maximum of four 

visits to any given site (n=356 sites with height and estimated richness data).   

 

Discussion 

Our findings demonstrate that acoustic indices, given an appropriate study 

design and analytical framework, reflect actual bird diversity patterns across a tropical 

forest landscapes, and so could be a viable method of characterising and monitoring 

avian biodiversity. However, we also find that in different habitat contexts, non-focal 

acoustic signals make highly significant contributions to the overall soundscape and 

potentially influence the indices. Although previous studies have sought to assess the 

validity of acoustic indices compared to a point count methodology, both in temperate 

and tropical regions (Depraetere et al., 2012; Mammides et al., 2017), our study 

includes fourfold more spatial replication than previous assessments and does so 

across a broad range of habitats and acoustic contexts. As a result, we are able to 

provide novel insights into some of the likely reasons for deviations between indices 

and point counts, and can make recommendations for how to mitigate factors which 

increase discrepancy between acoustic indices and patterns of biodiversity.  

Acoustic indices across multiple tropical forest habitats in our study were 

associated with observed richness.  However, these associations were rather weak and 

tended to be mediated by habitat type. Most significantly, none of the indices we tested 

showed any significant association with observed species richness in oil palm riparian 

areas. Additionally, oil palm riparian areas showed the highest mean levels of 

Bioacoustic Index and Acoustic Complexity of any habitat type despite the lowest 

levels of observed richness (Fig. S4.1; Fig S4.2). We believe a combination of factors 
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caused a breakdown in any associations between the indices and richness in this 

habitat. First, we suspect the influence of human voices in oil palm estates may have 

obscured the differences in acoustic complexity driven by bird vocalisations. In urban 

environments of the UK, human speech is known to exert a significant bias upon the 

same indices quantified in our study (Fairbrass et al., 2017) and it appears likely that 

agricultural landscapes, which rely on large numbers of workers (Singana, 2013), have 

a similar acoustic profile in this regard. A second factor is that, as in urban areas, avian 

communities in oil palm landscapes are depauperate and comprise only a few avian 

generalists that occur at almost all sampling points (Chace & Walsh, 2006; Edwards 

et al., 2010). In practice, this means limited variation in both the observed number of 

species and any acoustic indices and therefore a lower statistically probability of 

finding significant associations between the two. This is supported by the fact that we 

observed only 3-16 (s.d 2.54) species per count in oil palm, compared to up to 29 (s.d 

4.70) species in old-growth forest. For this reason, we removed oil palm riparian sites 

from our regression of landscape wide data before comparisons with estimate richness 

and canopy height.  

Acoustic Complexity was associated with observed richness across the 

landscape-wide dataset, but this pattern was not apparent in riparian forests or oil palm 

riparian habitats (Fig. 4.1; Fig. S4.2). Riparian forest sites tended to be on steep fast-

running streams where the background noise of running water was significantly louder 

than in all other habitats. We suspect this may have undermined the capacity of this 

index to detect differences in species richness. Since acoustic complexity is based 

upon absolute differences in signal power within each frequency band over time it 

should, in theory, account for constant background noise (Pieretti et al., 2011). 
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However, if such noise is sufficiently loud as to drown the signals of bird 

vocalisations, this would significantly dampen the variations in signal power over time 

and, therefore, reduce the capacity of the index to reflect overall acoustic complexity. 

Pre-processing our recordings to produce an adjusted index did not improve the 

association levels with observed richness globally, but did increase Adjusted Acoustic 

Complexity in riparian forest (with most background noise) relative to other habitat 

types (Fig. 4.1).   

Across the landscape-wide dataset, we found a weak but significant association 

between bioacoustic index and observed richness. However, when broken down to 

different habitat types, this pattern was only significant in riparian forest (and not in 

old growth, logged forest, riparian reserves or oil palm riparian). A possible 

explanation for this pattern is the influence of cicada choruses. Cicadas are common 

throughout Bornean rainforests and make a major contribution to the overall 

soundscape (Gogala & Riede, 1995). However, cicadas tend to call at constant 

frequencies (e.g Gogala & Trilar 2004) and within the frequencies 2 KHz to 8 KHz. 

This frequency range is generally regarded as that within which most bird vocalisation 

fall (Goller & Riede, 2012) and therefore was used as the limiting bounds in the 

development of the bioacoustic index (Boelman et al., 2007). The index calculates the 

total spectral energy within this range and does not differentiate between constant-

frequency signals (such as cicada calls) and complex signals (such as most bird songs). 

Therefore, a few generalist cicada species calling more frequently could potentially 

still result in high index values. Some endothermic species of tropical forest cicada 

have been found not to call until certain temperature is reached (Sanborn et al., 1994), 

and since old growth forest have been shown to have a greater thermal buffering 
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capacity than logged forests (Frey et al., 2016), it is possible that the onset of certain 

species calls is delayed, therefore resulting in a differing level of contribution to the 

overall soundscape during the periods we analysed.  

Acoustic Evenness decreased with observed bird richness, while previous 

studies have shown both positive (Eldrige et al., 2018) and negative (Mammides et 

al., 2017) associations. Acoustic Evenness is an entropic index based on overall 

evenness between 1 KHz frequency bands (Villanueva-Rivera et al. 2011). Its 

interpretation is complex since potentially high values can be reported for signals with 

opposing ecological characteristics. As noted by Eldridge et al. (2018), complex 

signals with many amplitude modulations have low temporal entropy, but sustained 

sounds of consistent frequency show very high temporal entropy. Therefore, we 

suspect that acoustic evenness may also have been influenced by the variation and 

regularity in cicada calls. This means that more cicada species calling at frequencies 

straddling multiple different bands would increase evenness. However, some species 

of cicada call at narrow, constant frequency bands (e.g Sanborn, 1997), if these were 

to fall within a particular 1 kHz bound assessed by the index, this would reduce 

evenness.  

Although some studies have sought to control for cicada choruses by excluding 

them (Towsey et al., 2013), the uneven temporal distribution of such signals means 

excluding them would add new biases based the time of sampling. Previous studies 

have also found that temporal differences in cicada chorus introduced bias in entropic 

indices, which resulted in higher index values in degraded than intact tropical forest 

(Sueur et al., 2008). The loud insect chorus characteristic of Bornean rainforests has 

also been suspected of resulting in ‘jamming avoidance’, whereby some taxa sing less 
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frequently during the loudest choruses of others (Reide, 1997). This could in theory 

also affect the acoustic evenness index, since complex signals such as birdsong may 

be inhibited by cicada calls. Therefore, understanding how changes in cicada choruses 

effect acoustic indices is therefore a major research priority for optimising their utility 

in tropical forests.  

Our results showed a weak positive association between NDSI and observed 

richness across all habitats. However, the perceived influence of anthropogenic sound 

was highly heterogeneous when point counts were conducted. Whilst oil palm riparian 

areas undoubtedly had a greater proportion of anthropogenic sounds, many logged 

forest sites were still undergoing salvage logging nearby to where our counts were 

conducted. This resulted in distant chainsaw and vehicle sounds being relatively 

common within our recordings. A high proportion of old growth sites were influence 

by the sounds of vehicles, leaf-blowers and road construction nearby.    

Bioacoustic index values were greater in old growth forest, followed by logged 

forests, then riparian reserves and riparian forest (Fig. 4.1). This pattern (excluding for 

oil palm) mirrored the aggregated habitat richness findings from our previous analysis 

of the landscape (Chapter 2; Mitchell et al., 2018), as well as a large literature showing 

that old growth forests support more bird species than logged forests (Edwards et al., 

2014) or isolated fragments (Edwards et al., 2010). Associations between bioacoustic 

index values and observed richness from individual point counts may have been weak 

due to the observed richness being a poor reflection of actual avian richness patterns. 

This is because the majority of species in tropical forest are rather uncommon, with 

some not even calling every day (Robinson et al. 2018).  
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Incomplete sampling of some species due to a failure in detection contributes 

to the discrepancy between acoustic indices and richness patterns. This is supported 

by the negative relationships found between several indices and time-of-day (Table 

4.1). This idea is supported by two patterns we observed. First, associations between 

bioacoustics index and estimate richness (controlled for detection probability), were 

far higher than those with observed richness (Fig. 4.3). Second the overall avian chorus 

(and hence the probability of a given species vocalising) decreased with time after 

dawn (Table 4.1).  Similar patterns have been noted in several previous studies 

(Wimmer et al., 2013). Since observed richness from point counts can be based on 

upward of 95% aural encounters in tropical forests (Robinson et al., 2018), this metric 

also decreases with time after dawn. However, the effect of time upon acoustic indices 

and observed richness is not the same, since point counts do not rely solely upon 

vocalisations. This means that the differing effects of time upon the two metrics 

introduces a source of bias. We found that associations between indices and observed 

richness within our landscape-level dataset improved when we used time-controlled 

residuals for both. We therefore recommend this step for any sampling designs that 

base their acoustic indices upon samples from different times of day. However, for 

extended or constant autonomous recordings, there are alternatives to this approach, 

such as using sampling designs which validate recordings based on one minute 

samples, taken at random or via a stratified sampling approach depending on the 

results for particular indices (Wimmer et al., 2013).  

Pre-processing our recordings to remove frequencies outside of our focal range 

of 800 - 10,000 kHz (the range within which tropical bird vocalisation fall), as well as 

removing 12 dB of background noise using a manually set noise profile, resulted in 
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improved associations between indices and observed richness. We referred to these as 

adjusted indices for simplicity, although the actual process involved editing the 

recording themselves before re-running the same computations for calculating 

acoustic metrics. Adjusted indices, showed stronger associations with observed 

richness for evenness, NDSI and Bioacoustics Index (Table 4.1; Fig. 4.1; Fig. 4.2). 

Notably, Adjusted Bioacoustic Index values increased significantly in riparian habitats 

(riparian forest where the sounds of running water were strongest and riparian reserves 

where they were of variable intensity) relative to those without background noise. This 

supports our hypothesis that high level of geophonic background noise ‘drown out’ 

bird vocalisations in these habitats.  

We also assessed the performance of the acoustic indices most associated with 

observed richness (Acoustic Complexity time residuals, Adjusted Acoustic Evenness 

time residuals, Adjusted Bioacoustic Index time residuals) against estimated richness 

(Fig. 4.2). Observed richness time residuals (Point count residuals; the total number 

of species encountered during each point count), does not account for imperfect 

detection (i.e. the majority of species are not heard or seen during the 15-minute period 

of a single point count). Whilst observed richness is appropriate for validating the link 

between the species heard by observer during points and resulting representation of 

this via a given acoustic index, it is not necessarily useful for measuring true patterns 

of avian richness across landscapes. In fact, we found no relationship between 

observed richness from individual point counts and canopy height; an environmental 

variable which has been found to strongly influence richness in Bornean tropical 

forests (Cleary et al., 2005).  Bioacoustic Index time residuals were the most strongly 

associated metric with estimated richness (R2 = 0.15), and was more closely linked 
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than observed richness and estimated richness (R2 = 0.08). This suggests that 

Bioacoustic Index time residuals could therefore be used as a viable proxy measure of 

biodiversity across tropical forest landscapes.   

Although previous studies have demonstrated that acoustic indices are capable of 

measuring changes in species richness changes associated with changes in landscape 

configuration (Fuller et al., 2015), their ability to reflect patterns associated with 

environmental or structural gradients across multiple habitats remains uncertain 

(Farina & Pieretti, 2014). In fact, the latter study is the only one to date which has 

assessed the relationship between vegetation structure and acoustic indices and even 

in this case, indices were broken metrics down into smaller categorical variables, 

rather than using a continuous gradient approach. The way in which associations 

between vegetation metrics and acoustic indices is mediated by species richness is also 

still poorly understood and may be contingent upon a number of other factors such as 

bird community composition or vegetation structure (Boelman et al., 2007). For 

acoustic indices to be of similar utility to existing methodologies they must be able to 

reflect biological patterns at a comparable level to conventional methodologies.  

Comparisons between Bioacoustic Index time residuals and canopy height (R2 = 0.26), 

showed a similar level of association to that of estimated richness and canopy height 

(R2 = 0.31). This demonstrates that Bioacoustic Index time residuals t performs at a 

similar level to establish advanced modelling techniques reflected patterns of 

biodiversity associated with an environmental gradient. Since much biodiversity 

assessment and conservation research is concerned with identifying the effects of 

environmental and human-mediated changes to the landscape, the fact that acoustic 
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indices are able to capture the effects of such environmental gradients supports their 

deployment more widely as a method of assessing biodiversity.    

Soundscape indices can be used to reflect patterns of biodiversity across varied 

landscapes with significantly different community assemblages and different levels of 

species richness. By following these steps we were able to increase the associations 

between acoustic indices and richness from very weak (R2 of 0.02 for Acoustic 

Evenness as the strongest initial association), to better than raw data from conventional 

point counts and comparable those of current best-available modelling approaches (R2 

of 0.26 for Bioacoustic Index time residuals).  

With correct deployment and analysis, such indices are capable of capturing 

variation in ecological communities associated with environmental gradients such as 

differences in vegetation structure. The utility of acoustic indices provides efficient 

ways of quantifying biodiversity, without the need for expert validation, and means 

that such methods are an excellent tool for conservation and in particular rapid 

biodiversity assessments, especially in the context of limited resources and an ever-

growing number of environmental crises. Future advances in acoustic approaches, 

particularly those based on deep-learning, have the potential accurately identifying 

individual species and show highly promising potential for assessing and monitoring 

tropical forests (Burivalova et al., 2019). However, at present the main application of 

these indices rests with quantifying community-level acoustics, and misses vast 

information at the species level, which can inform which species are dominant and 

rare, and hence of a conservation priority.  
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Supplemental Materials  

 

Figure S 4.1. Violin plots with embedded boxplots for adjusted indices. Acoustic Acoustic 

Complexity, Adjusted Acoustic Complexity and Acoustic Evenness, Adjusted Acoustic 

Evenness, Bioacoustic Index, Adjusted Bioacoustic Index, NDSI and Adjusted NDSI in each 

habitat: Old growth; Logged forest; Riparian forest; Riparian reserve and Riparian oil palm.    
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Figure S 4.2.  Regressions of the best performing indices against observed species richness. 

Acoustic Complexity; Adjusted Acoustic Evenness; Adjusted Bioacoustic Index and Adjusted 

NDSI against Point count richness for each habitat: Old growth; Logged growth; Riparian 
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forest; Riparian reserves and Riparian oil palm. R2, F statistic and p values of each relationship 

are listed at the top right of each respective panel.  
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 Discussion 

Throughout this thesis I have explored the impacts of tropical forest degradation and 

loss on biodiversity across a landscape gradient from old growth forests, to agricultural 

plantations. The application of novel technological and statistical approaches has 

yielded two important insights. First, I have been able to address unanswered questions 

regarding biodiversity responses to landuse change including thresholds of response 

to habitat modification for many species. Second, I have been able to demonstrate the 

applicability of these novel approaches in the context of practical ecological questions, 

and give policy-relevant recommendations as a result.  

 

The application of LiDAR technologies in biodiversity monitoring 

In Chapter 1 I revealed the biodiversity value of riparian reserves in oil palm 

landscapes, using birds as surrogate taxa. To examining the relationship between 

riparian reserve width, carbon density and species richness, I utilised LiDAR derived 

data to gain insight that would not otherwise have been possible, and suggest practical 

recommendations. I recommended that reserves would become more optimal habitat 

for birds by increasing riparian vegetation from 30 to 40 m on each side of river, but 

that reserves still do not reach equivalent bird species richness until forest quality is 

improved (exceeding 60 tonnes of carbon per hectare in tree biomass). This appraisal 

was made possible by being able to use LiDAR data to measure both riparian width 

and carbon density. Although direct measures of river and riparian zone width could 

be undertaken in the field with measure tapes or rangefinders, my early attempts to do 

this proved futile given the terrain and difficulty in surveying a sufficiently 
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representative cross-section of the river and reserve. Likewise, the implementation of 

on-the-ground vegetation plots in many areas of the landscape would have been 

prohibitively time consuming. In comparison, ground-truthing of LiDAR plots was 

only undertaken at a subset of sample points and as a collaborative effort out in by 

multiple members of the Stability of Altered Forest Ecosystem staff as well as 

members of the LOMBOK consortium (Jucker et al., 2018).   

There has been a huge proliferation in remote sensing technologies in recent 

years. In 2001 LANDSAT imagery was virtually the only publically available earth-

observation dataset (Pimm et al., 2015). However, by 2008 at least 19 different earth 

observation satellites were operating (Gillespie et al., 2008) and 268 additional 

missions were in the planning stage by 2012 (Selva & Krejci, 2012). Since 2000 the 

number of civilian missions has grown exponentially, with the spatial resolution of 

data also continuingly increasing (Belward & Skoien, 2015) As well as offering 

potentially new ways of mapping land cover (including in three dimensions), perhaps 

the most fundamental gain for biodiversity monitoring has been the increased 

efficiency and reduced cost of collecting data for large areas. As a result, the spatial 

scales on which biodiversity is assessed have expanded significantly, both in the 

context of single study landscapes, and meta-analytic global analyses. Remote sensing 

also allows the assessment of vegetation in areas which may be inaccessible due to 

terrain (e.g Avisse et al., 2017) or security issues.  

LiDAR data were integral to the research presented in each data chapter.  

Chapter 3 in particular assessed species occupancy responses against the high 

resolution measures of forest structure derived from the LiDAR, including the overall 

density of vegetation and the vertical skew in the distribution of that density. These 
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covariates would be difficult to derive from conventional reflectance-only remote 

sensing technologies, since they necessarily require hyperspectral signals that can 

penetrate through the top layers of canopy in order to map 3-dimensional vegetation 

structure. The application of LiDAR technologies to studies in other parts of the 

tropics could fundamentally change our understanding of how biodiversity is 

distributed from two dimensions to three.  

Sabah now has near state-wide LiDAR coverage thanks to a recent aerial 

survey mission led by the Carnegie Airborne Observatory (Asner et al., 2018), which 

potentially allows for patterns of biodiversity to be modelled on a large scale in 

relation to the vegetation and landscape configuration data captured from these flights. 

The Sabah state government also has ambitions to increase its protected area network 

from 21% to 30% percent of the total land area. There is therefore an opportunity for 

modelling studies such as those I present in Chapter 3 to help inform state-wide 

conservation policy. The availability and applicability of LiDAR technology globally 

also looks set to expand. December 2018 marked the launch of the NASA Global 

Ecosystem Dynamics Investigation (GEDI) LiDAR mission - a global, satellite-based 

assessment of vegetation (Saarela et al., 2018). Deploying such assessments globally 

offers a genuine step change in the way conservation prioritisations can be done, and 

in particular could help discern the relative biodiversity value of different landuse 

intensities in human modified agricultural systems.  

The ability to use LiDAR to define structural niches for highly specialised 

species is already proving useful in defining specific management plans. For example, 

LiDAR assessments have helped to define the habitat structure requirements of Red-

cockaded Woodpecker in the Southern United States (Smart et al., 2012). In another 
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study of the same species, researchers were able to identify lower and upper thresholds 

for densities of pines, basal area of pines, tree diameter at breast height, hardwood 

canopy cover and basal area of hardwoods using ground-based LiDAR assessments 

which have informed federal management plans in the United States (Garabedian et 

al., 2017). LiDAR has also been used to determine habitat association in studies on 

wood-mice (Jaime-Gonzalez et al., 2017), dormice (Goodwin et al., 2018); bats 

(Froidevaux et al., 2016) and  birds in tropical forests (Flaspohler et al., 2010), 

temperate woodland and agricultural landscapes (Bradbury et al., 2015). The 

trajectory of increase coverage and affordability of these technologies mean that 

including a third dimension in appraisals of habitat structure (particularly in contexts 

such as tropical forest where this is highly relevant), could eventually become the 

default approach to species-habitat studies.  

 

Challenges in occupancy modelling to monitor rare species 

Tropical forest bird communities often contain large numbers of species that are 

difficult to detect (Robinson et al., 2018). It has been noted previously that some 

tropical bird taxa are both visually cryptic and rarely vocalise. For example, radio-

telemetry tracking of a Variegated Antpitta (Grallaria varia) documented instances of 

singing at just two of 68 locations within its home range (Jirinecet al. 2018; Robinson 

et al., 2018). We noted that this was also the case for several species with our study 

system. For example Giant Pitta (Hydrornis caeruleus) was only noted from point 

counts on three occasions during five field seasons, despite the observers being highly 

familiar with its distinctive vocalisation.  
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Additionally, a number of species in our study areas were mostly documented 

from distances of greater than 50 m. These encounters were removed from our 

occupancy modelling assessments, since we focussed on examining habitat 

associations within a 50 m radius of each point count station and points were separated 

by 180 m. These species tended to be quite vocal, but occurred at low-densities, and 

were not adequately assessed using a conventional point count methodology over 

limited-distances. Perhaps the most prominent example of this is that the far-carrying 

call of the Critically Endangered (IUCN, 2019) Helmeted Hornbill (Rhinoplax vigil), 

which was noted on 72 occasions, though only six of these were from within 50 m. 

Robinson et al. (2018) recommend the approach we adopted, of using unlimited 

distance surveys and then truncating data later. However, the advocated technique of 

using species-specific distance histograms to inform this approach is not possible 

when attempting to optimise sampling methods for an entire community and avoid 

including communities of adjacent habitats within the radius of point counts, 

particularly in the context of riparian reserves and fragments.   

Southeast Asia, principally Indonesia, is also suffering a crisis in songbird 

trade. Analysis by Symes et al. (2018) suggests exploitation for wildlife trade has 

driven dramatic declines in many species within the region. This has occurred to such 

an extent that some species have already declined to a point where they are no longer 

easily available at songbird markets and new species are being exploited in a cascade 

of demand (Symes et al., 2018). Although cultural factors make wild bird trade a much 

more significant factor in Indonesia than Malaysia, several species have declined as a 

result of exploitation here too, most notably Helmeted Hornbill Rhinoplax vigil 

(Beastall et al., 2016), White-crowned Shama Copsychus barbouri  and Straw-headed 
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Bulbul Pycnonotus zeylanicus (Bergin et al., 2018). Indeed the absence of the latter 

from areas much of our study areas has been attributed to illegal trapping (Sheldon et 

al., 2009.). Forest loss, increased infrastructure for agriculture and fragmentation has 

also further increased the problem of illegal bird trapping and hunt, since it results 

greater accessibility to ever higher proportions of remnant forests (Symes et al., 2018).   

In order to apply a hierarchical modelling approach to these communities some 

standardisation of the data is required. For example, in Chapter 3, I excluded species 

that had been recorded on fewer than four occasions from the dataset completely, since 

trail runs of the modelling approach demonstrated these species to simply follow 

community-average trends in responses to environmental variation. The structure of 

Bayesian occupancy models mean that data are aggregated at the community level and 

this informs species-specific parameter estimates, therefore moving them toward the 

community mean (Broms et al., 2016). This remains a potential caveat for some of the 

rarer species remaining in the model. Defining specific thresholds for species trait 

groups required there be sufficient number of species in each group. On the other hand, 

including species based on too few observations would increase the representation of 

the community mean hyper-parameters from which they borrow power, and therefore 

potentially obscure the differing responses of different trait groups.  

The models applied in Chapter 3 did not account for the influence of transects 

beyond differences in the five environmental variable we included. I explored the 

inclusion of a random factor variable for each of the 33 transects associated with 

detection probabilities. However, this increased the size of the model an order of 

magnitude, to the extent that even when running on the entire capacity of the 

supercluster server at the University of Kent, the analysis exceeded the active memory 
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limits. This demonstrates that there are still some computational impediments for 

undertaking complex Bayesian models on very large ecological datasets such as the 

one I collected. However, increases in computer processing power are likely to 

continue, which should allow the introduction of more powerful models. 

 

The application of bioacoustic approaches to biodiversity monitoring 

The development of sophisticated and relatively inexpensive sound recorders in recent 

years has opened up new avenues of ecological research. Acoustic approaches to 

measure and monitor biodiversity have been undertaken in environments as diverse as 

freshwater lakes and coral reefs (Lindseth & Lobel, 2018) and tropical forests 

(Burivalova et al., 2018). In particular, algorithms which characterise the spectral 

energy or acoustic complexity of recordings and express them as single indexed values 

have been shown to be associated with to biodiversity patterns in many contexts 

(Buxton et al., 2018). However, the utility of theses methods for assessing biodiversity 

on larger scales relies on them being generalisable across multiple habitats, and in a 

number of scenarios these indices are not associated with biodiversity as measured by 

traditional means. Chapter 4 focussed on ways to optimise such acoustic approaches 

and improve their performance in landuse change studies applied across a broad 

environmental gradient. I found that the four indices applied typically became more 

congruent with species richness when processed for noise reduction and when I 

controlled for the effects of time in analyses. Based upon my findings, I offer a series 

of recommendations for future soundscape analyses that aim to characterise 

biodiversity patterns in tropical habitats:  
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1) Agriculturally intensive environments cannot be adequately compared using 

the indices I assessed at present, since these indices are currently unable to 

separate the influences of human sounds from signals generated by wildlife.   

2) The ability of acoustic indices to act as proxies for biodiversity may be 

compromised in habitats with strong geophonic influences, such as fast 

flowing water. I demonstrate that the use of proprietary noise reduction 

functions software from the free software Audacity (1999-2013 Audacity 

Team; SourceForge.net), to transform recordings (Chapter 3) helps minimise 

this influence. Application of this transformation improves the performance of 

three out of four indices in all habitats, albeit to a small degree.  

3) In tropical forests there is potentially a strong influence of cicada choruses 

upon acoustic indices. Further study into the specific effects of cicada and 

insect noise more generally upon the outcomes of acoustic indices is required. 

Assessment of how call diversity and regularity in insect taxa are associated 

with broader patterns of biodiversity will help in the appropriate deployment 

of existing acoustic indices as well as development of new metrics. Ideally, to 

control for potential discrepancies introduced by cicadas, future studies should 

attempt to quantify the regularity and diversity of these acoustic signals, and 

separate them from other sounds in downstream data processing. 

Time-of-day has an influence on virtually all the indices applied in this setting. 

In studies based on point count designs it is possible to improve the 

performance of acoustic indices by using time-controlled residuals. For studies 
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based on long-recording times, random or stratified sampling of recordings 

may perform better (Wimmer et al., 2013)  

By following these recommendations these simple acoustic indices could better reflect 

patterns of biodiversity across varied landscapes with significantly different animal 

community and different levels of species richness. By following these steps I was 

able to increase the correlations between acoustic indices and richness from very weak 

(R2 of 0.02 for acoustic evenness as the strongest initial correlation), to coefficients 

that exceeded those achieved when using raw data from conventional point counts and 

comparable to those of current best-available modelling approaches (R2 of 0.26 for 

Bioacoustic Index after controlling for noise-reduction and time).  

Although acoustic indices have the advantage of being simple enough to 

compute easily for large datasets, they also have some potential limits. For instance 

they are limited in their ability to reflect patterns of beta-diversity (i.e. 

similarity/dissimilarity between sites) (Lellouch et al., 2015). They are also unable to 

discriminate between the effects of different species or even taxonomic groups. 

Approaches based on cluster analyses have been applied to ultrasonic sounds emitted 

by bats, with mixed success (Lemen et al., 2015). 

Emerging machine learning approaches could eventually be capable of 

identifying many bird vocalisations to the level of species with a high level of accuracy 

(Chakraborty et alo., 2016), whilst continuing advances in cellular technology offer 

the possibility that autonomous recordings captured anywhere in the world soon might 

be processed in real time (Sethi et al., 2018). Until very recently such technologies 

currently faced impediments in their affordability and durability (Aide et al., 2013).  
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Perhaps most significantly, the amount of data required to train automated 

identification processes in other areas is very high (Alwosheel et al., 2018) and this is 

currently prohibitive for the identification of most bird calls, simply because an 

insufficient number of reference recordings to train the algorithms are available. 

Currently, convolutional neural networks (a form of unsupervised machine learning) 

perform better in identifying the overall contributions of anthrophonic and biophonic 

signals in urban soundscapes (Fairbrass et al., 2018), and also separate bird song from 

other signals (Stowell et al., 2018). Some progress has been made in using these 

approaches to identify individual species (Aide et al., 2013), but these still require 

high levels of human supervision. 

 

Synergies between novel approaches and technologies 

Some of the key findings presented in this thesis involve combining the application of 

these different technologies and novel techniques. Chapter 1 utilised LiDAR data to 

assess the effects of width and carbon density in riparian reserves; a habitat which has 

previously received comparative little attention in terms of assessments of its 

biodiversity contribution in human-modified tropical oil palm landscapes. Chapter 2 

focussed on using LiDAR data from across a whole forest gradient in order to offer 

novel insights into potential abrupt thresholds in species response to forest change. 

This required incorporating LiDAR data into a recently developed Bayesian 

occupancy modelling framework, and assessing the results using methods for 

statistically assessing change points change points, which have only been relatively 

recently applied to ecological data (Toms & Lesperance, 2003). Chapter 3 compared 

recently developed soundscape indices with species richness estimated from the 
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occupancy models. This highlights the fact that many developments in both 

conservation and ecological research stem not necessarily from the advances in new 

technologies themselves, or in the deployment of single novel approach, but in 

applying combinations of these approaches in order to address questions that were 

previously difficult or impossible to answer.  

This parallels the broader progress made in biodiversity monitoring through 

combining novel technologies and methodological or analytical advances. For 

example, recent advances in citizen science monitoring have been augmented by the 

capacity to use deep learning approaches in identifying photos of both species of birds, 

plants and insects (Waldchen & Mader et al., 2018). Even huge datasets and ‘big data’ 

approaches such as those which can be yielded through citizen science do not 

necessarily provide new insights into ecological patterns and mechanisms without the 

ability to adequately generalise the patterns within them (Najafabadi et al., 2015). The 

scale of these datasets is often too great for conventional human analysis and therefore 

necessitates deep learning approaches in order to unveil novel findings. Since 

advances on big data often require much larger collaborative scientific efforts, there 

have been increasing calls to improve the levels of collaboration in ecology, given that 

this field has sometimes lagged behind with the large-scale approaches that have been 

commonplace in the physical sciences for many years (Hampton et al., 2013). 

Additional synergistic advances have occurred in remote sensing from the 

application of deep learning algorithms (Hethcoat et al., 2018). The combination of 

LiDAR technology with conventional remote sensing techniques as well as artificial 

intelligence makes it possible that in the near future we will develop the ability to 

identify individual tree to species level from space (Holmgren et al., 2008). Other new 
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combinations of approaches have included the use of drones to capture both acoustic 

data (Wilson et al., 2017) and eDNA samples (Doi et al., 2017), thereby removing 

physical barriers which have previously prevented the collection of such data in certain 

areas. This thesis provides an example of how different technological and statistical 

advances can be used in conjunction to study pertinent questions in conservation 

science. By applying these advances to assessing biodiversity patterns in human-

modified tropical landscapes I have been able to not only identify specific policy 

interventions in for riparian reserves, but also demonstrate potentially important 

tipping points in the responses of tropical bird communities to the structural vegetation 

changes associated with forest degradation and recommend improvements to 

deployment and analytical protocols to improve recently developed methods. 
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Riparian buffers in tropical agriculture: Scientific support, 

effectiveness and directions for policy 
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Julia Drewer, Joseph Williamson,  Agnes L. Agama,  Miklin Ationg,  Simon L. 

Mitchell,  Charles S. Vairappan, Matthew J. Struebig   

 

Published: Journal of Applied Ecology (2018) 

 

Abstract 

1. There is a weak evidence base supporting the effective management of riparian 

ecosystems within tropical agriculture. Policies to protect riparian buffers—strips 

of non‐cultivated land alongside waterways—are vague and vary greatly between 

countries. 

2. From a rapid evidence appraisal, we find that riparian buffers are beneficial to 

hydrology, water quality, biodiversity and some ecosystem functions in tropical 

landscapes. However, effects on connectivity, carbon storage and emissions 

reduction remain understudied. Riparian functions are mediated by buffer width 

and habitat quality, but explicit threshold recommendations are rare. 

3. Policy implications. A one‐size fits all width criterion, commonly applied, will be 

insufficient to provide all riparian functions in all circumstances. Context‐specific 

guidelines for allocating, restoring and managing riparian buffers are necessary to 

minimise continued degradation of biodiversity and ecosystem functioning in 

tropical agriculture. 
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Abstract 

The rise of palm oil as the world’s most consumed vegetable oil crop has 

coincided with an exponential growth in palm oil research activity. Bibliometric 

analysis of research outputs has shown a distinct imbalance in the type of research 

being undertaken, notably a disproportionate focus towards biofuel and engineering 

topics. Recognising the expansion of palm oil within frontier regions and the 

increasing awareness of the local and global environmental, social and economic 

impacts, this study aims to re-orient the existing research agenda towards one that 

addresses the most urgent questions and issues. Following consultation with 659 

stakeholders from 38 countries the highest priority research questions were identified 

within 13 themes. Analysis of the priority questions and themes revealed a diversity 

of environmental and social research challenges ranging from the environmental 

impacts of production, to the livelihoods of plantation workers and smallholder 

communities. Stakeholders emphasised a need for research into policy, governance 

and certification topics in order to meet this challenge. Research addressing the 

consumption of palm oil also emerged as a priority as did studies to improve 

communication and cooperation between academic and non-academic stakeholders. 

Analysis of the ‘knowledge type’ of the questions revealed a need for fundamental 

science programmes and studies that involve the consultation of non-academic 

stakeholders to develop ‘transformative’ solutions. Key recommendations include 

improved regional academic leadership and coordination, greater engagement with 

private and public stakeholders in the frontier regions of Africa and Latin America, 

and enhanced collaborative efforts with researchers in the major consuming countries 

of India and China.   
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