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Abstract 22 

Human assisted reproductive technology procedures are routinely performed in clinics 23 

globally, and some of these approaches are now common in other mammals such as cattle. 24 

This is currently not the case in pigs. Given that the global population is expected to increase 25 

by over two billion people between now and 2050, the demand for meat will also 26 

undoubtedly increase. With this in mind, a more sustainable way to produce livestock; 27 

increasing productivity and implementing methods that will lead to faster genetic selection, 28 

is imperative. The establishment of routine and production scale pig embryo in vitro 29 

production could be a solution to this problem. Producers would be able to increase the 30 

overall number of offspring born, animal transportation would be more straightforward and 31 

in vitro produced embryos could be produced from the gametes of selected elite. Here we 32 

review the most recent developments in pig embryology, outline the current barriers and key 33 

challenges that exist, and outline research priorities to surmount these difficulties.  34 

 35 

Key words: pig; embryology; in vitro fertilisation; in vitro production; embryo culture  36 
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1. Introduction 37 

Human assisted reproductive technology (ART) procedures such as in vitro fertilisation (IVF), 38 

preimplantation genetic diagnosis (PGD) and gamete and embryo cryopreservation are well 39 

established and implemented in clinics worldwide; in fact in 2016 in the UK alone over 68,000 40 

IVF treatment cycles were performed, resulting in 20,028 births [1]. Similarly, the mouse is 41 

widely used as a model for human ART procedures. In domestic farm animals, the motivation 42 

for performing IVF, and possibly PGD, is quite different. By 2050 the world population is 43 

predicted to increase from 7.6 to 9.8 billion [2], and the per capita increase in consumption 44 

of meat and milk is expected to increase by 20% [2]. Livestock production is also a significant 45 

contributor to global warming [3]. Solving these problems means that more meat needs to 46 

be produced from fewer animals in less time. This could potentially place an untenable 47 

demand, both on the environment and on food producers without sufficient innovation. This 48 

could potentially place an untenable demand, both on the environment and on food 49 

producers without sufficient innovation. 50 

 51 

IVP in pigs is an attractive option for research fields such as reproductive biotechnology, 52 

transgenesis and biomedicine. Moreover, taking into account the genetic, anatomical and 53 

physiological similarities between pigs and humans, transgenic pigs may represent suitable 54 

donors of tissues and organs for xenotransplantation, regenerative medicine, as animal 55 

models of human hereditary diseases, or as animal bioreactors of recombinant human 56 

proteins/biopharmaceuticals [4–14]. 57 

 58 

The strategies of IVP that are commonly applied to generate porcine embryos encompass 59 

three crucial steps: 1) in vitro maturation (IVM); 2) IVF or somatic cell nuclear transfer (SCNT); 60 



4 
 

and 3) in vitro culture (IVC) of fertilised or cloned embryos [15–26]. Although multiple 61 

methods have been used to create in vitro fertilised or nuclear transferred pig embryos, their 62 

developmental potential and quality are low in comparison both to their in vivo produced 63 

counterparts and to IVP embryos from other livestock species [27–36]. Therefore, more work 64 

is needed to achieve the efficient generation of high quality IVP derived pig embryos for the 65 

purposes of biotechnological and biomedical research [37–46]. 66 

 67 

As pigs account for c.40% of global meat consumption [4] a sustainable supply of pork to both 68 

developed and developing countries also requires increased productivity through rapid 69 

selection for greater feed conversion efficiency, improved disease resistance and enhanced 70 

fertility. With this in mind, IVF, or more specifically, IVP could be greatly beneficial in the 71 

following ways. 72 

 73 

1.1 Accelerating genetic progress  74 

IVP embryos produced from the gametes of selected elite parents represent an excellent 75 

resource for improving food production. In recent years, food producers have made use of 76 

high-throughput genomic platforms, primarily single nucleotide polymorphism (SNP) chips 77 

[5], to determine genetic merit in new-borns. The speed and efficiency at which genetic 78 

improvement for such traits can be introduced is however constrained by the delay between 79 

conception and birth. Use of IVP embryos would theoretically have the potential to increase 80 

selection intensity as the first selection step would occur before the embryo is implanted, 81 

thereby immediately removing the requirement to gestate lower genetic merit animals and 82 

hence ensuring uterine resource is focused only on the genetically superior candidates. 83 

 84 
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1.2 Movement of genetics across international borders 85 

As artificial insemination (AI) is widely used in animals of agricultural importance, semen 86 

samples (male genetics) are routinely distributed both nationally and internationally. For 87 

female genetics however, currently the only option in pigs is to transport live animals for 88 

establishing nucleus farms overseas. Use of vitrified IVP embryos on the other hand would 89 

facilitate the global transport of genetically superior stock in way that delivered higher 90 

animal-welfare, a lower-cost and increased bio-security. Moreover, if the embryos are sexed 91 

beforehand, the drawbacks of the waste from genetically unwanted males that have to be 92 

reared to market weight, including ammonia, methane and nitrous oxide [7], is eliminated. 93 

 94 

1.3 Animal health and welfare 95 

Farm animals carry a considerable number of endemic diseases and often it is necessary to 96 

move infected, and potentially infected, pigs into a “clean” farm. Current practice involves a 97 

pregnant female receiving a hysterectomy with foetuses in utero, followed by sacrificing the 98 

mother. In contrast, embryos produced in a lab have the potential to be “clean” and could be 99 

implanted into recipients on the farm significantly reduced disease risk (explored later). 100 

Similarly, when re-stocking a farm, it is imperative to have one supply at a time as mixing 101 

multiple populations risks transmission of disease. Embryos on the other hand, could be 102 

implanted into existing sows (following improvements in transfer techniques) which means 103 

that subsequent live births would receive the endemic immunological challenge of the farm 104 

at birth, and thereby would not introduce new disease to the existing population.  105 

 106 

1.4 Further benefits 107 
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By producing IVP pig embryos, a resource for future work on genome editing, which could be 108 

used to improve livestock, is created. IVP embryos are also a useful resource for bio-banking, 109 

in particular, maintaining biodiversity by preserving rare breeds or lines. Finally, both pig and 110 

cattle embryos are an excellent model system for fundamental research into human IVF. 111 

Being large mammals, like ourselves, pigs and cattle (and, by extension, aspects of the cell 112 

biology of their embryos) have much closer similarity to humans than the classical mouse 113 

model for fundamental biological studies. As such, and in addition to other sources of 114 

embryos, these could be used to improve media, culture conditions and standard operating 115 

procedures when ethical issues preclude direct experimentation on human embryos.  116 

 117 

Cattle IVP is now comparatively well established, thus enabling vast improvements to both 118 

beef and dairy production [8,15]; for example, the first use of Karyomapping, (a universal 119 

means of detecting chromosome disorders) for non-human purposes has recently been 120 

reported in cattle [47]. In pigs however, much work is still to be done and the received wisdom 121 

is that pig IVP is notoriously difficult to achieve. Given that challenges previously faced in 122 

human embryology have now been overcome, it seems that, with sufficient time and 123 

resources, a re-invention of the pig IVP process could be accomplished. Furthermore, with 124 

working protocols for embryo biopsy, genetic screening, sexing and possibly genome 125 

sequencing there is great potential for success. These benefits are summarised in Figure 1, 126 

there however remain a number of significant challenges to the implementation of pig IVP. 127 

The purpose of this review is to summarise the state of the art in pig IVP, to outline the key 128 

challenges and to provide a road map for research priorities to surmount these. 129 

 130 
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2. The challenge of pig embryology and the importance of using chemically defined culture 131 

medium 132 

The strived for, but not yet accomplished, 100% success rate in human IVF procedures is less 133 

important in agricultural animal embryological procedures where the key drivers are embryo 134 

quantity and cost. Given the comparatively high number of embryos required, the processes 135 

of IVM, IVF and IVC in these species is generally referred to as in vitro production (IVP). Whilst 136 

the first successful pig IVP was reported in 1986, IVP still has a relatively low success rate 137 

[16,19,20,48]. More recently, several pig IVP approaches have been developed that 138 

successfully generate embryos [34,43,49], however upscaling the process to the levels 139 

required for production and commercial implementation remains challenging due to a high 140 

incidence of polyspermy, the notorious four cell block (associated with genome activation in 141 

mammalian species), and low blastulation rates.  142 

 143 

A significant complication in the production of pig embryos is the high endogenous lipid 144 

content. This lipid excess makes the oocytes and embryos look far darker and less transparent 145 

under the microscope than mouse or human cells [28], thus hindering the observation of 146 

initial indicators of successful fertilisation such as pronuclear development and assessment 147 

of morphology, usually the first port of call in human embryology. Studies indicate that pig 148 

oocytes contain more than double the amount of lipid (135-156ng) [29,30] when compared 149 

to bovine oocytes (58-59ng) [31]. The role of this lipid is not well understood, but it has been 150 

hypothesised that pig oocytes use intracellular triglyceride as a source of energy for 151 

maturation [29]. Interestingly, however high lipid content has been correlated with impaired 152 

oocyte developmental competence and low cryo-survival due to temperature sensitivity 153 

[28,37].  154 
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 155 

When considering embryological procedures in any species, it is important to reflect on the 156 

entire process, from oocyte collection and subsequent maturation, to fertilisation, embryo 157 

culture and finally cryopreservation of material and/or embryo transfer (where applicable). 158 

Ideally, both the maturation and embryo culture medium used are chemically defined, and of 159 

a consistently high quality. It is also often the case that media need to be specific to each 160 

developmental stage. The use of chemically defined media permits analysis of the impact of 161 

the various essential components required for successful embryonic development. 162 

Additionally, the composition of chemically undefined supplements, such as human serum 163 

albumin (HSA) or fetal bovine serum (FBS), may vary between batches and result in the 164 

possibility of media contamination. The following sections reflect sequentially on each stage 165 

of the process and these issues are shown in Figure 2. 166 

 167 

3. Oocyte maturation 168 

It is essential that oocytes are matured to the correct stage (either in vivo or in vitro) prior to 169 

fertilisation. Generally, in order to generate a sufficient volume of oocytes for research, 170 

oocytes are harvested from slaughterhouse derived gilt or sow pig ovaries [38], rather 171 

embryos being recovered via superovulation and uterine flushing. In part, this is due to 172 

complications in the anatomy of the female pig reproductive tract, including, the fact that the 173 

uterine horns are coiled with cervical folds [39]. In some cases, ovaries are obtained from 174 

non-synchronised animals of unknown age and breed which can make sample control 175 

difficult. Further to this, there are also inherent complications in sample acquisition; examples 176 

include ovary collection procedures (only a trained person can collect ovaries, and there are 177 

associated issues with biosecurity), the distance from the point of collection to the laboratory 178 
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and how the ovaries are stored in the laboratory before until and during oocyte retrieval. 179 

Interestingly, there is some evidence in the literature that when oocytes derived from sows 180 

as opposed to gilts are used for IVF, a higher proportion develop to the blastocyst stage, and 181 

that susceptibility to polyspermy may be also be reduced [50–53]. In addition, a primary 182 

consideration is ensuring that the mode of oocyte retrieval does not disrupt or damage the 183 

cumulus-oocyte-complex (COC), pivotal to oocyte maturation [40]. Cumulus cells provide a 184 

range of functions including supporting oocyte maturation (predominantly cytoplasmic 185 

maturation) by allowing metabolite transfer via gap junctions, and by raising intracellular 186 

cyclic adenosine monophosphate (cAMP) levels to maintain the oocyte under meiotic arrest 187 

[41]. 188 

 189 

Collected pig oocytes are immature (germinal vesicle stage) and hence, need to be matured 190 

(nuclear maturation stage) in vitro prior to fertilisation. As mentioned previously, the 191 

development of oocyte maturation culture medium is a vital initial step in the process to 192 

ensure that both nuclear and cytoplasmic oocyte maturation are achieved and that these 193 

events are co-ordinated [54]. This is particularly important given that there is considerable 194 

variation in germinal vesicle morphology at the time of oocyte collection [50]. Nuclear 195 

maturation involves the processes that reverse meiotic arrest at prophase I and thereby allow 196 

resumption of meiosis. In contrast, cytoplasmic maturation describes the vital processes 197 

which prepare the oocyte at the germinal vesicle stage to undergo oocyte activation and 198 

development following fertilisation, for example, the co-ordinated arrangement of proteins 199 

and organelles [51]. Three main types of IVM media are now commonly used; Tissue Culture 200 

Medium (TCM)-199, North Carolina State University (NCSU)-23 medium and modified 201 

Whitten’s Medium (mWM) as those that offer the best oocyte developmental competence. 202 
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Whilst the main constituents of these media remain the same, some differences exist (Table 203 

1) and there is clear evidence that even quite small changes in the concentration of the 204 

individual components can alter success rates. For example, Funahashi and colleagues found 205 

that the concentration of organic osmolytes in mWM affected cytoplasmic maturation [52]. 206 

In this case, the presence of the organic osmolytes taurine and sorbitol (6mM and 12mM in 207 

maturation media that contained 68.49 or 92.40 mM of sodium chloride) had a positive effect 208 

on the concentration of oocyte glutathione content, but a higher concentration of sodium 209 

chloride (92.40mM) disrupted the organisation of microfilaments in the oocytes [52]. 210 

Luteinising hormone (LH) has also been shown to improve cytoplasmic maturation, whilst the 211 

presence of both follicle stimulating hormone (FSH) and LH in maturation media has been 212 

shown to accelerate meiotic maturation [19]. Glucose and pyruvate have been shown to 213 

support meiosis resumption through the pentose phosphate pathway (PPP), consequently 214 

leading to improved rates of cytoplasmic maturation [55]. The obvious objective here is to 215 

develop a suitable single medium that combines all of these factors and components; a 216 

chemically defined media that supports both cytoplasmic and nuclear maturation. Numerous 217 

other media supplementations have been investigated, including epidermal growth factor 218 

(EGF) [38,56], insulin-like growth factor I (IGF-I) [57,58] and PG600, an approved drug used 219 

for the stimulation of the oestrous cycle in gilts. This is a combination of pregnant mare serum 220 

gonadotropin (PMSG) and human chorionic gonadotropin (hCG) and has a similar function to 221 

FSH and LH [38]. The use of other agents to aid with meiotic resumption (such as forskolin 222 

and hypoxanthine) has also been investigated in various different species, but such studies 223 

are limited in the pig [59,60].  224 

 225 
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As shown in Table 1, IVM media is traditionally supplemented with porcine follicular fluid 226 

(pFF) as provides oxidative stress protection and theoretically has the potential to act as a 227 

non-invasive biochemical predictor of oocyte quality [61]. In theory, pFF should provide the 228 

ideal microenvironment for oocyte development and currently, the supplementation of 229 

media with pFF is common. There are however significant complications around this 230 

component of media. Routine preparation of pFF requires aspiration from ovarian follicles, 231 

centrifugation, filter sterilisation and subsequently storage at -20°C until supplementation of 232 

maturation media [62,63]. This means that pFF varies between batches, and will be derived 233 

from follicles at, potentially very, different stages of development. To date, proteomic 234 

analysis of pFF is limited [64] and characterisation of the metabolomic profile is yet to be 235 

achieved. Such analyses have been undertaken in other species and show that follicular fluid 236 

is highly complex. For example, analysis of human follicular fluid (hFF) has successfully 237 

identified critical roles for a large number of acute-phase proteins and antioxidant enzymes 238 

including glutathione transferase, catalase and heat shock protein 27, providing evidence that 239 

the human follicle is protected from oxidative stress induced toxic injury during maturation 240 

[65]. Additionally, and unsurprisingly, it has been shown that many steroid and pituitary 241 

hormones are present in hFF including FSH, LH, prolactin, oestradiol and progesterone, and 242 

that the concentrations of these have been correlated with successful follicle growth, oocyte 243 

maturation and the secretory activity of the granulosa cells both prior and subsequent to 244 

ovulation [66]. Interestingly, a handful of studies have used solely follicular fluid for pig oocyte 245 

maturation and subsequent fertilisation in vitro. Here, both static (petri dish culture) and non-246 

static (rotating, test tube based culture) systems were trialled, with positive results for the 247 

non-static, solo pFF culture [67]. There are however, obvious drawbacks to the use of pFF as 248 

a solo culture media, the most critical being the chemically undefined nature of the pFF and 249 
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size dependent difference in the composition of follicle contents [68]. In fact, the inefficiency 250 

of pig IVP has been correlated with follicle size; the smaller the follicle, the less 251 

developmentally competent the oocyte [69].  252 

 253 

4. Fertilisation 254 

Fertilisation results from the successful penetration of an oocyte by a single spermatozoon, 255 

which when performed in vitro, is achieved by co-culturing oocytes that have been matured 256 

to the correct stage with either frozen-thawed or fresh spermatozoa in a fertilisation medium. 257 

Generally, due to the difficulties associated with cryopreserving boar semen [70,71], many 258 

laboratories opt to use fresh, extended ejaculates as the source of spermatozoa for IVF. The 259 

establishment of a block to polyspermic fertilisation is necessary for embryo survival in 260 

mammals and it has been shown that polyspermic events are more common during IVF 261 

procedures than in vivo. As such, the occurrence of polyspermy in pig IVP remains one of the 262 

biggest and unsolved challenges in the field [70,72–75]. An obvious solution to minimising the 263 

incidence of polyspermy would be to reduce the concentration of spermatozoa during in vitro 264 

culture, however reduction in the spermatozoon concentration has been shown to 265 

significantly reduce IVF success rates [38,76]. During natural (in vivo) mammalian fertilisation, 266 

two mechanisms reduce the incidence of polyspermy: fast block and slow block. The fast block 267 

depolarises the oocyte plasma membrane by causing an instantaneous change in sodium ion 268 

permeability. In sea urchins, this has been shown to occur immediately after sperm first bind 269 

with the oocyte, thereby preventing additional spermatozoa-oocyte fusion [77], but 270 

remarkably, this phenomenon is yet to be established in pigs. The phenomenon of pre-271 

fertilisation zona pellucida hardening, first discovered in pigs and described by [78] 272 

highlighted that the presence of an oviduct-specific glycoprotein–heparin protein complex is 273 
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necessary for the correct regulation of polyspermy in pigs. This again has further implications 274 

for the eradication of using biological fluids in pig IVP, which must be taken into consideration. 275 

Interestingly, it has also been shown that the addition of snap-frozen pFF (rapid freezing using 276 

dry ice or liquid nitrogen) to fertilisation medium reduces the incidence of polyspermy [79]. 277 

 278 

Whilst in vivo rates of polyspermy are not known in pigs, it is clear that elements of ART can 279 

increase polyspermy. For example, in comparison to naturally ovulated oocytes obtained via 280 

surgical flushing of the oviduct, the incidence of polyspermy was 38% higher in oocytes 281 

matured in vitro and subsequently fertilised under the same culture conditions [56]. Given 282 

that the function of the pig ZP is not well understood, Tanihara and colleagues attempted ZP 283 

removal to ascertain the function in pigs. This showed that removal of the zona can actually 284 

decrease polyspermic penetration, meaning that the ZP many not be a competent factor for 285 

polyspermy prevention in pigs [72]. Interestingly, studies have revealed that similarly to 286 

maturation media, alterations in the constituents of fertilisation media can impact associated 287 

success rates, especially when considering polyspermy [38,80,81]. Various different 288 

compounds such as heparin, bovine serum albumin, ethanol, pentoxyfylline and caffeine have 289 

been used in vitro to induce the acrosome reaction in mammalian sperm [82]. Caffeine, for 290 

example, has been shown to improve sperm motility by increasing levels of cyclic adenosine 291 

monophosphate (cAMP) and to have an effect on the induction of capacitation, the 292 

penultimate step in mammalian spermatozoa maturation [82,83]. Caffeine may however 293 

induce spontaneous acrosome reactions resulting in a higher number of matured sperm cells 294 

that are incapable of oocyte penetration [81]. As previously mentioned, polyspermic 295 

fertilisation is common in pig IVP, and whilst washing of presumptive zygotes following co-296 

culture has been shown to decrease the incidence of polyspermy somewhat, and that the 297 
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sperm preparation method and co-culture time has an effect on monospermic penetration 298 

[84], various compounds have been added to fertilisation media to assist with this. 299 

Supplementation with adenosine, caffeine, adenosine or pyroglutamylglutamylproline 300 

amide, a fertilisation promoting peptide, all increased fertilisation rates, but supplementation 301 

with caffeine increased the incidence of polyspermy [85], whereas supplementation with 302 

exogenous hyaluronan reduced polyspermic events [86]. The effect of calcium on oocyte 303 

penetration has also been discussed in the literature, with fertilisation media 304 

supplementation between 7.5 and 10mM successfully increasing the penetration rate [80]. 305 

Conversely, and highlighting the importance of media constituent accuracy, pig oocytes can 306 

be parthenogenetically activated by supplementation with calcium ionophore A23187; the 307 

calcium increase and associated cortical reaction preventing sperm penetration in intact 308 

oocytes [56]. As mentioned previously, the concentration of sodium chloride is an important 309 

factor to consider in pig IVP media and it has been found that a lower concentration in 310 

fertilisation media led to less polyspermic events, an increase in the incidence of male 311 

pronuclear formation and elevated oocyte glutathione levels, which is thought to be the main 312 

non-enzymatic defence against oxygen radicals in oocytes and enzymes [87]. Another way in 313 

which the incidence of polyspermy can be reduced is by the use of intracytoplasmic sperm 314 

injection (ICSI), which has been successful in pigs [88–90]. Given the high lipid content in pig 315 

oocytes and the associated difficulties in injecting a whole spermatozoon, the process is less 316 

successful than in other species; not only is the rate of blastocyst formation lower, but the 317 

quality of the embryos is inferior to IVF embryos [91]. This is also not a process that can be 318 

easily scaled for IVP. 319 

 320 

5. Embryo culture 321 
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For pigs, the literature suggests that in vitro fertilisation rates of approximately 45% and 322 

subsequent progression to the blastocyst stage of c.30% can be achieved [53,92].These levels 323 

of success have been achieved in a variety of media, with work over the last twenty-six years 324 

leading to the development of numerous types of pig embryo culture media (outlined in Table 325 

1). The majority of pig embryo culture media used today is based on NCSU-23 [21], but 326 

Beltsville Embryo Culture Medium (BECM) [22], Whitten’s Medium (WM) and Porcine Zygote 327 

Medium (PZM) [27] have also been shown to support embryogenesis. Unfortunately, and 328 

similarly to the case for maturation media, none of these represent chemically defined media 329 

capable of supporting embryo development from the point of fertilisation, to the hatched 330 

blastocyst stage. When comparing ingredients, one key issue is that embryo culture media 331 

can be very different to the in vivo environment. For example, NCSU-23 contains glucose, 332 

which is used as an energy source for embryo development, but at a concentration 333 

approximately 32 times higher than that found in vivo [29]. Such high levels are surprising, 334 

given that this concentration is inhibitory in hamster and mouse embryology, but necessary 335 

in pigs. Before the embryo’s genome is activated, the metabolism of glucose occurs via the 336 

pentose phosphate pathway (PPP), rather than by glycolysis [93]. Given that there is evidence 337 

that suggests that glucose metabolism via the PPP has been correlated with an increase in 338 

reactive oxygen species, this high concentration of glucose in NCSU-23 has successfully been 339 

replaced with pyruvate and lactate as alternative energy sources [27,93]. Interestingly, it has 340 

been discovered that supplementation of embryo culture media with pyruvate and lactate 341 

for the first two days, followed by glucose supplementation for the subsequent four days 342 

achieved the highest blastocyst formation rate [94]. 343 

 344 
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Whilst embryo development to the morula and blastocyst stage is successful over 70% of the 345 

time, for in vivo derived embryos, studies demonstrate a far lower success rate for embryo 346 

development using oocytes matured in vitro. The “four-cell block” in pig embryo development 347 

is a well-known phenomenon; there is conjecture that in pigs the transition from maternal to 348 

zygotic control of development occurs at the four cell stage. The mechanism behind this is 349 

however not fully understood [92]. Embryo development rates in vitro from the 1- or 2- cell 350 

embryo to the four-cell stage are lower than rates seen with in vivo produced 4- cell embryos 351 

that are then cultured in vitro [95]. Research has shown that this developmental block can be 352 

overcome in a number of ways; by co-culture with oviductal or granulosa cells, the 353 

supplementation of culture media with fluid from oviducts or ovarian follicles, as well as 354 

modifications to culture media [96]. While these approaches have been useful during the 355 

early stages of embryonic development, consistent progression to the blastocyst stage 356 

remains a challenge and this again raises an issue for scaling the process to commercial 357 

production. Glucose and glutamine are largely used as energy sources in pig embryo culture 358 

media; a successful alternative is bovine serum albumin (BSA) which contains amino acids, 359 

osmoregulators and pH stabilisers. Similarly, FBS has been shown to be beneficial for 360 

continuing embryo development; in fact, it has been shown in one case that blastocyst 361 

hatching only occurred in the presence of serum [97]. Similarly, Dobrinsky and colleagues 362 

found that the addition of FBS to a defined medium, BECM) supported 80% of the embryos 363 

cultured in the study to develop into hatched blastocysts [22]. As discussed previously 364 

however, the undefined nature of the serum poses a challenge when attempting to stream-365 

lining pig embryo culture protocols; the potential variation in serum constituents may both 366 

impact success rates, and make it difficult to ascertain the source of the problem. It has also 367 



17 
 

been shown that the stimulation of developmental progression from early cleavage to the 368 

blastocyst stage can also be achieved by the presence of taurine or hypotaurine [21].  369 

 370 

PZM is another option for embryo culture, with various iterations of this media existing, all 371 

based on the same constituents. PZM-5 for example contains twice the concentration of L-372 

glutamine when compared to PZM-4 [27,98]; glutamine has been shown to supports cell 373 

growth and is particularly useful for cells that have a high metabolic activity [96]. It has 374 

however been shown that whilst a higher concentration of L-glutamine results in a reduction 375 

in the production of reactive oxygen species [99], it can also lead to an increased 376 

concentration of ammonium due to its instability. Lane and Gardner suggest that whilst a 377 

build-up of ammonium may not impact blastulation rates, lower implantation rates may 378 

result [100]. PZM-3 is supplemented with BSA, fatty acid free (FAF), to provide the required 379 

amino acids to support the metabolic needs of the embryo, whereas PZM-4 is supplemented 380 

with polyvinyl alcohol (PVA) rather than BSA. Naturally occurring chemical variations in BSA 381 

have been shown to impact embryonic development; this is avoided by the use of PVA, an 382 

appealing option due to its chemically defined nature. The effect of oxygen tension on embryo 383 

development has been investigated in many species including pigs; while there is no definite 384 

conclusion as to the effectiveness of a low oxygen environment on embryo development, 385 

evidence suggests that embryo quality can be improved, but blastocyst quality is not affected 386 

[101].  387 

 388 

The osmolality of the culture media used is a key factor that influences success in this regard; 389 

it has been shown that osmotic stress can have an effect on DNA replication, transcription 390 

and mRNA translation, causing cellular damage [102]. There is also some debate in the 391 
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literature pertaining to the use, or not, of mineral oil as an overlay during both IVM and 392 

embryo culture [103] to prevent evaporation, thereby maintaining the osmotic pressure and 393 

the pH of the culture medium being used. Some studies have shown that oocyte nuclear 394 

maturation is delayed when using mineral oil [104], and it has been suggested that toxic waste 395 

products may accumulate in the media. Conversely, other studies have shown that the use of 396 

mineral oil does not affect the time taken for oocyte maturation, or oocyte developmental 397 

competence [103]. Oxygen tension, temperature and pH levels in vivo have been explored 398 

extensively in humans (reviewed in [105]), and have shown that for both successful 399 

embryogenesis and subsequent implantation, avoidance of oxidative stress by controlling 400 

cyclic variation in oxygen, temperature and pH are important. For example, temperature and 401 

pH in vivo has been shown to affect sperm motility and overall embryonic development. A 402 

similar systematic review is however, yet to be conducted in pigs. 403 

 404 

The exclusive use of chemically defined media does nonetheless come with some drawbacks 405 

that have only recently been elucidated. The absence of proteins, growth factors and other 406 

naturally occurring components has been shown to have an epigenetic impact on both 407 

embryos and the resulting offspring [106–109]. Notably, [110] found that use of chemically 408 

defined media can cause alterations in DNA methylation and gene expression patterns in in 409 

vitro produced pig blastocysts, and that these changes can be decreased by the addition of 410 

reproductive fluids in the culture media. This epigenetic impact is not to be dismissed, and 411 

certainly warrants further investigation. 412 

 413 

6. Verification methods 414 
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The efficiency of IVM and hence, subsequent embryo production can be deduced by 415 

investigating nuclear maturation in oocytes [111] using oocyte staining methods. For 416 

example, aceto-orcein staining enables confirmation of successful IVM of oocytes by the 417 

observation of an intact germinal vesicle or germinal vesicle breakdown [112,113]. The 418 

method involves fixing oocytes to slides with methanol and acetic acid (3:1) followed by 419 

staining with 1% natural orcein in 45% acetic acid [112]. Whilst aceto-orcein staining allows 420 

observation of morphological changes within the nuclei of cells using phase-contrast 421 

microscopy [112], others have shown that this technique can result in a significant loss of 422 

oocytes during the fixation step of the protocol and that results can be inconclusive for a large 423 

proportion of oocytes studied due to ambiguous observations of oocyte morphology and 424 

unclear results following staining [114]. Thus, alternative methods involve staining with 425 

fluorescent dyes such as 4’,6-diamidino-2-phenylindole (DAPI) [115,116] and Hoechst 33342 426 

[117,118], however, a key limitation of the use of fluorescent dyes is the inability to accurately 427 

differentiate between the germinal vesicle and germinal vesicle breakdown stages of oocytes. 428 

As a solution to this, Prentice-Biensch and colleagues developed a combination staining 429 

method using DAPI and anti-lamin A/C antibody (a protein present in the germinal vesicle 430 

stage of bovine oocytes [111,119]). This protocol enabled identification of specific stages 431 

(germinal vesicle, germinal vesicle breakdown, metaphase I and metaphase II) of nuclear 432 

maturation in bovine oocytes [114]. Whilst there is no evidence to date that demonstrates 433 

the successful use of the anti-lamin A/C – DAPI stain in establishing successful nuclear 434 

maturation in porcine oocytes, the presence of lamin A/C in the nuclear envelope of porcine 435 

oocytes in the germinal vesicle stage [111,119] suggests that the method could be also be 436 

used to verify IVM of oocytes in pigs [114]. Methods for the observation of nuclei within 437 

embryos include the use of a rapid fluorescent staining method which included 438 
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counterstaining embryos with trypan blue, followed by staining with Hoechst 33342. This 439 

technique was applied in various mammals including animals of agricultural importance such 440 

as pigs, cows and sheep [120]. Such methods have however now been superseded by non-441 

invasive approaches, including the development of time-lapse devices, incubators with 442 

integrated time-lapse functionality. Here, culture conditions are less disturbed and various 443 

morphokinetic parameters can be analysed, such timings of cleavage timings and how these 444 

parameters may be indicative of ongoing embryonic development [121]. Such studies in the 445 

pig are limited [122], and therefore the routine integration of such technology in pig 446 

embryology is currently not feasible, but this is inevitable in the near future. 447 

 448 

7. Embryo transfer  449 

Subsequent to the processes involved in embryo culture is either embryo storage, or embryo 450 

transfer (ET). The first successful ET in a mammal was in 1890, and since then, in cattle much 451 

progress has been made; in fact, ET in this species is now relatively commonplace, and has 452 

been for over 40 years [123]. This is not the case in pigs. Until relatively recently, the only 453 

option for ET in pigs was surgical implantation; this is costly and high risk when compared to 454 

routine AI. More recently, non-surgical deep intrauterine (NsDU) ET of non-sedated gilts has 455 

become an option [39,124]. This is a far more attractive option for the industry to consider, 456 

particularly given that recent studies have demonstrated that transfer of vitrified, in vivo 457 

produced embryos morulae or blastocysts is successful [125]. Given that consistent 458 

progression to these stages is challenging in pig embryology, there is a school of thought that 459 

suggests performing early NsDU ETs to avoid this common developmental block. One of the 460 

putative major problems in ET is asynchrony between the embryos transferred and the uterus 461 

of the recipient; this means that usually, a large number of embryos (over 30 in most cases) 462 
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[38] are transferred to the recipients to increase the likelihood of pregnancy. Given that pig 463 

IVP is not particularly robust, this adds to the problem; over double the number of embryos 464 

that have the chance of implantation need to be produced for every transfer.  465 

 466 

Whilst vitrification and subsequent shipping of cattle embryos is now relatively 467 

commonplace, this is not the case in pigs. The improvement of such downstream processes 468 

would assist in making pig embryo transfer procedures more achievable and cost efficient 469 

[124]. The current process in pigs is not well described and has many limitations, as 470 

comprehensively reviewed in Mandawala et al., 2016 [126]. Additionally, there are also 471 

implications of vitrification and thawing in an agricultural environment – particularly the 472 

increased contamination risk and issue of upscaling protocols to facilitate larger sample 473 

numbers.  474 

 475 

Conclusions and future prospects  476 

It is clear from the success achieved in cattle [8,15] that ART and IVP have the potential to be 477 

transformative techniques in pigs. It is however also clear that, despite recent progress, 478 

significant challenges remain. The ultimate aim of a successful pig IVP system would therefore 479 

involve: 1) generating pig embryos from mothers as young as possible, to reduce generation 480 

times; 2) genetic profiling of embryos, including sexing, use of SNP chips and sequencing; 3) 481 

transport and selective implantation of embryos on farm. As discussed above, in pig IVP, 482 

problems usually arise with the number of embryos that develop to the later stages of 483 

development and therefore the need for chemically defined media for oocyte maturation and 484 

embryo development is critical. Given that IVM currently requires media supplementation 485 

with pFF, determining the critical component(s) of pFF is therefore a priority. Other 486 
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complications include oocyte and embryo freezing, incidence of polyspermy, and the fact that 487 

many have gross genetic abnormalities (e.g. extra or missing chromosomes). There is great 488 

potential to integrate PGD in pig IVP procedures, given that it is commonly used in both 489 

humans and cattle [127], and that the technique is transferrable. In humans, the interrogation 490 

of biopsied cells is already performed for screening for chromosome disorders and monogenic 491 

traits simultaneously (Karyomapping) [128]. Karyomapping makes use of SNP chips, the like 492 

of which are already used for determining estimated breeding values in pigs and cattle. If pig 493 

IVP be made to work effectively, it should be possible to incorporate PGD with SNP chips to 494 

reduce generation intervals and increase selection intensity. Other future novel protocols 495 

may include improving IVM procedures, application of state-of-the-art morphokinetic tools 496 

to monitor embryos, reducing the lipid content in embryos and screening for chromosome 497 

abnormalities. This would ultimately reduce levels of chromosome abnormality, metabolic 498 

problems and stress in embryos and would make on-farm trials of embryo transfer more 499 

successful. More productive sows would reduce the sow overhead costs per piglet, lead to a 500 

lower food conversion ratio thus reducing animal feed usage, increase selection intensity and 501 

thus result in less animals required to meet market demands. Moreover, through pig IVP, 502 

disease management and animal welfare concerns have the potential to be significantly 503 

reduced. Pig IVP is an issue of great global significance; one that requires considerable new 504 

research and development.  505 
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 Maturation media Fertilisation and embryo culture media 

Concentration (mmol/L) TCM-
199 

NCSU-23 mWM NCSU-37 
(glucose 
medium) 

NCSU-37 
(pyruvate/ 

lactate medium) 

BECM-7 PZM-3 PZM-4 PZM-5 NCSU-23 

Basal Medium Eagle amino acids (ml/L) - - - - - 20.00 20.00 20.00 20.00 - 

CaCl2 1.80 1.70 - - - - - - - - 

CaCl2.2H2O - - - 1.70 1.70 1.71 - - - 1.70 

Calcium lactate - - 1.71 - - - 2.00 2.00 2.00 - 

Cysteine  0.57 0.57 0.57 - - - - - - - 

Fatty acid-free BSA (mg/ml) - - - 4.00 4.00 4.00 3.00 - - 4.00 

Gentamycin (mg/ml) - - - - - - 0.05 0.05 0.01 0.05 

Glucose  5.55 5.55 5.56 5.55 - 0.33 - - - 5.55 

Hypotaurine - 5.00 - - - 5.00 5.00 5.00 5.00 5.00 

KCl 5.36 4.78 4.78 4.78 4.78 6.00 10.00 10.00 10.00 4.78 

KH2PO4 - 1.19 1.19 1.19 1.19 - 0.35 0.35 0.35 1.19 

L-Glutamine 0.68 1.00 - 1.00 1.00 1.00 1.00 1.00 2.00 1.00 

MgS04.7H2O 0.81 1.19 1.19 1.19 1.19 1.19 0.40 0.40 0.40 1.19 

Minimum Essential Medium nonessential 
amino acids (ml/L)  

- - - - - 10.00 10.00 10.00 10.00 - 

NaCl 116.36 108.73 68.49 108.73 108.73 94.59 108.00 108.00 108.0 108.73 

NaHCO3 26.19 25.07 25.07 25.07 25.07 25.07 25.07 25.07 25.00 25.07 

Penicillin G 100.00 100.00 100.00 - - - - - - - 

Phenol Red (g/L) - - - - - 0.001 - - - - 

Polyvinyl alcohol (mg/ml) - - - - - - - 3.00 3.00 - 

Porcine follicular fluid (%, v/v)  10.00 10.00 10.00 - - - - - - - 

Sodium lactate - - 25.20 - 2.73 - - - - - 

Sodium pyruvate - - 0.33 - 0.17 23.00 0.20 0.20 0.20 - 

Sorbitol - - - - 12.00 - - - - - 

Streptomycin (µg/ml) 50.00 50.00 50.00 - - - - - - - 

Taurine - 7.00 - - - 7.00 - - - 7.00 

Table 1: Composition of existing media used for in vitro maturation of oocytes, in vitro fertilisation and subsequent embryo culture. The table 877 
demonstrates the constituents present in Tissue Culture Medium (TCM)-199, North Carolina State University (NCSU)-23 medium, modified 878 
Whitten’s Medium (mWM), North Carolina State University (NCSU)-37 medium (with glucose), North Carolina State University (NCSU)-37 879 
medium (with pyruvate and lactate), Beltsville Embryo Culture Medium (BECM)-7, three iterations of Porcine Zygote Medium (PZM) and North 880 
Carolina State University (NCSU)-23 medium specific to embryo culture. Values given are in mmol/L (unless otherwise stated) [21,27,98,129,130]. 881 
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Figure 1: Schematic representation of selection and production herds in pig production 882 
indicating where in vitro production can achieve production gains. 883 
 884 
Figure 2: Flowchart indicating the pig in vitro production process. The main challenges for 885 
commercial implementation are noted in red, these define the current research priorities in 886 
the field. 887 
  888 
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