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Notes on units and numerics

Although this thesis is concerned with the topic of Physics, many of the results were obtained

by computational/numerical methods. In order to maintain the focus on physics throughout

the thesis, and not on technical details relating the numerics, a short discussion on the

different software packages and unit conventions used throughout is presented here.

Units

It is not uncommon when performing numerical calculations of physical systems/equations to

use rescaled or non-SI units. Doing so can lead to an improvement in numerical precision and

a simplification of the equations. This of course does not affect the resulting general physics

(for example whether or not magnetism or quenches occur) but will become important if one

wants to compare the results to other areas of the literature.

In chapter 7 where we discuss quench prevention, different rescaled quench models are

presented. In this case the details of the rescaled units are given in the chapter and additional

detail can be found in appendix C.

In chapters 4 to 6 where we discuss variational mean-field theory and non-unitary triplet-

pairing theory, the equations are presented in a standard way, however they are rescaled for

all of the numerical calculations and all of the results obey the following convention: All

energies are in units of the electron hopping energy, t. This of course includes the chemical

potential, the interactions and the mean-fields. In addition, the free energy is also calculated

per site. The temperature, T , is in units of t/kB.

Numerics

A lot of the work carried out for this thesis made use of various computational techniques,

programming languages and software packages. It is beyond the scope of this thesis to

mention, or discuss in detail, exactly what language or package was used to code a particular

algorithm or produce a particular figure. However, here I wish to acknowledge and cite the

various programming languages and software packages that were used in one way or another

to produce the work presented in this thesis.

� Python [2, 3] — Used for everything from coding quench simulations to solving equa-

tions, data processing and plotting.

� Fortran 90, specifically compiled via the GNU Fortran compiler (gfortran) [4] — Used

for coding quench simulations and Monte Carlo integration routine.

� NumPy [5] — A fundamental package for scientific computing with python.
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Chapter 1

Introduction

We will begin our introduction with a very brief historical overview of superconductivity,

highlighting the most important advances in the field including those that are immediately

relevant to this thesis.

Superconductivity [13, 14] was discovered in 1911 when Kamerlingh-Onnes discovered

the resistivity of liquid mercury dropped suddenly to zero as it was cooled [15], making the

superconductor a perfect conductor. A perfect conductor allows current to flow without any

resistance or energy dissipation and will continue to flow endlessly. Such currents are known

as persistent currents. Indeed, persistent currents set up in superconducting rings have been

observed to remain constant over periods of years without any signs of dissipation with lower

bounds on their duration set at over 100,000 years [16].

In 1933 superconductivity was revealed as a new phase of matter when Meissner and

Ochsenfeld discovered that the magnetic flux from an externally applied magnetic field would

be expelled from within a material in the superconducting state [17], an effect now called the

Meissner (or Meisnner-Ochsenfeld) effect. The Meissner effect identifies superconductivity

as a state of matter because it is a thermal equilibrium property — it doesn’t matter if the

external field is applied in the normal state then cooled or if it is applied in the supercon-

ducting state, in either case the final state is the same with the magnetic field being expelled

from the material.

In order to expel the magnetic field the superconductor must produce its own internal

magnetic field to exactly cancel the externally applied magnetic field. Materials which gen-

erate their own magnetic fields to oppose externally applied fields are called diamagnets

and those that oppose exactly the applied field are known as perfect diamagnets and have

magnetic susceptibility χ = −1. The Meissner effect requires superconductors be perfect dia-

magnets and does not arise from zero resistivity. Both effects therefore are used to identify

a superconductor.

The first theory that made significant advances in describing superconductivity was the

1935 London theory by F. London and H. London [18]. The theory describes the supercon-

ductor as a mixture of normal electrons and superfluid electrons, similar to the two-fluid

hydrodynamic description of superfluid 4He, where the normal electrons have resistance and

the superfluid electrons do not. Their theory predicts a number of correct results including

the London equation (relating the current density inside a superconductor to the magnetic

vector potential, later derived from the full Bardeen-Cooper-Shrieffer theory), the penetra-

tion depth (how far an external magnetic field can penetrate the superconductor) and the

1



Chapter 1. Introduction 2

Meissner effect.

Ginzburg and Landau introduced a phenomenological theory of superconductivity in 1950

which was able to predict and agree well with many experimental results, despite making

no assumptions about the underlying microscopic details. Using Ginzburg-Landau theory,

Abrikosov was able to show that depending on the size of the Ginzburg-Landau parameter

κ, a superconductor would belong to one of two classes: type-I or type-II [19, 20].

In type-I superconductors the superconductivity can be destroyed by increasing an ex-

ternally applied magnetic field beyond a critical value Hc1 where the superconductor will

undergo a first order transition into the normal state. In type-II superconductors there are

two critical fields: 0 < Hc1 < Hc2. At fields below the lower critical field, Hc1, the super-

conductor fully expels magnetic field from the bulk of the entire sample. At stronger fields,

Hc1 < H < Hc2, the type-II superconductor will enter the mixed state, allowing some mag-

netic flux to penetrate while remaining superconducting. The amount of flux penetrating

increases with the applied field. For applied fields larger than the upper critical field, Hc2,

there is no diamagnetic response, superconductivity is fully suppressed and the system is in

the normal state.

Abrikosov explained that the magnetic flux is able to penetrate the superconductor in

the mixed state due to the creation of vortices — regions of small circulating supercurrent

surrounding a normal state core which the applied flux can penetrate. The circulating super-

current serves to screen the rest of the superconductor from the penetrating flux. Abrikosov

also showed that many of these vortices would form into a periodic lattice throughout the

superconductor, called the Abrikosov flux lattice, the density of which increases with applied

field.

Also in 1950 came the discovery of the isotope effect, where the critical temperature of

a superconductor was found to depend on its atomic mass: Tc ∝ M−α [21, 22, 23]. Early

results indicated that α = 1/2 [24] with some small variation, especially for lead Pb [25].

Nevertheless this was a key experimental result indicating that phonons play an important

role in the phenomenon of superconductivity and helped develop the microscopic theory.

In 1957 Bardeen, Cooper, and Schrieffer [27, 26] (BCS) published their microscopic the-

ory of superconductivity. They suggested that in superconductors there existed an effective

attractive interaction between electrons due to the exchange of virtual phonons, and that

under the effect of this attraction electrons would form bound state pairs. They argued that

the superconducting state would be made up of a macroscopic number of electron pairs in

a coherent state, that is the wave function of the system has a well defined phase but an

ill-defined, yet macroscopic, number of particles. This was soon realised to be correct as

it successfully explained many experimental phenomena, the two most significant being the

prediction of the isotope effect exponent α = 1/2 and the existence of the fixed ratio between

the energy gap at zero temperature and the critical temperature: ∆0 = 1.76kBTc. These two

quantities are independent of material specific properties like the band structure and result

from the fundamental aspects of the theory: weak coupling of electrons via phonons and

the instability of the Fermi surface to attractive interactions. The fact that nearly all of the

superconductors at the time agreed very well with these quantities showed that BCS theory

was fundamentally correct.

Soon after the publication of BCS theory, both Bogoliubov [28] and Valatin [29] indepen-

dently showed that a canonical transformation method could be used to formulate BCS theory
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in terms of quasi-particle excitations, greatly simplifying the calculations compared to the

original BCS wave function method [30]. Further advances came when Gor’kov reformulated

BCS theory in the language of quantum field theory and Green’s functions, which allowed the

description of superconductors beyond the weak coupling limit assumed in BCS [20, 31] and

further confirmation of BCS theory came when Gor’kov was able to derive Ginzburg-Landau

theory from the microscopic BCS theory [32].

In 1952 Matthias discovered the first “new class” of superconductors in CoSi2 [33, 34],

the first superconductor to be made of two non-superconducting elements: ferromagnetic Co

and semiconductor Si. Shortly afterwards Hardy and Hulm [35] discovered the “A15” family

of superconductors, who have the A3B structure where A is a transition metal. This family

managed to push the critical temperature up to a record breaking 22.3 K in Nb3Ge [36] in

1973. Even more significantly, they had high critical currents even in the presence of strong

external magnetic fields [37], making them particularly useful for practical applications.

In 1979 Steglich et al. [38] discovered superconductivity in CeCu2Si2, the first in the

class of “heavy fermion” superconductors and the first “unconventional” superconductor (i.e.

that could not be explained by BCS theory). Superconductors in this class have a magnetic

(often antiferromagnetic) ground state and significant many-body interactions leading to the

renormalisation, and great enhancement, of the electron mass. In 2001 the Ce-based heavy

fermion with the highest Tc, CeCoIn5, was found [39] and in 2004 the first noncentrosymmetric

heavy fermion superconductor, CePt3Si, was discovered [40].

Although CeCu2Si2 and other heavy fermions are superconducting at ambient pres-

sure, there exists those that are non-superconducting antiferromagnets at ambient pressure

which become superconducting as pressure is increased and antiferromagnetism is suppressed.

CeRhIn5 exhibits a first order transition from an antiferromagnetic to superconducting state

as pressure is increased [41] while CePd2Si2 and CeIn3 show the antiferromagnetism being

suppressed to a quantum critical point as pressure is increased with a superconducting dome

appearing around it [42]. Indeed it appears that a superconducting dome surrounding a quan-

tum critical point has become a typical feature of the phase diagrams of the heavy fermions

as can be seen in e.g. CePd2Si2, CeIn3, CeCu2(Si1−xGex), Ce(Rh,Ir,Co)In5 and UGe2, see

section IV C of [43] and references therein. Figure 1.1 shows a schematic of a common phase

diagram seen in unconventional superconductors.

In 1986 Bednorz and Müller [44] discovered superconductivity in the ceramic compound

BaxLa5−xCu5O5(3−y), the first in the class of “cuprate” superconductors. This was fascinating

not only because ceramics were usually insulators and were therefore, by definition, terrible

conductors let alone superconductors, but also because this superconductor had a Tc of

30 K, the highest of any superconductor at the time. Shortly afterwards, Wu et al. [45]

discovered superconductivity in YBa2Cu3O7−δ with Tc = 93 K, a significant milestone as

this was the first superconductor with a critical temperature higher than the boiling point

of liquid Nitrogen Tc > 77 K which was much more readily available than the liquid Helium

required previously. Since then there has been intense research into achieving ever higher Tc’s

in this class of materials in search of the holy grail of room temperature superconductivity,

with the highest critical temperature achieved so far being Tc = 135 K at ambient pressure

[46] and Tc = 164 K at 31 GPa [47] in a Hg-Ba-Ca-Cu-O compound.

The cuprates, like the heavy fermions, have some common features that suggest they be-

long to their own separate class of unconventional superconductivity. Like the heavy fermions



Chapter 1. Introduction 4

T
em

p
er
at
u
re

Tuning

Magnetic

Unconventional
Fermi liquid

Conventional
Fermi liquid

Superconductivity

Figure 1.1: Schematic of a common phase diagram for unconventional supercon-
ductors. There is a magnetic state which is suppressed by tuning (example by
pressure or doping) towards a quantum critical point. A dome of superconductivity
emerges around the quantum critical point. Outside of the magnetic and supercon-
ducting regions exists the normal state, further separated by a crossover into an
unconventional and conventional Fermi liquid state. Adapted from Ref. [42]

the phase diagram as a function of both electron and hole doping contains a dome of super-

conductivity surrounding what looks like a quantum critical point. While in these systems

the superconducting dome appears near to, or coincides with, an antiferromagnetic phase, the

quantum critical point corresponds to a pseudogap phase rather than the antiferromagnetic

phase, see [48, 49]. Additional signs of unconventional superconductivity come from ARPES

[50] and other techniques which heavily suggest that the nature of the pairing state is d-wave,

as well as from the isotope effect (or lack thereof) suggesting that electron-phonon mediated

pairing is not critical in these compounds (although it may be present and could enhance the

superconductivity), see [48] and references therein.

Another significant milestone of direct relevance to this thesis is the detection of spon-

taneously broken time reversal symmetry (TRS) in the superconducting state, most notably

discovered in UPt3 [51] and Sr2RuO4 [52] by muon spin rotation/relaxation (µSR) experi-

ments, later confirmed in both materials by measurements of the Kerr effect [53, 54]. Both

techniques are sensitive to very small local magnetic moments and unambiguously determine

whether time reversal symmetry is broken or not; something which is useful in determining

the possible symmetry-allowed pairing states. Indeed µSR was used to determine broken time

reversal symmetry in two compounds LaNiC2 [55] and LaNiGa2 [56] from which symmetry

analysis concludes the pairing must be unconventional. Beforehand these compounds had

appeared to be normal BCS superconductors. We will discuss these two compounds in detail

in chapter 3.

In 2008 Kamihara et al. [57] discovered superconductivity at Tc = 26 K in LaFeAsO1−xFx,

the first in a new class of iron-based superconductors. The iron-based superconductors (often

called ‘iron pnictides’ or just ‘pnictides’) contain superconducting layers of iron and a pnictide

and, crucially, the superconductivity in the iron based superconductors specifically involves

the iron 3d electrons; simply having iron in a superconducting compound does not make an
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iron based superconductor [48]. Like the cuprates the iron based superconductors are strongly

dependent on doping, with a similar phase diagram showing antiferromagnetic suppression

with electron or hole doping leading to a superconducting dome [58]. The pairing state is

much less certain than in the cuprates but it is definitely not standard BCS s-wave pairing

and is unconventional [48].

Recently the mathematical subject of topology has attracted significant interest in the

condensed matter physics community since the theoretical discovery of the Z2 topological

quantum spin Hall insulator [59, 60, 61]. It offers an alternative view of phase transitions

rather than the usual Ginzburg-Landau symmetry-based point of view and has been used to

explain phenomena such as topological insulators [61], Lifshitz transitions [62] and Majorana

fermions [63] (of particular interest recently due to potential application to quantum com-

puting [64]). We will focus more on the topic of topological transitions in superconductors

in chapter 2 and their potential applications in chapter 7.

To finish our historical overview of superconductivity it is interesting to note the recent

discovery of record breaking superconductivity in hydrogen sulphide with Tc = 203 K, despite

being a conventional BCS superconductor (albeit at extreme pressures of around 150 GPa)

[65]. The fact that even the conventional ‘solved’ problem of BCS superconductivity is still

exciting the community, let alone the numerous unconventional systems we have discussed

(and many more we haven’t) is a testament to how fascinating and important the phenomenon

of superconductivity is.

As was mentioned above, superconductivity can be divided into two categories: conven-

tional and unconventional. Conventional superconductors are generally well explained by

BCS theory, or its extension Eliashberg theory [66] (where the retarded nature of the phonon

interaction is properly taken into account), where it is accepted that the electron pairing

is mediated by phonon exchange, the Cooper pairs form singlet states [67] and experiments

agree well with theory. Many elemental superconductors, alloys and simple compounds fall

into this category [67, 68]. Unconventional superconductivity on the other hand can not

be understood with BCS theory, possibly because the pairing is not mediated by electron-

phonon interactions or because symmetries other than U(1) gauge symmetry are broken upon

entering the superconducting state. Some common examples of unconventional superconduc-

tors include the heavy fermions, the high-Tc cuprates, the Iron based superconductors and

Sr2RuO4 [48]. In this thesis, we will focus on unconventional superconductivity in TRS break-

ing LaNiC2 and LaNiGa2 (chapters 3 and 5) as well as tuneable topological superconductors,

or more specifically, a potential application of such superconductors (chapter 7).

Finally, let us describe the organisation of the rest of this thesis. Chapter 2 introduces

some basic concepts of BCS theory including electron pairing, the concept of the pairing

potential and the types of pairing that can occur in conventional and unconventional su-

perconductors. Then the topic of broken symmetry will be discussed and we shall see that

unconventional superconductivity can result in the breaking of extra symmetries, specifi-

cally broken time reversal symmetry (TRS) and centre of inversion symmetry. The concept

of group-theory/symmetry-analysis in the context of superconductors will be introduced.

Topology in condensed matter will then be discussed with particular emphasis on the topol-

ogy associated with different gap structures and the topological transition. Returning to the

topic of symmetry, we will see how noncentrosymmetric superconductors can give rise to a

pairing potential which is an admixture of singlet and triplet pairing. Finally we shall discuss
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some of the experimental techniques involved in determining the gap structure and detecting

the breaking of TRS.

In chapter 3 we shall focus on two particularly interesting Ni-based unconventional su-

perconductors that break TRS, namely noncentrosymmetric LaNiC2 and its centrosymmetric

cousin LaNiGa2. We will start by reviewing the literature available for both materials and

see that there are largely two conflicting viewpoints, with some works finding evidence of

unconventional superconductivity while others find evidence of conventional. We shall see

that on balance these materials are unconventional and shall discuss a new equal-spin triplet-

pairing theory that has been proposed to unify the conflicting results of LaNiGa2. We shall

investigate this theory further in chapter 5.

Chapter 4 is a more technical chapter with a primarily pedagogical purpose. In it we

will demonstrate the application of variational mean-field theory to the well known case of

conventional s-wave pairing. In doing so we will learn the necessary techniques and obtain

some of the classic results from BCS theory before investigating the equal-spin triplet-pairing

theory. Moreover, we will be able to confirm the BCS-like limit of the equal-spin pairing

theory with the results obtained in this chapter.

We will then, in chapter 5, apply the variational mean-field method to the equal-spin

triplet-pairing theory. We shall derive and solve both the self-consistency equations and the

free energy and see that the self-consistency equations can not always be relied upon to find

the minimum points in the free energy. By minimising the free energy we will show that this

triplet-pairing theory gives rise to gapless superconductivity, re-entrant superconductivity

and two nodeless gaps. However, as we shall see, these gaps are of equal magnitude (making

the theory unitary) and, furthermore, this theory has no magnetic state. Therefore this

theory cannot describe LaNiGa2.

In chapter 6 we investigate further the absence of magnetisation in the equal-spin triplet-

pairing theory. We investigate the normal state limit of the theory and find that, unexpect-

edly, it too displays no magnetisation. Comparing with the Stoner theory of ferromagnetism

(which was thought to have a similar mechanism for magnetism) we identify the crucial dif-

ference that gives rise to magnetism. We suggest an additional Hubbard repulsive interaction

to the equal-spin triplet-pairing theory and find that with this addition, magnetisation mani-

fests in the normal state zero temperature phase diagram. We predict that the addition of the

repulsive Hubbard interaction will allow for a superconducting state with spontaneous net

magnetisation and two different sized gaps, making the pairing non-unitary and, therefore,

could explain the results of LaNiGa2.

Finally, in chapter 7, we consider again the topic of topological transitions in noncen-

trosymmetric superconductors. In particular, we ask whether the enhancement of specific

heat associated with such topological transitions could have potential application to the en-

gineering problem of superconductor quench prevention. We shall attempt to answer this

question by performing numerical studies of a superconductor quench and show that the en-

hanced specific heat of the topological transition state can increase the quench resilience of

a superconductor, although the effect is small.



Chapter 2

Background

This chapter focuses on the fundamental microscopic aspects of superconductivity; first de-

scribing the pairing of electrons and the types of electron pairing that can occur, then dis-

cussing the concept of the pairing potential. The possibility of breaking multiple additional

symmetries will be discussed, the concept of group theory will be introduced and its appli-

cation to superconductivity will be discussed. There will be a focus on noncentrosymmetric

superconductors and how this particular lack of symmetry can lead to superconductivity

with mixed pairing and topological transitions. Finally there will be some discussion of the

experimental probes used to investigate superconductivity.

2.1 Introduction to BCS theory

Superconductivity is a phase of matter that is identified by two key phenomena: zero resis-

tivity and the Meissner-Ochsenfeld effect. Zero resistivity or, equivalently, perfect conduc-

tance leads to the phenomenon of flux trapping and persistent currents while the Meissner-

Ochsenfeld effect is where magnetic fields from the interior of the superconductor are expelled.

Together these two effects signify a superconducting phase.

In 1957 Bardeen, Cooper, and Schrieffer [26] (BCS) published their microscopic theory of

superconductivity. It described how an effective attraction between electrons, arising from

the exchange of virtual phonons, can lead to pairs of electrons forming bound states (now

called “Cooper” pairs). The wave function of the system is then written as a coherent state

of these Cooper pairs, where there is a well defined global phase angle but an ill-defined total

number of pairs [13]. The system contains a macroscopic number of these pairs with the

same phase and total momentum, like a Bose-Einstein condensate (BEC) but formed from

different combinations of available k-states, rather than with all electrons being in the same

state.

The first problem is how electrons can be attracted to each other, since such an attraction

would have to overcome the Coulomb repulsion. While this is true for bare electrons, electrons

in a metal are screened due to their interaction with each other, for example the Thomas

Fermi screening model gives the Coulomb interaction as

V (r− r′) =
e2

4πε0|r− r′|e
−|r−r′|/r0

where r0 is the Thomas Fermi screening length [13]. This additional exponential factor makes

the interaction much shorter range than original bare electron Coulomb repulsion.

7
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Works by Fröhlich [69] and Bardeen and Pines [70] had suggested that the attractive

interaction responsible for the pairing of electrons was due to phonons; an idea which was

supported by the experimental observation of the “isotope effect” [22, 21] whereby a super-

conductors’ critical temperature depends on its atomic mass, Tc ∝Mα.

BCS used a simplified form of the effective electron-electron interaction caused by phonon

exchange [13]

V (q, ω) = |geff|2
1

ω2 − ω2
D

, (2.1)

where the scattering amplitude is assumed constant, geff, making the effective interaction

independent of the phonon momentum q. The effective interaction is attractive for phonon

frequencies below the Debye frequency, ωD. Realising the repulsive part isn’t important for

superconductivity, BCS further assumed that pairing only happens between electrons with

energies ±kBT of the Fermi energy, such that their energies are well below ~ωD and within

the attractive regime of the effective interaction. They further assumed that within this

attractive regime, all electrons experience the same constant value of attraction, V . The final

form of the BCS interaction then becomes

V (q, ω) =

−V |ω| < ωD

0 otherwise
. (2.2)

Using the BCS effective interaction, equation (2.2), Cooper [71] was able to show that two

electrons outside a filled Fermi sea would form a bound state, thereby lowering the energy

of the system by an amount ∆ (the binding energy of the pair), even for arbitrarily weak

attraction. This is surprising as an attractive interaction between two free electrons does not

lead to a bound state [13]. The filled Fermi sea and the Pauli exclusion principle forces the

pairing electrons to exist on the edge of the Fermi sea, near the Fermi surface where they

can experience the attractive interaction and hence is necessary for the formation of Cooper

pairs.

The concept of the electron/Cooper pair is critical to superconductivity as they allow

the Boson-like behaviour of electrons, allowing a macroscopic number of pairs to occupy the

same quantum state, even though their constituent particles are Fermions. The pair wave

function takes the form [13]

Ψ(r1, σ1, r2, σ2) = eikcm·Rcmϕ(r1 − r2)φσ1,σ2 , (2.3)

where Rcm = (r1 + r2)/2 is the centre of mass and kcm = k1 + k2 is the total momentum

of the pair. The pair wave function is decomposed into the product of two separate wave

functions; one for the spin, φσ1,σ2 , and one for position, ϕ(r1 − r2). Fermion antisymmetry

means the wave function of the pair must change sign under the exchange of two particles

i.e. Ψ(r1, σ1, r2, σ2) = −Ψ(r2, σ2, r1, σ1).

The spin wave function may take the following forms

φσ1,σ2 =



1√
2
(|↑↓〉 − |↓↑〉) singlet

1√
2
(|↑↓〉+ |↓↑〉) triplet

|↑↑〉 triplet

|↓↓〉 triplet

, (2.4)
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where the singlet state is odd under the exchange of particles and the triplet state even,

requiring that the spatial wave function be even and odd respectively in order to maintain

Fermion antisymmetry. Cooper [71] found that the binding energy of the pair was largest

if the pair formed a singlet state with total momentum kcm = 0 and so in BCS theory it is

assumed that the electrons form singlet pairs between time reversed electron states k ↑ and

−k ↓.
BCS realised that with an attractive interaction all of the electrons near the Fermi surface

would form these Cooper pairs. It was therefore necessary to write down a many-body wave

function composed of these pairs. Schrieffer [26] did this by writing down a coherent state of

Cooper pairs that satisfied the Pauli exclusion principle, which led to the final BCS state

|ΨBCS〉 =
∏
k

(
u∗k + v∗kP̂

†
k

)
|0〉 . (2.5)

Here the pair operator, P̂ †k = ĉ†k↑ĉ
†
−k↓, creates a pair of electrons with time reversed electron

states (a Cooper pair). The amplitudes u∗k and v∗k are given by

u∗k =
1

(1 + |αk|2)
1
2

(2.6)

v∗k =
1

(1− |αk|2)
1
2

(2.7)

and depend on the complex parameter αk, which are the arbitrary complex numbers intro-

duced by forming the coherent state that can be adjusted to minimise the total energy [13].

This wave function adds pairs of electrons to the vacuum, |0〉, and hence is not number con-

serving, instead the wave function adopts a well defined phase θ for the complex parameters

α = |α|eiθ and hence the BCS wave function is a coherent state. The free energy is invariant

under the choice of phase and so when the system adopts a phase angle θ it is said to have

broken gauge-symmetry [13].

BCS were able to use the system wave function of cooper pairs to calculate the thermo-

dynamic, electro-dynamic, transport and non-equilibrium properties of the model [30, 26].

Perhaps the two most significant results are the predictions of the isotope effect’s exponent

Tc ∝ M−1/2 and the fixed ratio of the low temperature energy gap ∆0 to the critical tem-

perature Tc: ∆0 = 1.76kBTc. Each of these arise from fundamental aspects of BCS theory,

namely: that the attraction between electrons is due to lattice vibrations (phonons) and that

the Fermi surface is unstable to the attractive interaction between electrons.

The isotope effect is predicted by a result of BCS theory in which the relation for Tc is

given by: kBTc = −1.14~ωD exp(−1/N(0)V ) [14]. Here the Debye frequency is ωD ∝M−1/2.

The Debye frequency appears in the theory as a direct consequence of including the electron-

phonon interaction equation (2.1). The fact that the Fermi surface is unstable to arbitrarily

small attractive interaction is what gives rise to the energy gap. The electrons form bound

states in the presence of said attraction and require an energy of 2∆ to break a pair apart

and create an excitation. The larger the energy gap the greater the energy required to

break the pair and kill superconductivity, so it follows that higher energy gap would give rise

to a higher Tc. The fact that both of these predictions fit experimental results with good

agreement shows that the underlying physics being described by the theory is correct i.e.

weak electron-phonon interaction giving rise to an attractive interaction to which the Fermi

surface is unstable, resulting in the formation of electron pair bound states.
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2.2 Pairing potential

In a mean-field treatment of a BCS-like theory a mean-field, ∆σ1,σ2(k), is introduced which

couples to the expectation value of creating a pair,
〈
ĉ†kσ1

ĉ†kσ2

〉
, and is often referred to

as the pairing potential [72]. Roughly speaking this term quantifies “how much” or “how

strong” the pairing between electrons, and therefore the superconductivity, is. This term

acts as the order parameter for the superconducting state and is zero above Tc when there

is no pairing or superconductivity and finite below. In the BCS case, where pairing occurs

between time-reversed states due to the simple BCS effective interaction equation (2.2), the

pairing potential is finite below Tc and isotropic in momentum space. In this case the energy

gap that arises in the quasi-particle excitation spectrum is given by the mean-field/pairing

potential ∆, hence ∆ is also usually referred to as the gap1.

The pairing potentials enter the Hamiltonian in the form of a gap matrix [72]

∆̂(k) =

(
∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)

)
, (2.8)

whose components correspond to pairing potentials between different combinations of spins.

The matrix ∆̂(k) must have the same symmetry as the pairing wave function in momentum

space [72] and so requires ∆̂(k) = −∆̂T(−k) to maintain Fermion antisymmetry.

In the case of a spin singlet state (antisymmetric) the pair wave function must be sym-

metric in momentum space and in the case of spin triplet (symmetric) the pair wave function

must be antisymmetric. The gap matrix must then also be symmetric and antisymmetric

for spin singlet and spin triplet states respectively. A common form of these gap matrices is

given by

∆̂(k)
singlet

= iσ̂y∆0(k) =

(
0 ∆0(k)

∆0(k) 0

)
(2.9)

∆̂(k)
triplet

= i(d(k) · σ̂)σ̂y =

(
−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)
(2.10)

where ∆0(k) and d(k) are symmetric and antisymmetric (vectorial) functions of k respectively

[72] and σ̂ is a vector whose components are the Pauli matrices σ̂x, σ̂y and σ̂z. This notation

is especially useful when carrying out group-theoretical analysis as the d-vector transforms

like a 3D vector under rotation when carrying out spin rotation operations.

The triplet gap matrix can be further classified as unitary if ∆̂(k)∆̂(k)† ∝ I (where I is

the identity matrix) or non-unitary otherwise 2. The triplet pairing gap matrix gives [72]

∆̂(k)∆̂(k)† = |d|2I + q(k) · σ̂ (2.11)

where q(k) = i(d(k) × d∗(k)). The q-vector is only non zero (hence the gap matrix is

only non-unitary) when d(k) 6= d∗(k). The physical meaning of a finite q-vector is that the

structure of the pairing is different for ↑- and ↓-spins which occurs only when time reversal

symmetry is broken [72]. We shall now discuss the concept of symmetry in superconductors.

1In general the mean-field ∆ may not give the energy gap, e.g. in gapless superconductors where the
mean-field order parameter ∆ is finite but the quasi-particle energy spectrum is ungapped.

2It is trivial to show that the singlet gap matrix is always unitary by performing the matrix multiplication

∆̂(k)
singlet

∆̂(k)
singlet†
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2.3 Broken symmetry

Another highly successful theory which explains superconductivity phenomenologically is

that of Ginzburg and Landau [73]. Being a phenomenological theory it is not concerned with

microscopic details such as the formation of electron pairs or what mechanism might lead to

such a pairing. Instead it focuses on the phase transition from a thermodynamic point of view,

using Landau’s theory of second order phase transitions [74] to describe superconductivity.

Landau observed that second order phase transitions typically involve some change in the

symmetry of the system and capture this change in symmetry with an appropriate physical

quantity called the order parameter. The superconducting phase transition is characterised

by a complex order parameter Ψ which is zero in the normal state above Tc and finite

below in the superconducting state. In the case of a magnet transitioning through the Curie

temperature the magnetisation M is an appropriate order parameter to describe the phase

transition, while in the case of a superconductor ∆ plays the role of the order parameter (up

to some constant numerical factors) [13]. At the time of course, being some 7 years before

the publication of BCS theory, Ginzburg and Landau didn’t know that their order parameter

Ψ corresponded to the pairing potential ∆, they simply assumed that there must exist some

physical quantity which classified the state of the system. It was later that Gor’kov was able

to show that Ginzburg-Landau theory could be derived from BCS theory [32].

The free energy of the superconductor is expanded in powers of Ψ:

fs(T ) = fn(T ) + a(T )|Ψ|2 + b(T )|Ψ|4 + ... (2.12)

where fs(T ) and fn(T ) are the free energy of the superconducting and normal state respec-

tively. a(T ) and b(T ) are phenomenological parameters of the Ginzburg-Landau theory that

vary smoothly with temperature [13]. The expansion is valid for small values of the order

parameter and hence Ginzburg-Landau is valid close to Tc (where the order parameter has

only just become finite). In the normal state both a(T ) and b(T ) are positive and the free

energy is minimised at Ψ = 0. At the transition a(T ) goes from positive to negative such

that the free energy is minimised by finite Ψ.

Ψ is in general complex but the free energy is real; the minimum of the free energy is

a circle with an infinite number of solutions, each with a different phase. Upon entering

the superconducting state the order parameter selects a single point with a random phase

from the possible minima of the free energy. By selecting a phase the system breaks gauge

symmetry, see figure 2.1. Indeed, superconductivity is described by a coherent wave function

of Cooper pairs, meaning that all Cooper pairs have the same well defined phase but ill-

defined (although macroscopic) number of particles. When the pair potential ∆ becomes

finite the superconducting pairs are created and adopt a fixed global phase, breaking gauge

symmetry as in Ginzburg-Landau theory.

In the case of a ferromagnetic transition, the breaking of the rotational symmetry of

the system by all the spins aligning in a common direction is intuitively understood by the

experimental observation of a net magnetic field. The breaking of gauge symmetry on the

other hand is not so intuitive, however, there is a measurable physical consequence: the

Josephson effect [75]. Cooper pairs are able to tunnel between two superconductors in close

proximity, giving rise to a supercurrent density J = J1 sin(φ1 − φ2), where J1 is a constant

and φ1 and φ2 are the global phases of the two superconductors [76]. The fact that the

superconductor breaks gauge symmetry by selecting a global phase allows for a measurable
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Figure 2.1: Ginzburg-Landau free energy as a function of the complex order pa-
rameter Ψ. In the normal state above Tc the free energy is minimised at |Ψ| = 0.
In the superconducting state below Tc the free energy minimum is given by a circle
of infinite solutions, all with the same |Ψ| but with different phase θ. The super-
conductor spontaneously selects a single point on this circle and hence has a well
defined phase θ.

effect that is well understood theoretically and has been experimentally verified [77]. Indeed,

the Josephson effect is used in the definition of the standard volt [78] and one of the most

accurate magnetometers: SQUID (Superconducting QUantum Interference Device).

The usual general symmetry group of the normal state of superconductors is given by

[79]:

G = SO(3)×Gc ×U(1)× T (2.13)

where SO(3) is the group of rotations in spin space, Gc is the group of symmetry operations

of the crystal, U(1) is gauge symmetry and T is time reversal symmetry. As we have just

discussed, upon entering the superconducting state, the system will spontaneously choose a

global phase and break gauge symmetry. It is in principle also possible for superconductors to

break additional symmetries upon entering the superconducting phase, such superconductors

are classed as unconventional3 superconductors. For instance, one might imagine a supercon-

ducting transition which occurs at a structural transition, or with some exotic ordering, that

could break some crystal or point group symmetries; or there could be some spontaneous

magnetisation which would break TRS.

A powerful result from from very general group-theoretical arguments is that all the

possible order parameters of a second-order superconducting transition, and their dimension-

alities, can be classified by considering the different irreducible representations (irreps) of the

3The breaking of additional symmetries is not a requirement for a superconductor to be classed as uncon-
ventional; any superconductor that cannot be well explained by BCS theory or its extensions e.g. Eliashberg
theory would also be classified as such.
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symmetry group [79]. The irreps are properties of the symmetry group and represent all the

possible ways that functions can evolve under the symmetries of the group. By finding the

gap functions corresponding to each irrep one obtains the possible symmetry-allowed order

parameters of the system. Such a procedure is largely independent of microscopic details, and

as such can be used to investigate superconductivity that differs from a conventional BCS

description where microscopic details, such as the pairing mechanism, may be unknown.

Of particular relevance to us is the absence of time reversal symmetry and/or centre of

inversion symmetry. Magnetic ordering breaks TRS and is often a sign of unconventional

superconductivity, see for example the heavy fermion UPt3 [51], Sr2RuO4 [52] and LaNiC2

and LaNiGa2 which we shall discuss in chapter 3. The lack of a centre of inversion in a

superconductor can also lead to unconventional superconductivity and the interesting phe-

nomenon of topological transitions. Before we discuss noncentrosymmetric superconductors

further let us first visit the concept of topology.

2.4 Topology in superconductors

In addition to the Ginzburg-Landau view of phase transitions there is also the topological

view point, where the focus is on changes in topology rather than changes of symmetry. From

this view point a host of phenomena can be described, from topological insulators to Lifshitz

transitions to Majorana fermions [61, 62, 80], none of which can be understood purely from

a symmetry point of view.

Two Hamiltonians which can be continuously adiabatically transformed into each other

are topologically equivalent. This means there is some well defined quantity, called a topo-

logical invariant (or topological charge/number), which remains constant throughout the

adiabatic transformation. These topological quantities can be used to define different states

of a system, with different states having different values of the topological invariant. Fur-

thermore these topological invariants may offer topological protection — a kind of robustness

to perturbations which prevents small perturbations changing the state of the system if it

would also require changing the value of the topological invariant.

A topological transition is when a system changes between two states with different topo-

logical charge values. In the case of topological protection such transitions usually require

closing of the energy gap which causes the topological quantity to become ill-defined thus

losing topological protection, or the cancelling of topological charges which leaves a topolog-

ically trivial unprotected state [62]. These transitions need not be accompanied by a change

in the systems symmetry group and therefore are not considered typical phase transitions in

the Landau sense.

Topological phases can occur in superconductors where different quantum ground states

are identified with different topological invariants [81]. We will focus our discussion on

the topological node-reconstruction transition [82, 83], where nodal lines on the Fermi sur-

face form, cross or reconstruct as some tuning parameter (e.g. platinum doping in the

Li2Pd3−xPtxB compounds [84, 85, 86, 87]) is changed, changing the associated topological

number [82, 88, 89]. In this case the associated topological number is the number of nodal

lines on the Fermi surface which can only change by multiples of two [88]. When the topo-

logical number changes it does so by going through a nodal-reconstruction transition where

the nodal lines cross simultaneously such that the topological number becomes ill-defined.
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Weak SOC Strong SOC

CS singlet or triplet singlet or triplet
NCS singlet or triplet admixture - singlet and triplet

Table 2.1: The restrictions to pairing from spin orbit coupling and centre of inver-
sion symmetry close to Tc. The strong spin orbit coupling (SOC) leads to a mixed
pairing state in noncentrosymmetric (NCS) superconductors due to the reduction
of the symmetry group. In centrosymmetric (CS) superconductors the pairing can
never be mixed.

It is possible to tune the topology in the Li2Pd3−xPtxB compounds because they are

noncentrosymmetric. We will now discuss noncentrosymmetric superconductors and see how

this topological tuning is possible.

2.5 Noncentrosymmetric superconductors

Superconductors that lack inversion symmetry in their point group are known as noncen-

trosymmetric superconductors. Such superconductors are interesting as they have the possi-

bility of having a pairing state which is an admixture of singlet and triplet pairing, i.e. both

types of pairing can occur simultaneously where the gap matrix is given by

∆̂(k) = ∆̂(k)
singlet

+ ∆̂(k)
triplet

. (2.14)

Such a mixed pairing state can only arise when SOC is non-negligible, as it results in a

symmetry reduction where the spin transformations and point-group transformations can no

longer be treated separately [72]. Instead the group of rotations in spin space and the group

of rotations of the crystal are absorbed into one singular group such that the symmetry group

becomes:

G = G(J)
c ×U(1)× T (2.15)

where G
(J)
c is the usual space group, Gc, except that each symmetry involving rotation is

applied not just to the spatial coordinates but also to the spin coordinates of the order

parameter as well [79]. A consequence of this reduced symmetry is that the gap matrix is no

longer able to be decomposed into the product of a spin and spatial part. If there is inversion

symmetry in the crystal group then the gap matrix must be either even or odd under such

symmetry however, without such symmetry there is no such restriction and the gap matrix

can be a mixture of both singlet and triplet pairing, see table 2.1. We note however that this

analysis is valid strictly near to Tc, where the expansion of the free energy in terms of the

order parameter is valid.

An interesting consequence of the mixed state in noncentrosymmetric superconductors

with non-negligible spin orbit coupling is the potential presence of nodal transitions. This

can arise due to changes in the two pairing components ∆̂(k)
singlet

and ∆̂(k)
triplet

caused

by tuning. For example, in the compounds Li2Pd3−xPtxB Platinum doping is thought to

increase spin orbit coupling which increases the triplet component [82, 84, 85, 86, 87]. By

tuning the pairing composition in this way it is possible to tune the nodal structure of the

energy gap.

Nodes arise when the order parameter changes sign and the energy gap goes to zero.

There are two main types of node: point- and line-nodes [90, 79, 72, 91], which can be
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Figure 2.2: Tuning of the superconducting gap. As the ratio of the two gap
components change from figure-left to figure-right different types of node emerge.

Here ∆0 and ∆1 correspond to our ∆̂(k)
singlet

and ∆̂(k)
triplet

respectively. At first
the isotropic singlet component dominates and a full gap exists. In the middle panel
the singlet component has been reduced and the triplet component just touches the
Fermi surface creating a shallow node. In the right panel the triplet component
dominates and linear nodes are formed. Adapted from Ref. [82]

further classified into either linear or shallow nodes, where the excitation spectrum varies

either linearly or non-linearly (e.g. quadratically) away from the node [82], see figure 2.2.

The structure of nodes on the Fermi surface is a topological property (where the number of

nodal lines on the Fermi surface is the topological number and can only change in steps of

two) and so by tuning the nodal structure one changes the topology of the system.

Nodes allow for arbitrarily low energy excitations which affects the density of states. Dif-

ferent topological states have different nodal structures which gives rise to different density of

states for each state. A consequence of this is that thermodynamic properties have identifi-

able signatures of different nodal structures. For example the specific heat in a nodeless state

has an exponential temperature dependence at low temperatures while point- and line-nodes

have power laws C ∝ T 3 and C ∝ T 2 respectively. We shall review this further in the next

section when we discuss experimental probes of the gap structure, section 2.6.1 and revisit it

again in chapter 7 when we investigate a potential application of the topological transition

state to the prevention of superconducting quenches.

2.6 Experimental probes

We have so far mainly discussed theoretical aspects of superconductivity and some of the

differences between conventional and unconventional superconductivity. In this section we are

going to take a brief look at a few experimental probes of superconductivity and, specifically,

see how it is possible to experimentally detect whether the superconducting gap has a nodal

structure and whether or not a superconductor breaks time reversal symmetry.

There are a number of different experimental signatures used to determine whether a

superconductor is unconventional or not. Stewart [48] discusses a number of experimental

signs of unconventional superconductivity including, for example, superconductivity arising

near the quantum critical point of a magnetically ordered phase; the characteristic energy

scales not following the BCS convention: Tc < ΘD < TF (as can be determined by, amongst

other things, the normal state specific heat or low temperature resistivity) or the lack of an

isotope effect. Here we will focus on two signs especially relevant in this thesis: the nodal

structure of the superconducting gap and the breaking of TRS. For more details of other

experimental signatures see e.g. [48] and references therein.



Chapter 2. Background 16

2.6.1 Gap structure

The gap structure can typically be inferred from measurements of various thermodynamic

properties, such as the specific heat, the magnetic penetration depth and nuclear magnetic

resonance relaxation rate [48]. Generally speaking the gap structure, or at least the types of

node present, is determined by the temperature dependence of these thermodynamic prop-

erties at low temperatures. The low temperature aspect is crucial because the theoretical

models for each node are determined by taking the low temperature limit T → 0.

Thermodynamic properties are determined by the density of states and as such are sen-

sitive to different gap structures. Measurements of different properties e.g. specific heat,

magnetic penetration depth and nuclear magnetic resonance relaxation rate demonstrate dif-

ferent temperature dependencies based on the structure of the gap. Generally speaking an

exponential dependence corresponds to a full gap while a nodal gap structure will give rise

to some power law e.g. in BCS theory the specific heat has an exponential dependence [26]

while for nodal superconductors it has a power law dependence [79, 90, 82]. It should be

noted that such temperature dependencies are only valid at very low temperatures T << Tc

and very deep minima in the gap structure can give such signatures if the temperature is not

low enough [48].

The usual types of node in the gap structure are line- and point-nodes. Point nodes can

be found, for example, in the 3He A phase which has a triplet order parameter with nodal

points at the poles of a spherical Fermi surface [92, 82]. Line nodes have also been determined

in the cuprate d-wave superconductors, for example, YBa2Cu3O7 would have four line nodes

running the length of an assumed cylindrical Fermi surface [93, 82]. In both cases the form

of the gap function is such that the quasiparticle energy spectra vary linearly away from the

nodes.

In general the symmetry-allowed gap functions need not vary linearly away from these

nodal points; Mazidian et al. [82] show that these types of nodes can be generalised from the

linear nodes to ‘shallow’ nodes, where the quasiparticle energy spectrum varies quadratically

near to the nodes. Furthermore these nodal lines can cross, for example in a d-wave super-

conductor with a spherical Fermi surface, and in general there exists the possibility of having

crossings of both linear and shallow line-nodes [82].

Each of the different types of linear/shallow point/line/crossing nodal structures has

a unique expression for the density of states which gives rise to different thermodynamic

signatures depending on the gap structure. We will consider for example the case of the

specific heat.

The specific heat is given by [90]

Cv ≡ T
(

dS

dT

)
=
∑
k

1

2
kBβ

2

[
Ek + β

(
dEk

dβ

)
Ek sech2

(
βEk

2

)]
(2.16)

where β = 1/kBT , kB is Boltzmann’s constant and Ek is the energy of the quasiparticles of

the system. At low temperatures this is equivalent to the energy integral

Cv =
1

2
kBβ

2

∫ ∞
0

dE g(E) sech2

(
βE

2

)
(2.17)
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where the density of states is given by g(E) =
∫ ∫ ∫

δ(Ek−E) dkx dky dkz. For each different

nodal structure a unique expression for the density of states is obtained, which in turn gives

rise to specific temperature dependencies of the specific heat at low temperatures [82].

In figure 2.3, reproduced from [82], we can see how each nodal structure arises from

different symmetry-allowed choices of the gap |∆k|, the corresponding density of states ex-

pression g(E) and the resulting exponent n of the temperature dependence of the specific

heat Cv ∝ Tn. Such power law temperature dependencies are distinct from each other at

low temperatures as well as distinct from the exponential signature one obtains in the case

of a full gap with no nodal structure Cv ∝ exp(−∆/kBT ) [14] and can therefore be used to

determine the gap structure of the superconductor.

Although we have discussed the specific heat above, the key point is the uniqueness of the

expression for the density of states for different nodal structures, which is a general result that

would apply to any other thermodynamic property. Since the density of states expressions

depend solely on the topology of the nodal gap structure [72] other thermodynamic properties

such as NMR relaxation rate (1/T1) or magnetic penetration depth, λ will also have power

law temperature dependence in the case of nodes and exponential temperature dependence in

the case of a full gap. Therefore the exponential or power law dependence of thermodynamic

properties can be used to infer the gap structure. Now we shall discuss the experimental

detection of broken TRS.

2.6.2 Broken time reversal symmetry

Muon spin rotation/relaxation/resonance (µSR) is an experimental technique which uses

muons, and their sensitivity to static and dynamic microscopic magnetic fields, to investigate

structural, magnetic and electronic phenomena in magnets, superconductors, semiconductors

and insulators [94]. Of interest to us is the application of muons to the study of magnetic fields

in superconductors; specifically the detection of magnetic fields which arise spontaneously

upon entering the superconducting state — a definitive sign of broken time reversal symmetry.

With regards to the detection of broken TRS, (µSR) experiments typically use positive

muons, µ+, to investigate magnetism within samples. The muons are created by bombarding

a graphite or beryllium target with a beam of protons which produces pions; short lived

particles which then decay by two-body pion decay into a muon and a muon neutrino:

π+ → µ+ + νµ. (2.18)

Due to the maximal violation of parity the muons are produced with their spins (s=1/2)

anti-parallel to their momentum, thus the muon bunches used in such experiments are fully

spin-polarised with a known direction [94, 95].

The muons come to rest inside the sample where they can interact with local magnetic

moments, either caused by magnetic properties of the of the crystal or defects, or because

of magnetic flux penetrating a vortex in the mixed state in the presence of an applied field.

The muons, which were all initially polarised the same way, will each begin to precess at a

rate dependent on their own local magnetic environment.

After some time (half-life τµ = 2.2 µs) the muon will decay, emitting a positron who’s spin

points preferentially in the direction of the muon’s spin at disintegration:

µ+ → e+ + νe + ν̄µ. (2.19)
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Figure 2.3: Different nodal structures and their specific heat temperature depen-
dence exponents. Each row depicts a different nodal structure: point node, line
node and line crossing from top to bottom. The left and right columns show the
linear and shallow versions respectively. Shown in each case is the form of the gap,
|∆|2, giving rise to such a node as well as the associated density of states expression
g(E) and specific heat exponent n. Reproduced from Ref. [82]
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Figure 2.4: Schematics of the two main µSR geometries. Muon bunches (yellow
dots) are injected from the left through the backward (B) detector and implant
into the sample (cube) with their momentum pµ facing towards the forward (F)
detector. In transverse field (TF) geometry (figure 2.4a) an external magnetic field,
H, is applied along the y-axis and the muon spin, Sµ, precesses around in the
xy-plane (blue circle) and the FBUD detectors are used to measure asymmetry.
In longitudinal-field (LF) geometry (figure 2.4b) the external magnetic field, H, is
applied parallel to the muon momentum. Zero field (ZF) µSR is the H = 0 limit of
LF-µSR. In this geometry only the FB detectors are used.

A typical configuration will have 6 detectors aligned with the coordinate axis and labelled

according to a ‘beam’s eye view’: forward (F), backward (B), up (U), down (D), left (L),

right (R) [94]. By detecting the asymmetry in the direction of emitted positrons, information

about the polarisation of the muons and hence the local magnetic structure can be inferred.

There are two common experiments performed when testing a superconductor for broken

TRS: transverse-field (TF) and longitudinal-field (LF) or zero-field (ZF). In TF-µSR experi-

ments a magnetic field is applied perpendicular (transverse) to the initial polarisation of the

muons’ spins and 4 detectors in an FBUD configuration are used, see figure 2.4a. The muon

spin will precess around the applied magnetic field in the xy-plane due to Larmor precession

and the emitted positrons will be detected in the 4 surrounding detectors. In LF-µSR (of

which ZF-µSR is the special case Bext = 0) the magnetic field is applied parallel to the initial

direction of the muons’ spins and hence there will be no Larmor precession. In this case the

F and B detectors are used only [94, 95], see figure 2.4b.

The detectors count the number and directions of the positrons being emitted and from

this calculate the asymmetry, A(t), in the polarisation of the muons. In the case of a fully

polarised set of muons, they all face the same direction and the emitted positrons all hit the

same detector; in this case the asymmetry is maximum. If the muons become completely

depolarised the positrons will be emitted equally in random directions and there will be

zero asymmetry. As the muons each precess individually due to their local environment the

polarisation changes and this is reflected in the asymmetry.
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The asymmetry (in the LF-µSR case) is given by

A(t) =
NB(t)−NF (t)

NB(t) +NF (t)
= A0Gz(t) (2.20)

and is calculated from the positron counts measured by the detectors. Here ND(t) is the

positron count at the D-detector at time t. The asymmetry can also be determined by the

depolarization function, Gz(t), which describes the time evolution of the muons’ polarization.

A0 is the initial asymmetry and is known because the muons are all implanted with the same

orientation. Gz(t) is unknown and must be fitted, and different theoretical depolarisation

models have been derived for different environments [94, 95]. By fitting Gz(t) one can infer

information about the environment the muon experiences based on the physical assumptions

that went in to the derivation of the depolarisation function.

A common depolarisation function employed is the Kubo-Toyabe function [96] (note below

we use the notation of Ref [55])

GKT
z (t) =

1

3
+

2

3
(1− σ2t2) exp

(
−σ

2t2

2

)
, (2.21)

where σ is related to the local field distribution width. This function describes the depolar-

isation of muons due to randomly oriented static nuclear dipole moments in the absence of

magnetic ordering [52]. In a muon experiment, the asymmetry, A(t), is measured and the

Kubo-Toyabe function (for example) is fitted to the data. In the detection of broken TRS

it is common to observe an exponentially damped Kubo-Toyabe function upon entering the

superconducting state [52]

Gz(t) = A0G
KT
z (t) exp(−λt), (2.22)

where exp(−λt) is the relaxation associated with an additional spontaneous magnetic field

and λ is the relaxation rate. The real smoking gun of broken TRS is the observation of the λ

or σ increasing at Tc, signalling the onset of a magnetic field in the superconducting state, see

figure 2.5. µSR has successfully been used to detect TRS breaking in, for example, Sr2RuO4

[52], UPt3 [51], LaNiC2 [55] and Re6Zr [97] as well as the structure of the vortex lattice e.g.

[98].

Another experiment that also detects TRS breaking and complements µSR is the Kerr

effect. In Kerr effect experiments linearly polarised light of an equal superposition of left- and

right-circularly polarised light is incident upon a material and the reflected light is compared

to the incident light. If the material’s complex indices of refraction are different for the left-

and right-circularly polarised light then the light reflected by the material will be elliptical

and phase shifted from the incident beam [99]; this is the Kerr effect.

The Kerr angle θK gives the angle of the major axis of the reflected beam relative to the

incident beam, and is given by:

θK ≈ −
4π

ω
=
[

σxy
n̄(n̄2 − 1)

]
(2.23)

where n̄ is the average of the two left- and right-polarised refractive indices and σxy is non-zero

only when TRS is broken [99]. Broken TRS is demonstrated by the onset of a non-zero Kerr

rotation, ∆θK , when entering the superconducting state from high T . The Kerr effect has

been used to investigate TRS breaking in Sr2RuO4 and the heavy fermion superconductors

CeCoIn5, UPt3 and URu2Si2. In addition to the Kerr effect, the magnetic fields arising from

broken TRS can be detected by directly measuring the magnetisation of the sample with a

SQUID, as was done recently for LaNiC2 [100].
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Figure 2.5: Typical example of the spontaneous increase in relaxation rate due to
broken TRS in µSR experiments. Reproduced from Ref. [51]

2.7 Summary

In this chapter we have discussed the basics principles of the BCS theory of superconductivity,

seeing how electrons experience an attractive interaction due to exchange of virtual phonons

and how this phonon-mediated attraction leads to electrons pairing up and forming bound

states. The superconducting state can be described as coherent state formed of a macroscopic

number of these pairs, all with the same global phase θ, and it is from this mechanism that

superconductors obtain their fascinating properties.

We have seen how superconductors come in two classes: conventional and unconventional,

and that unconventional superconductors can have interesting properties, specifically tunable

topological states and the breaking of extra symmetries. Furthermore we have seen how some

of these interesting theoretical concepts can be measured and detected experimentally.

In the next chapter we will see how the experimental detection of broken TRS by µSR

in two Ni-based superconductors, LaNiC2 and LaNiGa2 led to an intense research effort to

understand what were originally considered conventional superconductors, and ultimately to

the proposal of a novel theory of equal spin pairing superconductivity which will be the main

focus of this thesis, chapters 5 and 6.
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Broken time reversal symmetry in

Ni-based LaNiX2 (X = C, Ga)

In this chapter we will look in detail at two nickel-based superconductors: LaNiC2 and

LaNiGa2. Both of these materials break TRS upon entering the superconducting state,

demonstrated by the spontaneous appearance of internal magnetic fields — an indicator

of unconventional superconductivity. Additionally, both materials have low symmetry, and

symmetry analysis for both reveals similar theoretical constraints on the pairing state, de-

spite LaNiC2 being noncentrosymmetric while LaNiGa2 is centrosymmetric. Both of these

materials display no magnetic ordering in the normal state at ambient pressures. We shall

first review the literature for each of these materials and see that the superconductivity in

these materials is unconventional. We shall examine a recently proposed novel non-unitary

triplet-pairing theory with a view to study it further at a mean field level in chapter 5. Let

us start by reviewing the literature of each material.

3.1 LaNiC2

Superconductivity in noncentrosymmetric LaNiC2 was discovered in 1996 by Lee et al. [101]

who measured the resistivity, specific heat and magnetic susceptibility of polycrystalline

samples LaNiC2 and found a superconducting transition between 2.63 K and 2.86 K. The

normal state is paramagnetic. They report that the specific heat data shows unconventional

behaviour with the temperature dependence obeying a T 3 power law, rather than the con-

ventional exponential dependence. Given that they detected no signature of any magnetic

impurity in the specific heat data they suggest the most likely pairing is p-type triplet-pairing.

Lee and Zeng [102] also investigated the effect of thorium doping in (La1−xThx)NiC2 and

found a superconducting dome in the doping phase diagram, with Tc at first increasing as

the material is doped then decreasing again at larger doping. It was also found by Syu et al.

[103] that nitrifying carbon deficient LaNiC2−δ increases Tc compared to the parent LaNiC2.

Following the discovery of LaNiC2 Pecharsky, Miller, and Gschneidner [104] carried out

specific heat and magnetism studies on LaNiC2 and CeNiC2 and report that the temperature

dependence of the specific heat of LaNiC2 is exponential, implying standard BCS super-

conductivity. They argue the discrepancy between their results and Lee et al. [101] is due

to differences in the way the least-squares fitting was performed and show that they can

reproduce the result of Lee et al. [101] albeit with higher uncertainty than their own method.

22
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Further support that LaNiC2 was a conventional BCS superconductor came from 139La

nuclear quadrupole resonance (NQR) experiments, performed by Iwamoto et al. [105], that

revealed the relaxation rate 1/T1 is enhanced at Tc then decreases exponentially as T is low-

ered below the superconducting transition. They report that this is strong indication that

the superconductivity is of BCS type and suggest that the anomalous T 3 specific heat depen-

dence [101] may be explained by a BCS-type energy gap with anisotropy, as was suggested

for lead [106].

At this point it seemed that LaNiC2 was a conventional superconductor until Hillier,

Quintanilla, and Cywinski [55] performed µSR experiments and found spontaneous magnetic

fields appeared with the onset of superconductivity, indicating that TRS is broken in the

superconducting state. Their symmetry analysis of LaNiC2 finds 12 possible gap functions,

4 of which break TRS. All 4 of the TRS breaking gap functions are non-unitary triplet

states. This includes triplet pairing with the full point group symmetry of the crystal and is

a possibility only with noncentrosymmetric superconductors, as the A1 irrep can be even or

odd (so the spin part can be singlet or triplet to maintain fermion antisymmetry).

A number of first-principles electronic structure calculations have been performed. Hase

and Yanagisawa [107] tried to reproduce the Th-doping phase diagram [102] and found that

they could do so for the Th-rich region by an extended rigid band model. Furthermore the

Th-doping effect at low doping could not be explained by the isotope effect, leading them to

conclude that there is unconventional superconductivity in LaNiC2 which is made weaker by

the Th-disordering, giving rise to conventional superconductivity in the Th-rich region.

Laverock et al. [108] and Subedi and Singh [109] also performed first-principles electronic

structure calculations and obtained very similar Fermi surfaces for LaNiC2. Laverock et al.

[108] investigated the nesting properties of the Fermi surfaces of a number of members of

the RNiC2 family (R=La, Nd, Sm and Gd). They found that the Fermi surface of LaNiC2

is topologically different to those of the other members of the RNiC2 family and has poor

nesting properties, accounting for the absence of a charge-density-wave state in LaNiC2.

Subedi and Singh [109] calculated the electronic structure and electron-phonon coupling.

They report that LaNiC2 is a conventional electron-phonon superconductor with intermediate

coupling based on their value of Tc ≈ 3 being close to the experimentally observed Tc = 2.7 K.

They suggest that the TRS breaking may arise from a mixed pairing state of mostly singlet

with a small amount of triplet pairing (possible thanks to the lack of inversion symmetry).

They argue such a state would break TRS while being fully gapped, giving rise to exponential

specific heat.

It turns out however, that a mixed singlet triplet pairing state as proposed by Subedi

and Singh [109] cannot break TRS. Quintanilla et al. [110] demonstrate this by extending the

symmetry analysis of [55] to include the relativistic effect of spin orbit coupling. They show

that in the presence of strong spin orbit coupling all 4 of the symmetry-allowed pairings are

one dimensional and therefore cannot break TRS, compared with the weak spin orbit coupling

case of [55] where there are 4 non-unitary states (out of a total of 12 possible states) which

do break TRS. Therefore, to be consistent with the experimental observation of broken TRS,

spin orbit coupling must be negligible. Nevertheless, there must be some SOC in any crystal,

which raises the question of how a system with finite SOC can break TRS. Quintanilla et al.

[110] answer this by adiabatically turning on the spin orbit coupling and figure 3.1 shows the

result. They find that the 8 TRS preserving states smoothly evolve into one of the 4 strong
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Figure 3.1: Schematic shows how the LaNiC2 pairing instabilities change from
weak to strong SOC. In cases (a) and (b) the pairing instabilities are TRS preserving
for both weak and strong SOC. These cannot explain the experimental observation
of broken TRS. Case (c) shows how the non-unitary TRS breaking states with
weak SOC evolve into the TRS preserving states with strong SOC. The system
will undergo two transitions: first into a TRS preserving state with only one of
the instabilities present, then into a second TRS breaking state when the second
instability arises (it is the presence of both instabilities, and their relative phase,
which breaks TRS). Figure from Ref. [110].

spin orbit coupling TRS preserving states (figure 3.1 (a) and (b)). This includes the pairing

admixture proposed in [109]. The 4 TRS breaking non-unitary states instead are split by spin

orbit coupling into two distinct transitions (figure 3.1 (c)). First the normal state transitions

into one of the TRS preserving superconducting states, then a second transition follows where

the second pairing state appears. It is the presence of both components, and the relative

phase between them, that breaks TRS. With large SOC these two transitions would be well

separated however, in the limit of weak SOC they would occur close together and appear

experimentally as a single transition into a TRS breaking superconducting state, consistent

with the µSR experiments. Mukherjee and Curnoe [111] also find that a non-unitary triplet

pairing state is required to break TRS and this state should have line nodes. Since the

discovery of spontaneous magnetic fields [55] there have been a number of experimental

attempts to ascertain the pairing in LaNiC2. Bonalde et al. [112] performed penetration

depth measurements on different quality samples of LaNiC2 and found T 2 dependence far

below Tc, indicating a nodal gap structure. They argue that previous experiments indicating

conventional s-wave behaviour either did not go to low enough temperatures or that the

lower-quality samples were affected by magnetic impurities.

Nodal gap pairing was also supported theoretically with a variational Monte Carlo method

by Yanagisawa and Hase [113]. They study the Hubbard model on a triangular lattice and

show how the energy of the s-wave, p-wave, d-wave and f-wave pairing states vary with ∆

and compare to the normal state energy. Their results show that the triplet states are stable

and indeed are of lower energy than the s-wave state. They further explain that the triplet

state can emerge due to the SOC and the constraints from symmetry analysis and do not

require a magnetic phase or a magnetic field.

On the other hand Hirose et al. [114] managed to grow the first single crystal of LaNiC2
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(all samples were polycrystalline beforehand) and measured the electrical resistivity, de Hass–

van Alphen (dHvA) and specific heat, to determine the Fermi surface and superconducting

properties. They find that the there exists two Fermi surfaces which are best described by

the first-principles calculations of [107] for YNiC2 although there are some differences. The

low-temperature specific heat is exponential implying full gap superconductivity, which they

attribute to a standard BCS interpretation. Other than acknowledging the broken TRS

reported in [55], there is no mention of whether their single crystal sample breaks TRS or

how a BCS interpretation could explain it.

Further support of a full gap comes from Chen et al. [115] who measure the penetration

depth, specific heat and electronic resistivity of high quality polycrystalline samples of LaNiC2

and show the results are best described by a two-gap BCS model when compared with single

gap BCS and T 2 power law behaviour. They state that the exact nature of the pairing and

its mechanism cannot be conclusively determined yet but that two-gap is definite.

Additionally Katano et al. [116] investigated the effect of magnetic impurities on the

superconductivity of LaNiC2 by substituting Ce for La. It is found that Tc is reduced and

superconductivity eventually destroyed by Ce substitution. They report that this reduction

in Tc can be described by Abrikosov-Gor’kov theory for conventional s-wave superconductors

with localised magnetic moments, indicating LaNiC2 is a BCS superconductor with full gaps

and that this result would be consistent with the experimental results of [115] which found

evidence for two-gap superconductivity.

Further investigation of the spontaneous magnetisation was performed by Sumiyama et

al. [117] who constructed a specialised SQUID to measure spontaneous magnetic fields in

superconductors. Using this they were able to show that the direction of the spontaneous

magnetic field along the c-axis is reversed when the sample is reversed [100]. This showed

that the spontaneous magnetic field is pinned to the crystal and indicates the importance of

the noncentrosymmetric symmetry and is a potential realisation of the spontaneous magnetic

field predicted to arise from the non-unitary triplet-pairing state [56]. Furthermore, this result

is significant in that it is one of few examples where broken TRS detected by µSR has been

confirmed by another experiment that directly addresses TRS.

Recently there has been some experimental effort to investigate the effect of pressure on

LaNiC2. Katano et al. [118] studied LaNiC2 under high pressure using electronic resistivity

measurements. They found superconductivity was enhanced (Tc is increased) as pressure is

increased up until 3 GPa, above which the enhancement is suppressed by a new state. The

phase diagram of LaNiC2 with pressure shows a superconducting dome at ambient pressure

and a different high-energy scale state at high pressures. This is interesting both because

this is opposite to the usual case where the superconductivity arises from pressure (or other

tuning parameter) and because the normal state is not as normal as first thought (akin to

other unconventional superconductors that all seem to have a non-Fermi liquid). This result

indicates that LaNiC2 is not a normal metal but is highly correlated with strong electron

interactions that contribute to the superconductivity.

Wiendlocha et al. [119] attempted to explain the experimental results of [118] using ab

initio calculations of the electronic structure, phonons and electron-phonon coupling and

Eliashberg formalism to determine the thermodynamic properties of the superconducting

state. It was assumed the superconductivity is mediated by electron-phonon interaction.

They find that Tc is increased with pressure over the full pressure range 0 GPa to 15 GPa which
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Figure 3.2: Pressure-temperature phase diagram of LaNiC2. An antiferromagnetic
phase is detected inside the superconducting dome, emerging with pressure. At am-
bient pressure there is no magnetic ordering. The superconducting dome is detected
both by resistivity measurements from Katano et al. [118] and penetration-depth
and superfluid density measurements by Landaeta et al. [120]. Figure adapted from
Ref. [120].

fails to capture the experimental result of [118] where increasing pressure above 4 GPa causes

a decrease in Tc and eventually full suppression of superconductivity. To obtain this behaviour

at high pressures the Eliashberg formalism requires a large Coulomb pseudopotential µ∗ > 0.2,

supporting the idea of [118] that a new electronic phase is induced by the high pressure.

Further information was added to the LaNiC2 pressure phase diagram when Landaeta et

al. [120] reported magnetic penetration-depth measurements of high purity single crystals of

LaNiC2 at different pressures. The results show that penetration depth, re-analysed specific

heat data from [114] and superfluid density simulations all indicate point nodes; a clear

sign of unconventional superconductivity. Moreover at low temperatures and finite pressure

the penetration depth shows a sudden upturn followed by a sudden drop as temperature is

decreased, indicating pressure induced magnetic order.

The phase diagram for LaNiC2 then shows the coexistence of superconductivity and mag-

netism, with an antiferromagnetic phase surrounding a magnetic quantum critical point at

low temperatures and ambient pressure, see figure 3.2. This is strong evidence that LaNiC2

is an unconventional superconductor and makes it more consistent with other unconventional

superconductors where the unconventional superconductivity appears near magnetic insta-

bilities. The observation of spontaneous magnetic fields upon entering the superconducting

state by both µSR [55] and SQUID measurements [117] are clear evidence of unconventional

superconductivity and, although the nature of the unconventional superconductivity is not

yet certain (point-nodes, line-nodes, two-gap etc), it seems it cannot be explained by a con-

ventional BCS theory.
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3.2 LaNiGa2

Superconductivity in centrosymmetric LaNiGa2 was co-discovered by Aoki, Terayama, and

Sato [121] and Zeng and Lee [122] in 1995. Specific heat and DC electrical resistivity measure-

ments give the transition temperature as 1.93 K to 2.01 K. The Sommerfeld coefficient was

estimated from the jump in the specific heat at Tc and found to be in good agreement with

BCS theory and the temperature-dependence at low temperatures was exponential. Both

indicate that LaNiGa2 is a basic BCS-type phonon-mediated superconductor.

Again however, Hillier et al. [56] performed zero-field and transverse-field µSR experi-

ments on LaNiGa2 and found a spontaneous magnetic field appeared at Tc, just like with

LaNiC2. Such a field indicates the superconducting state breaks time reversal symmetry

(TRS), which implies the existence of unconventional pairing. Their symmetry analysis of

this low-symmetry material finds that only 4 of the 12 possible gap functions break TRS,

all of which are non-unitary triplet-pairing states, again just like LaNiC2. The similarity

between centrosymmetric LaNiGa2 and the noncentrosymmetric LaNiC2 suggests these two

compounds may form a new class of superconductors.

First-principles calculations by Singh [123] and Hase and Yanagisawa [124] both find

the electronic structure of LaNiGa2 is more complex (having essentially five Fermi surface

sheets) than that of LaNiC2. Singh [123] found no evidence of proximity to ferromagnetism

but found a moderately high density of states at the Fermi level which, together with the

experimentally determined Sommerfeld coefficient [122], is consistent with weak coupling.

Furthermore, Singh argues, signs of the triplet pairing as proposed in [55], such as heavy

renormalised bands and a repulsive interaction, are not supported by the results of the first-

principles calculations.

On the other hand however, Hase and Yanagisawa [124] suggest that because LaNiGa2 has

multiple bands a new gap state: “∆1 + i∆2” is possible. They claim that such a state breaks

TRS because of the non trivial complex phase and the two order parameters ∆1 and ∆2 can

take any symmetry allowed by the crystal symmetry. As long as both order parameters are

never nodal in the same place, such a state would be fully gapped and break TRS - consistent

with the exponential specific heat in [122], the observation of broken TRS and the symmetry

required triplet pairing [56]. However, Mazidian [125] argues that, within the framework of

Ginzburg-Landau theory, such a state cannot be a ground state of the free energy.

More recently Weng et al. [126] measured the London penetration depth, specific heat,

upper critical field and superfluid density of LaNiGa2 and found that the results are best

explained by two-gap nodeless superconductivity. They propose a new theory with non-

unitary triplet-pairing via an on-site attractive interaction acting between electrons with the

same spin but in different orbitals. Since the pairing is on-site but between different orbitals

the Pauli exclusion principle is not violated. The exchange of orbital labels is antisymmetric

to ensure overall wave function antisymmetry. They show that from this theory two full gaps

of potentially different magnitudes emerge — consistent with the experimental results, while

the non-unitary nature of the pairing satisfies the symmetry analysis of [56, 55] and would

give rise to the magnetisation observed by µSR [56].
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3.3 Magnetisation from non-unitary triplet-pairing

As already mentioned, the symmetry analysis for both LaNiC2 [55] and LaNiGa2 [56] re-

veals non-unitary triplet-pairing (a type of pairing introduced in section 2.2) to be the only

symmetry-allowed pairing that breaks TRS. The resulting magnetisation that arises from

such pairing is especially interesting in these materials because it both opposes the conven-

tional behaviour of BCS superconductivity and arises in materials that are paramagnetic in

their normal state. Non-unitary triplet-pairing had been identified in ferromagnetic supercon-

ductors and is understood to arise from critical magnetic fluctuations near the ferromagnetic

quantum critical point helping to mediate the triplet pairing [127], however, this explanation

does not apply in the the case of LaNiC2 and LaNiGa2 because they are paramagnetic in the

normal state.

Using Ginzburg-Landau arguments, Hillier et al. [56] explain how the net magnetisation

arises as a sub-dominant order parameter to the superconductivity as follows: The usual form

of the free energy for a triplet pairing instability is given by

F = a|η|2 +
b

2
|η|4 + b′|η × η∗|2 (3.1)

where η is the triplet order parameter that relates to the triplet component of the gap-matrix

through the d-vector (see equation (2.10)) by d(k) = ηΓ(k). Here Γ(k) are the irreducible

representations determined by the symmetry analysis of each material, see e.g. [55, 56, 110].

With this form of the free energy, as discussed in section 2.3, the instability occurs at, and

Tc is determined by, a = 0 while it varies smoothly from the normal state (a > 0) to the

superconducting state (a < 0). This is independent of whether the pairing is unitary or

non-unitary. The term b′|η × η∗|2, and more specifically the sign of b′, determines whether

the pairing will be unitary or non-unitary. If the pairing is unitary then the cross product of

the order parameter is zero, while it is finite if the pairing is non-unitary. The free energy is

minimised therefore by unitary pairing if b′ > 0 and by non-unitary pairing if b′ < 0.

In the case of LaNiC2 and LaNiGa2 however, it is known that they are paramagnetic. As

such there must be an additional term in the free energy coupling η to the magnetisation of

the system, m. The simplest form of the free energy that contains the relevant terms and

obeys the required normal-state symmetries is [56]:

F = a|η|2 +
m2

2χ
+
b

2
|η|4 + b′|η × η∗|2 + b′′m · (iη × η∗) (3.2)

where χ is the magnetic susceptibility. The last term in equation (3.2) describes the coupling

of the magnetisation m to the effective magnetic field caused by the triplet pairing: heff =

−b′′(iη × η∗). The magnetisation that results from the effective magnetic field is given by

m = heffχ = −b′′χ(iη × η∗) and if we substitute that into equation (3.2) we get:

F = a|η|2 +
b

2
|η|4 + (b′ − b′′2χ

2
)|η × η∗|2. (3.3)

Equation (3.3) is of the same form as equation (3.2) and so a similar argument applies as

to whether the pairing will be unitary or non-unitary. Again this depends on the sign of the

term in front of the cross product, making the condition for non-unitary pairing as:

b′ − b′′2χ/2 < 0. (3.4)
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If this condition is satisfied then non-unitary pairing will lower the free energy compared to

unitary pairing. Hillier et al. [56] reason that because the second term on the LHS of equa-

tion (3.4) is always negative for paramagnets, non-unitary triplet-pairing will be favoured,

with the strongest effect being realised in proximity to a Stoner instability. They also note

that such terms exist in the case of ferromagnetic triplet superconductors, where they act to

increase the Tc of the non-unitary transitions relative to the unitary ones, thus stabilising the

non-unitary pairing.

What we have seen then is that the non-unitary triplet-pairing in a paramagnetic mate-

rial will create an effective magnetic field, causing the free energy to be further lowered by

aligning more spins with said effective field. By aligning more spins, more pairing between

spins of the same orientation can occur, thus allowing more superconducting pairs to form.

It is this relationship between the superconducting order parameter and the sub-dominant

magnetic order parameter that is self-reinforcing and favours non-unitary triplet-pairing in

these materials.

3.4 Summary

Both noncentrosymmetric LaNiC2 and centrosymmetric LaNiGa2 are superconductors who

break TRS upon entering the superconducting state, as indicated by the spontaneous ap-

pearance of a magnetic field detected by µSR experiments [55, 56]. Furthermore, in both

materials, the magnetism detected in the superconducting state arises from a system that was

initially not magnetically ordered (and from a state that conventionally opposes magnetism)

showing that the superconductivity and magnetism are inherently linked.

In both cases the symmetry analysis [55, 56] reveals 12 possible pairings, 4 of which break

TRS. All 4 TRS breaking states are non-unitary triplet-pairing states. As discussed pre-

viously, chapter 2, the Ginzburg-Landau symmetry-based treatment of the superconducting

phase transition is based on a very general theory of second order phase transitions. It neither

requires, nor makes any assumption about, the underlying microscopic details of the super-

conductor such as the pairing mechanism or gap structure. Instead it uses the symmetry of

the system — a well known and defined property of the material — to calculate the possible

gap structures. This, together with the fact broken TRS conveniently reduces the number

of possible pairings to only those that are non-unitary triplet, provides strong evidence that

said pairing must be present in these materials.

Neither experimental efforts [101, 104, 105, 112, 114] or first-principle calculations [107,

109] have been able to conclusively identify the pairing or gap structure of LaNiC2. Both

find evidence to support conventional (exponential specific heat [104, 114], exponential NQR

relaxation [105] and good agreement of first-principles Tc with experimental Tc [109]) and

unconventional superconductivity (T 3 specific heat power law [101], T 2 penetration-depth

power law [112] and inability to reproduce Th-doping effects with BCS first-principles cal-

culations or isotope effect [107]). Furthermore the suggestion of a mixed singlet-triplet state

[109] (only possible in noncentrosymmetric superconductors with strong spin orbit coupling)

was shown by relativistic symmetry analysis not to break TRS [110].

Further evidence of triplet pairing in LaNiC2 came from a theoretical Monte Carlo study

of the energies of different pairings, which found the triplet state was stable and of lowest

energy [113], and an experimental SQUID investigation that confirmed the existence of the
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spontaneous magnetisation arising in the superconducting state as well as finding that the

magnetisation was pinned to the c-axis of the crystal. Furthermore the linear increase in mag-

netisation near to Tc as temperature is decreased could be a realisation of the magnetisation

expected to arise from non-unitary triplet-pairing [56].

The unconventional nature of the superconductivity is further supported by the experi-

mental observation of a highly correlated normal state with strong electron interactions when

under pressure [118], further supported by ab initio calculations [119]. Further confirmation

comes from pressure-dependent magnetic penetration-depth measurements which identify an

antiferromagnetic phase emerging with pressure from a magnetic quantum critical point at

ambient pressure [120].

Experimentally speaking the situation for LaNiGa2 is slightly better resolved (although

there are far fewer reports available) with measurements of the specific heat [122, 126], London

penetration depth and superfluid density [126] all suggesting a full gap, although in [122] con-

ventional superconductivity is suggested while in [126] a two-gap model is proposed. With a

more recent report of penetration-depth, specific heat and electronic resistivity measurements

of LaNiC2 also finding two-gap behaviour [115], additionally supported by an investigation

into the effect of paramagnetic impurities [116], it seems as if a two-gap model may be a

common feature of both LaNiC2 and LaNiGa2.

The current situation seems to be that both LaNiC2 and LaNiGa2 are TRS breaking

unconventional superconductors. Older thermodynamic measurements that indicate conven-

tional full gap superconductivity may be instead explained by the more recent observation of

two-gap behaviour observed in both materials. Although the most recent results find LaNiC2

is in fact probably nodal [120], no such evidence exists as yet for LaNiGa2. In order to marry

the seemingly contradictory findings of symmetry required non-unitary triplet-pairing and

observations of a nodeless full gap a new theoretical model has been proposed [126]. In this

theory pairing occurs between electrons of the same spin (triplet) on the same site but dif-

ferent orbitals. This gives rise to two nodeless full gaps ∆↑↑ and ∆↓↓ which can in principle

be different (non-unitary). We have seen how, from a Ginzburg-Landau perspective, this

non-unitary triplet-pairing lowers the free energy compared to unitary pairing, despite (and

because of) the materials being paramagnetic. This theory has been proposed to explain the

superconductivity in LaNiGa2 and may have potentially been applicable to LaNiC2 before

the most recent observation of nodal signs in a high-quality single crystal [120]. We shall

consider this theory in more detail in chapter 5 where we shall perform a variational mean

field treatment of the theory. Before that however we shall demonstrate the application of

the variational mean field method to conventional BCS-like s-wave pairing.



Chapter 4

Variational mean-field theory for

singlet pairing

In this chapter we apply variational mean-field theory, otherwise known as the self-consistent

field method [14], to s-wave singlet pairing; the same pairing as used in BCS theory. During

this chapter we will use the terms ‘s-wave’ or ’singlet pairing’ interchangeably with ‘BCS

theory’ even though, strictly speaking, what we present here is not the original BCS theory;

in the sense that the mathematical techniques being employed are not the same as used in

the original work [26]. The results we obtain here are the same as obtained in the original

BCS theory.

The purpose of this chapter is primarily pedagogical, showing not only how the varia-

tional mean-field theory is applied to a particular well known problem but also detailing the

technical steps which someone just starting this subject may be unfamiliar with. Discussing

the technical details here allows us to omit such details when discussing the equal-spin triplet-

pairing theory of chapter 5 and focus on the novel physics. The secondary purpose is two-fold:

firstly we verify our use of the method by obtaining the same well known results for BCS

superconductivity, and secondly we can compare these results directly with those of a special

case (BCS-like case) of the equal-spin triplet-pairing theory, chapter 5.

A comparison between the two theories is possible because, in a certain limit, there exists

a mapping between the equal-spin triplet-pairing theory and BCS theory. The equal-spin

triplet-pairing theory considers pairing between equal spins on two different orbitals of the

same site, while in BCS theory, pairing occurs between opposite spins on the same site (with

only one orbital). In general there is an effective energy splitting between the two orbitals and

in the limit where that splitting is zero, the equal-spin pairing theory becomes mathematically

similar to BCS theory, with the two orbital labels playing the role of the BCS spin labels.

Henceforth, the definition of the BCS-like case of the equal-spin triplet-pairing theory is when

the effective orbital splitting is zero, enabling a mapping between the two theories.

Our starting point when using the self-consistent field method is the Hamiltonian.

ĤBCS = K̂BCS − µN̂ + V̂BCS (4.1)

where K̂BCS is the total ‘kinetic energy’ of all the particles, µ is the chemical potential and

N̂ is the total number of particles. Together these form the non-interacting part of the

Hamiltonian, so called because the electrons do not interact with each other. The interacting

31
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part of the Hamiltonian, V̂BCS, describes electron-electron interactions. We will first deal

with the non-interacting part of the Hamiltonian.

4.1 Non-interacting Hamiltonian

First we will consider the non-interacting part of the Hamiltonian and see how to derive the

non-interacting energy dispersion. In real space the kinetic energy is given by

K̂BCS = −
N∑
j=1

N∑
j′=1

(
ĉ†j↑ ĉ†j↓

)(t↑↑jj′ t↑↓jj′

t↓↑jj′ t↓↓jj′

)(
ĉj′↑
ĉj′↓

)
(4.2)

where each summation runs over all of the sites of a square lattice with a total of N sites, ĉ†jσ
(ĉjσ) is the creation (annihilation) operator that creates (annihilates) an electron with spin

σ on site j and tσσ
′

jj′ is the energy of a particle with spin σ′, at site j′, hopping to site j, with

spin σ.

The Fourier transform of the creation/annihilation operators is given by:

ĉ†jσ =
1√
N
∑
k

e−ik·Rj ĉ†kσ ĉjσ =
1√
N
∑
k

eik·Rj ĉkσ (4.3a)

ĉ†kσ =
1√
N

N∑
j

eik·Rj ĉ†jσ ĉkσ =
1√
N

N∑
j

e−ik·Rj ĉjσ (4.3b)

where in two dimensions N = Lx
ax

Ly
ay

is the total number of sites of the two-dimensional

square lattice with sides of length Lx and Ly and lattice spacing ax and ay. Rj is the

position vector of the j’th site. With these Fourier transforms it is possible to rewrite the

Kinetic energy in terms of momentum-space rather than real-space. This transformation is

performed as follows. We multiply out the matrices in equation (4.2), and write the real

space creation/annihilation operators in terms of momentum space ones using the Fourier

transformations.

K̂BCS = −
N∑
j=1

N∑
j′=1

{
t↑↑jj′ ĉ

†
j↑ĉj′↑ + t↑↓jj′ ĉ

†
j↑ĉj′↓ + t↓↑jj′ ĉ

†
j↓ĉj′↑ + t↓↓jj′ ĉ

†
j↓ĉj′↓

}

= − 1

N
N∑
j=1

N∑
j′=1

t↑↑jj′∑
k1

e−ik1·Rj ĉ†k1↑

∑
k2

eik2·Rj′ ĉk2↑+

+ t↑↓jj′
∑
k3

e−ik3·Rj ĉ†k3↑

∑
k4

eik4·Rj′ ĉk4↓+

+ t↓↑jj′
∑
k5

e−ik5·Rj ĉ†k5↓

∑
k6

eik6·Rj′ ĉk6↑+

+ t↓↓jj′
∑
k7

e−ik7·Rj ĉ†k7↓

∑
k8

eik8·Rj′ ĉk8↓


Rj and Rj′ are the position vectors of the sites j and j′ from some arbitrary origin on the

2D square lattice.

For any pair of sites j and j′ there exists a hopping vector between them R∆j = Rj−Rj′

describing the direct path from site j′ to site j, see figure 4.1. Rather than summing over all

pairs of sites we can equivalently sum over all sites and, for each site, sum over all possible

hopping vectors R∆j . Mathematically this is done by writing Rj′ = Rj −R∆j and replacing
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Rj

Rj′ = Rj −R∆j

R∆j

(0, 0)

j

j′

a

a

Figure 4.1: Definition of the hopping vector R∆j . The hopping vector R∆j sepa-
rates two sites, j and j′, which an electron hops to and from respectively. Rj and
Rj are two vectors that describe the position of the two sites j and j′ relative to
some arbitrary origin. As shown, Rj can be written in terms of Rj and R∆j which
turns out to be useful when deriving the non-interacting electron energies.

the sum over j′ with a sum over all possible hoppings ∆j . The exponential terms take the

form of, for example, ei(k2−k1)·Rje
−ik2·R∆j . The Fourier transform of the Kronecker delta

function
N∑
j

ei(kα−kβ)·Rj = N δkαkβ
(4.4)

can then be used to remove the sum over all sites j and cancel the factor of 1
N giving:

K̂BCS = −
∑
∆j

{∑
k1k2

δk1k2t
↑↑
∆j
e
−ik2·R∆j ĉ†k1↑ĉk2↑+∑

k3k4

δk3k4t
↑↓
∆j
e
−ik4·R∆j ĉ†k3↑ĉk4↓+

∑
k5k6

δk5k6t
↓↑
∆j
e
−ik6·R∆j ĉ†k5↓ĉk6↑+

∑
k7k8

δk7k8t
↓↓
∆j
e
−ik8·R∆j ĉ†k7↓ĉk8↓

}
.

(4.5)

Mathematically speaking, using the Kronecker delta function is a nice trick to remove one of

the sums over all sites, simplifying the calculation, but there is a physical interpretation as

well. In the thermodynamic limit, all sites can be considered identical as the effect of sites

on or near to the boundary are negligible. As such it is necessary to calculate the hoppings

of a single site only, and simply scale by the number of sites.

When performing the double k-summations, the only terms that are non-zero are when
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kα = kβ, this effectively removes one of the sums leaving:

K̂BCS = −
∑
∆j

{∑
k2

t↑↑∆j
e
−ik2·R∆j ĉ†k2↑ĉk2↑+∑

k4

t↑↓∆j
e
−ik4·R∆j ĉ†k4↑ĉk4↓+∑

k6

t↓↑∆j
e
−ik6·R∆j ĉ†k6↓ĉk6↑+

∑
k8

t↓↓∆j
e
−ik8·R∆j ĉ†k8↓ĉk8↓

}
.

(4.6)

Each sum is performed over the same set of momenta so we can let k2 = k4 = k6 = k8 = k

and write in matrix form:

K̂BCS =
∑
k

(
ĉ†k↑ ĉ†k↓

)(ε↑↑k ε↑↓k
ε↓↑k ε↓↓k

)(
ĉk↑
ĉk↓

)
(4.7)

where

εσσ
′

k = −
∑
∆j

tσσ
′

∆j
e
−ik·R∆j (4.8)

is the kinetic energy of a non-interacting electron of momentum k hopping between two sites

separated by position vector R∆j while flipping its spin (σ 6= σ′) or not (σ = σ′). Note

the minus sign originally in front of equation (4.7) has been incorporated into these hopping

energies.

Obtaining an expression for the kinetic energies εσσ
′

k requires summing over all possible

hopping vectors R∆j . To simplify this (and for consistency with the equal-spin triplet-pairing

theory of chapter 5) we focus on the case of a 2d square lattice and permit only nearest

neighbour hopping, see figure 4.2, which means there are only four nearest neighbours and

hence four hopping vectors, which we will call R1 through R4. For each hopping vector there

are two hopping amplitudes: tσσ∆j
= t if the electron hops and maintains its spin or tσσ̄∆j

= t′

if its spin flips. Under such conditions equation (4.8) for both spin up and down becomes:

ε↑↑k = ε↓↓k = −t
[
e−ik·R1 + e−ik·R2 + e−ik·R3 + e−ik·R4

]
= −t

[
e−ikxa + eikxa + e−ikya + eikya

]
= −2t[cos(kxa) + cos(kya)]. (4.9)

We assume that the hybridisation is zero, i.e. t′ = 0 =⇒ εσσ̄k = 0, so equation (4.7) is

diagonal.

Before the energy of the non-interacting Hamiltonian can be obtained the chemical poten-

tial part, µN̂ , also needs to be written in momentum space for consistency with the kinetic

energy part, K̂BCS. In the grand canonical ensemble the chemical potential acts like an exter-

nal bath which electrons can move into and out of in order to keep the total particle number

fixed.

The total number of particles is obtained with the number operator N̂ and is given by

N̂ =
∑
jσ

n̂jσ =
∑
jσ

ĉ†jσ ĉjσ
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R1

R2

R3

R4

a

a

Figure 4.2: Schematic of nearest neighbour hopping for deriving square lattice dis-
persion. With nearest neighbour hopping, the summation over all possible hopping
vectors,

∑
∆j
tσσ
′

∆j
e
−ik·R∆j , contains only the four vectors shown, i.e. R∆j = R1 to

R4.

where
∑

jσ sums over all electron states, n̂jσ = ĉ†jσ ĉjσ is the number operator of a given

electron state and counts the number of particles in that state. Again by using the Fourier

transforms, equation (4.3a), following the same procedure as before, section 4.1, N̂ can be

written in momentum space:

N̂ =
∑
kσ

n̂kσ =
∑
kσ

ĉ†kσ ĉkσ.

The non-interacting part of the Hamiltonian is therefore given by

K̂BCS − µN̂ =
∑
k

(
ĉ†k↑ ĉ†k↓

)(ε↑↑k − µ 0

0 ε↓↓k − µ

)(
ĉk↑
ĉk↓

)
. (4.10)

The diagonal elements of the matrix in equation (4.10) are the eigenvalues of the non-

interacting single-particle Hamiltonian. These eigenvalues are the energy that an electron in

state k with spin σ would have without any electron-electron interactions. The collection

of these energies for each spin, for all k, form the electron dispersion - in this case two

degenerate bands, one for each spin, see figure 4.3. This non-interacting energy dispersion is

naturally bounded between ±4t, an advantage of which is the integrations can be performed

numerically without invoking the Debye cut-off. Therefore the hopping, t, makes a natural

choice of units and in all numerical calculation we will be working with the energy in units

of t.

At zero temperature the chemical potential plays the role of the Fermi-energy - the highest

energy state that can be occupied. The occupation of the electrons obeys the Fermi-Dirac

distribution

f(E) =
1

1 + eβE
, (4.11)

where f(E) is the probability that a fermionic state, with energy E relative to the chemical

potential, is occupied or not. This quantity is implicitly dependent on temperature because
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Figure 4.3: Non-interacting electron dispersion of a 2D square lattice with nearest
neighbour hopping. The surface (technically two degenerate surfaces, one for each
spin) represents the non-interacting dispersion of a 2D square lattice with nearest
neighbour hopping and no hybridisation. The contours on the surface and their
projection on the kxky-plane correspond to different values of chemical potential µ.
The red, green and blue contours correspond to µ = 2.5, µ = 0.0 and µ = −2.5
respectively. The chemical potential controls the number of electrons in the system
and at T = 0 the chemical potential is equivalent to the Fermi energy. The energy
is in units of the particle hopping, t.

β = 1
kBT

. The temperature dependence is not written explicitly for simplicity. As shown

by the Fermi-Dirac distribution, figure 4.4, Fermion states with energy above (below) the

chemical potential µ are empty (occupied) at T = 0; at finite temperature there is a smoothing

with states just above (below) the Fermi level having some finite probability of being occupied

(empty). We shall now consider the interaction part of the Hamiltonian.

4.2 Interaction

Having obtained the non-interacting dispersion we can now consider the Hamiltonian with

the interaction term. The interaction term is given by:

V̂BCS = −U
∑
j

ĉ†j↑ĉ
†
j↓ĉj↓ĉj↑

which is an on-site attractive interaction between electrons of opposite spins, where U is

the amplitude of the on-site interaction and is a positive constant. This term is quartic in

creation and annihilation operators and as such cannot be diagonalised in the usual way.

In order to determine how a physical system behaves for a given set of parameters e.g.

interaction strength, chemical potential or temperature, one needs to minimise the free energy.
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Figure 4.4: Fermi-Dirac distribution at different temperatures. The Fermi-Dirac
distribution gives the probability of a fermionic state with energy E being occupied.
At zero temperature the Fermi-Dirac distribution is a step function where states
below (above) the chemical potential are occupied (empty). At finite temperatures
the distribution is smoothed near the chemical potential.

The free energy in general is given by

F = −kBT ln(Z) = 〈H〉 − TS (4.12)

where kB is Boltzmann’s constant, T is the temperature and S is the entropy. Z is the

partition function and 〈H〉 is the expectation value of the Hamiltonian, both of which depend

on the eigenvalues and/or eigenstates of the Hamiltonian. The eigenstates and eigenvectors

are obtained by diagonalising the Hamiltonian and since, as noted above, the interaction part

cannot be diagonalised in the usual way, we will make use of variational mean-field theory to

proceed.

4.3 Mean-field theory

Mean-field theory, in short, works by introducing a new Hamiltonian (the mean-field Hamilto-

nian), with variable parameters (the mean-fields), which can be solved exactly. It is assumed

that the eigenvalues and eigenstates of the mean-field Hamiltonian are a good approximation

to those of the original Hamiltonian. In doing so one is able to approximate the free energy of

the original Hamiltonian by using the eigenstates of the mean-field Hamiltonian. The values

of the mean fields are fixed by the requirement that the free energy gives the best possible

approximation to the exact value (i.e. is as low as possible). We shall now go through this

in detail.

We define a mean-field Hamiltonian:

ĤMF
BCS = K̂BCS − µN̂ + V̂MF

BCS (4.13)

where the non-interacting part of the Hamiltonian is the same as in the original Hamiltonian

and the interacting part V̂MF
BCS contains terms which are quadratic in creation/annihilation
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operators (exactly solvable) and contains the mean-fields — variational parameters which

allow ĤMF
BCS to approximate ĤBCS.

Assuming the eigenstates and eigenvalues of ĤMF
BCS are a good approximation to ĤBCS,

the free energy can be written as:

F =
〈
ĤBCS

〉
− TS ≈

〈
ĤBCS

〉
MF
− TSMF

where 〈
ĤBCS

〉
=
∑
n

e−βEn 〈n|ĤBCS|n〉 (4.14a)〈
ĤBCS

〉
MF

=
∑
n

e−βE
MF
n
〈
nMF

∣∣ĤBCS

∣∣nMF
〉
. (4.14b)

Here
〈
ĤBCS

〉
is the normal expectation value of the Hamiltonian ĤBCS using its eigenstates,

|n〉, and eigenvalues, En, while
〈
ĤBCS

〉
MF

is the expectation value of the Hamiltonian using

the eigenvalues, EMF
n , and eigenstates,

∣∣nMF
〉
, of the mean-field Hamiltonian ĤMF

BCS. SMF is

the entropy of the mean-field system.

The free energy can be written

F ≈
〈
ĤBCS

〉
MF
−
〈
ĤMF

BCS

〉
MF

+
〈
ĤMF

BCS

〉
MF
− TSMF

≈
〈
ĤBCS − ĤMF

BCS

〉
MF

+ FMF (4.15)

where FMF = −kBT ln(ZMF) is the free energy of the mean-field Hamiltonian and ZMF =∑
n exp

(
−βEMF

n

)
is the partition function of the mean-field system. All the terms in the free

energy require the eigenstates and eigenvalues of the mean-field Hamiltonian which, since

ĤMF
BCS is diagonalisable, are known. Hence it is now possible to calculate and minimise the

free energy of the original Hamiltonian.

The first term in equation (4.15) containing the difference between the two Hamiltonians

can be simplified as follows:〈
ĤBCS − ĤMF

BCS

〉
MF

=
〈
ĤBCS

〉
MF
−
〈
ĤMF

BCS

〉
MF

=
〈
V̂BCS

〉
MF
−
〈
V̂MF

BCS

〉
MF

. (4.16)

where the non-interacting parts vanish because they are identical in both Hamiltonians. In

order to evaluate
〈
V̂BCS

〉
MF

we make us of an application of Wick’s theorem [14]〈
ĉ†j↑ĉ

†
j↓ĉj↓ĉj↑

〉
MF

=
〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

GOR’KOV

−
〈
ĉ†j↑ĉj↓

〉
MF

〈
ĉ†j↓ĉj↑

〉
MF

FOCK

+
〈
ĉ†j↑ĉj↑

〉
MF

〈
ĉ†j↓ĉj↓

〉
MF

HARTREE

(4.17)

This is an exact result which simplifies the quartic interaction term, allowing us to write〈
V̂BCS

〉
MF

as 〈
V̂BCS

〉
MF

= −U
∑
j

{〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

−
〈
ĉ†j↑ĉj↓

〉
MF

〈
ĉ†j↓ĉj↑

〉
MF

+
〈
ĉ†j↑ĉj↑

〉
MF

〈
ĉ†j↓ĉj↓

〉
MF

}
.

(4.18)
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In order to calculate the remaining terms required by the free energy we need the eigenvalues

and eigenstates of the mean-field Hamiltonian ĤMF
BCS, hence we now need to introduce the

mean-field Hamiltonian explicitly.

4.3.1 Mean-field Hamiltonian

To create the mean-field Hamiltonian, the interaction V̂BCS needs to be replaced by some

diagonalisable mean-field interaction V̂MF
BCS. To decide which terms to include in V̂MF

BCS one

can look at the terms present in the original Hamiltonian. From
〈
V̂BCS

〉
MF

, equation (4.18),

there arises Gorkov pairing terms and Fock spin-flipping terms, whilst there are Hartree

particle density terms present in both interacting and non-interacting parts of ĤBCS. These

are all of the possible terms one could include in V̂MF
BCS as they all arise naturally from the

original Hamiltonian. Any other terms we may wish to include will be self-consistently zero.

In general, when constructing the mean-field Hamiltonian, one does not need to include all

of the terms present in ĤBCS, just those that are expected to be relevant to the physics being

studied. For example, one can arrive at the Stoner theory of ferromagnetism from Hubbard

theory by choosing to include only particle density fields in the mean-field Hamiltonian,

which is fine if one is interested only in magnetism1. As we shall see in section 6.3, one can

additionally include the pairing mean-fields, yielding a mean-field theory which gives rise to

superconductivity and magnetisation.

For the purposes of BCS theory we expect superconductivity with Cooper pairs, hence

the expectation values
〈
ĉ†ĉ†

〉
and

〈
ĉĉ
〉

(Gor’kov terms) should be non-zero, whence pairing

mean-fields, ∆, are required (otherwise those expectations would self-consistently be zero and

there would be no superconductivity). The Fock expectations could also lower the free energy

if included however, these would add an additional, non-superconducting, spontaneous spin-

flipping complication to the model that we are not interested in. Therefore such terms will

not be included.

The particle density expectations
〈
ĉ†ĉ
〉

appear in both interacting and non-interacting

parts of the Hamiltonian ĤBCS and will be naturally non-zero even without including the

mean-fields, they should therefore be included for self-consistency purposes. The particle

density mean-fields, φ, need not appear with a spin-dependence as there is no mechanism

which should lead to an imbalance in spins. We choose to include them here however, in

analogy with our equal-spin triplet-pairing theory, chapter 5, and as we shall see, in BCS

theory the spin-dependent φ-fields are self-consistently equal. We thus define our mean-field

interaction as

V̂MF
BCS = −

∑
jσ

φσ ĉ
†
jσ ĉjσ −

∑
j

∆ĉ†j↑ĉ
†
j↓ −

∑
j

∆∗ĉj↓ĉj↑ (4.19)

where φσ is a particle-density mean-field, coupling with the number operator n̂jσ. The spin-

dependence allows for magnetisation which, as discussed above, is not necessary for BCS

theory. The pairing potential ∆ and its Hermitian conjugate ∆∗ couples with terms that

create a pair of electrons and holes respectively. It is this term that will lead to superconduc-

tivity. Additionally, this term is the same pairing potential term introduced in chapter 2. In

this case ∆ is isotropic in momentum space but, as discussed, it can in principle take more

complex forms.

1Indeed, we will do just this with Stoner theory in chapter 6 when we investigate the magnetisation of
this equal-spin pairing theory.
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With an explicit form for V̂MF
BCS it is now possible to diagonalise ĤMF

BCS to obtain the

eigenstates and eigenvalues which are required to calculate the free energy, equation (4.15).

We shall do this in section 4.4 but before that we will derive the self-consistency equations.

4.3.2 Self consistency equations

Physically the system will want to minimise the free energy, which is a function of the

variational mean-fields. The values of the mean-fields obtained after minimising the free

energy describe the state of the system e.g. if ∆ = 0 minimises the free energy then the

system is not superconducting. Here we will derive the self-consistency equations — a set of

equations whose solutions directly give the mean-fields that minimise2 the free energy.

To minimise the free energy we vary the eigenstates of ĤMF
BCS with respect to the mean-

fields and require that the variation in free energy be a stationary point, i.e. δF = 0. Using

our expression for F , equation (4.15), we get:

δF = 0 = δ
〈
ĤBCS − ĤMF

BCS

〉
MF

+ δFMF.

The quantity FMF =
〈
ĤMF

BCS

〉
MF
− TSMF is already minimised (δFMF = 0) with respect to

variations in the mean-fields since the eigenvectors of ĤMF
BCS are the exact eigenvectors of the

Hamiltonian [14]. Using this and equation (4.16) gives

δ
〈
V̂MF

BCS

〉
MF

= δ
〈
V̂BCS

〉
MF

.

δ
〈
V̂MF

BCS

〉
MF

is simply given by:

δ
〈
V̂MF

BCS

〉
MF

=
∑
j

{
− φ↑δ

〈
ĉ†j↑ĉj↑

〉
MF
− φ↓δ

〈
ĉ†j↓ĉj↓

〉
MF

−∆δ
〈
ĉ†j↑ĉ

†
j↓

〉
MF
−∆∗δ

〈
ĉj↓ĉj↑

〉
MF

}
.

(4.20)

To evaluate δ
〈
V̂BCS

〉
MF

we use the product rule to differentiate each of the Gorkov,

Hartree and Fock terms in equation (4.17):

δ
〈
V̂BCS

〉
MF

= −U
∑
j

{
δ
〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

+
〈
ĉ†j↑ĉ

†
j↓

〉
MF

δ
〈
ĉj↓ĉj↑

〉
MF

−δ
〈
ĉ†j↑ĉj↓

〉
MF

〈
ĉ†j↓ĉj↑

〉
MF
−
〈
ĉ†j↑ĉj↓

〉
MF

δ
〈
ĉ†j↓ĉj↑

〉
MF

+δ
〈
ĉ†j↑ĉj↑

〉
MF

〈
ĉ†j↓ĉj↓

〉
MF

+
〈
ĉ†j↑ĉj↑

〉
MF

δ
〈
ĉ†j↓ĉj↓

〉
MF

}
.

(4.21)

Comparing equations (4.20) and (4.21) and equating the coefficients of the variations, δ 〈...〉MF,

which are independent of each other, yields the self-consistency equations

∆ =U
〈
ĉj↓ĉj↑

〉
MF

(4.22a)

∆∗ =U
〈
ĉ†j↑ĉ

†
j↓

〉
MF

(4.22b)

φ↑ =U
〈
ĉ†j↓ĉj↓

〉
MF

(4.22c)

φ↓ =U
〈
ĉ†j↑ĉj↑

〉
MF

. (4.22d)

2Technically they find the stationary points of the free energy with no guarantee that that the solution is
a minimum.
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These equations give the values of the mean-fields which correspond to the stationary

points of the free energy. Often these equations offer an easier and quicker way of finding the

minima of the free energy compared with directly minimising the free energy itself however,

as we shall see in chapter 5, these equations sometimes have multiple solutions, requiring

the free energy to be calculated in order to determine which solution corresponds to the

minimum. To proceed further requires the eigenvectors and eigenvalues of the mean-field

Hamiltonian, which we shall now obtain by diagonalisation.

4.4 Diagonalising the mean-field Hamiltonian

In order to evaluate either the free energy or the self-consistency equations we need to be

able to calculate various thermal averages using the mean-field eigenvalues and eigenstates.

To obtain these quantities we need to diagonalise the mean-field Hamiltonian which we shall

do now. For a detailed discussion of diagonalisation, see appendix A.

Using the Fourier transformation, equation (4.3a), the mean-field Hamiltonian can be

written in momentum space. The process is the same as we have seen previously, see sec-

tion 4.1, except for a slight difference when transforming terms with two creation or two

annihilation operators. Let us consider, for example, the second term in equation (4.19).

Written in momentum space it is given by

−
∑
j

∆ĉ†j↑ĉ
†
j↓ = −∆

N
∑
j

∑
k1

e−ik1·Rj ĉ†k1↑

∑
k2

e−ik2·Rj ĉ†k2↓

= −∆

N
∑
k1k2

∑
j

e−i(k1+k2)·Rj

︸ ︷︷ ︸
N δ−k1,k2

ĉ†k1↑ĉ
†
k2↓

where, this time, the definition of the Kronecker delta function, equation (4.4), requires

−k1 − k2 = 0, making k2 = −k1 in all non-zero terms. The N ’s cancel and performing one

of the k-summations gives

−
∑
j

∆ĉ†j↑ĉ
†
j↓ = −∆

∑
k1

ĉ†k1↑ĉ
†
−k1↓.

It is clear now that the mean field Hamiltonian written in momentum space is

ĤMF
BCS =

∑
kσ

εkσ ĉ
†
kσ ĉkσ −

∑
k

∆ĉ†k↑ĉ
†
k̄↓ −

∑
k

∆∗ĉ
k̄↓ĉk↑,

where εkσ = εσσkσ − µ − φσ is the renormalised dispersion of the σ-channel and we have

introduced the notation k̄ = −k. In order to diagonalise ĤMF
BCS we first write it in matrix

form,

ĤMF
BCS −

∑
k

εk↓ =
∑
k

(
ĉ†k↑ ĉ

k̄↓

)( εk↑ −∆

−∆∗ −εk↓

)(
ĉk↑
ĉ†
k̄↓

)
. (4.23)

and, since the matrix HMF
BCS =

(
εk↑ −∆

−∆∗ −εk↓

)
is Hermitian, it can be diagonalised via a

unitary transformation matrix U =

(
uk −v∗k
vk u∗k

)
in the usual way: HMF

BCS = UDU∗.
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After diagonalisation, equation (4.23) becomes the Bogoliubov de Gennes Hamiltonian

ĤBdG:

ĤBdG −
∑
k

εk↓ =
∑
k

(
γ̂†ak γ̂bk

)(λak 0

0 λbk

)(
γ̂ak
γ̂†bk

)
(4.24)

where λak and λbk are the eigenvalues of HMF
BCS and the γ̂†mk (γ̂mk)-operators can be in-

terpreted as creation (annihilation) operators of some new fermionic quasi-particles, often

called Bogoliubons. These Bogoliubons are composed of a linear superposition of particles

and holes, as described by the Bogoliubov transformation (see appendix A.4):

γ̂†ak = vkĉk̄↓ + ukĉ
†
k↑ γ̂ak = v∗kĉ

†
k̄↓ + u∗kĉk↑ (4.25a)

γ̂bk = u∗kĉk̄↓ − v
∗
kĉ
†
k↑ γ̂†bk = ukĉ

†
k̄↓ − vkĉk↑. (4.25b)

The inverse transformation gives the electron creation/annihilation operators in terms of the

Bogoliubon creation/annihilation operators:

ĉ†k↑ = u∗kγ̂
†
ak − vkγ̂bk ĉk↑ = ukγ̂ak − v∗kγ̂

†
bk (4.26a)

ĉ
k̄↓ = v∗kγ̂

†
ak + ukγ̂bk ĉ†

k̄↓ = vkγ̂ak + u∗kγ̂
†
bk. (4.26b)

The eigenvalues of HMF
BCS are obtained by solving the characteristic polynomial in the

usual way (see appendix A.2) and are given by:

λak = +
√
ξ2
kσ + ∆∆∗ + s∗k

λbk = −
√
ξ2
kσ + ∆∆∗ + s∗k,

where

ξkσ =
1

2
(εk↑ + εk↓) = εk − µ−

1

2
(φ↑ + φ↓) (4.28)

is the average energy of the two spin-bands and

s∗k =
1

2
(εk↑ − εk↓) =

1

2
(φ↓ − φ↑) (4.29)

is the effective splitting between them.

We want to write the Hamiltonian ĤBdG in the form ĤBdG =
∑

nEnγ̂
†
nγ̂n +Eg where En

is the positive energy associated with adding a quasi-particle created (annihilated) by γ̂†n(γ̂n)

[14]. This energy is in addition to a constant energy level corresponding to all quasi-particle

states being unoccupied. Equation (4.24) can be written as

ĤBdG =
∑
k

{
λakγ̂

†
akγ̂ak + λbkγ̂bkγ̂

†
bk

}
+
∑
k

εk↓

=
∑
k

{
λakγ̂

†
akγ̂ak − λbkγ̂

†
bkγ̂bk

}
+
∑
k

(εk↓ + λbk)

=
∑
k

{
Eakγ̂

†
akγ̂ak + Ebkγ̂

†
bkγ̂bk

}
+ Eg

where we have used the anti-commutation relations to express γ̂bkγ̂
†
bk in normal order.

The powerful interpretation of this Bogoliubov de Gennes transformation is that the BCS

system can be described as a system of non-interacting quasi-particle states, rather than

worrying about the underlying electrons. There is a ground state, completely devoid of quasi



Chapter 4. Variational mean-field theory for singlet pairing 43

particles, with energy Eg =
∑

k (εk↓ + λbk). The energy of the system increases (decreases)

by a well defined amount Emk when a quasi-particle is added γ̂†mk (removed γ̂mk). The

quasi-particle energies are given by Eak = λak and Ebk = −λbk.

We now have the eigenvalues of the mean-field Hamiltonian but still require expressions

for the amplitudes of the eigenvectors before proceeding. We shall derive those now by solving

the eigenvector equations.

4.4.1 Solving the eigenvector equations

As is explained in appendix A the columns of the transformation matrix U are eigenvectors of

HMF
BCS and form eigenvalue equations with the eigenvalues in D. These eigenvalue equations

are a simple instance of the famous “Bogoliubov de Gennes equations” [14] and are given by:(
εk↑ −∆

−∆∗ −εk↓

)(
uk

vk

)
= λak

(
uk

vk

)
and

(
εk↑ −∆

−∆∗ −εk↓

)(
−v∗k
u∗k

)
= λbk

(
−v∗k
u∗k

)
.

This gives us a set of four equations which can be used to work out the expressions for the

eigenvector amplitudes

εk↑uk −∆vk =λakuk (4.30a)

−∆∗uk − εk↓vk =λakvk (4.30b)

−εk↑v∗k −∆u∗k =− λbkv∗k (4.30c)

∆∗v∗k − εk↓u∗k =λbku
∗
k. (4.30d)

Solving 4.30a for ∆ and substituting into 4.30c gives

(εk↑ − λak)uku
∗
k = (−εk↑ + λbk)vkv

∗
k.

Recalling that for a unitary transformation we have uku
∗
k + vkv

∗
k = 1 we can write the

expression in terms of just uku
∗
k or vkv

∗
k giving the familiar expressions of BCS theory [14]:

uku
∗
k =

1

2

1 +
ξkσ√

ξ2
kσ + ∆∆∗

 (4.31a)

vkv
∗
k =

1

2

1− ξkσ√
ξ2
kσ + ∆∆∗

. (4.31b)

If we instead solve 4.30a for εk↑ and substitute into 4.30c we obtain:

−∆(vkv
∗
k + uku

∗
k) = (λak − λbk)ukv

∗
k

again using the unitary condition gives the well known expression from the BCS gap equation

[14]:

ukv
∗
k =

−∆

2
√
ξ2
kσ + ∆∆∗

. (4.32)

Now that we have the eigenvalues and amplitudes we can derive the self consistency equations.
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4.5 Deriving the self-consistency equations

In section 4.3.2 the mean-field self-consistency equations (4.22) were derived. This section

will demonstrate the steps involved in evaluating those equations. First we consider the self-

consistent gap equation, equation (4.22a), which gives the value of ∆ that minimises the free

energy.

4.5.1 Gap equation

As usual we use the Fourier transforms, equation (4.3a), to write the gap self-consistency

equation, equation (4.22a), in momentum space:

∆ =
U

N
∑
k1k2

ei(k1+k2)·Rj

〈
ĉk1↓ĉk2↑

〉
MF

.

By introducing a sum over all sites to both sides we can use equation (4.4) to simplify:

∑
j

∆ =
U

N
∑
k1k2

N δk1k̄2︷ ︸︸ ︷∑
j

ei(k1+k2)·Rj

〈
ĉk1↓ĉk2↑

〉
MF

N∆ =U
1

N
∑
k1k2

N δk1k̄2

〈
ĉk1↓ĉk2↑

〉
MF

.

N can be cancelled from both sides and, performing one of the k-summations, δk1k̄2
ensures

only terms with k1 = k̄2 are non-zero. We relabel the dummy variable k2 → k which gives

the gap equation in momentum space

∆ =
U

N
∑
k

〈
ĉ
k̄↓ĉk↑

〉
MF

. (4.33)

Using the Bogoliubov transformation, equation (4.26), the electron annihilation operators

can be written in terms of the quasi-particle creation/annihilation operators like so:

∆ =
U

N
∑
k

〈(
v∗kγ̂

†
ak + ukγ̂bk

)(
ukγ̂ak − v∗kγ̂

†
bk

)〉
MF

∆ =
U

N
∑
k

{
v∗kuk

〈
γ̂†akγ̂ak

〉
MF
− v∗kv∗k

〈
γ̂†akγ̂

†
bk

〉
MF

+ ukuk

〈
γ̂bkγ̂ak

〉
MF
− ukv

∗
k

〈
γ̂bkγ̂

†
bk

〉
MF

}
.

The Hamiltonian is diagonal in the quasi-particle basis meaning that eigenstates of the system

have well defined quasi-particle number, even though the number of electrons/holes is not

well defined. As such the thermal averages have to conserve quasi-particle number and obey

the mean value rules [14]: 〈
γ̂†nαγ̂mβ

〉
= δnmδαβf(Enα) (4.34a)〈

γ̂nαγ̂mβ

〉
= 0. (4.34b)

Here f(Enα) is the Fermi-Dirac distribution, equation (4.11).

Writing all terms in normal order and using the mean value rules to identify the non-zero

averages gives the gap equation as

∆ =
U

N
∑
k

{
v∗kuk

〈
γ̂†akγ̂ak

〉
MF
− ukv

∗
k

(
1−

〈
γ̂†bkγ̂bk

〉
MF

)}
∆ =

U

N
∑
k

{
−ukv

∗
k

(
1−

〈
γ̂†akγ̂ak

〉
MF
−
〈
γ̂†bkγ̂bk

〉
MF

)}
.
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The remaining thermal averages are given by the Fermi-Dirac distribution and ukv
∗
k is known

from equation (4.32) making the gap equation

∆ =
U

N
∑
k

 ∆

2
√
ξ2
kσ + ∆∆∗

[1− f(Eak)− f(Ebk)]

. (4.35)

Note in this mean-field treatment of s-wave pairing we include φσ-fields that have a σ-

dependence and as a result equation (4.35) looks slightly different to the usual BCS gap

equation, equation (4.36). The inclusion of such a σ-dependence is in analogy with our

equal-spin pairing theory of chapter 5 (which necessarily has this dependence due to the

orbital splitting at the non-interacting level) and facilitates the aforementioned mapping be-

tween the two theories. We will see that in this case the free energy is indeed minimised by

having φ↑ = φ↓ and so is consistent with other treatments which may not have included this

freedom. Indeed, when the φσ-fields are equal the two quasi-particle excitation energies are

also equal (Eak = Ebk) and the gap equation takes on the familiar form:

∆ =
U

N
∑
k

 ∆

2
√
ε2k + ∆∆∗

[1− 2f(Eak)]

. (4.36)

4.5.2 Hartree self-consistency equation

We now do the same for the self-consistency equations for the φ-fields, equations (4.22c)

and (4.22d). First we write them in momentum space:

φ↑ =
U

N
∑
k

〈
ĉ†k↓ĉk↓

〉
MF

φ↓ =
U

N
∑
k

〈
ĉ†k↑ĉk↑

〉
MF

then using the Bogoliubov transform, equation (4.26), to write in terms of the quasi-particle

creation/annihilation operators and using the mean value rules, equation (4.34), to simplify

gives

φ↑ =
U

N
∑
k

{
uku

∗
k

〈
γ̂†bkγ̂bk

〉
MF

+ vkv
∗
k

(
1−

〈
γ̂†akγ̂ak

〉
MF

)}
φ↓ =

U

N
∑
k

{
uku

∗
k

〈
γ̂†akγ̂ak

〉
MF

+ vkv
∗
k

(
1−

〈
γ̂†bkγ̂bk

〉
MF

)}
.

Again the thermal averages can be replaced by the Fermi-Dirac distribution and the uku
∗
k and

vkv
∗
k terms are given by equations (4.31a) and (4.31b) respectively, giving the self-consistency

equations for the φσ-fields as:

φ↑ =
U

N
∑
k

1

2

1 +
ξkσ√

ξ2
kσ + ∆∆∗

f(Ebk) +
1

2

1− ξkσ√
ξ2
kσ + ∆∆∗

[1− f(Eak)]

 (4.37)

φ↓ =
U

N
∑
k

1

2

1 +
ξkσ√

ξ2
kσ + ∆∆∗

f(Eak) +
1

2

1− ξkσ√
ξ2
kσ + ∆∆∗

[1− f(Ebk)]

.
(4.38)
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The expectation values forming the self-consistency equations are commonly occurring

and appear again in the free energy. For convenience we will write the self-consistency

equations in a shortened form and define the expectation values short hand notation as

follows:

∆ =
U

N χ (4.39a)

φ↑ =
U

N N↓ (4.39b)

φ↓ =
U

N N↑, (4.39c)

where

χ =
∑
k

〈
ĉ
k̄↓ĉk↑

〉
MF

=
∑
k

{
−ukv

∗
k

(
1−

〈
γ̂†akγ̂ak

〉
MF
−
〈
γ̂†bkγ̂bk

〉
MF

)}

=
∑
k

 ∆

2
√
ξ2
kσ + ∆∆∗

[1− f(Eak)− f(Ebk)]

,
(4.40)

N↓ =
∑
k

〈
ĉ†k↓ĉk↓

〉
MF

=
∑
k

n̂k↓

=
∑
k

{
uku

∗
k

〈
γ̂†bkγ̂bk

〉
MF

+ vkv
∗
k

(
1−

〈
γ̂†akγ̂ak

〉
MF

)} (4.41)

and

N↑ =
∑
k

〈
ĉ†k↑ĉk↑

〉
MF

=
∑
k

n̂k↑

=
∑
k

{
uku

∗
k

〈
γ̂†akγ̂ak

〉
MF

+ vkv
∗
k

(
1−

〈
γ̂†bkγ̂bk

〉
MF

)}
.

(4.42)

N↑ and N↓ give the number of spin-up and spin-down electrons respectively. Now we shall

set about solving the self-consistency equations.

4.6 Self-consistency equations - numerical results

Solving the self-consistency equations properly requires solving all three (equations (4.35),

(4.37) and (4.38)) simultaneously, which is complicated by the fact that each equation depends

on all of the mean-fields. Before we discuss how to solve these equations simultaneously we

will first consider the gap equation only and examine it from a mathematical perspective by

use of a ‘contouring method’. Following that we will solve all three self-consistency equations

simultaneously with an iterative solver.

4.6.1 Solving the self-consistent gap equation via the contour method

We will first examine the self-consistent gap equation from a mathematical perspective. By

that we mean the equation will be solved but that the solutions will not in general correspond

to the minimum of the free energy, i.e. the results will be perfectly mathematically valid but

will not in general be physically correct. This is necessarily the case because we are solving

the gap equation only. In order to do so the φ-fields are assigned some arbitrary values - they
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are not self-consistent and hence are unlikely to correspond to the global minima of the free

energy. As such the solutions obtained may not be physically exact but often do provide a

good first order approximation to the behaviour of ∆.

Recall that in two-dimensions N = N = (L/a)2 and
∑

k . . . = (L/2π)2
∫∫

. . . dkx dky.

Using this, equation (4.35) is written in integral form

∆ = U

(
1

2π

)2 ∫∫  ∆

2
√
ξ2
kσ + ∆∆∗

[1− f(Eak)− f(Ebk)]

dkxa dkya .

The same reasoning can be used to write equations (4.37) and (4.38) in integral form. Can-

celling ∆ from both sides and taking U to the left hand side, the gap equation becomes

1

U
=

(
1

2π

)2 ∫∫  ∆

2
√
ξ2
kσ + ∆∆∗

[1− f(Eak)− f(Ebk)]

dkxa dkya . (4.43)

The right hand side depends only on ∆ and T for a fixed µ, φ↑ and φ↓. Using a numerical

integration routine (scipy’s [6] inbuilt ‘nquad’ method, own implementation of a Monte Carlo

integration [128] routine, or any other suitable routine) to evaluate the integral for multiple

∆ and T , one produces a surface where the z-axis ∝ 1
U . Contour lines on this surface then

give ∆ vs T for a given U . Figure 4.5 shows the solutions of the BCS self-consistent gap

equation obtained via this ‘contouring method’.

Figure 4.5a shows the usual behaviour expected of BCS theory (see [14]): At some critical

temperature, Tc, the order parameter, ∆, suddenly becomes finite, then increases until reach-

ing saturation, ∆0, at T = 0. Increasing the interaction, U , increases the critical temperature,

Tc. The value of Tc agrees well with the value predicted by BCS theory, i.e. ∆0 = 1.76kBTc.

At U = 3.6 there is a percentage difference of -0.5% between the calculated and predicted

value of Tc and is the largest error of all the contours shown. Note that the value of the

chemical potential, µ, can make some calculations numerically difficult (i.e. µ = 0 causes the

Van Hove singularity in the density of states to become dominant) and can cause a greater

difference between the calculated and predicted value of Tc unless the numerical parame-

ters (number of integration points, integration tolerance, pre-calculated values of density of

states) are improved. In this case the fields were chosen such that the effective spin-splitting

was zero i.e. φ↑ = φ↓ which is consistent with the usual treatment of BCS theory, but in

general we can choose our fields in such a way that the effective splitting is finite.

Figure 4.5b shows the behaviour of equation (4.43) when the φ-fields are chosen to give

finite effective splitting. This behaviour is qualitatively quite different from the expected

BCS behaviour. For large enough interaction the behaviour remains BCS-like but for smaller

interaction at a fixed T there may exist multiple non-trivial solutions to the gap equation.

This highlights how the φ-fields can affect the solutions to the gap equation and that it is

necessary to self-consistently determine all fields and, in the cases where multiple solutions

exist, determine the solution that minimises the free energy. In this case, as we shall see,

self-consistently determining all mean-fields reveals φ↑ = φ↓ and therefore the discussion of

finite splitting between the spin bands is not relevant for BCS theory. As such we will delay

a discussion of finite splitting until chapter 5, where the splitting (this time between orbitals

rather than spins) becomes relevant.

We have seen that, when solved by itself, the self-consistent gap equation gives some in-

sight into the potential behaviour of the system however that behaviour can vary significantly
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(a) Zero effective splitting: φ↑ = φ↓ = 0
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(b) Finite effective splitting: φ↑ = −φ↓ = 0.2

Figure 4.5: Solution to the BCS self-consistent gap equation. The different lines
show ∆ vs T for different interaction strengths, U , obtained by solving the self-
consistent gap equation for arbitrary values of chemical potential and φ-fields. Fig-
ures 4.5a and 4.5b correspond to zero and finite effective splitting respectively. In
both cases µ = −2.
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Figure 4.6: Evolution of the mean-fields during the iterative process of solving all
self-consistency equations. The self-consistency equations with chemical potential
µ = −2.3, interaction U = 2.8 and temperature T = 0.05 are solved iteratively. The
mean-fields vary with each iteration, converging on the self-consistent values until
some tolerance is reached.

depending on the values of the other mean-fields. It is necessary therefore to calculate all

mean-fields simultaneously in a self-consistent manner. We shall do this now.

4.6.2 Solving self-consistency equations iteratively

Solving the self-consistent equations simultaneously can be done iteratively by a simple algo-

rithm. In its most basic form this iterative solver consists of a single loop which repeatedly

solves all three self-consistent equations. To start, an initial guess of the mean-field values

is made and used to solve the self-consistency equations. The result of solving all three

equations is then used as the input for the next iteration. The loop continues until some

convergence condition is met. While this algorithm is fast, it is not guaranteed to converge.

Furthermore if it does converge then while the solutions are guaranteed to be stationary

points they are not guaranteed to be minima of the free energy.

When solving for ∆ there is always one trivial solution, ∆ = 0. It is important not to

start with an initial guess too close to this value as the algorithm may miss any non-trivial

solutions. It can also happen that the algorithm may ‘jump’ past a solution, then tend

towards the trivial solution. To avoid this we introduce a numerical ‘friction’ term, which

uses a small amount of the current solution when forming the new solution, i.e. the value of

the gap at the (i+ 1)’th iteration, ∆i+1, would be given by

∆i+1 = (1− f)Uχ+ f∆i.

Here f is the friction, a small number which scales how much of the current value of ∆ to

include in the next guess. When f = 0 the next value of the gap ∆i+1 is determined entirely by

the solution to the self-consistency equation. At each iteration all mean-fields are calculated
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in a similar fashion and used as the input on the next iteration. Figure 4.6 shows how the

mean-fields vary with each iteration as the self-consistency equations are solved. Starting at

the initial guess, the mean-fields change at each iteration, converging on the self-consistent

solution.

Solving the self-consistency equations iteratively enables us to obtain information about

how ∆ changes with temperature T at different interaction strengths U , much in the same

way that solving the gap equation with the contour method gave us figures 4.5a and 4.5b.

Unlike in those cases however, where we had to solve the self-consistent gap equation for

some arbitrary values of φσ, this time we obtain all three mean-fields self-consistently and φσ

are no longer free parameters. The result is figure 4.7 where the temperature dependence of

∆ and the φ-fields are shown in the top and bottom panels respectively.

The top panel in figure 4.7 is similar to figure 4.5a, which is as expected for BCS theory,

supporting the results obtained by the contour method with zero splitting between spins and

implying that the result obtained when the splitting is finite, figure 4.5b, is not self-consistent.

We note that Tc is very close to the value predicted by BCS, TBCS
c , with the difference between

the two values dependent on how Tc is numerically determined. The slight discrepancy

that still exists is due to numerical errors, which are most significant around Tc, where the

integrations become numerically difficult, smoothing the transition. The two main sources

of error when solving the self-consistency equations iteratively are: firstly, the precision with

which integrations are performed and secondly, the number of iterations performed by the

algorithm (or equivalently, the requested tolerance). Improving both of these improves the

estimation of Tc, at the expense of computation time.

The bottom panel of figure 4.7 shows that φ↑ = φ↓ and compared with ∆, the φ-fields

are relatively temperature-independent. The equivalence of these two mean-fields is expected

in BCS theory because, as each field is proportional to the number of particles φσ ∝ Nσ̄,

φ↑ 6= φ↓ would imply an imbalance in spin populations and hence a net magnetisation - the

opposite of what is expected in superconductors. It should be noted that below Tc there is in

fact a slight difference between the two φ-fields. This difference is small, of the order of 10−8

however, it is a well understood numerical artefact and not physical. It can be understood

after deriving and solving the free energy, which we shall do now.
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Figure 4.7: Solutions of the self-consistency equations obtained by solving iter-
atively. In both panels, the different colour lines correspond to different values of
interaction U . The top panel shows typical BCS temperature dependence of ∆.
The temperature at which ∆ becomes finite is in good agreement with the criti-
cal temperature predicted by BCS: TBCS

c = ∆0/1.76. The lower panel shows the
self-consistently determined φ↑- and φ↓-fields, corresponding to lines with × and +
markers respectively. The φ-fields are comparatively less temperature dependent
than pairing potential ∆ and they are spin independent i.e. φ↑ = φ↓.
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4.7 Free Energy

In this section we derive two forms of the free energy: the ground state free energy where

T = 0 and the general form valid for all T . The free energy is useful as it can be used to verify

the solutions to the self-consistent gap equation and, in instances where there is more than

one solution, it can reveal which solution is the true minimum, this will become particularly

important in chapter 5. Let us start with the zero temperature case.

4.7.1 Zero temperature case

As seen in section 4.3 the free energy is given by equation (4.15) which at zero temperature

can be simplified to

F ≈
〈
ĤBCS

〉
MF

≈
〈
K̂BCS

〉
MF
− µ

〈
N̂
〉

MF
+
〈
V̂BCS

〉
MF

≈
∑
kσ

(εσσk − µ)
〈
ĉ†kσ ĉkσ

〉
MF
− U

∑
j

〈
ĉ†j↑ĉ

†
j↓ĉj↓ĉj↑

〉
MF

.

The non-interacting expectation value is converted from electron creation/annihilation op-

erators to Bogoliubon operators in exactly the same way as was done before for the self-

consistency equations, see section 4.5.2. The interaction term is expanded with Wick’s theo-

rem

−U
∑
j

〈
ĉ†j↑ĉ

†
j↓ĉj↓ĉj↑

〉
MF

= −U
∑
j

〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

(4.44a)

+U
∑
j

〈
ĉ†j↑ĉj↓

〉
MF

〈
ĉ†j↓ĉj↑

〉
MF

(4.44b)

−U
∑
j

〈
ĉ†j↑ĉj↑

〉
MF

〈
ĉ†j↓ĉj↓

〉
MF

(4.44c)

and each product of expectation values is written in momentum space, then in terms of the

Bogoliubon creation/annihilation operators and finally the mean value rules, equation (4.34),

are used to determine which thermal averages are non-zero. We will now demonstrate this

for the Gor’Kov term, which written in momentum space is

−U
∑
j

〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

= − U

N 2

∑
k1k2
k3k4

∑
j

ei(−k1−k2+k3+k4)·Rj

〈
ĉ†k1↑ĉ

†
k2↓

〉
MF

〈
ĉk3↓ĉk4↑

〉
MF

= −UN
∑

k2k3k4

〈
ĉ†k1↑ĉ

†
k2↓

〉
MF

〈
ĉk3↓ĉk4↑

〉
MF

,

where, while performing the sum over k1, the Kronecker delta function, equation (4.4),

restricts k1 = k3 +k4−k2. The electron operators are replaced by the Bogoliubon operators

using the Bogoliubov transformation, equation (4.26), giving:

−U
∑
j

〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

= −UN
∑

k2k3k4

〈(
u∗k1

γ̂†ak1
− vk1

γ̂bk1

)(
v
k̄2
γ̂
ak̄2

+ u∗
k̄2
γ̂†
bk̄2

)〉
MF〈(

v∗
k̄3
γ̂†
ak̄3

+ u
k̄3
γ̂
bk̄3

)(
uk4

γ̂ak4
− v∗k4

γ̂†bk4

)〉
MF

.
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Multiplying the brackets, writing the expectation values in normal order and using the mean

value rules to eliminate those which are always zero gives

−U
∑
j

〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

=

−UN
∑

k2k3k4

{[
u∗k1

v
k̄2

〈
γ̂†ak1

γ̂
ak̄2

〉
MF
− vk1

u∗
k̄2

(
δk̄2k1

−
〈
γ̂†
bk̄2
γ̂bk1

〉
MF

)]
[
v∗
k̄3
uk4

〈
γ̂†
ak̄3

γ̂ak4

〉
MF
− u

k̄3
v∗k4

(
δk4k̄3

−
〈
γ̂†bk4

γ̂
bk̄3

〉
MF

)]}
the terms in the second set of square brackets will only be finite when k̄3 = k4 which, because

k1 = k3 + k4 − k2, means k1 = k̄2. Therefore

−U
∑
j

〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

=

−UN
∑
k2k4

{[
−u∗

k̄2
v
k̄2

(
1−

〈
γ̂†
ak̄2

γ̂
ak̄2

〉
MF
−
〈
γ̂†
bk̄2
γ̂
bk̄2

〉
MF

)]
[
−v∗k4

uk4

(
1−

〈
γ̂†ak4

γ̂ak4

〉
MF
−
〈
γ̂†bk4

γ̂bk4

〉
MF

)]}
.

Each square bracket depends on only one of the two momentum labels so the double summa-

tion can be written as the product of two separate summations. Those two summations take

the same form as the self-consistent gap equation, equation (4.40), or it’s complex conjugate,

meaning we can finally write this term of the free energy as

−U
∑
j

〈
ĉ†j↑ĉ

†
j↓

〉
MF

〈
ĉj↓ĉj↑

〉
MF

= −UN χχ∗.

The same procedure is applied to the other two terms of the interaction, equations (4.44b)

and (4.44c). It turns out that all expectation values in equation (4.44b) are zero, which gives

the interaction as:

− U
∑
j

〈
ĉ†j↑ĉ

†
j↓ĉj↓ĉj↑

〉
MF

= −UN (χχ∗ + N↑N↓). (4.45)

where χ and Nσ are the same expressions from the derivation of the self-consistency equations,

equations (4.40) to (4.42). With this, the free energy at T = 0 is given by:

F0 = −UN (χχ∗ + N↑N↓) +
∑
k

{(
ε↑↑k − µ

)
n̂k↑ +

(
ε↓↓k − µ

)
n̂k↓

}
. (4.46)

Let us now consider the general case of the free energy, valid for all temperatures T .

4.7.2 General case

In general the free energy is given by equation (4.15), which can be simplified, by equa-

tion (4.16), to

F ≈
〈
V̂BCS

〉
MF
−
〈
V̂MF

BCS

〉
MF

+ FMF. (4.47)

Writing the expectation values of the interaction terms explicitly gives

F ≈− U
∑
j

〈
ĉ†j↑ĉ

†
j↓ĉj↓ĉj↑

〉
MF

+
∑
jσ

φσ

〈
ĉ†jσ ĉjσ

〉
+ ∆

∑
j

〈
ĉ†j↑ĉ

†
j↓

〉
+ ∆∗

∑
j

〈
ĉj↓ĉj↑

〉
+ FMF.

(4.48)
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The mean-field free energy FMF is given by:

FMF = −kBT ln(ZMF) (4.49)

where the partition function ZMF is given by

ZMF =
∑
i

e−βEi .

Here i is the i’th configuration, or microstate, of the system and Ei is its total energy. The

Bogoliubov transformation means a microstate is described by a ground state with energy

Eg, and some well defined number of quasi-particles with energy Emk, see section 4.4. The

microstate could range from being completely devoid of Bogoliubons to being completely

filled, and any number and combination in between. The Bogoliubons are Fermions and as

such all quasi-particle states can be singularly occupied or empty. This can be written as

ZMF =
∑
n1=0,1

∑
n2=0,1

. . .
∑

nn=0,1

e−β(En1n1+En2n2+...+Ennnn+Eg).

Each sum and label ni corresponds to a different quasi-particle state. There are as many

summations as there are quasi-particle states. This combination of summations creates all

possible microstates; when all ni = 0 all states are empty which corresponds to the ground

state, when all ni = 1 all possible quasi-particle states are filled. The partition function can

then be written as:

ZMF =
∑
n1=0,1

∑
n2=0,1

. . .
∑

nn=0,1

e−βEn1n1e−βEn2n2 . . . e−βEnnnne−βEg

= e−βEg
∑
n1=0,1

e−βEn1n1
∑
n2=0,1

e−βEn2n2 . . .
∑

nn=0,1

e−βEnnnn

which can be written more concisely as

= e−βEg
∏
i

 ∑
ni=0,1

e−βEnini


where the product is over all of quasi-particle states i. Performing the sum over state occu-

pation number gives

ZMF = e−βEg
∏
i

{
1 + e−βEni

}
. (4.50)

Substituting the partition function, equation (4.50), into the free energy, equation (4.49),

gives

FMF = −kBT ln

(
e−βEg

∏
i

{
1 + e−βEni

})
,

where the product rule of logarithms gives

= Eg − kBT
∑
i

ln
(

1 + e−βEni
)
.

Replacing the abstract state-label i with the specific labels m, k of the quasi-particle states

gives

= Eg − kBT
∑
mk

ln
(

1 + e−βEmk

)
.
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The label m takes the values a and b, representing the two ‘flavours’ of quasi-particle. The

mean-field free energy becomes:

FMF = Eg − kBT
∑
k

{
ln
(

1 + e−βEak
)

+ ln
(

1 + e−βEbk
)}
. (4.51)

Having obtained FMF, we now need to deal with the remaining terms of equation (4.48).

As usual the expectation values in equation (4.48) need to be written in momentum

space using the Fourier transform, equation (4.3a), transformed into the Bogoliubon basis

using the Bogoliubov transform, equation (4.26), and simplified with the mean value rules,

equation (4.34). This has already been done in previous sections; for the interaction expecta-

tion −U∑j

〈
ĉ†j↑ĉ

†
j↓ĉj↓ĉj↑

〉
MF

see section 4.7.1 equation (4.45), and for the other expectation

values accompanying the mean-fields see the derivation of the self-consistency equations,

section 4.5. The free energy can now be written

F ≈− U

N (χχ∗ + N↑N↓) + φ↑N↑ + φ↓N↓ + ∆χ∗ + ∆∗χ+ FMF. (4.52)

This form of the free energy is valid at any temperature but will run into numerical problems

at very low temperatures (exponential overflow) and at zero temperature (divide by zero).

Hence the T = 0 case is useful to help confirm the low temperature results obtained by the

general case. Now we shall minimise the free energy numerically.

4.7.3 Free energy - numerics

To calculate the free energy numerically we first write it in integral form in the same way

we did for the self-consistency equations, section 4.6. When converting each summation in

either free energy expression, equation (4.46) or (4.52), into integral form we use the relation∑
k . . . = N

4π2

∫∫
...dkxa dkya. This results in an extra factor of N for every summation. It

turns out that the overall effect of this conversion is that the free energy picks up an extra

factor of N , which is expected as the free energy is an extensive quantity, dependent on the

size of the system. All numerical calculations in this section evaluate the free energy per site,

an intensive quantity.

The free energy needs to be minimised with respect to the mean-fields, ∆ and φσ, for

a given chemical potential µ, interaction U , and temperature T . We use a ‘hill descent

algorithm’ which ‘walks’ its way through the 3D parameter space towards the point of lowest

free energy. It is a simple algorithm which works by calculating the free energy around a

given point and moving in the direction of the lowest free energy i.e. if the algorithm is at

point (∆i, φi↑, φ
i
↓) then it evaluates the free energy at the surrounding points

(∆i + δ∆, φi↑, φ
i
↓) (∆i, φi↑ + δφ, φi↓) (∆i, φi↑, φ

i
↓ + δφ)

(∆i − δ∆, φi↑, φi↓) (∆i, φi↑ − δφ, φi↓) (∆i, φi↑, φ
i
↓ − δφ)

and if, for example, the free energy was lowest in the +δ∆ direction then the algorithm would

move to that point and once again check the free energy of the surrounding points. It repeats

this until no improvements are found (to within some tolerance).

Figure 4.8 shows how the mean-fields (top panel) and free energy (bottom panel) vary as

the hill descent algorithm progresses. All quantities tend to converge with increasing iteration,

with the φ-fields equalising as expected and the free energy lowering until some tolerance is
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Figure 4.8: Free energy minimisation using the hill descent algorithm. Minimi-
sation of the free energy when chemical potential µ = −2.7, interaction U = 2.8
and temperature T = 0.05. Both panels show how key quantities vary as the hill
descent algorithm proceeds, with the top panel showing how the mean-fields ∆, φ↑
and φ↓ vary and the bottom panel showing how the free energy varies. The free
energy gets lower as would be expected with a minimisation routine and the φ-fields
equalise, consistent with the results from the solving the self-consistency equations
iteratively and BCS theory.

reached. One advantage of this method over solving the self-consistency equations is that we

can actually observe the free energy lowering throughout the process, and if multiple solutions

are returned, the one corresponding to the lowest energy is easily determined.

Using the hill descent algorithm the free energy can be minimised for different values of

interaction U and temperature T . Doing so we can calculate ∆ vs T as was done previously

in section 4.6 where the self-consistency equations were solved iteratively. Figure 4.9 shows
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the result of this hill descent minimisation alongside the results obtained via the iterative

self-consistent solver. The temperature dependence of the ∆- and φ-fields is shown in the top

and bottom panels of figure 4.9 respectively.

Both methods give the same result: ∆ becomes finite at the critical temperature Tc and

increases to some saturation value ∆0 at T = 0 while the φ-fields equalise; confirming that

both the hill descent algorithm and the iterative self-consistent solver are working as expected.

The equalisation of the φ-fields confirms that the possibility of multiple solutions to the gap

equation, as observed in figure 4.5b where the φ-fields were chosen to give finite effective

splitting, is not physically correct. In the event that multiple solutions do exist, the direct

minimisation of the free energy will pick up only the minima while the self-consistency equa-

tions make no such distinction. The free energy and its minimisation are useful tools which

offer more information than the self-consistency equations but at the cost of computational

efficiency.

As mentioned before when discussing the results of the self-consistency equations, there

is a small difference between the φ-fields below Tc. Even so, the discussion above still holds

because, as we shall now see, this difference is a numerical artefact. Running the hill descent

algorithm multiple times at T = 0 with different initial conditions yields different solutions

for the minima, all with the same ∆ but with differing values of φ↑ and φ↓. Interestingly all

these solutions have the same value of φ↑ + φ↓, but different φ↓ − φ↑. These two quantities

are important because every term in the free energy ultimately depends on them through the

average energy ξkσ and the effective splitting s∗k, see equations (4.28) and (4.29).

Figure 4.10 shows the free energy w.r.t. the mean-fields, near the minima, at T = 0 for

some value of interaction U and chemical potential µ3. The line of darkest points at ∆ ≈ 0.3

all have the same free energy and ξkσ but different s∗k. In the centre of that line is the solution

with φ↑ = φ↓ (s∗k = 0), as one traverses that line away from the centre in either direction,

s∗k changes but the free energy remains constant until, at some critical value of |s∗k| the free

energy suddenly increases. This behaviour is observed for different values of ∆ and ξkσ, with

the line of constant free energy changing in length based on ∆.

At T = 0 the line of constant free energy occurs for a range of values of splitting s∗k be-

cause the Fermi-Dirac distribution is insensitive to changes in the splitting. This is depicted

in figure 4.11 where at zero-splitting the two energy dispersions of the Bogoliubons are de-

generate and positive but at |s∗k| > ∆ the two energy bands separate and part of one crosses

the zero-level and becomes negative (the sign of s∗k determines which band will cross). For

all s∗k < ∆ (the light-green region) the energy bands are all positive. Since the Fermi-Dirac

distribution at T = 0 is a step-function it is only sensitive to the sign of the quasi-particle

energy. As such, the contribution to the free energy from the Fermi-Dirac distribution will

be the same for all dispersions within the light-green region. Additionally all points along

the line of constant free energy have constant ξkσ and ∆, hence constant free energy.

As soon as the temperature becomes non-zero the Fermi-Dirac distribution is no longer

exactly a step function, see figure 4.4. The occupation of energies far away from the chemical

potential is almost unchanged but near to it there is a difference. This difference means

that the free energy can no longer be constant in the green-region of figure 4.11. As such

the line of constant free energy should disappear. Indeed, this can be seen in figure 4.12,

which shows the free energy as a function of s∗k, at different temperatures, for a fixed value

3In this example U = 2.8 and µ = 0 but the general idea holds as long as ∆ is finite
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Figure 4.9: Comparison of self-consistent solutions obtained by the self-consistency
equations and direct free energy minimisation. Both the hill climb minimisation
and solving the self-consistency equations iteratively give the same results. In both
panels the different colours correspond to different values of interaction U . The
solid lines in both panels were obtained by solving the self-consistency equations
iteratively. In the top panel ×-markers were obtained by the Hill climb method.
In the bottom panel both the ×- and +-markers were obtained by the hill descent
method and correspond to φ↑ and φ↓ respectively. The critical temperature as
predicted by BCS theory, TBCS

C = ∆0/1.76, is labelled for the interaction U = 2.8
and is in good agreement with the observed Tc.
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Figure 4.10: Line of constant free energy at zero temperature. The free energy at
T = 0 is constant along lines of finite length in parameter space where φ↑ + φ↓ =
constant. The darkest line corresponds to the minimum of the free energy. Changing
∆ or φ↑ + φ↓ increases the free energy as expected. Unexpectedly however there
exists more lines of constant free energy and, moreover, they end abruptly with
a sudden increase in free energy when the effective splitting s∗k > ∆. Note the
colour scale has been adjusted to highlight the lines of solutions and their abrupt
termination.

of ∆, U and µ. At T = 0 the free energy really is constant for |s∗k| < ∆, whereas for T > 0

there exists a minimum at φ↑ = φ↓. At small temperatures it is hard to see this minimum

because of the scales involved. At such scales neither the relative precision of the integration

routine, or the numerical precision of the computer would be enough to capture it, and the

free energy would appear constant. It is because of this numerical effect that there appears

very slight splitting in the φ-fields when ∆ is finite and large, as we observed in section 4.6.2.

Furthermore, this selection of a particular combination of φ↑ and φ↓ at T = 0+, out of the

many degenerate possibilities at T = 0, is an example of ‘order by disorder’ and the same

happens, for example, with the Pomeranchuck instability [129].

4.8 Summary

In this chapter we have demonstrated the application of the variational mean-field method to

s-wave pairing, otherwise referred to as singlet or BCS pairing. Pairing takes place between

electrons of opposite spin and opposite momentum on the same site of a two-dimensional

square lattice, due to an attractive interaction. Such an interaction is simply assumed and

we do not concern ourself with its origin4.

4Of course BCS theory [26] tells us that the origin of such an attraction is down to phonons but since the
non-interacting dispersion is naturally bounded between ±4t the integrations can be performed numerically
without needing to invoke the Debye cut-off.



Chapter 4. Variational mean-field theory for singlet pairing 60

−π −π2 0
π
2 π

kx

0

E

Eak, |s∗k| = 0

Ebk, |s∗k| = 0

Eak, |s∗k| > ∆

Ebk, |s∗k| > ∆

Figure 4.11: The quasi-particle energy spectrum cut along along kx = ky. When
the effective splitting s∗k is zero the two quasi-particle energy bands (red dashed and
black dotted lines) are degenerate and positive. With finite splitting, s∗k < ∆, the
spectrum separate but both remain positive. At large enough splitting, s∗k > ∆,
the separation in the energy bands is large enough that part of one of the bands
becomes negative. The sign of s∗k determines which band becomes negative.
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Figure 4.12: Temperature effect on the line of constant free energy. The free
energy is calculated near to its minimum with fixed ∆ and varying s∗k. At T = 0
the free energy is constant when |s∗k| < ∆. The Fermi-Dirac distribution at this
temperature is a step function and is insensitive to changes in s∗k as long as the
quasi-particle energy spectrum remains above the chemical potential µ. At T > 0
the Fermi-Dirac function is no longer an exact step function and becomes sensitive
to changes in s∗k, with the sensitivity increasing with temperature. This sensitivity
causes the free energy to vary with s∗k.
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We started in section 4.1 by considering the non-interacting part of the Hamiltonian

and derived the non-interacting electron dispersion for the 2D square lattice, where electron

hopping was restricted to nearest neighbour sites only, both for simplicity and consistency

with our treatment of the equal-spin triplet-pairing theory to come, chapter 5. In doing so we

demonstrated how to use the Fourier transform to transform an equation from a real space

to a momentum space representation, as well as how the possible hopping available to the

electron are included in the non-interacting electron dispersion.

In section 4.2 we introduced the explicit form of the attractive interaction responsible

for the electron pairing and, ultimately, superconductivity. As the interaction was quartic

in creation/annihilation operators it was not possible to simply diagonalise it as we did

for the non-interacting part, hence we turned to variational mean-field theory to proceed,

section 4.3. We saw that by introducing a new, variable, exactly solvable Hamiltonian, called

the variational mean-field Hamiltonian, ĤMF
BCS, we could approximate the free energy of, and

therefore solve, the original Hamiltonian, ĤBCS.

Along with the mean-field Hamiltonian we introduced the mean-fields φ↑, φ↓ and ∆ —

variable parameters which allow ĤMF
BCS to approximate ĤBCS. ∆ is the all important pairing

potential and is the superconducting order parameter. φ↑ and φ↓ couple to the particle

densities for up- and down-spins respectively and allow imbalancing of the spin-populations.

We diagonalised the mean-field Hamiltonian by a Bogoliubov de Gennes transformation

and saw that we could describe the system in terms of non-interacting quasi-particle excita-

tions (Bogoliubons) on top of a vacuum state devoid of any such quasi-particles, section 4.4.

We obtained the energy spectrum for these quasi-particles and obtained the usual expres-

sions for the eigenvector amplitudes uku
∗
k, vkv

∗
k and ukv

∗
k. Using these we were able to derive

the mean-field self-consistency equations — a set of equations whose solutions correspond

to the stationary points of the free energy, sections 4.3.2 and 4.5. As expected, the derived

self-consistency equations were consistent with the well known examples from BCS theory.

In section 4.6 we solved the self-consistency equations numerically. We first treated the

φ-fields as free parameters and solved the self-consistent gap equation for the mean-field ∆.

We found that when there was zero effective splitting between the spin flavours, s∗k = 0,

the gap equation revealed ∆ had the usual temperature dependence of BCS theory, however

when the effective splitting was finite, s∗k 6= 0, we found unusual behaviour where the gap

equation had more than one non-trivial solution for a given temperature, see figure 4.5. As

expected, it turned out that this potentially interesting situation was not realised in BCS

theory and as such we shall postpone further discussion until chapter 5, where it becomes

relevant to the theory of inter-orbital pairing which, in a certain limit, can be mapped to the

pairing between opposite spins in BCS theory.

By solving the self-consistency equations iteratively, section 4.6.2, we could simultaneously

determine all mean-fields self-consistently. By doing so we obtained the standard result

φ↑ = φ↓ (apart from a very small random splitting at low temperatures, T � Tc) as expected

in BCS theory, i.e. the effective splitting was always zero and hence the unusual behaviour

obtained by just solving the gap function with finite splitting imposed was not physically

relevant. By solving all self-consistency equations simultaneously we obtained the usual

temperature dependence of the order parameter, ∆, which displayed a critical temperature,

Tc, with very good agreement to the critical temperature predicted by BCS theory, TBCS
c .

The free energy was then derived for two cases: the general case, section 4.7.1 and the zero
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temperature case, section 4.7.2. The general case was valid for all temperatures but would run

into numerical problems as T → 0, while the zero temperature expression was only valid at

T = 0. Using these expressions the free energy was minimised using a ‘hill descent algorithm’,

section 4.7.3. It was found that the results from the free energy minimisation agreed well with

the results from solving the self-consistency equations iteratively, a sign that both methods

were working as intended. Furthermore, by studying the behaviour of the free energy near

to its minimum point we were able to identify that the random, small splitting between the

φ↑ and φ↓ fields at low temperatures was cased by numerical limitations. Namely, changes in

the Fermi-Dirac distribution at very low temperatures, due to varying the effective splitting

s∗k, are numerically imperceptible and so there exists a line in parameter space with |s∗k| < ∆

where the free energy is constant (and minimum). In reality the splitting is exactly zero for

all T > 0.

In conclusion we have demonstrated the application of variational mean-field theory to

the well known case of BCS s-wave pairing. We have introduced the concept of the mean-

field Hamiltonian, its mean-fields and the Bogoliubov transformation. Using the Bogoliubov

transformation we have seen how a system of interacting electrons can be described by a

more simple system of particle-like excitations — Bogoliubons.

The self-consistency equations and free energy have been derived and simple algorithms

for solving both numerically have been presented. Using these algorithms we have reproduced

the familiar ∆ vs T phase diagram of BCS theory and shown that the free energy is minimised

when the mean-fields coupling to the two spin-resolved components of the particle density

are equivalent, φ↑ = φ↓.

We have shown that the variational mean-field theory can be used to describe a supercon-

ducting system by applying it to the well known case of BCS s-wave pairing and by obtaining

the same well known expressions for the self-consistency equations and free energy, as well

as obtaining the same ∆ vs T phase diagram of BCS theory. The main purpose of this

chapter was to act as a pedagogical introduction to variational mean field theory and super-

conductivity, although the results are fairly standard, the technical details included in the

derivations and calculations are not often found. Having covered such details here we will be

able to focus more on the physics, rather than the technical steps, in what is to come. In the

next chapter we shall apply the same variational mean-field method to a novel two-orbital

equal-spin triplet-pairing model.



Chapter 5

Variational mean-field theory of

two-band equal-spin-pairing

In this chapter we will apply variational mean-field theory to the novel two-band equal-spin

triplet-pairing model (ESP) proposed by Weng et al. [126] to explain the conflicting exper-

imental results of LaNiGa2, previously discussed in chapter 3. In this model the attractive

interaction acts between electrons with the same spin, on the same site but in two different

orbitals to maintain fermion antisymmetry. As discussed by Weng et al. [126] the pairing

potential has the form ∆A,B
σ1,σ2(k), where A and B are the two orbitals and σ1 and σ2 are the

two spins. Since pairing between equal spins is a form of triplet-pairing, the pairing potential

will be symmetric under the exchange of the spin labels ∆A,B
σ1,σ2(k) = ∆A,B

σ2,σ1(k). Ordinarily,

in the case of a single orbital, this forces the momentum part of the wave function to be

antisymmetric, however in this instance it is assumed that the momentum part is symmet-

ric and isotropic in momentum space. Therefore to maintain fermion antisymmetry a new

orbital-dependent part of the pairing potential is introduced which is antisymmetric under

the exchange of orbital labels ∆A,B
σ1,σ2 = −∆B,A

σ1,σ2 .

The equal-spin triplet-pairing theory is a theory with two full (nodeless) gaps, one for each

spin species ∆↑↑ and ∆↓↓. Two nodeless gaps would be consistent with the recent experimental

observation [126] as discussed in chapter 3. In principle these gaps may take different values,

which would make this non-unitary triplet-pairing, as discussed in section 2.2. Such a theory,

therefore, would be consistent with the symmetry analysis of LaNiC2 [55] and LaNiGa2 [56]

which found only non-unitary triplet-pairing states could explain the observation of broken

TRS in these superconductors, see chapter 3. Furthermore, it was thought that this theory

would generate a magnetisation in the superconducting state [56, 130], consistent with the

spontaneous magnetic field observed in experiments, due to the imbalance between spin-

populations caused by the different pairing potentials for each spin-species.

Mean-field theory was used in [126] to study the proposed equal-spin triplet-pairing model

but was not done at a self-consistent level. In this chapter we will continue the mean-field

analysis of this model by solving the self-consistency equations and by directly minimising the

free energy. Interestingly we shall see that our mean-field treatment, and direct minimisation

of the free energy, of the equal-spin-pairing theory finds no imbalance between the two gaps,

nor does it display any magnetisation. Consequently, the main result of this chapter is that

the theory as proposed is not a non-unitary triplet-pairing theory (which requires ∆↑↑ 6= ∆↓↓)

but rather a unitary triplet-pairing theory. Despite this, we find that the theory does display

63
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interesting physics, including the emergence of full gap superconductivity from triplet-pairing

as well as gapless and re-entrant superconductivity. We shall discuss the lack of magnetisation

and how our results can be reconciled with Hillier et al. [56] and Miyake [130] further in

chapter 6.

In this chapter we will use the same mathematical techniques as described in detail for

BCS singlet-pairing in chapter 4. We will first consider the non-interacting terms of the

Hamiltonian and consider different tight-binding models, including a simple toy-model with

a small amount of band splitting whose Fermi surface shares some key features with that of

first principle calculations for LaNiGa2 [123]. We will then include an attractive interaction

between electrons of the same spin, on the same site, on different orbitals and derive the

self-consistency equations for such a theory. We will see how the self-consistency equations

predict multiple non-trivial solutions to the gap-equation, indicating potentially interesting

unconventional behaviour. The free energy will be derived and minimised in order to elucidate

which of the potential solutions leads to its minimisation. With this theory we will see

that equal-spin triplet-pairing can lead to a full gap, rather than the a nodal gap structure

commonly associated with triplet-pairing. However we shall also see that this theory gives

rise to only a single gap and does not lead to spontaneous magnetisation, both of which are

predicted to occur [126].

The equal-spin triplet-pairing Hamiltonian is given by:

Ĥ = K̂− µN̂ + V̂ (5.1)

where K̂ is the total kinetic energy operator, µ is the chemical potential, N̂ is the total

particle number operator and V̂ is the interaction between electrons. We start by considering

the non-interacting part of the Hamiltonian.

5.1 Non-interacting Hamiltonian

In this section we attempt to obtain a non-interacting electron dispersion that at least qualita-

tively looks like the Fermi surface of LaNiGa2, see figure 5.4b. Figure 5.4b shows (highlighted

by yellow lines) Fermi surfaces which are slightly separated and run parallel to each other.

In the corners of the Brillouin zone are what look like two cylindrical Fermi surfaces while

the other set of Fermi surfaces run parallel until nearing the Brillouin zone edges where they

diverge. Although being able to reproduce the shape of the Fermi surface would be ideal, the

most important aspect we wish to capture is the splitting between regions of similar, parallel

Fermi surfaces. Doing so will allow us to investigate the effect that the splitting has on the

interband pairing, central to this model.

It was thought that a good approximation to the Fermi surface of LaNiGa2 may be

reproduced by hybridisation between two 1D Fermi sheets. We consider a two-dimensional

square lattice with anisotropic orbitals (for example, but not necessarily, p-wave orbitals)

which allow hopping between one type of the orbitals in the x-direction and between the

other type in the y-direction, see figure 5.1. We shall see that such hopping gives rise to

1D Fermi surfaces as expected, but does not hybridise in a way that resembles the LaNiGa2

Fermi surface.
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The Hamiltonian that describes the total Kinetic energy of all the particles is:

K̂ = −
∑
σ=↑,↓

N∑
j=1

N∑
j′=1

(
ĉ†Ajσ ĉ†Bjσ

)(tAAjj′ tABjj′

tBAjj′ tBBjj′

)(
ĉAj′σ

ĉBj′σ

)
. (5.2)

As in the BCS case (equation (4.2)) there are two summations which run over all of the sites

of a square lattice with N sites but this time there is an additional sum over all spins. ĉ†mjσ
(ĉmjσ) is the creation (annihilation) operator that creates (annihilates) an electron in orbital

m with spin σ on site j. tmm
′

jj′ is the hopping energy of a particle at site j′ with orbital m′,

hopping to site j with orbital m. Each site has two orbitals labelled A and B.

The Fourier transformations of the creation/annihilation operators are given by:

ĉ†Akσ =
1√
N

N∑
j=1

eik·Rj ĉ†Ajσ ĉ†Ajσ =
1√
N
∑
k

e−ik·Rj ĉ†Akσ (5.3a)

ĉAkσ =
1√
N

N∑
j=1

e−ik·Rj ĉAjσ ĉAjσ =
1√
N
∑
k

eik·Rj ĉAkσ (5.3b)

where N = NxNy = Lx
a
Ly
a and N is the total number of sites, L is the length and a is the

lattice spacing. Using these relations the kinetic energy equation (5.2) can be written in

momentum space:

K̂ =
∑
σ=↑,↓

∑
k

(
ĉ†Akσ ĉ

†
Bkσ

)(εAAkσ εABkσ

εBAkσ εBBkσ

)(
ĉAkσ

ĉBkσ

)
(5.4)

where

εmm
′

kσ = −
∑
∆j

eik·R∆jtmm
′

∆j (5.5)

is the hopping energy in momentum space representation and ∆j is the label of the hopping

vector R∆j . The negative sign in the front of equation (5.2) has been incorporated in the

definition of the hopping energies, equation (5.5). Additionally, the Fourier transformation is

also used to write the total particle number operator, N̂, in a momentum space representation:

N̂ =
∑
kσ

(
ĉ†Akσ ĉAkσ + ĉ†Bkσ ĉBkσ

)
=
∑
kσ

(
n̂Akσ + n̂Bkσ

)
.

See section 4.1 for a detailed description of the transformation from real space to momentum

space for both terms of the non-interacting Hamiltonian.

In the event that hybridisation is zero (tAB∆j
= tAB∆j

= 0) then the hopping Hamiltonian is

already diagonal in the orbital index:

K̂ =
∑
σ=↑,↓

∑
k

(
ĉ†Akσ ĉ

†
Bkσ

)(εAAkσ 0

0 εBBkσ

)(
ĉAkσ

ĉBkσ

)
(5.6)

and εAAkσ (εBBkσ ) is the band dispersion for the A-orbital (B-orbital). In general however there

will be hybridisation (tAB∆j
= tAB∆j

6= 0), in which case diagonalising1 the hopping Hamiltonian

gives:

K̂ =
∑
σ=↑,↓

∑
k

(
ĉ†1kσ ĉ

†
2kσ

)(ε1k 0

0 ε2k

)(
ĉ1kσ

ĉ2kσ

)
(5.7)

1See appendix A for more details on diagonalisation.
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where the new creation/annihilation operators are some linear superposition of the original

electron creation/annihilation operators and εnk is a band dispersion with a band index

n = 1, 2. The band dispersions are given by:

ε1k =
εAAkσ + εBBkσ

2
+

√(
εAAkσ − εBBkσ

2

)2

+ εABkσ ε
BA
kσ (5.8)

ε2k =
εAAkσ + εBBkσ

2
−

√(
εAAkσ − εBBkσ

2

)2

+ εABkσ ε
BA
kσ . (5.9)

and the creation/annihilation operators of the new quasi-particles are given by:

ĉ†1kσ = ukĉ
†
Akσ + vkĉBkσ ĉ1kσ = u∗kĉAkσ + v∗kĉ

†
Bkσ (5.10a)

ĉ2kσ = −v∗kĉ†Akσ + u∗kĉBkσ ĉ†2kσ = −vkĉAkσ + ukĉBkσ. (5.10b)

where the u’s and v’s are the amplitudes of the eigenvectors of the Hamiltonian. They can

be obtained by solving the eigenvector equation as we did previously, section 4.4.1, although

we will not do so here.

Now we need to calculate the hopping energies. This requires summing over all possible

hopping vectors, R∆j. The larger the hopping distance
∣∣R∆j

∣∣ between two sites, the less

likely it is for an electron to hop between them. Imposing an upper limit on the distance

an electron can hop simplifies equation (5.5) by reducing the number of hopping vectors in

the summation. This allows manageable expressions for the electron hopping energies to

be obtained. Two different cases will be considered: nearest-neighbour hopping and next-

nearest-neighbour hopping.

5.1.1 Anisotropic nearest-neighbour hopping

Under the nearest-neighbour hopping restriction electrons can only hop as far as their nearest

neighbours, see figure 5.1a. On a 2D square lattice there are 4 nearest-neighbour sites. We

have assumed some directional orbital e.g. p-orbital, so that the A-orbitals will be close

together in the a-direction and the B-orbital will be close in the b-direction. The allowed

hopping vectors have the following hopping energies:

if R∆j =

(
±a
0

)
then: tAA∆j

= t, tAB∆j
= tBA∆j

= t′ and tBB∆j
= 0

if R∆j =

(
0

±b

)
then: tAA∆j

= 0, tAB∆j
= tBA∆j

= t′ and tBB∆j
= t

for all other R∆j , t
AA
∆j

= tBB∆j
= tAB∆j

= tBB∆j
= 0.

The intra-band hopping is restricted to the directions in which the orbitals are closest while

the inter-band hopping is allowed for all nearest neighbours. Expanding the summation of

equation (5.5) using all the allowed hopping vectors for the εABkσ case, for example, gives:

εABkσ = −t′
{
eikxa + eikx(−a) + eikyb + eiky(−b)

}
= −2t′{cos (kxa) + cos (kyb)}



Chapter 5. Variational mean-field theory of two-band equal-spin-pairing 67

tAA(+a,0)

tAA(−a,0)

tBB(0,+b)

tBB(0,−b)

tBA(+a,0)

tBA(−a,0)

tAB(0,+b)

tAB(0,−b)

a

b

(a) Nearest-neighbour hopping

tAA(+a,0)tAA(−a,0)

tBB(0,+b)

tBB(0,−b) tBA(+a,−b)

tBA(+a,+b)
tBA(−a,+b)

tBA(−a,−b)

tAB(+a,+b)tAB(−a,+b)

tAB(−a,−b) tAB(+a,−b)

a

b

(b) Inter-orbital next-nearest-neighbour hopping

Figure 5.1: Schematics of the allowed electron hopping for a given site. The
hopping amplitudes, tOO

′
∆j

, are shown for the allowed hopping from orbital O′ to O,
from the central site to a neighbouring site described by the hopping vector ∆j .
Figure 5.1a shows the case of nearest neighbour hopping only where both inter- and
intra-orbital hopping takes place between nearest neighbour sites. Figure 5.1b shows
the same nearest neighbour intra-orbital hopping but with next nearest neighbour
inter-orbital hopping.

and repeating this for the other hopping energies gives the hopping energies as

εAAkσ = −2t cos kxa (5.11a)

εBBkσ = −2t cos kyb (5.11b)

εABkσ = εBAkσ = −2t′ [cos kxa+ cos kyb] . (5.11c)

Using these expression we can now calculate the energy dispersion of the two bands, ε1k and

ε2k.

Figure 5.2 shows the energy dispersion of the two bands as hybridisation is changed. How-

ever, the hybridisation does not lead to any Fermi surfaces that resemble those of LaNiGa2.

Next we examine what the dispersion looks like when the inter-band hopping takes place

between next-nearest-neighbours instead.

5.1.2 Anisotropic nearest-neighbour intraband hopping with

next-nearest-neighbour interband hopping

We make a slight change to the allowed hopping with inter-orbit hopping this time being

restricted to next-nearest-neighbours only while intra-orbit hopping is restricted to nearest-

neighbours due to anisotropic orbitals as before, see figure 5.1b. The hopping is now given
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(a) Zero hybridisation t′/t = 0

−π −π
2 0 π

2 π −π
−π

2

0

π
2

π

−4

−2

0

2

4

ε1k

ε2k

ε1k

ε2k

kx

ky

E
t

−π −π
2 0 π

2 πkx
−π

−π
2

0

π
2

π

ky

−4

−2

0

2

4

E
t

(b) Finite hybridisation t′/t = 0.25
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(c) Finite hybridisation t′/t = 0.5
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(d) Finite hybridisation t′/t = 0.75

Figure 5.2: Non-interacting electron dispersion for a two-dimensional square lat-
tice with nearest neighbour hopping and anisotropic orbitals. The two surfaces
represent the non-interacting electron dispersion for each of the two bands. The
contours on the surface and their projection on the kxky-plane correspond to dif-
ferent values of chemical potential µ. The red solid line corresponds to µ = 1, the
green dashed line to µ = 0 and the blue dotted line to µ = −1. The energy is in
units of the intra-orbital particle hopping, t.
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by:

if R∆j =

(
±a
0

)
then: tAA∆j

= t and tAB∆j
= tBA∆j

= tBB∆j
= 0

if R∆j =

(
0

±b

)
then: tAA∆j

= tAB∆j
= tBA∆j

= 0 and tBB∆j
= t

if R∆j =

(
±a
±b

)
then: tAA∆j

= tBB∆j
= 0 and tAB∆j

= tBA∆j
= t′

for all other R∆j , t
AA
∆j

= tBB∆j
= tAB∆j

= tBB∆j
= 0.

With these allowed hoppings the intra-band hopping energies are unchanged but the

inter-band hopping energies are slightly different:

εAAkσ = −2t cos kxa (5.12a)

εBBkσ = −2t cos kyb (5.12b)

εABkσ = εBAkσ = −2t′ [cos (kxa+ kyb) + cos (kxa− kyb)] . (5.12c)

The non-interacting dispersion is again plotted, figure 5.3, and once again none of the

Fermi surfaces resemble any of those in LaNiGa2, figure 5.4b. The µ = 0 contour of figure 5.3d

comes close in that it displays a central Fermi surface simultaneously with a circular one in

the corners but it also has the crossed lines of the non-hybridised case, quite unlike any of

the LaNiGa2 Fermi surfaces. Next we will examine a simpler case with isotropic orbitals and

nearest-neighbour only hopping.

5.1.3 Isotropic nearest-neighbour hopping

In the previous sections we saw that crossing 1D Fermi surfaces caused by anisotropic orbitals

did not hybridise in a way which resembled the LaNiGa2 Fermi surfaces. In this section we

consider the simpler case of isotropic orbitals (still two orbitals per site) where the intraband

hopping occurs in both a- and b-directions between nearest neighbour sites only. We neglect

hybridisation effects i.e. t′ = 0. Furthermore, we introduce a small splitting, s, between the

two energy bands to create parallel Fermi surfaces.

The allowed hoppings are as follows:

if R∆j =

(
±a
0

)
then: tAA∆j

= tBB∆j
= t and tAB∆j

= tBA∆j
= 0

if R∆j =

(
0

±b

)
then: tAA∆j

= tBB∆j
= t and tAB∆j

= tBA∆j
= 0

for all other R∆j , t
AA
∆j

= tBB∆j
= tAB∆j

= tBB∆j
= 0.

Such hoppings result in the following hopping energies:

εAAkσ = −2t [cos kxa+ cos kyb− s] (5.13a)

εBBkσ = −2t [cos kxa+ cos kyb+ s] (5.13b)

εABkσ = εBAkσ = 0 (5.13c)

which also include the bare splitting between the bands, s.
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(a) Zero hybridisation t′/t = 0
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(b) Finite hybridisation t′/t = 0.25
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(c) Finite hybridisation t′/t = 0.5
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(d) Finite hybridisation t′/t = 0.75

Figure 5.3: Non-interacting electron dispersion for a two-dimensional square lat-
tice and anisotropic orbitals with nearest-neighbour intraband hopping and next-
nearest-neighbour interband hopping. The intraband hopping is restricted to the
nearest neighbours in the directions in which the anisotropic orbitals are nearest.
The interband pairing occurs in all directions with the next nearest neighbours only.
The two surfaces represent the non-interacting electron dispersion for each of the
two bands. The contours on the surface and their projection on the kxky-plane cor-
respond to different values of chemical potential µ. The red solid line corresponds
to µ = 1, the green dashed line to µ = 0 and the blue dotted line to µ = −1. The
energy is in units of the intra-orbital particle hopping, t.
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In figure 5.4 we compare the isotropic nearest-neighbour hopping model with the LaNiGa2

Fermi surface obtained by Singh [123]. We can see in figure 5.4a that the isotropic nearest-

neighbour hoppings give rise to Fermi surfaces which do share key features with LaNiGa2.

Both the µ = 2.5 and µ = 0 contours look qualitatively like the corner and central Fermi

surfaces of LaNiGa2 respectively, however both cannot be present simultaneously. More

important is the presence of Fermi surfaces which look qualitatively like those of LaNiGa2

and display regions which run parallel to each other, separated by some splitting. This is

observed for all contours but crucially, the µ = 0 contour displays the same behaviour of the

central Fermi surface of LaNiGa2 where the parallel Fermi surfaces diverge as they approach

the Brillouin zone edges. Qualitatively speaking, of the three hopping models considered,

this isotropic nearest-neighbour toy-model best represents the LaNiGa2 Fermi surface.

The most important aspect of the Fermi surfaces is the splitting, rather than the shape,

as the superconductivity being proposed is interband. The Cooper pairs are formed from

electrons on different bands and, as can be clearly seen, the bands of LaNiGa2 are separated.

It is thought that the superconductivity will be weakened by splitting because there will

be an additional energy barrier to the formation of Cooper pairs. If the energy of Cooper

pair formation can not overcome the energy splitting then it will be unfavourable to create

pairs. It is therefore important to be able to answer whether superconductivity can be

obtained in such a model where there is a splitting between the bands. The isotropic nearest-

neighbour hopping model without inter-orbital hopping provides the means to answer this

question in addition to displaying Fermi surfaces that, at least qualitatively, look like those

of LaNiGa2. For simplicity we neglect inter-orbital hopping, since the key features we require

are present without it, as well as spin-orbit coupling, which symmetry analysis tells us should

be weak/negligible [110]. We will therefore use this model in our mean-field treatment of the

equal-spin triplet-pairing theory.

In this section we examined a number of different hopping models in an attempt to

obtain a toy-model which displays Fermi surfaces qualitatively similar to that of LaNiGa2.

We selected the isotropic nearest-neighbour hopping model with band splitting because, as

discussed, it produced key features of the LaNiGa2 Fermi surface. We shall now consider

the full equal-spin triplet-pairing Hamiltonian with the interaction term included and solve

it using a variational mean-field method.
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(a) Non-interacting dispersion for a 2D square
lattice with nearest neighbour hopping, s = 0.15

(b) Fermi surface of LaNiGa2. Adapted from
Ref. [123]

Figure 5.4: Comparison between the nearest-neighbour 2D square lattice hopping
model and the LaNiGa2 Fermi surface. Figure 5.4a shows the non-interacting elec-
tron dispersion for the nearest-neighbour hopping toy-model with bare splitting,
s = 0.15, between bands. The solid red, dashed green and dotted blue contours
correspond to µ = 2.7, µ = 0.0 and µ = −2.7 respectively. Figure 5.4b shows the
Fermi surface of LaNiGa2 obtained from density functional calculations. The yellow
lines highlight the regions where the Fermi surfaces run parallel to each other and
have a small splitting. It is these regions where the interband equal-spin pairing is
proposed to occur. Adapted from Ref. [123].

5.2 Equal-spin triplet-pairing interaction

In this section we consider the full equal-spin triplet-pairing Hamiltonian with the interaction

term included. We will make use of a variational mean-field method to obtain the energies

of the Hamiltonian and to derive the free energy, as we did previously for the case of s-wave

pairing, section 4.2. The interaction part of the Hamiltonian is given by:

V̂ = −U
∑
σ=↑,↓

N∑
j=1

ĉ†Ajσ ĉ
†
Bjσ ĉBjσ ĉAjσ. (5.14)

Here U is the interaction strength and is always positive so the interaction V̂ is attractive.

The interaction is on-site between electrons on different orbitals but with the same spin.

Ordinarily two electrons with the same spin cannot exist on the same site due to Pauli’s

exclusion principle however, in this theory, each site contains two orbitals, A and B, allowing

the total wave function to remain anti-symmetric under the exchange of orbital labels.

5.2.1 Mean-field Hamiltonian

As was discussed in chapter 4, sections 4.2 and 4.3, because the Hamiltonian, Ĥ, is not

diagonalisable, variational mean-field theory will be used to solve it. In mean-field theory it

is assumed that a new, solvable Hamiltonian, ĤMF, with variable parameters (mean-fields)

can be a good approximation of the original Hamiltonian, Ĥ. If true then the free energy, F ,



Chapter 5. Variational mean-field theory of two-band equal-spin-pairing 73

can be approximated by:

F =
〈
Ĥ
〉
− TS ≈

〈
ĤMF

〉
MF
− TSMF.

The difference between the expectation values 〈. . .〉 and 〈. . .〉MF is as explained in section 4.3,

equation (4.14).

We introduce the mean-field Hamiltonian:

ĤMF = K̂− µN̂ + V̂MF (5.15)

where the non-interacting part is identical to the non-interacting part of equation (5.1) and

V̂MF is the mean field interaction term and is, by design, exactly solvable. We define V̂ as:

V̂MF =
∑
jσ

(∆σσ ĉ
†
Ajσ ĉ

†
Bjσ + ∆∗σσ ĉBjσ ĉAjσ)

+
∑
jσ

(φAσ ĉ
†
Ajσ ĉAjσ + φBσ ĉ

†
Bjσ ĉBjσ)

(5.16)

where ∆σσ (∆∗σσ) is the mean-field pairing potential that pairs electrons (holes) of the same

spin. There are no ∆σσ̄ terms as we consider only equal-spin triplet-pairing. The mean-

field φmσ is the particle-density mean-field for electrons in the orbital m with spin σ. The

σ-dependence of all these mean-fields in principle allows for an imbalance between both

the spin-populations and/or pairing potentials, giving rise to magnetisation and/or two Tc’s

respectively. Again, as discussed in section 4.3.1, we could include an additional mean-field

that would couple with a Fock-like orbital swapping term from Wick’s expansion of the

interaction. Such a term could act to imbalance the orbital populations but not the spin

populations and so we do not expect such a term to contribute to any magnetisation arising

from the superconductivity. Since such terms do not arise naturally in the non-interacting

part of the Hamiltonian, and because we are interested in superconductivity and the resulting

magnetisation only, we exclude such terms in this mean-field theory.

By using the Fourier transform, equation (5.3), the interaction term of the mean-field

Hamiltonian, V̂MF, can be written in momentum space:

V̂MF =
∑
kσ

{
∆σσ ĉ

†
Akσ ĉ

†
Bk̄σ

+ ∆∗σσ ĉBkσ ĉAk̄σ
+ φAσ ĉ

†
Akσ ĉAkσ + φBσ ĉ

†
Bkσ ĉBkσ

}
. (5.17)

In order to proceed we need to obtain the eigenvalues and eigenvectors of the mean-field

Hamiltonian. Since this Hamiltonian is solvable (unlike the original, Ĥ) we can diagonalise

it. We shall do so now by the Bogliobov transformation.

5.2.2 Diagonalising the mean-field Hamiltonian

The mean-field Hamiltonian, ĤMF, is written in matrix form as:

ĤMF =
1

2

∑
kσ

C∗kσH
MF
kσ Ckσ +

∑
kσ

εAkσ + εBkσ

2
(5.18)

where εmkσ = εmmkσ − µ+ φmσ is the renormalised dispersion and

HMF
kσ =


εAkσ ∆σσ 0 0

∆∗σσ −εBk̄σ 0 0

0 0 εBkσ −∆σσ

0 0 −∆∗σσ −εAk̄σ

 C =


ĉAkσ

ĉ†
Bk̄σ

ĉBkσ

ĉ†
Ak̄σ

.
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As per equation (5.13) we have assumed no orbital hybridisation in the normal state. The

matrix HMF
kσ is diagonalised by the transformation matrix:

U =


akσ −c∗kσ 0 0

ckσ a∗kσ 0 0

0 0 akσ c∗kσ
0 0 −ckσ a∗kσ

, (5.19)

more details of which can be found in appendix B. We define a new vector of fermionic

operators γ>∗ =
(
γ̂†akσ γ̂bkσ γ̂†ckσ γ̂dkσ

)
which are defined by the diagonalisation ofHMF

kσ :

C∗HMF
kσ C = C∗U︸ ︷︷ ︸

γ>∗

DU∗C︸ ︷︷ ︸
γ

where D is the diagonal matrix constructed with the eigenvalues of the mean-field Hamil-

tonian matrix HMF
kσ . This transformation defines the Bogoliubon operators in terms of the

electron operators as follows:

γ̂akσ = a∗kσ ĉAkσ + c∗kσ ĉ
†
Bk̄σ

γ̂†akσ = akσ ĉ
†
Akσ + ckσ ĉBk̄σ

(5.20a)

γ̂dkσ = a∗kσ ĉAk̄σ
+ c∗kσ ĉ

†
Bkσ γ̂†dkσ = akσ ĉ

†
Ak̄σ

+ ckσ ĉBkσ (5.20b)

γ̂bkσ = a∗kσ ĉBk̄σ
− c∗kσ ĉ†Akσ γ̂†bkσ = akσ ĉ

†
Bk̄σ
− ckσ ĉAkσ (5.20c)

γ̂ckσ = a∗kσ ĉBkσ − c∗kσ ĉ
†
Ak̄σ

γ̂†ckσ = akσ ĉ
†
Bkσ − ckσ ĉAk̄σ

(5.20d)

and the inverse is given by

ĉAkσ = akσγ̂akσ − c∗kσγ̂
†
bkσ ĉ†Akσ = a∗kσγ̂

†
akσ − ckσγ̂bkσ (5.21a)

ĉ
Ak̄σ

= akσγ̂dkσ − c∗kσγ̂
†
ckσ ĉ†

Ak̄σ
= akσγ̂

†
dkσ − ckσγ̂ckσ (5.21b)

ĉ
Bk̄σ

= c∗kσγ̂
†
akσ + akσγ̂bkσ ĉ†

Bk̄σ
= ckσγ̂akσ + akσγ̂

†
bkσ (5.21c)

ĉBkσ = c∗kσγ̂
†
dkσ + akσγ̂ckσ ĉ†Bkσ = ckσγ̂dkσ + a∗kσγ̂

†
ckσ. (5.21d)

As we shall see, the akσ’s and ckσ’s are functions of εokσ and ∆σσ, and are therefore

functions of k only through the energy dependence. Since the energy is symmetric under

k → −k the akσ’s and ckσ’s also have such symmetry i.e. akσ = ak̄σ and ckσ = ck̄σ. This

makes some of the γ’s equivalent such that there are really only two independent flavours of

quasi-particle:

γ̂
(†)
akσ = γ̂

(†)
dk̄σ

(5.22a)

γ̂
(†)
bkσ = γ̂

(†)
ck̄σ
. (5.22b)

The eigenvalues are given by:

λakσ = −
√
ξ2
kσ + |∆σσ|2 + s∗σ = −λdkσ (5.23a)

λbkσ = +

√
ξ2
kσ + |∆σσ|2 + s∗σ (5.23b)

λckσ = −
√
ξ2
kσ + |∆σσ|2 − s∗σ = −λbkσ (5.23c)

λdkσ = +

√
ξ2
kσ + |∆σσ|2 − s∗σ (5.23d)

where

ξkσ =
1

2
(εAkσ + εBkσ) =

1

2

(
εAAkσ + εBBkσ

)
+

1

2
(φAσ + φBσ)− µ (5.24)
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is the average energy of the two renormalised bands and

s∗σ =
1

2
(εAkσ − εBkσ) = 2ts+

1

2
(φAσ − φBσ) (5.25)

is the effective splitting between them.

When the bare splitting, s, between the different orbitals is zero, the equal-spin triplet-

pairing model can be mapped to BCS theory, where the orbital labels map to spin labels.

That is, when A 7→↑ and B 7→↓, the equal-spin pairing model looks like two copies of BCS

theory (two because of the
∑

σ=↑,↓ in the equal-spin pairing model). For example, in this

limit, equations (5.24) and (5.25) map to equations (4.28) and (4.29) respectively. Henceforth

we refer to this s = 0 limit as the BCS-like case2.

Written in terms of the Bogoliubon operators the Hamiltonian looks like:

ĤMF −
∑
kσ

εAkσ + εBkσ

2
=

1

2

∑
kσ

γ∗Dγ

=
1

2

∑
kσ

{
λakσγ̂

†
akσγ̂akσ + λbkσγ̂bkσγ̂

†
bkσ + λckσγ̂

†
ckσγ̂ckσ + λdkσγ̂dkσγ̂

†
dkσ

}
which written in normal order becomes

=
1

2

∑
kσ

{
λakσγ̂

†
akσγ̂akσ − λbkσγ̂

†
bkσγ̂bkσ + λckσγ̂

†
ckσγ̂ckσ − λdkσγ̂

†
dkσγ̂dkσ + λbkσ − λak̄σ

}
and writing in terms of the two non-equivalent flavours of quasi-particle gives

=
1

2

∑
kσ

{
λakσγ̂

†
akσγ̂akσ − λbkσγ̂

†
bkσγ̂bkσ − λbkσγ̂

†
bk̄σ

γ̂
bk̄σ

+ λakσγ̂
†
ak̄σ

γ̂
ak̄σ

+ λbkσ − λakσ
}

because all k’s are included in the sum we can write in terms of +k only

=
1

2

∑
kσ

{
2λakσγ̂

†
akσγ̂akσ − 2λbkσγ̂

†
bkσγ̂bkσ + λbkσ − λakσ

}
=
∑
kσ

{
Eakσγ̂

†
akσγ̂akσ + Ebkσγ̂

†
bkσγ̂bkσ

}
− 1

2

∑
kσ

{Ebkσ + Eakσ}

Collecting all the constants together gives the Hamiltonian as

ĤMF =
∑
mkσ

Emkσγ̂
†
mkσγ̂mkσ +

1

2

∑
kσ

εAkσ + εBkσ − Ebkσ − Eakσ︸ ︷︷ ︸
EGS

(5.26)

where the constants form the ground state energy, EGS, of the system. EGS (and the

whole Hamiltonian) can be decomposed into a sum of two identical parts, one for each spin:

EGS = EGS
↑ + EGS

↓ . As discussed in section 4.4 this Bogoliubov de Gennes transformation

allows us to think of the system as a collection of non-interacting quasi-particle excitations

(Bogoliubons), created/annihilated by the γ-operators, on top of some ground state,
∣∣EGS

〉
,

devoid of excitations.

As well as obtaining the mean-field Hamiltonian energies we also need the eigenvector

amplitudes akσ and ckσ. We obtain these by solving the eigenvector equations for the common

quantities akσc
∗
kσ, akσa

∗
kσ and ckσc

∗
kσ, as we did previously for the BCS case, section 4.4.1.

We shall present these quantities explicitly in a moment, see equation (5.32), before that we

shall derive the self-consistency equations.
2Furthermore, when φAσ = φBσ in this BCS-like limit, each set of expressions for a given spin become

exact copies of BCS theory, after the BCS-like mapping, since we recover the usual φ↑ = φ↓ discussed in
chapter 4
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5.3 Self-consistency equations

In this section the self-consistency equations will be derived. As discussed in chapter 4

section 4.3.2, solving the self-consistency equations gives the values of the mean-fields corre-

sponding to the stationary points of the free energy. Those mean-fields which correspond to

the minimum points can be used to obtain information about the state of the system, e.g.

whether there is superconductivity, an energy gap or magnetisation.

Often, as is the case for BCS theory, the solutions to the self-consistency equations do

correspond to the free energy minima and as such serve as a quick method of minimising

the free energy. However, as we shall see, in this case the self-consistency equations do not

always find the free energy minimum and we will need to minimise the free energy directly

to obtain information about the system.

Let us now derive the self-consistency equations. The method is the same as described in

section 4.3.2; the stationary points of the free energy are obtained by varying the free energy

with respect to the mean-fields and demanding it be zero, δF = 0. Doing so gives:

δ
〈
V̂MF

〉
MF

= δ
〈
V̂
〉

MF
.

The variation of the mean-field interaction is given by

δ
〈
V̂MF

〉
MF

=
∑
j,σ

{
∆σσδ

〈
ĉ†Ajσ ĉ

†
Bjσ

〉
MF

+ ∆∗σσδ
〈
ĉBjσ ĉAjσ

〉
MF

+ΦAσδ
〈
ĉ†Ajσ ĉAjσ

〉
MF

+ ΦBσδ
〈
ĉ†Bjσ ĉBjσ

〉
MF

} (5.27)

and the variation of the original interaction is

δ
〈
V̂
〉

MF
= −U

∑
j,σ

{
δ
〈
ĉ†Ajσ ĉ

†
Bjσ

〉
MF

〈
ĉBjσ ĉAjσ

〉
MF

+
〈
ĉ†Ajσ ĉ

†
Bjσ

〉
MF

δ
〈
ĉBjσ ĉAjσ

〉
MF

−δ
〈
ĉ†Ajσ ĉBjσ

〉
MF

〈
ĉ†Bjσ ĉAjσ

〉
MF
−
〈
ĉ†Ajσ ĉBjσ

〉
MF

δ
〈
ĉ†Bjσ ĉAjσ

〉
MF

+δ
〈
ĉ†Ajσ ĉAjσ

〉
MF

〈
ĉ†Bjσ ĉBjσ

〉
MF

+
〈
ĉ†Ajσ ĉAjσ

〉
MF

δ
〈
ĉ†Bjσ ĉBjσ

〉
MF

}
.

(5.28)

The self-consistency equations are obtained by comparing equations (5.27) and (5.28),

treating variation terms δ 〈. . .〉MF as independent and collecting their coefficients. Doing so

gives the self-consistency equations as:

−U
〈
ĉBjσ ĉAjσ

〉
0

= ∆σσ (5.29a)

−U
〈
ĉ†Bjσ ĉ

†
Ajσ

〉
0

= ∆∗σσ (5.29b)

−U
〈
ĉ†Bjσ ĉBjσ

〉
0

= φAσ (5.29c)

−U
〈
ĉ†Ajσ ĉAjσ

〉
0

= φBσ. (5.29d)

To calculate the expectation values in the self-consistency equations, equation (5.29), the

same process as in BCS section 4.5 is used. They are first written in momentum-space by use

of the Fourier transformation, equation (5.3), then the electron creation/annihilation opera-

tors are written in terms of the Bogoliubon operators using the Bogoliubov transformation,
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equation (5.21). The self-consistency equations then become:

∆σσ = +
U

N χσ (5.30a)

φAσ =− U

N NBσ (5.30b)

φBσ =− U

N NAσ (5.30c)

where

χσ =
∑
k

〈
ĉBkσ ĉAk̄σ

〉
MF

=
∑
k

{akσc
∗
kσ[1− f(Eakσ)− f(Ebkσ)]} (5.31a)

NAσ =
∑
k

〈
ĉ†Akσ ĉAkσ

〉
MF

=
∑
k

{a∗kσakσf(Eakσ) + ckσc
∗
kσ[1− f(Ebkσ)]} (5.31b)

NBσ =
∑
k

〈
ĉ†Bkσ ĉBkσ

〉
MF

=
∑
k

{a∗kσakσf(Ebkσ) + ckσc
∗
kσ[1− f(Eakσ)]} (5.31c)

and

akσc
∗
kσ =

∆σσ

2
√
ξ2
kσ + |∆σσ|2

(5.32a)

a∗kσakσ =
1

2

1 +
ξkσ√

ξ2
kσ + |∆σσ|2

 (5.32b)

ckσc
∗
kσ =

1

2

1− ξkσ√
ξ2
kσ + |∆σσ|2

. (5.32c)

Equations (5.32) were obtained by solving the eigenvector equations, as was done in sec-

tion 4.4.1. Next we solve the self-consistency equations (5.30) numerically.

5.3.1 Self-consistency equations - numerical results

As was done in the BCS chapter, section 4.6, we start by examining the gap equation math-

ematically, using the contour method to obtain a first impression of how the gap equation

could possibly behave. This is done without determining the φ-fields self-consistently, they

are simply parameters to the gap equation. Afterwards all three self-consistent equations will

be solved simultaneously using the iterative method discussed in section 4.6.

5.3.2 Solving the self-consistent gap equation via the contour method

Figure 5.5 was obtained by solving the self-consistent gap equation with the contouring

method, described previously in section 4.6.1. It shows how ∆ varies with temperature, T ,

for zero- and finite-splitting, s∗σ (equation (5.25)), in figures 5.5a and 5.5b respectively. Both

results are identical to those obtained for BCS theory, figure 4.5. This is not surprising since

the self-consistency equations for the equal-spin triplet-pairing theory, equation (5.30), are

mathematically identical to those of BCS theory, equation (4.39), if one changes the orbital

labels to spin labels.

The difference here is that there is an underlying splitting in the non-interacting electron

dispersion, which is absent in BCS theory. In BCS theory the effective splitting arises from

an imbalance in the φ-fields, which at this level were chosen to give an effective splitting.



Chapter 5. Variational mean-field theory of two-band equal-spin-pairing 78

However, in BCS theory, as we saw in section 4.6.2, the effective splitting does not manifest

in reality because it is a splitting between spin bands (rather than between orbitals as is the

case here) and the free energy is minimised by φ↑ = φ↓. In our equal-spin triplet-pairing

theory however, the effective splitting, s∗σ, can be finite even if φAσ = φBσ due to the bare

splitting, s, between the non-interacting electron bands (see equation (5.25)).

In the case of finite effective splitting, figure 5.5b, the ∆ vs T contours exhibit three

different types of behaviour, corresponding to the three different types of line. At relatively

high interactions U there exists only one curve per interaction which behaves in the standard

BCS way i.e. there is a critical temperature above which ∆ = 0 and below which ∆ > 0

(see U >= 2.96, red solid lines). At relatively low interactions there again exists one contour

per interaction but its behaviour is not BCS like. Instead there appears multiple non-trivial

solutions to the gap equation with ∆ suddenly becoming finite rather than evolving smoothly

at Tc, (shown for interactions U <= 2.60, green dashed lines in the figure). Finally there

exists a third type of behaviour for intermediate interactions (see U = 2.7, 2.8; blue dot-

dashed lines) whereby there exist two contours per interaction and two “Tc’s”, moreover the

number of non-trivial solutions varies from one, if below the higher Tc but above the lower

Tc, to two, if below the lower Tc.

Each contour, Tc is defined as the highest temperature at which ∆ is finite. As we

just discussed, in the case of some contours, this allows for two Tc’s however, these are not

necessarily actual transition temperatures where there is a change of state. As the self-

consistency equations do not reveal which solution is the global minimum of the free energy,

it is not possible to know which contour and which Tc actually corresponds to the onset of

superconductivity. Instead we can use these Tc’s to determine a preliminary phase diagram,

as shown in figure 5.6.

Figure 5.6 shows the phase diagram for two different values of bare splitting, s = 0 and

s = 0.1, represented by the crosses and triangle markers respectively. The BCS-like case

(s = 0, red cross markers) shows the expected BCS like behaviour: Tc ∝ exp(−1/ρ(0)U)

[14] where for temperature T > Tc the system is in the normal state while for T < Tc the

system is superconducting. At U = 0 it is known analytically that ∆ = 0, i.e. Tc = 0. Below

U ≈ 0.9 there is an absence of data points because the contours of figure 5.5a become too

small compared with the density of calculated data points, making the interpolation a bad

approximation to the actual contour, in fact data points below U ≈ 1.3 already show linear

behaviour, rather than exponential, due to this interpolation problem. Increasing the density

of calculated data points would result in smoother contours at small U but significantly

increases the computational time and the BCS-like exponential behaviour can already be

seen.

In the case of finite splitting (s = 0.1, triangle markers) there are three different types

of contour or critical temperature. The red triangles are high U and mark a BCS like

transition, although the splitting has had the effect of suppressing Tc. Above the transition

line the system is normal while it is superconducting beneath it. The blue markers correspond

to interactions for which there exists two contours, hence there are two Tc’s as we defined

previously. Above the larger of the two Tc’s the system is normal while below it there exists

only one non-trivial solution to the self-consistent gap equation and the system is most likely

BCS-like in nature, while below the lower of the two Tc’s there exists two non-trivial solutions.

The green marker corresponds to low U which has a single contour but also has two non-trivial
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(a) Zero effective splitting - s∗σ = 0
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(b) Finite effective splitting - s∗σ = 0.2

Figure 5.5: Solutions to the equal-spin triplet-pairing self-consistent gap equation.
Each line shows ∆σσ vs T for different interactions U obtained by solving the self-
consistent gap equation. Figures 5.5a and 5.5b correspond to zero and finite effective
splitting respectively. ∆0, Tc and TBCS

c are marked for the highest interaction
U = 3.6 only. In the case of finite splitting there are regions with more than one
trivial solution. Parameters: µ = −2, φAσ = φBσ = 0
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Figure 5.6: Phase diagram obtained from the solutions of the self-consistent gap-
equation only. Tc is determined by the ∆ vs T contours of the self-consistent gap
equation and is defined as the highest temperature at which ∆ > 0, by this definition
some contours have multiple Tc’s. The red crosses correspond to the BCS-like case
with zero splitting while the triangles correspond to finite effective splitting. The
different coloured triangles match the three different groups of contour (single Tc
BCS-like, multiple Tc or single Tc with first order jump). The purple highlighted
region shows where two non-trivial solutions to gap-equation are found, outside that
region there is only one non-trivial solution.

solutions below Tc. The region where there exists two non-trivial solutions is highlighted in

purple.

The self-consistency equations identify stationary points only. The free energy will need

to be examined in order to know which of the multiple solutions present in the highlighted

region (figure 5.6) minimises the free energy. The explicit form of the free energy will be

discussed and minimised later in section 5.4 but before that we can infer the possible nature

of these stationary points based on properties we know the free energy will have. For example,

F → ∞ as ∆ → ∞ forbids the solution with largest ∆ from being a maximum, which then

affects which type of stationary point the remaining solutions can be. Additionally at high

temperatures or high splitting the system will be in the normal state, hence ∆ = 0 will be

the global minimum. Figure 5.7 shows some examples of the form the free energy could take.

Figure 5.7a shows the typical evolution of the free energy for a BCS superconductor,

undergoing a second order phase transition between the normal and superconducting states

as a function of temperature. At low temperature there exists two unique stationary points

at ∆ = 0 and |∆| ≈ 0.2, corresponding to a maximum and global minimum respectively.

As temperature increases from T = 0 towards T = Tc, the global minimum occurs at finite

∆, the value of which tends to zero as T → Tc. Eventually at Tc all stationary points have

converged into one minimum at ∆ = 0 — the trivial solution to the self-consistency equations

corresponding to the normal state. The free energy has evolved smoothly and continuously

during the transition and the order parameter ∆ has also evolved continuously.
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Figure 5.7b on the other hand, shows how additional non-trivial solutions to the self-

consistent gap equation may manifest in the free energy, giving rise to a first order phase

transition. In this figure we are considering low T and so expect to be in the superconducting

state i.e. there is a global minimum in the free energy at |∆| > 0. Indeed at s = 0 (BCS-

like case) we observe the expected two stationary points with a minima at ∆ ≈ 0.2. As s

changes the free energy evolves smoothly and continuously but, unlike in a second order phase

transition, the value of ∆ does not. Instead ∆ jumps from a finite value to ∆ = 0 as s is

increased. The free energy can also have either one, two or three stationary points (ignoring

the ∆ = −∆ mirror symmetry which would increase that count). This is consistent with the

appearance of multiple solutions in the gap equation which also displays one (trivial), two

(trivial + non-trivial) or three (trivial + 2 non-trivial) solutions.

In BCS theory there exists a correspondence between the number of solutions to the self-

consistent gap equation and whether the system is superconducting or not, i.e. when there

are two solutions, finite ∆ minimises the free energy and hence the system is superconducting,

while when there is only one trivial ∆ = 0 solution the system is normal – although it should

be noted that this knowledge does not come from the self-consistency equations themselves

but rather the study of the free energy. In the equal-spin triplet-pairing theory however,

the number of solutions to the self-consistent gap equation does not reveal which solution

minimises the free energy.

In analogy with BCS theory, it is probably safe to assume that the BCS-like case (s = 0,

section 5.2.2) behaves like the BCS case and one can presume to know which state the system

is in based on the number of solutions. Additionally, for very large U , where the contours

of figure 5.5b are BCS-like, one can probably also assume that the effect of splitting is

negligible and the number of solutions does determine the state of the system. Additionally,

for intermediate U at temperatures above the lower of the two Tc’s, the free energy is also

probably BCS-like due to the continuous nature of the free energy. However for small U and

intermediate U below the lower Tc, where the contours of figure 5.5b correspond to three

unique solutions, it is not possible to determine the state of the system from the number of

solutions and hence the highlighted region in the phase diagram figure 5.6 cannot be assumed

to be normal or superconducting.

The results discussed so far are all obtained from the gap equation only and as such may

not be physically accurate. First we shall see if they persist after solving all self-consistency

equations simultaneously.

5.3.3 Solving the self-consistency equations iteratively

Recall that the results discussed so far were all obtained from the self-consistent gap equation

only and the φ-fields were treated as arbitrary parameters rather than self-consistent mean-

fields. Without self-consistently determining all mean-fields, the previous solutions to the

self-consistent gap equation will not necessarily correspond to the global minimum of the

free energy and hence may not be physically correct. To obtain the solutions to all the

self-consistency equations simultaneously, and hence obtain the global minimum of the free

energy, the same iterative procedure described in section 4.6.2 was used.

Figure 5.8 shows the solutions to the self-consistency equations obtained using the iterative

method for two different values of splitting s. The dashed-lines and solid-lines correspond

to zero splitting (s = 0) and finite splitting (s 6= 0) respectively, while the different colours



Chapter 5. Variational mean-field theory of two-band equal-spin-pairing 82

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

∆

−0.179

−0.178

−0.177

−0.176

−0.175

−0.174

F

T=0

T=0.07

T=0.1

T=0.12

(a) Variation in the free energy w.r.t. ∆ at different temperatures. Parameters (arbitrarily chosen):
U = 2.5, µ = −2.7, s = 0, φA = φB = 0.

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

∆

−0.1770

−0.1765

−0.1760

−0.1755

−0.1750

−0.1745

−0.1740

F

s=0

s=0.05

s=0.075

s=0.08

s=0.09

(b) Variation in the free energy w.r.t. ∆ at different splitting. Parameters (arbitrarily chosen):
U = 2.5, µ = −2.7, T = 0.005, φA = φB = 0.

Figure 5.7: Examples of stationary points of the free energy. Figure 5.7a shows
typical evolution of the free energy with respect to temperature, showing two unique
stationary points below Tc and one above it. The number of stationary points
determines the state of the system and as temperature is changed the free energy
evolves smoothly from one state to next. Figure 5.7b shows how finite splitting can
give rise to an additional unique stationary point (totalling three) as predicted by
the self-consistent gap equation. The red and green curves show that with three
unique stationary points the system could be either superconducting or normal and
hence the number of stationary points is not sufficient to determine what state the
system is in.
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correspond to different interactions U . When there is no splitting both ∆σσ (top panel)

and effective splitting (bottom panel) behave as in the BCS case with ∆0 = 1.76Tc and

s∗σ = 0 (i.e. φA = φB, see equation (5.25)). With finite splitting Tc is heavily suppressed

and there exists a critical value of interaction, U , below which ∆ is never finite, i.e. for a

given interaction U , the bare splitting can completely kill the superconductivity if it is large

enough because the energy gained by forming a pair is not enough to compensate the energy

penalty incurred to overcome the bare splitting. Additionally the effective splitting is finite

and its value depends on the interaction. Below the critical interaction the effective splitting

is essentially independent of temperature but above it the effective splitting has a strong

temperature dependence below Tc.

By solving the self-consistency equations as a function of temperature for different values

of bare splitting, s, and interaction, U , it can be seen how Tc varies with these quantities,

giving rise to the phase diagram in figure 5.9. Obtaining Tc accurately is difficult for a number

of reasons: firstly the integrals become numerically difficult near Tc, resulting in a smoothing

of ∆ near Tc rather than a sudden onset; secondly it is desirable to have a large number of

data points near Tc to improve the estimation, but Tc is not in general known before hand

so it cannot be efficiently targeted programmatically; thirdly the integrals become even more

difficult at small interaction U and small temperatures T .

Taking the difficulties of obtaining Tc into consideration, it was decided that it was best

estimated by the temperature at which
∣∣d∆

dT

∣∣ was maximum. Testing this method on the BCS

case, where Tc is known from ∆0, revealed that it tended to underestimate Tc slightly, with the

accuracy improving with the number of points as expected. This method was more accurate

than using a simple thresholding technique (which tended to overestimate Tc), whereby Tc is

defined as the highest temperature at which ∆ is greater than some small threshold value.

Each curve of the phase diagram, figure 5.9, corresponds to a different value of bare

splitting s. The curve separates parameter space into two regions: a superconducting region

below the curve and a normal region above it. For the case of zero splitting the behaviour is

BCS-like with Tc ∝ exp(−1/ρ(0)U) [14], note that due to the numerical difficulties discussed

above, Tc goes to zero for some finite values of U even though it should be exponential.

With finite splitting there exists a critical finite value of U below which Tc = 0 and there

is no superconductivity (∆ = 0). Increasing the bare splitting has the effect of suppressing

Tc and increasing the critical value of interaction Uc; it acts to prevent superconductivity by

requiring lower temperatures and larger interaction.

Solving only the self-consistent gap equation revealed that there should be multiple so-

lutions of ∆ for some values of U as long as the effective splitting, s∗σ, was finite. However,

after solving all the self-consistency equations iteratively we did not find any evidence for

multiple solutions of ∆. In the BCS case, sections 4.6.2 and 4.7.3, we find that the effective

splitting is self-consistently zero, that is φ↑ = φ↓, and therefore the case of finite effective

splitting, where multiple solutions are predicted, is not physically realised. However, in this

case we see that the effective splitting is self-consistently finite when the bare splitting, s, is

finite and, therefore, is physically realisable. It is curious then as to why we find no evidence

of multiple solutions to the gap equation.

In order to understand why no evidence of multiple solutions is found we turn to the free

energy. Using the free energy we can check that a particular solution of the self-consistency

equations is a minimum or not by evaluating the free energy around that point. Furthermore
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Figure 5.8: Solutions to the self-consistency equations when solved iteratively.
The upper and lower panels show, respectively, how the ∆σσ- and φmσ-fields vary
with temperature. In both panels the different colours represent different interac-
tions U . The dashed-lines and solid-lines correspond to zero splitting, s = 0, and
finite splitting, s = 0.2, respectively. As expected with zero splitting the behaviour
is BCS-like however, with finite splitting the Tc is greatly suppressed and the effec-
tive splitting displays some significant temperature dependence below Tc. Here the
chemical potential is µ = 0.
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Figure 5.9: Phase diagram obtained from solving the self-consistent solutions
iteratively. The different colour lines correspond to different values of bare splitting,
s. For zero splitting the curve is BCS-like with Tc ∝ exp(−1/ρ(0)U). With finite
splitting there exists a critical value of interaction, U , below which superconductivity
is fully suppressed. As splitting is increased the critical value of U also increases.

we can directly minimise the free energy itself to verify the results obtained by the self-

consistency equations. We shall now investigate the free energy.

5.4 Free energy

The free energy is derived using the same method as discussed in section 4.7. At zero

temperature the free energy corresponds to the ground state energy and is given by:

F0 =
∑
σ

{
KAσ + KBσ − µ(NAσ + NBσ)− U

N (χσχ
∗
σ + NAσNBσ)

}
(5.33)

where

Kmσ =
∑
k

εmmkσ n̂kσ (5.34)

and χσ and Nmσ are as defined when discussing the self-consistency equations in section 4.5,

equation (5.31). As with the BCS case, this expression is valid at zero temperature and can

be solved with far fewer numerical issues than when solving the general expression at low

temperatures.

The general expression for the free energy, valid at all temperatures, is again obtained by

the same procedure as in section 4.7.2 and is given by:

F =
∑
σ

{
−UN (χσχ

∗
σ + NAσNBσ) + ∆∗σσχσ + ∆σσχ

∗
σ − φAσNAσ − φBσNBσ + FMF

σ

}
(5.35)

where FMF
σ is the mean-field free energy of the spin-σ part of the Hamiltonian and is given

by:

FMF
σ = EGS

σ − kBT
∑
k

{
ln
(

1 + e−βEakσ
)

+ ln
(

1 + e−βEbkσ
)}

(5.36)
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and EGS
σ is as defined in equation (5.26). We can now use these expressions to verify the

results from solving the self-consistency equations, both by evaluating the free energy around

the solutions to check they are indeed minima and by direct minimisation of the free energy.

5.5 Phase diagram

The same hill descent algorithm as discussed previously in section 4.7.3 is used to directly

minimise the free energy functions, equations (5.33) and (5.35), w.r.t. the mean-field pa-

rameters. In the BCS-like case (s = 0) the solutions to the self-consistency equations and

the results of the hill climb agree, as they did in section 4.7.3, however, for finite splitting

(s = 0.1, figure 5.10) there is a difference between the two methods.

Figure 5.10 shows that the stationary points obtained by iteratively solving the self-

consistency equations significantly underestimate Tc or, equivalently, overestimate the sup-

pression of Tc caused by the bare splitting. Both methods agree that finite bare splitting sup-

presses Tc and, moreover, introduces a critical interaction, Uc, below which superconductivity

is fully suppressed. Additionally the bottom panel shows that the φ-fields (equivalently the

effective splitting s∗σ) change behaviour at Tc, with (φAσ−φBσ)→ 0, or equivalently s∗σ → 2s

(see equation (5.25)) as temperature decreases.

The difference between the two results occurs because in some cases the self-consistency

equations find solutions which correspond to maxima of the free energy, rather than minima.

Figure 5.11 demonstrates this. The top panel shows the results of the hill descent minimi-

sation (blue dashed-line) and the solutions to the self-consistency equations (red solid-line).

The four different symbols (purple and brown circles and orange and green diamonds) high-

light the solutions that are tested in the lower panel to demonstrate the problem with the

self-consistency equations.

In the lower panel of figure 5.11 the free energy has been calculated as a function of

∆ four times, one for each solution highlighted in the upper panel. For each symbol the

corresponding U , µ, s, T , φA and φB were used when calculating the free energy, giving

rise to the four curves in the lower panel. The colour of each curve matches the colour of

the corresponding symbol in the upper panel. The same symbol is used to highlight the

corresponding value of ∆. The purple and brown dashed lines with ‘×’-markers show the

free energy around the stationary point predicted by the self-consistency equations, while the

orange and green dot-dashed lines with ‘+’-markers show the free energy around minimum

points obtained by direct minimisation of the free energy via the hill descent algorithm.

The problem is highlighted by the free energy corresponding to the brown circle stationary

point obtained by the self-consistency equations. This point actually corresponds to a local

maxima in the free energy, whereas the solution returned by the hill descent algorithm (green

diamond) really does correspond to a minimum in the free energy.

This is not surprising since the self-consistency equations were derived by requiring the

derivative of the free energy w.r.t. the mean-fields be zero, a condition sufficient to find

stationary points of the free energy but not sufficient to ensure those stationary points be

minima. What is surprising is that solving the self-consistency equations iteratively does not

seem to be able to converge on the solution, no matter what starting point, or friction term is

used by the algorithm. Even using the result from the direct minimisation of the free energy
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Figure 5.10: Comparison between the free energy minima obtained by direct
hill descent minimisation and iteratively solving the self-consistency equations at
finite bare splitting. The solid-lines and dashed-lines correspond to the hill de-
scent minimisation and solutions to the self-consistency equations respectively. The
different colours represent different interaction U . The top panel shows that the self-
consistency equations significantly over estimate the suppression of Tc. The bottom
panel also shows a difference between the effective splitting s∗σ (directly related to
the φ-fields). Both methods agree that finite bare splitting suppresses critical tem-
perature and introduces a critical interaction Uc, below which superconductivity is
fully suppressed. Additionally both methods agree that at Tc the effective splitting
changes behaviour and tends towards φAσ − φBσ = 0 as temperature decreases.
Parameters: µ = −2.7, s = 0.1
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as a seed when solving the self-consistency equations still sees them converge on the local

maximum.

By direct minimisation of the free energy using the hill descent algorithm we can be much

more confident that the result obtained is a minimum, compared to the stationary points

identified by the self-consistency equations. However, due to problems in the integration of

the free energy, which become more frequent close to Uc, the algorithm can become stuck

before it reaches a minimum. To combat this the hill descent algorithm is run twice, once

with fixed ∆ = 0 (as it is always a potential solution) and once more with a random starting

point and all fields free to vary. The two results are compared and the one with the lower free

energy is selected. It would be desirable to perform more repetitions but unfortunately the

hill descent algorithm is much slower than solving the self-consistency equations iteratively.

This problem is mitigated slightly by the fact that calculations are usually performed as a

function of temperature or interaction so if the algorithm gets stuck away from the minima, it

is often noticeable. Additionally, in such cases, the free energy can be evaluated around that

point (as was done in figure 5.11) to verify whether it is a minimum or not - an advantage

over only using the self-consistency equations.

Figure 5.12 shows how ∆ and s∗σ vary with temperature for different interaction, U , and

splitting, s, using data obtained by direct minimisation of the free energy. The solid lines

with ‘+’-markers and the solid lines with ‘dot’-markers correspond to s = 0.0 and s = 0.1

respectively. The different colours represent different interactions as shown in the legend.

The top and centre panels show how ∆ varies with temperature for zero and finite splitting

respectively, while the bottom panel shows how the effective splitting (and therefore the

φ-fields) vary with temperature for zero splitting (right axis) and finite splitting (left axis).

The centre panel shows that with finite splitting and relatively large interaction, U >=

2.66, Tc is suppressed compared to the case of zero splitting (top panel), but by less than

the self-consistency equations predicted. As the interaction is reduced a shoulder/kink starts

to appear between Tc and T = 0. For a small range of intermediate interactions 2.65 <=

U < 2.66 the shoulder turns into a sudden suppression of superconductivity with ∆ = 0,

leaving two separate superconducting transitions, one second order the other first order. At

U = 2.64 it appears that the superconductivity at higher temperatures becomes suppressed

while a first order superconducting transition persists at low temperatures, although it could

be the case that a small signature remains but at lower precision than our numerics. Finally,

for interactions U <= 2.6 the superconductivity is suppressed completely for all T .

The small range of intermediate interaction 2.65 <= U < 2.66 displays the fascinating

phenomenon of re-entrant superconductivity: as the temperature is increased from zero, the

superconductivity is weakened due to thermal fluctuations and cannot overcome the bare

splitting. Yet as the temperature is further increased, the thermal fluctuations are now great

enough to overcome the splitting and actually aid in the formation of superconducting pairs.

This re-entrant superconductivity is a form of order by disorder: the increase in temperature

increases thermal fluctuations but leads to the stabilisation of a more ordered state, rather

than increasing disorder.

In the bottom panel of figure 5.12 we can see for the BCS-like case (s = 0, right axis, ‘+’-

markers) the effective splitting is zero, s∗σ = 0, i.e. φAσ = φBσ. There is again a very small

difference in the φ-fields at low temperatures and again this is down to a numerical effect

due to the line of constant free energy that appears at finite ∆, as discussed in section 4.7.3.
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Figure 5.11: Stationary points and their corresponding free energies. The top
panel compares the stationary points obtained from the solving the self-consistency
equations iteratively (solid-line, circles) with the minima obtained from the free
energy hill descent algorithm (dashed-line, diamonds). The diamonds and circles
highlight the points about which the free energy is calculated and shown in the
bottom panel. Purple circle and orange diamond correspond to the same stationary
point obtained by both the hill descent algorithm and self-consistency equations.
The brown circle and green diamond show the self-consistency equations and hill
descent algorithm give different results and that the self-consistency equations have
returned a maxima in the free energy.
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With finite bare splitting (s = 0.1, left axis, ‘dot’-markers), the effective splitting, s∗σ, takes

some finite value above Tc due to a difference between the φAσ and φBσ fields. At Tc the

φ-fields tend to equalise as temperature decreases and ∆ increases, until φAσ = φBσ as ∆

reaches saturation. Let us now see how this difference impacts the phase diagram.

When minimising the free energy the hill descent algorithm tries both minimising the free

energy w.r.t. all mean-fields as well as minimising while restricting ∆ = 0. This means Tc

can be simply defined as the highest temperature at which ∆ > 0, unlike in section 5.3.1,

where Tc is defined as the temperature at which
∣∣d∆

dT

∣∣ is maximum due to smoothing near

the transition. Using the free energy hill descent algorithm, the corrected phase diagram,

figure 5.13, can be obtained.

The corrected phase diagram shares the following common features with the incorrect

phase diagram obtained by solving the self-consistency equations (figure 5.9): the BCS-

like case (s = 0) shows the conventional exponential behaviour; at finite bare splitting,

generally speaking, Tc is suppressed and, finally, there exists a critical interaction, Uc, below

which superconductivity is completely suppressed. Both of these things are a sign that

superconductivity is being weakened by the bare splitting. On the other hand however,

the free energy minimisation shows a kink in the phase boundary (see figure 5.13 inset)

corresponding to the ∆-vs-T curves that show two superconducting transitions (like those

displayed in figure 5.12 centre panel). Such a kink was not detected by the self-consistency

equations.

The kink in the phase diagram, figure 5.13 inset, corresponds to the re-entrant supercon-

ductivity we just mentioned. If the system has an interaction, U , between the two vertical

dotted lines and is initially at T = 0 then it will be superconducting. As the temperature

increases it will undergo a first order transition into the normal state. Further increase in T

will then see another first order transition into a superconducting state, then followed by a

further second order phase transition into the normal state. As we discussed, this is a form

of order by disorder where the increase in temperature causes the stabilisation of the more

ordered superconducting state. The empty purple circle in the inset of figure 5.13 marks the

point where the phase boundary goes from a first order transition boundary (for temperatures

below this point) to a second order transition boundary (for temperatures above this point).

Although shown only for the s = 0 case, the same point is present in all phase boundaries for

finite bare splitting and the same physics occurs however, the size of the re-entrant region

decreases with bare splitting.

We end this discussion of re-entrant superconductivity by noting that the re-entrant

behaviour is present in a tiny portion of the phase diagram, over a small range of interaction

(2.65 . U . 2.66 for the s = 0.1 case) which is related to the size of the bare splitting.

Bearing in mind the band width in this model is 8t, the interaction range over which this

can be observed is approximately 0.01t, or 800 times smaller than the band width. This only

gets smaller as the splitting is decreased and, realistically, the bare splitting must not be too

large otherwise superconductivity becomes improbable. This fascinating phenomenon will

therefore be difficult to observe.
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Figure 5.12: Minima of the free energy obtained by direct minimisation using
the hill descent algorithm. In all panels the same set of colours correspond to the
different values of interaction, U . The ‘+’-markers correspond to zero bare splitting,
s = 0, while the dot-markers correspond to finite splitting, s = 0.1. The top and
centre panels show how the ∆σσ-fields vary with temperature, for zero and finite
bare splitting respectively. The bottom panel shows how the effective splitting,
s∗σ, (and hence the φmσ-fields) vary with temperature, with the left and right axes
corresponding to finite and zero bare splitting respectively. Zero splitting exhibits
the familiar BCS-like behaviour. At high U and finite splitting, ∆ behaves in a
BCS-like way albeit with a suppression of Tc. As the interaction is reduced, a
suppression occurs somewhere between T = 0 and Tc, separating the phase space
into two superconducting regions with two separate superconducting transitions; one
second order, the other first order. At low enough interaction, all superconductivity
is entirely suppressed.



Chapter 5. Variational mean-field theory of two-band equal-spin-pairing 92

0.0 0.5 1.0 1.5 2.0 2.5 3.0

U

0.00

0.05

0.10

0.15

0.20

T
c

s = 0

s = 0.025

s = 0.05

s = 0.075

s = 0.1

2.5 2.6

0.00

0.05

0.10

Uc

Figure 5.13: Phase diagram obtained by direct minimisation of the free energy
using the hill descent algorithm. Each line marks the phase boundary between the
normal state (higher T lower U side of line) and the superconducting state (lower
T higher U side of line), with each colour corresponding to different bare splitting
s. For finite splitting there exists a critical interaction Uc (labelled for s = 0.1)
below which superconductivity is fully suppressed. With finite splitting, just above
Uc there is a kink in the phase boundary caused by the bare splitting of the energy
bands, leading to the possibility of re-entrant superconductivity. The circle marks
(shown for the s = 0.1 case only) the point where the phase boundary changes
between first order (temperatures below this point) and second order (temperatures
above this point).

5.6 Quasi-particle spectrum

Another interesting phenomenon displayed by this model is that of gapless superconductivity;

where ∆ is finite, marking the presence of superconductivity, yet the energy spectrum has

no energy gap. In this case the pairing potential ∆ is isotropic but causes hybridisation of

the bands away from the Fermi surface, which is quite different to nodal superconductors

where the structure of the pairing potential ∆ is anisotropic and has nodes as a result of sign

changes or accidental cancellations. We demonstrate the difference between gapless and fully

gapped superconductivity in figure 5.14.

Figure 5.14 shows the quasi-particle energy spectrum at two different temperatures, both

below Tc and both superconducting (∆ > 0). The mean-fields were determined by minimising

the free energy for the given parameters. Figure 5.14a shows that the system is gapless. The

pairing potential is finite and, just like in BCS, causes the hybridisation between the particle

and hole bands (dashed lines). However, in this case the splitting has offset the hybridisation

point away from the Fermi level such that when the BCS-like ‘gap’ opens, it does not create

an actual energy gap. As the pairing potential increases, the hybridisation ‘gap’ also increases

until it is big enough to create an actual energy gap, as shown in figure 5.14b.

One might wonder whether the gapless superconductivity is just a result of the special

choice of non-interacting electron dispersion, where there is zero hybridisation and no spin
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mixing terms so that this theory can be decomposed into two equivalent parts for each spin.

However, the pairing interaction will always be exclusively between the A- and B-orbitals

(because of the requirement of non-unitary triplet-pairing) and as such the quasiparticles will

only hybridise particle and hole bands of the same spin. In order to hybridise the particle

and hole bands (dashed lines of figure 5.14) at the point where they cross the Fermi surface

would require hybridisation between opposite spins. The most direct way of obtaining such

hybridisation is by analogy with the hybridisation already observed, i.e. a pairing potential

between electrons of opposite spins, which as we just stated is forbidden because that would

not be non-unitary triplet-pairing. It is not known whether equal-spin pairing with a fully

general non-interacting dispersion (with all types of conceivable hopping terms), or with

spin-orbit coupling, would allow for finite pairing potential to skip the gapless phase and

go straight to fully gapped. Even so, it is likely that gapless superconductivity is a general

feature of equal-spin triplet-pairing between two orbitals.

5.7 Spin imbalance

Throughout this chapter we have been discussing ∆ without specifying whether we mean ∆↑↑
or ∆↓↓. That is because, for this theory, it turns out that ∆↑↑ = ∆↓↓, always. This is first

apparent in the self-consistency equations, equation (5.30), which have identical forms for

↑-spin and ↓-spin, and each is completely independent of the other spin-species’ mean-fields.

So solving the self-consistency equations gives the same result, independent of the spin label

being considered. Secondly the total free energy can clearly be decomposed into the sum of

two identical expressions, one for each spin, i.e. F = F↑ + F↓. It was found that minimising

the total free energy gave the same result as minimising the free energy for a single species.

Indeed, one can see this should be the case from basic differentiation: δF = δF↑+ δF↓. If F↑

and F↓ are identical expressions (except for a simple label) then they will be minimised by

the same mean-field values, i.e. ∆↑↑ = ∆↓↓.

The consequences of equal ↑-spin and ↓-spin mean-fields are two fold. Firstly, as discussed

in section 2.2, a triplet pairing potential with equal spin-up and spin-down components (as

in this case) means ∆̂(k)∆̂(k)† ∝ I, i.e. it is unitary triplet-pairing. It is for this reason

that we have been referring to this theory as an equal-spin triplet-pairing theory, rather

than a non-unitary triplet-pairing theory as it is described in [126]. While in principle the

mean-fields ∆↑↑ and ∆↓↓ could have been different, it turns out that self-consistently they

are not. Secondly, because all mean-fields are equivalent for different spin labels, there is

no population imbalance between the different spins. This means that the magnetisation,

M = N↑ −N↓, is zero. Although we note here that our model does not include the effects of

spin-orbit coupling and it is not known whether the free energy would retain this ∆↑↑ = ∆↓↓
symmetry or give rise to a magnetisation with it included.

5.8 Summary

In this chapter we have used variational mean-field theory to study the physics of the equal-

spin triplet-pairing theory proposed by Weng et al. [126]. We began by selecting a non-

interacting dispersion, section 5.1, before applying the variational mean-field technique to

solve the Hamiltonian. We derived the self-consistency equations and solved the gap equa-
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(a) Gapless superconductivity. Parameters: T = 0.205, ∆ = 0.085, φA = −0.541, φB = −0.447,
s∗σ = 0.153. Here ∆ < s∗σ
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(b) Full gapped superconductivity. Parameters: T = 0.013, ∆ = 0.414, φA = −0.524, φB = −0.500,
s∗σ = 0.188. Here ∆ > s∗σ

Figure 5.14: Energy spectrum of the Bogoliubov quasi-particles. The energy
spectrum of the Bogoliubons was calculated using the values of the mean-fields ob-
tained by the free energy minimisation, i.e. they are self-consistent and physically
correct. Figure 5.14a shows gapless superconductivity, where ∆ is finite but the en-
ergy spectrum is not gapped and figure 5.14b shows fully gapped superconductivity.
The dashed lines on the right hand panels show the energy spectrum ∆ = 0 for
comparison. In both cases U = 3, µ = −2.7 and s = 0.1.
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tion only while treating the φ-fields as free parameters, and also solved all self-consistency

equations iteratively, section 5.3.

The self-consistent gap equation predicted multiple solutions when the effective splitting,

s∗σ, was finite, however, solving all equations iteratively found no evidence of this. In order

to understand the contradiction between solving the self-consistent gap equation only and

solving all equations iteratively, the free energy was derived and minimised, section 5.4. This

revealed that iteratively solving the self-consistency equations, although fast, was not reliable

for finding the global minima of the free energy. By minimising the free energy directly we

confirmed that this triplet-pairing theory gave rise to two nodeless gaps of equal magnitude.

Additionally and unexpectedly we found that this theory also contained re-entrant and gapless

superconductivity. Although the re-entrant superconductivity occurred only in a very small

region of the phase diagram, the gapless superconductivity is thought to be a generic feature

of pairing between equal spin electrons on different bands and should persist for different

non-interacting dispersions, although it only appears briefly near Tc before becoming fully

gapped.

As we discussed in chapter 3, the non-unitary triplet-pairing theory [126] was proposed

to try and explain the conflicting experimental results for LaNiGa2. In order to do so it

must achieve the following: it must be non-unitary triplet-pairing, in order to satisfy the

symmetry requirements; it must have have two nodeless gaps, consistent with experimental

results; and it must break TRS by developing a net magnetisation in the superconducting

state, as detected by µSR results.

We have seen that such a theory does give rise to two nodeless gaps from triplet-pairing

however, both gaps are of equal magnitude and as such do not constitute non-unitary triplet-

pairing. Furthermore, the observation that the value of each mean-field is independent of spin

means that no imbalance can occur between the population of each spin species, i.e. there

can be no magnetisation. As we discussed in section 3.3, Ginzburg-Landau theory predicts

non-unitary triplet-pairing should lower the free energy in these materials. From such a

perspective the additional term coupling the d-vector to the magnetisation, m, must be

included as it respects the symmetries of the problem, and it is this term that gives rise

to magnetisation with non-unitary triplet-pairing. In order for our mean-field theory to be

consistent with the very general Ginzburg-Landau picture, this term must be exactly zero

(since no such term appears in our free energy). In order for that term to be exactly zero,

there must be additional symmetries than were originally assumed in the Ginzburg-Landau

framework. Indeed, in our mean-field theory, we obtain an additional symmetry between

↑- and ↓-spins such that the free energy can be decomposed into two identical copies for

each spin, F↑ = F↓. It was initially thought that, despite this symmetry, an imbalance

between ↑- and ↓-spins would arise to balance the requirements of both the kinetic energy

and equal-spin attraction terms however, this is not the case and this symmetry actually

prevents magnetisation. This is not expected to be a symmetry of the real system in general,

and shows that our mean-field description in its current state does not have all the necessary

ingredients to describe LaNiGa2.

In this chapter we have shown that it is possible to obtain two nodeless gaps from the

equal-spin triplet-pairing theory but that this theory falls short of explaining the contradictory

results for LaNiGa2 due to an additional artificial symmetry. In the next chapter we shall

investigate the lack of magnetisation in the theory and suggest an additional interaction term
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as a way to eliminate the F↑ = F↓ symmetry of our current mean-field theory and obtain

magnetisation.



Chapter 6

Magnetism in the equal-spin

triplet-pairing theory

In the previous chapter we saw how the equal-spin triplet-pairing theory gave rise to full

gap superconductivity but did not exhibit either magnetisation or two different gaps, as is

observed in experiments. In this chapter we will see how the addition of a repulsive Hubbard

interaction to the equal-spin triplet-pairing theory gives rise to a spin-mixing term that can

lead to magnetisation in the normal state. It is proposed that this spin-mixing term will lead

to a spin-imbalance when superconductivity is included, leading to two different nodeless

gaps and a net magnetisation.

We will first see why it was predicted that the equal-spin triplet-pairing theory would lead

to a net magnetisation by considering the normal state limit (∆σσ = 0). We will see that this

prediction is not correct and discuss the reasons for this. We will then briefly examine Stoner

theory and show that the same reasoning, which lead to the prediction of net magnetisation

in the normal state limit of the equal-spin triplet-pairing theory, this time leads to the correct

prediction of magnetisation in Stoner theory. We will see that the key difference between the

normal state limit and Stoner theory is a spin-mixing term. The absence of such a term in the

equal-spin triplet-pairing theory is suspected to be the reason for the lack of magnetism. We

will see that introducing a repulsive Hubbard interaction into the equal-spin pairing theory

gives rise to magnetisation in the normal state.

6.1 Normal state theory of the equal-spin attraction

In this section we consider the same on-site equal-spin attraction as with our non-unitary

triplet-pairing theory but restrict ourselves to the normal state by not including any ∆σσ

pairing terms in the mean-field Hamiltonian. It turns out that this is equivalent to setting

∆σσ = 0 in the full equal-spin triplet-pairing theory. It was expected that for the case of high

interaction the system should develop some magnetisation by having more of one spin species

than the other, allowing more interaction thus lowering the free energy. We will demonstrate

how the expectation of magnetisation at high interaction arose, show that there is in fact no

magnetic state and identify the problems that led to this incorrect expectation.

The mean-field Hamiltonian is given by

ĤMF =
∑
mkσ

εmkσ ĉ
†
mkσ ĉmkσ

97
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where εmkσ = εmmkσ − µ + φmσ is the dispersion of the interacting electrons in the m-orbital

and εAAkσ = εk − 2ts and εBBkσ = εk + 2ts are the dispersions of the non-interacting electrons

of the A- and B- orbitals respectively, here each orbital has been shifted by a small amount

±2ts from the underlying 2D square lattice dispersion εk = −2t[cos kxa+ cos kya] so that

they are nearly degenerate.

The interaction term is the same as used in the equal-spin triplet-pairing theory and the

derivation of the free energy is similar to that demonstrated in section 4.7, except this time

we are interested only in the non-superconducting case and therefore exclude the ∆σσ terms

in the mean-field Hamiltonian. Again, as discussed previously in sections 4.3.1 and 5.2.1, we

do not include any mean-fields that couple to the Fock-like terms in the Wick expansion of

the interaction and, because ∆σσ is also not included, there are no mean-fields that couple

to the Gor’kov-like terms either. This means the only term from Wick’s expansion of the

interaction that are non-zero are the Hartree-like particle-density terms. Considering this,

the ground state free energy for the normal state theory is:

F0 =
〈

Ĥ
〉

MF

=
∑
mkσ

(εmmkσ − µ)
〈
ĉ†mkσ ĉmkσ

〉
MF
− U

N
∑

k1k2σ

〈
ĉ†Ak1σ

ĉAk1σ

〉
MF

〈
ĉ†Bk2σ

ĉBk2σ

〉
MF

.

The mean-field Hamiltonian is already diagonal so the expectation values are simply given

by the Fermi-Dirac distribution evaluated at the corresponding energy
〈
ĉ†mkσ ĉmkσ

〉
MF

=

n̂F(εmkσ). By making that substitution and expanding the summations the free energy can

be written

F0 = KA↑ + KB↑ + KA↓ + KB↓

− µ(NA↑ + NB↑ + NA↓ + NB↓)

− U

N (NA↑NB↑ + NA↓NB↓),

(6.1)

where

Kmσ =
∑
k

εmmkσ n̂F(εmkσ)

Nm↓ =
∑
k

n̂F(εmkσ).

There are terms in the free energy for each orbital, m, and spin, σ, and each term is

dependent on the corresponding mean-field, φmσ, only. This is unlike the full theory where,

in general, ∆ is not zero and each term of the free energy depends on all three mean-fields for

a given spin: ∆σσ, φAσ and φBσ. This simplification makes it possible to quickly calculate the

free energy as a function of N↑ and N↓. Furthermore we consider only the s = 0 case for two

reasons; firstly because we expect the magnetisation to appear as a result of the non-unitary

triplet-pairing, not the splitting and secondly we can assume the simplification: φAσ = φBσ

(supported by our results from BCS theory). A direct consequence of this assumption is that

NAσ = NBσ = Nσ/2. The free energy then becomes:

F0 = KA↑ + KB↑ + KA↓ + KB↓ − µ(N↑ + N↓)−
U

4N
(
N2
↑ + N2

↓
)
. (6.2)

The total number of particles is given by N = N↑ + N↓ which means the free energy can be

written as

F0 = KA↑ + KB↑ + KA↓ + KB↓ − µN −
U

4N
(
N2
↑ + (N −N↑)

2
)
. (6.3)
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Figure 6.1: Comparison between the normal state free energy interaction term
with and without fixed total particle number. The left hand panel shows how
the interaction term varies with number of up particles N↑ for different fixed total
particle number N. Each curve is minimised at maximum particle imbalance. The
right hand panel shows the interaction term as a function of N↑ and N↓. The different
lines correspond to different fixed particle number and the match the corresponding
lines on the left hand panel. The global minimum appears at maximum filling:
N↑ = N↓ = 2.

Since the free energy in this case is easy to calculate it is not necessary to consider the

self-consistency equations and we progress immediately to discussions of the free energy.

If the interaction is large enough, it will dominate the free energy and the other terms

can be considered negligible; we will call this the infinite U limit. Figure 6.1, left panel,

shows how the interaction term of equation (6.3) behaves as the number of spin-up particles

changes for different total particle number, N. It can be seen that in this limit the free energy

is minimised by having maximally imbalanced spin populations, indicating that the normal

state theory should have a magnetic phase at high U . However, the right hand panel of

figure 6.1 shows how the same term varies as a function of both N↑ and N↓, and it shows

that in the infinite U limit the global minimum occurs at maximum filling: N↑ = N↓ = 2, i.e.

magnetisation is zero.

The problem with using the free energy in the form of equation (6.3) is that it introduces

the total number of particles, N, as a parameter when in fact its value should be determined

by the mean-fields whose values minimise the free energy. Furthermore it does not take into

account the allowed number of particles in each spin population. If at full filling NA↑ =

NA↓ = NB↑ = NB↓ = 1, then the total population is N = 4 and equation (6.3) would find

the free energy minimum corresponds to full spin imbalance: N↑ = 4, N↓ = 0 or vice versa.

However, it is not possible to create such an imbalance because the individual bands are all

full. Of course, if the correct value of N is used and it corresponds to half-filling or less, then

equation (6.3) will give the correct minima, however, those quantities are not known before

the free energy is minimised.

Having just seen how the simplest form of the free energy, equation (6.3), can lead to

incorrect predictions of magnetisation we will now see how the free energy of the normal

state, equation (6.2), varies with interaction. It can be seen in figure 6.2 that the minimum
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Figure 6.2: Normal state free energy. Each panel shows the free energy of the
normal state limit of the equal-spin pairing theory corresponding to a different
value of interaction with fixed chemical potential µ = −2.5. The minimum of the
free energy is always located on the dashed line, corresponding to zero magnetism,
except for a single value of interaction U where there exists four degenerate minima,
two of which correspond to magnetic states.

of the free energy always occurs on the N↑ = N↓ line, i.e. M = 0. There is a phase transition

from a low density phase to a high density phase as interaction is increased. At the transition

point between the two phases there exists four degenerate minima in the free energy, two of

which have a net magnetisation. These four minima appear to be degenerate at exactly the

transition only, either side of it the global minimum corresponds to either the high or low

density state.

Figure 6.3 shows the phase diagram for the normal state theory, obtained by minimis-

ing the free energy, equation (6.2), at different interaction, U , and chemical potential, µ.

Generally speaking the chemical potential controls the particle number, this is seen clearly

at U = 0. As the attractive interaction is increased the system transitions from a low- to

high-density state as expected. There exists a first order phase transition, marked by the

solid red line, which ends in a quantum critical end point, marked by the red circle.

From the right panel of figure 6.3, we see there is no magnetic phase in the normal state.

Two of the four degenerate minima that occur exactly at the transition (see figure 6.2) are

magnetic but occur simultaneously with two non-magnetic states. These are not the same

magnetic states predicted by the naive minimisation of the fixed N free energy, equation (6.3),

and as such do not help identify the missing magnetisation in the non-unitary triplet-pairing
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Figure 6.3: Normal state zero-temperature phase diagram, particle density and
magnetisation. The left panel shows the normal state zero-temperature phase dia-
gram (red lines) superimposed onto a particle density colour map. It shows a tran-
sition between a high- and low-density phase, separated by the red phase boundary,
akin to a gas-liquid transition. The solid red line marks a first-order non-symmetry
breaking phase transition. The red circle highlights a quantum critical end point
that marks the end of the first order transition. The right panel shows the magneti-
sation of the normal state and no magnetisation is observed.

theory. Although interesting, it is beyond the scope of this work to investigate these four

degenerate states, and any magnetism that results from them, any further.

In this section we have seen how a simplified form of the normal state free energy, equa-

tion (6.3), with fixed N gave rise to the expectation of magnetisation at large interaction,

U . By comparing to an alternative form of the free energy, equation (6.2), we see that the

prediction of magnetisation at high interaction comes from a naive minimisation of equa-

tion (6.3) and that in fact when minimised properly there is no magnetisation in the normal

state. This is consistent with the findings from the general equal-spin triplet-pairing theory

(where ∆ can be finite), where the free energy is minimised by having equal mean-fields for

spin-up and spin-down particles and, hence, equal spin populations and no magnetisation.

The above comparison of the two forms of the free energy, equations (6.2) and (6.3), was

inspired by a similar analysis of Stoner theory. Again the free energy is written in terms

of a fixed particle number, N, and the number of spins of a single species Nσ, just like

equation (6.3). This time however, a magnetic state was found to minimise the free energy.

We now briefly examine the Stoner theory to identify the difference that gives rise to the

magnetisation.

6.2 Stoner theory

In this section we will briefly examine Stoner theory [131, 132] in the same way as we just did

for the normal state limit of the equal-spin triplet-pairing theory. Unlike in the last section,

we will see that the free energy is minimised by unbalancing the number of spin-up and spin-

down particles, irrespective of which form the free energy is written in. We will see that a

spin-mixing term in the Stoner theory free energy is responsible for a net magnetisation while
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the absence of such a term in the equal-spin normal state theory gives rise to an additional

↑=↓ symmetry that forbids magnetisation.

We take the Hubbard model [133] as our starting point:

Ĥ = K̂ − µN̂ + V̂ (6.4)

where the Hubbard interaction, V̂, is given by:

V̂ = +US
∑
j

ĉ†j↑ĉ
†
j↓ĉj↓ĉj↑ (6.5)

This is an on-site interaction between electrons of opposite spin. For our study of Stoner

theory we take the interaction strength, US , to be a positive constant, making the interaction

repulsive.

We define the mean-field Hamiltonian as:

ĤMF =
∑
kσ

εkσ ĉ
†
kσ ĉkσ (6.6)

where εkσ = εkσ − µ + φσ and εkσ is the non-interacting electron dispersion. To obtain the

most direct comparison between this Stoner theory (which gives rise to magnetism) and our

normal state theory, section 6.1, (which does not) we include only the φσ mean-fields which

couple to the Hartree-like term of Wick’s expansion. As there are no mean-fields coupling

to the Gor’kov- and Fock-like Wick terms, they do not appear in the free energy as their

expectation values are zero (see section 4.7 for the derivation of the free energy and how

Wick’s theorem applies).

Again, following a similar process as used in section 4.7, the ground state free energy is

obtained and is given by:

F0 =
〈
Ĥ
〉

MF

=
∑
kσ

εkσ

〈
n̂kσ

〉
MF
− µ

∑
kσ

〈
n̂kσ

〉
MF

+
US
N
∑
k1

〈
n̂k1↑

〉
MF

∑
k2

〈
n̂k2↓

〉
MF

.

As usual

N̂ =
∑
kσ

n̂kσ = N↑ + N↓

K̂ =
∑
kσ

εkσn̂kσ

In this case we take the common quadratic dispersion [132], εk↑ = εk↓ = ~2k2

2m , because the

expectation value of kinetic energy term then takes a simple analytic form as we shall now

see.

The kinetic energy written as an energy integral is:

K̂ =
∑
σ

∫ EFσ

0
εg(ε)dε (6.7)

where the density of states for the quadratic dispersion is given by g(ε) ∝ ε
1
2 [132] and

EFσ = εkσ − µ+ φσ is the Fermi energy cut-off for the σ-band. In principle this cut-off can
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be different for each band because of the mean-field φσ, allowing for different numbers of

particles in each band. Performing the integral gives

K̂ ∝
∑
σ

E
5
2
Fσ. (6.8)

The particle number is given by [132]

N =
V kF

3

3π2
. (6.9)

Solving the electron dispersion relation for kF and substituting in to equation (6.9) gives

N =
V

3π2

(
2mEFσ

~2

) 3
2

(6.10)

and then solving for EFσ gives

EFσ =
~2

2m

(
3π2

V

) 2
3

N
2
3 . (6.11)

Finally substituting equation (6.11) into equation (6.8) gives

K̂ = α(N
5
3
↑ + N

5
3
↓ ) (6.12)

where α is a constant consisting of quantities such as the volume, renormalised mass and

Planck’s constant. The kinetic energy written in this form is useful because it has a simple

analytic dependence on the particle numbers.

The free energy can then also be written in terms of the two particle numbers

F = α(N
5
3
↑ + N

5
3
↓ )− µ(N↑ + N↓) + USN↑N↓. (6.13)

Just as we did for the equal-spin theory normal state, section 6.1, we can also write the free

energy in terms of one of the spin populations N↑ and the total number of particles N:

F = α(N
5
3
↑ + (N −N↑)

5
3 )− µ(N↑ + (N −N↑)) + USN↑(N −N↑) (6.14)

As was done for the normal state limit of the equal-spin triplet-pairing theory, the inter-

action term of the free energy is calculated with fixed N (figure 6.4 left panel) and compared

with the same term evaluated as a function of N↑ and N↓ with no restriction on N (figure 6.4

right panel). When US is large enough the non-interacting terms of the free energy are neg-

ligible and the free energy is described by the this interaction term. This is the infinite US

limit of the free energy.

The left panel of figure 6.4 shows that the free energy in the infinite US limit is minimised

by having maximally imbalanced spin populations, i.e. a magnetic state. The right panel

shows the minima is formed of two lines: N↑ = 0 or N↓ = 0. Again the fixed N form of the

free energy, equation (6.14), suffers from the same problems as with the non-unitary triplet-

pairing normal state: N is not known before free energy minimisation and limitations on

particle distribution due to particle filling is not taken into account. Coincidentally however,

for any particle number less than half-filling these problems do not affect the minima and the

two ways of calculating the free energy both predict magnetisation.

It is clear then that writing the free energy in terms of the particle number, equation (6.14),

can be a helpful way to visualise and easily identify the minima however, as we saw in sec-

tion 6.1, its validity is not guaranteed and the free energy should always be minimised without
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Figure 6.4: Comparison between the Stoner theory free energy interaction term
with and without fixed total particle number. The left hand panel shows how
the interaction term varies with number of up particles N↑ for different fixed total
particle number N. Each curve is minimised at maximum particle imbalance. The
right hand panel shows the interaction term as a function of N↑ and N↓. The
different white lines correspond to different fixed particle number and the match
the corresponding lines on the left hand panel. The global minimum is formed
of two lines (N↑ = 0 or N↓ = 0) which correspond to maximally imbalanced spin
populations (except the special point N↑ = N↓ = 0 where there are zero particles in
the system).

restriction to be sure of the result. Let us investigate the general free energy, equation (6.13),

further.

Figure 6.5 shows the free energy, equation (6.13), as a function of N↑ and N↓ at fixed µ

for different interactions US . The white dashed-line is where N↑ = N↓, i.e. magnetisation

M = 0 and the red dots highlight the points were the free energy is minimum. At zero

interaction (top left panel) the non-interacting terms of the free energy dominate and the

system wants to fill both spin bands to the chemical potential. As the interaction increases

the number of particles decreases due to the repulsion, until some critical value of interaction

(1.2 < US < 1.22) is reached, at which point the system goes into a magnetic state by

unbalancing the spin populations.

By repeatedly calculating the free energy and finding its minima as a function of N↑ and

N↓ for different chemical potential, µ, and interaction, US , the phase diagrams shown in

figure 6.6 were obtained. The left panels show the particle density and the right panels show

the magnetisation. The bottom panels show specific cuts through the overall colour maps of

the top panels. It can be seen that, for a given chemical potential, a magnetic phase exists

above a critical value of interaction, Uc. At this critical interaction the system undergoes

a second order phase transition, the phase boundary of which is shown in the upper panels

by the red dots. The phase boundary was determine by the onset of the magnetisation

(which corresponds to breaking of TRS) and the point at which the first order derivative was

maximum.

The magnetic phase arises due to the repulsive interaction US . At zero interaction the

system wants to fill both the spin-up and spin-down bands to the chemical potential however,

at finite interaction filling both spin bands will lead to an energy penalty from the interaction
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Figure 6.5: Stoner theory ground state free energy. Each panel corresponds to a
different interaction, US , the red dots highlight the minimum of the free energy and
the white dashed-line shows where the magnetisation is zero. At U = 0 there is a
single minimum corresponding to a state with zero magnetisation. As interaction
is increased, two degenerate minima emerge, each corresponding to the equal but
opposite magnetisation.

term. For US < Uc the system reduces its filling as US increases, thereby increasing the

contribution to the free energy from the non-interacting terms but reducing the energy penalty

from the interaction term. Just after the critical value of interaction, the system starts

to magnetise. In doing so it reduces the energy penalty from the interacting term and is

also able to increase the particle number nearer to chemical potential, also reducing the

contribution from the non-interacting terms. Eventually the system becomes fully polarised

with all electrons having the same spin giving rise to the maximum possible magnetisation

and requiring that the system be at half-filling.

It was initially thought that non-unitary triplet-pairing would have a similar mechanism

to unbalance the spin populations, giving rise to a net magnetisation. Since the pairing occurs

between particles of the same spin, the free energy can be reduced by maximising the number

of particles of a single spin — the more particles of a single spin species, the more pairing can

be achieved. Of course, this would also increase the contribution to the free energy from the

non-interacting terms. In principle a balance could be reached if the opposite were to occur

in the other spin channel: reduce the number of particles (unfavourable because less pairing),

but improve the free energy by bringing the particle number closer to the chemical potential

again. Such an imbalance in spin species would lead to a net magnetisation M = N↑ − N↓.
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Figure 6.6: Stoner theory ground state phase diagram. The left and right panels
correspond to particle density and magnetisation respectively. The upper panels
show the phase boundary (marked by red dots) where there is a second order phase
transition between a non-magnetic state and a magnetic state with half filling. The
variation of the particle density and magnetisation with respect to the chemical
potential and interaction are shown with the phase boundary. The lower panel
shows cuts at constant µ through the particle density and magnetisation data shown
in in the upper panels. There is a critical value of interaction Uc above which the
system becomes magnetic by undergoing a second order phase transition.

However, we have seen that with the equal-spin triplet-pairing theory this does not happen

and no magnetic state is found in either the normal state limit, section 6.1, or the general

theory, section 5.4.

As discussed in section 5.4, the free energy of the non-unitary triplet-pairing theory does

not have any terms which mix spin labels, hence the free energy can always be written as

the sum of two mathematically identical expressions: F = F↑+F↓, where the only difference

between the two expressions is the spin-label. While in principle this allows for an imbalance

between spin-up and spin-down mean-fields, in practice this is not observed. Indeed, as long

as the free energy can be split into two mathematically identical terms like this then there

can never be a net magnetisation. The Stoner theory free energy on the other hand does have

a spin mixing term, and gives rise to magnetisation. Additionally the interaction is repulsive.

We shall now see that adding a similar, repulsive interaction gives rise to magnetism in the

normal state.



Chapter 6. Magnetism in the equal-spin triplet-pairing theory 107

6.3 Hubbard extension

Previously, in section 5.4, we observed that the equal-spin triplet-pairing theory does not

give rise to magnetism and that, moreover, magnetisation would not arise as long as it was

possible to decompose the free energy into two mathematically identical components for each

spin. In section 6.2 we identified that a repulsive, spin-mixing term would be required in the

free energy (such as the one present in Stoner theory) to give rise to magnetisation. In this

section we introduce an on-site Hubbard repulsion to the equal-spin triplet-pairing theory

and show that it can lead to magnetisation in the normal state.

The Hamiltonian is now given by:

Ĥ =
∑
mkσ

(εmmkσ − µ)ĉ†mkσ ĉmkσ − U
∑
jσ

ĉ†Ajσ ĉ
†
Bjσ ĉBjσ ĉAjσ

+ UH
∑
mj

ĉ†mj↑ĉ
†
mj↓ĉmj↓ĉmj↑ + U ′H

∑
jσσ′

ĉ†Ajσ ĉ
†
Bjσ′ ĉBjσ′ ĉAjσ.

(6.15)

The first two terms are the same non-interacting and attractive on-site interaction terms

previously introduced. UH and U ′H are on-site, intra-orbital and inter-orbital repulsion terms

respectively.

As per the usual steps we will minimise the free energy F0 ≈
〈

Ĥ− ĤMF

〉
MF

+ FMF with

respect to the mean-fields. Before introducing the mean-field Hamiltonian we will use Wick’s

theorem to expand the interaction terms of our Hamiltonian. The Wick’s expansion of each

interaction term is as follows:〈
ĉ†Ajσ ĉ

†
Bjσ ĉBjσ ĉAjσ

〉
MF

=
〈
ĉ†Ajσ ĉ

†
Bjσ

〉
MF

〈
ĉBjσ ĉAjσ

〉
MF

+
〈
ĉ†Ajσ ĉAjσ

〉
MF

〈
ĉ†Bjσ ĉBjσ

〉
MF

−
〈
ĉ†Ajσ ĉBjσ

〉
MF

〈
ĉ†Bjσ ĉAjσ

〉
MF

(6.16)

〈
ĉ†mj↑ĉ

†
mj↓ĉmj↓ĉmj↑

〉
MF

=
〈
ĉ†mj↑ĉ

†
mj↓

〉
MF

〈
ĉmj↓ĉmj↑

〉
MF

+
〈
ĉ†mj↑ĉmj↑

〉
MF

〈
ĉ†mj↓ĉmj↓

〉
MF

−
〈
ĉ†mj↑ĉmj↓

〉
MF

〈
ĉ†mj↓ĉmj↑

〉
MF

(6.17)

〈
ĉ†Ajσ ĉ

†
Bjσ′ ĉBjσ′ ĉAjσ

〉
MF

=
〈
ĉ†Ajσ ĉ

†
Bjσ′

〉
MF

〈
ĉBjσ′ ĉAjσ

〉
MF

+
〈
ĉ†Ajσ ĉAjσ

〉
MF

〈
ĉ†Bjσ′ ĉBjσ′

〉
MF

−
〈
ĉ†Ajσ ĉBjσ′

〉
MF

〈
ĉ†Bjσ′ ĉAjσ

〉
MF

(6.18)

The inter-orbital repulsion term, equation (6.18), is actually identical to the equal spin pairing

attraction, equation (6.16), when σ = σ′. Since we are trying to identify the minimum model

required to produce spontaneous magnetisation, we will examine the simpler case where the

inter-orbital repulsion is negligible compared to the other energies i.e. when U ′H = 0.

With zero inter-orbital repulsion the only new term is the intra-orbital repulsion, equa-

tion (6.17), of which the first Gor’kov-like term will be zero as the equal-spin pairing-theory

only allows pairing between electrons with the same spin. Again we do not include any

mean-fields that couple with the Fock-like term, as such the expectation value of all Fock-like

terms will be zero. This leaves only the Hartree-like term, which couples to the same φmσ

mean-fields that appear in the non-unitary theory. As such the mean-field Hamiltonian takes
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the same form as equation (6.6) if focusing on a normal state theory, or equation (5.17) if the

non-unitary triplet-pairing ∆σσ is included. The same Bogoliubov de Gennes transformation

will apply and the quasi-particle dispersion will remain the same.

The ground state free energy F0 =
〈

Ĥ
〉

MF
is given by

F0 =
∑
σ

{
KAσ + KBσ − µ(NAσ + NBσ)− U

N NAσNBσ −
U

N χσχ
∗
σ

}
+
UH
N (NA↑NA↓ + NB↑NB↓)

The only difference between this expression and the free energy for the non-unitary triplet-

pairing theory, equation (5.33), is the additional Hubbard term, which contains the spin-

mixing term necessary for magnetisation. This term lowers the free energy by unbalancing

the spin populations.

As discussed in section 6.1 we obtain a theory of the normal state of this model by

setting ∆σσ = 0 and, for simplicity, we also set s = 0 allowing us to assume φAσ = φBσ and

NAσ = NBσ = Nσ/2. In this case the ground state free energy is given by:

F0 =
∑
σ

{
KAσ + KBσ − µ(NAσ + NBσ)− U

N NAσNBσ

}
+
UH
N (NA↑NA↓ + NB↑NB↓)

To obtain the phase diagram the usual procedure is followed: calculate the free energy

as a function of N↑ and N↓ for different values of µ, U and UH , then locate the minimum.

At that minimum, calculate the total number of particles, N, and the magnetisation, M , to

determine the difference between high/low density or magnetic phases. Figure 6.7 shows how

the particle density varies as a function of U and UH for different µ, while figure 6.8 shows

the same for magnetisation.

From figure 6.7 we can see the familiar high density phase where the attractive interaction,

U , is dominant and is matched by a zero-magnetisation phase in figure 6.8. This is consistent

with the results from the normal state limit of the equal-spin triplet-pairing theory, figure 6.3.

The density phase diagrams also exhibit a half-filling phase, matched by a magnetic phase in

figure 6.8. This magnetism arises from the Hubbard repulsion interaction, UH , which is absent

in the equal-spin triplet-pairing theory, and gives rise to the spin-mixing term responsible for

the magnetisation in Stoner theory. Finally, there is another low density zero magnetisation

phase whose size depends on the chemical potential, µ. In this phase the non-interacting

terms are dominant and the more negative the chemical potential the lower the Fermi energy

and the less particles there will be in the system.

Using figures 6.7 and 6.8 we can determine the phase diagram, figure 6.9, of the equal-

spin triplet-pairing theory with additional Hubbard repulsion. The phase diagram shows first

order phase transitions (red lines) separating different phases of the system and in some cases

there are also quantum critical end points (red circles). Phase I is non-magnetic and has a low

particle density; phase II is highly magnetic and is at half filling; phase III is non-magnetic

with a high particle density and phase IV has low magnetisation and low particle density.

The first order transitions were determined by the points where there were clear jumps in the

magnetisation and particle-density order parameters and where the first-order derivatives of

those order parameters were divergent. Due to noise in the numerical derivatives, it was not
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Figure 6.7: Normal state zero temperature particle density phase diagram of the
equal-spin triplet-pairing theory with additional Hubbard repulsion term. Each
panel corresponds to a different chemical potential, µ. There exists three different
regions in the phase diagram: a high density region which arises when the attractive
equal-spin triplet-pairing interaction, UH , is dominant; a low density phase where
the attraction is small and the repulsive Hubbard interaction is not strong enough
to magnetise the system and finally a mid-density phase where the system is fully
magnetised and at half-filling.

possible to conclusively obtain any second order phase transitions, although some may exist,

perhaps after the quantum critical end point for example.

In this section we have shown that the addition of a Hubbard repulsive term can lead to

magnetisation in the normal state phase diagram. Since this is a normal state theory, the

magnetism which arises is not caused by the superconductivity and as such does not explain

the spontaneous magnetisation that occurs in LaNiGa2 and LaNiC2. In this thesis we have

only studied the zero-temperature normal-state limit of equal-spin attraction with Hubbard

repulsion and leave the extension to finite temperature and finite ∆ for further work.

6.4 Summary

In the previous chapter we applied a variational mean-field method to the equal-spin pairing

theory proposed by Weng et al. [126]. Although the theory was predicted to display a net

magnetisation in the superconducting state, we found in chapter 5 that this was not the

case. In this chapter we continued our investigation of the equal-spin triplet-pairing theory

to identify why no magnetisation was obtained.
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Figure 6.8: Normal state zero temperature magnetisation phase diagram of the
equal-spin triplet-pairing theory with additional Hubbard repulsion term. Each
panel corresponds to a different chemical potential, µ. The addition of the Hubbard
repulsive interaction gives rise to a magnetic phase. There exists three different re-
gions in the phase diagram: a non-magnetic region which arises when the attractive
equal-spin triplet-pairing interaction, U , is dominant; a second non-magnetic phase
where the attraction, U , is small and the repulsive Hubbard interaction, UH , is not
strong enough to magnetise the system; and finally a magnetic phase where UH is
dominant.

We started by considering the normal state theory of the equal-spin attraction, section 6.1,

and found that the free energy could be written in two different, supposedly equivalent ways:

one in which it depends explicitly on both the number of spin-up electrons, N↑, and spin-

down electrons, N↓ and another where it is written in terms of the total number of particles,

N, and either of the other particle numbers, Nσ. We saw that by using the second form one

must choose, and therefore restrict, the number of particles to N, and when one does this

the resulting free energy is minimised by fully imbalancing the spin populations, hence the

prediction that the theory would lead to magnetisation. However, the number of particles is

not known until the free energy has been minimised and so the choice and restriction of N is

arbitrary and unjustifiable. Moreover such a form only predicts the right minima for systems

of half-filling or less. We saw that to identify the true minima of the free energy one had to

use the first form of the free energy, equation (6.2).

Using a form of the free energy with an explicit dependence on the number of both spins,

the free energy can be properly minimised. By doing just that we saw that the free energy

for the normal state limit of the equal-spin pairing theory was minimised by maximising the
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Figure 6.9: Normal state zero temperature phase diagram of the equal-spin triplet-
pairing theory with additional Hubbard repulsion term. Each panel corresponds to
a different chemical potential, µ. The different phases are separated by first order
phase transitions (red lines) and in some cases there are quantum critical end points
(red circles). Phase I is non-magnetic and has a low particle density; phase II is
highly magnetic and is at half filling; phase III is non-magnetic with a high particle
density and phase IV has low magnetisation and low particle density.

population of both spins, i.e. N↑ = N↓. A consequence of which is the magnetisation must

be zero; consistent with our results from chapter 5.

In section 6.2 we saw that writing the free energy of Stoner theory in terms of a fixed

particle number this time correctly identified the minima of the free energy and was consis-

tent with the minima obtained by the free energy written explicitly in terms of both spin

populations. It seems then that writing the free energy in terms of a fixed total particle

number, N, and one of the other particle numbers, Nσ, is a potentially useful simplification

but is not necessarily reliable.

We identified that the critical aspect missing from the equal-spin triplet-pairing theory

was a spin-mixing term in the free energy. Such a term is present in Stoner theory and it

is this term which lowers the free energy by particle imbalance (magnetisation). In Stoner

theory when a particle is added to one of the spin bands it suffers a kinetic energy penalty

but, if the Stoner criterion is met [132], then the magnetisation associated with the particle

imbalance lowers the free energy enough to compensate. It is easy to see then that removing

as many particles as possible from one spin band and placing as many as possible in the other

maximises the magnetisation and the lowering of the free energy.
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A similar thing happens with the equal-spin pairing theory (either the full theory or the

normal state theory presented here) where putting extra particles in one of the spin bands

causes a kinetic energy penalty but the energy of forming pairs (if ∆ > 0) or simply satisfying

the attractive term (if ∆ = 0) is enough to compensate. The crucial difference here is that

without the spin-mixing term of Stoner theory there is no tendency or requirement to form

an imbalance. If adding some more particles to the spin-up bands allows for the lowering

of the free energy through the extra pairing or attraction, then the same is also true of

simultaneously adding more to the spin-down bands. In this case balanced spin populations

lower the free energy whereas in Stoner theory they destroy the magnetisation which is the

free energy lowering mechanism.

After identifying the spin-mixing term in the Stoner theory free energy as the key feature

missing from the equal-spin pairing theory, we included an additional Hubbard repulsive

interaction, section 6.3. We saw that the zero temperature normal state phase diagram of

such a theory gave rise to both a non-magnetic high particle density phase, caused by the

equal-spin attraction; as well as a magnetic phase, thanks to the new Hubbard repulsion.

We note however that the magnetisation observed with the addition of the Hubbard

repulsion is not the same spontaneous magnetisation detected by µSR in the superconducting

phase. The magnetisation observed here is a result of the Hubbard repulsive term being

dominant. However we propose that with the inclusion of superconductivity this theory

will demonstrate magnetisation in the superconducting state, without requiring excessive

Hubbard repulsion, due to the following argument:

We know from our normal state theory of the model with equal-spin attraction that

the attraction (without pairing) acts to fill both the spin bands simultaneously, and this is

enhanced by including the pairing because more electrons of the same spin mean more (free

energy lowering) pairs. When the Hubbard repulsive interaction is included, and dominant,

the free energy is lowered by imbalancing the spin populations. Unlike with s-wave pairing,

the equal-spin triplet-pairing is actually enhanced with the addition of such a repulsive term

because adding more particles to one of the spin bands increases the amount of equal-spin

pairing in that band (although the greater imbalance directly opposes the action desired by

the equal-spin attraction). From this reasoning it seems that superconductivity can enhance

both the attraction mediated spin balancing or the repulsive spin imbalancing.

It is probable that the system is not going to be in either of the attractive- or repulsive-

dominant regimes but in some intermediate situation. We suspect that when the system

leans slightly towards the repulsive-dominant case then the superconductivity will reinforce

the magnetisation and vice versa, leading to the spontaneous magnetisation observed in µSR

experiments for LaNiGa2.

Furthermore, with the addition of the Hubbard repulsion term, the free energy, section 6.3,

can no longer be separated into the sum of two identical expressions for spin-up and spin-

down. This and the imbalance between spins will give rise to two different values of ∆↑↑
and ∆↓↓. As such the equal-spin triplet-pairing theory with additional Hubbard repulsion

would be a non-unitary triplet-pairing theory. Additionally, ∆↑↑ and ∆↓↓ are still both

isotropic pairing potentials so the energy gap would still be nodeless. The possibility of

gapless superconductivity is still present with the possibility of both spins being gapless,

either one of them being gapless or none of them being gapless.

In conclusion we have seen in this chapter how the addition of a Hubbard repulsive



Chapter 6. Magnetism in the equal-spin triplet-pairing theory 113

interaction to the equal-spin triplet-pairing theory can give rise to magnetisation in the normal

state zero temperature phase diagram. Without such an additional term no magnetisation is

detected. We propose that the addition of such a term will give rise to a net magnetisation

in the superconducting state due to the pairing enhancing the magnetisation and vice versa.

Furthermore two nodeless gaps of different magnitudes would manifest, making the triplet-

pairing non-unitary. We propose therefore that a non-unitary triplet-pairing attraction with

a Hubbard repulsion contains all the necessary ingredients to explain superconductivity in

LaNiGa2.



Chapter 7

Using topological transitions to

engineer quench-resilient wires

In chapter 2 we saw that unconventional superconductors can have unusual symmetry prop-

erties, namely they might lack a centre of inversion or break time reversal symmetry. In

chapter 3 we saw that broken TRS can be a strong indicator of unconventional superconduc-

tivity and can lead to interesting constraints on the allowed-pairing of LaNiC2 and LaNiGa2.

We have spent chapters 5 and 6 discussing, from a theoretical point of view, a novel two-band

equal-spin triplet-pairing theory, to try and explain and unify the conflicting experimental

results in LaNiGa2.

In this chapter we turn our attention to those unconventional noncentrosymmetric su-

perconductors that, as discussed in chapter 2, contain an admixture of singlet and triplet

pairing and, more importantly, host different topological nodal states. We are interested in

whether the different nodal states, particularly the nodal reconstruction state with the great-

est enhancement of specific heat, can be potentially useful in the prevention of quenches in

superconductors.

The question we wish to address in this chapter is: can topological transitions be used to

engineer quench-resilient superconductors?

7.1 Introduction

In this chapter the idea of using topological transition states to engineer intrinsically quench-

resilient superconducting wires is proposed and investigated. In order to understand this idea

two concepts need to be introduced: the topological transition state and a superconductor

quench.

Firstly, a superconductor quench is when a random localised fluctuation leads to the

phase transition of the entire material. In short some small finite region of the superconduc-

tor transitions into the normal state with T > Tc thus losing its superconducting properties.

In this small region the resistivity is suddenly finite and will start generating heat due to the

typically large current passing through it. The heat generated in this region spreads, increas-

ing the temperature in the region surrounding it and causing more of the superconductor to

transition into the normal state. This in turn generates more heat until eventually the en-

tire superconductor has transitioned to the normal state, see figure 7.1. Another mechanism

which can cause quenches is ’flux jumping/slipping’. With this mechanism the interactions

114
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Figure 7.1: Schematic of a superconductor quench. A superconductor (SC) is
surrounded by liquid helium (Coolant) that keeps it in its superconducting state.
Typically there is a large current (I) flowing through it. A random thermal fluctu-
ation causes a small region of the superconductor to transition into its normal (N)
highly resistive state. Due to the large current and high resistance a lot of heat
is suddenly generated. This heat spreads to the surrounding superconductor and
coolant, causing further transition into the normal state, which then generates even
more heat, causing a chain reaction of heating until the entire superconductor goes
normal.

between the flux lines penetrating the normal state of the vortex cores cause random fluc-

tuations in their position. Such fluctuations generate heat and can lead to quenches via a

similar chain of events as with a thermal fluctuation. It is usual therefore to use materials

with ‘strong pinning’ to minimise flux jumping. In this proof-of-concept work we do not

consider the effect of flux pinning and assume it is just another mechanism that can initi-

ate the quench. Engineering applications of superconductors already utilise a whole host of

quench prevention and protection techniques, ranging from electronic detection methods to

current-sharing fail-safe systems [134, 135, 136, 137, 138, 139]. In spite of this, quenches do

occur regularly; the most well-known example being that which led to the shutdown of the

LHC experiment at CERN for months in 2008 [140].

Secondly, the concept of topology in condensed matter, topological transitions in su-

perconductors and their experimental detection via power law temperature dependence of

thermodynamic properties has been discussed in chapter 2. Here the relevant point is that

the topology of the superconducting state has an effect on the specific heat. Unconventional

superconductors can have point- or line-nodes in the quasiparticle energy spectrum where

the energy gap is zero [79], leading to an approximate power law temperature dependence

of the specific heat, C ∝ Tn, below Tc. In contrast, the specific heat of a conventional BCS

superconductor has an exponential temperature dependence below Tc. Point- and line-nodes

give rise to T 3 and T 2 specific heat dependence respectively [79, 90] but it is possible to ob-

tain anomalously-low exponents at topological transitions where nodal lines cross (n ≈ 1.8),

form (n ≈ 1.5) or even form and cross simultaneously (n ≈ 1.4) [82]. At low temperatures,

a lower exponent corresponds to a higher specific heat as well as a faster increase in specific

heat as the temperature is increased.

It is the enhanced specific heat of these topological states that we propose to exploit. As

already mentioned, the problem with quenches is the heat spreading from the normal region to

the surrounding superconducting region. A superconductor with higher specific heat therefore

would be able to absorb more of that heat before itself increasing in temperature. With any

of the topological states, both the value of the specific heat at low temperatures and the

rate at which the specific heat increases with increasing temperature are higher than the
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Figure 7.2: Schematic of a general CICC and the simplified CICC model. The
left figure 7.2a is a schematic the CICC, of which a full simulation consists of heat
equations for the wires and the insulating conduit as well as fluid dynamics equations
for the coolant. The right figure 7.2b is a schematic of our simplified model. There
is a single superconducting wire surrounded by a fixed temperature coolant bath,
requiring a single heat equation to simulate.

conventional BCS case. Of those states, the topological node-reconstruction state offers the

greatest specific heat increase at low temperatures (n=1.4).

Materials that can be tuned to node formation/reconstruction transitions include the non-

centrosymmetric superconductors Li2(Pt,Pd)3B [84] and the high-temperature cobalt-doped

pnictides Ba(Fe1−xTx)2As2 (T=Co, Ni, Pd) [89, 141, 142]. By tuning such superconductors

to these topologically non-trivial states one could engineer a superconductor which is theo-

retically intrinsically quench-resilient. This “passive” approach to quench prevention is quite

different to the existing approach of engineering solutions as mentioned previously. The two

different approaches are entirely complementary.

The work presented in this chapter is a proof-of-concept investigation of this idea. An

existing quench model is modified to simulate different topological states and the tendency

of each state to quench is tested. The hypothesis we wish to verify is that the topological

state with the highest low-temperature specific heat will be most resilient to quenching.

7.2 The simplest quench model

In order to test our hypothesis we need to be able to simulate a quench. A cable-in-conduit-

conductor, CICC, has a core made of superconducting wires with a copper matrix throughout.

It is surrounded by some liquid coolant and enclosed with cladding, see figure 7.2a. We use the

general model for a CICC found in [139] as a starting point to simulate a quench. It consists

of a collection of coupled partial differential equations: a heat equation with source terms for

the wire itself; another heat equation for the cladding, both depending on the temperature

of the coolant; and another set of equations describing the temperature change and fluid

dynamics of the coolant itself. In order to test this idea the CICC model was simplified with

a view to obtain the simplest possible model that captures the relevant physics of a quench.

The greatest simplification one can make to the CICC model is to consider only a heat

equation describing a wire in contact with a bath of helium coolant at constant temperature,

while neglecting all other terms (see figure 7.2b). Our simple model is:

ρcCc
∂T (x, t)

∂t
= κc

∂2T (x, t)

∂x2
− hPc

Ac
(T (x, t)− Th) +

ηcI
2

A2
c

Θ(T (x, t)− Tc). (7.1)
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Here x is the distance along the superconducting wire and t is time; T (x, t) is the temperature

of the superconductor, Tc is its critical temperature and Th is the temperature of the helium

bath; ρc is the superconductor’s density, Cc its specific heat, κc its thermal conductivity, Pc

its wetted perimeter, ηc its resistivity, Ac its cross-sectional area and I is the current passing

through it. h is the heat transfer coefficient between the helium and the conductor. Θ is a

Heaviside step function that switches on when the temperature of the conductor is above the

critical temperature Tc.

Equation (7.1) describes how the temperature of the wire changes with time: the first

term on the right hand side describes the heat flow along the length of the wire; the second

term describes heat transfer with the helium bath; and the third term simulates the Joule

heating that occurs when the superconductor is in the normal state.

By introducing new dimensional scales, equation (7.1) takes a dimensionless form1:

∂T̃
(
x̃, t̃
)

∂t̃
=
∂2T̃

(
x̃, t̃
)

∂x̃2
−
(
T̃
(
x̃, t̃
)
− T̃h

)
+ Θ

(
T̃
(
x̃, t̃
)
− T̃c

)
. (7.2)

Here “˜” marks a quantity that has been made dimensionless by dividing by one of the

following characteristic length, temperature and time scales respectively:

x0 =

(
Acκc
hPc

) 1
2

T0 =
ηcI

2

AchPc
t0 =

ρcCcAc
hPc

. (7.3)

The dimensionless form, equation (7.2), reveals that the specific heat can be rescaled into

the time scale, t0. The implication of this is that a change in the specific heat will change

the time it takes for the evolution of the temperature profile but won’t change the outcome,

i.e. if the initial conditions are such that a quench will occur, then the specific heat controls

over what time scale it happens but a change in its value cannot stop it happening. This

obviously prevents us from testing our hypothesis so in the next section we will introduce a

new temperature dependent form for the specific heat.

7.3 Temperature dependent specific heat

The problem with the previous model is that the specific heat is assumed to be constant when

in reality it is a function of temperature. In order to include this essential piece of physics a

model for the specific heat of a nodal superconductor is introduced:

C̃c

(
T̃
(
x̃, t̃
)
, T̃c

)
= α̃T̃

(
x̃, t̃
)n

Θ
(
T̃c − T̃

(
x̃, t̃
))

+ T̃
(
x̃, t̃
)
Θ
(
T̃
(
x̃, t̃
)
− T̃c

)
(7.4)

where

α̃ =
α

γ
Tn−1

0 (7.5)

and α and γ are material-dependent constants. This model captures the following essential

physics (see figure 7.3):

� The specific heat has a linear temperature-dependence above Tc with some fixed Som-

merfeld coefficient γ. This is appropriate for any Fermi liquid at low temperature [90].

1see appendix C for more information on rescaling equations.



Chapter 7. Using topological transitions to engineer quench-resilient wires 118

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
T

T0

0.0

0.5

1.0

1.5

2.0

2.5

C

γT0

αT 1.5

γT0 αT 2.0

γT0

∆C

γT0

Figure 7.3: Specific heat of the superconductor. The green dotted line shows
the linear Sommerfeld specific heat for normal metals. Our model for the nodal
superconductors’ specific heat is given by the blue dashed line (linear line nodes or
shallow point nodes, exponent 2.0) and the red dot-dashed line (shallow line node,
exponent 1.5). The specific heat is linear above Tc and a power law below. At
low temperatures, a lower exponent gives a higher the specific heat. The jump in
specific heat at Tc is fixed.

� At Tc the specific heat has a jump, ∆C, as predicted by Landau theory for any second-

order phase transition [74]. For simplicity the size of the jump is fixed to the value

predicted by BCS theory: ∆C = 1.43 [14].

� Below Tc, the specific heat has a power law of temperature characterised by the exponent

n which reflects the specific nodal state [90, 79, 82], as discussed above. The coefficient

α is not a free parameter, but is instead fixed by the requirement that the specific heat

has the right value at T−c . Its dimensionless form is α̃ = 2.43T̃ 1−n
c .

Introducing this temperature dependent specific heat into equation (7.1) and rescaling

makes the updated quench model:

C̃c

(
T̃
(
x̃, t̃
)
, T̃c

)∂T̃ (x̃, t̃)
∂t̃

=
∂2T̃

(
x̃, t̃
)

∂x̃2
−
(
T̃
(
x̃, t̃
)
− T̃h

)
+ Θ

(
T̃
(
x̃, t̃
)
− T̃c

)
(7.6)

with the new characteristic scales

x0 =

(
Acκc
hPc

) 1
2

(7.7a)

T0 =
ηcI

2x2
0

A2
cκc

(7.7b)

t0 =
ρcC0x

2
0

κc
(7.7c)

C0 = γT0. (7.7d)
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This model improves on equation (7.2) in that the specific heat is now more physically

accurate with its temperature dependence. It is now possible to model different nodal super-

conductors which cannot be done when the specific heat is assumed constant. Furthermore,

while the characteristic scale for the specific heat, C0, still appears in the time scale, t0, the

dimensionless form of the specific heat, C̃c, still appears in equation (7.6). Therefore the

specific heat no longer simply controls the time scale of the quench, as it did when it was

assumed constant, equation (7.2).

It is assumed that the system will be kept well below Tc as this is the safest regime to

prevent a quench. In this regime a nodal superconductor is preferred as its specific heat rises

faster at low temperatures than that of a fully gapped superconductor. More specifically, the

nodal superconductor with the lowest exponent will be preferred as it will have the fastest

rising specific heat. We can therefore study the effect different topological states can have on

quench behaviour by altering the exponent, n, in the specific heat, equation (7.4).

7.4 Numerical method

The model was solved using a forward in time centred in space (FTCS) algorithm [128] using

either zero-gradient or periodic boundary conditions, written in a combination of Python

and Fortran 90. More details of which can be found in appendix D. The initial temperature

profile of the wire has either a rectangular or Gaussian heat pulse centred at the middle of the

wire with a temperature peak at Tq and a width W with T > Tc, called the hot-zone. At the

edges of the hot-zone are the quench-fronts; positions xq at which T = Tc. The quench-fronts

mark a boundary between the superconducting and normal regions. The time evolution of

the wire’s temperature profile is computed using the FTCS algorithm. A quench is said to

have occurred once the temperature of the entire wire (and the helium in section 7.6) is above

Tc, if the full length of the wire goes below Tc then a quench has been prevented.

Using the FTCS quench solver some combination of Tc, Th, Tq, W , L and n are chosen

such that a quench does occur; then the exponent is lowered to simulate a different topological

state to see if the quench can be prevented. The parameters Tc, Th, Tq, W , and n are physical

parameters which the result of the simulation will depend on, while L, dx and dt are numerical

parameters which should not affect the result. Once a result is obtained it needs to be tested

for convergence, this will reveal if the result is physically accurate or not.

Figure 7.4 shows that decreasing the exponent prevents a quench from occurring. The

numerical parameters dx and dt were chosen such that the numerical stability condition

for the simple heat equation, dt
dx2 ≤ 1

2 , [128] was satisfied. Testing showed that meeting

this stability condition was a good first approximation, and usually sufficient, to achieve

convergence with these numerical parameters. However, as can be seen in figure 7.5, the

quench is prevented by increasing length. This indicates that the quench occurring at small

L, figure 7.4a, is a numerical artefact and not physically correct. Moreover this was observed

for every set of initial conditions tested; including very high, wide initial heat pulses. A cold

enough bath will always prevent a quench, given enough time (by increasing the length of

the wire), no matter the size or intensity of the initial heat pulse. This can be understood

further by considering the long term behaviour of the model.
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Figure 7.4: Comparison between the time evolution of the superconductor’s tem-
perature for different exponents. The initial temperature profile is the orange rect-
angular heat pulse. The different lines show how the heat pulse evolves over time,
from dark blue to yellow as time increases. Figure 7.4a shows a quench occurring
when the exponent is 2.0 while figure 7.4b shows that the quench is prevented when
the exponent is changed to 1.5. Initial conditions T̃h = 0.1, T̃q = 4.0 and T̃c = 1.0.
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Figure 7.5: Convergence test of the quench-fronts position with time for different
lengths. When L̃ is small the quench-fronts move away from the centre and reach
the ends of the wire, thus causing a quench. Increasing L̃ changes this behaviour, the
quench-fronts instead move towards the centre and eventually disappear, indicating
that the quench has been prevented. The quench occurs because L̃ = 10 is a poor
approximation to an infinite wire; it is a numerical artefact.
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7.5 Long term behaviour

Since the simulations cannot be run for infinite time, there is the question of when should

the simulation stop, and whether the results would change drastically given more time. In

general there is no singular answer, it depends on the particular system being evaluated e.g.

in the case of some periodic feature, one would have to observe enough periods to infer that

the behaviour being observed was indeed periodic. This could then be checked with what’s

understood about the model to see if such behaviour makes sense physically.

In this case the temperature profile of the wire was observed to flatten out then slowly

converge on one of two temperatures: the temperature of the bath or some temperature

above Tc. The first case makes sense, if a quench has been prevented and you have a constant

heat bath, then all heat will be absorbed by the bath until the temperature of the wire is

in equilibrium with the bath. The second case is not so obvious, why should there be some

certain temperature above Tc which the wire seeks, rather than just increasing continuously?

We will answer this by considering the long term behaviour of the model.

Using the fact that the temperature of the wire becomes essentially constant along its

length, the heat conduction term in equation (7.6) can be set to zero, since there is no change

in temperature wrt x, giving:

∂T̃
(
x̃, t̃
)

∂t̃
=

1

C̃c

(
T̃
(
x̃, t̃
)
, T̃c

)[Θ(T̃ (x̃, t̃)− T̃c)− (T̃ (x̃, t̃)− T̃h(x̃, t̃))] (7.8)

which means the change in the conductors temperature with respect to time is just given

by the balance between the Joule heating term and the heat transfer term. It is clear from

equation (7.8) that if the temperature of the wire is constant in x̃ and T̃ < T̃c then the Joule

heating term is zero (the entire wire is still superconducting). The only remaining term is a

negative heat transfer term, which is proportional to the difference between the temperature

of the wire and the bath; the wire will continue to transfer energy to the bath until the

difference between the two is zero. i.e. the wire will decrease in temperature until T̃ = T̃h as

observed and expected.

If however, the temperature of the wire is constant in x̃ and T̃
(
x̃, t̃
)
> T̃c then the joule

heating term is equal to 1 (it is scaled by the specific heat but so is the heat transfer term

so the scaling can be ignored) and the conductor will undergo a change in temperature of(
1−

(
T̃
(
x̃, t̃
)
− T̃h

(
x̃, t̃
)))

. By setting the change in temperature to zero, the condition for

a stable temperature can be found:

1−
(
T̃
(
x̃, t̃
)
− T̃h

(
x̃, t̃
))

=
∂T̃
(
x̃, t̃
)

∂t̃
= 0

T̃
(
x̃, t̃
)

= 1 + T̃h
(
x̃, t̃
)
.

So when the temperature is constant along the wire and above the critical temperature, it

tends towards T̃
(
x̃, t̃
)

= 1 + T̃h
(
x̃, t̃
)
, while if

(
1 + T̃h

(
x̃, t̃
))

< T̃c then the temperature will

decrease until it reaches equilibrium with the bath. Whether a quench occurs or not therefore

depends on the temperature of the bath, Th, relative to Tc.

The above argument relies on having a constant temperature along the length of the

wire. In order for a quench to occur the quench-fronts must reach the end of the wire and the

temperature must equalise, all before the wire cools below Tc. Increasing the length increases

the time it takes the quench-fronts to reach the end of the wire and so the hot-zone loses more
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heat to the bath and to the wire through conduction. In this model it is therefore always

possible to prevent a quench by increasing the length of the wire, i.e. a (convergent) quench

can never occur. We will now make a final alteration to this model to obtain the minimum

quench model.

7.6 Minimum quench model

Although the introduction of a temperature dependent specific heat improved the quench

model; convergence tests, figure 7.5, and the long-term limit, section 7.5, show it still does not

contain all the relevant physics to simulate a quench. The problem is that the temperature

of the heat bath is assumed constant (and well below Tc). When this is the case, given

enough time (equivalently length), the system will always equalise with the bath. A variable

temperature heat bath is required to allow the temperature of the overall system to increase

and ultimately quench. The requirement of this addition is not entirely surprising since

it is stated in [139] that the convection of helium is the dominant mechanism of quench-

front propagation. As already mentioned, in [139] this mechanism is included by multiple

coupled hydrodynamics equations and is too complicated and computationally intensive for

our purposes, so we consider a simpler way of describing our heat bath.

The simplest way of describing a heat bath that can vary in temperature is

∂T̃h
(
x̃, t̃
)

∂t̃
= β

(
T̃
(
x̃, t̃
)
− T̃h

(
x̃, t̃
))

(7.9)

where Th(x, t) is the temperature of the helium bath which now depends on position, x, and

time, t. β is a dimensionless constant that depends on the design of the CICC:

β =
ρcC0Ac
ρhChAh

, (7.10a)

which in addition to the other characteristic scales, equations (7.7a) to (7.7c), is used to make

equation (7.9) dimensionless. The material properties are the same as before but this time

the subscripts c and h differentiate between the conductor and helium respectively.

Equation (7.9) describes the change in the temperature of the helium bath with respect

to time. It is given by a single heat transfer term which acts between the helium and the

conductor — there are no terms describing the fluid dynamics of the liquid coolant. This

simplification decreases computational complexity but maintains the effect of the helium

increasing in temperature and helping to propagate the quench.

Together equation (7.6) and equation (7.9) form the ‘quench model’ — a system of coupled

partial differential equations that describe the minimum physics necessary to simulate a

quench: a description of how the temperature in the superconductor changes with time; a

heat bath that can change in temperature and a specific heat that changes with temperature

and nodal state being modelled.

7.7 Results

The quench model was solved numerically for different initial conditions to see if a quench

occurred or not. Figure 7.6 shows an example of the wire’s temperature profile evolution

during a quench. In this case the initial Gaussian heat pulse expands until the full length
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Figure 7.6: Time evolution of a quench. The red dashed line is the critical tem-
perature, the blue solid line is the temperature profile of the superconductor. Each
panel shows the temperature profile at a different time, with time increasing from
top to bottom. The final panel shows the characteristic feature of a quench: the
entire length of the superconductor is above Tc.

of the wire is above Tc, at which point it has quenched. The simulation continues until

the helium bath is above Tc to ensure that there is no possibility that the wire could cool

down again given enough time. In the non-quenching case, the width and height of the

initial Gaussian heat pulse decrease until the pulse disappears and the entire wire is below

Tc. Note how with this model the hot-zone is able to increase and expand indefinitely, and

is not restricted to some specific temperature as was the case with the constant-temperature

helium bath.

Time evolution of the quench-fronts shows the expansion or contraction of the length of

the hot-zone, see figure 7.7. If the initial conditions were correct for a quench to occur then

the hot-zone will increase in temperature and expand; the quench-fronts will move outwards

until they reach the ends of the wire. If however, the initial conditions were not sufficient for

a quench, the quench-fronts will move towards the centre of the wire; reducing the length of
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Figure 7.7: Time evolution of the quench-front. The solid blue line shows the
position of the quench-front as a function of time. The length of wire between the
quench-fronts is above Tc. The left panel shows a quench and the right shows a
quench being prevented.

the hot-zone while it decreases in temperature until the entire wire is below Tc. Additionally

the quench-fronts are used in determining convergence of the simulations with respect to the

numerical parameters: the number of spatial divisions of the system, dx, the time step, dt

and length used to simulate an infinite wire, L.

Figure 7.8 shows how the time evolution of the quench-fronts vary with increasing L

and that the quench model produces quenches that are not just numerical artefacts. Before,

with a fixed temperature heat bath, increasing L would see the quench behaviour disappear,

whereas now the increase in L produces the same behaviour. In convergence tests, all parts

of the plot which stay the same as the numerical parameter, L, is improved (increased) are

convergent, physical results. Anything that changes is a numerical artefact. The inset of

figure 7.8 shows such a numerical artefact, where there is a kink in the quench-front as it

approaches the end of the wire, that disappears when L is increased.

Different topological states are modelled by changing the exponent, n, in the specific heat

equation (7.6). For each topological state a ‘phase boundary’ is constructed as a function

of W , Th and Tq; see figure 7.9. The parameter space is split into two regions, one which

causes a quench and another which does not. All phase boundaries converge to some critical

width Wc which is Th-dependent. For W < Wc the phase boundaries separate and the area of

parameter space that causes quenches changes with exponent. The highest exponent has the

largest quench-causing area of parameter space whereas the lowest exponent (n = 1.4 shallow

line node crossing state) has the lowest quench-causing area. This smaller area in parameter

space means there are fewer combinations of parameters that cause quenches, thus making

the lower exponent state more resilient.
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Figure 7.8: Convergence of the quench front with varying wire length. The quench
persists after increasing L, with the evolution of the quench-front for smaller L being
reproduced by the quench-front for the larger L. There are numerical artefacts near
the ends of the wires where there is a kink in the quench-front, see inset.
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Figure 7.9: Quench parameter space phase-diagram. The phase diagram separates
the parameter space into two quench and non quench regions. Each line corresponds
to a different nodal state with the solid blue line characterised by n = 2.0, the dashed
green line by n = 1.5 and the dotted red line by n = 1.4. Above the line is the
quench region, below it quenches are prevented. Here T̃h = 0.1T̃c but the plot stays
qualitatively the same for different T̃h, except the width at which the lines join is
T̃h dependent. The lower the exponent, the smaller the area of the quench-causing
region and the more resilient the system is to quenching.
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7.8 Conclusion

In this chapter we have investigated the effect specific heat has on the occurrence of quenches.

Specifically, we have concentrated on the difference between specific heat power laws, corre-

sponding to different nodal states with n=2 corresponding to ordinary line nodes and n=1.5,

1.4 corresponding to topological transition states [82, 89]. It is shown that the lower the

power law exponent, the higher the specific heat and the greater the quench resilience. It

is assumed that the temperature is low so that the power law approximation is valid. In

this regime the power law specific heat is higher than the exponential BCS specific heat, so

even the worst of the test cases would offer an improvement over BCS should the optimum

topological state not be achievable.

In summary, we have asked whether a nodal superconductor could be made more resistant

to quenches by tuning its parameters to a node-reconstruction topological transition point.

Our calculations, using a minimum model, show that this is indeed the case although the effect

is small. This concept has the potential to enhance the quench resilience of superconductors,

especially if used in conjunction with current quench detection and mitigation techniques,

however, detailed materials modelling will be required to ascertain whether the effect could be

useful for applications. Possible candidates include the non-centrosymmetric superconduc-

tors Li2(Pt,Pd)3B [84] and the high-temperature cobalt-doped pnictides Ba(Fe1−xTx)2As2

(T=Co, Ni, Pd) [89, 141, 142]. This could lead to the first applications of topological transi-

tions in the fields of energy distribution, storage and magnetic field generation.



Chapter 8

Summary

In this thesis we have discussed two main topics: a two-band equal-spin triplet-pairing theory

that was proposed to explain the experimental results of LaNiGa2 and the possibility of using

the topological transition state to engineer quench-resilient wires. We started our discussion

of superconductivity in chapter 1, where a brief historical summary of the key discoveries and

concepts was provided.

In chapter 2 we focused on the fundamental microscopic aspects of superconductivity.

We saw how in the framework of BCS theory superconductivity is enabled by the effective

attraction between electrons due to the exchange of virtual phonons, and that such attraction

causes pairs of electrons to form bound states. The superconducting state is described as a

coherent state formed by a macroscopic, yet ill-defined, number of these bound pairs all with

the same global phase, θ. We discussed the idea of symmetry breaking, the prime example of

which is the adoption of a well defined phase, θ, by all the electron pairs upon entering the

superconducting state.

We saw that superconductors can be divided into two classes: conventional and uncon-

ventional, where conventional superconductors can be described by BCS theory and uncon-

ventional ones cannot. We learned that unconventional superconductors can have additional

interesting properties such as: the breaking of additional symmetries, particularly breaking

of time reversal symmetry; topological properties, specifically different nodal gap topologies

and transitions between them; and the possibility of singlet triplet mixing in the absence of

centre of inversion symmetry.

We finished our discussion of the fundamental microscopic aspects of superconductivity by

introducing some of the experimental techniques of particular relevance to this thesis. We saw

that measurements of a superconductor’s thermodynamic properties can be used to determine

the superconducting gap structure and that µSR experiments, as well as measurements of

the Kerr effect and the samples magnetisation, can be used to determine if TRS is broken.

In chapter 3 we looked in detail at two nickel-based superconductors: LaNiC2 and

LaNiGa2. We began by reviewing the literature and found that there are conflicting ex-

perimental and theoretical results for both materials. Both break TRS upon entering the

superconducting state, as detected by µSR, and both have low symmetry. A result of the low

symmetry is that there are only a small number (12) of possible symmetry-allowed pairing

states and only four of those twelve break TRS. All 4 TRS breaking states are non-unitary

triplet-pairing states.

During our review we saw multiple experimental and theoretical reports that found ev-

127
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idence for both conventional and unconventional superconductivity, details of which can be

found in chapter 3, but we concluded our review as follows. The current situation seems to be

that LaNiC2 and LaNiGa2 are both TRS-breaking unconventional superconductors. Older

thermodynamic measurements that find conventional full gap superconductivity seem to be

better explained by the more recent observation of two-gap behaviour in both materials. Al-

though most recent results suggest that LaNiC2 is nodal with a coexistent antiferromagnetic

phase emerging with increased pressure, no such result has yet been reported for LaNiGa2.

Therefore in order to explain the superconductivity in LaNiGa2 a theory would need to be

able to produce two full-gaps and be non-unitary triplet-pairing. A two-orbital non-unitary

triplet-pairing theory was proposed in [126] that gave rise to two full gaps. This theory was

the motivation and starting point for chapters 5 and 6 of this thesis.

We introduced the variational mean-field method in chapter 4 by applying it to the well

known case of conventional singlet pairing. We demonstrated the main steps and mathemat-

ical techniques of the theory, starting with the Fourier transformation of the non-interaction

part of the Hamiltonian and the introduction of the non-interacting electron dispersion. As

the interacting term of the Hamiltonian was quartic in creation/annihilation operators, we

could not solve it via simple diagonalisation. Instead we introduced the concept of the varia-

tional mean-field Hamiltonian, an exactly solvable Hamiltonian whose eigenvalues and eigen-

vectors approximate those of the original Hamiltonian. We introduced variational mean-field

Hamiltonian along with its mean-fields and solved it using a Bogoliubov de Gennes transfor-

mation.

We demonstrated how to derive the self-consistency equations and that these equations

yield the stationary points of the free energy when solved. Additionally we saw that the

expressions for the self-consistent gap equation, quasi-particle energy spectrum and quasi-

particle amplitudes were the same expressions as obtained in BCS theory, as expected.

We discussed two methods of solving the self-consistency equations: a contour method

which solved only the gap equation and an iterative method that was able to solve all self-

consistency equations simultaneously. We saw that solving the self-consistent gap equation

by the contour method gave a good first approximation to the possible values the pairing

potential, ∆, could take, however without self-consistently determining the particle-density

mean-fields, φ, the results were not necessarily correspondent with the true stationary point

of the free energy. We found by solving all self-consistency equations simultaneously via

the iterative method the same qualitative results were obtained, but this time they should

correspond to the actual stationary points of the free energy.

We then demonstrated how to derive the free energy and described the hill descent algo-

rithm that we used to minimise it. By minimising the free energy directly we did indeed find

the same results as obtained by iteratively solving the self-consistency equations. Further-

more we were able to obtain the familiar results from BCS theory regarding the fixed ratio

of ∆ to Tc and the equivalence of the spin-dependent mean-fields, i.e. ∆0 = 1.76kBTc and

φ↑ = φ↓.

By applying the variational mean-field method to the well known case of BCS supercon-

ductivity we were able to demonstrate and focus on the technical steps and mathematical

techniques. Obtaining the well known results of BCS theory suggests that the technique

works and that we applied it correctly.

In chapter 5 we applied variational mean-field theory to the two-band equal-spin triplet-
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pairing theory of [126]. We began by selecting a non-interacting electron dispersion for a

two-dimensional square lattice with nearest neighbour hopping. We imposed a small bare

splitting, s, between the dispersions for each orbital so that the Fermi surface of this toy model

contained features that were qualitatively similar to that of LaNiGa2. We then introduced the

mean-field Hamiltonian, ĤMF, and its mean-fields and again solved it using the Bogoliubov

de Gennes transformation.

We derived the self-consistency equations and found that, just like with the BCS case,

solving the gap-equation with the contour method found multiple solutions when the effective

splitting, s∗σ, was finite. Unlike with the BCS case where the effective splitting was always

zero, in this theory it was expected, and indeed observed, that the effective splitting would

be finite in some cases. The possibility of multiple non-trivial solutions to the gap equation

therefore was of physical significance.

However, by solving all the self-consistency equations simultaneously using the iterative

method, multiple solutions were not obtained. Instead the value of Tc was greatly suppressed

with finite bare splitting, s, and the superconducting transition appeared first order, with ∆

suddenly jumping to a finite value at Tc.

To understand the inconsistency between the two methods of solving the self-consistency

equations, the free energy was derived and investigated. First, the expressions for the free

energy were used to evaluate the free energy surrounding the stationary points obtained by

the self-consistency equations. It was found that in some cases, when solving iteratively,

the self-consistency equations were unable to find the free energy minima and were instead

converging on a maximum stationary point. From this we learned that one cannot always

rely on the self-consistency equations to obtain physically correct results. This seems to be

the case particularly when there may be multiple solutions to the gap-equation and the free

energy necessarily has an extra (compared to the simple BCS case) maximum point.

By directly minimising the free energy using a hill descent algorithm we could be sure that

the results obtained were minimum points only. Doing so revealed that, with finite splitting,

this two-band equal-spin triplet-pairing theory contained both first order and second order

superconducting transitions, as predicted by solving the self-consistent gap-equation with the

contour method.

At zero splitting (the BCS-like limit) the theory behaved just like BCS theory, as expected.

There is a single, second order superconducting phase transition at a critical temperature,

Tc, given by the familiar BCS ratio ∆ = 1.76kBTc. With finite splitting there is an energy

difference between the two orbitals, as such there is an extra energy barrier to overcome in

order to form Cooper pairs. This manifests in a general suppression of Tc, as expected. In

addition, there exists a critical interaction strength, Uc, below which superconductivity is

fully suppressed because the energy barrier caused by the splitting is too large.

Just above the critical interaction strength, Uc, we observed a kink in the phase boundary,

see figure 5.13. This kink shows the possibility of re-entrant superconductivity, whereby the

normal state emerges as the temperature is increased but then gives way once again to the

superconducting state as the temperature is increased further. This is an instance of order-

by-disorder. The phase boundary exhibits both second order phase transitions, where ∆

increases continuously, and first order phase transitions, where there is a discontinuous jump

in ∆.

In addition to the fascinating phenomenon of re-entrant superconductivity, the two-band
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equal-spin triplet-pairing theory displays gapless superconductivity just below the second

order phase transition. Here ∆ is finite but not yet large enough to open a full gap in the

energy spectrum of the quasi-particles. Indeed, the observation of a full gap arising from a

triplet-pairing theory is another key result, since a common argument against non-unitary

triplet-pairing in LaNiGa2 is that it must be nodal (and therefore incompatible with a two-

gap model). We thus confirm, at a self-consistent level, the findings of Weng et al. [126] who

proposed such a theory would give rise to two full gaps.

However, while Weng et al. [126] proposed that the equal-spin triplet-pairing theory would

give rise to two full-gaps of different magnitudes, our results indicate that the two gaps are

always the same, i.e. ∆↑↑ = ∆↓↓. Two consequences of which are: this equal-spin pairing

theory is a unitary-triplet pairing theory, rather than a non-unitary one; and this theory

contains no net magnetisation in the superconducting state (or anywhere else in the phase

diagram).

In order to successfully explain the results of LaNiGa2 a theory must: be a non-unitary

triplet-pairing theory, have two different nodeless gaps and display a magnetisation in the

superconducting state. Again we note that our theory did not include any effects due to

spin-orbit coupling, as such it is not known whether its inclusion would give rise to the net

magnetisation and non-unitary triplet-pairing that we are looking for. Our results show

therefore that the two-band equal-spin triplet-pairing theory cannot, in its current form,

explain LaNiGa2.

Having identified that the equal-spin triplet-pairing theory is unitary and non-magnetic,

we investigated further the lack of magnetisation in chapter 6. We started by considering

the normal state limit (∆ = 0) of the two-band equal-spin triplet-pairing theory. We showed

how the free energy could be written in two, supposedly equivalent, ways: either explicitly in

terms of both the number of up- and down-spins, N↑ and N↓, or in terms of the total number

of particles, N, and one of the the other particle numbers, Nσ. We showed that the minimum

of the free energy depended on which form it was expressed in, with one form predicting a

magnetic ground state and the other predicting a non-magnetic one. This is because when

the free energy was written in terms of both spin populations, the full parameter space was

explored. However, when written in terms of the total particle number and one of the other

spin populations, the free energy being considered was restricted to some arbitrary choice of

total particle number. On the other hand, we showed how when one does the same thing for

Stoner theory, both forms of the free energy predict the same minimum.

We identified the key difference between Stoner theory and the equal-spin pairing theory

was that in Stoner theory there is a particle spin-mixing term in the free energy due to the

repulsive interaction term. Such a term lowers the free energy by creating a particle imbalance

(net magnetisation). This imbalance of course causes a penalty in the kinetic energy but,

if the Stoner criterion is met, then the interaction term is most significant and it is more

favourable to create the imbalance at the cost of the kinetic energy.

We saw how a similar interplay between the kinetic energy and interaction terms existed in

the normal state of the equal-spin pairing theory, but in this case the effect of the interaction

term was to fill up the spin bands. Because the free energy has no spin mixing terms and

can be split into two identical expressions for each spin, there is no tendency or requirement

that the system create a spin imbalance. The equivalent of the Stoner criterion in this theory

marks a gas-liquid transition, where the system goes from a low-density to high-density
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(always non-magnetic) phase as interaction is increased.

Motivated by the spin-mixing term in Stoner theory, we added an intra-orbital Hubbard

repulsion term to the two-band equal-spin triplet-pairing theory. We showed that the addition

of such a term resulted in a theory whose zero temperature ground state contained both a

non-magnetic high density phase, caused by the equal-spin attraction, as well as a magnetic

phase, due to the Hubbard repulsion. We noted how the observed magnetisation was not the

same as that detected by µSR, instead arguing that if the system leaned slightly towards the

repulsive-dominant regime, then the onset of the pairing at the superconducting transition

would enhance the tendency to form an imbalance, causing a net magnetisation.

Additionally we saw that with the inclusion of the Hubbard repulsive term, the free

energy could no longer be separated into the sum of two identical expressions for spin-up

and spin-down. This and the imbalance between spins will give rise to two different values

of ∆↑↑ and ∆↓↓, making this a non-unitary triplet-pairing theory. In addition, the pairing

potentials, ∆σσ, will still both be isotropic and nodeless. Therefore, with the addition of a

Hubbard repulsion term, the two-band equal-spin triplet-pairing theory is expected to contain

everything necessary to explain superconductivity in LaNiGa2. In future work it would be

desirable to minimise the free energy of the full theory (rather than just the zero temperature

normal state) to see if two different gaps arise alongside a net magnetisation.

In chapter 7 we investigated the effect specific heat has on preventing quenches. Specifi-

cally, we concentrated on the effect of different specific heat power laws corresponding to dif-

ferent topological nodal states, with exponents n = 2 for ordinary line nodes and n = 1.5, 1.4

for topological transition states [82, 89]. We saw how the enhancement of both the value of

the specific heat and the rate at which it increased with temperature are greater in nodal

states with lowest exponents.

To test our hypothesis we performed numerical simulations of a quench using a minimum

model that captured the necessary physics. We assumed the temperatures would be kept

well below Tc where the power law approximation of the specific heat is valid. Our results

show that the lower the exponent, the more resilient the superconducting wire is to quenches,

although the effect is small.

The topological transition state has the lowest exponent, n = 1.4, and as such is the

most quench-resistant. Even so, any of the specific heat power laws at low temperature are

an improvement over the exponential specific heat so even the worst test case would offer

an improvement. This concept has the potential to enhance the quench resilience of super-

conductors, especially if used in conjunction with existing quench detection and prevention

techniques. In this proof-of-concept work a simplified quench model was used. As such, more

detailed materials modelling will be required to determine exactly how useful this effect would

be for applications.

In this thesis we have discussed two topics related to unconventional superconductivity.

We first looked at the interesting case of unconventional superconductivity in LaNiGa2 and

saw that in order to explain it, a theory would require the following properties: it must

be non-unitary triplet-pairing, possess two full gaps and display net magnetisation in the

superconducting state. We found that with the addition of a Hubbard repulsive term, the

two-orbital equal-spin triplet-pairing theory proposed by Weng et al. [126] should possess the

properties required to describe the superconductivity in LaNiGa2.

Secondly we answered the question of whether the nodal topological-transition state could
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be potentially useful in engineering quench-resilient superconducting wires. Using numerical

simulations of a minimum quench model we found that the power law specific heat associ-

ated with the topological transition state provided an enhanced specific heat that made the

superconducting wire more resilient to quenching, although the effect was small.



Appendix A

Diagonalising a Hamiltonian

In this section we will demonstrate the procedure of diagonalising a Hamiltonian written in

matrix form. We start by showing how to diagonalise a matrix, using a 2 × 2 matrix as

an example, and show that the transformation matrix is constructed by the eigenvectors of

the Hamiltonian. We then demonstrate how to obtain the eigenvalues of the Hamiltonian

matrix and how those are used to construct the diagonal matrix. We then show how the BCS

transformation matrix gets its well known form as a direct consequence of the requirement

that it be unitary. We finish by bringing all these things together and show how they lead to

the diagonal form of the BCS mean-field Hamiltonian, and how this gives rise to Bogoliubov

de Gennes transformation.

A.1 Diagonalising a matrix

In this thesis our Hamiltonians are Hermitian, they have real eigenvalues and are a type of

normal matrix [143]. A matrix A is normal if AA∗ = A∗A and normal matrices can be

diagonalised by unitary transformations. If a matrix A can be diagonalised it can be written

in the form

A = MDM∗ (A.1)

where D is a diagonal matrix and in this case, because A is normal, M is unitary. A matrix

M is unitary if MM∗ = I where M∗ is the complex transpose of M and is obtained by

taking the transpose and complex conjugate of M . I is the identity matrix. The process

of diagonalising a matrix requires finding the unitary matrix M , its inverse M∗ and the

diagonal matrix D.

By multiplying both sides of equation (A.1) by M we obtain:

AM = MD

which written more verbosely may look like:(
W11 W12

W21 W22

)(
M11 M12

M21 M22

)
=

(
M11 M12

M21 M22

)(
D11 0

0 D22

)
.

which is equivalent to (verify by performing the above matrix multiplication):(
A

(
M11

M21

)
A

(
M12

M22

))
=

(
D11

(
M11

M21

)
D22

(
M12

M22

))
.
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Comparing the elements of each matrix gives two eigenvalue equations:

A

(
M11

M21

)
= D11

(
M11

M21

)

A

(
M12

M22

)
= D22

(
M12

M22

)
.

These two eigenvalue equations tell us that the columns of the transformation matrix M are

the eigenvectors of the matrix A and that D11 and D22 are the eigenvalues of the first and

second columns of M respectively.

A.2 Obtaining the eigenvalues

To obtain the eigenvalues of A we use the characteristic equation:

det(A− λI) = 0 (A.2)

which forms an n-order polynomial in λ, the roots of which are the eigenvalues of A.

Let us take our BCS mean field Hamiltonian, equation (4.23), as an example. We define

A =

(
εkσ −∆

−∆∗ −εkσ

)
and seek to diagonalise A. First we use the characteristic equation,

equation (A.2), to find the eigenvalues:∣∣∣∣∣
(
εkσ −∆

−∆∗ −εkσ

)
−
(
λ 0

0 λ

)∣∣∣∣∣ = 0∣∣∣∣∣
(
εkσ − λ −∆

−∆∗ −εkσ − λ

)∣∣∣∣∣ = 0

(εkσ − λ)(−εkσ − λ)− |∆|2 = 0

λ2 − ε2kσ − |∆|2 = 0

λ± = ±
√
ε2kσ + |∆|2.

Having obtained the eigenvalues the diagonal matrix D can now be defined:

D =

(
λ+ 0

0 λ−

)
. (A.3)

Next we need to define the transformation matrix M that will diagonalise A.

A.3 Unitary Transformation Matrix

In section 4.4 the transformation matrix is simply defined as

M =

(
uk −v∗k
vk u∗k

)
. (A.4)

This matrix, or the resulting relations between the γ̂ -operators and the ĉ-operators, are

typically just given in a presentation of BCS theory without any derivation. This can lead

to confusion to those new to the subject and does not explain how one would obtain M for
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other theories. Here we will go through the derivation of such a matrix and show that its

structure comes simply as a result of using a unitary transformation.

In general a transformation matrix simply looks like a 2×2 matrix with no other structure

between the elements i.e.

M =

(
a b

c d

)
M∗ =

(
a∗ c∗

b∗ d∗

)
Since M is a unitary matrix, the definition of which is MM∗ = I, we obtain(

aa∗ + bb∗ ac∗ + bd∗

ca∗ + db∗ cc∗ + dd∗

)
=

(
1 0

0 1

)
.

This gives us four equations:

aa∗ + bb∗ = 1 (A.5a)

cc∗ + dd∗ = 1 (A.5b)

ac∗ + bd∗ = 0 (A.5c)

ca∗ + db∗ = 0 (A.5d)

From equations (A.5c) and (A.5d) we get b = −ac∗

d∗ and b∗ = − ca∗

d which, when substituted

into equation (A.5a), gives

aa∗ +
aa∗cc∗

dd∗
= 1

aa∗(dd∗ + cc∗) = dd∗

aa∗ = dd∗.

We have used equation (A.5b) to reach the last stage. By writing equations (A.5c) and (A.5d)

in terms of d rather than b, substituting into equation (A.5b) and following a similar line of

reasoning one obtains cc∗ = bb∗.

By requiring this general 2× 2 matrix M be unitary we obtain the conditions:

aa∗ = dd∗

cc∗ = bb∗

bd∗ = −ac∗

db∗ = −ca∗

which, when substituted into our product matrix gives

MM∗ =

(
aa∗ + cc∗ ac∗ − ac∗
ca∗ − ca∗ cc∗ + aa∗

)
=

(
aa∗ + cc∗ 0

0 cc∗ + aa∗

)
=

(
1 0

0 1

)
.

One possible way of decomposing this product matrix is by

M =

(
a −c∗
c a∗

)
M∗ =

(
a∗ c∗

−c a

)
(A.7)

which has the same structure as the u’s and v’s in equation (A.4). There are of course other

ways to decompose the product MM∗ which is how and why the transformation may vary

between different demonstrations of BCS theory. The point here is that M can be obtained

for any n × n Hamiltonian, not just BCS theory, by parametrising a general n × n unitary

matrix.
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A.4 The diagonalised Hamiltonian

Now that we have obtained D and M we can replace A = MDM∗ in the mean field

Hamiltonian, equation (4.23), and write as:

ĤMF
BCS −

∑
k

εkσ =
∑
k

C∗MDM∗C

where we have defined C =

(
ĉk↑
ĉ†
k̄↓

)
as the vector of creation/annihilation operators and C∗

is its conjugate transpose. Defining new fermionic operators γ =

(
γ̂a

γ̂†b

)
we can obtain the

relations between the two operator types using γ = M∗C and γ∗ = C∗M . These relations

are known as the Bogoliobov transformations and give rise to equation (4.25). The inverse

relations Mγ = C and γ∗M∗ = C∗ give equation (4.26).



Appendix B

Non-unitary triplet-pairing

diagonalisation transition matrix

In this section we shall describe how the transition matrix for the equal-spin triplet-pairing

theory, U , equation (5.19), was obtained.

In appendix A.3 we showed how the particular form of the transition matrix for BCS

theory arose from the requirement that it be a unitary transition matrix. This time however,

because the transformation matrix is a 4 × 4 matrix, the requirement that it be unitary is

not enough to be able to usefully parametrise it.

We used the computer algebra system ‘Maxima’ (with GUI wxMaxima) [144, 145] to

diagonalise the mean-field Hamiltonian matrix, HMF
kσ , and obtain the eigenvalues and eigen-

vectors. The problem with this method is that each eigenvector is determined independently

of the others so there is an arbitrary complex phase factor between them, making the ex-

pressions unnecessarily cumbersome. However, we note that some elements have the same

expression and there are some zeros in the eigenvectors simplifying the the transition matrix

to:

U =


akσ bkσ 0 0

ckσ −dkσ 0 0

0 0 akσ bkσ
0 0 −ckσ dkσ

 (B.1)

where we have used the notation akσ, bkσ, ckσ and dkσ in place of the cumbersome expressions

produced by Maxima.

The four eigenvalues of HMF
kσ are given by equation (5.23). An important property is that

some of them are negatives of each other:

λakσ = −λdkσ (B.2a)

λbkσ = −λckσ. (B.2b)

This property allows us to link certain eigenvectors as follows: if an eigenvector Vaσ has

an eigenvalue λakσ then the negative eigenvalue λdkσ has the same eigenvector but with the

elements reversed and conjugated. Let us prove this now.

We consider the Hamiltonian in matrix form, HMF
kσ , one of its eigenvector/eigenvalue

pairs and the eigenvector equation:

HMF
kσ Wakσ = λakσWakσ (B.3)
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The Hamiltonian, HMF
kσ , and eigenvector, Wakσ can be written in general as

HMF
kσ =


H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

 Wakσ =


W1

W2

W3

W4

. (B.4)

Multiplying out equation (B.3) and leaving blank the terms that are zero gives

H11W1 +H12W2 + + = λakσW1

H21W1 +H22W2 + + = λakσW2

+ +H33W3 +H34W4 = λakσW3

+ +H43W3 +H44W4 = λakσW4

One symmetry of HMF
kσ is that the secondary diagonal divides the matrix into a top left block

and bottom right block whose elements are negatives of each other, e.g. H11 = −H44. Using

this symmetry we can write HMF
kσ equivalently as:

−H44W1 −H34W2 − − = λakσW1

−H43W1 −H33W2 − − = λakσW2

− − −H22W3 −H12W4 = λakσW3

− − −H21W3 −H11W4 = λakσW4

Another property of HMF
kσ is Hermiticity, HMF

kσ =
(
HMF

kσ

)T∗
. This means we can take the

complex conjugate and transpose, giving:

−H∗44W1 −H∗43W2 − − = λakσW1

−H∗34W1 −H∗33W2 − − = λakσW2

− − −H∗22W3 −H∗21W4 = λakσW3

− − −H∗12W3 −H∗11W4 = λakσW4.

Multiplying this system of equations by −1 and taking the complex conjugate gives

H44W
∗
1 +H43W

∗
2 + + = −λakσW ∗1

H34W
∗
1 +H33W

∗
2 + + = −λakσW ∗2

+ +H22W
∗
3 +H21W

∗
4 = −λakσW ∗3

+ +H12W
∗
3 +H11W

∗
4 = −λakσW ∗4

and simply swapping the order of the equations gives

+ +H12W
∗
3 +H11W

∗
4 = −λakσW ∗4

+ +H22W
∗
3 +H21W

∗
4 = −λakσW ∗3

H34W
∗
1 +H33W

∗
2 + + = −λakσW ∗2

H44W
∗
1 +H43W

∗
2 + + = −λakσW ∗1
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This system of equations can then be written in matrix form giving:
H11 H12 0 0

H21 H22 0 0

0 0 H33 H34

0 0 H43 H44



W ∗4
W ∗3
W ∗2
W ∗1

 = −λakσ


W ∗4
W ∗3
W ∗2
W ∗1


which is itself another eigenvector equation:

HMF
kσ WR∗

akσ = −λakσWR∗
akσ. (B.5)

Here we have defined the eigenvector element reversal operation, R, such that WR
akσ is

obtained by reversing the elements of the eigenvector Wakσ. This procedure shows that if

there exists an eigenvector Wakσ with eigenvalue λakσ, then there also must exist another

eigenvalue with opposite sign, −λakσ, and eigenvector, WR∗
akσ, given by reversing the elements

and taking the complex conjugate of the original eigenvector.

As mentioned above, we can use this link between positive and negative eigenvalues to

help simplify our transition matrix, U . The diagonal matrix, D, is defined as:

D =


λakσ 0 0 0

0 λckσ 0 0

0 0 λbkσ 0

0 0 0 λdkσ

 (B.6)

where there is a correspondence between the eigenvalues and eigenvectors in the same column

of D and U . Using the fact that some of these eigenvalues are the negative of the other,

see equation (B.2), we can write the transition matrix in terms of only two eigenvectors and

their revered-conjugated counterparts:(
Wakσ Wckσ Wbkσ Wdkσ

)
︸ ︷︷ ︸

(
Wakσ WR̂∗

bkσ Wbkσ WR̂∗
akσ

)
︸ ︷︷ ︸

U =


akσ bkσ 0 0

ckσ −dkσ 0 0

0 0 akσ bkσ
0 0 −ckσ dkσ

 =


akσ −c∗kσ 0 0

ckσ a∗kσ 0 0

0 0 akσ c∗kσ
0 0 −ckσ a∗kσ


. (B.7)

The row vector above the transition matrix identifies which column corresponds to which

eigenvector and eigenvalue. The final matrix on the right has been constructed by reverse-

conjugating the corresponding vectors as shown.

By using the link between positive and negative eigenvalues to identify which eigenvectors

are simply reverse-conjugated forms of the other independent ones, we have obtained a simple

parametrised transition matrix, U , which is also unitary as required. It is this transition

matrix that we use when solving the mean-field Hamiltonian of the two-orbital equal-spin

triplet-pairing theory of chapter 5.



Appendix C

Dimensionless equations

In this section we will demonstrate how equations can be made dimensionless by rescaling

through new characteristic length, time and temperature scales. As an example we will

use the simplest quench model, equation (7.1), from section 7.2. The procedure works as

follows: we write all of the characteristic quantities, e.g. length, temperature and time, as

dimensionless quantities and then absorb the various constants into the characteristic scales.

A dimensionless quantity Q̃ is obtained by rescaling the dimension-full quantity, Q, by

some characteristic scale, Q0, like so: Q̃ = Q/Q0. If we write the length, L, temperature,

T , and time, t, in terms of the dimensionless quantity and its characteristic scale we get

L = L̃L0, T = T̃ T0 and t = t̃t0 respectively, and equation (7.1) becomes:

ρcCc
T0

t0

∂T̃

∂t̃
= κc

T0

x2
0

∂2T̃

∂x̃2
− hPc

Ac
T0

(
T̃ − T̃h

)
+
ηcI

2

A2
c

Θ
(
T̃ − T̃c

)
. (C.1)

Note that for convenience we have not written explicitly that the temperature of the super-

conductor, T , depends on the time, t, and the position, x, along the conductor.

The second term on the RHS that describes the heat transfer with the bath can be made

dimensionless by multiplying the equation by Ac
hPc

1
T0

, giving:

ρcCcAc
hPc

1

t0

∂T̃

∂t̃
=
Acκc
hPc

1

x2
0

∂2T̃

∂x̃2
−
(
T̃ − T̃h

)
+

ηcI
2

AchPc

1

T0
Θ
(
T̃ − T̃c

)
. (C.2)

By defining the characteristic scales as in equation (7.3):

x0 ≡
(
Wcκc
hPc

) 1
2

T0 ≡
ηcI

2

WchPc
t0 ≡

ρcCcWc

hPc
, (C.3)

the simplest quench model takes the dimensionless form:

∂T̃

∂t̃
=
∂2T̃

∂x̃2
−
(
T̃ − T̃h

)
+ Θ

(
T̃ − T̃c

)
. (C.4)

A similar procedure is applied for all dimensionless equations presented in chapter 7.
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Appendix D

Forward in time centred in space

algorithm

D.1 Technical details of the forward in time centred in space

algorithm

In this section we shall describe the forward-in-time centred-in-space (FTCS) algorithm for

solving partial differential equations, using the simple heat diffusion equation as an example.

For a more detailed look at this and many other numerical algorithms, see the book Numerical

Recipes [128].

Our starting point is a simple heat diffusion equation of the form:

∂T (x, t)

∂t
= D

∂2T (x, t)

∂x2
. (D.1)

In order to model the system numerically, the continuous variables x and t are discretised and

mapped onto a finite two-dimensional array of size Nx ×Nt. Nx is the number of discretised

spatial divisions being used to represent the total length, L, of the system and Nt is the

number of time steps over which the calculation will be performed. The spatial and temporal

difference between adjacent elements of the array are given by ∆x = L/Nx and ∆t = ttot/Nt

respectively. ttot is the total time being simulated.

Working in discrete spatial and time steps, the heat equation can be written in the form

of a finite difference equation as follows:[
T (xi, tj+1)− T (xi, tj)

∆t

]
= D

[
T (xi+1, tj)− 2T (xi, tj) + T (xi−1, tj)

∆x2

]
, (D.2)

where the partial derivatives have been expressed in terms of finite differences. Here T (xi, tj)

is the temperature at the i’th spatial position and the j’th time step. This expression can be

rearranged for the temperature at the (j + 1)’th time step as follows:

T (xi, tj+1) = D
∆t

∆x2 [T (xi+1, tj)− 2T (xi, tj) + T (xi−1, t)] + T (xi, tj). (D.3)

The temperature of the i’th spatial position at the next time step, Txi,tj+1 , depends

exclusively on its current temperature and the temperatures of the neighbouring spatial

divisions at the current time step. The FTCS algorithm is said to be centred-in-space because

it uses the information of its immediate neighbours in both directions to calculate the next

temperature, and is said to be forward-in-time because it uses the information at the current
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time step to calculate the temperature at the next time. By providing an initial temperature

profile (the initial condition of the simulation) the algorithm can calculate the temperature

of each spatial division at the next time step, which it can then in turn use to calculate the

time step after that. The algorithm iterates, using the information at the current time step

to calculate the temperature of the system at the next, repeatedly stepping forward in time.

In this way it builds up the time evolution of the temperature of the system.

D.2 Stability of the forward in time centred in space

algorithm

As mentioned in chapter 7 section 7.4, there is a stability condition for the simple heat

equation, that determines if the FTCS algorithm will be stable or not. Stability is very

closely related to numerical convergence, one has to obtain stability before the results are

potentially physically correct, then one can ensure numerical convergence.

When replacing the partial derivatives with the finite differences, we introduced the quan-

tities ∆x and ∆t. In a differential these quantities are infinitesimally small and therefore, in

order for our numerics to be a correct approximation to a differential, these quantities need

to be as small as possible, i.e. ∆x� L and ∆t� ttot. If these relations are obeyed then one

might expect the results to be numerically convergent, since our numerical finite difference

derivative should be a good approximation to the actual mathematical derivative.

However, the problem of stability may also arise. Consider equation (D.3), specifically the
∆t

∆x2 term. This term scales the amount of temperature being transferred with neighbouring

segments of the system. If ∆x2 � ∆t then this scaling term will be very large, the effect

of which will be that the temperature will change drastically at the next time step. This

drastic change can lead to further, more drastic changes in neighbouring positions and further

time steps, often with oscillatory features. Sometimes the algorithm can recover, with the

oscillations averaging out and dying away, other times they are too large and no convergent

behaviour is obtained.

It is possible to investigate the stability of the finite difference scheme by von Neumann

stability analysis, a full explanation of which can be found in [128]. Using this stability

analysis it is sometimes possible (although not always) to derive a stability condition that

ensures the method is stable, however, we will not do so in this work. Here we simply state

that the stability condition for the heat equation is given by [128]:

D∆t

∆x2 ≤
1

2
. (D.4)

By ensuring this condition is met, the FTCS algorithm is stable when solving the simple heat

equation. As mentioned above, this does not ensure numerical convergence, as such this still

needs to be tested.

The equations we use in our quench model are not simple heat equations. It was beyond

the scope of this work to perform the von Neumann stability analysis for our model as we

found that ensuring the stability condition of the simple heat equation was well met was

enough to ensure stability in our simulations.
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