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ABSTRACT 

Recent research has highlighted the contribution of interoceptive signals to different aspects of bodily self-

consciousness (BSC) by means of the cardio-visual stimulation - i.e. perceiving a pulsing stimulus in 

synchrony with one’s own heart. Here, for the first time, we investigate the effects of individual heartbeats 

on a critical feature of BSC, namely the recognition of one’s own face. Across two studies, we explored the 

cardiac-timing effects on a classic self-face recognition task. In Study 1, participants saw morphed faces that 

contained different percentages of the self-face and that of another unfamiliar individual. Study 2 used a 

similar design, albeit participants saw morphed faces of the self-face and that of a familiar other to provide 

a better control of self-familiarity. Results from both studies consistently revealed that the cortical 

processing of cardiac afferent signals conveyed by the firing of arterial baroreceptors affects the speed, but 

not the accuracy, of self-face recognition, when a single picture is presented during cardiac systole, as 

compared to diastole. This effect is stronger and more stable for stimuli with more self-cues than other-

cues and for ‘ambiguous’ stimuli – i.e. at the individual point of subjective equality. Results from Study 2 

also revealed that cardiac effects on the speed of self-face recognition cannot be explained simply on the 

basis of the imbalanced familiarity between the self’s and other’s faces used. The present findings highlight 

the interoceptive contributions to self-recognition and may be expand our understanding of pathological 

disturbances of self-experience. 

 

KEYWORDS: Bodily Self; Face-Recognition; Cardiac Cycle Phases; Interoception.  
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1 INTRODUCTION 

Bodily self-consciousness (BSC) is central to the sense of self (Blanke, 2012; Craig, 2002). Recent studies 

have highlighted the contributions of both exteroceptive information (i.e., from the outside environment) 

and interoceptive signals (i.e., from within the body; (M.  Tsakiris & De Preester, 2018)) and awareness to 

different aspects of BSC (Seth & Tsakiris, 2018). Specifically, these studies focused on body ownership 

(Suzuki, Garfinkel, Critchley, & Seth, 2013; Manos Tsakiris, Tajadura-Jiménez, & Costantini, 2011), self-

location (Aspell et al., 2013; Park et al., 2016) and self-identification (Sel, Azevedo, & Tsakiris, 2017; 

Tajadura-Jimenez & Tsakiris, 2014). They used classic or modified versions of the Rubber Hand Illusion 

(RHI), the Full Body Illusion (FBI) and the Enfacement Illusion (EI), respectively, to investigate the role that 

interoceptive signals (e.g., cardiac) and their awareness may play in BSC, beyond exteroceptive information 

(e.g., visual, tactile). Tsakiris, Tajadura and Costantini showed that the malleability of BSC, as studied with 

bodily illusions, depends on levels of interoceptive accuracy (IAcc; i.e., the ability to detect interoceptive 

signals, such as one’s heartbeats); individuals with lower IAcc experience a stronger modulation of their 

BSC in the RHI (Manos Tsakiris et al., 2011) and the EI (Tajadura-Jimenez & Tsakiris, 2014). More recent 

studies have attempted to use interoceptive information as means of directly manipulating BSC. Suzuki and 

colleagues (Suzuki et al., 2013) applied cardio-visual stimulation to induce the RHI. They demonstrated that 

watching a virtual depiction of the participants’ hand pulsing in synchrony, as opposed to out-of-synchrony, 

with their own heartbeats induced the illusory sense of ownership over the virtually projected hand. In 

particular, participants with higher IAcc experienced a stronger illusion than participants with lower IAcc. 

Analogously, Aspell and colleagues (Aspell et al., 2013) used the cardio-visual stimulation to induce the FBI. 

They showed that watching a virtual projection of the participants’ body surrounded by an illuminating 

silhouette flashing synchronously, as compared to asynchronously, with their own heartbeat led to 

enhanced self-identification, greater shift in self-location towards the virtual body and changes in tactile 

processing (see also (Heydrich et al., 2018) for follow-up). More recently, Sel and colleagues (Sel et al., 

2017) employed the cardio-visual stimulation to change the participants’ mental representation of their 

face through the EI. They reported that perceiving a pulsing stimulus in synchrony with one’s own heart 
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over a face containing only 60% of own-face features affects self-identification, through the incorporation 

of others’ facial features into the mental representation of own-face. This was revealed by comparisons of 

participants’ performance at self recognition task before and after the cardio-visual stimulation: 

participants accepted more facial features of the “other” in the morphed picture judged to equally 

represent “self” and “other” (i.e., point of subjective equality, PSE). Interestingly, this effect was stronger in 

participants with higher IAcc.  

In sum, research on the effects of interoceptive signals on BSC has been so far entirely based on cardio-

visual stimulation - i.e. perceiving a pulsing stimulus in synchrony with one’s own heart over someone else’s 

body/face for a short time interval. However, there is growing evidence that even the afferent signals at 

the level of individual heartbeats can influence perceptual (e.g., (Pramme, Larra, Schachinger, & Frings, 

2014, 2016; Salomon et al., 2016)), cognitive (e.g., (Fiacconi, Peter, Owais, & Kohler, 2016; Garfinkel et al., 

2013; Pfeifer et al., 2017)) and affective processing (e.g., (Azevedo, Badoud, & Tsakiris, 2017; Garfinkel et 

al., 2014)).  

At each cardiac cycle, during the systolic phase (the ventricular ejection period in a cardiac cycle), the 

baroreceptors send a volley of afferent signals to the brainstem conveying information on strength and 

timing of individual heartbeats. These signals, which are of primary importance to the baroreflex control of 

blood pressure, are then forwarded to higher-order cortical structures including the amygdala, insula and 

cingulate cortex (see (Critchley & Harrison, 2013) for a review). By timing stimulus presentation to the 

maximal (systole), as opposite to the minimal (diastole), baroreceptor activity, it is possible to explore the 

impact of baroafferent signals on information processing. Depending on the stimulus category, context and 

task, baroafferent signals have been observed to modulate the salience of relevant stimulus cues. For 

instance, the detection and appraisal of disgusted (Gray et al., 2012) and fearful faces (Azevedo, Badoud, et 

al., 2017; Garfinkel et al., 2014) are enhanced when presented at systole relative to diastole. Moreover, it 

has been recently demonstrated that baroreceptor firing can modulate threat appraisal in context-

dependent ways (Azevedo, Garfinkel, Critchley, & Tsakiris, 2017). On another line of research, studies have 

demonstrated that increased baroreceptor activity appears to improve visual selection efficiency (Pramme 
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et al., 2014, 2016), possibly due to enhancement of inhibitory processes needed to solve perceptual 

interference (Pramme et al., 2016). The extent to which such effects of cardiac cycle can apply to self-

related processing, such as the recognition of one’s own face, remains unknown.  

Here, we hypothesize that baroreceptors signals may enhance the salience of self-cues during self-face 

recognition, and test this hypothesis in two studies. Study 1 explored cardiac-timing effects on a classic self-

face recognition task (Keenan et al., 1999) where participants saw morphed faces that contained different 

percentages of the self-face and that of another unfamiliar gender-matched individual. Study 2 used a 

similar design, albeit participants saw morphed faces of the self-face and that of a familiar other to provide 

a better control of self-familiarity. For each study, we estimated and compared both individual PSEs and 

reaction times (RTs), for stimuli presented at systole or at diastole.  Cardiac cycle effects on PSEs would 

suggest that baroafferent information induces a shift in self-face representation, as in the cardio-visual 

illusion (Sel et al., 2017), while significant effects on RTs would indicate that the same information speeds 

up processing of self-cues leading to self-recognition. 

 

2. STUDY 1 

2.1 SELF-RECOGNITION TASK (self face-unfamiliar face) 

In order to explore cardiac-timing effects on the processing of one’s own face, and their possible relation 

with individual interoceptive accuracy, each participant in Study 1 performed both a Self-recognition task 

and a Heartbeat Perception Task (Schandry, 1981). 

 

2.1.1 MATERIALS AND METHODS 

2.1.1.1 Participants 

A total of 32 healthy individuals (18 females, 14 males; mean age = 22 years, SD = 3 years) participated in 

the study, after giving written informed consent. Three additional participants were excluded due to 

incorrect interpretation of the instructions or bad fitting results. A sensitivity analysis revealed that our 

sample size was large enough to detect a significant within-subjects effect corresponding to a medium 
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effect size (Cohen’s d = .5; as far as we are aware, formal analysis methods have not been developed that 

are adequate to precisely compute statistical power for the mixed-effects models we performed here). All 

participants had normal or corrected to normal vision. The study was approved by the Department of 

Psychology Ethics Committee, University of Essex. Participants received an expense allowance of £8 or 

partial course credit for their participation. 

 

2.1.1.2 Stimuli. 

Stimuli used during the Self-Recognition Task consisted of photos of the participant’s face (“Self”) morphed 

with a gender-matched unfamiliar face (“Unfamiliar Other”). Participants’ pictures were taken before the 

experiment. Participants were instructed to look directly into the camera with a neutral expression. The 

photos were then processed in GNU Image Manipulation Program (GIMP, https://www.gimp.org/). In 

accordance with previous studies (e.g. Chakraborty & Chakrabarti, 2015; Sel, Azevedo, & Tsakiris, 2018), 

these non-mirror reversed photos were desaturated (i.e. converted in grayscale) and cropped to an oval 

frame stretching from ear to ear, below the hairline to the chin, in order to remove non-facial features 

(e.g., ears and hairs). For each participant, the unfamiliar face was randomly selected from our in-house 

database, which included 70 models (46 females, 29 males) that had never been seen by the participants 

before the experiment. Morphed stimuli ranging from 0% morphing (100% Self-0% Other) to 100% 

morphing (0% Self-100% Other) were produced using SmartMorph (V.1.55 http://meesoft.logicnet.dk/). 

Nine degrees of morphing were selected for the Self-recognition task (% of self): 0, 20, 35, 45, 50, 55, 65, 

80, and 100 (Figure 1a). All images were presented on a black background using a cathode ray tube monitor 

at an approximate distance of 55 cm. Stimulus presentation and participants’ responses were controlled by 

a PC running Matlab Psychtoolbox (Brainard & Brainard, 1997; Kleiner et al., 2007). 

 

2.1.1.3 Experimental design and Procedure. 

Unbeknown to the participants, morphed stimuli were presented with timings that allowed synchronization 

with the cardiac cycle (i.e. systole or diastole). To this purpose, three pre-gelled ECG electrodes (Ag/AgCI) 

https://www.gimp.org/
http://meesoft.logicnet.dk/


 

 7 

were placed in a III-Lead chest configuration: two electrodes were positioned underneath the left and right 

collarbone, and another one on the participant’s lower abdomen on the left side. The cardiac signal was 

recorded continuously with a BioPac ECG100C Electrocardiogram Amplifier (band-pass filter: .5-35 Hz; 

sampling rate: 500 Hz) using the AcqKnowledge software. The R-peaks were identified online by detecting 

when the amplitude of the signal exceeded an individually defined threshold. The threshold was set by the 

experimenter by visually inspecting the ECG trace prior to the testing phase. Morphed stimuli were 

presented either within the participant’s cardiac systole (Systole condition), which is the period of maximal 

representation of baroreceptor afferent information, or within the cardiac diastole (Diastole condition), the 

remaining period of the cardiac cycle. According to previous studies, the systolic period was defined as 200-

400 ms and the diastole as 400-800 ms after the R-peak of the QRS complex (e.g., Garfinkel, Critchley, 

Tsakiris, & Azevedo, 2017; Kroeker & Wood, 1955). In particular, once the pulse pressure wave reaches the 

aortic arch, the arterial baroceptors that carry the cardiac information to the brain start firing with a 

maximum peak estimated at R+250 ms (Edwards, Ring, McIntyre, Winer, & Martin, 2009; James, 1971). 

Accordingly, in the Systole condition (stimuli time locked to the cardiac systole) pictures were presented at 

R+200 ms, whereas in the Diastole condition (stimuli time locked to diastole), the pictures were presented 

at R+500 ms (Figure 1b). Control analyses confirmed that our procedure ensured the desired timing of 

stimuli presentation with a good accuracy and precision. The average (SD) actual delay between the R peak 

and the onset of the stimuli, as measured by timestamps, was 207 ms (1 ms) and 507 ms (2 ms) for the 

Systole and Diastole conditions, respectively. 

Participants were seated in a dimly lit, sound-attenuated room. They were presented with a pseudo- 

randomized series of photos reflecting different degrees of self-other morphing (% of self): 0, 20, 35, 45, 50, 

55, 65, 80, and 100 (Figure 1a). Each trial started with a fixation cross presented at the centre of the screen 

until the next R-peak was detected. After either 200 ms (Systole condition) or 500 ms (Diastole condition) 

from the R-peak detection, a morphed face was presented for 250 ms (Figure 1b). This allowed us to 

investigate the effects of baroreceptor activity on self-recognition. Participants were then prompted to 

provide an answer within the following 1500 ms. If no answer was provided, the picture was presented 
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again at the end of experimental block. The inter-trial interval was jittered between 1500 and 2500 ms. At 

the end of each block, participants rested for at least one minute. The entire task consisted of four blocks 

(two Systole and two Diastole blocks). The order of the blocks was randomized across participants. In each 

block, each stimulus was presented 10 times, for a total of 90 stimuli per block. Within blocks, stimuli were 

presented in a pseudo-randomized order. Participants were asked to pay attention to the face stimuli 

presented on the computer screen and judge whether the face belonged to themselves, or to someone 

else, by pressing one of two keys on a computer keyboard (“S” or “L”). Participant’s answers and reaction 

times were recorded. The Self-Recognition Task was preceded by a training phase comprising 9 stimuli, one 

for each morphing degree. 

 

 

Figure 1. Stimuli and timing of cardio-visual stimulation  
a) Example of a participant's face (0%) morphed in nine steps with an unknown, same-gender face (100%) 
resulting in seven degrees of morphing between the two faces, with increasing % of Self. b) Presentation of 
stimuli during the cardiac systole in the Systole condition (left panel) and during the cardiac diastole in the 
Diastole condition (right panel). Two exemplar cardiac cycles are shown in each panel, with the semi-
transparent rectangles indicating onset and duration of the stimulus presentation. 
 

2.1.1.4 Data analysis 

	

a 

b 
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Self-other judgment probabilities. Our first analysis was aimed at assessing changes in the representation of 

self-other faces due to cardiac afferent signals as measured by differences in participants’ psychometric 

function of self-other judgments. To this aim, we first calculated the participant’s proportion of ‘other’ 

responses for each cardiac cycle phase (i.e., Systole and Diastole) and level of morphing (i.e., 0, 20, 35, 45, 

50, 55, 65, 80, and 100). Next, we checked whether participants showed perfect accuracy in discriminating 

non-morphed faces, that is, the stimuli corresponding to the morphing levels 0 (i.e, the self-face) and 100 

(i.e., the other face), respectively. To this end, we conducted two one-tailed one-sample t-tests, against 0 

and 1, respectively, on participants’ proportion of ‘other’ responses for non-morphed self and other faces. 

This analysis revealed that participants showed non-perfect accuracy in discriminating non-morphed faces 

(all |t| > 2.72, all p < .003, all d > .48), with a proportion of errors that was significantly higher than 0. We 

then fitted the individual self-other probabilities for each condition by using the four-parameter logistic 

function (Pmin+Pmax)/{1+exp[-(b0+b1*x)]}, where x indicates the morphing level, b0 and b1 are the two 

parameters of the standard logistic function, and Pmin and Pmax are two additional parameters denoting, 

respectively, the lower and upper asymptote to which the logistic function was limited. The Pmin and Pmax 

parameters thus reflect the general error in discriminating non-morphed self and other stimuli, 

respectively. The logistic functions were fitted by using in-house functions written in Matlab, which 

employed an iterative procedure to accurately estimate the four parameters. Based on the fitted 

psychometric curves, we estimated the Point of Subjective Equality (PSE) as the morphing level where the 

curve crossed the 50% probability of ‘other’ responses. This measure reflects the participant’s degree of 

bias in self-other judgments, with values lower and higher than 50 reflecting a bias towards reporting self 

and other faces, respectively. We also computed a value corresponding to the so-called Just Noticeable 

Difference (JND) as the difference between the morphing levels where the curve crossed the 75% and 25% 

probability of ‘other’ responses. This measure reflects the participant’s precision in self-other judgments, 

with lower values denoting a steeper psychometric function and, thus, a more abrupt transition from ‘self’ 

to ‘other’ predominant responses. 
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Finally, in order to assess changes in the representation of self-other faces due to cardiac afferent signals, 

we compared participants’ PSE and JND values in Systole and Diastole conditions by means of two-tailed 

paired-sample t-tests. These measures were also submitted to a correlation analysis along with the 

individuals’ IAcc scores to investigate whether, and to what degree, the latter measure may contribute to 

explain inter-individual variability in self-other representations. Specifically, we calculated Pearson’s 

correlations and performed null hypothesis statistical significance testing using the nonparametric 

percentile bootstrap test (2000 resamples; two-sided 95% confidence interval, 95%CI, corresponding to an α 

level of 0.05), which is more robust than the traditional t-test against heteroscedasticity (Pernet, Wilcox, & 

Rousselet, 2012). 

 

Response times. In a second analysis, we assessed whether cardiac afferent signals affected the time 

required to complete the decision processes leading to self-other judgments accounting for the individual 

differences in the subjective perception of self-other faces, as indexed by the PSE. To this aim, response 

times (RTs) were first log-transformed (lnRTs). Next, for each participant, we ‘scaled’ each morphing level 

so to obtain the individual, subjective amount of evidence for self vs. other relative to the individual PSE. 

We labelled this measure as ‘relative’ morphing level. Specifically, we subtracted the individual PSE for each 

cardiac cycle phase (i.e., Systole and Diastole) from the morphing level (which varied from 0 to 100), thus 

obtaining an individual, continuous measure of deviation from PSE that ranged from 0 – PSE to 100 – PSE 

and took negative values for stimuli perceived as self, a value of 0 for the PSE, and positive values for 

stimuli perceived as other. Moreover, since we expected the self and other stimuli to have a different effect 

on decision processes, we added a categorical factor accounting for the type of stimulus relative to the 

individual PSE (see (Sedda et al., 2018)); this independent variable ‘StimType’ was obtained by coding 

negative PSE-scaled morphing level as self and positive ones as other. As these latter independent variables 

were condition- and participant-dependent, we assessed the effects of our experimental manipulations on 

the trial-level lnRTs by using a linear mixed-effect model analysis as implemented by the function lmer from 

the lme4 library (Bates, Mächler, Bolker, & Walker, 2015) in R (version 3.3.3; (RCoreTeam, 2017)). Indeed, 
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one of the advantages of mixed-effects modelling that makes it particularly appropriate in our case is that it 

easily allows to test for the effect of individual-dependent continuous predictors (and their interactions 

with categorical ones), usually with a gain in statistical power (Kliegl, Wei, Dambacher, Yan, & Zhou, 2010). 

A further advantage of this statistical approach is that it allows controlling for longitudinal effects during 

the task such as the effects of fatigue and learning (Baayen, Davidson, & Bates, 2008). The appropriate 

(final) linear mixed-effect model to fit participants’ lnRTs was determined by using log-likelihood ratio test 

according to standard procedures (e.g., (Baayen et al., 2008; Bates et al., 2015; Quené & van den Bergh, 

2008); for a detailed description of the procedure, see (Montefinese, Zannino, & Ambrosini, 2015); see also 

(Ambrosini, Pezzulo, & Costantini, 2015)). The final model included three parameters for the fixed effects of 

the confounding variables Block and Trial order, as well as their interaction, which account for longitudinal 

effects during the task. The final model also included, in the fixed part, the parameters for the main effects 

and interactions involving the independent variables of interest, that is, the CardiacCycle factor (Systole vs. 

Diastole), the stimulus type factor (StimType: self vs. other), the continuous predictor relative morphing 

level (relMorphing, see above). A random intercept varying among participants (SSid), as well random 

slopes for Block and Trial order and their interaction were entered into the model as random effects. The R-

notation formula of the final model is lnRT ~ Block*Trial + CardiacCycle + relMorphing + 

relMorphing:StimType + relMorphing:CardiacCycle + relMorphing:StimType:CardiacCycle + (1|SSid) + (0 + 

Block*Trial|SSid). Note that the model did not include the main effect of StimType in order to ensure the 

equivalence of lnRTs at the PSE (i.e., the relMorphing value of 0) and, thus, to avoid discontinuity of the 

model around the PSE (note that real data do not show discontinuity, or an abrupt change in performance, 

at the PSE). In order to facilitate the convergence of the models, the variables were centered and/or scaled. 

The final model was re-fitted after excluding observations with absolute standard residuals greater than 2 

(5.4%). The statistical significance of predictors was assessed by means of t tests with Satterthwaite’s 

approximation to degrees of freedom provided by the lmerTest package. We report the estimated 

coefficient (b), standard error (SE), t and p values for each parameter included in the final model. 
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2.2 HEARTBEAT PERCEPTION TASK 

To assess interoceptive accuracy, we used the Mental Tracking Method (Schandry, 1981). All participants 

performed this task after the self-recognition task.  In twelve trials, participants silently counted how many 

heartbeats they felt over varying time intervals (three 25-s trials, three 35-s trials, three 45-s trials, three 

100-s trials), randomly presented. They were instructed to count their heartbeats without taking their 

pulse. Responses were then compared with how many heartbeats were measured by ECG. ECG traces were 

analysed using in-house scripts written in Matlab. R-peaks were identified with a semi-automatic procedure 

and checked visually. The individual interoceptive accuracy (IAcc) was then calculated as the mean score of 

the heartbeat perception trials (Schandry, 1981): Σ(1 − (|recorded heartbeats − counted heartbeats| / 

recorded heartbeats))/12. Thus, IAcc values varied between 0 and 1, with higher scores indicating better 

interoceptive accuracy. 

 

2.3 RESULTS 

2.3.1 Self-other judgment probabilities 

The four-parameter logistic function fitted participants’ self-other judgments adequately, as evidenced by 

the high R2 values for both Systole and Diastole conditions (respectively, M = .990 and .991, SD = .010 and 

.012). A two-tailed paired-sample t-test on the PSE (i.e., the degree of bias in self-other judgments) did not 

reveal any significant difference between Systole and Diastole conditions (t(31) = .34, p = .735, d = .06). Two-

tailed one-sample t-tests revealed that participants’ exhibited a significant bias toward judging the stimuli 

as self in both conditions, as shown by the fact that mean PSE values were significantly lower than the 50% 

morphing level (Systole: M = 44.48, SD = 10.59, t(31) = -2.95, p = .006, d = -.52; Diastole: M = 44.71, SD = 

10.91, t(31) = -2.74, p = .010, d = -.49). The analysis performed on JND values also revealed no significant 

effect of our experimental manipulation (t(31) = .22, p = .830, d = .04), with similar precision in self-other 

judgments between Systole (M = 13.29, SD = 7.31) and Diastole (M = 13.60, SD = 9.83) conditions. Figure 2a 

shows the psychometric functions aggregated across participants in the Systole (blue lines) and Diastole 

(red lines) conditions. 
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Additional control analyses revealed that the participants’ values of the Pmin parameter for the Systole and 

Diastole conditions were both significantly higher than 0 (respectively, M = .044 and .035, SD = .062 and 

.064, t(31) = 4.01 and 3.05, p = .0004 and .005, d = .71 and .54) and did not differ between each other (t(31) = -

1.23, p = .226, d = -.22). Similarly, participants’ values of the Pmax parameter for the Systole and Diastole 

conditions were both significantly lower than 1 (respectively, M = .950 and .953, SD = .069 and .077, t(31) = -

4.14 and 3.49, p = .0002 and .001, d = -.73 and -.62) and did not differ between each other (t(31) = .24, p = 

.810, d = .04).  

Correlation analyses revealed that participants’ IAcc scores were significantly correlated to their PSE values 

in both the Diastole (r = .33, 95%CI = [.01 .55]) and Systole (r = .39, 95%CI = [.07 .60]) conditions: participants 

with higher IAcc values tended to have higher PSE values or, in other words, to have a bias toward judging 

the stimuli as self (Figure 2 c,d). Conversely, no significant correlation was found between participants’ IAcc 

and their JND values in either the Diastole (r = -.01, 95%CI = [-.22 .39]) or the Systole (r = .09, 95%CI = [-.42 

.26]) condition.  

 

2.3.2 Response times 

The results of the linear mixed-effects analysis on the lnRTs are shown in Table 1. The analysis revealed the 

significance of all the effects except that of the relMorphing by CardiacCycle interaction. In particular, the 

significant effects of Trial and Block factors show that participants’ RTs became faster as the experiment 

went on, as indicated by the negative sign of each factor’s parameter (see Table 1). This holds true 

especially in the first blocks, as indicated by the interaction Trial:Block and the positive sign of its parameter 

(see Table 1). Moreover, the significant CardiacCycle main effect shows that participants were slower in 

giving their judgments when the stimuli were presented during their cardiac diastole as compared to the 

systole. Of particular interest for our hypothesis, the remaining effects indicate that it took more time for 

participants to discriminate between self and other faces as they were closer to their subjective PSE values 

(as evidenced by the significant effect of relMorphing and its interaction with the StimType factor) and that 

the Diastole – Systole difference in lnRTs (i.e., the ‘Diastole cost’) became smaller as more evidence was 

available (i.e., as the relMorphing values became larger in absolute terms), especially for other faces (see 
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Figure 2b). To better understand this higher-order interaction, we performed two follow-up analyses on the 

data for the self and other sides of the stimuli space separately (i.e., on the data for the “self” and “other” 

levels of the StimType factor, respectively, while keeping all the other factors as in the main final model). 

These analyses revealed that the Diastole cost was significant but stable across the relMorphing levels for 

the self stimuli (as evidenced by the significant CardiacCycle effect and the non-significant relMorphing by 

CardiacCycle interaction), whereas it became smaller as more evidence was available for the other stimuli, 

that is, as the stimulus was more clearly another’s face (as evidenced by the interaction between the 

CardiacCycle and the relMorphing variables). In summary, Study 1 showed that baro-afferent signals affect 

the speed, but not the accuracy, of self-face recognition, when a single picture is presented during cardiac 

systole, as compared to diastole. This effect on RTs is stronger and more stable for stimuli with more self-

cues than other-cues and for “ambiguous” stimuli (at PSE), while it decreases as the proportion of other-

cues increases. 

Table 1. Estimated parameters and statistics of linear mixed-effects modelling of 
response times in Study  

Fixed effects B SE T P 

(Intercept) 6.595 .025 264.00 <.001 

Block -.036 .006 -6.01 <.001 

Trial -.006 .003 -2.25 .032 

Trial:Block .007 .003 2.82 .008 

CardiacCycle (Diastole) .033 .006 5.75 <.001 

relMorphing .082 .003 26.98 <.001 

relMorphing: CardiacCycle .006 .004 1.53 .127 

relMorphing:StimType(Other) -.162 .005 -34.42 <.001 

relMorphing:StimType: CardiacCycle -.018 .007 -2.71 .007 
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Figure 2. Study 1: results.  
a) Psychometric functions aggregated across participants in the Systole (blue line) and Diastole (red line) 
conditions. Blue and red points indicate the corresponding mean percentage of ‘other’ responses. b) 
Results of the linear mixed-effect analyses on lnRTs. The figure shows the relMorphing:StimType: 
CardiacCycle interaction. The fitted lnRTs are plotted as a function of the Z-scaled stimulus morphing level 
relative to the individual PSE (x axis) for the Systole (blue line) and Diastole (red line) conditions. c,d) 
correlation between Interoceptive accuracy and individual PSE at Systole (c) and Diastole (d) conditions. 
 

3. STUDY 2 

3.1 SELF-RECOGNITION TASK (self face- familiar face) 

This study aimed at providing an internal replication and also at controlling for face familiarity to rule out 

the possibility that the cardiac-timing effects on self-recognition that were observed in Study 1 could be 

explained simply on the basis of the imbalanced familiarity between the self’s and other’s faces used. To 

this aim, we asked a new group of participants to perform the Self-recognition task with stimuli depicting 

their face morphed with highly familiar faces of famous persons. 
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3.1.1  MATERIALS AND METHODS 

3.1.1.1 Participants 

A total of 37 individuals participated in the study (14 females, 23 males; mean age = 20 years, SD = 2 years). 

Three additional participants were excluded due to incorrect interpretation of the instructions or bad fitting 

results. A sensitivity analysis revealed that our sample size was large enough to detect a significant within-

subjects effect corresponding to a medium effect size (Cohen’s d = .5; as far as we are aware, formal 

analysis methods have not been developed that are adequate to precisely compute statistical power for the 

mixed-effects models we performed here). All participants had normal or corrected to normal vision. The 

study was approved by the Department of Psychology Ethics Committee, University of Essex. Participants 

received an expense allowance of £8 or partial course credit for their participation. 

 

3.1.1.2 Stimuli 

Stimuli used in this study consisted of photos of the participant’s face (“Self”) morphed with a gender-

matched famous person’s face that was highly familiar to the participants (“Familiar Other”). Photos of 

famous faces were taken from the Internet forming a database of 84 models (46 males and 38 females). To 

make sure that participants chose the famous person’s face based on familiarity, rather than self-

resemblance, we asked them to look at the database and indicate the famous face that was the most 

familiar to them and that they identified with the most, and then the famous face that was the most 

familiar to them and that they identified with the least (see Supplemental material). The photo selected by 

the participant as the famous person that they identified with the least was used as “Familiar Other” in the 

Self-Recognition Task. Photo editing, production of morphed stimuli and stimulus presentation were the 

same as in Study 1.  

 

3.1.1.3 Experimental design and Procedure.  

Same as in Study 1. 
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3.1.1.4 Data analysis.  

Same as in Study 1 except that, when applying linear mixed-effect model to fit participants’ lnRTs, 5.6% of 

the observations with absolute standard residuals greater than 2 were excluded before the final model was 

re-fitted. 

 

3.2 RESULTS 

3.2.1 Self-other judgments probabilities. 

As expected, the results were similar to those observed in Study 1. The four-parameter logistic function 

fitted participants’ self-other judgments adequately, with high R2 values for both Systole and Diastole 

conditions (respectively, M = .991 and .995, SD = .018 and .006). A two-tailed paired-sample t-test on the 

PSE did not reveal any significant difference between Systole and Diastole conditions (t(36) = .87, p = .389, d 

= .14). The two-tailed one-sample t-tests revealed that participants’ exhibited a significant bias toward 

judging the stimuli as self in both conditions, as shown by PSE values that were significantly lower than the 

50% morphing level (Systole: M = 39.29, SD = 12.21, t(36) = -5.34, p < .0001, d = -.88; Diastole: M = 39.89, SD 

= 10.36, t(31) = -5.93, p < .0001, d = -.98). The analysis performed on JND values also revealed no significant 

effect of the CardiacCycle (t(36) = -1.82, p = .076, d = -.30), with similar precision in self-other judgments 

between Systole (M = 6.06, SD = 3.23) and Diastole (M = 5.42, SD = 3.27) conditions. Figure 3a shows the 

psychometric functions aggregated across participants in the Systole (blue lines) and Diastole (red lines) 

conditions. Additional control analyses confirmed that the participants’ Pmin values for the Systole and 

Diastole conditions were both significantly higher than 0 (respectively, M = .038 and .031, SD = .053 and 

.044, t(36) = 4.35 and 4.25, p = .0001 and .0001, d = .72 and .70) and did not differ between each other (t(36) = 

-1.18, p = .244, d = -.19). Similarly, participants’ values of the Pmax parameter for the Systole and Diastole 

conditions were both significantly lower than 1 (respectively, M = .950 and .958, SD = .067 and .047, t(36) = -

4.59 and 5.42, p = .0001 and .0001, d = -.75 and -.89) and did not differ between each other (t(36) = 1.01, p = 

.320, d = .17). 
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3.2.2 Response times 

The results of the linear mixed-effects analysis on the lnRTs are shown in Table 2. The analysis revealed the 

significance of all the effects except that of the relMorphing by CardiacCycle interaction. In particular, the 

significant effects of Trial and Block factors show that participants’ RTs became faster as the experiment 

went on, as indicated by the negative sign of each factor’s parameter (see Table 2). This holds true 

especially in the first blocks, as indicated by the interaction Trial:Block and the positive sign of its parameter 

(see Table 2). Moreover, the significant CardiacCycle main effect shows that participants were slower in 

giving their judgments when the stimuli were presented during their cardiac diastole as compared to the 

systole. Again, the remaining effects indicate that it took more time for participants to discriminate 

between self and other faces as they were closer to their subjective PSE values (as evidenced by the 

significant effect of relMorphing and its interaction with the StimType factor) and that the Diastole cost 

became smaller as more evidence was available, especially for other faces (see Figure 3b). To better 

understand this higher-order interaction, we performed two follow-up analyses on the data for the self and 

other sides of the stimuli space separately (i.e., on the data for the “self” and “other” levels of the StimType 

factor, respectively, while keeping all the other factors as in the main final model). As in Study 1, the 

analyses on the self stimuli revealed that the Diastole – Systole difference in lnRTs was significant but stable 

across the relMorphing levels for the self stimuli. In other words, the red line on the left side (‘self’ side) of 

Figure 3b is statistically higher than the blue one, but their slopes are not statistically different (as 

evidenced by the significant CardiacCycle effect and the non-significant relMorphing by CardiacCycle 

interaction). By contrast, and as in Study 1, the analyses on other stimuli revealed that the Diastole – 

Systole difference in lnRTs was significant at the PSE (as revealed by the significant main effect of 

CardiacCycle), but it became smaller as more evidence was available for the other stimuli, that is, as the 

stimulus was more clearly an other face. In other words, the red line on the right side (‘other’ side) of 

Figure 3b is statistically higher than the blue one at the PSE, but its slope is steeper than the blue one, so 
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the red – blue difference becomes smaller for higher relMorphing values (as evidenced by the significant 

interaction between the CardiacCycle and the relMorphing variables). 

 

Table 2. Estimated parameters and statistics of linear mixed-effects modelling of 
response times in Study 2 

Fixed effects B SE T p 

(Intercept) 6.623 .020 323.66 <.001 

Block -.048 .006 -8.41 <.001 

Trial -.009 .002 -4.00 <.001 

Trial:Block .006 .002 3.13 .003 

CardiacCycle (Diastole) .019 .005 3.72 <.001 

relMorphing .087 .003 28.34 <.001 

relMorphing: CardiacCycle -.001 .004 -.21 .831 

relMorphing:StimType(Other) -.171 .004 -38.58 <.001 

relMorphing:StimType:CardiacCycle -.013 .006 -2.04 .041 

 

 

 

Figure 3. Study 2: results.  
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a) Psychometric functions aggregated across participants in the Systole (blue line) and Diastole (red line) 
conditions. Blue and red points indicate the corresponding mean percentage of ‘other’ responses. b) 
Results of the linear mixed-effect analyses on lnRTs. The figure shows the relMorphing:StimType: 
CardiacCycle interaction. The fitted lnRTs are plotted as a function of the Z-scaled stimulus morphing level 
relative to the individual PSE (x axis) for the Systole (blue line) and Diastole (red line) conditions. 
 
 

3.2.3 Between-study analysis. 

In order to confirm that these results were consistent with those observed in Study 1, we carried out a 

between-study analysis on lnRTs by testing a linear mixed-effects model including the main effect of the 

Study factor (Study 1 vs. 2) and the corresponding interactions. The results of this analysis are shown in 

Table 3. The between-study analysis confirmed the results observed in both studies and, most importantly, 

suggests that the results were not modulated by the Study factor, as the effects involving this factor were 

all non-significant. 

In summary, Study 2 first showed that cardiac effect on the speed of self-face recognition cannot be 

explained simply on the basis of the imbalanced familiarity between the self’s and other’s faces used. 

Second, as proved by the between-study analysis, it fully replicated results from Study 1.  
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Table 3. Estimated parameters and statistics of the between-study linear mixed-
effects model on response times 

Fixed effects B SE t P 

(Intercept) 6.595 .023 281.39 < .001 

Block -.043 .004 -10.17 < .001 

Trial -.007 .002 -4.42 < .001 

Trial:Block .007 .002 4.22 < .001 

Study(2) .028 .032 .88 .384 

CardiacCycle(Diastole) .033 .006 5.77 < .001 

relMorphing .082 .003 27.18 < .001 

relMorphing:CardiacCycle .007 .004 1.56 .118 

relMorphing:StimType(Other) -.163 .005 -34.67 < .001 

relMorphing:StimType:CardiacCycle -.018 .007 -2.74 .006 

Study:CardiacCycle -.013 .008 -1.73 .084 

Study:relMorphing .005 .004 1.19 .234 

Study:relMorphing:CardiacCycle -.007 .006 -1.21 .225 

Study:relMorphing:StimType -.008 .006 -1.29 .196 

Study:relMorphing:StimType:CardiacCycle .005 .009 .52 .601 
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4. DISCUSSION 

 We investigated the effects of individual heartbeats on a critical feature of BSC, namely the 

recognition of one’s own face. Across two studies, we showed that self-face recognition is at least partly 

modulated by the cortical processing of cardiac afferent signals conveyed by the firing of arterial 

baroreceptors. Results from both studies revealed for the first time that presenting a single picture in 

synchrony with the participant’s heartbeat affects the speed of self-face processing. Faster RTs for stimuli 

presented during cardiac systole, as compared to diastole, clearly indicated that baroafferent information 

speeds up processing of self-cues leading to self-recognition. More specifically, participants were faster to 

discriminate between self and other faces during cardiac systole, as compared to diastole, especially for 

faces that were judged as self and at “more ambiguous” conditions, i.e. as participants were closer to their 

subjective PSE values. This difference became smaller as more evidence was available for other faces, thus, 

suggesting stronger cardiac effect on the processing of self-cues than other-cues. Moreover, results from 

Study 2 and the between-study analysis proved that cardiac effects on the time required to complete the 

decision processes leading to self-other judgments cannot be simply explained by familiarity of self-images. 

Beyond the effects on RTs, we did not observe any significant effects on accuracy as a function of cardiac 

cycle. Estimations of both self-bias, as indexed by the PSE, and precision in self-other judgments, as indexed 

by the JND, were not significantly different for images presented at systole relative to diastole.  

Accordingly, we did not find any specific effect of individual trait levels IAcc on the processing of images 

presented at systole. Rather, in Study 1, we observed a general linear increase in self-bias (PSE) with IAcc, 

for both Systole and Diastole conditions. In sum, our results show that single picture presentation 

synchronized with the participant’s heartbeat speeds up self-face recognition, while it does not affect self-

identification with the face of another, unlike the continuous synchronous cardio-visual stimulation leading 

to the enfacement illusion (Sel et al., 2017), which however was not the target of our studies.  

The fact that we observed stronger cardiac effects as the proportion of self-cues in the image increased 

might be consistent with the idea proposed by Sui & Humphreys (2017) that, especially when self-related 

stimuli are being perceived and processed, the self acts as a stable anchor in decision making. Moreover, it 
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has been suggested that the default mode of processing of the social brain is to process self-related 

information (Bird & Viding, 2014), and what our two experiments suggest is that the concurrent cortical 

representation of cardiac signals with self-related visual information facilitates, at least in speed, the 

recognition of one’s own face. Cardiac afferent signals may enhance in a general fashion the salience of 

self-cues, as they convey information about internal bodily states, which set the foundations for a sense of 

self (Craig, 2002, 2003). As a result, a certain proportion of self-cues must be present in morphed images in 

order for cardiac signals to facilitate self-other judgments. Importantly, we observed larger differences 

between the speed of self-other judgments at systole, as compared to diastole, for ambiguous stimuli (i.e. 

close to the PSE) and when the ambiguity (i.e., the amount of morphing) was added to the self face; 

conversely, this systole-related effect on RTs was strongly reduced as the stimulus was more clearly the 

face of another (i.e. greater percentage of the other face in the morph). Notably, the self-dependent 

facilitation effect that we observed suggests that this pattern cannot be caused by a general effect of 

cardiac signals on performance. At the same time, our findings beg the question as to how exactly self-cues 

mechanistically facilitate self-other judgments at systole, as compared to diastole. 

Drawing on recent evidence that BSC arises from the integration of multisensory exteroceptive and 

interoceptive signals, we interpret the observed RT acceleration at systole in terms of multimodal 

enhancement that is driven by the presence of concurrent cardiac and visual signals. It has long been 

reported that, because multisensory stimuli are detected faster than unisensory stimuli (Raab, 1962), the 

simultaneous stimulation of two or more sensory modalities facilitates behaviour (Hershenson, 1962; Todd, 

1912). In our studies, a multimodal enhancement of self-recognition can potentially occur only between 

(exteroceptive) visual information about self and (interoceptive) cardiac signals at Systole condition. 

Indeed, no cardiac signal is available for integration at Diastole condition. However, this hypothesis does 

not explain the fact that the systole-related effect we found for the self faces was still stronger at morphing 

levels closer to the individual PSE. Moreover, the multisensory enhancement interpretation does not take 

into account prior evidence of general baroreceptor-mediated inhibitory influence on subcortical and 

cortical activity (Dembowsky & Seller, 1995; Elbert & Raau, 1995).  
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Investigations of cardiac effects on visual selection efficiency may help fill this gap. Recently, Pramme and 

colleagues (2016) asked participants to classify target letters embedded within distractors, presented at 

systole or diastole. They found enhanced selection efficiency for stimuli aligned to systole, as compared to 

diastole. This result was also in line with prior evidence from the same group (Pramme et al., 2014) showing 

less mask interference during a visual masking task when mask and target are presented at systole, as 

compared to diastole. Interestingly, effective performance in both tasks crucially requires “noise 

suppression”, that is, the selection of relevant information in spite of interference imposed by distracting 

input. This is often argued to be achieved by simultaneous excitation of pathways processing the relevant 

input and inhibition of pathways concerned with input that are irrelevant (“noise”) for the ongoing task 

(e.g., (Duncan, Humphreys, & Ward, 1997; Wuhr & Frings, 2008)). Starting from this model, in order to 

explain their results, Pramme and colleagues (2016) proposed that the general baroreceptor-mediated 

inhibition during systole might facilitate selection of target stimuli through the suppression of neural 

activity related to noisy, irrelevant information. Something similar might occur in our study especially when 

the “noise” (i.e., the amount of morphing) is added to the self-face, that is, when the alignment of the 

attentional focus to self-cues is more difficult. At these conditions, facilitation (i.e. RTs acceleration) of self-

other judgments during systole, as compared to diastole, might depend upon baroreceptor-mediated 

inhibition, which would bolster attention to task-relevant information (“self-cues”) by withdrawing activity 

from the brain structures that are currently processing interfering input (i.e., other-cues). In sum, an 

interaction between the specific bias to attend self-related stimuli (Sui & Humphreys, 2017) and the 

baroreceptor-mediated modulation of visual selection efficiency (Pramme et al., 2016) would explain 

cardiac effects on self-other recognition. However, despite the increasing evidence that response inhibition 

enabling better performance improves at systole (e.g. during a stop-signal task; (Rae et al., 2018)),  it should 

be noticed that a different explanation is also possible, that is, one based on the relative enhancement of 

relevant cues. From this perspective, cardiac signals would enhance visual processing of relevant 

information rather than inducing inhibition of irrelevant ones. For instance, Ronchi et al. (2017) 

investigated the impact of cardiac signals on the neural processing of body images. They found that cardiac 
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signals enhance two prominent steps of visual information processing: an early period that has been linked 

to the first categorization of the image and a later component that is relevant for processing of complex 

stimuli, such as faces and bodies. Research is at too early a stage to draw definitive conclusions on this 

regard. Lastly, the possibility that faster self-other judgments at more ambiguous (or “noisy”) conditions 

may reflect an effect of internal bodily states on the feeling of confidence guiding them (Allen et al., 2016) 

is something to be clarified in future investigations too. It is worth reiterating that our results (specifically, 

the significant 3-way interactions we observed across both experiments) indicate that – at least in the task 

we employed here – the baroreceptor input specifically affected self-processing, rather than inducing a 

general alteration in the performance speed.   

Beyond the specific effects of baroreceptor firing on self-recognition, we also observed (in Study 1) a 

positive correlation between self-bias and IAcc, a pattern that was independent of the cardiac cycle effect. 

In other words, participants with higher IAcc values showed a bias towards judging the stimuli as self. This 

finding probably reflects a trait-like effect of interoception on the processing of self-related stimuli, 

comparable to the ones reported in recent studies that have used self-like stimuli to investigate the role of 

interoception for BSC (Aspell et al., 2013; Suzuki et al., 2013). In Suzuki et al (2013) participants with higher 

IAcc experienced a stronger sense of ownership over the seen hand (Suzuki et al., 2013). It seems that 

when exposed to stimuli that resemble the self, higher levels of IAcc may facilitate identification with that 

stimulus (see also (Sel et al., 2017)), whereas under conditions where the stimulus may be alien to the self, 

such as in the rubber hand illusion, the interoceptive cues of the individuals with higher heartbeat 

perception may serve to anchor them in their own bodies and disrupt the identification with non-self 

stimuli. As has been previously suggested, for higher IAcc the brain weights interoceptive predictions and 

prediction errors as more reliable (Ainley, Apps, Fotopoulou, & Tsakiris, 2016).  In the context of the 

present experiment, as was also the case in past studies that used self-like stimuli (Aspell et al., 2013; Sel et 

al., 2017; Suzuki et al., 2013), the interoceptive cues indicate that the seen hand or face is one’s own 

because its visual appearance is congruent with the individual’s continually updating of interoceptive priors 

while perceiving one’s self. However, as shown here, this effects seems to be independent from the effects 
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of spontaneous cardiac afferent signals, suggesting that the effect of interoceptive accuracy on self-

representations may reflect longer-term and more stable trait-like influences on self-processing.  

The present findings have interesting implications for our understanding of the nature of disturbances of 

self-experience, which can be characterized by a varying degree of depersonalization, i.e., having the 

impression of seeing another “identity” than oneself in the mirror. Interestingly, depersonalization 

phenomenology seems to engage impaired processing of interoceptive body signaling (Sedeno et al., 2014). 

In particular, anomalies of subjective experience (e.g., (Nelson, Parnas, & Sass, 2014; Raballo, Saebye, & 

Parnas, 2011; Sass & Parnas, 2003)) and bodily self representations (Ardizzi et al., 2016; Di Cosmo et al., 

2017; Ferri, Ambrosini, & Costantini, 2016; Ferri et al., 2014; Ferri et al., 2012; Gallese & Ferri, 2014) have 

been suggested to be central features of schizophrenia spectrum conditions. Relevant to our study, 

patients with schizophrenia (Caputo et al., 2012) as well as individuals reporting schizotypal traits (Fonseca-

Pedrero et al., 2015) are also more prone to experimentally induced self-face illusions. In addition to 

schizophrenia spectrum conditions, depersonalization is also a prominent symptom in other non-

dissociative disorders, such as borderline personality disorder (BDP (Vermetten & Spiegel, 2014)). 

Interestingly, central-cardiac coupling and cortical representation of cardiac signals seem to be altered in 

schizophrenia (Schulz, Bolz, Bar, & Voss, 2016) and BDP (Muller et al., 2015). Based on our results, it is 

reasonable to hypothesize that this may negatively affect cardiac modulation of self-other recognition and, 

thus, contribute to specific depersonalization symptoms in these mental disorders. Further research is 

needed in order to investigate the central-cardiac coupling and its impact on self-identity in individuals with 

specific disturbances of self-experience. 
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