University of

"1l Kent Academic Repository

Akehurst, David H., Bowman, Howard, Bryans, Jeremy W. and Derrick,
John (2000) A Manual for a ModelChecker for Stochastic Automata. Technical
report. n/a

Downloaded from
https://kar.kent.ac.uk/21927/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Technical Report 9-00

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21927/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Manual for a ModelChecker for Stochastic
Automata

David Akehurst, Howard Bowman, Jeremy Bryans and John Derrick

March 1, 2001

1 Introduction

This technical report describes a modelchecker for Stochastic Automata, which
was built based on the theory described in [BBDOO].
The tool is available from:

http://www.cs.ukc.ac.uk/people/staff/dha/index.html

It accepts a stochastic automaton, a “timed probabilistic until” formula pattern
and a time step parameter. Note that we do not yet allow adversaries, a clock
which guards two or more transitions is considered a (run-time) error. Also, we
have not yet implemented the full range of the temporal logic in [BBD00]; only
the “timed probabilistic until” queries are allowed, and propositions must be
atomic.

The algorithm will return one of three results: true, false or undecided. If it
returns true, then the automaton models the formula. If it returns false, then
the automaton does not model the formula. If it returns undecided, then the
algorithm was unable to determine whether the automaton models the formula.

In the next Section, we briefly describe the notions of stochastic automata
and temporal logic that we will use, then show how to use the tool in Section 6.

2 Stochastic Automata and Temporal Logic Ex-
pressions

A stochastic automaton is a structure SA made up of

e a set of locations (S) which includes an initial location sg.

e a set of transitions (—») between locations, where each transition has a
clock and an action associated with it.

e a set of clocks (C). Each z € C is a random variable with distribution
function F.

e a set of actions (a).
e a clock setting function (k) which associates clocks to particular locations.

Clocks can only be associated with transitions going out from the locations
they are set in. When the SA enters a location, all the clocks associated with
that location are set according to their respective distribution functions. Clocks
are set to positive values, and count down. When a clock reaches zero, the
associated outgoing transition fires, and the moves to the next location. If there
is no associated outgoing transition, nothing happens.

We will use a slightly simplified form of the stochastic automata, simplified
in the following ways.

e cach clock has a lower bound on the range to which it may be set;
e ceach clock has an upper bound on the value to which it may be set;

e all clocks set in a state must be consumed by at most one transition from
that statel;

e there is one clock on each transition.

We also associate atomic propositions with locations; these are used by the
Temporal Logic Expressions.

2.1 Temporal Logic Expressions

In the technical report we use a simple timed stochastic temporal logic, in-
cluding some simple propositional operators and a “timed probabilistic until”
formula pattern. Here, we have implemented the algorithm only for the timed
probabilistic until pattern below:

[a0 U<t al] > p

where a0 and al are propositions, ¢ is a time and p is a probability value.

3 Entering Stochastic Automata

3.1 Probability Distribution Functions

Probability Distribution Functions are entered as JAVA class files, and stored
under the directory pdfs. A simple example is the implementation of the func-
tion FX

ift <3

(t—3)—(t—3)% ifte3,4]
, ift > 4

Fx(t) =

=N O

which is implemented in JAVA as

I This differs from the tech report, where at least one trasnition must consume each clock,
and means we don’t have to worry about adversaries.

package pdfs;

public class PDFX
implements IProbabilityDistributionFunction

{

// implements F_X(t) =

//
//
//

0 , if t < 3
2(t-3) - (¢-3)"2 , if t in [3,4]
1 , o/w

public Prob eval(double t) {

3

Prob p = new Prob();
if (£ >= 0.0 & t < 3.0) {
p.setValue(0.0);
} else if (t >= 3.0 && t <= 4.0) {
p.setValue(2.0x(t - 3.0) - Math.pow(t - 3.0, 2.0));
} else if (¢ > 4.0) {
p.setValue(1.0);
}

return p;

public double max() { return 4.0; };

}

It is the users responsibility to ensure that the PDF restrictions are met;
otherwise runtime errors may result.

Entering Stochastic Automata and Temporal Logic Expressions is through
the GUI, called by the command java ui.mcEditor.

3.2

1.

Installation

Unzip the zip file. This should create the following directories

docs

examples

images

jars
Compile the existing pdf files
javac pdfs/*.java

Under unix to run the modelchecker user interface from the directory in
which it has been installed. Ensure that the java VM version 1.2 is in the
execution path, then type:

modelchecker.bash

4. Alternativly, source the ’setClasspath.bash’ script file passing the instal-
lation directory as a command line argument, e.g.

source setClasspath.bash /dha/modelchecker
Then run
java ui.mcEditor

5. Under Windows, from a Command prompt, execute the setClasspath.bat
file passing the installation directory as an argument, e.g.

setClasspath.bat c:\pkgs\modelchecker
then run

java ui.mcEditor

3.3 Using the GUI

3.3.1 Entering locations

To enter a location, click on the location icon (second button), then click and
drag to construct location. To enter the name and the propositions, dou-
ble click near the top of the location, then type the name in the box, fol-
lowed by the propositions in brackets separated by commas. For example,
‘ s0, (On, Stopped) ‘ indicates that in the initial location the propositions On
and Stopped hold.

To enter the name of the associated clocks and PDFs, double click near the
bottom of the location, then type the clock names and PDFs in the box. For
example ‘f<PDFf>, g<PDFg>‘ indicates that the values of clock f are drawn

from the stochastic function PDFf, and similarly for clock g.

3.4 Transitions

To enter a transition, click on the transition icon, (third button), then left click
to start the transition, left click left to place anchor points and right click to
finish. To enter the name of the transition and associated clock, type the name
followed by set brackets containing the clock name, in the box that appears

with the arrow. For example | arrow, {x}|indicates that the trasnition labelled

arrow is guarded by the clock called x.

4 Temporal Logic Expressions

To enter a Temporal Logic Expression, click on the TLE icon. This brings up a
new window with five boxes, labelled a0, ¢, al, p and delta. Enter the proposi-
tions in the boxes labelled a0 and al. Box t takes the time value, and box p
takes the probability value.

The box labelled delta takes the accuracy value discussed in [BBD00]. The
smaller this value, the more accurate the final result can be. The restrictions on
delta are: it must be smaller than the smallest possible value to which any clock
can be set, and smaller values of delta cause the modelchecker to take longer.

5 Dispaying the SA and the TLE at the com-
mandline

The forth icon (Show SA) displays a text discription of the SA, broken into
locations. The discription of each location includes the location name, the list
of propositions, the list of clocks and the list of outgoing transitions.

The sixth icon (show TLE) displays the until formula at the commandline,
together with the value for delta.

6 Checking the model

The icon marked check checks the model against the formula. It returns the
pass/fail/undecided result that the algorithm generates, and also gives values
for the totalpass, totalfail and error probabilities that the algorithm uses.
These can be used to make more informed judgements about the results. For
example, if the result was undecided, but the error was large, then perhaps
the same query using a smaller delta would produce a conclusive result.

References

[BBD00] Howard Bowman, Jeremy Bryans, and John Derrick. A model check-
ing algorithm for stochastic systems. Technical Report 4-00, Univer-
sity of Kent at Canterbury, 2000.

