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Adaptive Fault-Tolerant Control of A Two-car High-speed Train Model
with Inter-car Flexible Link and Traction Actuator Failure s*

Zehui Mad, Gang Tag, Bin Jiang and Xing-Gang Yah

Abstract— This paper studies the adaptive fault-tolerant force and do not break under the train operating. The single
tracking control problem for the high-speed trains with intercar  mass point model is enough to study the control problem.
flexible link and traction actuator fallures.l This stuqy is fpcused Nowadays, to achieve the high speed for trains, the powers
on a benchmark model which, as a main dynamic unit of the distributed i train. i f hiah d trai v
CRH (China Railway High-speed) train, is a two-car dynamic are distributed in a train, 1.€., Tor a nig _-spee ram_'ef’&
system with a flexible link between two cars, for which the inpt ~ €ars are power cars and others are trailer cars, which makes
acts on the second car and the output is the speed of the first the inter-force generated by the connections cannot be ig-
car. This model is under parameter uncertainties and subjecto  nored in control design. This results in the cascade mass
uncertain actuator failures. For such an underactuated syem, point model for controller design. Considering that the pow

to ensure the first car tracking a desired speed trajectory, a d trail | distributed h th
coordinate transformation method is employed to decompose and frailer cars are always distriouted every other one, the

the system model into a control dynamics subsystem and a two-car model with the input acting on the second car, is
zero dynamics subsystem. Stability analysis is conductecdbt chosen as the benchmark model to study the control problem,
show that such a zero dynamic system is Lyapunov stable in this paper.

and is partially input-to-state stable. An adaptive fault-tolerant On the other hand, the traction system treated as the

control scheme is developed which is able to ensure the close in hiah d trai includes th ii .
loop system signal boundedness and desired speed tracking, actuator in high-speed trains, includes the rectifiersmers,

the presence of the unknown system parameters and actuator PWMs (pulse width modulations), traction motors, and me-
failures. Simulation results from a realistic train dynamic model  chanical drives, etc., which always operates under the high

are presented to verify the desired adaptive control system temperature and vibration to cause the failure occurrences
performance. It is necessary to utilize a fault-tolerant control scheme t

l. INTRODUCTION guarantee the system stable and even asymptotic tracking.

Although there are some results about the fault-tolerant

H_igh-speed trains with th(_air high Speeqs and loading C%ontrol for high-speed train (see [11]-[13]), the faultet@nt
pacm_es, _have become a main tra_nsportatlon tool, nOW'(Sp_egontrol for the unknown system parameters to achieve the
tracking is the fundamental requirement for the punciyalits )y tacking is not available. This motivates us to study th

of the operation of a train, which leads to the increasmﬂault-tolerant control for the two-car high-speed modethwi
of the automatic train operation control capabilities afthi the unknown system parameters

speed trains. Great efforts have been devoted to the controky,, purpose of paper is to solve an adaptive fault-tolerant

design fo_r hlgh—spged trains ([1]-[5]). ) control problem for high-speed trains via the under-aettiat

In studies of train control prf)b'em' there are mainly Fwotwo-car model with unknown system parameters and actuator
types of _models used in the literatures, name_ly, the S'ngi".szlilures. The main contributions of this paper are as fodpow
mass point mOd":" and the cascade_ mass pomt_ model [gé For the under-actuated two-car high-speed train madbdel,
The former considers the whole train as one single maggpijity study of the zero dynamics subsystem is presented
point and ignores in-train dynamics of the train, see [7] anfl;y A staple adaptive fault-tolerant controller is propasto
[8]. The latter models a train as individual mass points thal ¢ e the closed-loop system signal boundedness and speed

are iriter-connected V|afle_X|bIe links, see [9] and [10]. threr tracking, in the presence of the unknown system parameters
traditional trains, the traction force only acts on the head and actuator failures

i.e., only the head car is the power car, so that the conmestio The rest of the paper is organized as follows: Section
between each cars should be ensured to tolerant the tractipnc ribes the benchmark two-car system dynamic model

*This work was supported in part by the National Natral scee and the tracking control problem is formulated. Section IlI
Foundation of China under Grant 61490703, Grant 6157318DGmant studies the stabilization condition for the zero dynamics

61533009, and the USA NSF under Grant ECCS1509704. ; ; ; g
17 Mao and B. Jiang are with College of Automation Enginagrin subsystem. Section IV designs the adaptive fault-tolerant
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the spring and damper. According to [10], [15] and [16],

From (8)-(9), the input of system (3) can be rewritten as

the motion dynamics of the two-car system with second car

having control inputs, is described by
Miz:(t) = —ki(21(t) — 22(t)) — da(21(t) — 22(¢))
—ap1 — br1Z1(t) — cr121(t), (1)
MaZy(t) = F(t) = k1(22(t) — 21(t)) — da(22(t) — 21(2))
—ar2 — braa(l), (2)

where 21 (t), 22(¢), z1(t) and z3(t) are the speed and the

displacement of thdst and2nd bodies, respectivelyd/;
and M- are the masses of thiest and2nd bodies,F5(¢) is
the control input acting on thend car,ky, k2, d; andd, are
the spring and damping constanks; andb,» are the car’s
resistance dependent on the speed.

Setki; = ﬁ, k1o = 1]& di1 = If—}l, diz = %}2, a; =
?\,—}i,@— bl—ﬁub2—ﬁ61:%um2:ma
and choosec(t) € R* & [1y(t ), 2 ( ), z3(t), za(t))T =
[21(t), 21(t), 21(t)—22(t), 22(¢)]T. The two-car dynamic

equations (1)-(2) can be written as

#(t) = Ax(t) + BF(t) — Dyxi(t) — Do, 3)
where
0 1 0 0
0 —di1—b1 —kn diq
A= 0 1 0 -1 ’ )
0 dy2 k12 —di2 — b2
B=[0 0 0 my]", (5)
Di=[0 e 0 0]" (6)
:[ 0 aq 0 as ]T, (7)

with k11, k12, di1, di2, a1, a2, b1, b2, 1, and my being
unknown parameters.

Actuator failure model. The actuator failures in traction

system are always generated by the failed equipments. Con-

F(t) =k,v(t) + (1), (10)
¢=[e,&,. .67, (11)
&=1[&0, &seenys,) € RO (12)

@w(t)=[L, fr1(t),. .., frsi(t)s o L F1 (D)oo, fis, (B),
oL fat () frs, O]F, for j=1,...,n, (13)

where v(t) is a designed control signal, and, is the
actuator failure pattern parameter wittandc(¢) describing
actuators and the types of failures.

For adaptive actuator fault-tolerant control design, an
assumption is given as: (Al) for the case that any up to
no(ne < m) actuators fail, the remaining healthy actuators
can still achieve the desired control objective. This agsum
tion means that any, of the n actuators may fail, and the
parametek, only takes one integer in the intenjal—ng, n]
to reflect the different faults.

Control objective. From the structure of the input matrix
B, it is clear to see that system (3) is an under-actuated
system, for which the arbitrary state tracking is not achiev
able. Here, we choose the speeds of the first car is the
controlled variables, i.ey(t) = z2(t). The control objective
of this paper can be summarized as: an adaptive fault-talera
controller is designed for the two-car system (3) to make
the outputy(¢) tracking the desired speed signgl(¢), and
simultaneously keep the states bounded, in the presence of
unknown system parameters and actuator failures.

It is straight to see that the considered two-car system (3)
is a nonlinear system and the input does not act on the state
x2(t) directly, on which the feedback linearization control
method should be employed.

Setf(x) = Ax(t)—D123(t), g(x) = B andh(z) = z2(t).
According to [14], the relative degree= 2 for the system
(3) can be calculated as:

FEEDBACK CONTROL DESIGN

Lgh(I) :O, Lngh(I) = d11m2 7§ 0. (14)

sidern motors in a high-speed train. The failure model can Then, we choose the diffeomorphsim coordination trans-

be expressed as (see, e.g. [17])

J0+Z

71 .76{11 ’ -7”}1

F(t) =
t>

(8)

7PfJP

formation to transform the system (3) into a normal form for
the fault-tolerant controller design.

Normal form. For the uniform relative degreg, the
system (3)-(4) can be transformed into two subsystems via

a diffeomorphsimT'(z) = [¢1(x), d2(x), ¢3(z), pa(x)]”,

where j is the failure index,t; is the failure occurring Where ¢i(x) = h(z), ¢2(z) = Lyh(z), ¢3(z) and ¢4(z)

time instant,F;, and F;, are unknown constants. The basissatisfy L,¢s(z) = 0 and Ly¢a(x)

signals f;,,(t) are known, withs; being the number of the
basis signals of thgth actuator failure.

Since there aren motors in the high-speed train, the
resultant traction force”(t) is the sum of the forced,
j=1,...,n, generated from thgth motor, given by:

)

=0.
Then, the coordination transformation is chosen as
p1(t)=o1(z) = 22(), (15)
Pa(t) = pa(x) = @2(t) = (—di1 — b1)z2(t) — kn1xs(t)
+dy1xy(t) — c123(t) — az, (16)
m(t)=g¢s(x) = z1(t), (17)
n2(t) = ¢a(x) = x3(t). (18)



to decompose the system (3) into the control dynamics V. STABILITY OF ZERO DYNAMICS
subsystem

y(t)
P1(t)
a(t)

The proposed controk(t) in (25) uses the signaj(t)
(19) in the zero dynamics subsystem (22)-(23), which should be
(20) bounded. In this section, we will discuss the boundedness
of the staten(t), which is influenced by the sub-state vector
©(t), to guarantee the effectiveness of the designed control

o~

1(t),

2(1),
R(z) + diyma(k,v(t) + 5 w(t)), (21)

|| H
NS
~

. ignalv(t).
and the zero dynamics subsystem signal ()
. Stability performance of 7;(t). For the zero dynamics
n (t):‘PIkEt) , (22) subsystem (22)-(23), both Lyapunov and input-to-state sta
: 1 bility should be discussed
o (t) = —=—1a(t) — ——@1(t) — ——pa(t) y '
’ d dn N dn If o1 (1) = 0, from (22), it has
— L) - - (23)
dy " dn

ﬁl(t):O, i.e., .Il(t) = Zl(t) = O, (28)

where L
which implies

R(x)=—(di1 + by + 2c122(1)) (= (day + b1)aa(t)

)=z (t) = 0). 29
—ku:zrg(t) + d11$4(t) — clxg(t) — CLl) 771( ) Zl( ) Zl( ) ( )
—k11 (22(t) — 2a(t)) + di1 (dr2w2(t) + krzws(t) From (29),7:(t) is Lyapunov stable. On the other hand,
—(dr2 + b2)z4(t) — az), (24) asy(t) andn(t) represent the speed and displacement of

the first car, respectively, the displacement trajectprt)
®1 (t) = w2(t) = Z(t) is the speeds of the first car, andhas a desired tracking property, if the speedt) tracks
o(t) = [p1(t), w2 (t)]T andn(t) = [nu(t), n2(1)]". a desired speed trajectory by designing control. Then, the
staten; (t) = z1(t) satisfies the system performance, even if

Feedback linearization control If the parameters:, im0 71 (£) = 0o

klg, dllu d12, a, as, bl, b2, c1, Mo, kl, and§ in the

dynamics (19)-(21) with the actuator fault (10) are known, Stability performance of n,(t). As 7:(t) satisfies the

with dizm1 > 0, ¢1(t) = z2(t) and under assumption system performance witkp; (t) as input, we should an-

(A1), we can design the feedback linearization fault-@ter alyze the stability performance of,(t). Setting @(t) =

control law, — -0 () = g792(t) — F-ei(t) — £- as input, (23) can
be rewritten as

1
st =~ (R(w) — t) + 0 () — (1)
d11m2ku( , n ﬁz(t)z—% n2(t) + @(t), (30)
Faalaa(t) - 0n(0)) ~ €700 (25) .

where@(t) is bounded ifpq (t) and g2 (t) are bounded.

wherea; > 0 anday > 0 are design parameters such that As di1 and ki, are positive constant&,’jﬁ < 0, which
52 + 15 + a9 is Hurwitz polynomials,R(x) is defined in  implies the system (30) is stable, i.e., (30) is Lyapunoblsta
(24). The desired speed,,(t), accelerationy,,(t) and its and bounded-input-bounded-state stable with) as input.
derivatived,, (t) are bounded. Then, we have the following result.

Submittingv(¢) into the system (20)-(21), it has . )
Lemma 1: The zero dynamic (22)-(23) is Lyapunov stable,

Fo(t) — U (1) = —aq (@2(t) — Dm(t)) that is, the solutiom(t) of n = An, A} = [ 8 _L }
—az(@2(t) = vm(t)). (26) " is bounded fom(0) # 0. o
With the tracking errore(t) = xa(t) — vm(t) = @1(t) — Lemma 2: The dynamic system defined in (30) is bounded-
vm(t), (26) leads to input-bounded-state (BIBS) stable.
é(t) + aré(t) + age(t) = 0, (27) We have studied that the zero dynamic system (22)-(23)

is Lyapunov stable and partial bounded-input-boundetésta
which implies thatlim; ,~, e(t) = 0 exponentially. With stable (see Lemmas 1 and 2). In the next section, we will
e(t) = ¢1(t) — v (t) and y(t) = p1(t), it has that the design an adaptive fault-tolerant controller instead & th
proposed nominal fault-tolerant control (25) can ensueg thnominal control (25) to ensure that;(¢) and po(t) are
the output tracks the desired speed trajectofyt), andy(t)  bounded and the closed-loop control system is stable and
is bounded. asymptotic output tracking is achieved.



V. ADAPTIVE CONTROLLER SCHEME

As the system parameteks;, k12, di1, di2, a1, as, by,
ba, c1, mg @and ¢ are unknown, an adaptive controllg(t)
should be designed to replace the the nominal contro(lgr

Ignoring the exponentially decaying effect of the initial

conditions, the error dynamic (40) can be written as

e(t) = ! (41)

MO0, M(s) = 55

such thatli 0 t) —vm(t)) = 0. . . .
oo (P1(8) = (1)) whereP(s) = s%+ajs+ s is Hurwitz polynomial. We can

Adaptive controller structure. Under assumption (Al), also define the estimation error as
the parameters of the nominal controlleft) in (25) are

defined to design the adaptive controlidt) as e(t)=e(t) +OT()C(t) — M(s)[OTW](t),  (42)
0 1 (31) where@(t) is the estimations o, and((t) = M (s)[W](t).
1= 55— R
diimaky ) Adaptive laws. The gradient adaptive update law fo(¢)
02 = (d11 + b1)? + 2c1a1 — k11 + di1ds2, (32) s chosen as
03=3c1(d11 +b1), 01 =2c], 05=2c1ki, (33) . Te(t)C(t)
06 =2c1d11, 07 = (di1 + b1)k11 + dirki2, (34) o) =- m2(t) 0(0) = 6o, (43)
Os=ki1 — (d b1)d11 — di1(d b 35 .
s =ku1 = (du +b1)dn — du(diz +ba), (35) where m(t) = /1+¢T(#)((t), T = TT > 0is an
Oy =dqi1a2, 010 = (36) adaptation gain, an@®, is the initial estimates 06. This

k_l,7

which lead to the nominal controller(t) written as

adaptive update law (43) has the following properties.
Lemma 3: The adaptive law (43) guarantees thatt) e

L=, O(t) € L> N L>, and e r2nr>,
Proof: Considering the positive definite

V(t) =—6; (92,@2 (t) + 6‘31‘% (t) + 94,@% (t) + O522 (t)xg (t) function

—Osxo(t)z4(t) + O73(t) + O34 (t) — Og — s () V(O(t) = %éT(;)P—lé(t), we have the time derivative of
Fan(@a(t) — im (1)) + o (1) — Um(t))) V(O(t)) along with (43) as N
p— (37) V(O) =— E(t)ig 8“” (44)

Design the adaptive controlléx(t) Form (42), we have

D(t)=—04(t) (ég(t):vg(t) + 05(8)a2(t) + B4 (t)a3 (t) e(t)=e(t) + (f)T(t)M (s)[WI(t) — M (s)[@TW] (t)
+05(0)aa ) (1) — Bo(b)oa()oa(t) + B (D)aa) ~elp E O MV~ MEIETD
oS T PO v =0T ()M (s)[W](t) = OT (t)C(t). 45
Be(t)2 () — Bo(t) — B (£) + o (Ealt) — () (t)M(s)[W](t) (t)¢(t) (45)
R From (44) and (45), we have
+aa(ea(0) = v (0) ) - Bolt)=(0). 39) i
i V(O(t) =~ (46)
whered,(t) are the estimations df,, for o =1,.. ., 10. m?(t)
Closed-loop adaptive control system To design the which implies that V(©(t)) do not increase and

adaptive laws forf,(t), for ¢ = 1,...,10, we define the i mzt))dt < V(0) < oo. Thus, é~(t) = O(t) + ©
parameter error,(t) = 6, — 0,(t) and use the control law is bounded. With the boundedness @(t) we have that
(38) and the system (22) (23) under the definition (31)- (36);(—” is bounded, which |mpI|es thaf— € L?n L™.
to obtain Therefore, from (43), we hav@( ) € LEN L. \Y
¢1(t) = (1)
= Um (t) — o (£2(t) — Om (b)) — cz(w2(t) —

Stability analysis. In this part, the closed-loop system

Um (t)) stability and tracking properties are analysed when anadiver

1(t) (t) + 92( Yoo (t) + ég(t)xg(t) + 54(15)1;%@) adaptive control law (38) is applied to the system (3) in the
_ = presence of the unknown parametérs, k12, di1, di2, a1,
+05 (1) ()23(t) 96(f)$2(t)$4(f) + 07 (t)s(t) 0. by, by, c1, my ANdC.
+0s(t)za(t) = Bo (1) — Bro(t) (1), (39) Some lemmas that will be used in the adaptive fault-
which can be rewritten as tolerant controller design from [18], are presented a®fedl.
. . _ Lemma 4 [18]: If H(s) = ¢(sI — A)~'b is the minimal
t t t) = t t 40
€t +anélt) + aze(t) = O7 (W (1), (40) realization of a proper transfer function, then
with e(t) = zo(t)—vm(t), O(t) = [01(t), 02(t), . .., 010(t)]T - -
and W(t) = [p(t),22(t),53(0), 53(1), 72 (t)za(), O H(HWIE) -~ H(OWIE)
—a(t)a(t), 23 (1), 2a(t), 1, ~w ()] = c(sI — A)7Y(sI — A) T BWT)(0)O]().  (47)



Lemma 5[18]: Let y(t) = H(s)[u](t), where H(s) is a L(67W) = 6TW + 6TW, using (53) andd,0 € L=,
proper stable transfer function. Ifu|: < kl|¢||+ + x, then we obtain
lyll: < &llg|le+~- In addition, if H(s) is strictly proper, then
llylle < 7llglle + 7, wherex € L2NL*> and T € L? N L*® ‘
with lim 7= 0.

=00 From (52), together with the construction Bf, implies

Lemma 6[18]: Let y(t) = H(s)[u](t), where H(s) is a that

proper and minimum phase transfer functionu|fi € L°°¢

d aya
%(@ W)

<plWlle + p. (54)
t

ANT
and ||i; < plull + s, then|lul; < pllyll; + u wherep IWile < k&7 Wil + . (59)
denotes a signal bound. Combining (55) with (54) yields the regularity &V,
With Lemma 3 and the results in [18], we have the d - .
following result. HE(@TW) <plWils + p < pl|©T Wl + p. (56)
t

Theorem 1: The adaptive controllers (38) with the adap- ) o ®
tive laws (43) applied to the system (3), guarantee that Calculating the derivative of 75, we have

the corresponding closed-loop state signalgt), z1(t) — - — e
z(t), 22(t) are bounded, and the tracking error satisfies Hi (i) m(07¢ +07¢) —m(0”})
limey o0 (21(£) — v (t)) = 0. dt \m/ ||, ~ m? .
Proof: Using Lemma 4 withM (s), the equations are <o < ~o i
[l [[m? ||

3T 3T - - . - .
O M) = M6 _1I67¢ +167¢l: |, 1676l
=c(sI — A) V(s — A) " B[WTIO)(t),  (48) < : T

SuIICIItJrquuIICIIiJru < 57

with (¢, A, b) being the minimal realisation a¥/(s). Since

P(s) = ﬁ is Hurwitz, (s — A)~'b is stable. Further, c c ()

N e wheres = max{1, ||([|:}. Therefore, we can see thgt (<

O(t) = ©(t) € L*N L™, we have is bounded. Using the fact: ¢ L? n L>~, we have
(s — A)—lb[WT]éHt <k|W||s + k. (49) lim; o o= = 0, which implies thalim; , ., ¢ = 0.

From (42), (50), and (55), we have
Sincec(sI — A)~! is strictly proper, using Lemma 5, we ~
Obta"f] that |€|§THWHt+T+ |€| ST”(H)TVI/Ht—’—T—’— |€| (58)

167 M (s)[W](£) = M()[OTW](0)l: < 7|W||; + 7(50) Sincee = M (s)[@TW](t), using Lemma 6, we have

aya
Note that the differential equation fas = [p1, 2]’ = 107 Wlle < ellelle + s (59)
(29, i9]T are From (58) and (59), we havée| < 7lell; + 7 + |e],
which implies thatlim; ,..e = 0, i.e., lim; o (21(¢) —
0= [ 1 ] =M(s) [ 1 ] [©TW] + [ Um ] . (51) wvm(t)) = 0. From (59), the boundedness«t) implies that
v2 5 Um of OT (t)W (t). From (55), the boundedness 6f ()W (t)
Since &(t) is bounded,, and v, are is bounded by implies that of W (z). From (52) and|#|; < p[Wll: + u,
hypothesis M (s) ands)M (s) are all proper stable, we have We have the boundednessoft) (i.e., 21(t), 21(t) — 22(1),

llle < W lle+ p, lllle < pl|@TW |+ p. For the partial 22(1)) andi(?). v
ISS of dynamics (22)-(23), we havep|l; < W + 4, Becauser; (¢) (z1(t)) is the position of the first car, which
2l < 1| ©TW ||, + p. Based on the property of the statecould go to finite ag goes to finite, the boundednessia{t)
transformation (15)-(18), we have cannot be obtained and its performance is ensured,4)

_ _ ~ 21 (1)).
Nzlle <l Wi+ 2l < Wl @"Ws + . (52) 1)

_ T VI. SIMULATION STUDY
wherez = [xq, 23, 24]".

From (38), we have|d||, < u||W||; + p. Recalling the ~ T0 verify the_ proposed cor_1troII(_er design mgthod,_ a sim-
definition of W(t) = [0(t), za(t), 23(t), 23(t), 2o (t)w5(t), ulation study is presented in _thls section, in which the
—ao(t)zy(t), 23(t), 24(t), =1, —(t)]T,  ||0W/Oz| and Parameters are from a real train model (_Jf [19]. Two cars
|0W/06)|| are bounded. Together with (52), we obtain ~ With input acting on second car are considered, for which,

the adaptive controller proposed in (38) with the adaptive

W e < pllWlle + p, (53) law (43) is used.

thus W (¢) is regular. Furthermore, sinc®/(s) is a stable Simulation system The parameters in the simulation are
polynomial, p(t) = M(s)[W](t) are also regular. A sim- chosen as:M; = 126000kg, Mz = 101090kg, a,1 =
ilar calculation yields©”W to be regular as well. From 8.63Ns/ton, a,» = 9.03Ns/ton, b,; = 1.08¢~*Ns/(m kg),



b = 1.08e* Ns/(m kg), c,1 = 0.00112 N */(m? ton), and a zero dynamics subsystem. The stability analysis is
k1 = 100e®N/m, ko = 30eSN/m, di = 80e*Ns/m, conducted to show that such a zero dynamic system is
ke = 40e*Ns/m. The initial conditions are chosen asLyapunov stable and is also partially input-to-state stabl
z(0) = [0.05 0 0 07, and the initial parame- Then, the adaptive fault-tolerant controller is developed

ter estimates a95% of their nominal values. The gain- ensure the closed-loop system signal boundedness and speed
s of the adaptive law in (43) is chosen ds = tracking, in the presence of the unknown system parameters
diag0.2 0.002 0.002 0.002 0.002 0.002 2 0.2 0.2 0.2]. and actuator failures.
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