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Adaptive Fault-Tolerant Control of A Two-car High-speed Tr ain Model
with Inter-car Flexible Link and Traction Actuator Failure s*

Zehui Mao1, Gang Tao2, Bin Jiang1 and Xing-Gang Yan3

Abstract— This paper studies the adaptive fault-tolerant
tracking control problem for the high-speed trains with int ercar
flexible link and traction actuator failures. This study is focused
on a benchmark model which, as a main dynamic unit of the
CRH (China Railway High-speed) train, is a two-car dynamic
system with a flexible link between two cars, for which the input
acts on the second car and the output is the speed of the first
car. This model is under parameter uncertainties and subject to
uncertain actuator failures. For such an underactuated system,
to ensure the first car tracking a desired speed trajectory, a
coordinate transformation method is employed to decompose
the system model into a control dynamics subsystem and a
zero dynamics subsystem. Stability analysis is conducted to
show that such a zero dynamic system is Lyapunov stable
and is partially input-to-state stable. An adaptive fault-tolerant
control scheme is developed which is able to ensure the closed-
loop system signal boundedness and desired speed tracking,in
the presence of the unknown system parameters and actuator
failures. Simulation results from a realistic train dynamic model
are presented to verify the desired adaptive control system
performance.

I. I NTRODUCTION

High-speed trains with their high speeds and loading ca-
pacities, have become a main transportation tool, now. Speed
tracking is the fundamental requirement for the punctuality
of the operation of a train, which leads to the increasing
of the automatic train operation control capabilities of high-
speed trains. Great efforts have been devoted to the control
design for high-speed trains ([1]-[5]).

In studies of train control problem, there are mainly two
types of models used in the literatures, namely, the single
mass point model and the cascade mass point model [6].
The former considers the whole train as one single mass
point and ignores in-train dynamics of the train, see [7] and
[8]. The latter models a train as individual mass points that
are inter-connected via flexible links, see [9] and [10]. Forthe
traditional trains, the traction force only acts on the headcar,
i.e., only the head car is the power car, so that the connections
between each cars should be ensured to tolerant the traction
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force and do not break under the train operating. The single
mass point model is enough to study the control problem.

Nowadays, to achieve the high speed for trains, the powers
are distributed in a train, i.e., for a high-speed train, several
cars are power cars and others are trailer cars, which makes
the inter-force generated by the connections cannot be ig-
nored in control design. This results in the cascade mass
point model for controller design. Considering that the power
and trailer cars are always distributed every other one, the
two-car model with the input acting on the second car, is
chosen as the benchmark model to study the control problem,
in this paper.

On the other hand, the traction system treated as the
actuator in high-speed trains, includes the rectifiers, inverters,
PWMs (pulse width modulations), traction motors, and me-
chanical drives, etc., which always operates under the high
temperature and vibration to cause the failure occurrences.
It is necessary to utilize a fault-tolerant control scheme to
guarantee the system stable and even asymptotic tracking.
Although there are some results about the fault-tolerant
control for high-speed train (see [11]-[13]), the fault-tolerant
control for the unknown system parameters to achieve the
speed tacking is not available. This motivates us to study the
fault-tolerant control for the two-car high-speed model with
the unknown system parameters.

The purpose of paper is to solve an adaptive fault-tolerant
control problem for high-speed trains via the under-actuated
two-car model with unknown system parameters and actuator
failures. The main contributions of this paper are as follows:
(i) For the under-actuated two-car high-speed train model,the
stability study of the zero dynamics subsystem is presented.
(ii) A stable adaptive fault-tolerant controller is proposed to
ensure the closed-loop system signal boundedness and speed
tracking, in the presence of the unknown system parameters
and actuator failures.

The rest of the paper is organized as follows: Section
II describes the benchmark two-car system dynamic model
and the tracking control problem is formulated. Section III
studies the stabilization condition for the zero dynamics
subsystem. Section IV designs the adaptive fault-tolerant
tracking controller. Section V includes the simulation study,
followed by conclusions in Section VI.

II. SYSTEM DESCRIPTION ANDPROBLEM FORMULATION

For the high-speed trains, the power cars are always
connected every other tailers, in which the two-car model
with one car having power can be considered as the basic
models. The link between two cars can be equivalent to



the spring and damper. According to [10], [15] and [16],
the motion dynamics of the two-car system with second car
having control inputs, is described by

M1z̈1(t)=−k1(z1(t)− z2(t))− d1(ż1(t)− ż2(t))

−ar1 − br1ż1(t)− cr1ż
2
1(t), (1)

M2z̈2(t)=F (t)− k1(z2(t)− z1(t)) − d1(ż2(t)− ż1(t))

−ar2 − br2ż2(t), (2)

where ż1(t), ż2(t), z1(t) and z2(t) are the speed and the
displacement of the1st and2nd bodies, respectively;M1

andM2 are the masses of the1st and2nd bodies,F2(t) is
the control input acting on the2nd car,k1, k2, d1 andd2 are
the spring and damping constants;br1 and br2 are the car’s
resistance dependent on the speed.

Set k11 = k1

M1

, k12 = k1

M2

, d11 = d1

M1

, d12 = d1

M2

, a1 =
ar1

M1

, a2 = ar2

M2

, b1 = br1
M1

, b2 = br2
M2

, c1 = cr1
M1

, m2 = 1
M2

,
and choosex(t) ∈ R4 , [x1(t), x2(t), x3(t), x4(t)]

T =
[z1(t), ż1(t), z1(t)−z2(t), ż2(t)]

T . The two-car dynamic
equations (1)-(2) can be written as

ẋ(t)=Ax(t) +BF (t)−D1x
2
2(t)−D2, (3)

where

A=









0 1 0 0
0 −d11 − b1 −k11 d11
0 1 0 −1
0 d12 k12 −d12 − b2









, (4)

B=
[

0 0 0 m2

]T
, (5)

D1=
[

0 c1 0 0
]T

, (6)

D2=
[

0 a1 0 a2
]T

, (7)

with k11, k12, d11, d12, a1, a2, b1, b2, c1, andm2 being
unknown parameters.

Actuator failure model . The actuator failures in traction
system are always generated by the failed equipments. Con-
sidern motors in a high-speed train. The failure model can
be expressed as (see, e.g. [17])

Fj(t)= F̄j(t) = F̄j0 +
∑sj

ρ=1
F̄jρfjρ(t), (8)

t≥ tj , j ∈ {1, 2, . . . , n},

where j is the failure index,tj is the failure occurring
time instant,F̄j0 and F̄jρ are unknown constants. The basis
signalsfjρ(t) are known, withsj being the number of the
basis signals of thejth actuator failure.

Since there aren motors in the high-speed train, the
resultant traction forceF (t) is the sum of the forcesFj ,
j = 1, . . . , n, generated from thejth motor, given by:

F (t)=
∑n

j=1
Fj(t). (9)

From (8)-(9), the input of system (3) can be rewritten as

F (t)=kνν(t) + ξT̟(t), (10)

ξ=[ξT1 , ξ
T
2 , . . . , ξ

T
n ]

T , (11)

ξj =[ξj0, ξj1, . . . , ξjsj ]
T ∈ Rsj+1, (12)

̟(t)= [1, f11(t), . . . , f1s1(t), . . . , 1, fj1(t), . . . , fjsj (t),

. . . , 1, fn1(t), . . . , fnsn(t)]
T , for j = 1, . . . , n, (13)

where ν(t) is a designed control signal, andkν is the
actuator failure pattern parameter withξ and̟(t) describing
actuators and the types of failures.

For adaptive actuator fault-tolerant control design, an
assumption is given as: (A1) for the case that any up to
n0(n0 < n) actuators fail, the remaining healthy actuators
can still achieve the desired control objective. This assump-
tion means that anyn0 of the n actuators may fail, and the
parameterkν only takes one integer in the interval[n−n0, n]
to reflect the different faults.

Control objective. From the structure of the input matrix
B, it is clear to see that system (3) is an under-actuated
system, for which the arbitrary state tracking is not achiev-
able. Here, we choose the speeds of the first car is the
controlled variables, i.e.,y(t) = x2(t). The control objective
of this paper can be summarized as: an adaptive fault-tolerant
controller is designed for the two-car system (3) to make
the outputy(t) tracking the desired speed signalvm(t), and
simultaneously keep the states bounded, in the presence of
unknown system parameters and actuator failures.

III. F EEDBACK CONTROL DESIGN

It is straight to see that the considered two-car system (3)
is a nonlinear system and the input does not act on the state
x2(t) directly, on which the feedback linearization control
method should be employed.

Setf(x) = Ax(t)−D1x
2
2(t), g(x) = B andh(x) = x2(t).

According to [14], the relative degreeρ = 2 for the system
(3) can be calculated as:

Lgh(x)=0, LgLfh(x) = d11m2 6= 0. (14)

Then, we choose the diffeomorphsim coordination trans-
formation to transform the system (3) into a normal form for
the fault-tolerant controller design.

Normal form . For the uniform relative degreeρ, the
system (3)-(4) can be transformed into two subsystems via
a diffeomorphsimT (x) = [φ1(x), φ2(x), φ3(x), φ4(x)]

T ,
whereφ1(x) = h(x), φ2(x) = Lfh(x), φ3(x) and φ4(x)
satisfyLgφ3(x) = 0 andLgφ4(x) = 0.

Then, the coordination transformation is chosen as

ϕ1(t)=φ1(x) = x2(t), (15)

ϕ2(t)=φ2(x) = ẋ2(t) = (−d11 − b1)x2(t)− k11x3(t)

+d11x4(t)− c1x
2
2(t)− a2, (16)

η1(t)=φ3(x) = x1(t), (17)

η2(t)=φ4(x) = x3(t). (18)



to decompose the system (3) into the control dynamics
subsystem

y(t)=ϕ1(t), (19)

ϕ̇1(t)=ϕ2(t), (20)

ϕ̇2(t)=R(x) + d11m2(kνν(t) + ξT̟(t)), (21)

and the zero dynamics subsystem

η̇1(t)=ϕ1(t), (22)

η̇2(t)=−
k11
d11

η2(t)−
b1
d11

ϕ1(t)−
1

d11
ϕ2(t)

−
c1
d11

ϕ2
1(t)−

a1
d11

, (23)

where

R(x)=−(d11 + b1 + 2c1x2(t))
(

− (d11 + b1)x2(t)

−k11x3(t) + d11x4(t)− c1x
2
2(t)− a1

)

−k11
(

x2(t)− x4(t)
)

+ d11
(

d12x2(t) + k12x3(t)

−(d12 + b2)x4(t)− a2
)

, (24)

ϕ1(t) = x2(t) = ż1(t) is the speeds of the first car, and
ϕ(t) , [ϕ1(t), ϕ2(t)]

T andη(t) , [η1(t), η2(t)]
T .

Feedback linearization control. If the parametersk11,
k12, d11, d12, a1, a2, b1, b2, c1, m2, kν and ξ in the
dynamics (19)-(21) with the actuator fault (10) are known,
with d12m1 > 0, ϕ1(t) = x2(t) and under assumption
(A1), we can design the feedback linearization fault-tolerant
control law,

ν(t)=−
1

d11m2kν

(

R(x)− v̈m(t) + α1(ẋ2(t)− v̇m(t))

+α2(x2(t)− vm(t))

)

−
1

kν
ξT̟(t), (25)

whereα1 > 0 andα2 > 0 are design parameters such that
s2 + α1s + α2 is Hurwitz polynomials,R(x) is defined in
(24). The desired speedvm(t), accelerationv̇m(t) and its
derivativev̈m(t) are bounded.

Submittingν(t) into the system (20)-(21), it has

ẍ2(t)− v̈m(t)=−α1(ẋ2(t)− v̇m(t))

−α2(x2(t)− vm(t)). (26)

With the tracking errore(t) = x2(t) − vm(t) = ϕ1(t) −
vm(t), (26) leads to

ë(t)+α1ė(t) + α2e(t) = 0, (27)

which implies thatlimt→∞ e(t) = 0 exponentially. With
e(t) = ϕ1(t) − vm(t) and y(t) = ϕ1(t), it has that the
proposed nominal fault-tolerant control (25) can ensure that
the output tracks the desired speed trajectoryvm(t), andϕ(t)
is bounded.

IV. STABILITY OF ZERO DYNAMICS

The proposed controlν(t) in (25) uses the signalη(t)
in the zero dynamics subsystem (22)-(23), which should be
bounded. In this section, we will discuss the boundedness
of the stateη(t), which is influenced by the sub-state vector
ϕ(t), to guarantee the effectiveness of the designed control
signalν(t).

Stability performance of η1(t). For the zero dynamics
subsystem (22)-(23), both Lyapunov and input-to-state sta-
bility should be discussed.

If ϕ1(t) = 0, from (22), it has

η̇1(t)=0, i.e., ẋ1(t) = ż1(t) = 0, (28)

which implies

η1(t)= z1(t) = z1(0). (29)

From (29),η1(t) is Lyapunov stable. On the other hand,
asϕ1(t) andη1(t) represent the speed and displacement of
the first car, respectively, the displacement trajectoryη1(t)
has a desired tracking property, if the speedϕ1(t) tracks
a desired speed trajectory by designing control. Then, the
stateη1(t) = z1(t) satisfies the system performance, even if
limt→∞ η1(t) = ∞.

Stability performance of η2(t). As η1(t) satisfies the
system performance withϕ1(t) as input, we should an-
alyze the stability performance ofη2(t). Setting ϕ̄(t) =
− b1

d11

ϕ1(t) −
1

d11

ϕ2(t) −
c1
d11

ϕ2
1(t) −

a1

d11

as input, (23) can
be rewritten as

η̇2(t)=−
k11
d11

η2(t) + ϕ̄(t), (30)

whereϕ̄(t) is bounded ifϕ1(t) andϕ2(t) are bounded.
As d11 and k11 are positive constants,−k11

d11

< 0, which
implies the system (30) is stable, i.e., (30) is Lyapunov stable
and bounded-input-bounded-state stable withϕ̄(t) as input.

Then, we have the following result.

Lemma 1: The zero dynamic (22)-(23) is Lyapunov stable,

that is, the solutionη(t) of η̇ = A1η, A1 =

[

0 0

0 −k11

d11

]

,

is bounded forη(0) 6= 0.

Lemma 2: The dynamic system defined in (30) is bounded-
input-bounded-state (BIBS) stable.

We have studied that the zero dynamic system (22)-(23)
is Lyapunov stable and partial bounded-input-bounded-state
stable (see Lemmas 1 and 2). In the next section, we will
design an adaptive fault-tolerant controller instead of the
nominal control (25) to ensure thatϕ1(t) and ϕ2(t) are
bounded and the closed-loop control system is stable and
asymptotic output tracking is achieved.



V. A DAPTIVE CONTROLLER SCHEME

As the system parametersk11, k12, d11, d12, a1, a2, b1,
b2, c1, m2 and ξ are unknown, an adaptive controllerν̂(t)
should be designed to replace the the nominal controllerν(t),
such thatlimt→∞(ϕ1(t)− vm(t)) = 0.

Adaptive controller structure . Under assumption (A1),
the parameters of the nominal controllerν(t) in (25) are
defined to design the adaptive controllerν̂(t) as

θ1=
1

d11m2kν
, (31)

θ2=(d11 + b1)
2 + 2c1a1 − k11 + d11d12, (32)

θ3=3c1(d11 + b1), θ4 = 2c21, θ5 = 2c1k11, (33)

θ6=2c1d11, θ7 = (d11 + b1)k11 + d11k12, (34)

θ8=k11 − (d11 + b1)d11 − d11(d12 + b2), (35)

θ9=d11a2, θ10 =
ξ

kν
, (36)

which lead to the nominal controllerν(t) written as

ν(t)=−θ1

(

θ2x2(t) + θ3x
2
2(t) + θ4x

3
2(t) + θ5x2(t)x3(t)

−θ6x2(t)x4(t) + θ7x3(t) + θ8x4(t)− θ9 − v̈m(t)

+α1(ẋ2(t)− v̇m(t)) + α2(x2(t)− vm(t))

)

−θ10̟(t). (37)

Design the adaptive controller̂ν(t)

ν̂(t)=−θ̂1(t)

(

θ̂2(t)x2(t) + θ̂3(t)x
2
2(t) + θ̂4(t)x

3
2(t)

+θ̂5(t)x2(t)x3(t)− θ̂6(t)x2(t)x4(t) + θ̂7(t)x3(t)

+θ̂8(t)x4(t)− θ̂9(t)− v̈m(t) + α1(ẋ2(t)− v̇m(t))

+α2(x2(t)− vm(t))

)

− θ̂10(t)̟(t), (38)

whereθ̺̂(t) are the estimations ofθ̺, for ̺ = 1, . . . , 10.

Closed-loop adaptive control system. To design the
adaptive laws forθ̺̂(t), for ̺ = 1, . . . , 10, we define the
parameter errors̃θ̺(t) = θ̺ − θ̺̂(t) and use the control law
(38) and the system (22)-(23) under the definition (31)-(36),
to obtain

ϕ̈1(t) = ẍ2(t)

= v̈m(t)− α1(ẋ2(t)− v̇m(t))− α2(x2(t)− vm(t))

+θ̃1(t)ν̂(t) + θ̃2(t)x2(t) + θ̃3(t)x
2
2(t) + θ̃4(t)x

3
2(t)

+θ̃5(t)x2(t)x3(t)− θ̃6(t)x2(t)x4(t) + θ̃7(t)x3(t)

+θ̃8(t)x4(t)− θ̃9(t)− θ̃10(t)̟(t), (39)

which can be rewritten as

ë(t)+α1ė(t) + α2e(t) = Θ̃T (t)W (t), (40)

with e(t) = x2(t)−vm(t), Θ̃(t) = [θ̃1(t), θ̃2(t), . . . , θ̃10(t)]
T

and W (t) = [ν̂(t), x2(t), x
2
2(t), x

3
2(t), x2(t)x3(t),

−x2(t)x4(t), x3(t), x4(t),−1,−̟(t)]T .

Ignoring the exponentially decaying effect of the initial
conditions, the error dynamic (40) can be written as

e(t)=M(s)[Θ̃TW ](t), M(s) =
1

P (s)
, (41)

whereP (s) = s2+α1s+α2 is Hurwitz polynomial. We can
also define the estimation error as

ǫ(t)=e(t) + Θ̂T (t)ζ(t) −M(s)[Θ̂TW ](t), (42)

whereΘ̂(t) is the estimations ofΘ, andζ(t) = M(s)[W ](t).

Adaptive laws. The gradient adaptive update law forΘ̂(t)
is chosen as

˙̂
Θ(t)=−

Γǫ(t)ζ(t)

m2(t)
, Θ̂(0) = Θ̂0, (43)

where m(t) =
√

1 + ζT (t)ζ(t), Γ = ΓT > 0 is an
adaptation gain, and̂Θ0 is the initial estimates ofΘ. This
adaptive update law (43) has the following properties.

Lemma 3: The adaptive law (43) guarantees thatΘ̂(t) ∈

L∞, ˙̂
Θ(t) ∈ L2 ∩ L∞, and ǫ(t)

m(t) ∈ L2 ∩ L∞.
Proof: Considering the positive definite function

V (Θ̃(t)) = 1
2 Θ̃

T (t)Γ−1Θ̃(t), we have the time derivative of
V (Θ̃(t)) along with (43) as

V̇ (Θ̃(t))=−
ǫ(t)Θ̃T (t)ζ(t)

m2(t)
. (44)

Form (42), we have

ǫ(t)= e(t) + Θ̂T (t)M(s)[W ](t) −M(s)[Θ̂TW ](t)

= e(t) + Θ̃T (t)M(s)[W ](t) −M(s)[Θ̃TW ](t)

= Θ̃T (t)M(s)[W ](t) = Θ̃T (t)ζ(t). (45)

From (44) and (45), we have

V̇ (Θ̃(t))=−
ǫ2(t)

m2(t)
, (46)

which implies that V (Θ̃(t)) do not increase and
∫

∞

0
ǫ2(t)
m2(t)dt < V (0) < ∞. Thus, Θ̂(t) = Θ̃(t) + Θ

is bounded. With the boundedness ofΘ̃(t), we have that
ǫ(t)
m(t) is bounded, which implies thatǫ(t)

m(t) ∈ L2 ∩ L∞.

Therefore, from (43), we have˙̂Θ(t) ∈ L2 ∩ L∞. ∇

Stability analysis. In this part, the closed-loop system
stability and tracking properties are analysed when an overall
adaptive control law (38) is applied to the system (3) in the
presence of the unknown parametersk11, k12, d11, d12, a1,
a2, b1, b2, c1, m2 andξ.

Some lemmas that will be used in the adaptive fault-
tolerant controller design from [18], are presented as follows.

Lemma 4 [18]: If H(s) = c(sI − A)−1b is the minimal
realization of a proper transfer function, then

Θ̃TH(s)[W ](t)−H(s)[Θ̃TW ](t)

= c(sI −A)−1[(sI −A)−1b[WT ](t) ˙̃Θ](t). (47)



Lemma 5[18]: Let y(t) = H(s)[u](t), whereH(s) is a
proper stable transfer function. If‖u‖t ≤ κ‖q‖t + κ, then
‖y‖t ≤ κ‖q‖t+κ. In addition, ifH(s) is strictly proper, then
‖y‖t ≤ τ‖q‖t + τ , whereκ ∈ L2 ∩ L∞ and τ ∈ L2 ∩ L∞

with lim
t→∞

τ = 0.

Lemma 6[18]: Let y(t) = H(s)[u](t), whereH(s) is a
proper and minimum phase transfer function. Ifu, u̇ ∈ L∞e

and ‖u̇‖t ≤ µ‖u‖t + µ, then ‖u‖t ≤ µ‖y‖t + µ, whereµ
denotes a signal bound.

With Lemma 3 and the results in [18], we have the
following result.

Theorem 1: The adaptive controllers (38) with the adap-
tive laws (43) applied to the system (3), guarantee that
the corresponding closed-loop state signalsż1(t), z1(t) −
z2(t), ż2(t) are bounded, and the tracking error satisfies
limt→∞(ż1(t)− vm(t)) = 0.

Proof: Using Lemma 4 withM(s), the equations are
obtained as

Θ̃TM(s)[W ](t)−M(s)[Θ̃TW ](t)

= c(sI −A)−1[(sI −A)−1b[WT ] ˙̃Θ](t), (48)

with (c, A, b) being the minimal realisation ofM(s). Since
P (s) = 1

M(s) is Hurwitz, (sI − A)−1b is stable. Further,
˙̃Θ(t) =

˙̂
Θ(t) ∈ L2 ∩ L∞, we have

‖(sI −A)−1b[WT ] ˙̃Θ‖t≤κ‖W‖t + κ. (49)

Sincec(sI −A)−1 is strictly proper, using Lemma 5, we
obtain that

‖Θ̃TM(s)[W ](t)−M(s)[Θ̃TW ](t)‖t≤ τ‖W‖t + τ.(50)

Note that the differential equation forϕ = [ϕ1, ϕ2]
T =

[x2, ẋ2]
T are

ϕ =

[

ϕ1

ϕ2

]

=M(s)

[

1
s

]

[Θ̃TW ] +

[

vm
v̇m

]

. (51)

Since Θ̃(t) is bounded,vm and v̇m are is bounded by
hypothesis,M(s) andsM(s) are all proper stable, we have
‖ϕ‖t ≤ µ‖W‖t +µ, ‖ϕ‖t ≤ µ‖Θ̃TW‖t +µ. For the partial
ISS of dynamics (22)-(23), we have‖η2‖t ≤ µ‖W‖t + µ,
‖η2‖t ≤ µ‖ΘTW‖t + µ. Based on the property of the state
transformation (15)-(18), we have

‖x̄‖t≤µ‖W‖t + µ, ‖x̄‖t ≤ µ‖Θ̃TW‖t + µ, (52)

wherex̄ = [x2, x3, x4]
T .

From (38), we have‖ν̂‖t ≤ µ‖W‖t + µ. Recalling the
definition of W (t) = [ν̂(t), x2(t), x

2
2(t), x

3
2(t), x2(t)x3(t),

−x2(t)x4(t), x3(t), x4(t),−1,−̟(t)]T , ‖∂W/∂x‖ and
‖∂W/∂Θ̂‖ are bounded. Together with (52), we obtain

‖Ẇ‖t≤µ‖W‖t + µ, (53)

thus W (t) is regular. Furthermore, sinceM(s) is a stable
polynomial,ϕ(t) = M(s)[W ](t) are also regular. A sim-
ilar calculation yieldsΘ̃TW to be regular as well. From

d
dt
(Θ̃TW ) = ˙̃ΘTW + Θ̃T Ẇ , using (53) andΘ̃, ˙̃Θ ∈ L∞,

we obtain
∥

∥

∥

∥

d

dt
(Θ̃TW )

∥

∥

∥

∥

t

≤µ‖W‖t + µ. (54)

From (52), together with the construction ofW , implies
that

‖W‖t≤µ‖Θ̃TW‖t + µ. (55)

Combining (55) with (54) yields the regularity of̃ΘTW ,
∥

∥

∥

∥

d

dt
(Θ̃TW )

∥

∥

∥

∥

t

≤µ‖W‖t + µ ≤ µ‖Θ̃TW‖t + µ. (56)

Calculating the derivative ofǫ(t)
m(t) , we have

∥

∥

∥

∥

d

dt

( ǫ

m

)

∥

∥

∥

∥

t

≤

∥

∥

∥

∥

∥

m( ˙̃ΘT ζ + Θ̃T ζ̇)− ṁ(Θ̃T ζ)

m2

∥

∥

∥

∥

∥

t

≤
‖ ˙̃ΘT ζ‖t + ‖Θ̃T ζ̇‖t

‖m‖t
+

‖Θ̃T ζζ̇T ζ‖t
‖m3‖t

≤
‖ ˙̃ΘT ζ‖t + ‖Θ̃T ζ̇‖t

ε
+

‖Θ̃T ζζ̇T ζ‖t
ε3

≤
µ‖ζ‖t + µ

ε
+

µ‖ζ‖3t + µ

ε3
≤ µ, (57)

whereε = max{1, ‖ζ‖t}. Therefore, we can see thatd
dt

(

ǫ
m

)

is bounded. Using the factǫ
m

∈ L2 ∩ L∞, we have
limt→∞

ǫ
m

= 0, which implies thatlimt→∞ ǫ = 0.
From (42), (50), and (55), we have

|e|≤ τ‖W‖t + τ + |ǫ| ≤ τ‖Θ̃TW‖t + τ + |ǫ|. (58)

Sincee = M(s)[Θ̃TW ](t), using Lemma 6, we have

‖Θ̃TW‖t≤µ‖e‖t + µ. (59)

From (58) and (59), we have|e| ≤ τ‖e‖t + τ + |ǫ|,
which implies thatlimt→∞ e = 0, i.e., limt→∞(ż1(t) −
vm(t)) = 0. From (59), the boundedness ofe(t) implies that
of Θ̃T (t)W (t). From (55), the boundedness ofΘ̃T (t)W (t)
implies that ofW (t). From (52) and‖ν̂‖t ≤ µ‖W‖t + µ,
we have the boundedness ofx̄(t) (i.e., ż1(t), z1(t) − z2(t),
ż2(t)) and ν̂(t). ∇

Becausex1(t) (z1(t)) is the position of the first car, which
could go to finite ast goes to finite, the boundedness ofx1(t)
cannot be obtained and its performance is ensured byx2(t)
(ż1(t)).

VI. SIMULATION STUDY

To verify the proposed controller design method, a sim-
ulation study is presented in this section, in which the
parameters are from a real train model of [19]. Two cars
with input acting on second car are considered, for which,
the adaptive controller proposed in (38) with the adaptive
law (43) is used.

Simulation system. The parameters in the simulation are
chosen as:M1 = 126000kg, M2 = 101090kg, ar1 =
8.63Ns/ton, ar2 = 9.03Ns/ton, br1 = 1.08e−4Ns/(m kg),



br2 = 1.08e−4 Ns/(m kg), cr1 = 0.00112 N s2/(m2 ton),
k1 = 100e6N/m, k2 = 30e6N/m, d1 = 80e4Ns/m,
k2 = 40e4Ns/m. The initial conditions are chosen as
x(0) = [0.05 0 0 0]T , and the initial parame-
ter estimates as95% of their nominal values. The gain-
s of the adaptive law in (43) is chosen asΓ =
diag[0.2 0.002 0.002 0.002 0.002 0.002 2 0.2 0.2 0.2].
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Fig. 1. Speed and speed tracking error of first car
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Fig. 2. Position error between two cars

Simulation results. Fig. 1 shows the simulation results
of the speed and speed tracking errors for first car, from
which, it can be seen that the tracking errors are close to
0. There are transit responses due to the adaptive laws and
zero dynamics. Fig. 2 shows the position error between first
and second cars (z1(t)−z2(t)). which becomes a constant in
steady case. The simulation results show that the proposed
stable adaptive control framework can achieve the close-loop
stability even in the presence of unknown parameters.

VII. C ONCLUSIONS

In this paper, the adaptive fault-tolerant controller design
problem has been investigated for high-speed trains using
a under-actuated two-car model even if the parameters are
unknown. A coordinate transformation method is employed
to decompose the system into a control dynamics subsystem

and a zero dynamics subsystem. The stability analysis is
conducted to show that such a zero dynamic system is
Lyapunov stable and is also partially input-to-state stable.
Then, the adaptive fault-tolerant controller is developedto
ensure the closed-loop system signal boundedness and speed
tracking, in the presence of the unknown system parameters
and actuator failures.
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