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Output Feedback Sliding Mode Control for Continuous Stirred Tank
Reactors

Jiehua Feng1 Luning Ma1 Dongya Zhao1⋆ Xinggang Yan2 Sarah K. Spurgeon3,1

Abstract— The continuous stirred tank reactor (CSTR) is
representative of a typical class of chemical equipment where
the dynamics is nonlinear. The problematic issues in control of
a CSTR are the model uncertainties and external disturbances.
Driven by these challenging problems coupled with the need
for demanding levels of performance, this paper establishes the
dynamic model of CSTR and then proposes an output feedback
sliding mode control in light of the established model. The
validity of the control algorithm and of the presented model
are further verified by MATLAB simulation and experimental
trials.

I. INTRODUCTION

CSTR plays a primary role in many chemical processes
[1]. From the control point of view, the CSTR is highly
nonlinear. Meanwhile, the difficulty of accurate modeling
and the influence of external disturbances make the control
of the CSTR challenging [2], [3]. The study of modeling
and control for a CSTR will provide a useful reference for
other nonlinear processes by reasonable modifications of the
modeling and control strategy.

There have been many contributions to the modelling of
the CSTR. A model for an immobilized biocatalyst CSTR is
established by the transfer function and Laplace method [4],
and this can be used to analyze the system’s input and output
behaviour. However the model does not fully consider the
internal mechanisms of the CSTR. A dimensionless dynamic
equation of a CSTR has been established in [5], and it is
widely cited in the literature [6], [7]. This model describes
a first-order, exothermic and irreversible reaction. It should
be noted that the model is built with A → B reaction as the
research object and uses the jacket temperature as the control
input. However, the reaction is not common in chemical
process control. Moreover, the temperature of the reactor
is controlled by the flow of the cooling or heating reagent
(mainly water) within the jacket which means that using the
temperature as the control input is not appropriate. Motivated
by the above analysis, in this study, a mechanism model is
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built based on the general reaction A+B →C+D, while the
jacket flow is used as the control input.

A lot of work has already considered CSTR controller
design. Based on PID control, numerous new control algo-
rithms, such as fuzzy control [8], model predictive control [9]
have been applied to the CSTR. Based on full state feedback,
a robust control has been presented to achieve disturbance
rejection [10]. However, full state feedback control is not
always feasible, since some states of the CSTR are not
measurable directly online in practice. Some observers [11],
[12] have been studied to resolve this issue. High robustness
and rapid response are required in today’s industry and such
observer based control methods may require high control
gains which in turn can lead to controller saturation. It is
challenging to design a controller which achieves demanding
performance levels for the CSTR only using system output
information.

Sliding mode control is a widely used control method due
to its excellent performance characteristics and strong ro-
bustness properties [13], [14]. This control method has been
successfully applied to the CSTR. A novel output feedback
terminal sliding mode control is proposed to stabilize the
temperature tracking error to zero in finite time [15]. A
nonlinear adaptive tracking controller is proposed in [16]
based on fuzzy sliding mode control and Fourier integral
control. It should be noted that the two control methods
mentioned above use jacket temperature as the control input,
which is hard to achieve in industry [17]. An output feedback
sliding mode control is proposed for a class of nonlinear
systems in [18]. However, the method did not consider
problems that may arise in implementation, such as the
effects caused by chattering.

The purpose of this study is to build the mechanism
model for a CSTR based on the general reaction and design
a sliding mode control. An approximate linear system is
obtained through Taylor expansion at the equilibrium point.
There after, the model uncertainties and external disturbance
are considered. In addition, a dynamic compensator is de-
signed to estimate the unmeasurable state. Finally, an output
feedback sliding mode controller is designed based on the
contributions in [18].

II. MECHANISM MODEL OF CSTR

Without loss of generality, in this paper, a class of en-
dothermal irreversible reaction shown in (1) is considered
for the CSTR.

A+B →C+D (1)



TABLE I: Parameter specification

Sign Physical meaning Sign Physical meaning
V Reactor volume TB f Feed B temperature
Cp Reactor specific heat capacity CB f Feed B concentration
ρ Reactor density qB Feed B flow
T Reactor temperature CPB B specific heat capacity
q Reactor flow ρB B density
M Reactor mass CB B concentration

TA f Feed A temperature TE1 Jacket inlet temperature
CA f Feed A concentration TE2 Jacket outlet temperature
qA Feed A flow QE Jacket flow

CPA A specific heat capacity VE Jacket volume
ρA A density ρE Jacket density
CA A concentration CpE Jacket specific heat capacity
k0 Index factor E Activation energy
R Gas constant A Heat transfer area

∆H Reflect the enthalpy change U Coefficient of heat transfer

In dt time, the principle of material conservation is applied
to the reactants:

dnA = qACA f −qCAdt −V (−r)dt (2)

dnB = qBCB f −qCBdt −V (−r)dt (3)

where nA = VCA, nB = VCB and r = −kCACB, k =
k0 exp(−E/RT ). The physical meaning of all parameters in
this section is given in Table 1.

The heat balance of the reaction is expressed as [19]:

MCpdT =qATA f ρACpAdt +qBTB f ρBCpBdt

+V (−∆H)kCACB −UA(T −TE2)dt

−qT ρCpdt
(4)

The temperature and heat balance equation in the jacket
is:

VEρECpEdTE2 = QρECpE(TE1 −T )dt +UA(T −TE2)dt (5)

Since the mass ratio of the reactants is 1 : 1, the feed flow,
temperature and initial concentration of the reactants A and B
are chosen to be the same for convenience; they are denoted
as q/2, Tf 0, C0, respectively.

Integrating (2)-(5) , the model can be expressed as:

ĊA =
q

2V
(C0 −2CA)− k0CACB exp(− E

RT
)

ĊB =
q

2V
(C0 −2CB)− k0CACB exp(− E

RT
)

Ṫ =
qTf 0 (ρACpA +ρBCpB)

2ρVCp
− qT

V

+
(−∆H)

ρCp
k0 exp(− E

RT
)CACB +

UA
ρVCp

(TE2 −T )

ṪE2 =
QE

VE
(TE1 −T )+

UA
VEρECpE

(T −TE2)

(6)

Writing (6) in matrix and vector form:

ẋ = g(x,u)

where x = [ CA CB T TE2 ] is the state vector and u =
QE is the control input, which represents the water flow in
the jacket.

III. MODEL LINEARIZATION AND PROBLEM
DESCRIPTION

Assume that ue is a constant input which forces the
system (6) to settle into a constant equilibrium state xe =
[x1e x2e x3e x4e]. (xe,ue) is the system equilibrium point, that
is, g(xe,ue) = 0. The equilibrium point of the system (6) can
be obtained because x3 is well chosen.

The objective is to linearize (6) around the equilibrium
point such that the nonlinear control system ẋ = g(x,u) can
be approximated by a linear control system ẋ = Ax+Bu.

Let x = xe+∆x,u = ue+∆u. From the Taylor’s expansion,
ẋ = g(x,u) = g(xe +∆x,ue +∆u) = g(xe,ue) +

[
∂g
∂x

]
(xe,ue)

+[
∂g
∂u

]
(xe,ue)

+O(∆x,∆u).

For (6), after neglecting the higher order term, the follow-
ing linearization can be obtained:

ẋ =
[

∂g
∂x

]
(xe,ue)

x+
[

∂g
∂u

]
(xe,ue)

u

= Ax+Bu
(7)

Remark 1. (7) is an error state equation which represents
the deviation from the equilibrium point of each state.
Remark 2. The system state x4 cannot be measured, so the
system output is selected as y =

[
x1 x2 x3

]T .
Considering the modeling error and external disturbance,

(7) is rewritten as:

ẋ = Ax+Bu+ f (x, t)

y =Cx
(8)

where x ∈ Rn,u ∈ Rm,y ∈ Rp are the system state, input and
output respectively, and n = 4,m = 1, p = 3, the function
f (x, t) represents the modeling error and external distur-
bance.
Assumption 1. The matrix pair (A,C) is observable.

There exists a matrix L such that A−LC is stable. Then
given any matrix Q1, the Lyapunov equation

(A−LC)T P1 +P1(A−LC) =−Q1 (9)

has a solution P1 > 0.
Assumption 2. f (x, t) has a structural decomposition:

f (x, t) = E∆ξ (x, t) (10)

where ∥∆ξ (x, t)∥ 6 ζ (x, t) 6 η(x, t)∥x∥, where ζ (x, t) is
Lipschitz with respect to x and Kζ represents the Lipschitz
constant.

Note that not all disturbances will affect the actual system
through the control input channel. Let f (x, t) belong to a
class of mismatched uncertainty, that is, E ̸⊂ span(B).
Assumption 3. There exist a matrice F such that ET P1 =FC
holds.

The aim of this paper is to design a controller to make all
the states in (8) converge to zero asymptotically only using
the system output information and the estimated state while
exhibiting good robustness properties.



IV. DYNAMIC COMPENSATOR DESIGN

Since the system state x4 cannot be measured, it is
necessary to design a compensator. Based on the analysis
above, a dynamical compensator, or observer is designed for
(8):

˙̂x = Ax̂+Bu+L(y− cx̂)+ϕ(x̂,y, t) (11)

ϕ(x̂,y, t) =
{

E FCe
∥FCe∥ζ (x̂, t) FCe ̸= 0

0 FCe = 0
(12)

where e = x− x̂.

Combining (8) and (11), it is straightforward to see that:

ė = (A−LC)e+ f −ϕ(x̂,y, t) (13)

Theorem 1. Under Assumptions 1-3, for the system (8) and
(11), if λ− (Q1)> 2Kζ ∥FC∥, e is asymptotically stable.
Proof:

Choose a Lyapunov function candidate V1 = eT P1e:

V̇1 =−eT Q1e+2eT P1( f −ϕ) (14)

In the case FCe = 0 :

eT P1 ( f −ϕ) = 0 ≤ Kζ ∥FC∥∥e∥2 (15)

In the case FCe ̸= 0 :

eT P1 ( f −ϕ) = (FCe)T ∆ξ (x, t)− (FCe)T FCe
∥FCe∥

ζ (x̂, t)

≤ ∥FCe∥ζ (x, t)−∥FCe∥ζ (x̂, t)
≤ Kζ ∥FC∥∥e∥2

(16)

The following derivation can be obtained:

V̇1 6−
(

λ− (Q1)−2Kζ ∥FC∥
)
∥e∥2

6−
λ− (Q1)−2Kζ ∥FC∥

λ̄ (P1)
eT P1e

=−2α2V1

(17)

where α2 =
λ−(Q1)−2Kζ ∥FC∥

2λ̄ (P1)
.

Based on the above analysis,

λ− (P1)∥e∥2 6V1 (t)6V1 (t0)exp(2α2 (t0 − t))

∥e∥6 α1 exp(−α2t)
(18)

where α1 =

√
V1(t0)
λ−(P1)

exp(α2t0).

This means that lim
t→∞

e = 0 and Theorem 1 holds.

V. OUTPUT FEEDBACK SLIDING MODE CONTROL
DESIGN

From (8) and (13), the dynamics in the (x,e) coordinate
system can be described as:[

ẋ
ė

]
=

[
A 0
0 A−LC

][
x
e

]
+

[
B
0

]
u+

[
f

f −ϕ

]
(19)

y =Cx (20)

The purpose of this section is to design a sliding mode
controller based on knowledge of y and x̂. The sliding
function is defined as:

σ = S1y+S2Nx̂ (21)

where S1 ∈ Rm×p, S2 ∈ Rm×(n−p) and N ∈ R(n−p)×n are
matrices to be designed.

Equation (21) can be further expressed as

σ = Sx−S2Ne (22)

where S = S1C+S2N.
By making σ̇ = 0, the equivalent control can be obtained:

ueq =−(SB)−1 (SAx−S2N (A−LC)e+S1C f +S2Nϕ)
(23)

Meanwhile the sliding mode dynamics can be expressed
by: [

ẋ
ė

]
=

[
Aeq B(SB)−1S2N (A−LC)
0 A−LC

][
x
e

]
+

[
(In −B(SB)−1S1C) f −B(SB)−1S2Nϕ

f −ϕ

] (24)

where Aeq = (In −B(SB)−1S)A.
There exist two nonsingular matrices T1 ∈ Rn×n and T2 ∈

Rm×m such that
T2ST1 = [ Im 0 ] (25)

Introducing the coordinate transformation z = T−1
1 x, the

sliding function (22) becomes

σ = T−1
2 z1 −S2Ne (26)

where z = col(z1,z2) with z1 ∈ Rm and z2 ∈ Rn−m.
The sliding surface can be expressed as:

z1 = T2S2Ne (27)

Meanwhile the sliding mode dynamics (24) become:[
ż
ė

]
=

[
T−1

1 AeqT1 T−1
1 B(SB)−1S2N (A−LC)

0 A−LC

][
z
e

]
+

[
T−1

1 (In −B(SB)−1S1C) f −T−1
1 B(SB)−1S2Nϕ

f −ϕ

]
(28)

where T−1
1 AeqT1 =

[
A11 A12
A21 A22

]
and

T−1
1 B(SB)−1S2N (A−LC) =

[
D1
D2

]
, where A11 ∈ Rm×m

and D1 ∈ Rm×n.
(28) can be expressed by:[

ż2
ė

]
=

[
A22 A21T2S2N +D2
0 A−LC

][
z2
e

]
+

[
f2
ψ

]
(29)

where f2 is the last n − m components of[
T−1

1 (In −B(SB)−1S1C) f −T−1
1 B(SB)−1S2Nϕ

]
z1=T2S2Ne

and ψ = [ f −ϕ ]z1=T2S2Ne.



Based on Assumption 1 and the compensator design, the
following inequality can be obtained:∥∥∥T−1

1 (In −B(SB)−1S1C) f −T−1
1 B(SB)−1S2Nϕ

∥∥∥
6
∥∥∥T−1

1 (In −B(SB)−1S1C)
∥∥∥∥E∥η ∥T1z∥

+
∥∥∥T−1

1 B(SB)−1S2N
∥∥∥∥E∥η (∥T1z∥+∥e∥)

(30)

From Theorem 1, it follows that

eT P1ψ 6 Kζ ∥FC∥∥e∥2 (31)

Then, from the inquality

∥T1z∥=
∥∥∥∥T1

[
T2S2Ne

z2

]∥∥∥∥6 ∥T1∥(∥T2S2N∥∥e∥+∥z2∥)

it follows that there exist χ1 and χ2 such that

∥ f2∥6 χ1 ∥z2∥+χ2 ∥e∥ (32)

where χ1 and χ2 are all dependent on η ,T1,T2,S1,S2.
Meanwhile since A22 is stable [18], this means that given

any matrice Q2 > 0, the equation

A22
T P2 +P2A22 =−Q2 (33)

has a solution P2 > 0.
Theorem 2. Under Assumptions 1-3, the sliding mode
dynamics (29) are asymptotically stable if M > 0.

where M =

[
M11 M12
M21 M22

]
and M11 = λ− (Q2)−2λ̄ (P2)χ1,

M12 = M21 =−
(
∥P2(A21T2S2N +D2)∥+ λ̄ (P2)χ2

)
,

M22 = λ− (Q1)−2∥FC∥Kζ .
Proof: Choose a Lyapunov candidate function:

V (e,z2) = eT P1e+ zT
2 P2z2 (34)

The time derivative of V is given as:

V̇ =−eT Q1e− zT
2 Q2z2 +2zT

2 P2(A21T2S2N +D2)e

+2zT
2 P2 f2 +2eT

2 P1ψ
(35)

Combining (31) and (32), it follows that

V̇ 6−
(

λ− (Q1)−2∥FC∥Kζ

)
∥e∥2

−
(

λ− (Q2)−2λ̄ (P2)χ1

)
∥z2∥2

+2
(
∥P2(A21T2S2N +D2)∥+ λ̄ (P2)χ2

)
∥z2∥∥e∥

=−
[
∥z2∥ ∥e∥

]
M
[

∥z2∥
∥e∥

]
Hence Theorem 2 holds.
Based on the analysis above, the following output feed-

back sliding mode control is designed:

u =−(SB)−1
{

SAx̂+S2NL(y−Cx)+
σ
∥σ∥K(x̂,y, t)

}
(36)

where the control gain

K(x̂,y, t) =(∥S1CE∥+∥S2NE∥)ζ (x̂, t)
+α1

(
Kζ ∥S1CE∥+∥S1CA∥

)
e−α2t +β

(37)

where β is a positive constant.
Theorem 3. Under Assumptions 1-3 and given Theorems
1 and 2, the control (36) can guarantee that the system (8)
reaches the sliding surface and maintains a sliding motion.
Proof:

From Assumption 1 and the compensator design, the
following inequality can be obtained:

S1C f 6 ∥S1CE∥(ζ (x, t)−ζ (x̂, t))+∥S1CE∥ζ (x̂, t)
6 Kζ ∥S1CE∥∥e∥+∥S1CE∥ζ (x̂, t)

(38)

S2NΦ 6 ∥S2NE∥ζ (x̂, t) (39)

Based on (6) and (11), the time derivative of the sliding
function (22) can be expressed as:

σ̇(y, x̂) =SAx̂+S2NLCe+SBu

+S1C f +S2Nϕ +S1CAe
(40)

By applying the control (36) to (40), it follows that

σ̇ =− σ
∥σ∥K(x̂,y, t)+S1C f +S2Nϕ +S1CAe (41)

Further, based on (8), (39) and Theorem 1, the following
inequality can be obtained

σT σ̇ 6−∥σ∥{K(x̂,y, t)−S1C f −S2NΦ−S1CAe}
6−∥σ∥{K(x̂,y, t)− (∥S1CE∥+∥S2NE∥)ζ (x̂, t)
−α1

(
Kζ ∥S1CE∥+∥S1CA∥

)
e−α2t}

6−β ∥σ∥
(42)

Thus Theorem 3 holds.
Remark 3. As chattering may seriously damage the ac-
tuators, a smoothing technique is used in which σ/∥σ∥is
replaced by σ/(∥σ∥+δ ) where δ is a small positive number
in the testing.

VI. SIMULATION AND EXPERIMENTAL VERIFICATION

In this paper, the saponification process (43) with ethyl
acetate and sodium hydroxide as raw materials is selected.

CH3COOC2H5 + NaOH → CH3COONa + C2H5OH
(43)

Relevant parameters are given in Table 2. The data are
substituted into (6) and the final model can be obtained
through model identification as follows:

ẋ1 = 0.08−0.15128x1 −0.02x1x2 exp(−601.4
x3

)

ẋ2 = 0.08−0.15128x2 −0.02x1x2 exp(−601.4
x3

)

ẋ3 = 0.0097−0.0048× exp(−601.4
x3

)x1x2

+2.1(x4 − x3)−0.001234x3

ẋ4 =
u

7510
(319.15− x3)+0.5421(x3 − x4)

(44)

where the states x1,x2,x3,x4 represent the concentration of
ethyl acetate, the concentration of sodium hydroxide, reactor
temperature and jacket outlet temperature respectively; the



TABLE II: Parameter values

Sign Value Sign Value
V 0.00877m3 Tf 0 298.15K
Cp 7.55e+004J/(kgmol ·K) C0 125mol/m3

ρ 993.924kg/m3 U 1200W/
(
m2 ·K

)
k0 0.02 CPB 7.53e+004J/(kgmol ·K)
q 40L/h ρB 989kg/m3

E 50000KJ/kgmol ∆H 158000 kJ/kmol
R 8.314J/(mol ·K) TE1 319.15K

CpE 7.535e+004J/(kgmol ·K) A 0.128m2

CPA 7.57e+004J/(kgmol ·K) VE 0.02m3

ρA 982kg/m3 ρE 997kg/m3

control input u represents the jacket water flow.
Remark 4. Since the mass ratio of the reactants is 1 : 1, the
responses of x1 and x2 are very similar. For reasons of space,
this paper only presents the simulation and experimental
results corresponding to x1.

A PID controller is applied to the actual system. Then the
same control signal is applied as an open-loop input to the
model (44). The corresponding data is compared. The results
shown in Fig. 1-2 indicate that the model (44) is reasonable.

The equilibrium point of the system (44) can be obtained
since the reactor temperature x3 is 303K:

[x1e x2e x3e x4e] = [0.5238 0.5238 303 303.1735]
ue = 43.7407

(45)

When the equilibrium point is substituted into (7), the
following linear model is obtained:

A =

 −0.1527 −0.0014 −4.9391e−06 0
−0.0014 −0.1527 −4.9391e−06 0

3.4547e−04 3.4547e−04 −2.1012 2.1
0 0 0.5363 −0.5421


B =

[
0 0 0 0.0425

]T

From Remark 2 it is obvious that:

C =

 1 0 0 0
0 1 0 0
0 0 1 0

 (46)

It is straight forward to verify that (A,C) is observable.
For Q1 = I4, the Lyapunov equation (9) has a solution :

P1 =


0.1127 −0.0077 −0.0269 −0.0462
−0.0077 0.1127 −0.0269 −0.0462
−0.0269 −0.0269 0.7421 −0.3915
−0.0462 −0.0462 −0.3915 0.5943

 (47)

Suppose the modeling error and external
disturbance f (x, t) = E∆ξ (x, t), where E =[

0.4357 −0.4357 0.1452 0.0957
]T and ∥∆ξ (x, t)∥6

1/9(sin2x4 + |x1|).
Meanwhile, choose F =

[
0.0441 −0.0608 0.0703

]
such that ET P1 =FC holds. Assumptions 1-3 are guaranteed.

Then let
S =

[
1 1 1 1

]
(48)

After direct calculation, it follows that

M =

[
−4.1106 −3.3459
−3.3459 −15.1869

]
(49)
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Fig. 1: The test for concentration of ethyl acetate
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Fig. 2: The test for reactor temperature

Since M > 0 and λ− (Q1) > 2Kζ ∥FC∥, Theorem 1-3 can
be guaranteed. From (37), K(x̂,y, t) can be chosen as:

K(x̂,y, t) = 0.0268(sin2x̂4 + |x̂1|)+α13.0271e−α2t +β (50)

where α1 and α2 are already defined in Theorem 1.
The initial condition is given as :

col(x, x̂) = (0.25,0.25,1,1,0.5,0.5,2,2) (51)
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Fig. 5: The experimental rig

The results in Fig. 3-4 show the effectiveness of the
designed controller. The compensator can effectively observe
the system states and the system shows good robustness
against mismatched disturbances.

The Process Modelling and Control Group from the China
University of Petroleum (East China) has developed the
experimental rig shown in Fig. 5. The experimental results
in Fig. 6-7 show that both the system states and control input
can reach the corresponding equilibrium point.

VII. CONCLUSION

In this paper, the mechanism model for a typical CSTR is
developed. The model is linearized for controller design. A
compensator is developed to estimate the unmeasurable state
and then an output feedback sliding mode control is designed
for the system. The simulation and experimental tests have
demonstrate the effectiveness of the proposed approach and
also validate the model.
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