
Cole, Diana J. (2019) Parameter Redundancy and Identifiability in Hidden 
Markov Models.  Metron, 77 (2). pp. 105-118. ISSN 0026-1424. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/75204/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1007/s40300-019-00156-3

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/75204/
https://doi.org/10.1007/s40300-019-00156-3
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


METRON (2019) 77:105–118
https://doi.org/10.1007/s40300-019-00156-3

Parameter redundancy and identifiability in hidden Markov
models

Diana J. Cole1

Received: 30 November 2018 / Accepted: 8 July 2019 / Published online: 18 July 2019
© The Author(s) 2019

Abstract
Hidden Markov models are a flexible class of models that can be used to describe time series
data which depends on an unobservable Markov process. As with any complex model, it
is not always obvious whether all the parameters are identifiable, or if the model is param-
eter redundant; that is, the model can be reparameterised in terms of a smaller number of
parameters. This paper considers different methods for detecting parameter redundancy and
identifiability in hidden Markov models. We examine both numerical methods and methods
that involve symbolic algebra. These symbolic methods require a unique representation of
a model, known as an exhaustive summary. We provide an exhaustive summary for hidden
Markov models and show how it can be used to investigate identifiability.

Keywords Hidden Markov models · Identifiability · Parameter redundancy

1 Introduction

Hidden Markov models (HMMs) are a flexible class of models that are used when there are
unobservable states. An HMM is a type of dependent mixture model, which consists of a
time series of observations, where each observation is dependent on an unobserved Markov
process; see for example [40].

As with any model, it does not follow that it is possible to estimate every parameter within
that model. For example, two parameters could be confounded as a product, so that there is
not a unique estimate of each parameter individually; only the product has a unique estimate.
This problem is known as parameter redundancy. Alternatively, we say that the parameters
are non-identifiable; see for example [6,14].

In Sect. 1.1we describe the formofHMMs. Then parameter redundancy and identifiability
is discussed in Sect. 1.2. Methods for investigating parameter redundancy and identifiability
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106 D. J. Cole

in HMMs are explained in Sects. 2 and 3. Examples are used to illustrate the methods;
computer code for each example is available in the supplementary material.

1.1 HiddenMarkovmodels

The observations in anHMMare represented by {Xt : t = 1, 2, . . . , T }. Each Xt is dependent
on an underlying hidden Markov process, Ct , with each Xt only dependent on the current
state of Ct . The hidden process Ct can be in one of m states at time t , and is only dependent
on Ct−1. Let

pi (x) = Pr(Xt = x |Ct = i)

be the probability mass function or probability density function of Xt given theMarkov chain
is in state i at time t , and let P(x) be a diagonal matrix with entries pi (x). The transition
between states is represented by the matrix Γ , whose (i j)th element is

γi j = Pr(Ct+1 = j |Ct = i),

with
∑m

j=1 γi j = 1. The initial distribution of the states is δ = [δ1, δ2, . . . , δm], with
∑m

j=1 δ j = 1. The likelihood for a hidden Markov model is then

LT = δP(x1)Γ P(x2)Γ P(x3) . . . Γ P(xT )1

where 1 is a column vector of 1s. If δ is assumed to be the stationary distribution of the
Markov chain then δ = δΓ , and this can replace δ in the above [40].

Below we give three example of HMMs that are used to illustrate different methods for
investigating identifiability.

Example 1: two-state poisson HMM

Zuchini et al. [40] present a two-state Poisson HMM for earthquake data, which can be
extended to three, four or more states. The data consists of the number of earthquakes mag-
nitude 7 or greater from 1900 to 2006 with X1 = 13, X2 = 14, X3 = 8, . . . X107 = 11. The
two-state transition matrix is

Γ =
[

γ11 1 − γ11
γ21 1 − γ21

]

,

the initial state vector is

δ = [δ1, 1 − δ1]
and

pi (x) = exp(−λi )λ
x
i

x ! .

The model has 4 parameters θ = [γ11, γ21, λ1, λ2], if it is assumed that the initial distri-
bution is stationary with δ = δΓ . Alternatively δ1 can be treated as an additional parameter.

This simple example is a commonly used HMM, where identifiability results are well
known, see for example [28]. It is included here to provide a simpler example to illustrate
the different methods discussed.
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Parameter redundancy and identifiability in hidden Markov models 107

Example 2: mark-recapture-recovery model

In mark-recapture-recovery experiments, animals are captured and marked with unique tags.
The animal is then recaptured at later time points, or the tag is recovered from a dead animal.
Data can be used to estimate the mortality in wild animal populations, see for example [32].

The data recorded consists of whether the animal is captured alive or recovered dead at
different time points. For example, suppose an animal population is monitored over 5 years.
One individual animal is first caught in year 2, then not recaptured in year 3, recaptured in
year 4 and then recovered dead in year 5. This animal’s capture history can be represented
as h = 01012, where each number represents one year, with 0 representing an animal is not
captured, 1 representing an animal is captured alive and 2 representing an animal is recovered
dead. Each capture history has an associated probability of occurring. For capture history
h = 01012, Pr(h) = φ2(1 − p3)φ3 p4(1 − φ4)λ5, where φt is the probability an animal
survives from time period t to t + 1, pt is the probability an animal is captured at time t , and
λt denotes the probability that the mark of a dead animal is recovered at time t .

Consider an individual animal that was was first recaptured at time a and last recaptured
alive or recovered dead at time b. Let xk represent the capture history entry at time k. The
probability for a particular capture history is then

Pr(h) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b∏

k=a+1

φk−1 {xk pk + (1 − xk)(1 − pk)} χb if xb = 1

b−1∏

k=a+1

φk−1 {xk pk + (1 − xk)(1 − pk)} (1 − φb−1)λb if xb = 2,

where χk = (1 − φk)(1 − λk) + φk(1 − pk+1)χk+1. For N animals, the likelihood is
L = ∏N

m=1 Pr(hm) [24]. Alternative forms for the likelihood are given in [7,9,26,31].
Thismodel can be considered as two processes. One process representswhether the animal

is alive or dead, the other process represents the observation process (the animal is recaptured
or recovered) [23]. This allows the model to be represented as an HMM, see Chapter 24 of
[40]. The true state of whether the animal is dead or alive is treated as a hidden state. The
under-lying state process has three states: alive, recently dead and long dead. The transition
matrix is

Γ t =
⎡

⎣
φt 1 − φt 0
0 0 1
0 0 1

⎤

⎦ ,

at time t . The observation matrix is

P(xt ) =
⎧
⎨

⎩

diag(1 − pt , 1 − λt , 1) if xt = 0
diag(pt , 0, 0) if xt = 1
diag(0, λt , 0) if xt = 2

.

In this case the transition matrix has been extended to be time dependent, so the likelihood
for individual i extends to

Li = δΓ aP(xa+1)Γ a+1P(xa+2) . . . Γ T−1P(xT ),

where the individual was initially marked at time a, has history xt at time t . The likelihood
for N individual histories is L = ∏N

m=1 Li [40].
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108 D. J. Cole

This example is used to illustrate that complex models can be more simply represented
as an HMM. We later investigate whether it is simpler to use the HMM form to investigate
identifiability.

Example 3: longitudinal HMM

In medical research a patient’s health or response to treatment can be in one of m different
states. For example in a schizophrenia study, patients were classified in one of four categories:
normal, mild, moderate, and severe. The state of the patient is then recorded over several
time periods. It is possible that the state can be misclassified, which can be taken into account
using an HMM. See [39].

For this example, the initial state vector is

δ = [δ1, δ2, . . . , δm],
where δi is the probability a patient is in state i at the start of the study,with δm = 1−∑m−1

i δi .
The transition matrix is

Γ =
⎡

⎢
⎣

γ11 γ12 . . . γ1m
...

γm1 γm2 . . . γmm

⎤

⎥
⎦ ,

where γi j represents the probability of moving from state i to state j . Again
∑m

j=1 γi j = 1,
so we let γi i = 1 − ∑m

j=1, j �=i γi j . The observation matrix is

P(x = j) = diag(b1 j , b2 j , . . . , bmj ),

where bi j represents the probability of misclassification. As
∑m

j=1 bi j = 1 we let bii =
1 − ∑m

j=1, j �=i bi j .
For K patients observed at T points in time, the likelihood is

k=K∏

k=1

δP(x1k)Γ P(x2k)Γ . . .P(xTk)Γ 1,

where xtk = 1, 2, . . . ,m is the kth patient’s state at time t .
Identifiability of this model follows from [1]. However, real applications have a different

form for the entries of the transition matrix, see for example [2,4]. Here we are interested in
how identifiability can be investigated in such cases.

1.2 Parameter redundancy and identifiability

Consider a model, M(θ), which depends on qθ parameters, θ . The model, M(θ), is defined as
parameter redundant if it can be reparameterised in terms of a smaller number of parameters,
β = g(θ), of length qβ < qθ , where g is a function, andwhere qβ is the number of parameters
in the vector β [6]. A model is globally identifiable if M(θ1) = M(θ2) implies that θ1 = θ2.
A model is locally identifiable if there is a region in the parameter space where this is true. A
model is non-identifiable if M(θ1) = M(θ2) for θ1 �= θ2. See for example [14]. It follows
that a parameter redundant model will be non-identifiable [6]. A non-identifiable model
can consist of both identifiable and non-identifiable parameters; the same definition can be
applied to identifiability regarding a single parameter.
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Parameter redundancy and identifiability in hidden Markov models 109

If an HMM is identifiable it will often be locally identifiable rather than globally identi-
fiable, due to label switching. That is, the state parameters and the distribution parameters
can be permuted and still give the same value of the likelihood [28]. An example of label
switching is given in Sect. 2.2. This is frequently overcome by using an order constraint on
the parameters. For example, in Example 1 below, λ1 < λ2.

Generic rules for identifiability in HMMs have been established by Petrie [33] and Allman
et al. [1]. For example, in a binary HMM with m states, generic identifiability is achieved
from the marginal distribution of 2m − 1 observations (see Theorem 6 in [1]). However,
the theorem is not applicable for every HMM. In Example 1 there is only a single time
series and the state space of the observed variable Xt has no upper limit. Example 2 uses a
different parameterisation so the theorem is no longer valid. The theorem can be applied to
Example 3, resulting in an identifiable model as long as there are at least 2m−1 observations.
However, we are also interested in a different parameterisation, so again the theorem is no
longer necessarily valid.

Rather than considering generic results for all standard HMMs, we will now investigate
how identifiability can be checked for a specific example. Various methods exist for checking
identifiability, which include the Hessian method, the log-likelihood profile method and a
symbolic algebra method [22].

As the Hessian matrix in a non-identifiable model will be singular at the maximum like-
lihood estimate, the Hessian matrix can be used to check identifiability [38]. However, in
HMMs the Hessian matrix, when found numerically, is unreliable for longer time series and
more complex models [3]. In Sect. 2.1 we demonstrate how this problem effects using the
Hessian matrix method to check identifiability.

The log-likelihoodprofilemethod involves plotting a log-likelihoodprofile for eachparam-
eter. If the profiles are flat for any parameter then the model is non-identifiable, see [35]. In
Sect. 2.2 we demonstrate how the log-likelihood method can be used to check identifiability
in an HMM.

A model can be represented by an exhaustive summary, which is a vector of parameter
combinations that uniquely define the model. To investigate non-identifiability a derivative
matrix is formed by differentiating each term of the vector with respect to each parameter and
the rank of the derivative matrix is found. If the rank is less than the number of parameters
the model is non-identifiable or parameter redundant, see [14,36]. In Sect. 3 we provide an
exhaustive summary and show how this symbolic algebra method can be used with HMMs.

2 Numerical methods for investigating identifiability in HMMs

In this Sectionwe explore two numericalmethods for investigating identifiability: theHessian
method in Sect. 2.1 and the log-likelihood profile method in Sect. 2.2.

2.1 Hessianmethods

If a model is non-identifiable then the Fisher Information matrix will be singular [36] and
the Hessian matrix at the maximum likelihood estimate is also singular [38]. This means
that standard errors do not exist for a non-identifiable model, and also gives a method to
check identifiability. Typically the Hessian matrix is simpler to use than the Fisher infor-
mation matrix [30], but rather than the exact Hessian matrix, a numerical approximation is
used. A singular matrix will have at least one zero eigenvalue. However, the approximate
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110 D. J. Cole

Hessian matrix may no longer be singular, so instead we consider whether at least one of
the eigenvalues is close to zero [38]. The eigenvalues can be standardised by dividing by
the largest eigenvalue. The difficulty with this method is choosing the threshold for when
a standardised eigenvalue is considered close enough to zero. Vialefont et al. [38] suggest
a threshold of τ = q × 10−9, for a model with q parameters. Testing indicates this can be
too strict. Simulation studies suggest a better threshold is τ = q × 10−6. Other alternative
criteria are discussed in Konstatinides and Yao [27] and Little et al. [29].

It is also possible that an identifiablemodel still causes issueswith parameter estimation for
specific data sets, which is called statistical estimability or sloppiness [5,12]. This can occur
because the model is very similar to a model that is parameter redundant for a particular
data set, which is known as near redundancy [10,14]. The Hessian matrix will also have
small eigenvalues in such case. To distinguish sloppiness, Chis et al. [12] use a threshold of
τ = 10−3.

Example 1: two-state poisson HMM

To demonstrate how the Hessian method works we consider the two-state HMM for the
earthquake data set. In this examplewe assume that δ is stationary.Weuse both the full data set
with 107 observations and a small data set consisting of only the first three observations, X1 =
13, X2 = 14, X3 = 8. We note that the small data set is only used for a simple illustration;
it is not sensible to fit an HMM with such a small sample size. The R code Example1.R
in the supplementary material shows how to find the eigenvalues of the Hessian matrix. The
eigenvalues are then standardised by dividing by the largest eigenvalue. For the full data
set the standardised eigenvalues are 1, 0.33, 0.0040, 0.0027. For the smaller data set the
standardised eigenvalues are 1, 7.70×10−9, 4.60×10−11, 0. The full data set is identifiable,
whereas the smaller data set is non-identifiable.

There are two potential problems with this method. The first is the choice of threshold,
and the second is the accuracy of the numerical Hessian approximation for HMMs (see, for
example, [3]). We explore these issues considering three different simulations, labelled Sim
1, Sim 2 and Sim 3:

– Sim 1: The two-state Poisson HMM with λ1 = 10, λ2 = 20, γ11 = 0.7, γ21 = 0.2. This
model should be identifiable for T ≥ 4.

– Sim 2: The two-state PoissonHMM, simulated from a single statemodel, so that λ1 = 10,
λ2 = 10, γ11 = 0.7, γ21 = 0.3. This model should be identifiable for T ≥ 4, but is near
redundant due to the data set used.

– Sim 3: The two-state Poisson HMM reparameterised to be obviously non-identifiable,
with γ11 = ab. The simulation values are λ1 = 10, λ2 = 10, a = 0.5, b = 0.9,
γ21 = 0.2.

Each simulation study consists of 100 simulations. Similar to Example1.R, the optimi-
sation procedure used was the R function nlm, initialised using the true parameter values.
We record how many of the simulations have their smallest standardised eigenvalue below
each of three thresholds: τ = 10−3, τ = q × 10−6 and τ = q × 10−9.

The simulation study is summarised in Table 1. It is clear that the Hessian method is not
always accurate at detecting identifiability. The threshold of τ = q × 10−9 is too strict to
pick up all cases of non-identifiability. A threshold of τ = q × 10−6 is better, except for
small values of T . A threshold of τ = 10−3 seems to pick up near-redundancy in most, but
not all, cases.
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Parameter redundancy and identifiability in hidden Markov models 111

Table 1 Simulation study, showing the percentage of simulations where the smallest standardised eigenvalue
is below each of three thresholds: τ = 10−3, τ = q × 10−6 and τ = q × 10−9

T 3 (%) 5 (%) 10 (%) 20 (%) 50 (%) 100 (%) 500 (%)

Sim 1 τ = 10−3 100 99 47 14 3 1 0

τ = q × 10−6 100 97 47 13 0 0 0

τ = q × 10−9 70 70 36 13 0 0 0

Sim 2 τ = 10−3 100 94 97 89 93 93 100

τ = q × 10−6 100 94 95 88 87 71 67

τ = q × 10−9 75 80 66 56 59 45 30

Sim 3 τ = 10−3 100 100 100 100 100 100 100

τ = q × 10−6 100 100 100 100 100 100 100

τ = q × 10−9 99 92 73 49 19 10 16

T is the length of the time series. Sim 1 is the two-state Poisson HMM, which is identifiable when T ≥ 4. Sim
2 is the two-state Poisson HMMwith near-redundant data. Sim 3 is a reparameterised two-state Poisson HMM
that is non-identifiable. Non-identifiable models, indicated by bold, would ideally have 100% of simulation
over the thresholds. In the simulation where the data is chosen to cause near redundancy, indicated by italic,
would ideally have 100% of simulations over the threshold τ = 10−3. Identifiable models would ideally have
0% of simulations over the threshold

For Sim 1 we also constructed confidence intervals based on the Hessian matrix and found
that only 5% of the simulations contained the true value of the parameter for T = 500. As
found by Visser et al. [37], this is because the confidence intervals were too narrow. Even
though the approximate Hessian matrix is a poor approximation for finding the standard
error and confidence intervals, the Hessian method is still giving the correct result about
identifiability in this case. In other cases it is not clear whether the wrong result is due to the
poor Hessian approximation or the threshold.

Overall, because of the difficulty in choosing a threshold and because the numerical
approximation of the Hessian matrix can be inaccurate, this method is not recommended for
HMMs.

2.2 Log-likelihood profile method

As parameter redundant models can be reparameterised in terms of a smaller number of
parameters, so that β = g(θ), it follows that there are multiple maximum likelihood esti-
mates satisfying β̂ = g(θ) [19]. This results in a flat ridge in the log-likelihood surface [6].
Therefore a method of detecting non-identifiability is to examine log-likelihood profiles for
each parameter. If the profile for a parameter is flat, the parameter is non-identifiable. If there
is a single optimum, the parameter is globally identifiable and if there are two ormore optima,
the parameter is locally identifiable.

Example 1: two-state poisson HMM

The R code Example1.R also gives code to create log-likelihood profiles. These are shown
for the parameter λ1 in Fig. 1. We consider four different examples:

(a) The standard two-state model for the earthquake data set. This example is locally iden-
tifiable.
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112 D. J. Cole

Fig. 1 Log-likelihood profiles for Example 1 for a two-state Poisson HMM (locally identifiable) b two-state
Poisson HMMwith constraint λ1 < λ2 (globally identifiable) c two-state Poisson HMMwith data that causes
near redundancy d two-state Poisson HMM with only T = 3 observations (non-identifiable)

(b) The two-statemodel for the earthquake data setwith the constraintλ1 < λ2. This example
is globally identifiable.

(c) The two-state model for a simulated data set following Sim 2, with T = 100. This
example is near redundant.

(d) The standard two-state model with only T = 3 observations. This example is non-
identifiable.

When all the data are used there are two optima, therefore the parameter λ1 is locally
identifiable (Fig. 1a). The other parameters are all locally identifiable as well. In this case
there are two sets of maximum likelihood estimates: λ̂1 = 15.47, λ̂2 = 26.13, γ̂11 = 0.93,
γ̂21 = 0.13 (with 1− γ̂11 = 0.07, 1− γ̂21 = 0.87) and λ̂1 = 26.13, λ̂2 = 15.47, γ̂11 = 0.87,
γ̂21 = 0.07 (with 1 − γ̂11 = 0.13, 1 − γ̂21 = 0.93). This is an example of label switching,
see for example [34]. Local identifiability can be changed to global identifiability using an
order constraint; here we use λ1 < λ2. This is shown in Fig. 1b, where there is now only one
optimum.

For the simulated data set, the data causes near redundancy. This can be seen in Fig. 1c
as the profile is flat for part of the log-likelihood. For the small data set with 3 observations
the log-likelihood profile is flat, showing λ1 is non-identifiable.

We note that it is difficult to distinguish between whether a log-likelihood profile is flat,
or is near flat. It is therefore not always possible to distinguish between non-identifiability
and near redundancy.
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Parameter redundancy and identifiability in hidden Markov models 113

3 Symbolic algebramethod for investigating identifiability in HMMs

To investigate identifiability it is often simpler to use an exhaustive summary rather than the
model. An exhaustive summary, κ(θ), is a vector of parameter combinations that uniquely
define the model. That is κ(θ1) = κ(θ2) ⇔ M(θ1) = M(θ2) for all θ1 and θ2 [14].

The symbolic algebra method involves forming a derivative matrix by differentiating the
exhaustive summary with respect to the parameters, so that

D = ∂κ

∂θ
.

If the rank, r , of the derivative matrix is less than the number of parameters, qθ , the
model is parameter redundant and therefore non-identifiable. If the rank, r , of the derivative
matrix is equal to the number of parameters then the model is at least locally identifiable,
that is, the model could be either locally or globally identifiable [6,14,36]. We let d = qθ − r
represent the deficiency of the model; a parameter redundant model will have d > 0. If a
model is parameter redundant it is possible to find whether any of the individual parameters
are identifiable by solving α′D = 0. There will be d solutions to α′D = 0, which we
label α j , for j = 1, . . . , d , with individual entries αi j . If αi j = 0 for all j then θi will
be individually identifiable. By solving the system of linear first-order partial differential
equations

∑p
i=1 αi j∂ f /∂θi = 0, j = 1 . . . d for arbitrary differentiable function f , we can

find a reparameterisation of the model which is not parameter redundant, known as estimable
parameter combinations, or a locally identifiable reparameterisation [8,11,14,21].

To use the symbolic algebra method in Hidden Markov models we require a suitable
exhaustive summary. In a similar way to the expansion exhaustive summary developed for
state-space models in Cole and McCrea [18], we start with the likelihood for just X1, and
then extend to the likelihood for X1 and X2, etc. This gives an exhaustive summary of

κ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

δP(x1)1
δP(x1)Γ P(x2)1

δP(x1)Γ P(x2)Γ P(x3)1
...

δP(x1)Γ P(x2)Γ P(x3) . . . Γ P(xT )1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

If δ is assumed to be stationary then the first term of the exhaustive summary can be
replaced by δΓ P(x1)1. This will change the exhaustive summary’s algebraic representation,
but not the identifiability results.

In somemodels the exhaustive summary lengthwill depend on the number of observations.
For HMMs, the exhaustive summary length will depend on the length of the time series, T .
We can use this method to obtain general results about a model for any T by using the
Extension Theorem [6,14]. We start from the lowest value of T for which the general result
is valid, T = T1, and find the rank of the derivative matrix for the exhaustive summary with
T = T1. If the derivative matrix has d = 0, we then extend the model to T = T1 + 1. The
extra exhaustive summary terms are then differentiated with respect to the extra parameters
to form a second derivative matrix. If that derivative matrix has d = 0 as well then the model
will always be identifiable, by the Extension Theorem. If the model with T = T1 has d > 0
we first reparameterise the model in terms of the estimable parameter combinations, to be
able to apply the same result and show the model will always be non-identifiable.

The symbolic algebramethod is executed in a symbolic algebra package, such asMaple. In
more complexmodels the packagewill run out ofmemory trying to find the rank symbolically
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114 D. J. Cole

[15,16,25]. Cole et al. [14] have developed an extension to the symbolic method that involves
reparameterisation. The alternative is the hybrid symbolic-numerical method, which involves
calculating the derivative matrix symbolically and then finding the rank at several random
points in the parameter space [13]. Choquet and Cole [13] demonstrate that it is sufficient to
use 5 random points.

We can distinguish between global and local identifiability by solving the equations
κ i (θ) = ki for i = 1, . . . , n, where n is the number of terms in the exhaustive summary. If
there is a single solution the model is globally identifiable. If there are a countable number
of solutions, greater than 1, then the model is locally identifiable [14].

We demonstrate how this symbolic algebra method is executed in three examples below.

Example 1: two-state poisson HMM

For the two-state Poisson HMM, when δ is stationary, the exhaustive summary is

κ P2 =
⎡

⎢
⎣

δΓ P(x1)1
δP(x1)Γ P(x2)1

...

⎤

⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(δ1γ11+δ̄1γ21) exp(−λ1)λ
x1
1

x1! + (δ1γ̄11+δ̄1γ̄21) exp(−λ2)λ
x1
2

x1!
(δ1γ11+δ̄1γ21)γ11 exp(−2λ1)λ

x1
1 λ

x2
1

x1!x2! + (δ1γ̄11+δ̄1γ̄21)γ21 exp(−λ1−λ2)λ
x1
2 λ

x2
1

x1!x2! +
(δ1γ11+δ̄1γ21)γ̄11 exp(−λ1−λ2)λ

x1
1 λ

x2
2

x1!x2! + (δ1γ̄11+δ̄1γ̄21)γ̄21 exp(−2λ2)λ
x1
2 λ

x2
2

x1!x2!
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where δ̄i = 1 − δi and γ̄i j = 1 − γi j . There are 4 parameters θ = [λ1, λ2, γ11, γ21].
We show in the Maple file Example1.mw that when there are T = 3 observations then the
derivativematrix ∂κ P2/∂θ has rank 3.As there are 4 parameters themodel is non-identifiable.
When T = 4 the derivative matrix has rank 4, so the model is at least locally identifiable.
Increasing T to 5 adds one extra exhaustive summary term, but no extra parameters, so we
can therefore apply the Extension Theorem without the need to examine another derivative
matrix, concluding that the model will have rank 4 and be at least locally identifiable for any
T ≥ 4.

It is not possible to show whether the modal is only locally identifiable symbolically, as
Maple cannot solve the equations κ = k.

We can extend this model by increasing the number of states. However, as we increase
the number of states the exhaustive summary becomes more complex. We also need a larger
number of exhaustive summary terms to achieve identifiability, and each exhaustive summary
term is successively more complex. It is recommended instead to use the hybrid symbolic-
numerical method. For example when m = 3 there are 9 parameters. When T = 8 the ranks
of the derivative matrix evaluated at 5 random points in the parameter space were 7, 8, 8, 8, 8.
The model rank is the maximum of these 5 ranks, so is 8. However, as there are 9 parameters
the model is parameter redundant with deficiency 8. When T = 9 the model rank is 9, so the
model is at least locally identifiable. The code for the hybrid symbolic-numerical method is
given in the Maple code for this example.

For this example we require T ≥ m2 to ensure model is at least locally identifiable. As
m2 is the number of parameters, the limiting factor here is that there must be at least as many

123



Parameter redundancy and identifiability in hidden Markov models 115

exhaustive summary terms as parameters for identifiability, which is a requirement in any
example, see for example [17].

Example 2: mark-recapture-recovery model

For the mark-recapture-recovery model the contribution to the exhaustive summary for the
i th observation with capture history hi is

κhi =
⎡

⎢
⎣

δΓ 1P(x2)1
δΓ 1P(x2)Γ 2P(x3)1

...

⎤

⎥
⎦ .

For example the capture history hi = 112 would have exhaustive summary contribution

κhi=112 =
[

δΓ 1P(x2 = 1)1
δΓ 1P(x2 = 1)Γ 2P(x3 = 2)1

]

=
[

φ1 p2
φ1 p2(1 − φ2)λ3

]

.

The exhaustive summary then combines the exhaustive summary contribution for each
individual capture history in the study. To check the identifiability of the model we consider
an exhaustive summary with every possible history combination. Ignoring repeated terms for
T = 3 years of data the exhaustive summary is

κMRR2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − φ1)λ2
φ1 p2

φ1 p2(1 − φ2)λ3
φ1 p2φ2 p3

φ1 p2φ2(1 − p3) + φ1 p2(1 − φ2)(1 − λ3)

φ1(1 − p2) + (1 − φ1)(1 − λ2)

φ1(1 − p2)(1 − φ2)λ3
φ1(1 − p2)φ2 p3

φ1(1 − p2)φ2(1 − p3) + φ1(1 − p2)(1 − φ2)(1 − λ3) + (1 − φ1)(1 − λ2)

(1 − φ2)λ3
φ2 p3

φ2(1 − p3) + (1 − φ2)(1 − λ3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The parameters are θMRR = [φ1, φ2, p2, p3, λ2, λ3]. In theMaple code,Example2.mw,
given in the supplementarymaterial,we show that the derivativematrixD = ∂κMRR2/∂θMRR

has rank 5. However, there are 6 parameters, so the model is non-identifiable.
It is also possible to use the Extension Theorem to show that this model is always non-

identifiable with deficiency 1 for T ≥ 3, as we demonstrate in the Maple code.
The Maple code also demonstrates how the probabilities of each capture history could

also be used to create an exhaustive summary. Any alternative exhaustive summary will give
the same results on identifiability. The advantage of HMMs exhaustive summary is that the
Extension Theorem is more straightforward to apply. However, a simple exhaustive summary
has been given in [24].

Example 3: longitudinal HMM

For the longitudinal HMMwe start by considering the case withm = 2 states. Suppose there
are T = 2 observations and every possible combination of states is observed at least once,
then the exhaustive summary is
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κ L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

δP(1)1
δP(2)1

δP(1)Γ P(1)1
δP(1)Γ P(2)1
δP(2)Γ P(1)1
δP(2)Γ P(2)1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

δ1b̄21 + δ̄1b21
δ1b12 + δ̄1b̄12

δ1b̄221γ̄12 + δ̄1b21b̄21γ21 + δ1b21b̄21γ12 + δ̄1b221γ̄21
δ1b̄21b12γ̄12 + δ̄1b21b12γ21 + δ1b̄21b̄12γ12 + δ̄1b21b̄12γ̄21
δ1b12b̄12γ̄12 + δ̄1b̄21b̄12γ21 + δ1b21b12γ12 + δ̄1b21b̄12γ̄21

δ1b212γ̄12 + δ̄1b12b̄12γ21 + δ1b12b̄12γ12 + δ̄1b̄212γ̄21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where γ̄i j = 1 − γi j and b̄i j = 1 − bi j . The parameters are θ L = [γ12, γ21, b12, b21, δ1].
The derivative matrix D = ∂κ L/∂θ L has rank 4. As there are 5 parameters the model is
non-identifiable. For T = 3 the appropriate derivative matrix has rank 5, so the model is at
least locally identifiable. We show in the Maple code, by solving the equations κ = k, that
this model is locally identifiable. Increasing T by 1 would add no extra parameters, therefore
by the Extension Theorem this model is always locally identifiable for T ≥ 3. Similarly, as
demonstrated in the Maple code, when there are m = 3 states, there are 14 parameters and
the rank of the appropriate derivative matrix is 14 when T ≥ 3.

Bureau et al. [4] andBenoit et al. [2] have a different form for the transition rates. However,
we can infer the identifiability results using the reparameterisation Theorem from [14]. This
Theorem states that if the exhaustive κ(θ) is reparameterised in terms of s = g(θ) for
some function g, to give κ(s), then the rank of Ds = ∂κ(s)/∂s is the same as the rank of
D = ∂κ(θ)/∂θ as long as rank(∂s/∂θ) = qs , where qs is the length of s.

For example in the three statemodel, suppose the amount of time a patient stays in category

i follows an exponential distribution with mean
(∑3

j=1,i �= j λi j

)−1
and the probability a

patient changes state is λi j/
(∑3

j=1,i �= j λi j

)−1
, and we have equally spaced time periods in

increments of 1, then

Γ 2 =

⎡

⎢
⎢
⎢
⎣

1 − exp
(
− 1

λ12+λ13

)
λ12

λ12+λ13
exp

(
− 1

λ12+λ13

)
λ13

λ12+λ13
exp

(
− 1

λ12+λ13

)

λ21
λ21+λ23

exp
(
− 1

λ21+λ23

)
1 − exp

(
− 1

λ21+λ23

)
λ23

λ21+λ23
exp

(
− 1

λ21+λ23

)

λ31
λ31+λ32

exp
(
− 1

λ31+λ32

)
λ32

λ31+λ32
exp

(
− 1

λ31+λ32

)
1 − exp

(
− 1

λ31+λ32

)

⎤

⎥
⎥
⎥
⎦

.

Γ 2 is a reparameterisation of Γ with

γi j = λi j
∑3

j=1,i �= j λi j
exp

(

− 1
∑3

j=1,i �= j λi j

)

i �= j .

The 14 new parameters are

θ L2 = [λ12, λ13, λ21, λ23, λ31, λ32, b12, b13, b21, b23, b31, b32, δ1, δ2].
By the reparameterisation Theorem the rank will also be 14, so again the model is identi-

fiable.

4 Discussion

In this paper we have demonstrated some of the tools that can be used to check identifiability
in HMMs.

We recommend that you do not use the Hessian method to determine identifiability in
HMMs, as it can be inaccurate.
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The log-likelihood profile method is a suitable numerical method for HMMs. However,
the log-likelihood profile method can be difficult to distinguish non-identifiability and near
redundancy, and would require a profile for every parameter. Theoretically it can also be used
to find estimable parameter combinations, using a method called subset profiling; see [20].

The symbolicmethodmethod for checking identifiability is always accurate, but it requires
a symbolic algebra package to execute. We have provided a new exhaustive summary for
HMMs, however this exhaustive summary gets consecutively more complex for larger T .
The symbolic algebra package can run out of memory calculating the rank of the appropriate
derivativematrix, inwhich casewe recommend using the hybrid symbolic-numericalmethod.
This method can be used to get results for any T using the Extension Theorem, and can also
give estimable parameter combinations in non-identifiable models.

Although a symbolic method exists for distinguishing between local and global identi-
fiability, for most HMMs the exhaustive summary will be symbolically too complex for a
symbolic algebra package to solve the appropriate equations. It was only possible for the sim-
plest case in Example 3. We therefore recommend using the log-likelihood profile method to
check for local identifiability.We note that if a model is found to be globally identifiable from
a profile it is only a valid result for the region of the profile examined. A second optimum
could potentially exist outside of the region of the graph. Local identifiability can typically
be changed to global identifiability using a order constraint.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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