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Abstract

In this thesis, the calculation of Euler—-Lagrange systems of ordinary difference equations is
considered, including the difference Noether’s Theorem. The discrete and difference moving
frame is presented, and it is shown that for any Lagrangian that is invariant under a Lie group
action on the space of dependent variables, the Euler—Lagrange equations can be calculated
directly in terms of the invariants of the group action. Furthermore, Noether’s conservation
laws can be written in terms of a difference moving frame and the invariants. It is shown that
this can significantly ease the problem of solving the Euler-Lagrange equations. We show
the calculations for a discretisation of the Lagrangian for the Euler’s elastica, and compare
our discrete solution to that of its smooth continuum limit. We also study in depth some
finite difference Lagrangians which are invariant under specific Lie group actions such as the
special unitary action, the linear and projective actions of SL(2), and the linear equi-affine
action which preserves area in the plane. We first find the generating invariants, and then
we write the Euler-Lagrange difference equations and Noether’s difference conservation laws
for any invariant Lagrangian, in terms of the invariants and a difference moving frame. We
then give the details of the final integration step, assuming the Euler—Lagrange equations have
been solved for the invariants. This last step relies on understanding the Adjoint action of
the Lie group on its Lie algebra. Effectively, for all three actions, we show that solutions to
the Euler-Lagrange equations, in terms of the original dependent variables, share a common
structure for the whole set of Lagrangians invariant under each given group action, once the
invariants are known as functions on the lattice. The projective special linear group action,

and the special euclidean action in R? are explored using multispace theory.
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Moreover, we show how to compute the discrete correction matrices and prove that the
curvature matrix can be computed simply by knowing only the correction matrix and the
Lie algebra of the Lie group. We prove that the relationships between a discrete flow and its
induced curvature flow is in terms of a syzygy operator and that it is a linear shift operator
depending only on the curvature invariants. We also show how this is related to discrete
integrable systems for some Lie group actions.

We also present the Rotation minimising frame and show how to use the known symbolic
techniques despite the fact that it does not readily fit the known framework needed for these
techniques. We derive the invariant differentiation formulae and the syzygy operator needed to
obtain Noether’s laws for variational problems with a Euclidean symmetry using the Rotation
minimising frame and present some application in biological problems. We also develop the
relationships between two frames differing by a gauge in the general case and prove that the
curvature matrices of one frame can also be written in terms of the curvature matrices coming

from the other frame and study some examples.
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Introduction

The name of moving frames is associated with Elie Cartan, [14] who referred to them as repére
mobiles and used them to solve equivalence problems in differential geometry. However, moving
frames appear in earlier work by other authors such as Cotton, [17] and Darboux, [18] and
continued to be studied as shown in Green and Griffiths, [35, 36]. Work by Fels and Olver,
[24, 25| showed that, given a Lie group action, defining a frame as an equivariant map from
the manifold to the group led to symbolic recurrence formulae for the differential invariants
amongst many other insights.

The Fels and Olver approach is well suited to symbolic computation as presented in Olver,
[87, 88|, Hubert, [41, 43, 44|, and Hubert and Kogan, [45, 46]. Thanks to the invariant calculus
one can study differential systems which are either invariant or equivariant under the action
of a Lie group, see Mansfield, [78|, and it can be implemented using Mathematica or Maple.
In Mansfield, [70], the author provides an introduction to the symbolic differential invariant
calculus together with some applications.

The theory of Lie group based moving frames is now well established with significant
applications. Related to this thesis are: construction of the invariant Euler-Lagrange equations
from their invariant Lagrangian, (Kogan and Olver, [63]), computation of symmetry groups and
classification of partial differential equations and integration of Lie group invariant differential
equations, (Mansfield, [69], Morozov, [82]), the Noether correspondence between symmetries
and invariant conservation laws, (Gongalves and Mansfield, [32, 33]), integrable systems,
(Beffa, [2, 3, 4], Mansfield and van der Kamp, [73], Mansfield and R-E, [76]), symmetry
reduction of dynamical systems, (Hubert and Labahn, [47]|, Siminos and Cvitanovic, [101]),
Lie pseudo-groups, (Olver and Pohjanpelto, [90]) and applications to computer aided design
(Mansfield and R-E, [77]).

The theory of moving frames has been recently extended to the discrete case, leading
to new applications such as integrable differential-difference systems, (Beffa, Mansfield and
Wang, [6], Mansfield, R-E and Wang, [76]), invariant evolutions of projective polygons, (Beffa

and Wang, [7]), computer vision, (Olver, [89]) and numerical schemes for systems with a Lie

1



2 Introduction

symmetry, (Kim, [56, 57, 58], Mansfield and Hydon, [72], Rebelo and Valiquette, [97]).

The first results for the computation of discrete invariants using group-based moving
frames were given by Olver who called them joint invariants in [88]. But this approach was
not computationally useful. However, in Beffa, Mansfield and Wang, [6], a notion of a discrete
moving frame is introduced, which is essentially a sequence of frames, and which is adapted
to discrete computation. In that paper, discrete recursion formulae were proven for small
computable generating sets of invariants, called the discrete Maurer—Cartan invariants and
their recursion relations called syzygies were studied. The theory of discrete moving frames is
extended in Beffa and Mansfield, [5] by considering lattice based multispaces where the frame
is simultaneously a smooth frame and a frame defined on local difference approximations. In
Mansfield, R-E, Hydon and Peng, [74] and Mansfield and R-E, [75] a discrete analogue of the
theorems appearing in Gongalves and Mansfield, [32, 33, 34| is presented. In both smooth and
discrete cases, it is shown how to calculate the invariant Fuler-Lagrange system in terms of
the standard Euler operator, a syzygy operator specific to the action, and the invariant Lie
derivatives acting on the invariant volume form. It is also shown how to obtain the linear
space of conservation laws in terms of vectors of invariants, and the Adjoint representation of
a moving frame for the Lie group action. This new structure for the conservation laws allows
the calculations for the extremals to be reduced and given in the original variables, once the

Euler-Lagrange system is solved for the invariants.
This thesis will be divided in nine different chapters, this being the first one.

In §2, an introductory background is given in order to give context to the following chapters,

where the notion of moving frame is presented.

In §3, we introduce the discrete and difference moving frames. Given an invariant discrete
Lagrangian, a general formula for computing the discrete Euler—Lagrange equations in terms
of the invariants of the symmetry group and a way of expressing Noether’s conservation laws
in terms of a difference moving frame and the invariants of the symmetry group is presented.

The theory is illustrated with a running example.

In §4, we give some applications of the results presented in the previous chapter. Apart
from the study of systems that are inherently discrete, one significant application is to obtain
geometric (variational) integrators that have finite difference approximations of the continuous
conservation laws embedded a priori. This is achieved by taking an invariant finite difference
Lagrangian in which the discrete invariants have the correct continuum limit to their smooth
counterparts. We show the calculations for a discretization of the Lagrangian for Euler’s
elastica, and compare our discrete solution to that of its smooth continuum limit. We also

consider finite difference Lagrangians which are invariant under linear and projective actions of



SL(2), and the linear equi-affine action which preserves the area in the plane. We first find the
generating invariants, and then use the results appearing in §2 to write the Euler—Lagrange
difference equations and Noether’s difference conservation laws for any invariant Lagrangian,
in terms of the invariants and a difference moving frame. We then give the details of the final
integration step, assuming the Euler-Lagrange equations have been solved for the invariants.
This last step relies on understanding the Adjoint action of the Lie group on its Lie algebra.
For all three actions, we show that solutions to the Euler—Lagrange equations, in terms of
the original dependent variables, share a common structure for the whole set of Lagrangians
invariant under each given group action, once the invariants are known as functions on the
lattice. The study of SU(2) is also presented.

In §5, we explore when we have commuting flows on the invariants using discrete moving
frames, given two commuting equivariant flows. We show that the relationships between a flow
and its curvature flow is in terms of a syzygy operator. We prove that this is a linear shift
operator depending only on the curvature invariants. We analyse the condition for discrete
curve evolutions to commute in terms of a discrete moving frame. We exhibit two examples in
order to illustrate the theory and relate them to discrete integrable systems.

In §6, we recall the basics of lattice based multispace theory and explore applications for
two Lie groups studied in the previous chapters.

In §7, we show how to adapt the methods of Gongalves and Mansfield, |32, 34] to study
variational systems with an Euclidean symmetry, using the Rotation Minimising frame. We
derive the recurrence formulae for the invariant differentiation expressions and the syzygy
operator needed to obtain Noether’s laws for variational problems with a Euclidean symmetry.

In §8, we develop the relationships between two frames differing by a gauge and explore a
few examples in order to illustrate the theory.

In §9, we summarise what has been done in this thesis and present some questions that

still need to be addressed.
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Introductory Background

In this chapter we present the necessary background regarding groups, Lie groups, group
actions, Lie algebras, infinitesimals, the Adjoint action, Calculus of Variations and moving
frames in order to understand the next chapters. This section is based on some results
appearing in Gongalves and Mansfield, [32], Mansfield, [70], Mansfield and van der Kamp,
[73], and Olver, [84]. Some of the examples, "easy to understand" explanations, as well as all
the pictures have been developed by myself, most of them motivated by discussions with my
supervisor and the lecture notes on Lie groups and Lie algebras given by her on my first year
of my PhD. The examples and explanations that have not been developed by myself, have

been referenced.

2.1 Groups, Lie groups and Lie algebras

The definition of a group is natural in the sense that there are lots of structures that consist
of a set and a binary operation. For instance, the integers, the rational numbers, vectors,
matrices, permutations, symmetries... and the list is almost endless. Therefore, it is logical to

condense this feature of so many known objects in a definition.

Definition 2.1.1 (Group). A group is a set G equipped with a binary operation

GxG — G,
(a,b) — a-b

satisfying the following properties

e Closure: a-b e G,
o Associativity: a-(b-c)=(a-b)-c,

o There exists e € G such thata-e=¢e-a=a for all a € G. We will call e the identity

element.
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e For all a € G there exists a=t € G such thata-a 1 =a 1 -a=e. We will call a=! the

inverse element of a.

Remark 2.1.2. A group G is commutative or abelian if a -b=10-a.

The groups we are going to be interested in are Lie groups. A Lie group is a group that
is also a differentiable manifold - which is just a (topological) space that locally looks like the
FEuclidean space near each point - , so one can do calculus on it. Lie groups were named after
Sophus Lie, a Norwegian mathematician, who introduced and developed them in order to

integrate differential equations. Formally, we have the following definition:
Definition 2.1.3 (Lie group). A Lie group is a finite dimensional smooth manifold G together
with a group structure on G, such that the maps

uw:GxG — @G, v:G — G,

and
(a,b) — a-b a — a”

are smooth.

Example 2.1.4. The set of 2 x 2 rotation matrices form a group denoted by SO(2,R). It can

be parametrised as follows

cos@ —sinb
SO(2,R) = 0 € R/2nZ
sinf cosf
The multiplication, which corresponds to the addition on angles, and the inversion, which

corresponds to the angle with opposite sign, are differentiable maps, where the binary operation

is the matriz multiplication. Therefore SO(2,R) is a Lie group.

Example 2.1.5. The Cantor set is created by iteratively removing the open middle third from
a set of segments. First, the open middle third from the interval [0,1] is deleted, leaving two
line segments. Then, one removes the open middle third of each of these remaining segments,

leaving four line segments. This process is continued infinitely, where the n-th set is given

Cnfl 2 Cnfl
by Cp, = Ul-+
Y 3 (3 3
(topological) group. This set cannot have the structure of a manifold as is totally disconnected

) forn>1, and Cy=|0,1]. The Cantor set can be seen as a

and not discrete. Therefore, it is a group that is not a Lie group. This group is homeomorphic
to the group of p-adic integers. One can create a continuous one to one mapping between the

Cantor group and the dyadic integers as follows:

[e.o] oo

n bTL
> g ) g (2.1)
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where an € {0,2} and b, € {0,1}. In order to perform an addition of two sequences in the
Cantor group, one maps these sequences to the dyadic group and performs the addition, which
is coordinate-wise, with each coordinate addition in the integers mod p'™'. If any of the sums
s p or more, a carry of 1 needs to be taken to the next sum. Then, one take the result back to

the Cantor group using the map (2.1).

From now on, the groups that we will consider will be Lie groups as they are the groups of
interest in this thesis, as mentioned before. A very important Lie group is the general linear
group GL(n,F) - where F is R or C - which is the group of square matrices with non zero
determinant, together with the operation of matrix multiplication. It plays an important role

in the theory of representations.

Definition 2.1.6 (Representation). A representation is a map
¢: G — GL(n,F)

such that
¢(g*h) = d(g) - ¢(h)

where here x denotes the product in the Lie group G and - denotes the matriz product.

Example 2.1.7. The special euclidean group SE(n) = SO(n)xR™ is the Lie group of rotations
and translations in R™. Let us denote R € SO(n) the rotation part and v € R™ the translation
part. If we define

¢:SE(n) — GL(n+1,R)

L (22)
0

[

we obtain a matriz representation of SE(n).

2.1.1 Group actions

Let us consider a manifold M.

Definition 2.1.8 (Group action). A group G is said to act on a space M if there exists a map

a:Gx M — M, (2.3)

such that

a(g2, a(g1,2)) = a(g291, 2), (2.4a)
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or

a(g2, a(gr, 2)) = a(g192, 2) (2.4b)
are satisfied.

The actions that satisfy (2.4a) are called left actions, whereas the ones that satisfy (2.4b)
are called right actions.
We will assume that the map (2.3) is smooth in both elements of the group G and elements

of the space M.

Notation 2.1.9. From now on we will denote a left action with x and a right action with e.

When the parity of the action is implicit or is not specified we will denote the action by -.

Example 2.1.10. Consider a square situated in the origin with base parallel to the x-axis.
Suppose this square is rotated 45 degrees and translated 2 centimetres in the x-axis and 3

centimetres in the y-axis. What it is happening, mathematically speaking, is that the element

<
Il
> wlgrls
N
m
w2
&
K

1s acting on the points of the square situated in the origin and base parallel to the x-axis of the

form (x0,y0,1), as shown in the next picture.

Y

\
N
&
w
S
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Example 2.1.11. Consider the Lie group of 2 X 2 real matrices with determinant 1 denoted

by SL(2,R)

a b
SL(2,R) = ‘ a,bec,de R and ad—bec=1 (2.5)
c d

and the manifold M = R?. Let g € SL(2,R). In this example, we will consider the projective
action of SL(2,R) acting on curves (z,u(x)) in R? given by

(x,u(z)) = g (x,u(z)) = <:E, m> ) (2.6)

d
Note that this action is not well defined if u(x) = ——. To "fiz" this, we add a new point oo
c

and we extend the map as

d
g- (CB, OO) = (l’, g) and g- <$7 _> = (ZU,OO)
c c
Let us consider g1,g2 € SL(2,R) such that

a1 b az by
and go =
c1 di co do

Q
S
I

We have that

g1+ (g2 u(x)) = g1 - (<>+b)

aq(agu(z) + be) + by (cou(x) + da)

c1(agu(zx) + be) + di (cou(x) + da)
_ (@102 + bre2)u(w) + a1by + bids
~ (c1ag + dic2)u(x) + c1be + didy

= (9192) - u(x)

and therefore (2.6) is a left action.

Given a left action (g,z) — g -z, we have that (g,2) + g !

- z is a right action. In
practice both right and left actions happen, and depending on the choice the difficulty of the
calculations can differ considerably. In the theory, only one is needed, so from now on we will

just consider left actions as the theory for right actions is parallel.
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Notation 2.1.12. The image of a variable under an action will be often denoted as

Properties of the actions

In this thesis, we will be interested in some specific type of actions; free and regular actions.
In order to understand these actions we will first give a few definitions. Let G be a group

acting on M and let z € M.

Definition 2.1.13 (Orbit). The orbit of z is the set of points in M that are the image of z

when acted upon by an element g € G, i.e.

O(z)={g-2 | Vg € G}.

Definition 2.1.14 (Stabilizer). For every z € M we define the stabilizer subgroup of G with

respect to z as the set of all elements in G that fix z, i.e.

G.={9eG|g-z==z}

Definition 2.1.15 (Free action). A group action on M is said to be free, if for all points

z € M, their stabilizers are just composed of the identity element, i.e.

G.={9€Glg 2=z} ={e},

forall z € M.
Definition 2.1.16 (Regular action). A group action is reqular if
(i) all orbits have the same dimensions,

(ii) for each z € M, there are arbitrary small neighbourhoods U(z) of z such that for all
2 e U(z), U(z) N O(Z) is connected - which is a set that cannot be partitioned into two
non-empty subsets such that each subset has no points in common with the set closure of

the other -.

Remark 2.1.17. The majority of the actions are not free and reqular. However, one can
usually extend them in different ways in order to make them free and regular, as shown in the

running example in §3.
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2.1.2 Induced actions

Even though there are many different types of induced actions, we will introduce here the ones

that are relevant for this thesis.

Induced actions on functions

Let us denote by C°°(M,R) the set of smooth functions mapping M to RY. The action
induced by the left action G x M — M on C*°(M,R) in the following way

g @ (f1(2); - fn(2)) = (f1(g * 2), s fulg * 2))

is a right action. Furthermore, due to the fact that a left action on M corresponds to a right

action on the coordinates, the coordinates are functions from M to R.

Definition 2.1.18 (Invariant of an action). Given an action G x M — M we say that the

function f: M — R is an invariant of such action if it satisfies

flg-2) = [f(z)
forall ze M.

If the property of a mathematical object does not change under a group action we say that

the group action is a symmetry preserving such property.

Example 2.1.19. Let us consider now another action of (2.5) given by

(u(x),v(z)) = g (u(z),v(x)) = (au(x) + bv(z), cu(x) + dv(z)) (2.7)

where we have taken another parametrization of the curves in the plane. Note that this action

is a linear action. Given two curves (ui(z),vi(x)) and (u2(x),ve(x)) we have that

. ui(z) wvi(x) _|am (z) + bui(z) cuy(z) + dvi(x)
ug(x) wa(x) aug(x) + bvg(x) cug(x) + dvg(x)
— aduy (2)vs(2) — adus(@)v1 () — beus ()vs(2) + beuswr ()
= (u1(x)ve(x) — ug(x)vi(x))(ad — be)
uy(z) vi(x)

ug(z) wa(x)
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We can see that the area is preserved, and therefore (2.7) is a symmetry preserving the

area, which is an invariant of (2.7).

For instance, let us suppose that the square centred at the origin with base parallel to the

x-axis with area 1 cm? is transformed into a rhomboid of the same area.

What it is happening, mathematically speaking, is that the element

s acting on the points of the square preserving its area, as shown in the next picture.

Induced actions on derivatives

To understand the prolonged action, let us situate ourselves in the simplest scenario possible.
If we have a group G acting on the curves (z,u(x)) where z = x then there is an induced

action on its derivatives uy, Ugq,... etc. This action is known as the prolonged action and it is

computed as follows:
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d
It =9 2 = de f€>_d(g-x) dig-z) | ~ dlg-z) do

d
d
d3u d (d2u> d <d2(g-u)>
g Ugzz =9 T3 =9 7\ 73]~ 5

d(g - u) d(g - u)
d dx _ 1 d dz
d(g-z)
dz dz dz
d(g-u)
d d dz
d(g-x) de | d(g- )
dz dzx

and so on.

Example 2.1.20. For (2.6) note that

and therefore

_i au+b
Cdx \cu+d

aug(cu + d) — cugy(au + b)

(cu + d)?
_ ug(ad — be)
~ (cu+d)?
Ug

(cu + d)?’

d(g - uz)
dx

_ 4 e
~da \ (cu + d)?
Uz cu?

_ xT

(cu + d)? (cu + d)®

g - Ugy =
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and

_ d(g : uzx)
g - Ugzx = T
_ d ( Uze cu? >
dz \ (cu + d)? (cu+ d)®
T 6CULUspy 602u§c

(cu+ d)2 (cu + d)3 (cu+ d)4'

Hence the prolonged action of (2.6) on the space (z,u, Uy, Ugy, Uzgz) 1S

Tr=ux,
~ au+b
U= ,
cu—+d
— Ug
T (cu+d)?’ (2.8)
a\x/ = Hae 5 2 CU?E 3
(cu+d) (cu+d)
_ Upza 6CULUgy 6021@
Uggr = -

(cu+d? (cu+d)?® (cu+d)?

The prolonged action of (2.6) on the space (z,u, uy, uy,) was previously calculated in
Gongalves and Mansfield, [32].

Now we consider the general case.
Remark 2.1.21. We will often use a multi-index notation to denote the derivatives.

Example 2.1.22.
0*u?
ox1 85[3%3%3

will be denoted by
2
U1223-
Let us consider p independent variables x = (z1,...,2p) and ¢ dependent variables u =
(ul,...,u?). The space containing x will be denoted by X and the space containing u will be
denoted by U. The space containing finitely many derivatives of u will be denoted by U (n),

An element of U™ will be denoted by u(™. The space containing x and u(™ will be denoted

by M = J(X x U™).

Example 2.1.23. If p =2 and g = 1 we have that
(@, Y, u, ut, Uz, U1, gz, u12) € M = J(X x UP)

i where we have assumed that the partial derivatives commute.
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Definition 2.1.24 (Differentiation operator). The total differentiation operator is given by

D ) 1 )
D~:7: a.i_
! Dl‘l 6931 + az::l ; UK au%

We will make the assumption of an R-dimensional group G acting on the left of the space

J(X x U™). The prolonged action is obtained explicitly as follows:

g-ul; =D, Djus, (2.9)
where )
Di=> ((Di)_1>kka (2.10)
k=1

and __ __

91 0z

ox1 Oz
DX = oo : (2.11)

ox1 Oz

Definition 2.1.25 (Prolonged action invariant). An invariant under the induced prolonged

action is called differential invariant.

Example 2.1.26. Now consider the group SL(2,R) acting on the variables (z,t,u(z,t)) as

follows

!
SH
S|
o~
8

t=t, =

S
o)
S8
S

so t is invariant. Using (2.11) we obtain

D% — a+bu; buy
0 1
Therefore by (2.10)
1
N 0
Dy _ a +bbum Dy
D, __om oy D,
a + bug
From (2.9) we have that
o~ . actug(14+bc) o~y Ugy = Uy
Uy U a(a T mb) y  Ugg z (CL n bux)?” t tU o+ bu,

This example appears in Mansfield, [70].
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Induced actions on products

Let us denote the product manifold of N-copies of M by M.

Definition 2.1.27. The product action induced on M is given by

g- (Zla "'aZN) = (g TRy g ZN)'

A N-point invariant of the action is an invariant of the product action on M. These invari-
ants, called joint-invariants, were introduced in Olver, [88], as mentioned in the introduction.
However, the recursive expressions for these invariants does not seem to be computationally
useful. In §3, we will present a tool previously introduced by Beffa, Mansfield and Wang, [6]

that offers significant computational advantages.

2.1.3 Infinitesimals

Suppose that aq,as, ..., a, are the parameters of groups elements near the identity of a Lie

group G.

Definition 2.1.28 (Infinitesimals of a prolonged action). Given a group action of G on
M = J(X x U(”)), the infinitesimals of the prolonged group action are defined to be the
derivatives of the x;, 1;;‘/( with respect to the group parameters a; at the identity, and are denoted

as
ou®

da;

0;
8aj g=e

e Ou
g=e 77 Oaj g=e

=&

= ok

A condensed form to write the infinitesimals is to write a table of infinitesimals of the form

r; u®  uf
W& oy ok,

The prolonged infinitesimals qb%{, ; can also be calculated using the formula

By u) = Dic (cb?; - Zu?fé’-) + DUk

where D is a total derivative of order K. Setting
Qf (z,u) = 6% — > _ufe]
i

the tuple Q’(z,u) = (Q1, ..., Q,) will be called characteristic of the vector field v, which is

given by
% 9 « 9 a 9
Vi = Z gj@Tc,- + ¢,j@ + ¢K,j@~
i,0, K
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Definition 2.1.29. Let G x U — U be a smooth local Lie group action. If v(t) is a path in G

with v(0) = e, the identity element in G, then

d

V=g tzo’y(t) ‘u (2.12)

is called the infinitesimal generator of the group action at u € U, in the direction v'(0) € T.G,
where T.G is the tangent space to G at e. In coordinates, the components of the infinitesimal

generator are ¢ = v(u®), so
0

v:gbaaua.

Example 2.1.30. For (2.8) the table of infinitesimals is of the form

x U Ug Uz Upzx
a| 0 2u 2, 2Ugy 2Ugprr (2.13)
b |0 1 0 0 0
c| 0 —u? —2uu, —2(ud+uuge) —2Ulger + Suglisy)

Therefore, the prolonged infinitesimal vector fields corresponding to the parameters a,b and

Cc are
0 0 0 0
Ve = u22 2uu 9 2(u2 + uu )76 2(Wlgrg + BUglpy) ——

For the non prolonged action, we have that (see Gongalves and Mansfield, [32])

Ve = 2u2,
aau

vy = —, (2.15)
ou

vo = —u22

¢ ou’
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2.1.4 From Lie group to Lie algebra

The key idea to go from a Lie group to a Lie algebra is to look at G near the identity element.

If we can represent our Lie group by matrices, we can consider a smooth path ¢t — ¢(t) in

G with ¢g(0) = e and we can differentiate it. We define the tangent space of G at e to be

d .
T.G = {dt‘t:og(t) ‘ g(0)=e andgis smooth} :

It is easy to show that T.G is a vector space.
Proposition 2.1.31. The tangent space of G at e is a vector space.

Proof. Let

v=—| gt and w=—| h(t)

dt lt=0 dt )t:O

d
and assume that G is a matrix Lie group. Let us use the notation &‘ 0g(t) = ¢'(0). Then
t=

%Lo (9(t)h(2)) = g'(0)1(0) + g(0)'(0) = ¢ (0) + 1'(0) = v +w

and
d /
a‘tzo (kg(t)) = kg'(0) = kv for all keR.
O
Note that
d —1
a o™ (0)'(0)R(0) (0)

Set now X = ¢’(0) € T,G and consider the path t — h(t)Xh(t)"" in T,G where h(t) is a
smooth path in G and h(0) = e.
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Consider now

d —1 / /
— h(t)Xh(t =h'(0)X — Xh'(0) € T.G.
=|_ (roxnm ™) = wo) (0) €
IfY =1'(0) € TG then XY —Y X € T.G.
Definition 2.1.32. We call [X,Y]:= XY — Y X the matriz Lie bracket.

Therefore we have that T.G is a vector space with a product.

In fact, T.G := g is a Lie algebra.
Definition 2.1.33 (Lie algebra). A Lie algebra L is a vector space with a bracket

[,]:LxL—L

such that [, | is

e Bilinear: [aX1 + bX2,Y] = a[X1,Y] + b[X2,Y] and [X,aY) + bY2] = a[X, Y1] + b[ X, Y5]
where a,b € R and X, X1, X2,Y, Y7 and Y5 € L.

o Skew-symmetric: [ X, Y] = —[Y, X] where X,Y € L.

e Satisfies the Jacobi identity
(XY, 2]+ [V, [Z, X]| + [Z,[X, Y]] =0

where X,Y and Z € L.
It is easy to check that T.G satisfies the properties above.

Example 2.1.34. The Lie algebra T,SL(2,R) = sl(2) is computed as follows:
Set

In the identity we have that a(0) = d(0) = 1 and b(0) = ¢(0) = 0. From the condition
a(t)d(t) — b(t)e(t) =1
differentiating with respect to t and evaluating in the identity we have

a'(0)+d'(0)=0



20 Introductory Background

and therefore

So
o B
T.SL(2,R) = sl(2) = a,B,7v€ER
v -«
A basis of sl(2) is
1 0 0 1 00
h — , e = s f f— . (216)
0 —1 0 0 10

[, ]] R e f
h 0 2e —2f
e —2e 0 h (2.17)
Flo2r —h 0

Now we give a list of some common Lie groups and their correspondent Lie algebras (see

Kirillov, [59], Serre, [98] and Varadarajan, [107]).
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Lie group Description Lie algebra Description
Euclidean space with zero Lie
R"™ Euclidean space with addition R™ bracket. For n = 3 one can identify
the bracket with the cross product.
C 1 bers with Li
cn Complex numbers with addition cn OMPIEX numbers With zero Lie
bracket
Real b ith . .
R* ea nolilzir.c;ll.lcuaril'oclrs w R Real numbers with zero Lie bracket
multl 1 1011
Cx Complex nonzero numbers with R Complex numbers with zero Lie
multiplication bracket
Real positi bers with
R* oa pi?;ll‘c‘;;lil:arzoim wi R Real numbers with zero Lie bracket
Complex number of modulus 1 with
Itiplication. Al lled the circl . .
st=vu muiip 1ca.1o-n 50 C:d N 16 arele R Real numbers with zero Lie bracket
group, is isomorphic to SO(2),
Spin(2) and R/Z
Quaternions of modulus 1 with
S% = SP(1) multiplication. Isomorphic to SU(2), H Quaternions
Spin(3) and double cover of SO(3)
G 11i X 1
GL(n,R) eneral mear group m X n rea M (n,R) n X n real matrices
matrices with non zero determinant
General linear group of n X n
complex matrices with non zero .
GL*(n,C . L . M(n,C X 1 t
(. ©) determinant. GL(1,R) is isomorphic (. ©) v compiex matrices
to C*
General linear group of n X n real
GLT (n,R) matrices with positive determinant. M (n,R) n X n real matrices
GL™T(1,R) is isomorphic to R
Special linear group of n X n real
SL(n,R) matrices with determinant 1. sl(n, R) « 1 tri
n n n X n real matrices
’ SL(2,R) is isomorphic to SU(1, 1) ’
and Sp(2,R)
Special linear group of n X n
complex matrices with determinant .
SL(n,C) 1. SL(2,C) is isomorphic to sl(n,C) n X n complex matrices
. s
Spin(3,C) and Sp(2,C)
Projective special linear group of
X n 1 trices with
PSL(2,C) L X T COmpiex matrices wi 5l(n,C) n X n real matrices with trace zero
determinant 1. Isomorphic to
SO(3,C) and the Mdbius group
Orth 1 fn x 1 . .
O(n,R) ! Oogx'c;?lzgfflom??n(;tﬁcein rea so(n,R) skew—symmetric n X n real matrices
O(n,C) Orthogonal group of n X n complex s0(n,C) skew—symmetric n X n complex
’ orthogonal matrices. ’ matrices
Orthogonal group of n X n real
SO(n,R) orthogonal matrices with so(n,R) skew—symmetric n X n real matrices
determinant 1.
th al fnxn 1
Orthogonal group o n n f;omp ex skew-symmetric n X n complex
SO(n,C) orthogonal matrices with so(n,C) matrices
determinant 1. © ”
. Spi : doubl f SO(n). . .
Spin(n) plgpgl;o(‘is) is :;mi:;}‘:s:rtc()) 7 (m) so(n,R) skew—symmetric n X n real matrices
S is 2.
mplectic group of real symplectic n X n quaternionic matrices
Sp(2n, R) Symplectic group of real symplecti sp(2n, R) a ionic matri
’ matrices. ’ satisfying X = — X~
. n X n complex matrices satisfying
S lect f 1 .
Sp(2n,C) YERPICCHLC group of complex sp(2n, C) JX = —XTJ where J is the
symplectic matrices. . .
standard skew—symmetric matrix
U(n) Unitary group of complex n X n u(n) n X n complex matrices satisfying
n n
unitary matrices. X =-X*
Special nitary group of complex . .
. . . n X n complex matrices with zero
SU(n) n X n unitary matrices with su(n) e «
determinant 1 trace satisfying X = —X
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Other famous Lie groups are the so—called exceptional Lie groups Ga, Fy, Fg, E7 and Eg
which are not easy to describe in terms of matrix groups.
Apart from representations of Lie groups one can also consider representations of Lie

algebras. The most interesting one in this thesis is the adjoint representation.

Definition 2.1.35 (Adjoint representation). We define the adjoint representation as the map

ad: L — gl(L)
such that
gl(L): L — L
and
ad(z)(y) = [z, y]. (2.18)

We will often write ad(z) = ad;. Now we present an example in order to show how to

compute the adjoint representation in practice.

Example 2.1.36. Let us consider the Lie algebra sI(2) of the special linear group SL(2,R).
Recall the basis (2.16). Hence, an element of sl(2) can be written as ah + Be + v f. Therefore,
using (2.17) and (2.18) we have

adp(ah + Be+~f) = alh, h] + Blh,e] +7[h, f] = 28e — 27,
ade(ah"i'ﬁe +7f) = a[e,h] +5[€¢ 6] +’Y[evf] = —2we + h,

adg(ah + Be+~f) = alf, h] + B[f, el +1(f, f1 = 2af — Bh

and hence

o 0 v e —p
d
v —2y v 0 v 2a
SO

00 O 0 01 0 -1 0
adp=10 2 0 |, ade=]| -2 0 0 |, adg=| 0 0 0
00 —2 0 00 2 0 0

Definition 2.1.37 (Killing Form). The Killing form is the map B: L x L — F, such that

B(z,y) = trace(ads, ady). (2.19)
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It is simple to check that the Killing form is symmetric, bilinear and associative. We will

also refer to the Killing form as the matrix associated to the map (2.19).

Example 2.1.38. For SL(2,R) we have that

B(h,h) =8, B(h,e)=0 B(h,f)=0, B(e,e)=0, B(e,f)=4, B(f,f)=0

and therefore (see Gongalves and Mansfield, [32])

(2.20)

>
o o o =
- O O
(=

Even though in the previous example B is non—degenerate this is not always the case.

Definition 2.1.39 (Cartan’s Second Criterion). A Lie algebra L is semi-simple if and only if

the Killing form B is non—degenerate.

Without going into much detail, semi-simple Lie algebras over C are copies of SL(2,C)

glued together in beautiful ways. In particular, SL(2,C) is a semi-simple Lie algebra.

2.2 Matrix of infinitesimals and the Adjoint action

We next define the matrix of infinitesimals and the Adjoint matrix which will play a very
important role at the end of this chapter and §3. In this section, we make use of the theory
developed in Gongalves and Mansfield, [32], [33], [34] and Mansfield, [70]. In Mansfield, R-E,
Hydon and Peng, [74] and Mansfield and R-E, [75] the Adjoint matrix is chosen to be the
inverse transpose of the Adjoint matrix appearing in Gongalves and Mansfield, [32], [33], [34]
and Mansfield, [70]. In this thesis, we will be using the following convention: we will use the
form of the Adjoint matrix appearing in Gongalves and Mansfield, [32], [33], [34] and Mansfield,
[70] in the smooth examples and the form of the Adjoint matrix appearing in Mansfield, R-E,
Hydon and Peng, [74] and Mansfield and R-E, [75] in the discrete cases. The theory appearing

in these last two papers concerning the Adjoint matrix will be presented §3.
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2.2.1 Matrix of infinitesimals and the Adjoint action: form adopted for

the smooth examples

Definition 2.2.1 (Matrix of infinitesimals). Let the group element near the identity be given
as g = g(ai,...,aR) so that the independent parameters of the group action are the a;, and let
z = (21,22,...,2P) be coordinates on M near z € M. The matriz Q(2) of infinitesimals is an

R x p matriz, given by
0z’

Qz) = (¢i5),  ¢ij = Er (2.21)

A vector field can be seen also as a map from the manifold to its tangent bundle,
v:M — TM, v(z) e T,M, Vze M,

where the tangent bundle is essentially a manifold that assembles all the tangent vectors in M.
We denote the set of all vector fields on M as X (M). In coordinates z = (2,...,2P) on M,

vector fields can be rewritten of the form

where .
o_(o 0 oy
0zl 922 0zF

For a smooth Lie group action GG on a smooth manifold M, there is a corresponding Adjoint

action on the set of all smooth vector fields X' (M) of the manifold M.

Definition 2.2.2 (Adjoint action). The Adjoint action Ad on vector fields is defined as

Ad 1 G x X(M) — X (M)
(2.22)
(g,V) = Adg(v)v

such that Ady(v)(z) = Tg~'v(g- z). Here Tg: TM — TM is the tangent map with respect to

the group action, g-: M — M.

Denoting g - z = z, we have

Ady(v) = F3) 2

9zt 0
= J
0z F) 9zt

(2.23)
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Writing v = f7(2)V, we can represent the Adjoint action as
— —1 T
0z
Ady(v) = ((82) f(%)) Vv, (2.24)

0z ~
where <8z> is the Jacobian of z = g - z with respect to z.
z

Remark 2.2.3. The adjoint action (2.22) is a right action, while the adjoint action appearing

mn §3 s a left action.

It can be shown from the definition of the Adjoint action (2.22) that the map

Ad 1 X (M) = X (M)

h — gilhg,

takes T.G to itself.

The Adjoint action takes infinitesimal vector fields to infinitesimal vector fields, and one
obtains a representation of GG, called the Adjoint representation. In co-ordinates, this yields a

representation of G in GL(R), where R = dim(G).

The fact that Ady(v) € Xg(M) implies that for any basis v; of Xg(M), for i =1,..., R,
where R = dim(QG)

Adg (Z OziVZ‘) = Z OéiAdg(Vi) = Z Z (Xi(.Ad(g))ijVj. (2.25)

J

Lemma 2.2.4. Let the matriz of infinitesimals for the group action G x M — M, z2 =g - z,

relative to given co-ordinates on G and M, be Q(z). We denote the Jacobian matrix of the
o5

group action as <8Z> . If the R x R matriz Ad(g) denotes the Adjoint representation of g € G,
z

relative to same coordinates as for the infinitesimal matriz, then
92\ "
Ad(g)Q(z) = Q(2) £ . (2.26)

Example 2.2.5. Continuing with (2.8), restricting ourselves to the second prolongation, after

calculating the table of infinitesimals it is easy to build the matriz of infinitesimals which has
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the form (see Mansfield, [70])

U Uy Uz
a [ 2u Uy 2Uzy
Qu, ug, Ugy) = b1 0 0 (2.27)
c \—u? —2uu, —2(u+ uug,)

In order to compute the Adjoint matriz associated to the Adjoint action, one can use the
infinitesimal vector fields instead of the prolonged infinitesimal vector fields in order to ease

the calculations.

Consider (2.15)

0 0 0
Vg = 2u—, vy = —, and Ve = —ul=—.

ou

Recall from (2.6) that
5w +0b
Ccutd

Also, using the chain rule

o R )

Therefore

Hence

= 2(au + b)(cu + d)%

=2 (acu® + (ad + be)u + bd) %,

_ 2

b— % ;
= (cu+d)2% )

= (c2u2 + 2cdu + dQ) e
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\70:—172%
au—+0b\? 0
:_<cu+d> (cu—l—d)Q%
——(au—i—b)Qai
0
— — (2u® 4+ 2 2y 9
(au + abu—i—b)au

In conclusion

v, = (ad 4 be)vy + 2bdvy, — 2acv,, (2.28)
vy = cdvg + d*vy — v, (2.29)
V. = —abv, — b’vy + a’v.. (2.30)
(2.31)
Therefore
Va Va
vi | =Adlg)| v, (2.32)
Ve Ve
where
a b c
a fad+bc 2bd —2ac
Ad(g) = b cd 2 -2 | (2.33)
c —ab -2 a?

Lemma (2.2.4) is straightforward to check taking into account that (see Mansfield, [70])

1
s 0 0
(cu —5 d) .
(U, Uy, Uz ) —aCUg 0
_ — . 2.34
O, ) (cut d) (cu + d)? (2:34)
—2¢((cu + d)ugy — 3u2) ~ deug 1
(cu + d)* (cu+d)?  (cu+d)?

We will illustrate with an example how the Adjoint action is obtained in Mansfield, R—E,
Hydon and Peng, |74] and Mansfield and R-E, [75] and we will present the theory in detail in
§3.
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Example 2.2.6. From (2.28) we have that

ad+bc cd —ab
(9\;\7(,%):(“1 v vc> 2bd 2 —b?

—2ac -2 a?

Hence, we have that the induced action on these are

(VNa 7 \7¢>=(Va Vi VC>R(9)71
where

a fad+bc —ac bd
R(g): b —9ab 2 2| (235>

c 2cd -2 d?

What we have is that Ad(g)” = R(g)™".

Finally, we give some interesting properties regarding the Adjoint matrix and the Killing

form.

Lemma 2.2.7. The Killing form is invariant under the Adjoint action,i.e,
B(Ad(g)z, Ad(g)y) = B(z,y).

Corollary 2.2.8. Let B the Killing form of the Lie algebra L. Since B is invariant under the

Adjoint action and this action on the vector fields can be written as in (2.25), we have

B = Ad(g9)BAd(g)". (2.36)

2.3 Variational calculus and Noether’s Theorem

The variational calculus generalises the problem of finding extrema of functions in several
variables. It appears in so many disciplines, for instance in physics and engineering, and it
allows one to transform the problem of optimisation of a functional into the problem of solving
a differential equation. For systems of differential equations occurring in variational problems,
each conservation law of these systems arises from a corresponding symmetry property. This
was first proved by Emmy Noether in 1918 (see Noether, [83]). In order to use this Theorem

to find these conservation laws we first need to introduce some background on Calculus of
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Variations. Let us consider 2 C R™ an open, connected subset with smooth boundary 0f2.
Civen a smooth function u = f(z) there exists an induced function u(™ = pr(™ f(z) called
the n—th prolongation of f and it is defined by the partial derivatives up to order n. We

adopt Olver’s notation in Olver, [84].

Example 2.3.1. For u = f(z) the second prolongation of this function is
U(Q) = pr(Q)f(x) = (u;ux; uzx)

This can be extended to many more variables. For example, for v = f(x,y) the second

prolongation is (see Olver, [84])
u(2) = pr(Q)f(l‘, y) = (u§ Ugy Uy; Uz Uzy, uyy)-

A variational problem consists of finding the extrema - which are the maxima or minima -

of a functional

Llu] = /QL(x,u(")) dz

in some class of functions u = f(z) defined over Q. The element L(z,u™) is called the

Lagrangian of the variational problem £ and it depends on z,u and derivatives of u.

Example 2.3.2. One of the most famous variational problems is the minimisation of the

Euclidean curvature squared of a curve (x,u(x))
02
Llu] = /112 ds = /m5 dz (2.37)
(14 u2)?

where

H:AS and  ds=+/1+u2 dx.
2

(14 u2)
This problem was solved by Euler, [20] using elliptic functions. Solutions are known as Euler’s

elastica. A good historical report can be found in Levien, [66].

Remark 2.3.3. The conditions of the class of functions over which L is extremised, will
depend on the boundary conditions and also on differentiability conditions required of the

extremals uw = f(x).

We will assume that the extremals of the variational problem are smooth. To find the

extrema of functionals L£[u] we use the variational derivative of L.

Definition 2.3.4 (Variational derivative). Let L[u] be a variational problem. The variational
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derivative of L is the unique q-tuple
L] = (61L, ..., 04L),

such that

d

) pren = /Q SLIf ()] - v(a) da (2:38)

whenever u = f(x) is a smooth function defined on Q, and v(s) = (v'(z),...,v9(x)) is a smooth
function with compact support in £ - so it is zero outside -, so that f + en still satisfies

any boundary conditions that might be imposed on the space of functions over which we are

extremising L. The element

oL

" ou

0oL
1s the variational derivative of L with respect to u®.

Proposition 2.3.5. If u = f(z) is an extremal of L[u], then
IL[f(x)] =0, x €. (2.39)

For the following, we need to introduce first the Divergence Theorem.

Theorem 2.3.6 (Divergence Theorem). Let Q2 C R™ be a bounded open set with smooth
boundary 0. Let X = (X' ..., X™) be a smooth vector field defined on Q U 02 whose

components have continuous first order derivatives. Then

n
/ d o x*dV = | X-idS (2.40)
Q= o9

where the integral on the left is a volume integral over the volume V and the integral on the right
1 a surface integral over the surface enclosing the volume. The surface has outward-pointing

unit vector 1.

In order to find the general formula for the variational derivative, it is assumed that
Lz, pr™ (f 4 en)(z)) is continuous so the order of differentiation and integration can be
interchanged.

Therefore
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Since v has compact support - it is zero outside of €2 - | integrating by parts the above and

use (2.40) , the boundary terms can be eliminated as v vanishes in 092. Hence

d E(u+5v):/

de le=0 Q

{Z [Z (=D), aauL%(% pr(")f(ﬂi))] va(ﬁ)} dz. (2.41)

a=1 J

The operator appearing in (2.41) is the well-known Euler-Lagrange operator.

Definition 2.3.7 (Euler-Lagrange operator). For 1 < « < q, the a-th Euler—Lagrange

operator is given by

0
E*=> (-D); 5=
; J oug

the sum extending over all multi-indices J = (41, ..., ji) with 1 # ji. # p,k > 0.

Example 2.3.8. In this example, o = 1 and the Euler operator takes the form

0 0 0
E=_—--D, D?
ou Ouy, + T gy

In conclusion, the variational derivative of L[u] gives us the same result as applying the

Euler-Lagrange operator to the coefficient of the Lagrangian of L[u], i.e.
SL[u] = (61L[u], ..., 8,L[u]) = (EX(L),...,EL(L)) = E(L).

Hence, equation (2.41) becomes

d q
e €:0£(f+€77) = /Q {Z

a=1

ZE&(L(x,pr(:cm] n“(x)} da.

J

Theorem 2.3.9. Ifu = f(x) is an extremal of the variational problem Llu] = [, L(x, u™) dz,

then uw = f(x) is a solution of the Euler—Lagrange equations

This is possible thanks to the Fundamental Lemma of Calculus of Variations.

Theorem 2.3.10 (Fundamental Lemma of Calculus of Variations, Gelfand and Fomin, [31]).

If g(z) is a locally integrable function on 2 and

/ g(z)-h(zr) de =0
Q

where h(xz) has compact support, then g(x) = 0.
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Example 2.3.11. The Euler—Lagrange equation for the variational problem (2.37) is of the

form
OL OL OL
0=E(L)= D, D? -
(L) ou Oug + T Oy
Ezplicitly, we have that (see Euler, [20])
L 3
0 - E(L) = Kss + —K . (242)

2

A symmetry group of a system of equations is a local group of transformations G that
acts on an open subset 2 C X x U such that it transforms solutions of the system into other
of its solutions. In the case of the Euler—Lagrange equations not all symmetry groups of
E(L) = 0 are variational symmetry groups of the original variational problem. This motivates

the following definition.

Definition 2.3.12 (Variational symmetry group, Olver, [84]). A local group of transfor-
mations G acting on M C Qo x U is a wvariational symmetry group of the functional

Llu] = fQO L(z,u™) dz if whenever Q is a subdomain with closure Q C Qo,u = f(x) is a

smooth function defined over Q whose graph lies in M, and g € G is such thatu = f(z) = g-f(Z)

1s a single-valued function defined over Qc Qo, then

/~ LG, pr™ J(3))d7 = / Lz, pr™ f(2))da.
Q Q

The following theorem tells us the necessary and sufficient condition for a connected group
of transformations to be a variational symmetry group of a variational problem. But first we

need to define the diveregence of smooth functions.

Definition 2.3.13 (Total divergence, Olver, [84]). The total divergence of a p-tuple P of

smooth functions of x,u and derivatives of u is the function
DivP =Dy P, + DyPs + ... + D, P,.
Example 2.3.14. Suppose that u = u(x,y). For P = (uguy, u?) we have that
DivP = Dy (uzuy) + Dyt = tupgtly + Ugtizy + 2utsy.

Now we are ready to give the infinitesimal criterion of invariance Theorem.

Theorem 2.3.15 (Infinitesimal criterion of invariance, Olver, [84]). A connected group of

transformations G acting on M C Qo x U is a variational symmetry group of the functional
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Llu] = fQL(aj,u(")) dx if and only if
pr™v (L) + L Div £ =0

for all (x,u(")) € M and every infinitesimal generator

p 28 q aa
VZZ&(%_FC;QS %

i=1
of G.

Example 2.3.16. Consider the group action of rotations and translations of curves (x,u(x))

in the plane

cos —sinf x a
= + . (2.43)

sinf cos@ U b

S

1

The induced action on uy and u, are (see Mansfield, [70])

=~ _ du/dx  sin@ + cosfu, —_ 1 ddu/ds Uz

dZ/dz dz dZ/dz ~ (cosO — sinOug )3

- dz/dz  cosf — sinfu,’

We therefore have that the table of infinitesimals is of the form

T u Uy Ugy
al 1 0 0 0
(2.44)
b| 0 1 0 0
0| —u = 1+u2 3Suglg
The prolonged infinitesimal vector fields are
0 0 0 0 0
@y = = @y, = 2 @Dyy = —q— Z 11 2 v
prvg oz’ pr-vy ou’ pr-vg u@x + xau + ( + um) Oty + U gy Dt .

We have that

prv,(L) + LD& =0,  pr®vy(L) + LD, =0,

0 2 0 2
pr®vy(L) + LD,E = (1 + u?) 5 Yzo = | + Bugtg, 3 L =
U \ (14 u2)> Yoz \ (14 u2)>

2
_ % uy = 0.
(14 wu2)?

Therefore by (2.3.15), the group of transformations (2.43) is a variational symmetry group of
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the functional (2.37).
Now we are finally ready to present Noether’s First Theorem.

Theorem 2.3.17 (Noether’s First Theorem, Noether, [83]). Suppose G is a local one-parameter
group of symmetries of the variational problem L[u] = [ L(z,u ”))dx Let

q
V_Zé-z aaa

be the infinitesimal generator of G, and
p .
Qa(x,u):qba—z ‘ug, witha=1,...,q

=1

the corresponding components of the characteristics of v. Then Q = (Q1, ...,Qq) is also a the
characteristic of a conservation law of the Euler—Lagrange equations E(L) = 0; in other words,

there is a p-tuple P(z,u(™) = (P, ..., Py) such that
q
DivP = Q-E(L) = >  QaE*(L)
a=1

is a conservation law in characteristic form for the Euler—Lagrange equations E(L) = 0.

For the special case of one-dimensional Lagrangians L(z,u, Uy, Uys, ..)dz we have the

following Theorem appearing in Mansfield, [70]:

Theorem 2.3.18. Consider a one-dimensional Lagrangian L(z,u,uy, Uyy, ...) dz with arbi-

trary order, that is invariant under the one-parameter group action

e (z,u) = (z,u). (2.45)
Let
d ~ d ~
& €=0x = E(CL‘,U), & €=Ou = ¢(.T, U),

be the infinitesimal generators of (2.45) then

m—1 k m=1-k (4 _ 4
(6w B(L) + & <L£+ S - <(ka aii) <d e xf))) _o,

m=1 k=0

where we have denoted
B d™u
—dam’
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Therefore, the first integral for E(L) = 0 is

sy dF L\ (AR (¢ — ue
Lg + Z Z (_1>k (dxk aum> ( dxm(—l—ku )> =6

m=1 k=0

where ¢ is a constant. Moreover, if we consider the group action to be a translation in x, with
infinitesimals € = 1 and ¢ = 0, then u,FE(L) is a total derivative when L does not depend

explicitly on z, i.e,

d s d* oL
E(L)=—|L- k|-
usB(L) dx( 12 (mkaum>umk
Example 2.3.19. For our example, the three first integrals for the Fuler—Lagrange equation
(2.42) are (see Mansfield, [70])

1 Uy

— 0
a1 V1+u2 \/11+ u2 —K?
Uy
= 0 _
c2 Vi+uz o o 1+u2 265
c3 TUy — U UlUy + X 1 %%

V1i+uZz o 1+l

where the first component arises from the translation in x, the second component arises from
the translation in u and the third component arises from the rotation in the (x,u) plane about

the origin.

2.4 Moving frames

Consider a Lie group G whose action is free and regular in some domain M (see Definitions
2.1.15 and 2.1.16). Then the following holds (see picture below): for every z € M there exists
a neighbourhood U of z such that the group orbits of U have the dimension of the Lie group
G and they foliate U. There exists a cross-section I C U that intersects the group orbits of
U transversally such that the intersection of a group orbit of &/ with the cross-section K is a

single point. Finally, the element h € G taking z € U to {k} = O(z) (K is unique.

AN
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The cross-section is transverse to the orbits that foliate the space

A moving frame can be define by choosing a group action with features mentioned in the

paragraph above.

Definition 2.4.1 (Moving Frame). Given a smooth Lie group action G x M — M, a moving

frame is an equivariant map p : U C M — G where U is the domain of the frame.

A left equivariant map satisfies

plg-2) = gp(z) (2.46)

and a right equivariant map satisfies

plg-2)=p(z)g~" (2.47)

A frame satisfying (2.46) will be called left frame and a frame satisfying (2.47) will be called
right frame.

The following table holds (see Mansfield, [70])

left action right action

right frame | p(g*z) = p(2)g~"  plge2) =g~ " p(2)
left frame | p(gx2)=gp(z)  plgez)=p(2)g

In order to find the frame, we let the cross-section K be given by a system of equations
Yi(z) =0, for i =1,2,..., R, where R is the dimension of the group G. We then solve the

so-called normalization equations,

Wilg-2) =0, i=1,...,R, (2.48)

for g as a function of z. The solution is the group element g € G which maps z to k where

{k} = KN O(z), and is denoted by p. In other words, the frame p satisfies

The conditions on the action mentioned in the first paragraph of section (2.4) are those for
the Implicit Function Theorem to hold (see Hirsch, [40]) so that the solution p is unique. A

consequence of uniqueness is that

plg-2) =p(z)g"
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that is, the frame is right equivariant, since both p(g - z) and p(z)g~—! solve the equation

Vi (p(g-2)-(g-2)) =0. A left frame is obtained by taking the inverse of a right frame. In

practice, the ease of calculation can differ considerably depending on the choice of parity.

A\
]

Using the cross-section we can construct a right moving frame

The cross-section K is selected by choice in order to simplify the calculations in the

applications at hand. Also, the cross-section K is not unique.

Example 2.4.2. Consider the action (2.6) and let us take the cross section K to be the

coordinate plane

u =0, Uy = 1, Ugzr = 0.
Therefore, the normalization equations are

=0, Uy=1, um=0.

1 U Uy

The frame (2.50) can be represented as

1 U

Upgy  2U; — Ulgy

2ui/ 2 2u§/ 2

p:

Uz ’ Uz ’ B 2u§/2 .

(2.49)

(2.50)

(2.51)

as shown in Gongalves and Mansfield, [32]. The square root restricts the domain of the

frame. When making a choice of the root we make certain that the frame is the identity on the

cross-section.
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Note that
1 u
| Vu Vg
(U, Uz, Ugy) = U Uy’ — Uliy
2~3/2 2&‘;3/2
cu+d au+b
) Vi Vi _ =
= U (cu + d) — chi Ugy(au + b) — 2au§ = p(u, Uy, Ugz)g
3 - 3
2,2 2u2

so (2.51) is equivariant.

2.4.1 Invariants

Theorem 2.4.3. Given a right frame, we have that 1(z) = p(z) - z is an invariant.

Definition 2.4.4 (invariantization operator). The map z +— 1(z) will be called invariantizaton
operator. This operator extends to functions as f(z) — f(u(2)), and we call f((2)) the

invariantization of f.

Definition 2.4.5 (normalized Invariants). Given a left or right action G x M — M and a

right frame p, the normalized invariants are the coordinates of 1(z) = p(z) - z.

The components of ¢(z) for any prolonged action in the (z;, u®, u$.)-space are represented

as follows

Ji=1T" = L(xl) = fi|g:p(z)a I?( = L(u?() = u%{|g:p(z)
where K is the multi-index of differentiation. For instance, I1}; = t(Uzss) = Uzza|g—p(2)-

Theorem 2.4.6 (Replacement Rule). If F(z) is an invariant of the Lie group action G x M —

M, and 1(z) is the normalized invariant for a moving frame p on M, then F(z) = F(i(z)).

It follows that the normalized invariants provide a set of generators for the algebra of
invariants.

The Replacement rule allows us to express well-known invariants in terms of I3 even when
we cannot solve for the frame. One can construct symbolic invariant calculus, formulated
meticulously by Hubert [43], [44], [46], [45], from the normalization equations without solving

the frame.

Example 2.4.7. For our running example we have that (see Gongalves and Mansfield, [32])

2
Ugs 3u,

Iu:pu:(]’ qu:pulev I%lzpuxxzo, IiLll:pUxxx: u 2u%
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This last invariant is commonly known as Schwarzian derivative of u, and it is usually denoted

as {u;x} (see Mansfield, [70]).

2.4.2 Invariant differentiation

Definition 2.4.8. An invariant differential operator is defined by evaluating the transformed

differential operator on the frame, i.e,

D

Di = KN~ y

Dz;lg=p(2)
h b, defined as (2.10)
where —— s defined as (2.10).

Dl‘i
Note that even though
0
%U%( = Uk

the same does not hold for the invariant differential operators as
DI £ 13,

Remark 2.4.9. Note that if £; = x; then D; = D;.

We define the correction terms V;; and Mféj as
DjJi = (51']' + Nij and 'Djl% = I[a(j + Mféj

where 5;- is the Kronecker delta.

(2.52)

Example 2.4.10. We introduce now an invariant variable t. For our running example, the

following equations

U u
D$112 - 11127

U — u U JU
DIIH2 - Illl2 - 2‘[12[1117
U _ u
DCCIlll - Illll?
u — u U TU
D15[111 - 11112 - 1121111

(2.53)

are easy to obtain by using (2.52). Note that now our independent variables are = and t that

correspond to the indices 1 and 2 respectively. For ezample 1115 = t(Uzzt) = Ugat|g—p(2)-

The next theorem provides a formulae to compute correction terms.

Theorem 2.4.11. There exists a p X R correction matrix K such that

R R
Nij =1 <Z Kjlﬁf) : Myg; =1 (Z Kjlcf)?(,l) :
=1

=1

(2.54)
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where [ is the index for the group parameters and R = dim(G).

The correction matrix K can be computed without explicit knowledge of the frame. In
order to calculate it, we only need to know the normalization equations and the infinitesimals.
Suppose that the variables appearing in the normalization equations are (1, ..., (,, p of which
are independent, and the remaining n — p are dependent variables and their derivatives. We

define the matrix T to be the invariant p x n total derivative matrix

D
Tii=t| =
J L(DCE,‘CJ>

and let ® denote the R x n matrix of infinitesimals with invariantized arguments

(I)ij =1 (agj ) .
g=e

dgi
Moreover, let J be the n x R transpose of the Jacobian matrix of the left-hand side of the

normalization equations with invariantized arguments, i.e.

Using the above matrices we can obtain the correction matrix, as stated in the theorem below

Theorem 2.4.12. The correction matrix K, is given by

K=-TJ(®J) ", (2.55)

where T, J and ® are defined above.

Example 2.4.13. Consider (2.6) and let us induce a dummy variable t such that t =t and
u=u(z,t). Recall (2.49). We have that

G=u, (a=1u, and (3= Uz

and

Y1 =u, Ya=u,—1 and Y3 = ug,.

Taking into account the table of infinitesimals appearing in Fxample 2.1.30 it is easy to compute
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the matrices ®,J and T. They are of the form

U Uy Ugy L(¢1) L(W) L(lﬂg)
U Uy  Ugpgy
a0 2 0 /{1 0 o0
_ _ _zf{1 0 It
*=9l1 0 o "5l o 1 o |0 TT ( 1”)
AV
c\0 0 -2 m\o 0 1 2o

and therefore by (2.55), (see Mansfield, [70]),

K = 95( 0 -1 %Iﬁl). (2.56)

17u u  1l7yu
_5112 _12 51112

One can check that
My =0, My = — I, Mo = =iy, Mas = — I}y
using (2.54) obtaining the expected result. Note that N13 = N1g = Nog = Noo =0 as T = x

and t = t.

2.4.3 Syzygies and curvature matrices

We consider finite sets of generators of the differential algebra of invariants and the functional
and differential relations they satisfy. These relations are called syzygies. Before obtaining the
main differential syzygy we need to introduce the curvature matrices. Assume the Lie group

G is given as a matrix group.

Definition 2.4.14 (Curvature matrices). The matrices

Q' = (Dip(2))p(2) ™" (2.57)
are called curvature matrices where ¢ denotes an independent variable.

The entries of the curvature matrices are called curvature invariants. It is possible to

compute these matrices without explicit knowledge of the frame.

Theorem 2.4.15. The curvature matrices can be computed using just the normalization
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equations and the infinitesimals. Indeed,
Q' = _Kie;
J

where {a;} is a basis of the Lie algebra g and K is the correction matriz given in (2.55).

Definition 2.4.16 (Syzygy). A syzygy on a set of invariants is a functional dependency

relation between the invariants.

Therefore, a syzygy on a set of invariants is a function of invariants, which is identically

zero when the invariants are expressed in terms of the underlying variables.

Proposition 2.4.17. The curvature matrices (2.57) satisfy the syzygy
D;(Q") — Di(Q’) = (D, Dilp)p™ ! + (@7, Q']. (2.58)

By equating components in (2.58), if the normalization equation do not involve time—
derivatives, then one can express the evolution of the curvature invariants « in terms of I;
as

Rt = H.[t (259)

where H is an invariant differential operator matrix involving just curvature invariants. We

will often call (2.59) the reduced form of (2.58).

Remark 2.4.18. We denote k the curvature invariants. Note that the r appearing in (2.37)
is not the same as the k appearing in (2.61). Both expressions are denoted by k as they are

curvature invariants for their examples respectively.

Example 2.4.19. Using (2.16) and (2.56) we obtain the curvature matrices

0o -1 L
QJ} - 17u ’ Qt - 12u 17w (260)
51111 0 54112 3112
and also the commutator
o [ FHe = BT 13
’ l[u U l(Iqu . )
24124111 224111 112

Using (2.58) and taking into account the relationships of the form (2.53) we obtain

kit = (D3 + 26Dy + Dyk) 1Y



2.4. Moving frames 43

where we have set

The operator
H = D3 4 25D, + Dk (2.62)

1s a famous Hamiltonian operator of the KDV equation. These results were previously obtained

by Gongalves and Mansfield, [32] and Mansfield, [70].

2.4.4 Invariantized form of Calculus of Variations and Noether’s Theorem

We can write the Euler-Lagrange equations of an invariant Lagrangian under a Lie group
in terms of the invariants. Let us suppose that the Lagrangian depends on the independent
variables x = (x1,...,2;), the dependent variables u = (ul,...,u?) and also finitely many
derivatives of the dependent variables. We also assume that the action leaves x invariant.
In order to obtain an invariantized analogue of (2.38), we introduce a dummy independent
variable ¢ that is invariant.

Note that the two variational problems

d

de

Lu® + ev®] = Dy
e=0

give the same symbolic result. Applying Calculus of Variations to the invariant variational

/ L[x]

where K denotes the vector of curvature invariants, we obtain

problem

0= Dt/L[n]dx

oL
:/ Za']) ‘DKDtKj dx
gk TR

oL
> (1) Dk 5Dy Diis | dx+B.TUs
LK !

/ S E(L)Hjalf | dx+B.Ts
7,

; D
Z (Hj B (L)) I + Z Dz thcfj vy || dx+B.T’s
i Y\ Ja

_j?a
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where this defines the coefficients C; ; which are the coefficients of Itcf ;7 coming from the
integration by parts and where B.T.’s are the boundary terms, E’(L) is the Euler operator
corresponding to variations in the curvature invariants and Hj , is the adjoint of H; o. Note that
I contains the factor uy which is the independent variation in the dependent variable. Thus,
from (2.3.10), the element I must be zero and therefore, the invariantized Euler-Lagrange
equations are of the form

E*(L) =Y H; B (L) (2.63)
J
In matrix form we can write (2.63) as
E“(L) = H*E"(L).
Example 2.4.20. Let us consider the variational problem

/L(/i, Ky)ds

where Kk was defined in (2.61). This variational problem is invariant under (2.6). The operator

(2.62) satisfies H* = —H. Hence the invariantized Euler—Lagrange equation is
EY(L) = (=D — 25D, — 12)E*(L) = 0.

Remark 2.4.21. This way of obtaining the invariantized Euler—Lagrange equations contrasts

with the method proposed by Kogan and Olver, [63] as stated in Gongalves and Mansfield, [32].

The term ) 70 1iyC7 5 1s a conservation law. Recall Noether’s First Theorem stated in
Theorem (2.3.17). We now give the invariant version of this Theorem appearing in Gongalves

and Mansfield, [32] which generalises the result obtained in Boutin, [11].

Theorem 2.4.22 (Gongalves and Mansfield, [32]). Let [ L(k1, k2,...) dx be invariant under
the Lie group action G x M — M where M = J(X X U(")), with generating invariants k; and

g-x; = x;. Introduce a dummy variable t to effect the variation. Using integration by parts

Dt/L(m,@,...) dx:/ S OHILES(LIF+ Y D [ > INCi s || dx, (2.64)
J,x 7 Ja

where this defines the coefficients C7;.  Recall that I} = I(uy;), where J is an index of
differentiation with respect to x;. Let (a1, ...,aRr) be the coordinates of G near the identity e,
and v;, for i =1,..., R be the infinitesimal vector fields associated to each parameter defining

G. Moreover, let Ad be the Adjoint representation of G with respect to these vector fields. Let
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Q*(I) for o =1,...,q be the invariantized form of the matriz of infinitesimals.

Then the R conservation laws obtained via Noether’s First Theorem can be rewritten in

the form
" D; (Ad(p) " Vi(D)) = 0 (2.65)
where
Vi(I) =) _QrI)e (2.66)
and where
Cz‘a = ( za.])

Remark 2.4.23. For the one—dimensional case we have that the conservation laws can be

written of the form

(Ad(p) 'V (1)) = ¢ (2.67)

where

V(I)=> a¥Ice.

Remark 2.4.24. Note that as this Theorem concerns the smooth case, we are adopting the

convention (2.2.1) for the Adjoint matriz.

Example 2.4.25. In order to compute the conservation laws we first need to keep track of the

boundary terms. We have that the boundary terms are of the form
D, (I3D2E"(L) + E*(L)D2I3 + (D,E"(L))D, 1Y)
and therefore, taking into account that DyI¥ = I} and D2IY = I}, we have that

D2E"(L) + kE~(L)
C= D,E*(L)
E"(L)

The invariantized form of (2.27) is
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Writing (2.33) in the original variables and using (2.65) the conservation laws are

| _ Wae 2u Uzz uu?,
u2 Uz Uy 22u§ —2D,E (L) c1
—_ Uz i _ Uz K 2|K —
2u§ w 1u? » kEf(L) + DER(L) 2
gy LYee W Uler U Uy —2E~(L) 3
2u2 Uy Uy 4u3

as appearing in Gongalves and Mansfield, [32].

Conservation Laws for Semi-simple Lie groups

In the case where the Killing form is invertible, one can always obtain a first integral of the
Euler-Lagrange equation. This is the case for semisimple Lie groups. Let us denote g5 the
semisimple Lie algebra of infinitesimal vector fields of a Lie group G. In the following, we will
consider one dimensional problems.

Note that from (2.67), multiplying both sides by ¢’ B~! we obtain
cI'B~ Y Ad(p) V() = B Le.
Substituting ¢ by V(I)TAd(p)~" we obtain
V(DT Ad(p) "B Ad(p) 'V () = "B Le.
Using (2.36), i.e, B = Ad(p)BAd(p)" we obtain the first integral
V(IHIB V() =c'B e

Theorem 2.4.26 (Gongalves and Mansfield, [32]). Consider a semi-simple Lie algebra gs.
Let V(I) be the vector of invariants and let B be the Killing form of gs. Let L(k*, kS, ...) dx

be invariant under the group action G. Then
V(B V() =c'B e
s a first integral for the Euler—Lagrange equations
EY(L) = H*E"(L)

where V(I) is given in (2.66) and c is a constant vector.

Example 2.4.27. In order to obtain the first integral of the Euler—Lagrange equation E(L)
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we use (2.4.26) and (2.20) to get
4(D,E"(L))? — 8E*(L)DE"(L) — 8k(E~(L))* = ¢ + 4cacs.

The conservation law

—2EF(L)uy — ciu+ cou? —c3 =0 (2.68)

is obtained by making use of (2.67) and it is a first order ODE as shown in Gongalves and
Mansfield, [32]. By setting
1
T_/QE”(L)dm

the authors also show that (2.68) can be transformed into a Riccati equation with constant
coefficients as follows

Ur = —ciu + 02u2 — C3.

Hence the solution of (2.68) is

c1 \/ C% + 4cocy 1 9 / 1
=_— — +—=——""tanh | =/ 4 —d
u(x) 2es 20, anh { o4/ + 4dcacs 3~ (L) x4+ cy

after solving for k.
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Introductory Background



Discrete Moving Frames and Noether’s Finite

Difference Conservation Laws

This chapter is based on the results presented in [74], which is a joint work with my supervisor
Elizabeth Mansfield and the authors Peter Hydon (University of Kent) and Linyu Peng
(Waseda Institute for Advanced Study). My contribution to this paper was the development
of the running example as well as the application to Euler’s elastica, which will be presented
in §4.1 as well as checking the theory and providing comments and observations. In this
chapter, some of the results and examples have been extended and where Proposition 3.5.3

and Theorem 3.5.10 have been included.

3.1 Introduction

Discrete moving frames, which are essentially a sequence of moving frames with overlapping
domains, arise with the need to use moving frames in discrete spaces. In order to adapt
discrete moving frames to prolongation spaces for the study of difference equations and their
conservation laws, the authors of [74] derive the difference moving frame. This adaptation
allows to write the Euler-Lagrange equations and conservation laws in terms of the invariant
variables in an appropriate space.

Conservation laws play an important role in the study of the solution of differential and
difference equations. Emmy Noether proved in 1918 (see Noether, [83]) that every Lie group of
symmetries of a physical system acting on the space of independent and dependent variables
has a corresponding conservation law. The equivalent theorems for difference equations as well
as other results by Noether have been developed in Dorodnitsyn, [19], Hydon, [48], Hydon and
Mansfield, [50] and Peng, [92]. For some complicated problems it is easier to work in terms of
the invariant variables rather than in the original variables. Once this invariant problem has
been solved, one can express the solution in the original variables. This can be achieved for

difference systems using discrete moving frames theory.

49
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Let u = (u!,...,u%) € R? denote a not necessarily finite set of dependent variables, and

let S denote the forwards shift operator defined as follows
S:n—n+1, S: f(n)— f(n+1),
for all functions f whose domain includes n and n + 1. In particular,
S:uf = ujyy

on any domain where both ug and uj’; are defined. The forward difference operator is S — id,

where id is the identity operator defined by
id:n—n, id: f(n) — f(n), id : uf = uf.

We consider discrete Lagrangians of the form L[u] = Z L(n,ug,...,uy) where the

n
Lagrangian L depends on only a finite number of arguments. We seek sequences which

extremise the sum, in the sense that

d
de

OZL(n,u0+ewo,...,uJ+ewJ):0
e=!
n

for all functions w : Z — RY. It is well known that the extremising sequences satisfy the
recurrence relation known as the discrete Euler-Lagrange equation, (see Hydon and Mansfield,

[49], and Kupershmidt, [64])

J
oL .
Bl)=> S <6u0‘) =0,  whereS_; = (S_1)’. (3.1.1)
j=0 J
Each E, o (L) depends only on n and u_y,...,uy, so the Euler-Lagrange equations are of

order at most 2.J.

It is usual to suppress the n in the indices, and we follow that convention in this thesis.

For example, the expression up4oup, — 2u2, 4 will be written as ugug — 2u3.

In §3.2, the concept of difference prolongation space as an analogue of the jet space in the

case of differential equations is introduced.
In §3.3, the finite difference Calculus of Variations is briefly reviewed.

In §3.4, the discrete moving frame and the difference moving frame is introduced, which

gives the geometric framework for the results.

In §3.5, it is shown how a difference moving frame can be used to calculate the difference
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Euler—Lagrange equations directly in terms of the invariants. This calculation yields boundary
terms that can be transformed into the conservation laws, which require both invariants and
the frame for their expression. In §3.6, the Adjoint representation of the frame and the matrix
of infinitesimals is recalled. In §3.7, key results on the difference conservation laws that arise
via the difference analogue of Noether’s Theorem are formulated.

In §3.8, it is shown how the difference moving frame may be used to integrate a difference
system which is invariant under a Lie group action. Further, we show how the conservation
laws and the frame together may be used to ease the integration process, in cases where one
can solve for the frame, and in cases where one cannot.

The running example is a scaling and translation group invariant Lagrangian, with two

dependent variables defined on a one dimensional suitable discrete subgroup.

3.2 Difference prolongation spaces

In order to work with difference equations, the concept of difference prolongation space is
useful. A difference prolongation space is basically the discrete equivalent of the jet space
for differential equations. From now on equations that may have singularities will not be

considered.

The difference prolongation spaces are obtained from the space of independent and depen-
dent variables, Z x R?. Over each base point n € Z, the dependent variables take values in a

1

continuous fibre U C RY, which has the coordinates u = (u',...,u%). It is assumed that all

structures on each fibre are the same.

Let u; denote u(n + j), for all sequences (u(m))m ¢z The fibre over n is the prolongation
space quo’o)(U ) ~ U, and it has coordinates ug. The first forward prolongation space over
n is Péo’l)(U) ~ U x U with coordinates z = (ug,u;). The J'" forward prolongation space
over n is the product space PT(LO’J)(U) ~ U x---xU (J+1 copies) with coordinates z =
(ug,uy,...,uy). Including both forward and backward shifts, one can obtain the prolongation
spaces P,(LJO’J)(U) ~Ux---xU (J—Jp+ 1 copies) with coordinates z = (uy,, ..., us), where
Jo<0and J > 0.

The total prolongation space over n, denoted by Pé_oo’oo)(U ), has coordinates z =
(...,u_2,u_1,ug,uy,uy,...). Every prolongation space PéJO’J)(U) is a submanifold of the
total prolongation space over n. The same structures are repeated over each n as n is a free

variable. This yields the natural map

71 PN () — Pé:_io’oo)(U), Tz 2, (3.2.1)
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where the coordinates on P(

1 OO)(U) are denoted by a caret, so u; refers to u(n + 1 + j).

For difference equations, it is enough to use the restriction of S to finite prolongation
spaces. To adapt difference equations on a finite or semi-infinite interval, the constraint that
u;11 = Su; is defined only if n + j and n + 1 + j are in the interval it is added.

The variable n will be treated as fixed, using powers of the shift operator S to represent
structures on prolongation spaces over any base point m as equivalent structures on all
sufficiently large prolongation spaces over n. This will allow difference moving frames to
be constructed. Throughout, we work formally, without considering convergence of sums or

integrals.

3.3 The difference variational calculus

The methods developed in this chapter will emulate the difference variational calculus as far

as possible, but using the invariant difference calculus.

Consider a discrete Lagrangian of the form

=> L(n,ug,uy,...,uy), (3.3.1)

where u; = (ujl, . ,ug) € R?. From now on the unadorned summation symbol denotes
summation over n and the range of this summation is a given interval in Z, which can be
unbounded. For sums over all other variables, the Einstein summation convention will be used

as far as possible. The variation of L[u] in the direction w is taken to be

d L
— = o — 3.2
o 6:O,C[u + ew] Z w; 8u]0-‘ (3.3.2)
Making repeated summation by parts, specifically
(Sjf)g=fS—jg+ (S; —id) (fS—;g) (3.3.3)

and pulling out the factor (S —id) from (S; — id), it follows that

. Ve oL L] oL
Wy Sa = W S_ja—a—i—(S id)Ay(n,w), where Ay(n,w) :ZZ S19 wi S_]a
j j j=11=0
(3.3.4)
This defines the boundary terms. A formula to compute this boundary terms is given in (3.5).

The sum over n of the differences (S — id) Ay telescopes, contributing only boundary terms

to the variation. If the variation is zero for every w we say that u is an extremal for the
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Euler-Lagrange system of difference equations

oL

i
8uj

E a(L):=S

w 0, a=1,...,q (3.3.5)

which is a set of recurrence equations for u. The boundary terms will, in general be the
discrete analogue of the natural boundary terms. Moreover, the boundary terms yield natural

boundary conditions that must be satisfied if u is not fully constrained at the boundary.

Example 3.3.6. Consider the variational problem

Llz,u] = ZL($07u07x17U17u2)~ (3.3.7)

The variation of Lz, u] in the direction of w = (W™, w") is

dele=0 Y dug L duy

= > {wh Ex(L) + wf Eu(L) + (S — id) Au(n, w)}.

g ﬁ[x+€w$ u+€wu]_z $%+ u%_‘_ $£+ uﬁ_ﬁ_ uﬂ
’ N bt 6950 “ 1 8.1‘1 v he 8U2

The Euler—Lagrange equations, for the variables x and u are

oL oL oL oL oL
= - _— = E L = —_— 11— _y— =
07 u( ) 8u0 + 5 18u1 + 5 28UQ 0

respectively. The expression of Au(n,w) = A" + A" is of the form

oL W aeoL L
A —wos_laixl7 A _wOS_18u1+(S+ld) (wos_28u2).

Those variations that leave the Lagrangian invariant, up to a total difference term are now

considered.

Definition 3.3.8. Suppose that a non-zero function ¢ = (¢'(n,u),...,¢%(n,u))’ satisfies

oL
Ou;?‘

¢5(n, ) = (S —id)B(n,u), where ¢ = S;¢y, (3.3.9)

for some B(n,u) which may be zero. Then the Lagrangian L is said to have a one-parameter
local Lie group of variational symmetries with characteristic ¢. The Lagrangian is invariant

under this symmetry if B = 0. If B # 0, this symmetry is called divergence symmetry.

The meaning of the word infinitesimal and its relation to symmetries, will made clear in

§3.6. The importance of symmetries is given in the next Theorem.
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Theorem 3.3.10 (Difference Noether’s Theorem). Suppose that a Lagrangian L has a vari-
ational symmetry with characteristic ¢ # 0. If u = u is a solution of the Euler—Lagrange

system for L then
((S—id){Au(n,¢) — B(n,u)})|,_, =0. (3.3.11)

Proof. Substituting ¢ for w in (3.3.4) and using (3.3.9) it follows that

oL

e (S — id) B(n, u).

¢%(n, 0)Eya (L) + (S — id) Au(n, @) = ¢f(n, u)

Therefore

¢*(n,u)E, a(L) = (S —id) (B(n,u) — Au(n, 9)) .

If u = 1 is a solution of the Euler—Lagrange system for L then Eua(L) = 0. Hence

((S—id){Au(n,¢) — B(n,u)}) }u:ﬁ =0.

The expression in Equation (3.3.11) is a conservation law for the Euler-Lagrange system.
As there is only one independent variable, the expression in brackets is a first integral, so every

solution of the Euler-Lagrange system satisfies

{Au(n, @) — B(n,u)}‘u:l_l =c,

where ¢ is a constant.

Example 3.3.12. The Lagrangian

xr1 — o

L(zo, w0, z1, w1, u2) = 3.3.13
is of the form (3.3.7). Therefore the Euler—Lagrange equations are
_3 _3
((ur —uo) (uo —u-1))" 2 — ((uz —u1) (w1 — uo)) > =0,

(x1 — o) (U1 — u2) + (ko —x—1) (—2up + u_1 +u1) n (x—1 —2—2) (u—1 — u_2)

5 5 5 — 0.
((uz —u1) (w1 —uo))? ((ur — uo) (uo — u—1))2 ((uo — u—1) (u—1 — u—2))?

One can construct 3 first integrals by using (3.3.10):
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1. For ¢ =1 and ¢* = 0 we have the first integral

oL
S_laixl = (1.

2. For ¢* =0 and ¢" = 1 we have the first integral

oL i oL
S_lai’u,l =+ (S —+ ld)S_QT’Ug = C2.

3. For ¢ = 3z and ¢" = u we have the first integral

oL oL ) oL
3.’E0 S_laixl + Uuo S_laiu1 + (S + ld) (Uo S_zal@) = C3

where c1,co and c3 are constants.

It has three variational symmetries, all with B = 0.

The first symmetry comes from the invariance of the Lagrangian under translations in x,
that is, x — x + €1 for all e € R, the second symmetry comes from from invariance under
translations in u, that is, u — u+€2, €2 € R and the third symmetry comes from the invariance
of the Lagrangian under the scalings of the form (x,u) — (A3z, \u), for A € R*.

Note that (3.3.13) has three first integrals for the system of Fuler—Lagrange equations.
Howewver, these first integrals are really complicated which makes the system tedious to solve.
Using coordinates adapted to the three symmetries, one can ease the calculations and deal

stmultaneously with all Lagrangians which have these symmetries.

3.4 Discrete moving frames

We now turn our attention to discrete moving frames.

A discrete moving frame is a discrete analogue of a moving frame. The discrete moving
frame is adapted to discrete base points and it amounts to a sequence of frames defined on a
product manifold. Details on discrete moving frames and their applications can be found in
Beffa and Mansfield, [5] and Beffa, Mansfield and Wang, [6].

From now on, the manifold where G acts will be the product manifold M = MY Tt is
assumed that the action on M is free, taking the number of copies N of the manifold M to
be as high as necessary. For a discussion of this see Boutin, [11| and see Olver, [88] for an
example where the product action is not free for any N. Questions like the regularity and

freeness of the action will refer to the diagonal action on the product, specifically, given the
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action (g, 2;) — g - zj for z; € M, the diagonal action of G on z = (21,22,...,2n8) € M is

g'(zlaz27°"aZN)’_>(9'2159'227"'59'21\7)'

Throughout this subsection, no assumptions are made about any relationship between the
elements z1,...,zN.

The definition of discrete moving frame is now given.

Definition 3.4.1 (Discrete Moving Frames: Beffa and Mansfield, [5] and Beffa, Mansfield
and Wang, [6]). Let GV denote the Cartesian product of N copies of the group G. A map

p:MN =GN, p(z) = (p1(2), -, pn(2))
1s a right discrete moving frame if

pk(g'z):pk(z)gilv k:17"'7N7

and a left discrete moving frame if

k(g - 2) = gpr(z), kE=1,...,N.

As in the smooth case, obtaining a discrete frame via the use of normalization equations
yields a right discrete frame. As the theory for right and left frames is parallel, only right
frames will be considered.

A discrete moving frame is a sequence of moving frames (px) with a nontrivial intersection
of domains which, locally, are uniquely determined by the cross-section K = (K1,...,Kxn) to
the group orbit through z. The right moving frame component py, is the unique element of the

group G that takes z to the cross section K. We also define for a right frame, the invariants
Ikvj = pk(z) 7 (342)

If M is g-dimensional, so that z; has components z}, oo, 2]

)25 the ¢ components of I ; are the

invariants

«

I = pr(2) - 25, a=1,...q. (3.4.3)

Let ¢ denote the invariantization operator with respect to the frame pg(z), so that

Iig = w(z), I = ().
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Figure 3.1: Replication of the cross-secction over n where ICp = SiKo.
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M
M
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M
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3.4.1 Difference moving frames

The construction of the discrete moving frame allows us to adapt the moving frame to any
discrete domain. Usually, M represents the fibres M over a sequence of N discrete points

where the geometric context may determine additional structures on M.

From §3.2, as n is a free variable, we can replicate the same structures over each base point
m, using powers of the natural map m, see Equation (3.2.1). Thanks to the shift operator
these structures can be represented on prolongation spaces over any given n. This indicates
that the natural moving frame for a given OAE has M = P,gJO’J)(U ) for some suitable Jy < 0
and J > 0. Therefore, N = J — Jy + 1. From now on, the indices 1, ..., N will be replaced by

Jo, - ., J and we will use K and pi to denote the cross-sections and frames on M respectively.

The cross-section over n, denoted Ky, is replicated for all other base points n + k if and

only if the cross-section over n + k is represented on M by
K = SiKo (3.4.4)

for all k, see (3.4.1). If this condition holds, then by definition it follows that pp = Skpg for all

k. Consequently, Kr+1 = SKy and pr4+1 = Spg.

A difference moving frame is defined as follows:

Definition 3.4.5. A difference moving frame is a discrete moving frame such that M is a

prolongation space PéJO’J)(U) and (3.4.4) holds for all Jy < k < J.
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By definition, the invariants Ij, ; given by a difference moving frame satisfy

SIk’] == Ik+1’j+1. (346)

Therefore, every invariant Ij ; can be expressed as a shift of I ;.

Example 3.4.7. Consider the scaling and translation group action on R? given by
(z,u) = Nz +a, \u+b), AeRY, a,beR. (3.4.8)
The Lie group is the semi-direct product, Rt x R2. For the variables xq, ug, 1, u1,us we have

To=Nxo+a, u=Mg+b x1=Nzi+a, ul=Mg+b uz=Aug+b.

Therefore
NNNNN Tr1 — X0
B (s TR e
o )\3(5[31 — .To)
X% (ug — ) (w1 — o) }3?
(z1 — 20)

 {(ug —un) (ur — ug) Y3/

Hence the Lagrangian (3.3.13) is invariant under (3.4.8). However, the action is not free on the
space R? over n with coordinates (xq,ug). In order to achieve freeness, the action is extended
to the first forward prolongation space P,(LO’I)(RQ) which has coordinates (g, ug, x1,u1). The

action is given by
(zo, up, x1,u1) ()\31:0 + a, Mg + b, \3x1 + a, \ug + b) )
Choosing the normalization equations
7o =0, ug = 0, u =1

and solving for the group parameters we obtain

(3.4.9)
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A representation of a generic group element is given by

A0 a g-x x
g\ a,b) = 0O )X b with g-u | =9Nab)| u |- (3.4.10)
0 0 1 1 1

Note that this representation is faithful, which means that

M0 oa 100
0O AXxb|=]010 implies that g=e
0 0 1 0 01

where e is the identity of G. Substituting (3.4.9) into (3.4.10) we obtain a matrixz representation

of the moving frame

1 0 xo
(u1 —uo)? ) (u1 — ug)?
po(@o, to, T1,u1) = 0 % . (3.4.11)
Ul — Uug Ul — ug
0 0 1
Note that the frame satisfies
1 0 7o + Cl/)\3
)\3(U1 — U0)3 (Ul - u0)3
po(To, g, T1,11) = 0 1 _ uo+b/A
/\(u1 — 'LL()) Ul — Ug
0 0 1
1 xo a
0 — 23 v
(w1 — up)3 ) (u1 — ugp)? 0 )?)3
= 0 B 0 At -2
Ul — Uo up — U A
0 0 1 0 0 1

= polwo, uo, x1,u1)g(A, a,b) 7!

so it is equivariant. Note that
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Ly Ly
| uj | =po- | uy (3.4.12)
1 1
1 0 i) ZTj — X0
(u1 — )3 (u1 — up)? i (u1 — ug)3
_ 0 g w | = uj — Up
U1 — Ug U1 — Ug U1 — Up
0 0 1 1 1
(3.4.13)
Therefore
Tj — X0 Uj — Up .
wlz;) =py- ;= ———3 to(uj) == po-uj = , JEZ
(5) == po - z; (u1 — ug)® (uj) = po - u; w1 — g
Setting
k = to(u2) = po - ua, n = (1) = po - 1, (3.4.14)
for each j € Z, it follows that
Tj+1 — X0 1 — Zo

S{uo(z;)} zivr— 21 (up—up)®  (ug —ug)®  wolzjz) —n

(ug —ur)? <u2u0_u1u0)3 (k—1)3

Uy — Uog Uy — uo

or using the Replacement Rule (2.4.6)

S{w(zj)} = imi—m o <$j+1 - xl) ~wl@ip1) —w(z)  w(zje) —n |

(ug —u1)® 7 \(ug —u1)®)  (o(uz) —eo(u1))®  (k—1)3
Also
Uj4+1 — UQ _ Ul — U
N Wil T UL ug — U Uy — Uy LO(“jH) —1
Steolus)} = up —uy U2 —Up U —ug k]

Uy — Uog Ul — Uo

or using the Replacement Rule (2.4.6)

S{ig(uy)} = M <Uj+1 - ul) _ wo(ug+1) —o(ur) _ tolujr) =1

U9 — U U9 — U7 Lo(’u,z)—bo(ul) N k—1

Therefore

w(ujyr) = (k— 1) S{w(u;)} + 1, w(rjr) = (k—1)3 S{w(z;)} +n. (3.4.15)
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This shows that the invariants with positive j can be written in terms of k,n and their forward
shifts. Let us now set k; = Sjk and n; = S;n for all j € Z. In order to find the expression for
the invariants with negative indices j, we do the following: We first apply S_1 to both sides of
(3.4.15), obtaining

Soi{w(ujin)} = (ko1 = Dwoluy) +1,  Soa{eo(zjrn)} = (ko1 — 1)%wo(zy) + 11
Now, we send j to j — 1 and consequently, j + 1 to j. We obtain
Sfl{bo(uj')} = (I’ifl — 1) L()(Ujfl) +1, Sfl{bo(.%j)} = (/ﬁifl — 1)3 L(](f[fjfl) +n-_1.

Isolating the invariantization of uj_1 and xj_1 we get

S—1{wo(uy)} — 1

k1 —1

_ S-leo(zy)} —n-1

vo(uj—1) = ; w(zj-1) = (k1 —1)3

It is important to note that S{uo(u;)} # to(ujt1) as

S{eo(uz)} =S{po - uj} = p1 - wjt1 # po - wjr1 = to(uj41).

However, it is possible to write the shift of the generating invariants in terms of other generating

nwvariants.

The discrete Maurer—Cartan group elements allow us to find relationships between invariants

and their shifts.

Definition 3.4.16 (Discrete Maurer—Cartan invariants). Given a right discrete moving frame

p, the right discrete Maurer—Cartan group elements are

Kk = pegapy, (3.4.17)

for Jy <k<J-1.
These relationships are an example of syzygies.

Definition 3.4.18 (Syzygy). A syzygy on a set of invariants is a identity between invariants

that expresses functional dependency.

The equivariance of the frames yields that Kj is invariant under the action of G and
the components of the Maurer—Cartan elements are called the Maurer—Cartan invariants or

curvature invariants .
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Since py, is a frame for each k, the components of pi(2) - z generate the set of all invariants
by the Replacement Rule (2.4.6).

Essentially the Maurer—Cartan group elements, are well-adapted to studying difference
equations. One can express all invariants in terms of a small generating set. Using (3.4.2) and

(3.4.17)

Ki kg = pesapy, - ok 2 = pryr - 2 = Tegag,s (3.4.19)
and iterating this, Ky 41Ky, - Iy, j = Ij42 j, and so on. This leads to the following result:

Theorem 3.4.20 (See Proposition 3.11 in Beffa, Mansfield and Wang, [6] ). Given a right
discrete moving frame p, the components of Ky, together with the set of all diagonal invariants,

I;; = pj(2) - zj, generate all other invariants.
The notion of a generating set from can be extended as follows:

Definition 3.4.21. A set of invariants is a generating set for an algebra of difference invariants
if any difference invariant in the algebra can be written as a function of elements of the

generating set and their shifts.

For a right difference moving frame, the identities I ; = S;Ipo and Kj = S, Ko hold, so

Theorem (3.4.20) reduces to the following result:

Theorem 3.4.22. Given a right difference moving frame p, the set of all invariants is generated

by the set of components of Ko = plpal and Iyo = po(z) - 20.

As Ky is invariant, by the Replacement Rule, it follows that
KO = Lo(pl) (3423)

where 8y (p1) denotes the invariantization of p; using pg. In matrix form, the elements of p; of

the form z; are replaced by po(2) - 2;.

Example 3.4.24. The FEuler—Lagrange equations associated to (3.3.13) define a subspace
of the prolongation space M = PTE_Z’Q) (R?), due to the fact that (3.3.13) is a second-order
Lagrangian. Therefore, we will be working on this space for the rest of this example. A
difference moving frame in M coming from (3.4.11) is constructed by considering the sequence

of frames pi = Sgpo. Recall (3.4.12)

X . .
Io,j Lj Lj
u p— . p— .
Iy | u, POl uy

1 1 1



3.4. Discrete moving frames 63

Figure 3.2: Assuming a left action, in this way, the action by the Maurer-Cartan element
provides a change of coordinates from one set of generating invariants to another.

’C(] ’Cl

Taking the forward shift we obtain

SIBEJ Tj+1 Tj41 Ir

0,j+1
SIg; | = e | wien | = (o) 0| wjn | =Ko | I,
1 1 1 1

where the matriz Ko = p1py " = to(p1) is of the form

1 0 B 7
(k—1)3 (k—1)3
Ko = 0 1 , (3.4.25)
k—1 k—1
0 0 1

where n and K are defined in (3.4.14). Explicitly it follows that

Note that equations (3.4.15) and (3.4.26) are consistent.
The Maurer—Cartan invariants for this example are the components of Ko and their shifts.
By Theorem (3.4.22), the algebra of invariants is generated by n, k and their shifts, because

both components of Ino = po - (xo, ug) are zero.

For a complete discussion of Maurer—Cartan invariants for discrete moving frames, with

their recurrence relations and discrete syzygies, see Beffa and Mansfield, [5].
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3.4.2 Differential-difference invariants and the differential-difference syzygy

The introduction of a dummy variable ¢ will be key to obtain the Euler-Lagrange equations in
terms of the invariants.

Consider now a smooth path t + z(¢) in the space M = M" and consider the induced
group action on the path and its tangent. The group action is extended to the dummy variable

t trivially, so that ¢ is invariant and the action to the first-order jet space of M as follows:

de() _d(g-=(t)

dt d¢

9

If the action is free and regular on M, it will also be free and regular on the jet space and the

same frame may be used to find the first-order differential invariants, specifically

Irj;e(t) = pi(2(t)) - dzét(t) : (3.4.27)

Let I j(t) denote the restriction of Iy ; to the path z(t). Since the frame depends on z(t), we

have in general that

d

Lt (8) # 5 Th(2)- (3.4.28)

For the computation of the invariantized form of the Euler-Lagrange equations, the
evolution of the curvature invariants are required to be written in terms of the first order

differential invariants and a linear differential operator, specifically

d
= Ho, (3.4.29)

where Kk is a vector of generating invariants, H is a linear difference operator with coefficients
that are functions of x and its shifts, and o is a vector of generating first order differential

invariants of the form (3.4.27). There are two methods for finding (3.4.29):

Method 1 If the explicit formulae in the original variables of the curvature invariants are known,

(3.4.29) can be found by direct differentiation followed by the Replacement Rule, (2.4.6).

Method 2 By differentiating Maurer—Cartan matrix as follows

d d . d . d .
aKk = & (pk—i-lpk ) = <dtpk+1> pk—i—lKk — Kk (dtpk> pk . (3430)

and equating components.

This motivates the following definition:
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Definition 3.4.31 (Curvature Matrix). The curvature matriz Ny, is given by

a N
Ny = <dt pk> ot (3.4.32)

when py s in matriz form.

It can be seen that for a right frame, Nj is an invariant matrix that involves the first
order differential invariants. The above derivation applies to all discrete moving frames. For

a difference frame, moreover, Ny = SiNy and (3.4.30) simplifies to the set of shifts of a

generating syzygy,

d
3 550 = (SNo) Ko — KoNNo. (3.4.33)

As Ny is invariant, the Replacement Rule (2.4.6) yields the following:
Ny = —p (3.4.34)
} . 4.
0 0\ g Po

Finally, the differential-difference syzygies for the diagonal invariants are needed (see

Theorem (3.4.22)). For a linear (matrix) action,

d d _ d
&Io,o(t) = (dtpo> po "+ (po - 20(t)) + po - aZo(t) = Nolo,o(t) + Lo,0;¢(t)- (3.4.35)

For nonlinear actions, the techniques described in Mansfield, [70], may be modified to accom-

modate difference moving frames, as we will show in more detail in §5.

In all the examples in this thesis, the diagonal invariants I, are normalized to be constants.

)
However, this does not hold in general as sometimes it is necessary to chose a normalization
that makes off-diagonal invariants constants, in which case some diagonal invariants may

depend on z(t).

Remark 3.4.36. Equation (3.4.29) will be called the reduced form or canonical form of
(3.4.33).

Example 3.4.37. Suppose x; = xj(t) and u; = u;j(t), etc. The aim is to compute the
expressions on the original variables of differential invariants and also obtain recurrence
relations. The action on the derivatives x; = dz;/dt, u; = du;/dt is induced by the chain rule
(also known as implicit differentiation), as follows:

,_d(g-z;) d(g-z) d(g-uj) d(g-uy)

. .= pu— p— AS / . / pr— pr— pr— A /"
%57 (g 1) dt T 9N T (g at Y
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Define
Ig,j;t CL’;
Ig,j;t =ro u;
0 0
1 0 B i) , x;
(u1 — UO)3 ) (u1 — UO)3 L (U1 —IUO)
Ul — Ug Ul — Ug Ul — Ug
0
0 0 1 0
Therefore
¢ = py-al = % I3 :p.u’,—ui; (3.4.38)
0,53t 0Ly (u1 — Uo)?” 0,4t 0% T g — uo’ o
Taking the forward shift we obtain
815 js¢ i1 Zji1 Ioj+1:¢
—1
SIg;., | =P vy | = (P1og ") Po Wiy | =Ko | g0
0 0 0 0
obtaining
SI¥ B — 0 - I3
0,55t (k—1)3 (k—1)3 0j+15t
_ 1 1
Sloje | = 0 —1 -1 15 41,0
0 0 0 1 0
It follows that
15 54150 19 54150
SIS .., = —=—— SI .., = ———. 3.4.39
Oy]at (/4/_].)3’ Ovjat ,{_1 ( )

In the same way, one can use the shift operator and pkpal =K 1Kj_o--- Ky to obtain all

Ik?j;t, I,w.;t in terms of the generating Maurer—Cartan invariants,
x| Uy
T ._ JT _ / _ I 0 U . TU _ / _ ! 0
o =150, = to(zg) =po-29g=—""33, o =150, = to(up) =po-ug=—"-—,
(u1 — ’LL(]) Ul — U

and their shifts. The differential-difference syzygies (3.4.33) are now obtained where (3.4.34)
15 used to calculate Ny. It follows that

; —3(eo(u}) — to(uh)) 0 —uo(7p)
No =1 (dtpo> = 0 —(eo(u}) = o(ug))  —woluy) | - (3.4.40)
0 0 0
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From (3.4.39) for j =0 it follows that
Ig,l;t = (H - 1)3 Slg,O;t’ I&l;t = (K’ - 1) SI&O;t

Substituting this into (3.4.40) Ny is obtained in terms of o®, o* and their shifts:

—3((k —1)So™ — ") 0 —o”
No = 0 —((k=1)So* —o%) —0o* |- (3.4.41)
0 0 0

Inserting (3.4.25) and (3.4.41) into (3.4.33) yields, after equating components and simplifying,

dn = [(k—-1)3S—id]o” id - (k — o
iré (= DS —id] o+ S lid = (s = D8], (3.4.42)
il (k—=1)[id = kS + (k1 — 1) Sa] o™

Therefore, the differential-difference syzygy between the generating difference invariants, n and

K, and the generating differential invariants, o® and o, can be put into the reduced form

dt

where H is a linear difference operator whose coefficients depend only on the generating

difference invariants and their shifts.

3.5 The Euler-Lagrange equations for a Lie group invariant

Lagrangian

In this section the calculation of the Euler-Lagrange equations is presented, in terms of

invariants, for a Lie group invariant difference Lagrangian.

First, we make the following definition and propositions, which we will prove.

Definition 3.5.1. Given a linear difference operator Ej H = ¢;S;, the adjoint operator H* is
defined by

H(F) = S—j(¢;F)
J
and the associated boundary term Ay is defined by

FH(G) —H" (F)G = (S—id)(Ay(F, Q@)),
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for all appropriate expressions F and G.

Remark 3.5.2. Note that in the above definition c; denote the coefficients of S; for each j,
not the j-shift of cg.

We now make the following remark:

Proposition 3.5.3. The equality
k 1
(S —1id) S;

FO

holds.

Proof. We prove this equality by induction. For k = 1 we have

0
—id) )8, =

=0

Let us suppose the equality holds for k. For k + 1 we have

(Sg+1 —id) = (Sg41 — Sk + S — id)
:Sk(S—id)—i—Sk—id

T
L

=S (S ~id) + (S —id) }_S;

T
-
<.
I
o

=S —id) [+ Y8,

<
Il
o

k
=(S—id) ) s,

j=0

so it holds for k£ + 1 and therefore, by induction it holds for all k. O
Proposition 3.5.4. For H = ;" ciSp where H* = >"}"  (S—kck) S—i it follows that
FH(G) —H" (F)G = (S—1id) Ay(F,G)

where

=> Sj | (S—k (crF)G)
k—1 \J

N
—

I
=)

for all appropriate expressions F and G.
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Proof.
FH(G)—H"(F)G=F i ck (SkG) — i k(ckF)) (3.5.5)
k=0 k=0
= (Fex (SkG) — (S_g(cxF)) G) (3.5.6)
k=0
=Y ((Sk —id) (S_k(ckF)) G) (3.5.7)
k=0
m k—1
=> | (s—id) S; | (S_i (e F)G) (3.5.8)
k=0 §=0
m k—1
=(S—id))_ S; | (S_k (cxF) @) (3.5.9)
k=0 §=0
where we have used Proposition 3.5.3. O

Suppose a group action G x M — M is given and that a difference frame for this action
has been found. Any Lie group invariant Lagrangian L(n,uy,...,uy) can be written, in terms
of the generating invariants « and their shifts k; = S;k, as L(n, ko, ..., Kk, ) for some J;. The

argument from the associated functional is dropped, setting

EZZL(n,u07...7UJ):ZL(TL,K(],...’K'/Jl).

The discrete version of the Fundamental Lema of Calculus of Variations is as follows:

Theorem 3.5.10. Consider the inner product

<f,9>= fagn

on the space {2

by = {an

Zf,2L<oo}.

If
< f,g>=0 for all g

then f = 0.
Now the Invariant Euler-Lagrange Equations theorem is given:

Theorem 3.5.11 (Invariant Euler-Lagrange Equations). (See Mansfield, R-E, Hydon and

Peng, [74]). Let L be a Lagrangian functional whose invariant Lagrangian is given in terms of
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the generating invariants as

L = ZL(n;K'()v"'vK’Jl)?

and suppose that the differential-difference syzygies are

dk
Then, it follows that
Eu(L) - uj = (H'Ex(L)) - o, (3.5.12)

where Ex (L) is the difference Euler operator with respect to k and where here - denotes the

inner product. Consequently, the invariantization of the original Fuler—Lagrange equations is

0(Eu(L)) = H*'Ex(L). (3.5.13)

Proof. Set u = u(t). In order to effect the variation the calculation of

%L = {Eu(l) - uj+ (S —id)(Au)} (3.5.14)

is replicated but computing it in terms of the invariants. This gives d£/dt = > dL/dt, where

L _ oL drj
dt— Oky dt
_ oL
a 35]0-‘ Tode
OL \ dr® .
= Ba(D) S (S~ id)(Ay)

= Ex(L) -Ho + (S —id)(Ax)
= (H'Ewx(L)) o+ (S —id){Ax + An}.

The boundary terms arising from the first and second summations by parts are (S —id) A
and (S — id) Ay respectively where A is linear in the dx®/dt and their shifts, while Ay is
linear in the o® and their shifts. Also note that o is the invariantized variation. By (3.5.10),

the identity (3.5.12) holds. Now note that

Therefore, applying ¢o to (3.5.12) and comparing components of o we obtain (3.5.13). O
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Hence, the original Euler-Lagrange equations, in invariant form, are equivalent to

H*E, (L) = 0.

Example 3.5.16. Consider an invariant Lagrangian of the form

L= Z L(n, k,Sk).

Making use of n; = Sjn and kj = Sjk we can write (3.4.42) as

dn . u dk B u
T Hi10" +Hig0", T Hoo o™, (3.5.17)

where

Hin = (k—1)3S—id, Hio = 3n{id — (k — 1) S},
Hoo = (k—1){id — kS + (k1 — 1) Sa}.

The invariantized Fuler—Lagrange equations are by Theorem 3.5.11
Hi Eq(L) =0, 12En(L) + HaEx (L) = 0,

where
Hi = (ko —1)2S_1 —1id, Hiy = 3nid — 3n_1(k_y — 1) S_1,

7‘[32 = (Ku — 1)id — /i'_l(/i_l — 1)8_1 + (H_Q — 1)(/1'_1 — 1)8_2.

Note that (3.3.13) can be written in terms of the invariants as follows

, T1 — T _ to(x1) — to(xo) 1
i <{(“2 —up)(u1 — UO)}3/2> {(t0(us) = to(u1))(to(ur) — to(u0))}** =t

Therefore
E,=(k-1)7%%  E.,=-3nk-1)"%2

Hence, the invariantized Fuler—Lagrange equations are
(ko1 — 132 —(k=1)"3% =, (3.5.18)

n(r—1)"2—n_1(k1—1) 724 1 (ko1 —1) T2 —n_a (ko1 —1)(k—2—1)"?} = 0. (3.5.19)

From (3.5.18)
K—1

Kiflfl'
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Therefore

Hl = = :K‘—l’

It follows that

if j is even,
K1, if 7 is odd.

Shifting backwards by S_; and setting k_1—1 to be k1 where kq is an arbitrary nonzero constant,

assuming that L is real-valued (k > 1), the general solution of (3.5.18) is
k=141 [k + kb + (b — k(=) (3.5.20)
Therefore (3.5.19) simplifies to
R0 (" ) g =y 20
whose general solution is
n =KD" {kg ((n )R nk§‘1>") + kg(—l)"} , (3.5.21)

where ko and ks are arbitrary constants.

3.6 On infinitesimals and the Adjoint action

In §2.2, we introduced the matrix of infinitesimals and the Adjoint action as presented in the
series of papers by Gongalves and Mansfield, [32, 33, 34]. Now we present the same concept as
derived in Mansfield, R-E, Hydon and Peng, |74] and Mansfield and R-E, [75] and we adopt
this form for the discrete case as stated in (2.2).

Recall (2.1.29). The infinitesimal generator is extended to the prolongation space M =
PTEJO’J)(U) by the prolongation formula

d .
v(uj) = X v(t) - uf = ¢5 = S;¢0, Jo<j <,
t=0

see Hydon, [48]. In coordinates, the prolonged infinitesimal generator is

_ (07
v—gﬁj—auq.
J

Lemma 3.6.1. If a Lagrangian L[u] is invariant under the group action G x M — M, the
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components of the infinitesimal generator of the group action given by definition (2.1.29) form

the characteristic of a variational symmetry of L[u], as defined in definition 3.3.8.

Proof. Since the Lagrangian L is invariant, it follows that

L(uo,ul,...,uj):L(g-uo,g-ul,...,g-uj)
for all g. Thus
d oL
= — L (vy(¢) - t) - ) =v(L) =¢F=—
0= |, OO w0 m) = () = o 5
where
d
¢f == ()i
J dt -0 J

By Definition 3.3.8, the components ¢® of the infinitesimal generator are the components of

the characteristic of a variational symmetry of L. O

Each infinitesimal generator is determined by 7’(0) € T.G. Recall form (2.1.4) that T.G
is isomorphic to the Lie algebra g, which is the set of right-invariant vector fields on G.
Right-invariance yields a Lie algebra homomorphism from g to the set X of infinitesimal
generators of symmetries (see Olver, [84] for details). If the group action is faithful, this is an
isomorphism.

Also recall that the R-dimensional Lie group G has coordinates a = (al,... ,aR) in a
neighbourhood of the identity, e, so that the general group element is I'(a), where I'(0) = e.

Given local coordinates u = (u!,...,u4) on U, let 4 = I'(a) - u. By varying each independent

parameter a” in turn, the process above yields R infinitesimal generators,

ou”

V= £ (WD, where € =1
a=

(3.6.2)

These form a basis for X.
As X is homomorphic to g, the Adjoint representation of G on g gives rise to the Adjoint
representation of G on X. Given g € G, recall from (2.1.4) that the Adjoint representation

L The corresponding

Ady is the tangent map on g induced by the conjugation h — ghg™
Adjoint representation on X is expressed by a matrix, Ad(g), which is obtained as follows.

Having calculated a basis for X,

v, = &2 (u) Oya, r=1,...,R,

let 1 = g - u and define

V, = W) dgo, r=1,...,R
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Now express each v, in terms of vi,..., Vg and determine Ad(g) from the identity
(vi -+ vg)=(v1 -+ VRr)Ad(g). (3.6.3)

Regarding the infinitesimal generators as differential operators and applying the identity

(3.6.3) to each @ in turn, one obtains
(vi(@®) --- vr(a®)) = (&r(a) - Eg(a))Ad(g). (3.6.4)
Example 3.6.5. Recall the action (3.4.8)
T=Mz+a, u=Au-+b.
The group parameters are A\, a and b with identity (\,a,b) = (1,0,0). It follows that
0T u™ o7 Ou® 0% ou™

o\ g=e * oA g=e b da g=e ’ da g=e ’ ob g=e ’ ob g=e

Hence, the table of infinitesimals is of the form

T U
Al 3z u
al 1 0
b| 0 1

Therefore the vector of infinitesimals are of the form
vy = 3x0; + udy, Vg = Og, vy = Oy.

Note that
@ ou B @ ou

9700 Ou=5 05+ 5 0

S0

0y = 305, Dy = N0z

It also follows from (3.4.8)

Therefore



3.6. On infinitesimals and the Adjoint action

vy = 3x20; + ud,
=3\73(T — a)N0z + AN — b)\Ig
=3(Z — )0 + (u — b)0;

= 3205 + udy — 3ad; — boy

Vg =0 = )\3857
Vp = 8u = /\817
Hence
V) = V) — 3avy — bvy, v = NV, and vy = AVp.
Consequently,

1 0 0
(vi vo v3) = (v1 va v3).Ad(g), where Ad(g)=| —3a X 0
-b 0 A

75

The matrix of infinitesimals introduced already in (2.2.1) is called in [74] matrix of

characteristics and it is given by the following definition:

Definition 3.6.6. The matriz of characteristics is defined to be the g x R matrizx

®(u) = (& (u)).

The equivalent lemma to (2.2.4) is as follows:

Lemma 3.6.8. The follow identity holds
ou ~
(5a) o = 0@ Ad().

where (Ou/on) is the Jacobian matrix.

(3.6.7)

(3.6.9)

The equation (3.6.9) can be extended to prolongation spaces with coordinates z =

(wsy,-..,uy), where Jp < 0 and J > 0; the matrix of prolonged infinitesimals is defined

to be
(I)(uJo)
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The infinitesimal generators v,., prolonged to all variables in z, satisfy (3.6.3), where the

tilde now denotes replacement of z by g - z. Applying this identity to g - z gives

(8(%;2)

) O(z) = ®(g - 2)Ad(g). (3.6.10)

Example 3.6.11. [t is easily checked that Equation (2.26) holds. Indeed, setting z =

(20, up, x1,u1) it follows that

XMoo 0 0 3¢9 1 0 370 1 0
1 0 0

0O AN 0 O w 0 1 uw 0 1
= —3a N 0

0 0 X 0 3¢1 1 0 371 1 0
- b 0 A

0 0 0 X\ wp 0 1 up 0 1

3.7 Conservation laws

In general, the conservation laws are not invariant. However, they are equivariant as they can

be written in terms of invariants and the frame.

In the non invariantized version of the calculation of the Euler—-Lagrange equations and
boundary terms, the dummy variable ¢ is taken to effect the variation to be a group parameter
for G, under which the Lagrangian is invariant. Then the resulting boundary terms yield
conservation laws, which gives the differential-difference version of Noether’s theorem. For
more details about this version of Noether’s theorem see Peng, [92]. It is then useful to identify

t with a group parameter by considering the following path in G:
t—y(t)=T (al(t), e ,aR(t)) . where a"(t)=t and d'(t)=0, 1 #7 (3.7.1)
Recall from §3.6 that a — I'(a) expresses the general group element in terms of the coordinates

a. On this path, each (up)’ at t = 0 is an infinitesimal generator, from (3.6.2).

For the invariantized calculation, the dummy variable effecting the variation is identified

with each group parameter in turn. Recall the identity

% L(n,k,....S5 (k) = (H'En(L)) - o + (S — id){Aw + As} (3.7.2)

from the proof of Theorem 3.5.11. Also recall that A, is linear in d«®/dt and their shifts, while

Ay is linear in the o® and their shifts. As ¢ is a group parameter and each k® is invariant,
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dk®/dt = 0. Hence, (3.7.2) reduces to
(H*Ex(L)) - o + (S —id) Ay = 0, (3.7.3)

so (S—1id) Az = 0 on all solutions of the invariantized Euler-Lagrange equations H*E, (L) = 0.

From this condition, the conservation laws can be derived.

Theorem 3.7.4 (See Mansfield, R-E, Hydon and Peng, [74]). Suppose that the conditions of
Theorem 3.5.11 hold. Write
AH = Cg‘ij(Ua),

where each CJ, depends only on n,k and its shifts. Let ®*(ug) be the row of the matriz of
characteristics corresponding to the dependent variable uy and denote its invariantization by

DG (I) = ®%(po - up). Then the R conservation laws in row vector form amount to
C1S {5 (1) Ad (po)} = 0. (3.7.5)
That is, to obtain the conservation laws, it is sufficient to make the replacement
o% = {P%g - uo)Aal(g)}‘g:p0 (3.7.6)

m A’H-

Proof. Recall that
« « d [0
0% = po - (u) = (dtg.uo> ‘g:po. (3.7.7)

To obtain the conservation laws, conflate ¢t with the group parameter a”, making the replacement

(07 d (0%
po - (ug) = &Lzopo < (t) - ug (3.7.8)

in the boundary terms Ay, where v, (¢) is the path defined in (3.7.1). Using the chain rule, it
follows that for any g € G,
d 9 (g - r(t) - uf)

il 977000 = o (1) -l

_ 0(g-ug) (d
Ouf dt

=0 <§t o K > (3.7.9)

r(t) - tf) :

t=0
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In matrix form, (3.7.9) amounts to the following

d
dt l+=0

) = (P57 00) = (00 Adte)

where (3.6.10) has been taken into account and where (uJ,r) denotes the entry in the row

corresponding to uf and the rth column. Setting g = po, the required replacement is
o® = (®(po - Z)Ad(/)o))(ugﬂ = (®(po - uo)Ad(po))" -
By using each parameter a” in turn, o is replaced by a row vector,
0% = &G (1) Ad(po),

as required. O

Note that S;jpg = p;, so the conservation laws amount to
(S —id) (C§(S; @5 (1)).Ad (p;)) = 0. (3.7.10)

Also Ad(p;).Ad(po)~' = Ad(pjpy ') is invariant, which leads to the following corollary:

Corollary 3.7.11. The conservation laws for a difference frame may be written in the form

(S—id){V(I)Ad(py)} =0 (3.7.12)
where V(I) = (Vi --- VR) is an invariant row vector. Specifically,
V(I)=CL(S;25(1))Ad (pjpy ') - (3.7.13)

Corollary 3.7.14. On any solution of the invariantized Euler—Lagrange equations,

V(I)Ad(po) = c, (3.7.15)

for some constant row vector ¢ = (¢ -+ CR).

As the conservation laws depend only on the terms arising from Ay, they can be calculated
for all Lagrangians in the relevant invariance class, in terms of the E. (L), independently of

the precise form that the Lagrangian takes.

Example 3.7.16. In order to compute the conservation laws, the boundary terms coming

from performing Calculus of Variations need to be performed first. To do this we use (3.5.4).
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Doing the calculation (3.5.15) while keeping track of the terms in Ay we obtain

d

% L(n,k,SK) = to{Ez (L)} 0 + to{Ew(L)} 0" + (S — id) Ag

S_1{(k — 1B, (L)} o)

d) (
+ (S —id) (= S-1{3n(k — DEy(L) + k(k = DEL(L)} %)
id)

+ (Se (S—2{(k = 1)(k1 — DE(L)} o),
where
dk oL
Aw =g 51 (asn)
and
Ay =C00" +CV 0% +CLS(o™), (3.7.17)
where

Ca =S-1{(k — 1)’E,(L)},
Co = —S_1{3n(k — 1)E,(L) + k(k — 1)Ex(L)} +S_o{(rk — 1)(rk1 — 1)Ex(L)},

CL =S {(x ~ D(m ~ DEL(L)}.

For this example the Adjoint representation evaluated on the frame is

1 0 0
31’0 1
_ 0
Ad(po) = (u1 —ug)®  (u1 — )3
() 1
0
U1 — Uog U1 — Uo

and the invariantized form of the matriz of infinitesimals restricted to the variables xo and ug

of 3zg 1 0 010
(1)0(1) = =10 = .
of up 0 1 0 0 1

Therefore, by (3.7.5), the conservation laws are of the form (S —id)Ay = 0, where

18

Az =C2(0 1 0).Ad(po) +Co(0 0 1).Ad(po) + C;S{(0 0 1).Ad(po)}

= [C2(0 10) +C3(0 0 1) +C4(0 0 1) Ad(p1py )] Ad(po).
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Note that the last equality is written in the form (3.7.12). Taking into account that

1 0 0
o 3n 1
Ad(p1py ) = Ad(Ko) = wo(Ad(p1)) = (k—1)3 (k—1)3 0
1 1
K—1 0 k=1

it follows that Ay = V(I)Ad(po), where

S-1{(k—1)Ex(L)}
V({I) = S_1{(k—1)3E,(L)}
=S_1{3n(k—1)Ey(L) + (k—1)*Ex(L) } +S—2{(k—1)(k1—1)Ex(L)}

For the particular Lagrangian (3.3.13), the solutions (3.5.20), (3.5.21) of the invariantized

Euler-Lagrange equations yield

Vi=—3n1(ho1—1)"2 = “3ko (ki + kT 4 (k1 — kD) (20— 1) (=1)"] + Sks(—1)",
Vo = (kg —1)2 = 20 (3.7.18)

n+1

Vo= =3 [n(k=1)"2 4 n_y (51 =1)7%2] = —3koh{ """,

In the used coordinates, the first element of (S —id)Ay = 0 is the conservation law due to the
scaling invariance, the second is due to invariance under translation of x, and the third is due

to translation of u.

Corollary (3.7.11) can be used to write an alternate form of the Euler—Lagrange equations.
Equation (3.7.12) yields
SV(I)Ad(p1) = V(I)Ad(po)

and therefore

V(I) = SV(I)Ad(Ky). (3.7.19)

Corollary 3.7.20. If the components of V(I) are not all zero, the components of the vector

equation (3.7.19) are equivalent to the Euler—Lagrange equations.
Proof. Using (3.7.3) and (3.7.4) it follows that
0= (H'Ex(L)) - o+ (S —id)V(I).Ad(po)

from where the result follows. O
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Remark 3.7.21. There is another way to calculate the laws for difference frames. By
Corollary (3.7.11), one can use symbolic software to calculate the conservation laws in the
original variables, and then use the Replacement Rule (2.4.6), to obtain the invariantized first
integrals V(I) = 1p{Au(n, @)}

This follows from the fact that the Replacement Rule (2.4.6) sends pg to the identity matriz.
The recurrence formulae can then be used to write V(I) in terms of the generating invariants,
namely, the methods to solve for the extremals in the original variables, given in the next
section, can still be used without having to perform the more complex, invariantized summation

by parts computation.

Example 3.7.22. For our running example, the invariantized first integrals are

1. For ¢ =1 and ¢* = 0 we have the first integral

oL
Lo (S_laxl> =C1.

2. For ¢® =0 and ¢" = 1 we have the first integral

3. For ¢ = 3x and ¢" = u we have the first integral

oL
Lo <Sl au2> C3.

Note that c1,co and cg are constants of integration.

3.8 Solving for the original dependent variables uj, once the generating invariants are

known

In the one dimensional case the solutions ug to the original Euler-Lagrange equations, can
be obtained from the conservation laws once the invariant Euler—Lagrange equations have
been solved for the generating invariants k. The starting-point is that & is a known function
of n and some arbitrary constants, which are determined if initial data are specified. There
are three methods, depending on what it is known. The running example is used in order to

illustrate each method. Some applications will be shown in the next chapter.
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3.8.1 How to solve for uj from the invariants, knowing only the Maurer—

Cartan matrix.

This method can be used for any invariant difference system. Indeed, when the Adjoint

representation of the Lie group is trivial, it is the only available method.

Assume that the Maurer-Cartan matrix Ko = p1p, lis known in terms of the generating
invariants, so that it can be written in terms of n and some arbitary constants. This gives the

system of recurrence relations for pg

pP1 = KO,OO- (381)

Definition 3.8.2. The system (3.8.1) is known as the set of Maurer—Cartan equations for

the frame p.

Once the Maurer—Cartan equations for pg have been solved, uy can be obtained from

ug = pg " (po-ug) = py g (3.8.3)

where the invariant I, is known, either from the normalization equations or from the set of

generating invariants already determined.

Example 3.8.4. From equation (3.4.25), the Maurer-Cartan matriz is

(k —1)73 0 —n(k—1)73
Ko = 0 (k=11 —(k—1)"1
0 0 1

Setting A\, ar and by to be the parameter values for the group element py, the set of Maurer—

Cartan equations is

)\‘{f 0 a )\8 0 aop
0 /\1 bl = KO 0 )\0 bo
0 0 1 0O 0 1

This gives three recurrence relations for the group parameters:

A = (/i — 1)71)\0,
ar = (k—1)"3(ag—n), (3.8.5)
by = (H—l)_l (bo—l).
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Now suppose that the general solution of these recurrence relations is known. It follows that

zo = pyl(po-w0) = A 2(po-x0—ap) =—A; ao,

w = pyl(po-uo) = Ay (po-uo—bo) =—Ay'bo

where the normalization equations pg - xg = 0 and pg - ug = 0 have been used.

3.8.2 Solving for u; from the invariants and conservation laws when the

Adjoint representation is nontrivial

This method will be used when the Adjoint representation is not the identity representation.
Recall
V(I)Ad(po) =c (3.8.6)

where ¢ is a constant row vector. The components of V(I) depend only on &, and they are
therefore known functions of n. As Ad(g) is known in terms of the group parameters, equation
(3.8.6) yields equations for these parameters.

If the Adjoint action of the group on its Lie algebra is not transitive, the algebraic system
of equations for the parameters may be under-determined. To complete the solution, it is then
necessary to add the Maurer-Cartan equations (3.8.1) to this system. Even so, the algebraic
equations coming from the conservation laws can ease considerably the problem of solving the
Maurer—Cartan equations alone. Once pg is known as a function of n, Equation (3.8.3) yields

ug, as before.

Example 3.8.7. For the running example, (3.8.6) is

1 0 O
Vi Va V)| —3ag A3 0 | =(c1c2cs)
by 0 X

From the third column, \g = c3/V3. Therefore, a first integral of the Euler—Lagrange equations

18
Va ()

= . 3.8.8
(V5)3 ~ (c3)? ( )

The remaining equation is a linear expression for ag and by,
3apVa +boVs — Vi +¢1 = 0. (3.8.9)

If one of the second and third equations of (3.8.5) can be solved, (3.8.9) yields the remaining

parameter.
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3.8.3 Solving for u; from k from the conservation laws, and with a non-
trivial Adjoint representation of p which is known as a function of

Up

Consider the conservation laws V (I).Ad(pg) = ¢ and suppose that pp(u) is known as a function
of the dependent variables. Sometimes deriving explicit equations for u which are simple to

solve is possible.

Example 3.8.10. The conservation laws amount to

1 0 0
3.7,'0 1
(Vi Vo V3) (i —uol (1 — ) 0 = (c1 2 3). (3.8.11)
ug
0
U1 — Up Uy — uog

The first integral (3.8.8) is obtained once more and the simple recurrence relation from the
third column

uy — Uy = V},/Cg. (3.8.12)

Solving for ug, one can obtain xqy from the first column of (3.8.11).

For the Lagrangian (3.3.13), each V, is given (3.7.18) in terms of n and k;, i = 1,2,3.
The first integral (3.8.8) yields c3 = —3ks cé/g. Assuming that ko is nonzero and defining
ky = 051/3, the general solution of (3.8.12) is

wo = tka [2(ky+ky n + (ki =k ) (=1)" + ks
where kg is an arbitrary constant. Finally, the first column of (3.8.11) gives
_ 1.3 =n* 1 _1\n
m‘“%mh 2@(n+%y

where kg = c1/3 + ka(k1+ky ' +ks)/4 is the remaining arbitrary constant.



Applications for Finite Difference Noether’s

Conservation Laws

In this chapter, we present applications for difference moving frames and finite difference
Noether’s conservation laws for some particular Lie groups. We first show another use of
difference moving frames: to create symmetry-preserving numerical approximations. §4.1
illustrates this for the Euler elastica, which is invariant under the Euclidean group action in
R2. We extend the calculations appearing in Mansfield, R-E, Hydon and Peng, [74]. For this
example, we demonstrate how to obtain discrete invariants that have the correct continuum
limit to their smooth counterparts. The specific difference Lagrangian we consider is the
discrete analogue of that for Fuler’s elastica, and we show how our results compare with that
of the smooth case. We also show that the discrete Euler-Lagrange system is a variational
integrator that has the analogues of all three conservation laws. In §4.2, we consider a complex
Lie group, specifically the special unitary group in C?. We obtain a difference moving frame
in two ways and perform invariant Calculus of Variations using the latest one. Further, we
obtain the conservation laws and obtain the moving frame for the conjugate action. In §4.3,
we consider three different semisimple Lie group actions and we extend the computations in
Mansfield and R-E, [75]. We show how to solve the integration problem taking advantage of the
properties of these groups after obtaining the Euler—Lagrange equations and the conservation

laws for Lagrangians that are invariant under these Lie group actions.

85
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4.1 Study of the discrete Euler’s elastica

Let us consider the smooth variational problem commonly known as Euler’s elastica, namely

E:/n2ds, PR - ds = +/1+ u2dz, (4.1.1)

(1+u2)*?

where k is the FEuclidean curvature and s is the Euclidean arc length. This problem was

studied by Euler in 1744 [20] in which he obtains the Euler-Lagrange equation

1
Kss + §K3 =0,

and a first integral. For a mathematical history of the problem see Leiven, [66].

In this section, we study a discrete variational problem analogous to this one.

The aim is to design the discrete Lagrangian such that the discrete Euler—Lagrange
equations and the discrete conservation laws become the smooth Euler-Lagrange equations
and conservation laws when taking an appropriate continuum limit. This allows us to construct
a variational integrator whose discrete conservation laws approximate the smooth ones.

In the smooth cases, the conservation of energy is achieved when a Lagrangian is invariant
under translations in the independent variable. In order to obtain the difference analogue,
the independent variable needs to appear as a discrete dependent variable and the difference
Lagrangian needs to be invariant under translation in this dependent variable. In this way,
the conservation of energy in the smooth case becomes a conservation of a linear momentum

in the difference analogue.

Note: That our method works in general is an open conjecture. In order to evidence this

conjecture, we calculate all the relevant quantities in detail.

Review of the smooth Euler’s elastica

This example was studied by Gongalves and Mansfield in [34]. The Euclidean group of rotations

and translations in the plane acts on curves (x,u(z)) as

cos —sinf
— Ry + = , Ry = . (4.1.2)
sin @ cos b

8
&
Q
IS

N
IS
S
=4

For the normalization equations

IS
I
=
=41
I
=

Uy =0, (4.1.3)
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solving by the group parameters, we obtain the smooth moving frame

Ry —Ry
(4.1.4)

o)
I
IS

where Ry is the 2 by 2 rotation matrix with sinf = —u,//1 + u2 and cosf = 1/4/1 + u2.

One can compute the curvature matrix with respect to s which has this form

0 wr -1
1
~~—1 ~ ~—1
_ - _ 0 0 . 4.1.5
PspP Tt Jru%pxp R ( )
0O 0 O

It was shown in Gongalves and Mansfield, [34], and Mansfield [70] that the conservation laws
for the Lagrangian (4.1.1) are, in terms of the moving frame p derivatives with respect to the

arc length s, of the form

Ts Us TUg — UTg
(—I€2 —2/<&S 2%) —Ug Ts TTg+ Ulg = (61 (6] 63). (4.1.6)

0 0 1

Ad(p)

Remark 4.1.7. Note that in (4.1.6) we have used the convention (3.7.15) as appearing in

[74]
Using the identity 22 + u? = 1 in (4.1.6) we obtain

Ts —Us U

(=K% —2ks 26)=(c1 2 )| wy =z —z |- (4.1.8)

0 0 1
Using the same identity, from the first of second column, we have that
kY4 Ar? = 4 (4.1.9)

which gives a first integral for the Euler-Lagrange equation. Eliminating x4 from the first two

columns of (4.1.8) we obtain

1
Us = 55— (261/-43 — 02/@2) . (4.1.10)

]+ ¢
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Figure 4.1: Smooth moving frame and discrete moving frame for SE(2)

N AN

Yy Smooth Yy Discrete
Modern (w2, u2) e
(z,u(z)) (21, u1) .
9 \ to
.................... (1’07“0) L

(z-1,u-1)
m AN x AN
plz,u,uy) € SE(2) ’ po(xo, ug, 1, u0) € SE(2) ’

By solving (4.1.9), (4.1.10) and the third column of (4.1.8) in order to determine x, we obtain

the smooth solution in Figure (4.2) once the constants of integration ¢; and co are determined.

Discrete Euler’s elastica

We want to take a difference frame with matching normalization equations and to take the
discrete analogues of the curvature and the arc length. First, we consider the action of SE(2)
in the plane where the points u; have coordinates (x;,u;)

Zj €4 a Zj

> Ry + = 7| (4.1.11)
u; u; b j

<

We take the analogous normalization equations to (4.1.3) to be

po - xo =0, po - up =0, po - up =0.

Solving for the parameters of the Lie group, we obtain the moving frame

o
Ry, —Ry,

pPo = (27 9

using the standard representation (2.2) for n = 3. Note that Ry, is the 2 by 2 rotation matrix
that sends u; —ug to a row vector with a zero second component, so that sin 0y = —(u; —ug)/¢

and cosfy = (x1 — z¢) /¢, where £ = |u; — up.
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The Maurer-Cartan martix is of the form

r1 — X0
—1 Rh@ _R91 Rho _Rh@
Ko=pipg = u1 — U = 0 ,
0 1 0 1

where hg = 01 — 6y. Hence the generating invariants are hg and £.

In order to obtain the discrete analogues of curvature and arc length, we approximate

pzp ' by (P(x + ha) — p(2)) p 1 /he = (p(x + he)p~' —1d3) /ha, where Ids is the 3 by 3
identity matrix, and p(z + h,)p ! to be approximated by Ko when x = 2o and h, = 21 — 2.

One can observe that the component of the first row and second column of the matrix
Ky —Id is —sin hy and that, to first order in hy, the component of the first row and third

column of the matrix Ky — Id is —¢. Therefore, we can take the discrete analogue of ds to be

£ and the discrete analogue of k to be

Hence, we consider the variational problem
L= Z ¢t sin? hy,

which is the discrete analogue to (4.1.1).

It is possible to compute the evolution of the curvature invariants hg and ¢ without
computing the curvature matrices and the differential-difference syzygy as mentioned in
(3.4.2). One can differentiate the expression in the original variables of the invariants and then

use the Replacement Rule, 2.4.6. This is done as follows:

First of all, the evolution of ¢ is computed by taking the derivative of |u; —ug| with respect

to t, i,e

% . d\ul — u0|
dt dt
d 2 2
=% (1 —x0)? + (u1 — uo)
_ (1 —xo) (@ — 2p) + (w1 — uo)(uh — up)

[ug — uo|

. T
- IO,l;t - IO7O;t'

In order to compute the evolution of hy = 61 — 6y we first compute the evolution of
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0y and then we apply the forward difference operator (S — id) to the obtained result as
01 — 0o = (S —1id)fy. We make use of the expression of cosfy and sin 0y in terms of the original

variables.

We have, on one hand

d90 . Ul — Ug d90

£ o8O = —sin Oy =20 _ 4o
qe CO°Y0 T TR gy ¢ dt
and on the other hand
gCOS,H = Exl — %0
a0 T At
_xy - m—wodl
a V4 2 dt
_wh—ap w1 — mo (11 — xo) () — mp) + (ua — uo) (u) — up)
¢ 2 14
$,1 — xE) 1 2/ 1 / ! /
== — @l —20) (2} — ) + (21 — 20) (ur — uo)(wy — up)]
(1 — m0)% + (v1 —up)? (21 — m0)?
= (xll - .’E6) /3 - /3
1

B ?3[(331 —z0) (w1 — uo)(u) — up)]

_ (@) — @) (ur — uo)? — () — up) (w1 — @0) (u1 — uo)
£3

Therefore

at 2
_ I&O;t - I&l;t

dfo (2} — ) (u1 — uo) — (u) — up) (1 — o)

Hence
dhg . 150 — 151
o - 8id) <£ -

The next step is to write Iy 1, in terms of Ipo.;. We have that

ES x) x!

0,15 1 1 1

. = Ry, / = Ry, R(,1 Ry, = R_pp,S .
Io,l;t Uy Uy IO,O;t

T
IO,O;t

Therefore, the differential-difference syzygies are

0" = cos hg So® + sin hg Sc* — &%,

hy = (S —id) (¢ [sin hg So™ — cos hy So* + 0])
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where we have set o = ., and o = I§.,. These syzygies can be written in canonical form

as follows:
v o®
=H (4.1.12)
hy ol
where
cos hgS — id sin hyS

H =
(S —id)(¢~tsin hgS) —(S —id)(coshgS + id)

Using (3.5.11), the invariantized Euler-Lagrange equations are

{S_l(COS hg) S_1-— id}Ee(L) -+ {8_1(5_1 sin hg) (S_Q—S_l)} Ehe (L) =0,
{S_l(sin hg) S_l}Eg(L) + {gfl(s_l—id) —S_1 (Eil Ccos he) (S_Q_S_l)} Ehg (L) =0

where

L L
Ep, (L) = gha =("1sin(2hy),  Eu(L) = ‘27 = —("%sin? hy.

These equations are then solved for ¢ and hy. Using (3.5.4) the boundary terms can be written

in the form

AH = Cg I(:)E,O;t + CS I(I)L,O;t + C; S(Ig,();t) + C’i S(I&O;t)ﬂ
where

C? = S_y{coshgE,(L)— ¢~sinhgEp, (L) + ¢ sinhgS_1 (Ep, (L))},
Co = S_y{sinhgE¢(L)+ (S(¢7') 4+ ¢ tcoshg — € coshygS_1) Ep, (L)},
Ci = (lsinhyS_1{Ep (L)},

Cl = —t¢tcoshgS_1{Ep(L)}.

In order to obtain the conservation laws, we first need to compute the vector fields, the

matrix of infinitesimals and the Adjoint action. Recall the action (4.1.11). We have that

Ty = wgcosf — ugsinf + a, ug = xgsind + ug cos + b,

71 = z1cosf — uysinf + a, U1 = x1sin 6 + uy cosf + b.

Therefore the table of infinitesimals is given by

Zo Uuo T Uy
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Hence the infinitesimal vector fields are
Vg = —anxO + JanuO, Vg = 39507 Vy = 8%

and the matrix of infinitesimals and its invariantized form restricted to the variables zg and

ug are
1 0 w 1 00
®(ug) = ()=
0 1 —xo 010

Now we are going to calculate the Adjoint matrix. We have that

0 0@ 9 9wy 9 9 9% 9 duw 0

Org  Oxgdzo  OrgOuy’ ~ dug  Ougdzg  Aug g’

SO

_ | Oxzg Oz -
Vol om ow |V
8’&0 8’&0
and then . .
8U0 8UO
S 1 dug Oz
V= mon ouom | om0 om |V

aZEO 8uo 6900 auo _3760 87x0

so in our case we have that
- cosf) —sin0
\V4

sinf cosf

Now we can compute u0z — 200z We have that

uoOz; — 005 = (wosind + ugcosd +b) - (cos 00, — sin 0y, ) —
— (zocos@ —upsinf + a) - (sin 09,, + cos 00,,) =

= U0y, — Ty, + (bcosl — asin0)0y, + (—acosf — bsin 0)0,, .

Therefore
(vo %o % )=(vo va v )Ad(g(6,a,b))"

where
cosf@ —sinf b

Ad(g(0,a,b)) = | sind cosf —a
0 0 1

Applying the replacement (3.7.6), simplifying and collecting terms, the conservation laws
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r—
! y
121
-~ 7==¢II-||-
101
8-
P NP
6,
et B P
2
L ol X
-2 -1 0 1 2

® Discrete solution 1 + Discrete solution 2 Smooth solution

Figure 4.2: A plot of an extract of 847 points of the discrete solution for certain initial data
and an extract of 507 points of the discrete solution for a variation of the previous initial data.
This is compared with an accurate numerical solution of the third column of (4.1.8), (4.1.9)
and (4.1.10), and using a Fehlberg fourth-fifth order Runge-Kutta method with degree four
interpolant, with uniform step 0.1. The conservation laws are used in the solution in order to
match the initial data.

can be written in terms of the row vector of invariants as follows

Ry, JRp,ug 0 —1
(Vi Vo V3) = (c1 c2 ¢3), where J = (4.1.13)
0 1 1 0

and where

Vi = S_i1(cos hgE¢(L)) + {S—1 (¢! sinhg) (S—2 — S—1) } E, (L),
Vo = S_1(sinhgBe(L)) + {£71(S—1 —id) — S_1 (¢~ coshg) (S—2 — S_1)} En, (L),
Vs = —=5_1(Ep,(L)).

Using MAPLE , we solve the discrete Euler-Lagrange equations for the invariants as an

initial data problem. Note that from (4.1.13) we have that
(Vi V2)Ry, = (c1 ¢2). (4.1.14)

Taking transposes

Rg;(vl VQ)T = (01 CQ)T.

Therefore, multiplying by RQTO (Vi Va)' on the left hand side of (4.1.14) and (¢; ¢3)” on
the right hand side of (4.1.14), and taking into account that Ry, is in SO(2) so R(,TO = R(;O1 we
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16 17 18 19 20 21 22 23 24 25 16 17 18 19 20 21 22 23 24 25

Smooth solution ® Discrete solution I+ Discrete solution 2 Smooth solution

(a) (b)

® Discrete solution 1 + Discrete solution 2

Figure 4.3: Plots (a) and (b) magnify two regions of Figure 2.

have that
(V1)? + (12)? = (c1)® + (c2)?,

which gives a first integral of the discrete Euler-Lagrange equations.

It is possible to obtain the solution in terms of the original variables by using the methods
of §(3.8.2). The initial data give the values of the constants c;, o and c3. We have used these
constants and the initial values (xo,up) = (0,1) to obtain the initial data for the smooth
solution. The discrete equations require one more initial datum than the smooth equations,
so that more than one discrete solution will have the same constants and starting point, and
hence more than one discrete solution can approximate a given smooth solution. In Figure
(4.2), we compare two discrete solutions with different initial step sizes, both approximating

the single smooth solution.

More sophisticated methods to derive discrete Lagrangians using interpolation are also

being explored in Beffa and Mansfield, [5].

Even though this numerical method is not very efficient, it shows that one can get the

discrete conservation laws as close as desired to the smooth ones.
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4.2 Study of SU(2)

Consider the special unitary group

su@ =4 * " )iasec a+isr=1

_Ba

and the linear action on (zg, z1) given by

™
N
o
&

20 «

. = (4.2.1)
21 —ﬂ sl é'vl

o]

that can be easily extended to (zj,zj4+1) for j € N. We take the normalization equations to be
(%) = R(Z) = S(5) =0 (4.2:2)
which yields the following moving frame

1 20 21

PO = —F——
V ‘ZOP + ’21‘2 —Z1 20

The invariants are of the form

Io,; Zj 1 20%j + 21241

=po- BVIPAE S _
I J+1 Zj+1 ’20‘ + ‘Zl‘ Z20Zj+1 — 21%j
and the first order differential invariants are of the form

; ! o A
To,jt z; 1 2075+ Z1%4

. = po - / :4720‘2_’_‘21’2 — o

J

where we assume that z; = z;(¢) for all j in Z.

The Maurer—Cartan matrix is

1 0 Ipo 0 =
KO = Lo(pl) = Ii 7 — S SU(Q)
o2l \ —15, 0 —k 0
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I
where we have set x to be | 1072|’ and the curvature matrix
0,2
d 1 [ —iS(o,0: o
No =19 <dtp0> = (o) € s5u(2)
L —lo1e  iS(Loox)

where we have set Iy to be 1 and where we have denote the imaginary number /-1 by i.

Therefore using (3.4.33) we get

d K
—r =1i—(nS S(Ino-4).
"= (7S + 11)S(o,0:¢)

Also note that

0= VIl 1Al = \/R(20)2 + S(20)> + R(21)? + S(21)%

Therefore
g %(20)%(20) + 99(20)99(2’0)/ + %(21)%(21)/ + S(ZQ)%(ZQ),
dt VR(0)? + S(20)° + R21)* + S(21)
Using the Replacement Rule 2.4.6
d
—n = R(I|
3= Rlloox)
and therefore
1 0 R(1o.0:
d [ 7 _ ‘I{, (Lo,0;t) (4.2.3)
dt \ « 0 171(773 + M) S(1o,05t)

Note that a complex number z can be expressed in terms of its modulus r and its argument

0 as follows

z=re? =r(cosf + isinf)

where

R(z) = rcosh and S(z) = rsinf.

Therefore the normalization equations (4.2.2) yield
r~osin0~0 = ’I:iCOSQ~1 = ﬂsin9~1 =0.

We can take the normalization equations to be
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which yields the following moving frame

1 7.067190 1 e~ 101

PO = (55—
2.2 ~ ~
N R —r1ef pgeifo
The invariants are of the form

Iy ; Zj 1 To?‘jei(ajfao) + 7’17“j+1ei(9179j+1)

= Po - = —
2 .2 (6. . ,
lo,j+1 Zj+1 m rorj+1e‘(99+1+90) + Tlrjet(91+93+1)

and similarly, the first order differential invariants are of the form

3 / / i(9’.—00) / 1(91—9/- )
lojit — oo j (t) _ 1 T +ririge 3+l
/ V2 2 ’ i(0", 1 +060) 1 (0140, 1)
Io jt1:t zj+1(t) Ty + ] TOT; g€ It + rirje 341
Note that
;70 ;70
Io; = Ig,jello’j and Iy i = Ig,j;tedo’“

where we are denoting I j and Ig j the invariantized forms of 7; and 6; respectively and I} jit

and I§ ;. the invariantized forms of 7 and 0} respectively. The Maurer—Cartan matrix is

0 e 8.2 0 7
Ko = Lo(pl) = 70 = S SU(2)
—¢lt2 —r 0

. irf .
where we are setting 02 to be 7. The curvature matrix has the form

T
d _iIg70;t ;;’l;t
No = 1 (dtpo> = N, 2’0 € su(2).
- I{;"(; g 0.t
Therefore using (3.4.33) we get
d s 0
il it (id + S) 1 g.4-
Also note that
Ioo =15+ 17
Therefore
d rory + 7]

o) = .
dt 0,0 A /T(Q] + r%
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Using the Replacement Rule 2.4.6

d
alg,o(t) = 1§

and therefore denoting Ij; , by n we have the differential-difference syzygy

i n 1 0 I6,0;t
dt \ 7 0 ir(id+9) 100,

which has a simpler form than (4.2.3) which makes it more suitable for the Calculus of
Variations.

Consider the Lagrangian

Ln,7,T1,...,75] = Z:L(T7 Tly ey Try ) + A — 1).

Setting Ij) (., to be 0" and Ig,o;t to be ¢ and applying Calculus of Variations we have

d dy dLdr  dLdm dL dry

S =aSt S250 vy L

T A v T e el e VR e
— B ()9 429

dt Tt
= E,(L)ir(id + S)o? + \o”

— (i1 + 71S_1) E-(L)o? + Ao” + (S — id) (T,l(s,lET(L))ae) .
Therefore, the Euler-Lagrange equation is of the form
(it +7-1S_1)E(L)=0
and the boundary terms are of the form
(S —id) (T—l(s—lET(L))09> :

Hence

CY = 7_1(S_1E-(L)).

In order to compute the conservation laws, we first need to compute the matrix of infinitesimals
and the adjoint representation.

Recall the action (4.2.1). We have that

20 = azg + P, 71 = —Bz + az. (4.2.4)
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The table of infinitesimals is

20 21
a |z —=
B | = 0
B0 —z

Hence, the infinitesimal vector fields for this action are

Vo = 200z — 210z, Vg =210y, Vg=—200y.
Note that
0% 071 02p 021
SO

8Z0 = Oé@go — Bagl, (‘Ll = 6850 + 54651.
We also have from (4.2.4)

20 = azg — Bz, z1 = Bzo + az.

Therefore

Vo = 200, — 2104,
= (@2 — B21)(adz — B0z ) — (Bz0 + a21) (805 + adz)
= (aa — BB) (2005 — 2105) — 2082005 — 2082105
= (aq — BB)Va — 2a3V5 + 2a3v;,
vg = 210,
= (B20 + z1)(adz — B0z)
= af(205 — 210z) — B*2005 + o*2105

= afva + Vs + B3,

99
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VB = —Zoazl
= —(az — fz1)(B0g + adz)
= —apB(20z — 2105) + B*210z — & 200z

= —afvs + v + a’vy.

We have that the induced action on these are

(\7; \Z %)Z(va V3 VB)Ad(g)il

where
o g B
a faa—BB af —-apf
Ad(g) = 8| —208 o B (4.2.5)

2a B2 a?

™I

The invariantized form of the matrix of infinitesimals restricted to the variables zg and z1
is

a BB
Bo(I) = 20 (1 0 0)
z1 \0O 0 -1

and then the replacement required by (3.7.6) is given by
SkUZO — ( 1 0 O )Sk.Ad(,OQ) and Skdzl — ( 0 0 1 >Sk.Ad(p0)

where we have denoted I, by 0 and Ij,, by 0. However, in this case we are interested
in replacing o%. Note that
d d i,

—— 20 = | To€

o d
M 19076
dt dt +1rge 0-

dt

Therefore using the Replacement Rule 2.4.6 and taking into account that we are setting n to

be 1 because of the constraint imposed when performing Calculus of Variations we have that

0% = g™ 4 igh.
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Hence we can conclude that ¢% is the imaginary part of 0%, and therefore

% S(( 100 ) Ad(po)).
We obtain Noether’s Conservation Law in the form

k=71(SEAL)S((1 0 0 ) Ad(p)) (4.2.6)

where the vector k = (ki1, k2, k3) is a vector of constants and where

r3 —rl rorie@1=0)  _pqpyei®1+00)
Ad(po) = 5——= | —2rgriei(@tbo) rge 20 r2e= 20
To T
27,07,161(91 +6o) T%62191 1"862190

Explicitly, we have that the conservation law (4.2.6) is of the form

roT1

k= 7_1(8—1E7—(L))m
0 1

( 0 sin(6; —6o) —sin(f1 + o) ) .

Moving frame for the conjugate action of SU(2) on su(2)

There exists an isomorphism between the quaternions and SU(2) given by

a+b —cH+di
g=a+bi+c+dt < =g
c+di a-—0b

where

A+ 4+ +d =1
Note that the lie algebra su(2) is spanned by

0 i 0 1 i 0
i 0 -1 0 0 —i

and therefore an element of su(2) can be represented as

i:Uo Yo + iZo

—yo + 120 ixg
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Let us consider the conjugate action of SU(2) on su(2)
g gAg™t
where A € su(2). Therefore the action is given by

izg Yo +i20 ixg Yo + 120 _
o L =g ‘ . g L (4.2.7)
—Yo + 120 10 —yo + 120 120

Therefore, for all (xq, yo, 20) € R3 we have that

) Zo Zo
vo | CA] w [=] %
20 20 20

where €(A) is a rotation in SO(3) explicitly given by

a + b+ 2+ d? —2(ac + bd) 2(bc — ad)
2(ac — bd) a2 b —c2+d>  —2(ab+cd)
2(ad + bc) 2(ab — cd) a? — b +c? —d?

The homomorphism
¢:SU(2) — SO(3),
A C(A).

is known as the Caley map. Let us consider now the normalization equations

ie,
izg 0

0 —ixg

The action is nonlinear but one can easily linearise the equations in order to get the explicit

frame as follows

irg 0
gA = g. (4.2.8)
0 —ixg
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Solving for the parameters a, b, ¢, d after a lengthy computation, we can get the frame

iFet? FGe?
—FGe™ _—ife 1

o

where

(L5 + o) i 1
F=X _— G:w, I§o=1\/73+yo® + 2% and 6 = - arctan fal
J2IE 2(Ig + o) ’ 2 o)

and

T - (ST
a1 = z1(Ig g +wo)—yo(v+z1), a2 =y1(I5o+zo)—yolyo(v+a1), v = Ii), T = (20, Yo, 20)-
0,0

The method extends to all the Spin group actions. Examples of Spin groups are for
instance SU(n) or Sp(n) - see (2.1.4) for their description. Future work would include to find

applications to Spin group invariant Lagrangians appearing in quantum physics.

4.3 Study of SL(2) actions

In this section we show the finite difference analogue for the smooth variational problems with
an SL(2) and SL(2) x R? symmetry that were considered using moving frame techniques in

Gonalves and Mansfield, [32, 34| and Mansfield, |70].

4.3.1 The linear action of SL(2) in the plane

We consider the action of SL(2) on the prolongation space p*0 (R?), which has coordinates
(0, ¥o). This action is given by

b
"o — ¢ S I , ad —bc = 1. (4.3.1)

Yo c d Yo Yo

<

The infinitesimal vector fields and the adjoint action

For our calculations we need the adjoint representation of SL(2) relative to this group action.
1+ bc
P

From (4.3.1) we have that zo = axg + byo and Yo = cxo + dyg where d =
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Therefore the table of infinitesimals is of the form

[ %o Yo
a | o —Yo
b | yo 0
cl| O g

and the infinitesimal vector fields for this action are

Vg = anCC() - y08yov Vp = yoaxm Ve = ﬂfoayo-

Note that
_5566~ 8@70~ _8566~ 8370~
a360 - 8950 8360 + 81‘0 ayo7 ayo - ayo a900 + (9y0 8yo
SO

Do = adzs + O

o> Oy, = b0z + dOg;.

We also have from (4.3.1)
xo = dxg — byo, Yo = —cxo + ayo.
Therefore

Va = 200z, — Y00y,
= (dzo — byo)(adz; + cOg) — (—cxo + ayo) b0z + dOg)
= (ad + cb)(T00z — G0, ) + 2¢d00z, — 2abyiodss
= (ad + cb)v, — 2bavy, + 2cdvy,
vy = Y00z,
= (—cxo + ayo)(adz; + cOg;)
= —ac(To0z — H00g) — ¢200g + a*§o0z
= —acvg, + a*vy, — v,
Ve = 200y,
= (dzo — byo) (b0z; + dOg)
= bd(T00z — Y005 ) + d°To0z — b* o0

= bdv, — b*v}, + d*v..
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We have that the induced action on these are
(vo % % )=(va v v )Adlg)™

where

ol o 2 2| (4.3.2)

The discrete frame, the generating invariants and differential invariants and their

syzygies

We consider the normalization equations
To=1, Z1=79=0. (4.3.3)

Solving for a,b and ¢, we obtain the moving frame

CAR
po(zo,yo,x1,51) = | T T | €SL(2) (4.3.4)
—Y%  To

where we have set 7 = zoy; — z1y0. Then pr = Skpp gives the discrete moving frame (py).

The Maurer—Cartan matrix is

1
K =
Ky = Lo(pl) = T (435)
-7 0
where we have set xk = w.
T1Y2 — T2Y1

By (3.4.22) the algebra of invariants is generated by 7, x and their shifts.
We now consider x; = x(t), y; = y;(t) and we define some first order differential invariants
by setting

I’fyﬁt(t) = Pk l’; and Ig,],t(t) = Pk y;a (436)

i(t). We set the notation

d
where ', = &xj(t) and y;. =Y

J

o = I 04(t) and 0¥ = I7,(t). (4.3.7)

For our calculations, we need to know I§ 4 (t), I51,(t) and I§,,(t) in terms of ¢* and o¥.
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We have
I(Cil;t(t) :LJI
y - /
IO,l;t(t) Y1
) '
= pop; p1 ,
Yy
. (4.3.8)
4 [ SoF
= KO
So¥
_So?
= T
7So* + kSoY
Setting 7; = S;7 and k; = Sjx we have that
1%, (t Soo®
0,2,t( ) _ Ko_l(SKo_l) 2
Ig,Q;t(t) Seo?
ool K1 (4.3.9)
- - SQO-I
_ T T
-
KT1 KK1 — — SocY
71
The curvature matrix is of the form
d ot I(:)B,l;t(t)
Ny = 1o <p0) = T S 5[(2) (4310)
dt y -
—0 o

From (3.4.33), using (4.3.8) and (4.3.9) equating components and simplifying we obtain

d . z 1 T Y d o . x Y
ET k(id = S)o® + <T — 7_1282> a¥, o= T7(S +id)o” + kSo (4.3.11)
so that
d K o”®
el —H
dt T o¥
where
kid—8) L-Ts,
H = T . (4.3.12)
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The Euler—Lagrange equations and conservation laws

We now consider a Lagrangian of the form

Llz,y] = ZL(T,Tl, T By By e ey Ky
Using (3.5.11) , we have that the Euler-Lagrange equations are

0 = (id—=8S-1)kEx(L) + (id + S—1) TE-(L),
(4.3.13)

T

0 = S <QEH<L>>+1EH<L>+SlmET(L)).
7_1 T

To obtain the conservation laws we need only the boundary terms arising from E(L)H (o* O'y)T—

H*(E(L)) (6* o¥)'. Using (3.5.4) these boundary terms are (S — id)Ay where

Ay = C§o"+C{oY +C{So¥
= [-S_1 (KEx(L)) + S—1 (tE.(L))] o®
+ [S_l (KE, (L)) — S_s ;E*‘(L))] o (4.3.14)

-
_ T y
Sy (TQEH(L)> Sa¥,

1

where this defines C¥, C§ and CY.

To find the conservation laws, we first calculate the invariantized form of the matrix of

infinitesimals restricted to the variables xy and g

(I)()(I) — X (1 0 0)_
Yo 0 0 1
The replacement (3.7.4) is given by

Spo® ( 10 0 )SkAd(pO)

and

Spo? ( 00 1 )SkAd(pO)-

Since SAd(po) = Ad (Kop) Ad(po), after collecting terms and simplifying we obtain the Noether’s

Conservation Laws in the form
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k = [03(1 0 0)+Coy<o 0 1>+Ci’(o 0 1)«4d(K0)}-«4d(,00)

(4.3.15)
— V(1) Ad(po)
where
Toy1 + 1Yo  Yoy1  ToT
T 7'2 '7'2
Ad(po) = o P11 noo_n
2 2 2
—2x0Y0 —u3 3
and
-1 KT 0
1
Ad(Kp) = _2§ R
0 —72 0

and where C¥, C§ and C} are defined in Equation (4.3.14), the vector k = (ki, ko, k3) is a
vector of constants and where this equation defines V(I) = (Vi V§@ V). Explicitly, the

vector of invariants V(I) is of the form

T

V() =5 ( TE-(L) — kEx(L) Ex(L) KE;(L)—S_y (ﬁEK(L)> ) :

Recall that from (S—id)(V(I).Ad(pp)) = 0 we obtain the discrete Euler-Lagrange equations
in the form SV(I).Ad(p1py*) = V(I) which yields the equations

-1 kT 0
K 1

( ‘/01 V02 ‘/03 ) = ( V11 ]/'12 ‘/13 ) —2; K2 —= . (4.3.16)
0 -7 0

The general solution

Suppose that we can solve for the discrete frame (pg). Then taking into account that the

normalization equations for py are py - (zx,yr)” = (1,0)7 we have that

Tk ] 1 dk —bk 1 dk
Yk 0 —Cr  ag 0 —Ck;

We present the following Theorem:

Theorem 4.3.17. Given a solution (ki), (1) to the Euler—Lagrange equations, so that the
vector of invariants SgV(I) = (V;}' V2 V;3) appearing in the conservation laws are known

and satisfy V;2 # 0 for all k, (4.3.15), and that three constants k = (ki, ko, k)T satisfying
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ks(k? + 4koks) # 0 are given, then the general solution to the Euler—Lagrange equations, in

terms of (g, yg) s

Tk O 1 Hk: Q)\Ll 0 _ Co
= o) } Q™
Yk -1 0 0 II_ kG2, do

where here, cg and dg are two further arbitrary constants of integration,

ki — \/k? + 4dkoks ki + /KT + dkoks

Q= : (4.3.18)
ks ks

and where

1 1 Tl
A=V =k + dkoks, Aoy =V 4/ + dkoks, G= “ovE (4.3.19)

Proof. 1If we set

ag b()
PO = y (lodo — boCo =1 (4.3.20)
Co do

and write (4.3.15) in the form kAd(po) ™" = V(I) as three equations for {aq, by, co,do}, we

obtain
(aodo + boco)k1 + 2bodoks — 2agcoks =V,

codokr + dgks — cgka = Vi, (4.3.21)
—apbok1 — b%kg + a%kg = V03.
Computing a Gréebner basis associated to these equations, together with the equation agdy —

boco = 1, using the lexicographic ordering ks < ko < k1 < ¢g < by < ag, we obtain

k2 + dkoks — (V)? — 4V2VE =0, (4.3.22a)

ksc§ — kcodo — kadf + Vi =0, (4.3.22b)
200V — 2coks 4 (k1 — Vi )do = 0, (4.3.22c)
200V — co(kr + Vg') — 2kady = 0. (4.3.22d)

We note that (4.3.22a) is a first integral of the Euler-Lagrange equations, (4.3.22b) is a conic
equation for (cg,dy) while (4.3.22¢) and (4.3.22d) are linear for (ag,bp) in terms of (¢, dp).
We have

P1 Po

Il
S N
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where p; = Spg. Hence

C1 = —Tag, and d1 = —Tb().

Back-substituting for ag and by from (4.3.22c) and (4.3.22d) yields, assuming V§Z # 0

c — 10 k 2k c
Y=L v T ° . (4.3.23)
dq 2V0 0 1 2]€3 —kq d()

Now, setting

Co C1 —T 1 0 ]{31 2/€2
Co = , C1= , (== and Xo=V; +
do Cll 0 01 2]{33 —kl

equation (4.3.23) can be written as

C1 = C()X()Co. (4.3.24)

Diagonalising X we obtain Ag diagonal such that

. Ao 0
Ao =Q " XoQ =
0 M
where
A= Vg — B2+ dkoks  and A3 = Vi 4+ (/K3 + dkoks
and
Q= kl—\/k‘%—f—llkgkg k1+\/k%+4k2k¢3 (4325>
s ks '

Note that @) is a constant matrix. Therefore it is now simple to solve the recurrence relation.

From (4.3.24), supposing k3+/k} + 4kaks # 0 so Q! exists, we obtain

[T Gy 0 _
Ck+1 =@ =0 Q 'co

where here, cg is the initial data. Using the normalization equations

T ] 1 dk —bk 1 dk 0 1 Cl
Yk 0 —Cr ag 0 —Cp -1 0 dy,
the result follows. O

Remark 4.3.26. This proof does not make use of (4.3.22b). However, it is consistent with
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the second component of (4.3.16) as we show now. We have that (4.3.22b) can be written as

k ut
3 -y Co
< co do ) k1 2 = _Vo2
—— ko do
2
and therefore
k uz
3 -5 C1
( a dy ) W2 = (4.3.27)
) ko dy

Substituting (4.3.27) into (4.3.23) yields after simplification the equation

‘/12 — _7_2%3

as stated.

4.3.2 The SA(2) = SL(2) x R? linear action

A general element of the equi-affine group SA(2) = SL(2) x R?, is given by (g, , 3) where

g € SL(2) and «, B € R. The standard representation of this group is given by

a b «

(g7aaﬂ)'_> c d 5
0 0 1

We consider the equi-affine group action on P,(LO’O) (R2?) with coordinates (xg,yo) given by

(9,0, ) - (x0,90) = (To,%0) = (azo + byo + o, cxo + dyo + B), ad —bc=1. (4.3.28)

The infinitesimal vector fields and the Adjoint action

The table of infinitesimals for (4.3.28) is of the form

Lo Yo

a | o —Yo

b | yo 0
c| O T
1 0




112 Applications for Finite Difference Noether’s Conservation Laws

Therefore the infinitesimal vector fields are of the form
Vo =20, — Y0y, Vp=Y0z, Ve=2z0y, Vq =0, Vg=0,.

Note that
0T, O, 0T, O,
aJUo - 8560 a900 + &EO ayo’ 8yo - ayo 8£E0 + ayo ayov

SO

Oy = aa:;o + Cay~0, Oyy = bagro + d6y~0.

We also have from (4.3.1)

xo = dxg — byy — ad + Bb, Yo = —cxg + ayo — fa + ac.

Therefore

Va = 200z, — Y00y,
= (dzg — byo — ad + Bb)(adz; + cOy,) — (—cxo + ayo — Ba + ac) (b0 + ddy,)
= (ad + ¢b)(x00z; — Y00y, ) + 2cdroOy, — 2abyoOz;
— (a(ad + be) 4 2abB)0z; + (B(ad + be) — 2cda) Oy,

= (ad + cb)vgq — 2abvy, + 2cdv. — (a(ad + be) + 2abB) vy + (B(ad + be) — 2cda)vg,

Vb = Y00z,
= (—cxo + ayo — Pa + ac)(adz + cOy)
= —ac(T00z — YoOg,) — *To0g, + a*YoOss + alca — aB)0z + c(ca — aB) 0y

= —acvy + a*vy, — AV, + a(ca — af)va + c(ca — aB)vg,

Ve = ZCoayO
= (dzo — byo — ad + Bb) (b0 + dOy;)
= bd(200z — §00g,) + d*T00z — b*YoOss + b(BB — da) Oz + d(bB — aa) 0y,

= bdv, — b*Vy + d*V. + b(bB — da)vy + d(b3 — aa) v,
Vo = Oy, = a0z + cOpy = avy + cvg,

Vg = Oy, = b0z + dOg, + bvy + dvg.
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We have that the induced action on these vector fields is

(VNa Vy Ve Vg %)Z(Va Vy Ve Vg Vg)Ad(gﬂlaﬁ)il

where

a b c a f

a [ ad+ be cd —ab 0 0

b 2bd a2 ¥ 0 0

-1 _
Ad(ga «, B) - c —%2ac —62 a2 0 0 (4329)
ad + b6 Bd —ba d —b
—af —ac —cf awa —c a
and where
a b c a f
a ad + be —ac bd 0 0
b —2ab a? —b? 0 0
Ad(g, e, f) = o 2 2 0 0 (4.3.30)
—afad + be) +2abB  a(ca —aB) b —da) a b
Blad + bc) — 2cdae c(ca—aB) d(bB—da) ¢ d
Remark 4.3.31. We note that (4.3.30) can be written as
Ids
Ad _ AN L0 (4330
o + Idy 9
0 0 -1 1 0 O

where Idy and Ids are the 2 X 2 and 3 X 3 identity matrices respectively.

The discrete frame, the generating invariants and difference invariants and their

syzygies

We consider the normalization equations

To=yo=y1=22=0 and z3=0. (4.3.33)



114 Applications for Finite Difference Noether’s Conservation Laws
Solving for the group parameters a, b, ¢, d, @ and 8 we obtain the following standard matrix
representation of the moving frame

Y2 —Yo To— T2 T2Yo — ToY2
K K K

PO=1| yo—y1 T1—To ToYyi—T1Yo |-

0 0 1

where

K= (y1 —y2)xo+ (y2 — yo) 21 + (yo — y1) 22
is an invariant as kK = pg - Y2.

We define the discrete moving frame to be (pi) where pr = Sgpo. The Maurer—Cartan

matrix is
1+71
T —T
K
Ko=wlp)=| -x -1 & (4.3.34)
0 0 1

where k is given above, and

_ xo(yr —ys) +21(ys —yo) + 3o —y1) _ po-ys

z1(y2 —y3) + x2(yz — y1) + x3(y1 — y2) K1

where we have used the Replacement Rule 2.4.6, and where k; = Sgk. By (3.4.22) the algebra

of invariants is generated by 7, k and their shifts.

Computing the curvature matrix, we obtain

0" —I50,(t)

0" Iyt) P 0"
d
No = w <dtp0) =1 oY¥— Ig,l;t(t) IZ () — 0" —o¥ (4.3.35)
0 0 0

where we have set 0® == I, (t) and 0¥ = I ., (t).

To obtain pg - x; = I§ ;4(t), po - y; = Ié"j;t(t), j =1,2 in terms of o*, ¢¥, 7, k and their

shifts, we have, since the translation part of the group plays no role in the action on the
derivatives,
) ) So*
-1 -1
Ioxe=po| oy | =popr p1| v} | =K So¥
0 0 0
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and similarly

zh, zl, Soo”
Ioox=po| v | = popy tp1py p2 vy | = KoY SKY | Sqov
0 0 0

Finally from (3.4.33) and the relations above, we have the differential-difference syzygy in

reduced form

d [ 7 o’ Hii H
= - H , where H= e (4.3.36)

K o¥ Ho1r Hoo
with

K

Hii=—-7+ <1+ (1+T)>S+7'82_:2["@2(14'7'1)_“1] S3,
1

1+7 7(14+7
Hig = — + ( 1)82— 3 [/{27’2(14—7’1)—/{,1(1—1-7'2)] S3,
K K1 K{kK2 (4.3.37)

Ho1 = —k — KS + (TK1 — K)Sa,
1
Hoo = —1—(1+7)S+ <T7'1 — L +Tl)) Sa.

aat

The Euler—Lagrange equations and the conservation laws.

We consider a invariant Lagrangian of the form L(r,...,7s,K,...,ky). Then by (3.5.11) we

have that the Euler-Lagrange equations are

= HLEA(L) + H Bx(L),

0
(4.3.38)
0 = HLEA(L)+H5E(L)

where the H;; are given in Equation (4.3.37).

The boundary terms contributing to the conservation laws are

Ay = A'Hn (ET(L)a Ux) + A'H21 (EH(L)v Jw) + AH12 (ET(L)v Uy) + A'H22 (EH(L)7 Uy)

2 (4.3.39)
= CiSko™ + ClSpo?
k=0
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where this defines the Cf, C/. Explicitly

€ =S-1(1+ (14 L)) 4 S-2(EA(L) + oo~ Sy a1 47— ) ) Br(L)
1
+ S_1(—rEk(L)) + S_2((tk1 — k)Ex(L)),

C{ =S_1(7E-(L)) +S_2 (-l:%(liz(l +7— Iil)) E (L)) +S_1((tk1 — k)Ex(L)),

Cy =S (-I:%(@(l + 71— /<;1)> E; (L)),

cy :s_Q(T(l:lﬁ)ET(L)) + s_g(—ﬁ%’f62 (kama(1 — 71) — k1 (1 + 72))Er (L))
— S (1 +7)Ex(L)) +S_o(rm — H(l;ﬁ)En(L)),

cY :S_l(T(l:lTl)ET(L)) + s_g(—ﬁ%’j€2 (kama(1 — 71) — k1 (1 + 72))Ex (L))
+S 4 (rm — ﬁ(l;ﬁ)EH(L)),

CY =S (- H;@ (kama(1 = 71) — £1 (1 + 72))E-(L)).

(4.3.40)

To obtain the conservation laws we need the invariantized form of the matrix of infinitesimals

restricted to the variables xy and yq

and then using (3.7.6) the replacements required to obtain the conservation laws from Ay are

Sko” ( 00010 )Sk-Ad(PO), Spo? — ( 00001 )SkAd(po).

Hence, the conservation laws are given by (S —id)A = 0 where

a=[(0 0 0 1 0)(C+CrAd(KY) + CEAL(K(SK)))
+(0 0 0 0 1) (C+CIAd(K) + CLA(SKo) Ko)) | Ad(po) (4.3.41)
= V(I)Ad(po)
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and

o7 mo —2TT o

KR
Id, 0 —2r(l+7) 5 (4 )2 0 0

K K2
Ad(Ky) = k0 2% —K? 1 0 0

Id 1
e 0 —r ? 0 0 0 T :T

0 0 0 —x -1

This defines the vector of invariants, V(I) = (Vol, VE, V3, Vi, %5)T where the C7, C]Z-’ are
defined in Equation (4.3.39) and (4.3.40).

Therefore we can write the conservation laws in the form
k = V(I)Ad(po) (4.3.42)

where k = (kq, ko, k3, k4, k5) is a vector of constants and where

Ids 0

Ad(po) = Toy2 T *o e moun 0
K 1ds 0

ZT2Yo — ToY2
oY1 — 1Yo 0 - .

and

(2yo —y1 — y2)xo — (z1 + z2)yo + Yex1 +x2y1 (Yo — y2)(yo —y1)  (zo — x2)(x1 — x0)
K K K

2 2
Ad(g))‘po = Q(yo—yZQ(wo—M) % _WT;‘Q)
2(yo — y1) (w1 — z0) —(yo —1)* (o — x1)?
with
Y2 —Yo To — T2
. K K
g po

Yo—Y% Z1— 2o
We will show in the next section that a first integral of the Euler-Lagrange equations is given
by
kikaks + kok? — sk = VRVEVE + VE(VE)? — VE (V)™ (4.3.43)
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The general solution

Given the vector of invariants and the constants in the conservation laws (4.3.42) we now show

how to obtain the solution to the Euler-Lagrange equations in terms of the original variables.

Theorem 4.3.44. Suppose a solution (1), (ki) to the Euler-Lagrange equations (4.3.38), is
given, so that the vector of invariants (S V(I)) appearing in the conservation laws (4.3.41) is
known, and that V04V05 # 0. Suppose further that a vector of constants k = (ky, ko, ks, k4, k5)
satisfying kaks # 0 is given. Then the general solution to the Fuler—Lagrange equations, in

terms of (x, yx) is given by

Tk 0 —oudy + Biby
ue | =l 0 | =] cwcr—Brck (4.3.45)
1 1 1

where, setting p = kiksks + kgkig — k?gk‘z,

145 k4
a0 = ——1€0 + 1>
Vo' vy
by = _Voks ‘o kaks — Vo'V
Vitky Viky
ks V§
do = 2o+ -2
0 ks co + Ty’
o VDo (KekS ke + ) VE(VE)? — 2ptkaks VG
0 - 0 0
(Vika)” (Vitha)* Viohs
b (haks (V) — (ko2 kok? ) ViV + Kks (VR + 1))
(Vo'ka)™ Viks
bom o Vo (kokE thaki ¥ pr) KEVE — ka(V)?
TR KiksVy ’ G
(4.3.46)
and where

k—1 5 k-1 k-1 5
HZVQ Iile k‘4l€l
C — ( 1 ].> co — < 1 1 4 (4347)
(57 1o T1 (1)
where in this last equation, co s the initial datum, or constant of integration.

Proof. If we can solve for the discrete frame (py,)

ar b ay
Pe= | cr dr Br |-
0 O 1

then we have by the normalization equations (4.3.33) that (4.3.45) holds. We consider (4.3.42)
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as five equations for {ag, by, co, do, ag, Bo}, which can be written in the form

0 =(aodo + boco)k1 + 2bodoks — 2apcoks + (bBo + doa)ks — (aoBo + coag) — Vg
0 = — c2ks + cok1do — coksfo + kod3 + kadoks — Vi,

0 =adks — agbok1 + agksog — biks — boksog — Vg,

0 = — coks + kado — V',

0 :a0k5 — bok4 — V05.

Computing a Grobner basis associated to these equations with the lexicographic ordering
ko < k1 < ap < by < dy < Py < ap, we obtain the first integral noted in Equation (4.3.43),
and the expressions for ag, by, do, g and By in terms of ¢y given in (4.3.46), provided V!, Vi,
k4 and ks are all non zero.

From p; = Kypp we can obtain a recurrence equation for (c), specifically,

</@V05 > kar
c1=—kao—co= | —;y —1)co— —
Yo

where we have back substituted for a¢ from (4.3.46). This is linear and can be easily solved
to obtain the expression for ¢j given in (4.3.47). Substituting this into the shifts of (4.3.46)
yields (ag), (bg), (dr), (ax) and (Bx) and substituting these into (4.3.45) yields the desired

result. O

4.3.3 The SL(2) projective action

In this example, we study the SL(2) projective action acting on discrete variables given by

— arg+b
A d—be=1. 4.3.48
To =g - T P a C ( )

We show how to calculate the recurrence relations when the action is nonlinear. We detail
the calculations for a class of one-dimensional SL(2) Lagrangians, which are invariant under

(4.3.48).
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The Adjoint action

The infinitesimal vector fields for this action were previously computed in (2.15). They are of

the form

Vg =220y, Vp =0y, Ve=—120,. (4.3.49)

We have (see Example (2.2.6) for the full calculation) that the induced action on these are

(f/\; 7 \70>=(va vy VC>~Ad(9)71

where

a fad+bc —ac bd

c 2cd —c?  d?
which matches with (4.3.2) as expected.
The discrete frame, the generating invariants and their syzygies
We consider the normalization equations
—~ 1  __ — 1
o = 5, Tl = 0, o = —5. (4.3.51)

Solving these for the group parameters, together with ad — bc — 1, we find the moving frame

1 I

Vo — 12 2 2 (4.3.52)

PO = \/(1‘0 — 1'1)(1'1 — $2) To —2x1 +T9 ToT1 — 2x0x2 + T1T2
o — 12 To — 12

and we take pp = Sgpg.

The generating discrete invariants

The famous, historical invariant for this action, given four points, is the cross ratio,

o = oz Tl = 75) (4.3.53)

(20 — 3) (w2 — 21)

Using the Replacement Rule 2.4.6 we have that

1+ 213,

A Y
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The Maurer—Cartan matrix is then,

k—1 1
41% _6/4/“‘2
k—1

K() = Lo(pl) = (4354)

= N =

By (3.4.22), the discrete invariants are generated by x and its shifts.

We now show how to obtain the recurrence relations for this non-linear action.

The generating differential invariants

We now consider x; = z;(t) where t is an invariant parameter. In order to compute the
generating differential invariants we first need to compute the induced action on the derivatives

with respect to t of x;(t).

We have that

d(g - z]) ,
g- 2 dﬁ d(g - xj) dt _ (g ) = L
’ de d(g-t) d(g-t) dt 7 (exy +d)?
dt
Hence we have for
ar by
P =
cr  di
that
DV B
Pk (crwj + di)?
We define
' (@ — )

O"T = X = f— 4.3.55
3T POt (coxj +do)?  (mo— x2)(xo — 1) ( )

where ¢y and dy are given in (4.3.52). In terms of the o7, the curvature matrix is given by

] Log Lot ot
%:m<m>: 272 2 Y . (4.3.56)
dt 20§ — 407 +205 —-o05+ -0

2 2

We now obtain the recurrence relations for the o7. We have for all k and j that

"
ﬂl'jN
(Chj + di)?

/
Po - T

(a€|Pop0 CTj dk|ﬂo)2

/o
Pk T; =

PO



122 Applications for Finite Difference Noether’s Conservation Laws
Note that p, = prg~' due to the fact that the frames pj are equivariant. Hence

ak by ) _ . )
~ = pkpy ' = PPy 1Py = (ST Kp) -+ Ko.
Ck dk ]

In particular, we have

po - T 4K

So¥ =p1-2) = ((KoJaipo - 21+ (Kojaa)? = 10%" (4.3.57)
since pp - 1 = 0 and pg - ¢} = of. Next,
! —1
a7t = 2 s T SR~ (et (4999
where we have used the normalization equations, pg - 1 = 0 and pg - 9 = —1/2.
Similarly, one can prove that
So¥ = "34;1030. (4.3.59)

We can now calculate the differential difference syzygy. Calculating (3.4.33) and equating
components and using the syzygies (4.3.57), (4.3.57) and (4.3.59), we obtain

d k(k —1)k1 (ke — 1) k(k1 —1)
—K = Sso5 + ———=S905 — (k — 1)Sog — k(K — 1)o§
dt ko(k1 — 1) 890 K1 275~ )50 ( )% (4.3.60)

— x
= Hoy

where this defines the linear difference operator H.

The Euler—Lagrange equations and the conservation laws

We consider a Lagrangian of the form
Llz] =) L(k,k1,....5).
From (3.5.11) we have that the Euler-Lagrange equation is
0 =H*(Ex(L)) = S—3(aBx(L)) + S_2(BE.(L)) + S_1(YEx(L)) + 0E,(L)

where

g iz Dz =) g m =D 5o 1), (4.3.61)

ka(k1 — 1) K1
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In order to calculate the conservation law, we need the matrix of infinitesimals, which is

a b c

Dy = 2 (23:0 1 —x%)
and so its invariantized form

a b ¢

(1) = a1

—
|
=
N————

From (3.5.4) we have that the boundary terms are of the form

Ap(Ex(L), 05) = (S-3(vEx(L)) + S-2(BEx(L)) + S—1(aEx(L))) o5

+ (S-1(BEx(L)) + S—2(aBx(L))) S + S-1(aEx(L))S205.

(4.3.62)

Hence by (3.7.4) the conservation law is

k = (S_1(vEx(L)) + S—2(BE(L)) + S—1(aEx(L))) o(1)Ad(po)
+ (S—3(BEx(L)) + S—2(aEx(L))) ®o(I) (SAd(po)) (4.3.63)
+ S_1(aEx(L))®o(I) (S2.Ad(po)) -
Using
SAd(po) =Ad(p1) = Ad(Ko)Ad(po),
S2Ad(po) =Ad(S(Ko))Ad(Ko)Ad(po)

and collecting terms, we obtain the conservation law of the form

k = V(I)Ad(po) (4.3.64)

where this defines the vector V(I) = (Vi VZ V) and where

2 —zoT2 2x1 —T2—x0 x1(2zpx2—x1 (T0+2))
(zo—z1)(x1—22) 2(xo—z1)(x1—22) 2(380;961)(1‘1—962)
— (zo—z2)x To—1 7 (x2—x0)
Ad(po) 2($o—0:v1)(2m1ix2) 4(380—9601)(9021—@) 4($0i“71)($1_f”2)
2(x2—2x1+70)((x1—222)T0+T122) N (z2—2$1+x0)2 ((331—2.I2)1‘0+J31:E2)2

(xo—x2)(z0—21)(T1—22) (xo—x2)(zo—z1)(T1—22) (TO—22)(TO—21)(T1—22)
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Explicitly, V(I) is given by

1
VD= (11} JUSAOEL) + 5-a(BEA() + S 1(aBu(L)
+ (S—3(BEx(L)) + S—2(aEk(L)))Ad(Ko)
+S_1(aB, (L)) Ad(S(Ko))Ad(Ko) )
where
s 1 3k+1 k—1
—K,2—|I-£ 1 /izfl —/§I—€i- 1
Ad(EKo) = 4k 4k ) 16k
3+l (Bk+1) k—1
K (k— 1)k 4k
and where
(1—k1)k+r1+1 (1-3k1)x24+2(1—k1)k+1  (k1+1)(1—k)
. 2 2(k—1) 8
2
Ad(S(Ky))Ad(Ky) = . (Hl—li(ﬁ+1) (m;(ln)(—%rl) (Fv1+11)6(1—~)
(Br—1)K242(k—1)k1 —K—1 _ (k1(3r—1)—k—1)> (k—1)(k1+1)?
K1—1 (k1—1)(k—1) 4(k1—1)

The general solution

If we can solve for the discrete frame (py) then we have

1 di, —2b
—1 k k 65
-17 b ‘) N —_— 4. .
k k 2 2ak — Ck ( 3 )

: 1. . .
since py, - T = 5 is the normalization equation.

Recall that the Adjoint representation in this example matches the one for (4.3.1) as is the
adjoint representation of the same Lie group. Therefore we make use of the simplification of
the algebraic equations for the group parameters in (4.3.21). However, the Maurer—Cartan
matrix is different, and so the recurrence relations needed to compute the solution are different.
Nevertheless, we again find that the remaining recurrence relations are diagonalisable, and are

therefore easily solved.

We again have equations (4.3.22a)—(4.3.22d), where now the Vj are those of equation
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(4.3.64). Recall that these equations are of the form,

k2 + dkoks — (V) — AV2VP = 0, (4.3.66a

ksck — kycody — kod% 4+ VE =0, (4.3.66b
260V — 2coks + (k1 — Vi )do = 0, (4.3.66¢
2a0VE — co(k1 + Vi) — 2kady = 0. (4.3.66d

The recurrence relation is p; = Kopg, explicitly:

a1 b k—1 1
- 4k _6/43"‘2
k—1

ag by

=N =

c1 dp co do

Therefore

k—1 6k + 2 k—1 6k + 2
DTN T4 < ,'-£—1a0+60>7 ! 4k < r_1 0t 0)

Using these to eliminate ag and by from (4.3.66¢) and (4.3.66d), leads to the linear system,

C1 Co

= QAoQ!
dq do

where () is a constant matrix

1 [ pt+k p—Fk

Q=5
H 2ks —2k3
and Ag = (A}, \2) where
1
A= —Br+1) (p+ V) + (k= 1)VP),
0 2@\/%%2((& )(M 0) (K; )O)
1
A = 3c4+1) (u—Vg) + (k — DVE
0 2@\/%%2(( K+ )(N O) (K )0)
where we have set
W= \/k:% + 4koks.
We have then that
| =) A 0 co

dk 0 Hf;ol >‘12 do

—_  — =
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where in this last, ¢y and dy are the initial data and A\, = Sk)\é.

Substituting these into the kth shifts of (4.3.66¢) and (4.3.66d), specifically,

20, V2 — 2cpks + (ky — ViHdy = 0, (4.3.67a)

201 V2 — cp(k1 + Vi) — 2kody = 0 (4.3.67b)

yields the expressions for a; and by needed to obtain, finally, xj given in (4.3.65).



Commuting Flows on the Curvature Invariants

In this chapter, we first show how to construct the correction matrix in the discrete case. We
also compare the evolutions on the Lie group and on the Lie algebra in the smooth framework
with the discrete one and we prove that the relationship between a flow and its induced
curvature flow is in terms of a linear shift operator depending only on curvature invariants. We
analyse the condition for discrete curve evolutions to commute in terms of a discrete moving
frame and give an alternate proof of Theorem 11 in Mansfield and Van der Kamp, [73] for
the smooth case and prove the theorem for the discrete case. We use a very simple Lie group
action as a running example. Finally, we exhibit an example in order to illustrate the theory

developed in this chapter and relate this examples to discrete integrable systems.

5.1 Introduction

Discrete moving frames have been proven useful for the study of discrete integrable systems,
which arise as analogues of curvature flows for polygon evolutions in homogeneous spaces (see
Beffa and Wang, [6]). Most integrable systems have a natural discretization that preserves the
integrability features, described by difference equations. For instance, the Toda Lattice (see

Toda, [105])
dPu,

T exp(us—1 — Us) — exp(us — Ust1) (5.1.1)

and the Volterra Lattice (see Manakov, [68])

d?qs
ai2

= QS(qS+1 - q371) (5.1.2)

are the most famous discretizations of the well known Korteweg-de Vries (KdV) equation

Ut + Ugpgy — O6uu,; = 0.

127
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Using Flaschka coordinates (see Flaschka, [28], [29])

dug

s = ﬁ’ Ps = eXp(us - Us-i-l)

equation (5.1.1) can be re-written of the form

dgs
dt

dps
dt

= ps(qs — Gs+1), = Ps—1 — Ds

which is a complete discrete integrable system (see Flaschka, [28],[29], and Manakov, [68]).

Further, there exists a relationship between equation (5.1.2) and

dps

2
dt = pS (p8+1 - pS*I)

by the Miura transformation ¢s = psps—1 which is an integrable discretization of the modified
KdV equation

Ut + Ugpr + 60u2ux =0, o= =+1.

In this chapter we understand integrability as the existence of an infinite set of commuting
evolutions. Our results inform the discussion on when discrete equivariant flows and their

invariantization are both integrable as is commonly observed.

The smooth case was previously studied in Mansfield and van de Kamp, [73] where a
method that provides the evolution equation for the curvature invariants of a curve as in (2.59)
is presented. It is shown that it derives from a syzygy between sets of invariants. For instance,

in the case of the linear action of SL(2) on (z,u), the syzygy (2.58) has the form

D,Q" — D,Q" = —2L,Q" + [Q", Q"]

provides the relation

Dik = (D? — 4k)1;.

The study in Mansfield and Van der Kamp, [73]| further makes a comparison between the
symmetry condition of the curve evolutions and the curvature evolutions. Given two invariant
curve evolutions it is shown that the symmetry condition for curvature evolutions to commute
appears as a differential consequence of the syzygy between different evolution invariants. For

the same example, it can be verified that

Dy(D? — 4k)I; — Dy(D? — 4k)I, = (D2 — 4k)(DsFy[k] — DiFy[k))
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where

I; = F4[k] and I = Fy[K]

are constraints imposed in order to describe the curve moving in different time directions.

In this chapter we derive the discrete analogue of the results appearing in Mansfield and
Van der Kamp, [73] and show that the condition for two curvature evolution to commute is a
differential consequence of the condition for two curve evolutions to commute.

In §5.2, we present our running example in both smooth and discrete formats. In §5.3, we
explore the invariant differentiation, we present the correction terms and the correction matrix
for the discrete case and prove their construction. In §5.4, we compare the evolutions on the
Lie algebra and the evolutions on the Lie group in the continuous and in the discrete case, as
well as the differential syzygy (2.58) with the differential-difference syzygy (3.4.33). We also
present one of the main theorems of this chapter regarding the reduced form of the differential
— difference syzygy. In §5.5, we show that the condition for two curvature evolution to commute
is a differential consequence of the condition for two curve evolutions to commute. In §5.7,
we illustrate the theory using the SL(2) linear action and we relate it to discrete integrable

systems.

5.2 Presentation of our running example: linear transforma-

tions

We first introduce the linear transformations group action in the continuous and discrete case,

which will be our running example throughout the chapter.

5.2.1 The smooth case

Example 5.2.1. Consider the group of linear transformations acting on curves (z,u(x)) such
that

T —r =1, u— Au+e=1.

Since x is invariant, the prolongation action is simple to calculate. We obtain
uy = Auy

where J 1is the index of differentiation.

Let us take the cross section K to be the coordinate plane u = 0 and u, = 1. Thus the
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normalization equations are

=0, G, =1 (5.2.2)

Solving equations (5.2.2) in terms of u, U, ... yields

P
Uy Uy

In matriz form, the frame is obtained by substituting the values of the parameters on the frame
into a matrix representation of the generic group element. For a standard representation of

the group of linear transformations

g = (5.2.3)
0 1
we obtain
1w
p = um U’I
0 1
Note that
1 u 1 7)\u + € i u 1 €
p(Uug) = Uz Uz | = | Ma Ay — | ua Uy A A = p(u,ug)g
0 1 0 1 0 1 0 1

which is the equivariance of a right frame for a left action.

For the linear transformation group (5.2.1) the invariants are of the form

u
Ww)=p-u=0, (u)=p-ug=1,  lug)=p-u;=-".

€T

5.2.2 The discrete case

Example 5.2.4. Consider the group G of linear transformations and its action on the pro-
longation space P,SO) (R) with coordinate ug. On this prolongation space, the action is given
by

ug — A\ug + € = Uup. (5.2.5)

Taking the normalization equations ug = 0, uy = 1, and solving for the parameters \ and €

yields the following moving frame

po = up —uU1r  Up — U1
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where the solutions for A\ and € have been substituted into (5.2.3). The invariants are of the

form
Ui — U
I§o=po-uw=0, Ify=po-uw=1, I§;=po-uj=-—"—".
0,0 = PO " Uo 0,1 = Po - U1 04 — PO Uj w1 — ug
The Maurer-Cartan matrix is
1 Ul 1 1
B C1-I¢, 1-]¢ —ROR
Ko = 1o U — Uy UL — U — 0,2 0,2 = ed
0 1 0 1 0 1

where we have set k to be

TR Suppose now that u; = u;(t). The first order differential
10,2

mwvariants are of the form

1 uo
_ o
[ [ uUg — U Ug — U J — J
Io,j;t = po - u] = 0 1 0 1 = .
0 1 0 U1 — Up

For the next calculation we need the invariant Iy, expressed in terms of 1§y, which we will

denote oy from now on. We have that

/ -1 /
Soy = p1-uy = pipopy - uy = Kolgyy = =kl

So
and therefore 1§ 1., = -
bt ) /{

The curvature matriz is

uy —uy  ug(uo — ur) — ug (up — uf)

Not =1 [ (vo— up)? (up — u1)?
0 0

_ [ 6o = 81 LG (5.2.6)

0 0

SO’t

o+ — —0¢
= K €g
0 0

where g is the Lie algebra of G.
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5.3 Invariant differentiation

In this section we introduce the discrete analogue of §2.4.2. In the continuous case (definition
4.5.3, [70]) a set of distinguished invariant operators is defined by evaluating the transformed
total differential operators of the frame. In the discrete case, the total derivative with respect

to t plays the role of the linear derivations. We have

d d
D = D = —_—= — A
t Pt dtlg=p
Recall from (3.4.2) and (3.4.27)
I j = pr - 25 and Ij it = pre - z;

and from (3.4.28) recall that the invariantization and derivation do not commute, i.e,

d d [ d _ ~
@i g (‘) 7 <dt> o =

where Iy, j = I}, ;(t) and Iy, j,; = Iy, j.+(t). We define the time-correction terms My, ;. by

= Ik,j;t
9=pk

d
Elk’j = My .t + Ij j. (5.3.1)

Note that differentiating I, ; = pj, - z; with respect to ¢t and using (3.4.27) and (2.4.6) we

obtain

d d

= — .
dt k,j dt (pk Z])

d d
= (M) AN <dtzj)
d . . d d
= (dtpk> Pr Pk Zj + PPy Pk - (dtzj> =Lk (((ﬂpk) -Zj> + Ig jit-

d
Isolating ¢ <<dt'0k> . zj> we obtain the expression for Mj, ;..
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Example 5.3.2. The correction terms are of the form

d
Mo j.t = o (((ﬁﬁ’o) uj)

up —uy  up(ug —wr) — ug (up — uj)
U
=1 (up — u1)? (up — uy)? J
0 0 1
(uj — o) (up — uy) + up(uo — u1)
=l (UO — U1)2
0
0
For instance, the correction terms Moo.x and Mo 1,c are of the form
MO,O;t = —O0¢ and M071;t == 71(1)11;15 (533)

as expected. Note that we have ignored the last component of the vector.

Proposition 5.3.4. Assuming that t is the only smooth parameter and that the normalization

equations do not involve t, there exist a 1 x R correction row K = {K;} where l = 1,..., R such

that
R
My g =Y Kin ju (5.3.5)
where
o1,
Phjil = U <8al> ~ (5.3.6)
Proof. By definition we have that
Ik,jZPk'ijg'Zj’ z%‘ :
9=pk 9=pk

Note that we can write z; as a function depending on the variables z,, and the group parameters

al. We set zj = fj(zm,a'). Therefore

I = fi(zmsa)|

9=pk
Hence

d dfj(zm, a!

(3f] Zm,al) da'
TR AT ‘gp,ﬁz S Eg: vﬂ*z‘f’kvﬂdupk
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Setting
=K (5.3.7)

we obtain the required result. ]

The correction row K with respect to the moving frame p; can be calculated without
explicit knowledge of the frame as follows: Suppose the ¥ ordered variables appearing in the
normalization equations are (j, where j = 1,...,9. The row T = {T}} is the invariant 1 x ¢

matrix

7= (560). (55.8)

b = {(I)jl} = Uk (gfﬁ)

the R x 1 matrix of invariant generators. Let ¥x, A = 1,..., R be the normalization equations,

We denote

the matrix J = {J;,} is the invariant ¥ x R matrix such that

Jj)\ = Lk <aaiﬁ)\> . (5.3.9)
J

Theorem 5.3.10. The correction matrix which provides the error terms in the process of

invariant differentiation in (5.3.5) is given by
K=-TJ(®J) ' (5.3.11)
Proof. Recall that the normalization equations are of the form
Ya(g - zm) =0, for A=1,..,R. (5.3.12)

They depend on the variables z,,, but also depend on the parameters of the group a!. Therefore,
we can rewrite the normalization equations of the form Wy((j, a') =0, where A\ = 1,...,R
and where we have denoted the variables appearing in the normalization equations by ¢ .
Differentiating this equation with respect to t we obtain

. de 8\1’)\ dal 8\11,\
O—Ej: 3t aC +§l: ST (5.3.13)

Now, from (5.3.12)
Oin _ 9g-2m O
dal dal Og -z

(5.3.14)

Taking into account that 1 (g - 2m) = WA((j, a'), substituting (5.3.14) into (5.3.13) and using
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the invariantizing operator ¢

0=TJ +K(®J).

Isolating K we obtain the required result. O

Example 5.3.15. The variables appearing in the normalization equations (5.2.2) are ug and
uy. Therefore,

Cl = Up and Cg = Uui.

Thus ¥ = 2. Note that as the group action depends on two paramenters we have that R = 2.

d d
T = ( Lo <dt<l> Lo <dtC2> ) = < Lo I§ )

The matriz of invariant generators has the form

Hence,

P — 0 8&1 0 8&2 B LO(UO) 1 . 0 1
- 06 06 Ny 1)\ 11
‘0 8@1 ‘0 8&2
where a1 = X and ag = € and finally
J— oG 9¢2 (10
81/12 aQ;Z)Q 0 1

LOTQ LOT@

Therefore
K= —TJ(‘I’J)_l = ( 150 = Lo — ooy ) )

Thus the correction terms can be calculated as follow

Mooz = Kidoon + Kadooz = (I5oy — I1,) -0+ (—150y) - 1 = —oy,

"y

Mo = Kidon + Kagoiz = Igos — I514) - 1+ (—150e) 1= =151,

that match with those ones calculated before in (5.3.3).

Theorem 5.3.16. The curvature matrixz can also be given by
Ny =Y Kq, (5.3.17)
!

where {a;}, j = 1,...,dim(g) is the basis of the Lie algebra g of the group G.



136 Commuting Flows on the Curvature Invariants

Proof. On one hand we have

o],

d
qGm)| = geeele Zm)‘g,

On the other hand

- ’
Zm
dt a’ 9=pk

8pkda .
= Kia.
Z Bl gy, = 2
Jj=1
O

Example 5.3.18. The Lie algebra of the Lie group of linear transformations is spanned by

the basis

1 0 01
ap = ) ag =
0 0 0 0

Therefore the curvature matriz can be computed as follows:

10 01
N() = Kl + K2
0 0 0
" 1
= (Io,o it Io 1; t
0
_ I&O;t - I&l;t _I&O;t
0 0

Note that this matches the matriz obtained in (5.2.6).

Remark 5.3.19. [t is important to note that the order of the elements of the Lie algebra
have to match the order of the infinitesimal vector fields in the sense that the Lie bracket

multiplication for the —a; is the same as the bracket multiplication for the infinitesimal vector

fields (see Remark 5.2.5 in Mansfield, [70]).

5.4 Evolutions on the Lie group and on the Lie algebra

In the smooth case, the evolution of the curvature invariants is easily understood in terms
of an evolution on the Lie algebra, (see Section 3 in Mansfield and Van der Kamp, [73]).

Considering the 1 + 1 dimensional case (z,t) — z(x,t), the maps

2 Q¥ = (Dap(2))p(2) ™", e Q' = (Dep(2))p(2) ™ (5.4.1)

are curves in the Lie algebra g of G.
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In the discrete case, discrete curves evolve in the space by the shift operator and inducing
a path which allow us to differentiate with respect to the invariant ¢ the discrete curves evolve
in the time (see (3.4.2)). In the discrete case Ny plays the role of @', and while both of them
are in the Lie algebra, K} playing the role of Q7 is in the group while Q) is in the algebra.
Therefore, discrete curves evolve in the space in the group and not in the algebra, while the
smooth curves evolve in the space in the algebra. Recall that Q% and Q' satisfy the syzygy
(2.58). We can say that the analogue discrete to (2.58) is (3.4.33).

Remark 5.4.2. Recall (3.4.33)

d
3750 = (SNo) Ko — KoNo.

Note that multiplying both sides by KO_1

d
<dtK0> Kyt = (SNo) — KoNoKj* = (S — Adk,(No))No

we obtain an element in g where Ad is the left Adjoint action.

Theorem 5.4.3. If the normalization equations do not involve time-derivative invariants then

it s always possible to rewrite the syzygy (3.4.33)

d
o= (SNo)Ko — KoNo

in its reduced form (3.4.29)

d
a&z?—la

where H is an invariant linear shift operator involving curvature invariants only.

Proof. On the left hand side the entries of K are the curvature invariants, so the entries of
d d
&KO are the derivatives of the curvature invariants, which are the components of an. On the

right hand side, the entries of Ny will depend on the components of oy = Iy 0., Io,1:t, ---, Lo,j:t-
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Notice that we can always write

/
Tojit = po - 2

= popy ' p1 - 7
=K;'p1- Z

=Ky 'pip2tpa- Z

= Ky 'S(popr Np2 - 2}
= K, (SK; )ps - Z

= K; ' (SKq ') (S2 Ky 1) (Sj-1Kq )pj - 2]

0o
= Ky ' (SKq ") (S2K5 ). (Sj-1Kq )S;(po - 0) = Por,

where P is the invariant linear shift operator matrix of the form
Ko H(SKy 1)(S2Kq ). (-1 K5 )S;

involving curvature invariants only. Therefore, we can write every entry of Ny and SNy as
linear combinations of Pjo;. Therefore, as the entries of Ky are the curvature invariants, by

equating components and reorganising we can write
d o B
a:‘ﬂ?a = Z P] Oy -
B

Hence

ali = Ho't

where H is an invariant matrix shift operator involving curvature invariants only of the form

H = {H}ap = {P}"7}. O

In (5.4.1) we define the curvature matrices with respect to the parameters = and ¢. In the

case that D, = D, and D; = D; we have that

DQ" — DyQ" = DyDy(p)p~! — Da(p)p ' Di(p)p" — DiDu(p)p "

+Dy(p)p Dalp)p™ = [Q", Q]

where we have used the fact that

[D,, D] = 0.

Hence we have the following syzygy

D:Q" = D, Q" + [Q", Q"] (5.4.4)
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This syzygy along with (3.4.33) motivate the following definitions:
Definition 5.4.5. Let us define the F operator acting on g as
Foi = Di —adgi (5.4.6)
where ad is given by (2.18).
Definition 5.4.7. We define the discrete F2 operator acting on G as
FR, = (S —id)No + ady,. (5.4.8)
Note that for i = z applying (5.4.6) to Q' we obtain
Fou(Q") = Du(Q") + [Q, Q7]
and that applying (5.4.8) to Ky we obtain
Fr, (Ko) = (SNo)Ko — KoNo.

Remark 5.4.9. [t follows from (5.4.6), (5.4.8) and (5.4.3) that given an expression of the

form

C = F3(B)

where A € g and B € G, after equating components we can always get an expression of the

form

C(oy,05) = Ha.

where a is is a vector containing the components of A, H is the linear shift operator appearing
in (5.4.3) depending on the components of B and their shifts. In the smooth case, it follows
from Remark 10 in Mansfield and Van der Kamp, [73] that given an expression of the form

C = Fa(B)
where A, B € g, after equating components we can always get an expression of the form
C(oy,05) = Ha

where H is a linear differential operator.
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Example 5.4.10. Using the syzygy (5.4.4) we can write the evolution of the curvature invari-

ants k in terms of the evolution invariant oy as follows

S
Ky = KS’Q:t + (k — 1) Sot — K oy

Therefore there exists a linear shift operator H such that

ke = Hoy (5.4.11)
where
kS
H= S +(k—1)S—k.

5.5 Lifting integrability

Following the theory developed in Mansfield and Van der Kamp, [73], in this section we answer
the question whether integrability of a curvature evolution does lift to the motion of its curve in
the discrete case. We also understand integrability as existence of infinitely many generalized
symmetries and we prove in the discrete framework that a symmetry of the curvature evolution
gives rise to a symmetry of the curve evolution. Suppose now that z; = z;(s,t) for all j in Z.

The lowest order syzygy between time derivatives of evolution variables is

d 0 d
a%ZO(S,t) - —S—ZO(s,t) = 0. (5.5.1)

Given two evolutions of the discrete curve

3} 0
azo(s,t) = Py[20] and %zg(s,t) = Py[20]

where [zp] denotes the dependence of zy and its shifts, we say that the curve evolutions

commute if

) 0
<atPS[ZO]> ‘gtzo(s,t) = P[] B <a‘9Pt[ZO]> %20(5775) = Pu[20] -

We will call this condition the symmetry condition. Now let us consider curve evolutions
that are invariant under a group action. The lowest order syzygy involving invariant time

derivatives of the fundamental evolution invariants is

0 0
Og — —0¢ + MO;s,O;t - MO;t,O;s =0, (5-5'2)

Clow,0s) = ot Os
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where

0 0
ot = It = po - azo(syt) and os = 1Ip0.s = po- %Zo(sﬂf)

and where

0 0 0 0
MO;t,O;s = &PO <8SZ0(37t)> and MO;t,O;s = %/}O <87§ZO(37t)> .
Further, we will call (5.5.2) fundamental syzygy.

Example 5.5.3. The correction terms are of the form

0150

0 0
Mo.s,0.6 = to (aspo (muo(&t)>> = 0105 + o

Analogously

0s50¢
MO;t,O;s =050t + P

Therefore the fundamental syzygy is

C<at705) = go- _ go_t UtSUS _ @

ot °  Os K K

= 0.
Now suppose that two invariant evolution of a curve are given by
or = Fy[K] and os = Fi[k] (5.5.4)

where [k] denotes the dependence of the curvature invariants and their shifts. Recall that

under the conditions of (5.4.3) we have

g,‘i = Hoy and glﬁl = Hos.

ot Js

Therefore using (5.5.4) we have

0 0
aH:HFt and %K/:HFS.

The invariant symmetry condition is given by

0 0
<8tFS> ’ d - <8Ft> ‘ d + (MO;S 0;t — MO;t,O;s) .
&FL = HFt s dsH = HFS ot=Ft,0s=Fs

In other words

C(oy,05) =0.

ot=Ft,05s=F}s
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Remark 5.5.5. When the action of the Lie group neither depends nor acts on the variables t
and s and no evolution variables appear in the normalization equations, the identities (5.5.1)

and (5.5.2) are related by

0 0 0 0 0 0
Lo <at8820(8,t) - &SatZo(S,t)) = aas - %Ut + MO;S,O;t - MO;t,O;s- (5'5'6)

Consider for the smooth case the curvature matrices with respect to the parameters s and
t. From (5.4) interchanging variables and rearranging the terms of the equation we obtain the

following compatibility condition

C(Q', Q%) = DiQ* — D,Q" + [Q*, Q"] = 0. (5.5.7)

Let us now consider the curvature matrices with respect to the parameters s and t in the

discrete case

0 _ 0 _
NO;t = (mp0> Po ! and NO;s = (8.9/)0) Po 1'

O (00 N 4 (DN (B \
asNO;t—<8satPO> Po <8tp0> Po (85'00) Po

We have that

and analogously

Oy (290 N\ 1 (9 N _1(9 \
OtNO;S_(&@s'OO)pO (aspo)po (atpo)po‘

Hence

9 Oy (90 N 1 (0 N (0 N 4 (909 \
gg oss asNO;t_<atas”°>”0 (as”0>p0 <8tp0>’00 <8s8tp0>'00
0 ;) -
- <(9tp0> Po ! <88P0> Po L= [Nost, Noss|-

Therefore the compatibility condition in the discrete case is

0 0
= Nows — —Not + [Nos, Not| = 0. 5.5.8
5y Vois = 5o Now + [No;s; Nost (5.5.8)

C(NO;t7 NO;S) -
Note that both compatibility conditions (5.5.7) and (5.5.8) have the same structure.

Remark 5.5.9. Also note that the expression

0 0
0s — 70t + Mo;s,00 — Most,0: (5.5.10)

Clow,0s) = ot Os
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is equivalent to

0
C(NO;ta NO;s) = &O—s - %Ut + NO;sUt - NO;tUs
as
0 _ 0 0 0
NO;sUt = <68P0) Po IPO ((%ZO(Sat)> = %PO <8t'20(87t)> = MO;S,O;t
and

0 _ 0 0 0
NO;tUs = (mPO) Po 1P0 (aSZO(Sat)> = &pﬂ <&9ZO(57t)> = MO;t,O;s-

In general, the condition on the functions Fs and F; for the discrete curve evolution to

commute is

— 0 (Nm Fy—No Fot o Fy— o Ft)
(5.5.11)
Proposition 5.5.12. The F operator satisfies
Fqi, Forl = adoqigr)-
Proof. Let us consider
Foi@)=DiQ’ +[Q,Q,  For(@) =Di@’ +[Q7,Q").
Therefore we have
Foi(For(Q7)) = DiDr@’ + Di[Q7, Q] + D@’ + [Q7, Q%], Q"] (5.5.13)
and
For(Fgi(Q7)) = DpDi@ + D@7, Q"] + [DiQ + [@7, Q], Q™). (5.5.14)

Substracting (5.5.14) to (5.5.13) we obtain

Foi(For (@) — For(Foi (@) = (@7, DiQ"] — (@7, Q'] + [Q7, [Q%, Q7]

= adeqion @’
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and therefore

[.FQz,]:Qk] = adC(Qi7Qk).

O
Proposition 5.5.15. The F2 operator satisfies
73, F5] = Fia g
for appropriate expressions A and B.
Proof. Now let us consider
F2(C)=(SA)C —CA, and F5(C)=(SB)C—-CB
for appropriate expressions A, B and C'. Therefore we have
FR(F5(C)) = (SA)((SB)C — CB) — ((SB)C — CB)A ( |
5.5.16
=S(AB)C — (SA)CB — (SB)CA+ CBA
and
Fe(FL(C)) = (SB)((SA)C —CA) —((SA)C —CA)B (55.17)
= S(BA)C — (SB)CA — (SA)CB + CAB. -
Substracting (5.5.17) to (5.5.16) we obtain
FR(Fp(C)) = FR(FR(C)) = S[A, BIC - C[A, B] = Ff3 5(C)
and therefore
72, F5) = Fiip)
O

Remark 5.5.18. Note that F is a derivation of Lie Algebras while F2 is an homomorphism

of Lie Algebras. This is expected due to the nature of the derivative operator and shift operator.

Smooth Discrete

Product D(f-9)=D(f)-g+ f-D(g) S(f-g9)=(Sf)-(Sg)

Bracket Oz, y] = [0z, y] + [z, Oy] olz, y] = [pz, ¢yl
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Here O is a derivation and ¢ is an homomorphism. Note that in the smooth case, the Liebnitz
law is satisfied whereas in the discrete case it is not. Recall that adg: € Der(L) and therefore

is clear that ]:Qi is a derivation.

Proposition 5.5.19. The following identity
D¢, Ds]Q" = Fo- (C(Q", Q%))

is satisfied.

Proof. Recall that
D:Q* = D, Q" + [Q", Q] (5.5.20a)

D,Q" = D,Q° + [Q*,Q"]. (5.5.20b)

Differentiating (5.5.20a) with respect to s we obtain

D,D,Q" = D,D,Q" + [D;Q", Q"] + [Q", D,Q"]

(5.5.21)
= DSDth + [DSQta QI] + [Qta DIQS] + [Qt? [Qsa Qﬂ]
Analogously differentiating (5.5.20b) with respect to ¢ we obtain
D;D,Q" = D;D,Q° + [D;Q°, Q%] + [Q°, D.Q'] + [Q*, [Q", Q]]. (5.5.22)

Substrating (5.5.22) to (5.5.21) we obtain

[Dt, D5]Q" = D, (DiQ° — DsQ" +[Q°, Q']) + [D:Q° — DsQ" + [Q°, Q" Q7]
= Fo:(D:Q° — D;Q" + [Q°,Q])
= Fo-(C(Q", Q")

we obtain the required result. O

Proposition 5.5.23. The following identity

o 0
[at’ 85] Ko = Fo(No,Nois) (Ko)

is satisfied.

Recall that
0
&KO == (SNo;t)KO - K()No;t, (5524&)



146 Commuting Flows on the Curvature Invariants

%Ko = (SNo.s) Ko — KoNo.s. (5.5.24b)

Differentiating (5.5.24a) with respect to s we obtain

o 0 o B o o
5 5150 = 5, (SNow) Ko + (SNo) 5o — (aSKO) No:t — Ko (asNo;t)
o
=S <88N0;t> Ko + S(Noy No.s) Ko — (SNow ) Ko No.s (5.5.25)

0
— (SNo.s) KoNo.t + KoNo,sNo;t — KO%No;t-

Analogously differentiating (5.5.24b) with respect to ¢ we obtain
0 0 0 0 0 0
——Kp= —(SNp.s)K SNo.s) =Ko — | =Ko | No.s — Ko | = No:s
9t 9510 = g SNos) Ko+ (SNows) 7 Ko (875 °> 0 0<6t 0’)

0
=5 <8tNO;s> Ko+ S(NO;SNO;t)KO - (SNO;S)KONO;t (5526)

0
- (SNO;t)KONO;s + KONO;tNO;s - KDENO;&

Substrating (5.5.26) to (5.5.25) we obtain

o 0 0 0 0 0
|: :| KO =S (NO;S - 7N0;t + [N0;87N0;t]> KO - KO <N0;s - 7N0;t + [N0;87N0;t]>

o’ s ot ds ot ds
=7 9 (Ko)
&NO;S - %No;t + [NO;Sa NO;t]
= FC(Nog,Noss) (Ko)

obtaining the required result.

Theorem 5.5.27. The symmetry condition for two curvature evolutions is a differential

consequence of the symmetry condition on the curve evolutions. We have

0 0 0 0
a&/{ — %a/‘f == HC(Ut, 0'5)
where
Clonos) = 2oy — Loy 4+ Nowor - N
0t,0s) = atas asat 0;50t 0;t0s-
Proof. From (5.4.9), (5.5.9) and (5.5.23) the proof is straightforward. O

Remark 5.5.28. In the continuous case the authors of [73] show that

Dy, HI,, — Dy, HI;, — [Dy,, Dy, )k = HC(Iy,, I,) (5.5.29)

and they state that this implies that integrability does not necessarily lift from the curvature
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s
To k;s
IO,O;S," ”””””” ,®
C ‘// 0,0;s,t “ :
: : i IO,k’ X
oo #---------- -
Lo kst
t
. . _ o 0 .
Figure 5.1: A graphic explanation of 7 Bs k = HC being the syzygy of a syzygy.
S

evolution to the curve evolution. The same occurs in the discrete case. However, most commonly
studied integrable curvature equations are homogeneous polynomials or rational functions of
the differential invariants. Since in these classes the kernel of the differential operator H is
empty, pairs of integrable equations result (see Langer and Perline, [65]). The same occurs
for discrete integrable curvature equations. The authors also give an outline of the proof of

(5.5.29). Here we give an alternative proof, which is now straightforward using (5.4.9) and

(5.5.19).

Smooth Discrete

Syzygy

d
DQ" = D;Q" + [, Q7] i 0 = (SNow) Ko — KoNoy

Compatibility condition

0 0
DtQS - Dth + [Q8> Qt] =0 &NO;S - %No;t + [NO;Sy NO;t] =0

F and F2 operator

Fgi =D; —adgi 'F]%O;ti = (5 —id)Noy, + adny,,

F operator bracket

[‘FQl7‘FQk] = adC(Q'L,Qk) [f]%()nﬂfj%o;s] = Fﬁo;t,NO;s]

Evolution of curvature matrix / Maurer-Cartan matrix

o 0
[DMDS]QI = ]:Qz (C([Qt’ QS])) "(f%? BJ KO = fé“([No;t,No;s])(Ko)
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Example 5.5.30. We show for this example that the symmetry condition for two curvature

evolutions is a differential consequence of the symmetry condition on the curve evolutions.

We show using MAPLE (See Appendiz) that

0 0
a’HJs — %’Hat =HC(oy,05).

5.6 Integrable differential-difference equations

In order to relate our examples to discrete integrable systems, we will make use of the
theory appearing in Khanizadeh, Mikhailov and Wang, [54] as well as the list of Integrable
differential-difference equations appearing in such paper. We introduce some essential concepts

first.

Consider the differential-difference equation
u; = K|u] (5.6.1)

where K[u] is a smooth vector-valued function depending of u and its shifts. Suppose that a

is a function of u. The Frechét derivative is defined as

. aa aa k
ay = Z <au}c,..., 8uN) S,

k k

The variational derivative of a is defined as
da Oa
1) ==, =— S :
@ = (G ) S50
If (5.6.1) is Hamiltonian, then we can write it in the form

u; = H(du(/))

where here H denotes a Hamiltonian (pseudo)-difference operator - so it might include

backward shifts - and f the Hamiltonian function.

Example 5.6.2. [t is possible to relate the previous results to integrable systems as follows:

So

Recall I, = =~ and therefore oy = S_y(kIY,.,). Hence (5.4.11) is equivalent to
Rt K bt )

ke = (—kS + Kk — K2+ KS_1k)1§ 1, = k(=S +id — K+ S_18)I§1 4
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Setting 11, = K, we obtain
ki = —kk1 + K2 — K5+ kK% | = k(K — K1) + (K2, — K2).

which is a Volterra type equation

Ut = f(u—17u7ul)

as listed in Khanizadeh, Mikhailov and Wang, [54].

5.7 The SL(2) linear action

In this example we consider the SL(2) linear action previously studied in §4.3.1. After
computing the correction terms and verifying (5.3.5), (5.3.11) and (5.3.17), we show that
the symmetry condition of the discrete curve evolutions is a differential consequence of the
symmetry condition of the curvature evolutions. Furthermore, we relate this example to the

Toda lattice.

The first three correction terms with respect to the moving frame pg (4.3.4) are

MO,I;t = . ) (571)

The variables appearing in the normalization equations (4.3.3) are xg, yo and x1. Therefore,

¢1 = 2o, G2 =1 and (3 =1.

Thus ¥ = 3. Note that as the group action depends on three paramenters we have that R = 3.

T = ( Lo <§tCl> L0 <(i§2) Lo (;:C?,) > = ( of of I§, )

Hence,
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The matrix of invariant generators has the form

ZZ} Z? Z? Lo(.To) 0 Lo(SEl) 1 0 O
2 2 2
P2 0\ ) O\ Bar) O\Bag) | T| ) 0wl f =007
L 37@ L 37@ L (97&, 0 to(zo) 0 010
0 8(11 0 8a2 0 8@3
where a1 = a,a2 = b and a3 = c¢. Finally
Naa ) \Noc) “\ag 100
02 0o O
J: _ _ _ = 1
0 (1 0 0C2 0 3 0 0
w (208 (2% L, (9% 00 1
oG 0C2 (3
Therefore
K:—TJ(<I>J)1:<_Ugc Mo _Ugg). (5.7.2)
T

Hence the correction terms can be calculated as follow

K-l —1§5 0,
= . = Mo,0:¢»
K1,3 -1 _1070;75
Yy u
KLZ ’ Io,l . _IO,l;t I
y — y - MO,l;t>
U
*Kl,l ’ IO,l IO,O;tIO,l
Iz 1Y
0,1;t40,2
T X )Ly 9
Kig-Igo+ K- 1'6{1 —150.4152 — 7
= 0,1 = Mot

K115+ K- I z 7Y Y ra
702 = 702 —15215 0.0 + 10,216 0:t

which matches with the correction terms (5.7.1) calculated using (?7?).

Recall the Lie algebra basis of the Lie group (2.16). Therefore the curvature matrix can

be computed as follows

1 0 1% .. 0
Noy = —of - e o
0 -1 T 0 0 10
I$
. T 0,T1,t
ol of

matching that one obtain in (4.3.10).

Now we show for this example that the symmetry condition for two curvature evolutions is
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a differential consequence of the symmetry condition on the curve evolutions.

The fundamental syzygy is

o U%'Saé’fagSaf_i_g z 0 4
C(o’t’gs) _ ( 1 ) _ 7_2 gtas gsgt
Co 2050 — 20d0f + aag - %Jty
We have
0 0 0
&HO’S— <875H> US—FH&O’S
where
4 T 0 T T 4 T
: ot ot ot
_ d _ _ -2 x
(5i1)e = A = A
ot 5 oY
Analogously
0 0
a/HUt <88H> Ot + /Ha(ft
where
0 T 4 T T 4 T
9 . ds ds Js
9 lid — _0s s _9_0s "
’ o 9 of
a’r(ld + S) %HS

And therefore, simplifying both expressions using MAPLE (See Appendix)

. 1
8 a K}(ld - S) ; — ?1282 Cl
7%03 — 77‘[015 =
ot Os C
T(id +S) kS 2
= HC(o¢,05).
We now consider the change of variable n = —xk7. We obtain
2Q .Y 2q, Y
__n Sat T S2Ut
= — ) —of +2nof + Sr2

SqY
Tt:—L o +7S0f + 710}
T
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Therefore there exists a linear shift operator H(n, 7) such that

2S 2s
n of 2 2 T2 id
=H(n,7) where  H(n,7) = T UST
Tt of T(S +1id) —=S
T
So? . : : . .
Let us set v :== ——-. We can write the evolution of the curvature invariants n and 7 in

T

terms of the evolution invariants of and +y as follows
ne=r(S —id)of + 07y, T =2707 + ((S_n*)S1 — S +7%) 7.

Therefore

o\ [ n(S—id) nT of

T 27 S_1n? —n?S+ 72 ~y
where we have used the notation S_1n? = S_1(n?)S_1. Let us set

~ n(S —id nT
R
27 S_1m? —n?S+ 12
and let us define the matrix
(id—=S-1)n 27
0 —4
and compute the pseudo-difference operator
~ S—S_4 2n(S —id)r
ap— | o - (5.7.3)

27(id — S_1)n  —4(S_1n* — n*S)

which is clearly symmetric. Let us set Ho := HP.

Theorem 5.7.4. The operator Ha, given by (5.7.3) is a Hamiltonian operator. It forms a

Hamiltonian pair with Hamiltonian operator

0 2n(S — id)
2(id — S_1)n 0

Hi =

Proof. Let us introduce the following transformation

p=n’, q= (5.7.5)
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Its Frechét derivative is

Note that D(p,q) = D(p,q)*.

Under this transformation the operators 1 and Ho become

. . 0 p(S —1id)
Hl = D(pa Q)HlD(p,Q) =4 )
(id — S_l)p 0

p(S—=S_1)p p(S—id)g

Hy = D(p,Q)/HaD(p,q)" =4 |
q(id =S—1)p pS—S_1p

Setting

. 0 S —id . S-S S —id
T p(S —id) ond T p( Vp  p(S—id)g

(id —=S_1)p 0 q(id—S_1)p pS—S_1p

we have that these two operators form a hamiltonian pair for the well-known Toda-Lattice in

Flaschka coordinates (see Adler, [1], Khanizadeh, Mikhailov and Wang, [54] and Suris, [103])

pe=pla—q), @=p—pa (5.7.6)
where ¢1 = Sq and p_1 = S_1p. O
Theorem 5.7.7. The evolution of the curvature invariants for the SL(2) linear action induces

a completely integrable system in its curvatures n and T equivalent to the Toda-Lattice (see

Toda (5.7.6)).

Proof. Recall

M _ 7/_2 oy
Tt Y
and suppose we can write
« a
=P
0% b
Therefore
M a
= 7—[2

Tt b
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For a =0, b =1 we get
me=2(n—71), m=40"—ny) (5.7.8)
where 71 = ST and n—; = S_17n. Using (5.7.5) the system (5.7.8) is converted to the system
pe=4p(@—q), @ =4p—p-1) (5.7.9)

which is equivalent to (5.7.6) (notice that (5.7.9) just differs to (5.7.6) by a constant factor). [

Remark 5.7.10. For the system (5.7.8) we have the following hamiltonian structure

0 20(S — id) 2
le . ’ f1:772+?:

n(S —S-1)n 2n(S —id)r
27(id — S_1)n  —4(S_1n* — n*S)

Il
o
Il
R

Ho

i.e,
O H16(f1) = H26(f2)-

Tt



Application of Multispaces for some Lie Groups

It is possible to construct a discrete moving frame as the limit of a continuous one, and
vice-versa, by coordinating the transverse sections that determine them. This was achieved by
Beffa and Mansfield in [5], where the authors define the concept of multispace, a manifold
including the jet bundle and cartesian products of the base space simultaneously. A frame on
a multispace contains the smooth and the discrete frame and one can be obtained from the
other by taking an appropriate continuum limit. In this paper, the authors also show that the
discrete invariants converge to differential invariants and local discrete syzygies converge to
differential syzygies. In this chapter, we give a very brief introduction to multispaces and we
study the SE(2) case where we explore the convergence of the discrete frame to the smooth
frame and discrete curvature invariants to the smooth ones. For all these examples we show
convergence of the Maurer—Cartan matrix to the curvature matrix with the respect to the
space independent variable. We also study the projective SL(2) action and show convergence
of the discrete action to the smooth one as well as the convergence of the discrete frame and

discrete infinitesimals to the smooth ones.

6.1 A very brief introduction to multispaces

The concept of multispace arises as a consequence of creating a manifold that is smooth and
discrete at the same time. A multispace looks like the jet space, but also includes discrete
versions of the jet space where a frame is simultaneously a smooth frame and a frame on a
discrete space. The equivariance is successfully maintained in the continuum limit and the
discrete Maurer—Cartan invariants and discrete syzygy coalesce to the smooth ones. In order
to achieve this, the process starts making use of interpolation methods, where the coefficients
are given by the solution of a linear system of equations.

Under coalescence of the points at which the interpolation is calculated, Lagrange inter-
polation becomes Hermite interpolation, ending with the Taylor approximation to a surface

when all the interpolation points coalesce, as shown in Figure (6.1).

155
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Figure 6.1: Hyperplane coalescence.

Zo
& : .
& Hermite Interpolation
S 2

& S
%

[

Lagrange Interpolation Taylor Polynomial

6.2 The Lie group action SE(2) acting on multispaces

Recall the Lie group action of rotations and translations of curves in the plane (4.1.2). The
aim is to choose an interpolation polynomial that will allow us to construct a moving frame in
the multispace. We will show that this frame encodes the discrete and smooth information
and that taking an appropriate continuum limit, the discrete curvature invariants converge to
the smooth ones and that the Maurer—Cartan matrix converge to the corresponding curvature

matrix in the smooth case.

6.2.1 Action and moving frame

Recall that the curvature invariants for (4.1.2) are the arc length

ds =+/1+u2

and the curvature

o — Uz
(1 + 2

which is an invariant of order two. Therefore, as we want to show that the discrete curvature

invariants obtained using multispace theory converge to the smooth ones, we need a polynomial

interpolator of at least order two.

We choose the order two polynomial interpolator of the points tg, 1,2 with base point
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to = 0. For the variable z(t) we have
1
p(x(t)) = A(z(t)) + B(z(t))t + §C(z(t))t2. (6.2.1)

In order to obtain an expression for the coefficients A(z(t)), B(x(t)) and C(z(t)) we solve the

equations

wo = A(z(t)),
21 = A(@(t)) + Bla(t)t + %C(x(t))t%,
v = A((t)) + Bla(t)t2 + 5003

for A(z(t)), B(z(t)) and C(x(t)) where we have set x(¢;) to be z; for i = 0, 1,2. Using Cramer’s

rule we obtain

11’0 0

1
1 I it%

1
1 =z *t% _ 2 _ t2
B(l’(t)) — 2 _ ($2 .7}(]) 1 ($1 .7}(]) 2

tita(ts —t2) ’

1t1 I

C(z(t)) = Lo _ 2(332 —x0)t1 — (21 — JI())tQ.

tito(ty — )

For the variable u(t), the order two interpolator of the points ¢, t;,t2 with base point

to = 0 will be
p(u(t) = A(u(t) + Blu(t))t + 5Cu(t)? (6:2.2)
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Solving the equations
1

ug = A(u(?)) + B(u(t))to + §C(u(t))t§,
ur = A(u(t)) + Bu(t)t + LC(u(t)5,

ug = A(u(t)) + B(u(t))ta + %C(u(t))tg

for A(u(t)), B(u(t)) and C(u(t)) where we have set u(t;) to be u; for i = 0,1,2 and using

Cramer’s rule once more we obtain

A(u(t)) = uo,

 (ug —uo)t] — (u1 — uo)t3
B(u(t)) = t1t21(t1 — 2
C(u(t)) —_ 2(U2 - U())tl — (ul — uo)tg

tita(ta — 1)

Making the group action (4.1.11) acting on the coeffients A(z(t)), A(u(t)) and B(u(t)), we

can construct the normalization equations which are of the form

Solving for the group parameters 6, a, b, we obtain the frame

Rop —Rop#(to)

M = (6.2.3)
0 1
where
cosOrr —sinfy
Ry, =
sinfn; cosBy
with

(u1 — ug)t3 — (ug — ug)t3

, and z(tg) = (o, ug)-
xrq] — IL‘o)t% — (:L‘Q — IL‘o)t% ( ) ( ’ )

Orq = — arctan

We now consider the Taylor series

t1 = h, to = 2h, o =X, UQ=1U,
1
Ty =+ hxt + ihQZIZtt, To =T+ tht + 2h2xtt, (6.2.4)

1
up = u+ hus + §h2utt, us = u + 2hug + 2h%uyy.

Substituting this into (6.2.3) and taking the limit when h tends to 0 we obtain the smooth
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moving frame

Tt Ut L uru +xix
Vu + 22 VuZ + 32 Va2 + a2
Ut Tt Ut T — Ut

p:

VuZtrd Vultal? Vul Tl
0 0 1
which matches the smooth one obtained in (4.1.4). Hence we have shown that the discrete

moving frame (6.2.3) obtained via multispace theory converges to the smooth moving frame

(4.1.4).

6.2.2 Curvature invariants and Maurer—Cartan matrix

Inducing the action (4.1.11) on B(x(t)), C(z(t)) and C(u(t)) and using the Taylor series (6.2.4),
we can see that in the limit, these are the arclength, the dot product and the crossproduct
of (x4, ur) and (x4, uy) respectively, both divided by the arc length, which are invariants. In

order words, taking the limit when h tends to zero of

A(u(t)) = uo,

(ug — ug)tt — (ur — uo)t3
tita(th — t2) ’

B(u(t)) =

(ug —ug)ti — (u1 — uo)ta
tita(ta —t1)

Clu(t)) = 2

where wp, u and uy are given by (4.1.11). We get that

o T T4Tyr + Uyt T TyUpp — ULyt
Ault) — \Ja? + a2, Blu() — DI ) — T T
\ Ty +ug VvV xp +uy

These results were obtained by Beffa and Mansfield in [5] using another (but similar) Taylor

approximation strategy.
Computing Kr = (Sp M)p/_\j, we obtain the multispace Maurer-Cartan matrix. Taking
the Taylor series
t1 = h, to = 2h, ty = Gh, o =T, UQ=1U,
1
1 =+ hxy + §h2xtt, To = T + 2hxs + 2h2xtt, r3 = x + 4hxy + 8h2xtt,

1
u = u + hug + §h2utt, uy = u + 2huy + 2h2utt, us = u + 4huy + 8huy
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we have that

Tt Ut — Tt U
0 % —Vu?2 + x42
U —f—l‘t
im 4 (& _ | _mun —waw
hli% dh ( M Taylor> utz +.’Et2 0 0
0 0 0
and
. i —
(ut2+wt2)3/2 0 k 1
K —1Id
lim M Taylor 3 _ Tt Utt — Tt Ut 0 0 — —x% 0 0
=0 _pe 2 1 2)3/2
—Kmpa|, (u? + 242)
aylor 0 0 0
0 0 0

(6.2.5)
where Ids denotes the 3 x 3 identity matrix and where we have used the approximation method
presented in §4.1. Note that (6.2.5) matches (4.1.5). Hence, the discrete Maurer—Cartan
matrix obtain via multispace theory converges to the smooth curvature matrix with respect to

S.

Remark 6.2.6. In practice, the Taylor approrimation used in §4.1 was

ro=x, x1=x+h, xo=2x+2h,

1
ug =u, u] =u-+ huz + §h2um, Uy = u + 2huy + 2h Uy,

As explained in §4.1, taking an appropriate continuum limit we obtain the equivalent to the

smooth curvature and the smooth arc-length in the discrete case. Fxplicitly

0 %) I+ u2

(14 u2,
d U,
li K, = .
hlir(lJ dh < 0 Taylm") (1 + u%x) 0 0
0 0 0
and
0 Yoo
(1+02,)?
Ky —Ids
lim Taylor _ 7&3 0 0
"0 —Kopg (1 +ui,)?
Taylor

0 0 0



6.3. The projective SL(2) action acting on multispaces 161

6.3 The projective SL(2) action acting on multispaces

Recall the action (2.6)

(%M@%+w@w@»=<uzgﬁj>.

In this example, we will consider prolongations of order 2. Recall from (2.8)

~ - au+b __ Uy __ T 5 cu?
T=x, U=——, U= -——=, Uy = - )
cu+d T (cu+d)? T (cu+ d)? (cu + d)?

Therefore, we choose an order 2 interpolator to the points tgy, t; and to with base point

to = 0. Our interpolator will be
p(u(t)) = A(u(t)) + B(u(t))t + %C(U(t))t?

In order to obtain an expression for the coefficients A(u(t)), B(u(t)) and C(u(t)) we solve the

equations
uo = A(u(®)) + Blu(t))to + 5C(u(0),
up = A(u(t)) + Bu(t))t; + %C(u(t))t%,

ug = A(u(t)) + B(u(t))ts + %C(u(t))tg

for A(u(t)), B(u(t)) and C(u(t)). Using Cramer’s rule we obtain

A(u(t)) = wo,
Blu(t)) = (uz — o)t} — (u1 — uo)th
t1ta(ty — ta) ’
Ca(t)) = 2(U2 —ug)ty — (ur — ug)to
tita(ta —t1)
Let us set
M(u) = uy,
 (ug —uo)t] — (u1 — uo)t3
M(ug) = P ra— ; (6.3.1)
(UQ — UO)tl — (u1 — UO)tQ
M(ugy) = 2
(taz) tita(ty —t1)
Consider the Taylor’s series
tl = h,tg = 2h,u0 =u,
(6.3.2)

1
UL = u + huy + §h2um, Uy = u + 2huy + 2h Uy,
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Substituting (6.3.2) into (6.3.1) and taking the limit when h tends to zero, we have that

Recall the prolongation action of the SL(2) projective action (2.8) and the action in the
discrete case (4.3.48).

For M(u), M(u;) and M(uy,) we have

YR , (6.3.3)

(ug —ug)t1 — (u1 — up)ts
tito(th — t2)

M (ugy) =

where ug, u; and usy are given by

__  aup+b _  aui+b __  aua+b
Uy = Uy = Uy = .
cug+d’ ! cu; +d’ 2 cus +d

One can check that substituting (6.3.2) into (6.3.3) and taking the limit when A tends to 0

results in b
au
M(u) = cu+d’
M (ug) — o Ya
; (cu+d)*’
2
M(ugy) = —22 o g T

(cu + d)? (cu + d)?

which matches (2.8).

Recall in the smooth case, for the normalization equations (2.49)

u=0, Uy =1 and Upy =0
we obtained (2.50)
a= L b=— Y c= “””"g
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we obtain

(uo — uz)(ug — u1)(t1 —t2)

o = _\/ tltg(ul — UQ) — /\/l(a)

. tita(ur — ug) _
- O\/(UO —uz)(up —ur)(ty —t2) ME)

(t1 — t2)ug — tyug + touy :
V(o — u2)(uo — ur) (ur — u2)(t1 — to)tats

= M(c).

C= —

Again, using (6.3.2) and taking the limit when A tends to zero we have that

1 U Ugy
M(a) — , M(b) = — , M(e) - —.
@ e MO MO
X
The table of infinitesimals for the multispace action is
a QU() _9 (UO — 'U;Q)t% — (U() — ul)t% 4(UO — UQ)tl — (U() — ul)tg
tita(ty — t2) tita(ty — t2)
b 1 0 0
N . (ug — ud)t] — (ug — ui)t3 o (t2 = t1)ug + 2truz — 2hpuj
0 tltg(tl — tz) t1t2(t1 - t2)

Note that the first column is the table of infinitesimals for the discrete case. Also,
substituting (6.3.2) and taking the limit when A tends to zero, one can check that the table of
infinitesimals for the multispace action converges to the one of the smooth case (2.44).

The convergence of the smooth curvature invariants to the discrete ones and the Maurer-

Cartan matrix to the curvature matrix with respect to x requires further research.
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Variational Systems with a Euclidean Symmetry

using the Rotation Minimizing Frame

In this chapter, we study variational systems for space curves, for which the Lagrangian or
action principle has a Euclidean symmetry, using the Rotation Minimizing frame, also known
as the Normal, Parallel or Bishop frame (see Bishop, [8] and Wang and Joe, [110]). Such
systems have previously been studied using the Frenet—Serret frame. However, the Rotation

Minimizing frame has many advantages and can be used to study a wider class of examples.

We achieve our results by extending the powerful symbolic invariant calculus for Lie group
based moving frames, to the Rotation Minimizing frame case. To date, the invariant calculus
has been developed for frames defined by algebraic equations. By contrast, the Rotation

Minimizing frame is defined by a differential equation.

We derive the recurrence formulae for the symbolic invariant differentiation of the symbolic
invariants. We then derive the syzygy operator needed to obtain Noether’s conservation laws
as well as the Euler—Lagrange equations directly in terms of the invariants, for variational
problems with a Euclidean symmetry. We show how to use the six Noether laws to ease the
integration problem for the minimizing curve, once the Euler-Lagrange equations have been
solved for the generating differential invariants. Our applications include variational problems

used in the study of strands of proteins, nucleic acids and polymers.

7.1 Introduction

The study of variational problems with Euclidean symmetry is an old problem, indeed, Euler’s
1744 study of elastic beams is such a case. However, methods to analyse such problems

efficiently and effectively, are still of interest.

In this chapter, we consider variational problems for curves in 3-space for which the

Lagrangian is invariant under the special Euclidean group SE(3) = SO(3) x R? acting linearly
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in the standard way, that is,

T x a
yl=R|y|+|o], ResoE) (7.1.1)
z z C

The Euler-Lagrange equations satisfied by the extremising curves have SE(3) as a Lie symmetry
group, and can therefore be written in terms of the differential invariants of the action, and
their derivatives with respect to arc-length. Further, the six dimensional space of Noether’s

laws are key to analysing the space of extremals.

To date, the Frenet—Serret frame has been used to analyse Euclidean invariant variational
problems, and this requires that the Lagrangian can be written in terms of the Euclidean
curvature and torsion. Because the Frenet—Serret frame can be derived using algebraic equations
(at each point) on the relevant jet bundle, the powerful symbolic calculus of invariants can be
used, to obtain not only the Euler-Lagrange equations directly in terms of the curvature and
torsion, but the full set of Noether’s laws can also be written down directly using both the

invariants and the frame (Gongalvez and Mansfield, [33]).

Let us denote the space curve as s — P(s) € R?, where s is arc-length, and the tangent
vector to this curve by P’, so that / = d/ds. By the definition of arc-length, |P'|?> = P’'- P' = 1.
Then provided P” # 0, the left Frenet—Serret frame is given by

o (g PSP x PY(s)
7Fs = <P< AOIRITEO] ) € S0). (7.1.2)

From a computational point of view, the Frenet—Serret frame is convenient as it can be
computed straightforwardly at arbitrary points along the curve. However, it is undefined
wherever the curvature is degenerate, such as at inflection points or along straight sections of
the curve. The left Frenet—Serret frame is left equivariant, that is, if at any point z = P(s) on
the curve, since R € SO(3) acts linearly in the standard way on the tangent space T,R3 then

it is readily seen that

ol s <RP’(3) RP"(s) RP'(s) x RP”(S))  Roby

[RP ()] [[RP"(s)]]

The Euclidean curvature x and the torsion 7 at the point P(s) are then the nonzero components
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of the invariant so-called curvature matrix, specifically,

0 —x O
orsors =k 0 —7]|. (7.1.3)
0 7 0

In contrast to this frame, relatively parallel frames were described by Bishop, [8] who
detailed what is now known variously as the Normal, Parallel, Bishop or Rotation Minimizing
frame. The Rotation Minimizing frame has many advantages over the Frenet—Serret frame.
First of all, unlike the Frenet—Serret frame, the Rotation Minimizing frame is defined at all
points of a smooth curve. The Rotation Minimizing frame may be used to study a larger class of
variational problems, because while the generating invariants for the symbolic invariant calculus
given by the Frenet—Serret frame, curvature and torsion, are of order 2 and 3 respectively, those
given by the Rotation Minimizing frame are both of order only 2. Finally, for the Rotation
Minimizing frame, its computation, approximation and its applications, have been extensively
used and studied in the Computer Aided Design literature,(see Bloomenthal and Riensenfeld,
[9], Pottmann and Wagner, [96], Siltanen and Woodward, [100], Han, 38|, Farouki,|28|, Farouki
and Sakkalis, [29], Farouki, Gentili, Giannelli, Sestini and Stoppato, [23], Klok, [62], Poston,
Fang and Lawton, [95], Guggenheimer, [37], Wang, Jiittler, Zheng and Liu, [111]).

One reason is that the sweep surfaces they generate are, in general, superior, (see Wang
and Joe, [110]); as illustrated in Figure 7.1, sweep surfaces generated from the Frenet—Serret

frame can exhibit strong twisting at inflection points.

Bishop, [8] defines a normal vector field along a curve to be relatively parallel if its derivative
is proportional to the tangent vector. The equation used in the Computer Aided Design
literature for the relatively parallel normal vector V' = V(s) to the curve s — P(s) is (see
Wang and Joe, [110]),

Vi=—(P"-V)P. (7.1.4)

The function of proportionality between V/ and P’ is chosen to guarantee that, without
loss of generality, we may suppose that |[V| =1 and P’ -V = 0, see Proposition 7.2.4. Then

the left Rotation Minimizing frame is

oby =[P V P xV). (7.1.5)

We have that J%M is left equivariant and, as shown by Bishop, [8], the invariant curvature
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Figure 7.1: Given a curve in space, we compare the sweeping surface generated by the Frenet—
Serret frame with the one generated by the Rotation Minimizing frame along the curve. In
this case, the curved plotted is (sin#2,¢2,¢). We can see that the Rotation Minimizing frame
gives a less abrupt surface so it is more preferable than the Frenet-Serret frame for computer
design purposes.

Surface sweeping given by V Surface sweeping given by P”
using the Rotation Minimizing frame using the Frenet—Serret frame

matrix (UéM)_l (U%M), takes the form

0 —K1 —K2
¢ -1 ) !
(URM> (URM) =kt O o |, (7.1.6)
K2 0 0

that is, where the (2, 3)-component is guaranteed to be zero.

Since both the Rotation Minimizing and the Frenet—Serret frames share the same first

column, we have for some angle § = 6(s), (see Figure (7.2)),

1 0 0
Ohnv =0ks | 0 cos sinf |- (7.1.7)

0 —sinf@ cos6

Calculating (O’%M)_l (U%M)/, using (7.1.3), and (7.1.7), and comparing the result to (7.1.6)

leads to the well known relations,

K1 = Kcosf, Ko = Kksinf, 0, = . (7.1.8)
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Figure 7.2: Diagram of a Rotation Minimizing frame and a Frenet—Serret frame of a curve
P(s) in R3. Note that P’(s) is common in both frames.

P
[Pl

/ P’
PO

Treating the Rotation Minimizing frame as a gauge transformation of the Frenet—Serret

frame, together with

0(s) — by = /:T(s) ds

0

has been proven to lack numerical robustness for a general space curve, (see Guggenheimer,
[37]). This makes the use of the Rotation Minimizing frame defined in terms of the normal
vector V, as in (7.1.5), to be a better choice in the application literature, and is our choice
here.

As shown in §2.5, the formulae for the recurrence relations in the symbolic invariant
calculus require the equations defining the frame to be algebraic at each point in the domain
of the frame, and indeed, the equations defining the Frenet—Serret frame, despite involving the
components of P(s), P'(s) and P"(s), are algebraic at each point of the relevant jet bundle.
However, the recurrence formulae for the invariant derivatives defined using the Rotation
Minimizing frame need to be derived in another way, because the equations defining the frame
are not algebraic in the jet variables. Indeed, considering (7.1.8), it would seem that the
Rotation Minimizing frame is defined by a relation on the invariants, 7 and 0, or, a differential
equation on an extended space, one which includes either 6, or V.

Our approach is to extend the manifold on which the group acts, to include the vector V'
and its derivatives, in such a way that the differential equation defining V' is a simple constraint
for our variational problem. Because the group acts linearly on P’, V' and their derivatives, it
turns out to be straightforward to write down a set of generating invariants, the recurrence

formulae for their invariant differentiation and their differential syzygies. With these to hand,
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the methods used by Gongalvez and Mansfield, [33] can be adapted to obtain Euler—Lagrange
equations directly in terms of the invariants and to write down the six Noether conservation
laws.

In §7.2, the symbolic invariantized form of the curvature matrices for the Rotation Mini-
mizing frame are found, and we derive the recurrence formulae for the symbolic differential
invariants and the syzygy operator we will need in the sequel.

In §7.3, we obtain the Euler-Lagrange equations and Noether’s laws for a Lagrangian with
a Euclidean symmetry, using the results of §7.2.

In §7.4, the use of Noether’s laws to ease the integration problem is carried out.

In §7.5, some examples and applications are presented.

7.2 The extended right Rotation Minimizing frame

We will consider derivatives with respect to arc-length s of our curve s — P(s), where we note
that arc-length is a Euclidean invariant, and we will also consider the evolution of this curve
with respect to a ‘time’ parameter ¢, which we declare to be invariant under our SE(3) action.
Since the symbolic invariant calculus is standardly carried out for a right frame, we consider
a right Rotation Minimizing frame, prys, which we need for our application to include the
translation component of the Special Euclidean group SE(3).
We consider the Lie group SE(3) to act on an enlarged manifold (jet bundle) having local

coordinates to be the components of
PP P ... PW=—_p VvV V' . . V®W=_"y .
where the left action is, for g = (R,a) € SE(3) = SO(3) x R3,
P~ RP+a, P™—RP™ n>0, VM5 RV® n>o.

In the standard representation of SE(3) in GL(4,R),
R
g=(R,a)— :

our extended right Rotation Minimizing frame for this action is defined to be,

orM  —0RrMP
PRM = (7.2.1)
0 1
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where

oRM = (0§M>T € SO(3). (7.2.2)

The curvature matrix is, by direct calculation and noting that ory P’ = (1 0 0)7,

—1
o Ot 0
Q =Pauprii=| : (7.2.3)
0
0 0

To obtain the complete set of normalized invariants and the (reduced) curvature matrix

a}iMa;ih[, we first consider solutions of the defining equation for V.
Proposition 7.2.4. Given a curve s — P(s) € R? such that P'- P' = |P'|?> = 1, and suppose
that V.=V (s) satisfies equation (7.1.4), which for convenience we give again here,

Vi=—(P"- V)P (7.2.5)

together with the initial conditions V (so) =1, V(so) - P'(so) = 0. Then
1. V-P=0
2.V.-V=1

3. For any constant ¢ € R,
W =cos¢V +sinyy P’ xV

also solves equation (7.2.5) with |[W| =1 and W - P' = 0.

Proof. 1. By direct calculation, the scalar product V - P’ is constant with respect to s. The

result follows from the assumption on the initial data.

2. Equation (7.2.5) implies V' -V = —(P" - V)(P'-V) =0 by 1. above. Hence V -V is

constant with respect to s. The result follows from the assumption on the initial data.

3. Since (7.2.5) is linear in V, it suffices to prove that W = P’xV also solves Equation (7.2.5).
We have by the orthogonality of both V' and P” to P that V = b(s)P” + ¢(s)P’' x P”
for some coefficients b(s), ¢(s). Then P’ x V =b(s)P’ x P" — ¢(s)P"” and

(PPxV) = P'xV+P xV
= P'xV
= c¢(s)(P"-P")P.
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But P”- (P’ x V) = —¢(s)P" - P" and hence

W' =—P"- W) P

as required.

The proposition shows that if V' solves (7.2.5) and for some s, V(sg) has unit length
and is orthogonal to P(sg), then ory € SO(3) for all s, and this we now assume. In the
applications, it is necessary to ensure the initial data for V' holds when integrating for the
frame. The proposition shows further that in fact there is a one-parameter family of Rotation
Minimizing frames, determined by the initial data for V.

Let s0(3) denote the set of 3 x 3 skew-symmetric matrices, the Lie algebra of SO(3). We

have by direct calculation that

0 P".V P (P'xV)
TRMO R = —P".V 0 0 € s0(3). (7.2.6)
P (P'xV) 0 0

We now write down the symbolic normalized invariants, and obtain U}%M(f]}]l\/[ in terms of
them. We denote the components of P(s) as P(s) = (X (s),Y (s), Z(s)) and that of the n-th
derivative with respect to s as P(™ = (X )y 7z (”)).

By construction,

prM - P =

and by definition of the action,
prv - PM™ = opp PM
where n > 0. We now recall the standard symbolic names of these normalized invariants, as
orm P™ = (o(X™), (Y ™), (2T, (7.2.7)

Since ((¢(X"),(Y"),u(Z')T = ogm P’ = (P'- P,V -P' (P xV)- P =(1,0,0)T, we make
the following definition:

Definition 7.2.8 (Arc-length constraint). The equation 1(X') =1 is denoted as the arc-length

constraint.
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Differentiating (7.2.7) with respect to s, yields

(X ™) L(X M) (X (1))

d d

P (Y ) =$(JRM)0;5}4 (Y @) |+ | (vt | (7.2.9)
W(Z™M) L(Z(M) W(Z( 1)

Setting n = 1 and recalling

URMP, = (1a Oa O)Ta

we have from (7.2.6) and (7.2.9) that

0 (X" 0
o [=] v [+| -prv
0 (2") _P" (P x V)

d
Therefore we can write down d—(aRM)J;UlW in terms of the normalized invariants, specifically,
S

. 0 (Y"y (2"
g(aRM)UI_%h =|-uy” o0 0o |- (7.2.10)
—u(Z"y 0 0

Inserting this into Equation (7.2.9) yields the all important recurrence formulae for the symbolic

invariant differentiation of the normalized invariants of the P,

We next consider the normalized invariants of the V(™ which are
orarV ™ = V"), V"), )T, nz 0. (7.2.11)

Differentiating both sides of (7.2.11) with respect to s yields the recurrence formula for

the invariant differentiation of the symbolic normalized invariants of the components of V"),

. (V™) ; (™) (V"Y)
= |y | = Slornory [ (i) |+ | uv" ) |- (7.2.12)
(V3™) (V™) (V)

‘/1/
o= ) |+ 0 : (7.2.13)
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Finally, taking a right orthonormal frame ory = (P’ V P’ x V)T where we have
momentarily relaxed the differential equation condition on V/, calculate o MJ;&& and write
the components in terms of the normalized invariants using the Replacement Rule, (2.4.6), we

obtain
0 (Y")y (2"
-1

CrmOry = | —(Y") 0 (V) |- (7.2.14)
(2" —uVy) 0
We thus see that (2, 3)-component of o/, MUE%/I being zero, which is what makes orys a Rotation

Minimizing frame, yields a constraint on the symbolic invariant ¢(V3). The invariantization of

the differential equation for V' yields

(V1) 1
o(13) | = —uY") [0
u(V3) 0

Using calculations similar to those above, it can be seen that the first two components of
this equation relate to the orthonormality of V' with respect to P’. We thus make the following

definition:

Definition 7.2.15 (Rotation Minimizing frame constraint). The equation ¢(V3) = 0 is denoted

as the Rotation Minimizing frame constraint.

When deriving the differential syzygy needed in the sequel, we will write the (reduced)

curvature matrix with respect to s for the Rotation Minimizing frame as

. 0 Y")  u(Z")
Lor)opy = | (") 0wy | W) =0 (7.2.16)
—u(Z") —u(Vg) 0

This is because we will need to calculate the evolution of ¢(Vy) with respect to time.

7.2.1 The time evolution of the frame

We now suppose that our curve s — P(s) evolves in time. The time derivatives of our variables
d d
are denoted as &P(") = Pt(n) and aV(”) = V;(n) and the action is, for g = (R,a) € SO(3) x R,

and all n > 0,

‘Dt(n) g Pt(n) — Rpt(”) and Vt(n) R Vt(n) — RVt(”)
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The normalized differential invariants are the components of
(P = opuP™, (V™) = o™, n=0,1,2,...

The curvature matrix for the extended Rotation Minimizing frame, with respect to time, is

—u(X1)
d . B
d _ —ORM O —orm Py —O0RM Oy | —u(Yy)
apRMpR}V[ = | dt rM = dt (7.2.17)
0 0 —u(Zt)
0 0
. . . d 1 .
Calculating the invariant matrix &(O’RM)O' v € 50(3) yields
0 PV Pl (P x V)
d _
glorogy = —PV 0 V- (P x V)
—P/- (PPxV) =V;-(P'xV) 0
0 uYy)  uZj)
= | —uY) 0 (V)

—u(Z) —u(Vzy) 0

where we have used the Replacement Rule, Theorem (2.4.6), recalling oy P’ = (1 0 0)7 and

ormV = (01 0)T.

Differentiating both sides of ogy P’ = (1,0,0)” with respect to ¢ yields

0
d _
O'RMPt/+ <dt(aRM)0R]1M> (URMP/) =10

0

so that indeed,

1(X]) 0
uY)) | = PV
UZ}) P/ (P'xV)

Further, differentiating both sides of orasV = (0,1,0)7 with respect to ¢ yields

d _
ormVi + <(R(URM)0R]1W> (crmV)=(0 0 0)F
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so that
(Vi) —-P-V
L(VQJ) — 0
(Vay) Vi- (P xV)

7.2.2 The syzygy operator H

Recall the extended Rotation Minimizing frame, prps, and the curvature matrices, Q° =

d
PrriPrns QF = &pRMp;UlV[. Equations (7.2.1), (7.2.3), (7.2.17) and repeated here for

convenience,
ormM  —0rRMP
PRM = (7.2.18)
0 1
and
—u(X7)
A T RMIRM 0
Q" = PrRMPRM = 0 : (7.2.19)
0 0

where we have not yet imposed the arc length constraint +(X’) = 1 since we need its time

evolution, and

. —(X1)
1
d B —ORM Oy | —(Y3)
Q' = apRMﬂR]lw = 4 (7.2.20)
—1(Zt)
0 0

The non-constant components of ()° are the generating invariants of the algebra of invariants
of the form F = F(P,P',P",...,V,V' V" ...); every invariant of this form can be written as

a function of «(Y"), t(Z") and their derivatives with respect to s.

The syzygy operator H that we need for our calculations in the Calculus of Variations,
relates the time derivatives of these generating invariants to the s derivatives of the components
of t(P;) and «(V}), occurring in @Q'. In our case here, the syzygy operator H can be calculated
by examining the components of the compatibility condition of the curvature matrices Q° and
Q, (5.4.4)

Lo - Lo =07 (7.2.21)
dt ds ’ o

which follows from the fact the derivatives with respect to ¢t and s commute (see [70], §5.2).
We use UIQMUITZ}M in the form of Equation (7.2.14), that is, with the Rotation Minimizing

constraint not yet imposed, as we will need its variation with respect to time in the sequel.
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Calculating the components of Equation (7.2.21) yields,

SUXY = ) (YY) — U2 (),

d moo_ digb i (Y, . (7"

(gL(Y ) = %522 (Y) + d(‘f (L(Y")u(X0)) 4 t(Va)u(Z"), (7.2.22)
G2 = ) g (2 0) = oty

SV = V) + oY) S Z) — (2 5

or in the form we require,

u(X) L(Xt)
d [ «(Y") u(Y)
dt L(Z”) L(Zt)
L(V3) t(Vst)
where d
— — (Y u(z") 0
d ds d d2
AN 1" Rl "
o | )%s * %SL(Y e ;2 "% (7.2.23)
L(Z//)di + de(Z”) 0 ﬁ —L<Y”)
s s
d d d
_ AN AN o~
0 "z )ds oY )ds ds

We note that H is an invariant, linear differential operator matrix.

7.3 Invariant Calculus of Variations

We consider an SE(3) invariant Lagrangian of the form
E[X,’ Y’, Zla X”) Y”’ Z”? ] = /L(K/:h /{2, I{LS’ 52757 ) + IU'C + )\(”7 - 1) dS

where we have set ¢ = «(V5), n = «(X'), k1 = «(Y") and ka = 1(Z"), and where p and X are
Lagrange multipliers for the Rotation Minimizing frame constraint (Definition 7.2.15) and the

arc-length constraint (Definition 7.2.8) respectively.

Recall the Euler operator with respect to a dependent variable u is defined by

. Can oL
E (L) = Z(_l) @au(n)

n

d
where u(") = d—nu We will denote this operator by just E* for simplification. We apply the
s

invariantized version of the calculation of the Euler-Lagrange equations presented in §2.5.4, to
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obtain
EX E7
EY Er1
0= =H"
EZ Ek2
|E E¢
that is,
d d
=EX = — Ef — ko—Ef2 — ) 7.3.1
0 KT Koo s (7.3.1)
0=E" = d2E*”~1+i( ) — K1 (7.3.2)
ds2 qs 2 ’ i
d? d
—E? = —E" - — — 3.
0 12 P (K1) — RaA, (7.3.3)
0=E" = E¥ky — E"25y — ps. (7.3.4)
Remark 7.3.5. Note that
—K iE”“1 — K iE’{Z __d (k1 E™ 4+ koE™?) + k1 JE™ + kg JE72
1ds 2ds ds 1 2 1,s 2,8 .

Also, by equation (7.17) in Mansfield, [70] we have that

K1, sE™ + kg JEM
m—1
= L oL . OL . |
(- E B () o () )

Therefore, As is a total derivative and we obtain

m—1
d* oL d* oL
A= —kr1E™ — kB2 + [ — DL mk— | —4=—— m—
" e z:: z:: - <(d8k aﬁl,m) Fmek (dsk 3’*@2,m) " k)
(7.3.6)
where the constant of integration has been absorbed into \ by Remark 7.1.9 of Mansfield, [70].

This result for A relates to the invariance of the Lagrangian under translation in s, that is, we

have invariance under s — s + € and hence a corresponding Noether law.

To obtain the Noether conservation laws, we need to calculate the infinitesimals of our
group action, its associated matriz of infinitesimals, and the right Adjoint action of the Lie
group SE(3) on the infinitesimal vector fields. For the Lie group SE(3) and the left linear
action, the precise calculations appear in Gongalvez and Mansfield, [33] with the end results
needed for our case here recorded in the proof of the following Theorem. Elements in the Lie

group SE(3) are, in a neighbourhood of the identity element, described by six parameters,
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three translation parameters, a, b and ¢, and three rotation parameters, 0.y, 0,. and 0., where
02y is the (anticlockwise) rotation in the (z,y)-plane, and similarly for 6,. and 6,..

We obtain that Noether’s laws are as given in the following theorem:

Theorem 7.3.7. The conservation laws are of the form

A 1
d
— B — iy e
il
T
o 0 ——FE"™ c
R ds TR @ (7.3.8)
DXok,, Dok, D 1 cy
Ef2 s
Eft C6
where
0 —Z2 Y
X = zZ 0 =X
-Y X 0

D = diag(1,—-1,1), and the ¢; are constants.

Proof. In order to compute the conservation laws, we need the boundary terms Ay, the (right)
Adjoint representation of the frame prjs and the invariantized matrix of infinitesimals, which
we defined above. We now consider these in turn.
Let E(L) = (E" E* E*2 ES) and let ¢' = (u(X) «(Y;) o(Z) L(‘/37t))T. Then the boundary
terms Ay are defined by
%AH = E(L)YH¢' — H*E(L)¢".

By direct calculation, we obtain
d K d K
Ay = M(Xy) + | ——E" — pro | o(Y2) + | ——E" + pr1 | o(Z)
ds ds
+E (YY) + E¥u(Z) + (Vi)

= CXu(Xp) + CYu(Vh) + CZu(Zy) + CY (Y)) + CZu(Z)) + CVotu(Vay)

where this defines the coefficients C and where we have used the syzygies

L)+ ru(X), W) = Su2) + ran(X)

YY) = —
{(Y7) ds ds

to eliminate derivatives of ¢(Y;) and «(Z;) in the boundary terms.

In Gongalves and Mansfield, [33], the authors show the (right) Adjoint representation of
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SE(3) with respect to the generating infinitesimal vector fields of the action,

Vq =0x, vy =0y, Ve =0z, Vvyz =YO0z — Z0y, vxz = X0z — Z0x, vxy = X0y — YOx
(7.3.9)
is of the form, for g = (R, a),

R 0
DAR DRD

Ad(g) =

where R € SO(3), D is the diagonal matrix D = diag(1,—1,1) and A is the matrix

0 —c b
A= c 0 —a
b a 0
where a = (a, b, c)T is the translation vector component of g.
Hence
0 —-Z Y
-1 TR 0
Ad(pry)” " = . . where X = Z 0 -X
DXo Doy, D
RM RM v x 0

The invariantized matrix of infinitesimals with respect to the basis (7.3.9) is

XY ZY 7 VW

a (1 0 0 0 0 0
b |0 1 0 0 0 0
c 0o 0 1 0 0 0
(1) =
6,10 0 0 0 0 1
0.1 0 0 0 0 1 0
0,,\0 0 0 1 0 0

Finally, the conservation laws obtained via Noether’s theorem for the unidimensional case
are (2.67)
Ad(p)'V(I) =c (7.3.10)

where

T
d d
V() = Z@”(I)Ca = < A —gE’“ — k2 —gE’” +puky p EF2EM ) (7.3.11)

«
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as required.

O

Remark 7.3.12. A quick check on this result is obtained by noting the following. Differenti-

ating (7.3.8) with respect to s and multiplying by Ad(prar), we get

d d .
SV = = (Ad d(p) V(I
3 V() = 1 (Ad(prw)) Ad(p) V(1)
i.€,
0 K1 ) 0 0 0
Kk, 0 0 0 0 0
d Ky 0O 0 0O 0 0
Vi) = v(I). (7.3.13)
ds 0 0 0 0 —r ko
0 0 -1 wk 0 0

0 -1 0 —k2 O 0

We observe that the first four rows are equivalent to the Euler-Lagrange equations while last

two rows are tdentically 0, as expected.

7.4 Solution of the integration problem

The conservation laws (7.3.8) can reduce the integration problem. We write these in the form,

UI%ZM 0 W1<I) _ C1 (74 1)
DXoh,, DokyD wa () c2
where V(I) = (w1(I), w2(I1))T, ¢ = (c1,c2)” and recalling
0 —Z Y
X = VA 0 —-X
-Y X 0
Since oy € SO(3) we have from
ORMC1 — W1 (I) (7.4.2)
that
lci| = |wi(1)]. (7.4.3)

Further, multiplying the second component of Equation (7.4.1) on the left by c1(I)” D, since
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D? = I, we obtain

w1 Dwy = cf Dcs. (7.4.4)

In order to solve Equation (7.4.2), as far as we can, for the components of ogps in terms of

the components of ¢; and wy(I), we use the Cayley representation € of elements of SO(3).

We define
2 2_ 3 _ .2 _9 _ 92
Xy + Xy €3 Ty (x1x4 1’21’3) (561333 + 582.7;4)
C(21, 22, 23, 14) = 2(z1mq + w2w3) 2 — 23+ 23 —2F  —2(z1m2 — T324)

—2(z1x3 — T2T4) 2(x129 + x324) x% - a:% — :Ug + xi

Then provided z? + 22 + 23 + 22 = 1, €(a1, 79,23, 23) € SO(3), has an axis of rotation

(72, 73,74)T and the angle of rotation 1) satisfies 222 — 1 = cos . Hence we may define, for

an angle 9 and axis of rotation a = (a1, as, a3)” # 0,

R(,a) =€ (cos (Z) ,sin (Z) %,sin (g’) %,sin (;b) ﬁf) €50(3).

There are two cases.

Case 1. If wi + ¢ is bounded away from zero, we note that orys may be taken to be
a product of a rotation about ¢; + (0,0, |c;|)? with angle 7 followed by a rotation about

(0,0, ]c1])” with any angle ¥ and a rotation about w1 4 (0,0, |c1|)” with angle , that is,
ORM = R(ﬂ-? w1+ (Oa 0, ‘c1|)T)R(¢(S)7 (07 0, |Cl|)T)R(7T7 c1+ (07 0, |C1|)T)'

This solves for oy up to the angle 1. If we differentiate this with respect to s, right multiply

by 0;%11\4
-1 _ T T T
OpM = R(ﬂ-a c1+ (Oa Oa |C1|) )R(_¢(S)a (Oa 07 |C1|) )R(ﬂ-awl + (07 07 |C1|) )
using (7.3.13) and taking into account that

0 K1 K2
d _
&(URM)UR}\/[ = —k1 O 0

—kyg 0 O
we obtain a remarkable equation for v, specifically,

Va(1)

=k
OO P I AT

Ko (7.4.5)
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where recall V5(I) and V3(I) are the second and third components of the vector of invariants,
V(I), and also, by definition, the second and third components of wy.

Case 2. If wy — ¢y is bounded away from zero, we note that orys may be taken to be a
)T

product of a rotation about c¢; + (0,0, —|ci|)” with angle 7 followed by a rotation about

(0,0, —|c1|)” with any angle ¢ and a rotation about wy + (0,0, —|c1|)” with angle 7, that is,
orym = R(m, w1+ (0,0, —[e1) ") R(¥(s), (0,0, =[e1 ) ") R(r, €1 + (0,0, =|e1 ) ).

Since the matrix on the right and the matrix on the left are constant, we obtain the same

equation for ¥ as above, but with the signs of c; reversed. Hence in this case,

Va(1)

K|+ —————Z2—— Ko. 7.4.6
el v ™ (7.4.6)

ws:

In either case, we obtain ogrys up to a quadrature. There is a significant overlap in the
domains of the two cases, and matching one to the other, as needed, is not a problem.

Next, we seek P. We note the first row of ogps is P/, and so we can always obtain P by
quadrature. However, we note that only one component needs to be calculated this way, as the
second component of Equation (7.4.1) provides algebraic equations for two of the components

of P, i.e,

where Z has been solved previously by quadrature.

We conclude by noting that the conservation laws provide two first integrals of the Euler—
Lagrange equations. They may be used to solve for P in terms of two quadratures, and they
also solve for the normal vector V' in terms of one quadrature, that of ¢. Finally, we note that
it is easy to obtain the Frenet—Serret frame from our calculations, since it is defined in terms

of P' and P”.
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7.5 Examples and applications

We examine a Lagrangian which is not possible to study in the Frenet—Serret framework.
Secondly, we study functionals used to model some biological structures, invariant under SFE(3)
and depending on the curvature, torsion and their derivatives, but using our results for the

Rotation Minimizing frame.

We first show that every Lagrangian which can be written in terms of the Euclidean
curvature x and torsion 7 can be written in terms of the invariants, x; and k3. From (7.1.8)
we have that

K1 = Kcos#, K9 = K sin @

and therefore, using tan = ko /K1 and 65 = 7 we have,

K1K2s — K1,sK2
K =\/K? + K3 T=——n = (7.5.1)
17T hy, 2, .2
K] + K3

But the converse is not true. Lagrangians which depend only on ko/k1 cannot be written
in terms of k and 7. Our first example is the simplest such Lagrangian, which we study simply

because we can.

7.5.1 Invariant Lagrangians involving only xy/k;

Let us consider the Lagrangian

2
ﬁ[@} :/;<"2> _|_)\(7;—1)+,u{ds:/tan92+)\(n—1)+NCds

K1 K1

where recall 7 = 1 is the arc-length constraint and ¢ = 0 is the Rotation Minimizing frame

constraint.

Using the results of the previous section, we obtain the Euler—Lagrange equations

2 2 2
12£/€1 3d72/§,1 1 12i:‘£1£/€2 2d72l'€2
__ds + ds k24 ds "ds = ds T P
/i? m‘ll 2K1 2 /i‘ll /i‘;’ s
(7.5.2)

d o

2d8/€2 + /,LiKQ —
K3 ds ’
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d , d? d? d d

3 6—r7 2—2/11 —— k2 4—K1—K9

_L22+ ds4 . d33 H2d52 d 3d5
2K7 K7 Ky K1 Ky

3

K K
pet =2+ = =0

Iil K1

K2

1 2
where \ = 5 <> has been solved using (7.3.6).

K1

Further, the vector of invariants V(I) needed for the conservation laws is

185

(7.5.3)

(7.5.4)

1 ) 2
2 K1
K9 4
_= — Ok — ko —
p (/:u K1 k2 + HQdS/ﬂ)
@/12 2H2£l‘£1
V() = — pe + e + pK1
7
K2
2
K
12
_F2
ki

Solving (7.5.2), (7.5.3) along with (7.4.4), (7.4.5) and (7.4.6) for k1, k2, p and ¢ with initial

conditions
0 =1, r0)=2 La0)=1, Lo =1
K1 =1, K2 _27 dSﬁl — 1, dSﬁQ — 1,
MO =1, p0)=1, Z0)=1,  $(0)=0

we obtain the following solutions, see Figures (7.3), (7.4), (7.5).
Note: For this example and the following ones, the range is all that MAPLE can do before

running into singularities.

7.5.2 Applications in biology

In order to model strands of proteins, nucleic acids and polymers, some authors have made
use of the classic Calculus of Variations and studied the Euler-Lagrange equations of an
energy functional depending on the curvature, torsion and their first derivatives, of the protein
strand. In Thamwattana, McCoy and Hill, [106] and McCoy, [79] the authors consider protein
backbones and polymers as a smooth curve in R? and use the Frenet-Serret equations in order
to compute a variation to the curve. The Euler—Lagrange equations are obtained for these
type of functionals. In Feoli, Nesterenko and Scarpetta, [27] the same method is used to obtain
the Euler-Lagrange equations for functionals which are linear in the curvature.

In this section we study two examples of the families of functionals studied, but in terms of
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Figure 7.3: Solutions for the invariants s, 2, # and x?. From the graphs, we can see that
there is a functional dependency between the two normal curvatures that resembles a logarithm.
The value of theta reaches a maximum close to s = 1 before it reaches a singularity. For x? we
also find a singularity when s = 1, which is expected from the previous graph.

407

0.6 301

0.5+
K2 204

24 6 8 10 12 14 16 18 -6 -5 -4 -3 -2 -1 0 1 -2 -1 0 1 2
Kl s

K1 VS K9 svs b S VS K

Figure 7.4: Plots of the first integrals. In the following pictures, we check that the conservation
laws Vi (1) + Va(I)? 4+ V3(1)? and Vi(1)Vi(I) — Vo(I)Vs(I) 4+ V3(I)Vs(I) are actually conserved
along s. The singularity in s = 1 shows in these graphs as expected.

9. %x 10 10 |
1.0781260-
8. x 10 10 |
10 4
1.07812581 7.x10
6.x 10710
107812561 5.%x 10710
4. %10 10 4
1.0781254-
3.x 107101
10
1.0781252- 2.x10
1. x 10-10_
_v AACAMNMAMNABANANAS =S AN }
-6 -5 -4 -3 -2 -1 0 1 -6 -5 -4 -3 -2 -1

svs Vi(I)? + Va(I)? + V3(1)? s vs Vi(DVa(I) — Va(D)Vs(I) + Va(I)Vs(I)
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Figure 7.5: Sweep surfaces using the Rotation Minimizing frame and the Frenet—Serret frame
along the extremal curve.

Plot of V' along the extremal curve Plot of P” along the extremal curve
using the Rotation Minimizing frame using the Frenet—Serret frame

the invariants x1 and x2. The conversion of a functional given in terms of Euclidean curvature

and torsion to one given in terms of k1 and k9 is given in Equation (7.5.1).

The Lagrangian [ x27 ds = [ k1o — k152 ds

For the Lagrangian
/m/ﬁz,s — K1sko ds

the Euler-Lagrange equations are

2’%2,885 + 3%2,552 = 07 (755)

_2'%1,555 - 3”1,552 =0. (756)
The conservation laws are of the form (7.3.10) where
V(I) = (2(k1,sk2 — K1K2,s) — 22,65 — KoKk?  — 2K1,6s + A 21 2&2,S)T.

Solving (7.5.5), (7.5.6) along with (7.4.5) and (7.4.6) for k1, ko and ¢ with initial conditions

1 d d
/431(0) = 1, /452(0) = 5, glﬂ(O) = 1, &/432(0) = 1,
d? d?

@51(0) = 17 @KQ(O) = 17 ’(ﬁ(O) =0

and integrating to obtain the extremizing curve and its Rotation Minimizing frame, we obtain
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the following solutions, see Figures (7.6), (7.7), (7.8).

The Lagrangian [ K273 4+ T(2K2 — Kkgs) + KksTs ds = [ K1,sk2,.ss — K1sska,s ds

We now consider

/517552755 — K1,55R2,s ds.

The Euler-Lagrange equations are

d
_2/412,5355 + &(52/‘5) — k1A =0, (757)
d
2’{'1,3333 - di(/il,u) — koA =0 (758)
S
where
A= 2K/2,SSSK’1 - 251,552,55 + 2/{2,3/{1,55 - 2”2’51,335
and

2 2
H=Kis + Ko — 2(’€1K/1,SS + ’{2’{'2,55)'

The conservation laws are of the form (7.3.10) where
V(I) = ()\ 2/@2,3333 — UR2 - 2/‘71,3355 + uK1 B 2’{1,888 - 2/{2,555)-

Solving (7.5.7), (7.5.8) along with (7.4.5) and (7.4.6) for k1, ko and v with initial conditions

1 d d

/431(0) = 1, HQ(O) = -, f/il(O) = 1, fﬁg(O) = 1,
2 ds ds

d? d? d3 d3

@"?1(0) =1 @/‘52(0) =1, @51(0) =1, @"@2(0) =1, ¢(0)=0

and integrating to obtain the extremizing curve and its Rotation Minimizing frame, we obtain

the following solutions, see Figures (7.9), (7.10), (7.11).
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Figure 7.6: Solutions for the invariants 1, k2, 6 and 2. The plots show that there is a linear
dependency between k1 and k9. We can therefore suppose that k9 = A1k1 + A9 where A\; and
Ay are real numbers. We can also see that both § and k2 have a periodic behaviour along s
reaching their maxima and minima at the same s.

K1 VS K9 svs @ S VS K

Figure 7.7: Plots of the conservation laws. Again, we check that the conservation laws
Vi(I)2 + Va(I)? + V3(1)? and Vi(I)V4(I) — Vo(I)V5(I) + V3(I)Vs(I) are actually conserved
along s.

18.45312503

18.45312502

s vs Vi(I)2 + Va(1)? + V3(I)? s vs Vi(I)Vy(I) — Vo(I)V5(I) 4 V3(I)Vs(I)
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Figure 7.8: Sweep surface using V' from the Rotation Minimizing frame along the extremal
curve

I

Figure 7.9: Solutions for the invariants ki, k9, 6 and x2. In this case, we also find a
linear dependency between the curvature invariants. However, now @ and x? don not evolve
periodically along s. A minimum can be found for § and &2 for approximately s = —1.5.
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Figure 7.10: Plots of the first integrals. The conservation laws are conserved along s as shown
in the following plots.

16.25000003
2.x10° 17

16.25000002 -

1.5%x 107171

16.25000001

*} 16.249999991
16.24999998 1
16.24999997 1
3 Y 0 0 1 2
svs Vi(I)? + Va(1)? + V3(I)? s vs Vi(I)Vy(I) — Vo(I)V5(I) + V3(I)Vs(I)

Figure 7.11: Sweep surface using V from the Rotation Minimizing frame along the extremal
curve.
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Moving Frames and Gauge Transformations

The aim of this chapter is to study the relationships between two moving frames when one is
the gauge transformation of the other. We show that the differential invariants, the curvature
matrices and the differential syzygy of one of the frames can be written in terms of the ones
coming from the other frame and vice-versa. We use the SE(2) action as our running example
and the SL(2) projective action as a detailed example in order to illustrate the theory. Some

of the results are also illustrated for the linear transformations on curves action.

8.1 Moving frames and gauge transformations

Consider two moving frames
A. B.
prM—G and po:M— G. (8.1.1)

If

p?=x-p? (8.1.2)

where x € G, we will say that y is a gauge (see Figure (8.1)).

Example 8.1.3. Consider the special Fuclidean group SE(2) of rotations and translations

acting on curves (u(s),v(s)) on the plane parametrized by the arc length

U cosf) —sinf U a

v sinf cosf v b

193
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Figure 8.1: By choosing two different cross-section, we obtain two moving frames related by a
gauge.

/CA ’CB

For the normalization equations u =0, v = 0 and vs = 0 we obtain the moving frame (see

Gongalves and Mansfield, [33]) - also obtained previously in (4.1.4)

Ug Vg —UUg — VgV
A _
P = —Vg Us —VUg+ VU
0 0 1

while for normalization equations u = «, v = 8 and vy = § we obtain the moving frame

Svs +usV1l— 62 —dus + V1 —062vs a+ 6(vus — uvs) — V1 — 62 (uus + vvg)
pP = dus — V1 —0%vs  dvs+usvV1l—0%2 B —d(uus +vvg) + V1 — 62(uvs — vus)

0 0 1

where a, § and § are constants. Note that (8.1.2) is satisfied where

V1—4§2 -0 o
X = ) V1-62 B
0 0 1
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8.1.1 Differential invariants

Let us set I3+ and IZ to be the invariants as defined in (2.4.5) for p and p? satisfying (8.1.1).

Proposition 8.1.4. Given two moving frames p* and p® as in (8.1.1) such that (8.1.2) is
satisfied, the differential invariants of the frame p* can be written in terms of the differential

invariants of the frame p® and vice-versa as follows

IB=x-14, Imi=x1'-1E (8.1.5)

Proof. From (2.4.5) and (8.1.2) we have that
IR=p" 2z =xp" 2= x I

Finally, making the inverse of the gauge transformation act on the left we obtain I f} =

x LIB. O

Remark 8.1.6. Note that - is not the standard multiplication but the group product which
matches the multiplication of matrices when using representation matrices in linear group
actions. At the end of this chapter we give an example of a non-linear action in order to

tllustrate the theory for these type of actions.

Example 8.1.7. For the moving frame p* (see Gongalves and Mansfield, [33])

A u 0
M= A |=p*| v |=]0],
1 1 1
Ii“’A Ug 1
=t =] |=]0]




196 Moving Frames and Gauge Transformations

At Uss 0
Iﬁ = IfiA = pA ’ Vss = UsVss — VslUss )
0 0 0
I}?A UK UsUK + VsV
If} = I}’(’A = pA : VK = UsVK — VsUK
0 0 0

B U «
B | =p" | v | = 8 |
1 1 1
If’B Ug V1-—42
8 | =p" vy | = ) ;
0 0 0
1" s O(tass — Vasts)
0P =" | v [ = VI 02 (usves —veuss) |
0 0 0
I;:’B UK V1 = 82 (usug + vsvk) — 0(ugvs — VK Us)
IZ’B =pP. v | = | S(urvs — vicus) + V1 — 62 (usvy — vsur)
0 0 0

Note for any K (8.1.5) is satisfied as

1P VI—82 -5  a 1A
e = 5 V1= 8 I
1 0 0o 1 1

8.1.2 Curvature matrices

Let us denote Q% and Q% the curvature matrices defined in (2.57) of p? and pP respectively.

Proposition 8.1.8. Given two moving frames p™* and p® such that p® = x - p* where x is a

gauge transformation, the curvature matrices for the moving frame pB can be written in terms
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of those ones of the moving frame p* as follows

Q= xix "+ xQax ! (8.1.9)
where x; = D;x.

Proof. Inserting (8.1.2) in Q% = Di(pB)pB_1 and using Q% = Di(pA),oA_1 we obtain

—1 -1 _ _ .
=D;(x-pM)(x - M) = (i +xDip™) (p) T = xax T QUx T

Example 8.1.10. Using (2.57), for the moving frame p* we have (see Mansfield and van der
Kamp, [73])

0o Iyt -1 0o Iyt -t
Qi=| -5y 0 0 and Q4= -nyt o 1t
0 0 0 0 0 0

and for the moving frame p® we have

sB yv.B ,B B
(P01 Praary P s, (as+ (81357 41717 @) 6) A+8: 8422 (1717 a1}y P +1)
b

B
Mﬂ + 7 X

s 2_1y7v.B o s7usB 1B a1 _1)s\A—6,a-22 (1L B 1178
= (82—1) 1V B 451" P X454 v,B w,B (3s+( 11 B—alyy ) s 11t
@5 M SLi" + L7 A )
0 0 0
and
s s (o (et s oot
12 + 12 - A
t 2 v,B S(BIVB _qrt:By_1v:B N—ad, 22 (814 B v B
= (67 —1)1} +5I Bats v,B u,B ( (B~ —adyjg ™) =1y " +6¢ ot By~ +aliy
QB 12 12 OIyy” + 137 A by
0 0 0

where A = /1 — §2.

Taking into account that

2P = A1 — 62 — 134,
198 = 146 + 1941 - 62,
1" = ~I;5%,

P =1 - 62

(8.1.11)
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and

I = 1281 - 62 + 125,

A = =105+ 131 - 8, (8.1.12)
B B

pa_ hy Ly

12 /1 _52 5

equations (8.1.9) can be easily verified.

8.1.3 Differential syzygy

Recall that the curvature matrices satisfy the relationship (2.58). If
Ds =Dy and Dy = Dy
the vanishing commutator [Ds, Dy] = 0 yields that the syzygy (2.58) can be written as follows
D.Q; — D@5 = Q4. Qil- (8.1.13)

Proposition 8.1.14. The differential syzygy for the moving frame p® can be written in terms

of the differential syzyqy for the moving frame p as follows
D,Qp — DiQp — [Q%, Q] = Ady (DsQ% — D:Q% — [Q%, Q4)) (8.1.15)

where Ad is left adjoint action.

Proof. Differentiating Q% with respect to s we have that

DsQ% = Ds(xex* + xQuUx ™)

= XstX = XeX XX T QU T 4 x (D@ x !

—QUx xsx )

Analogously, differentiating Q% with respect to ¢t we have that

D:Q% = De(xsx ' + xQ5%x )
= XX = s e e @i x (it = @5 hax 7Y
Hence

DsQ% — DiQ% = —xax XsX T XX Xt xs@Ux T — xe QX T

+ xDs@ux T = x@QUx Txsx T = xDe@5x T+ X @5 x e
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We also have

[Q%. Q%) = [xsx "+ xQ%x 1 xex ' + xQux ]

= XXX XX QU T+ X@5x e T+ xQ5Q4 X!

1 1

— XXX T = X @A T = x @l x T e T = xQU Q5 X

and therefore
DSQtB - DtQSB - [QSB7 QtB] =X (DSQtA - DtQiX - [in Q%]) X_l

obtaining the required result.

O

Example 8.1.16. Equations (8.1.9) and (8.1.15) have been checked for this running example
with MAPLE (see Appendix).

8.2 Linear transformations action on curves

Recall the group of linear transformations acting on curves (z,u(z))
T —r =21, u— Au+e=1u.

given in (5.2.1).

Recall that for the normalization equations

u =0, ug =1
we obtained the moving frame
1 U
pA = Uy Uy
0 1

-u =0, L(ux):pA-ugczl, L(UJ):,OA‘U]:
Using (2.57) we obtain the curvature matrices

—I4 -1
Q4 = H and QY =
0 0 0 0
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From (2.58) and setting I{} to be k4 and I3' to be o we obtain the syzygy of the form (2.59)
kA = (D2 + kD, + k)04

where

Uy Ut
kA= and ot =1L,
Uy Uy

Now we consider the normalization equations v = « and u, = B, where a and 3 are constants.

Solving these equations for the group parameters yields

A= ﬁ, €= — @
Uy Uy
In matrix form,
p Pu
I B
0 1

Note that

Il
=
>
S|
8
|
>
é/ﬁ
g |+
[a)
o >l S~—
> o

= pP(u,uz)g™"

which is the equivariance of a right frame for a left action. The invariants are of the form

ug
W) =P u=a, w) =gy =B, ) = o7y = L
T
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Using (2.57) we obtain the curvature matrices

/893_1131 a(IlBl_ﬁx)—i-ax—,éQ

Qp = p s ,
0 0
and B 5
T 1B —
t At o ( 12 ﬁt) + oy — BIF
Qp = Z B
0 0
Note that
IB B IB
D, 2 — QL 2 12
0 0 0
and therefore
IB—DIB—LIEIB (8.2.1)
12 = Yzig 3 2 - -4

Equations (8.1.9) and (8.1.15) have been checked for this example with MAPLE (see

Appendix).

8.3 Projective SL(2) case

Recall the projective SL(2) action (2.6) on curves in the plane studied in §2

a b
u = -u:w, where ad — bec = 1.
c d cu+d

For the normalization equations u = 0,u; = 1, uy; = 0 (2.49) we obtained the moving frame

(2.50)

1 U
A Uy Uy
p= Ugpy 2ug2C — Ulgy
2ui/2 2u§'3/2

while now for the normalization equations u = «, u, = 3, Uy = v we obtain the moving frame

Ugz S — Uzl + 2%, ugadu — 2B%uzu + 2Bau? — uzzabu
5 2u§/253/2 2ui/2ﬁ3/2
Ugz S — Uy 2 Bui — Bu + uduy
/% 33/2 2>/233/2
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where «,  and 7 are constants. Note that we have that p? = x - p? where

26% — ad o

2433/2
X= s W
2832 /B

Using (2.4.5) we computed the invariants (2.4.7)

U 3 u?
IA:pA'uzov If‘:pA'uz:L Iﬁ:pA'u:m:O’ Iﬁlsz'uxzm: e

ur 2 u?

We can also compute the invariants for the frame p? which are of the form

P=pPu=a IF=p" u=8 I =p" u=7,

U 3u 362

We know from (2.8) that

- au +b
u=g-u=—-:,
g cu+d
— Uy,
Upg =g Up = ——— 5,
¢ T (cu+ d)?
__ (cu + d)ugy — 2cuy
Ugye = g * Ugy = 3 5
(cu+d)
N Uprr 6CUL Uy 602u§

Ugzx = 9 * Ugzx =

(cu+d)? (cu+d)?  (cu+d)

and therefore

1" =x1"= a‘g=x,w=1f§ - @
W=x-If=ul|_ =5
I =x- I = a;;’gzx,uk:[]‘?. =,
2
IIBH X Iﬁl - % g=x,uk:I}“é = ﬂlﬁl + 255

verifying (8.1.5). The curvature matrices associated to the frame p# where computed in (2.60)

which are of the form

IA
0 -1 -2 _p

s d to_ 2
iz wd o Qa= |t o

2 2 2
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Using (2.57) we have that the curvature matrices associated to the frame p? are of the form

(B2+a8)Bu =8> +a(BUI11-82)=")  —28*420.8%+2a8%(6=28.)—a® (BUP —32)—5%+5Bx)
X B3 B3
1
QSB = 2 )
BIE | —B6—6%+68a 582 —B2Bx—aBIf | +apfss+6%a—asfs
Y-Y: 33
(B2+a8)Bi—B2IH+a(BUP 2 —6)—1158)  —283184283a,420B2(18 —28:)—a?(BUB ,+6,)+6(15,—8,))
t 1 [33 ’33
QB = 2 B B 21B 2 B B
BIE , — B —15 5+8:6 B2IE, —B2B8:—BIP ya+B5iatIBsa—Bias
83 B3

Taking into account that

362
1B =51,  IB =814 +618, 1B, =pBIA, +25+ %ng
and that
17 1B 0 IB 5 52
IAZL7 IAZQ——IB, TA, — U2 _ 9% B 4 1B
2 3 12 g g2 112 3 it oah

equations (8.1.9) and (8.1.15) are easily verified.

Note that I}, and I{} can be written in terms of I3' as
Ify =D.I3*  and  If}, =D2I'+ I} 15

Also 11312 and 1132 can be written in terms of IQB as

If} = <5_Bm +Dx> g

3
15, - <D§ G - Bo)py | A0 = 2R 262 - 2@5) ”

Equations (8.1.9) and (8.1.15) have been checked for this example with MAPLE (see

Appendix).
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Conclusions and Future Work

In this thesis, the theory of discrete moving frames and Noether’s finite difference conservation
laws is discussed. Given a discrete Lagrangian with a Lie group of variational symmetries,
a discrete moving frame allows us to express the Euler-Lagrange equations in terms of the
invariants and Noether’s conservation laws in terms of the discrete frame and a vector of
invariants. This makes explicit the equivariance of the conservation laws. The solutions of the
Euler—Lagrange equations can then be solved in terms of the original variables.

We apply this theory to three group actions of the semisimple Lie group SL(2), the special
unitary group SU(2) and the special euclidean group SE(2), where we study a symmetry
preserving discretization of the Euler’s elastica.

We show how to construct the correction terms, correction matrix and curvature matrix
associated to a discrete frame. We prove that one can always write the evolution of the curvature
invariants in terms of the first order differential invariants and a linear shift operator, coming
from a differential-difference syzygy between the curvature matrix and the Maurer—Cartan
matrix. This is possible when the normalization equations do not involve time derivatives.
We also prove that the symmetry condition for two curvature evolutions is a differential
consequence of the symmetry condition on the curve evolutions. Some examples are developed
and related to discrete integrable systems.

We give a brief introduction to multispaces and construct the multispace moving frame
and its invariants for some Lie groups. In these examples, using interpolation in order to
define coordinates, we show that the discrete moving frame converges to a smooth one. We
also show that the discrete invariants and syzygies approximate their smooth equivalents. In
the last example, we construct the multispace prolonged action and the table of infinitesimals
and show how taking a continuum limit yields convergence to the smooth results.

We have developed the Calculus of Variations for invariant Lagrangians under the Euclidean
action of rotations and translations on curves in 3-space, using the Rotation Minimising frame.
We obtain the Euler-Lagrange equations in their invariant form and their corresponding

conservation laws. These results yield an easier form than those obtained in Gongalves and

205



206

Conclusions and Future Work

Mansfield, [34]. We also show how to ease the integration problem using the conservation laws

and to recover the extremals in the original variables. We show how to minimize the angle

between the normal and binormal vector and give an application in the study of biological

problems.

We study the relationship between two moving frames differing by a gauge and how the

differential operator linking the curvature invariant with the differential invariants of one of

the frames can be expressed in terms of the other.

Future work includes:

Extending the techniques developed in §3.8 for higher dimensional cases.

Studying applications of Noether’s finite difference conservation laws for other Lie groups

such as the spin group and the symplectic group.

Optimising the use of the difference frame appearing in the example of the discrete

Euler’s elastica in the approximations of the conservation laws.

Developing a package in Maple that allows us to compute the invariant form of the

Euler-Lagrange equations and conservation laws for particular Lie groups.

Studying the conjecture of the operator H to be pre-hamiltonian (see Carpentier,

Mikhailov and Wang, [12], [13]).

Constructing the discrete Rotation Minimising frame and obtaining the invariant Euler-

Lagrange equations and conservation laws.

Generalizing our results to obtain a symbolic calculus of invariants in a broad class
of problems for which the frame is not defined in terms of algebraic equations in the

coordinates of the manifold on which the Lie group actions.

Studying joint invariants in problems where two helices appear and interact with each

other.

Investigating the minimization of functionals that are invariant under higher dimensional

Euclidean actions.

Discretizing the results appearing in §8, Moving frames and gauge transformations and

finding applications to other fields.

Stuying the relationships between the H operators coming from two moving frames

differing by a gauge.



Indiff Package for Finite Difference Systems

In this appendix, we describe how to adapt the MAPLE package Indiff (Mansfield, [78]) for

finite difference systems.

Given the independent and dependent variables from a finite system, the group parameters
of a Lie group, the matrix of infinitesimals and the normalization equations, the Indiff
package computes, among other things, the correction matrix as well as syzygies between the

invariants.

In order to use the package Indiff, it is necessary to open a MAPLE file and then read the
Indiff package. The independent variables are given in a list denoted vars, the dependent
variables are given in a list denoted unks, and the group parameter names are given in a list

denoted GroupP.

In the smooth case, we consider derivatives of order K of the variables u®, i.e, u%, and
their invariantized form is denoted in Indiff by In[ulalphal, [K]]. In the discrete case, we
treat each shift of each variable as a different variable. For example, recall (4.3.1) in where we
are considering the variables xg, yg and their shifts. We will be treating xq, its shifts, yo and

its shifts as different variables.

Variable Input MAPLE invariantization syntax
xo x0 In[x0, [1]
Yo y0 In[yo0, [1]
x1 x1 In[x1,[]]
1 y0 In[y1,[]]

Now recall (3.4.2) in where the induced group action on the path and its tangent was considered
and the group action to the dummy variable ¢ was extended trivially. The first order differential
invariants with respect to the variable ¢ will be denoted as In[z, [1]] where z is a discrete

variable.
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For example, in (4.3.1) we would have

Invariant MAPLE syntax
1§ 0.t In([x0, [1]]
1§ 0.4 In[yo0, [1]]
I5 1.4 In[x1,[1]]
I8 14 In[y1, [1]]

In §5, we introduced a second dummy variable. Suppose we have two dummy variables ¢;

and t2 as in (5.7). We would have the following:

Invariant MAPLE syntax Invariant MAPLE syntax
I5 0.4, In[x0, [1]] I§ 1., In[x1, [2]]
I8 0.4, In[y0, [1]] 1§ 14, In[y1, [2]]
1§ 0.4, In[x0, [2]] 1514, 1 In[x1,[1,2]]
I§ o4, In[y0, [2]] I8 1.4, 00 Inly1,[1,2]]
1514, In[x1,[1]1] 1514, 1 In[x1,[1,2]]
I 1, Inly1, [1]1] I8 14, 4 Inly1,[1,2]]

In order to compute the correction matrix and the syzygies between the invariants, we first
give MAPLE a list of dummy variables denoted vars, a list of as many discrete variables as we
are going to use in our computations and at least as many as appearing in the normalization
equations denoted by unks and a list of the group parameters denoted by GroupP. After that,
we write the infinitesimal action of the Lie symmetry group in matrix form and we denote it
by XiPhis.

Note that we have to write as many 0's columns in the beginning of the matrix as we have
dummy variables. In the discrete cases presented in this thesis is either just one column for ¢,
or two columns for ¢; and ¢5. The normalization equations are given using the invariantized
syntax of the variables as a list which is denoted as Negs.

In order to compute the correction matrix, MAPLE needs to use the procedure HNI, which
calculates the highest invariantized derivative terms. This procedure has three arguments.
The first one is the index of the derivatives appearing in our calculations, the second one is
the variables appearing in the calculations in order, and the third one is the order we are
using, which will always be in the examples of this thesis, the total degree ordering, denoted
by ttdeg. Finally, the command Kmat() give us the minus correction matrix.

Note that from (5.3.17) and choosing an appropriate order of the Lie algebra basis (see
Remark 5.2.5 in [70]) one can compute the curvature matrix after obtaining the correction

matrix by using the command Kmat().
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The package Indiff also allows one to compute invariant differentiation thanks to the
procedure Idiff, which has two arguments: the first one is the invariant we want to differentiate

and the second one is the variable we are going to differentiate with respect to.

Recall (5.3.1)

d
afk,j = My, s + Ir jt (A.0.1)
where
Iyj=pr-2z; and Iy 4= pg- 2js. (A.0.2)

One can use the procedure Idiff to compute the correction terms, as we will show in the

following example.

We illustrate all the above by considering the projective action of SL(2) on R studied in
section (4.3.3). Recall the curvature matrix associated to the discrete projective SL(2) action

from (4.3.56)

1 T 1 x x
d —05 — -0 -0
Ny = g <p0> = 272 27° 1 ! 1 , where crf = If;o;t-
d 2075 — 407 + 203 —505 + 506‘
Also recall that a basis of s[(2) is (2.16)
1 0 01 0 0
h = y e = 5 f =
0 -1 0 0 10
with Lie bracket table (2.17)
[, ] h e f
h 0 2e —2f
e —2e 0 h
f 2f _h 0

From (4.3.49) we have that

Vo =220, V=04, V.= —22%0,.
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It is straightforward to check that their Lie bracket table is of the form

[ ’ } Va Vi Ve
Vo 0 —2vy 2v,
A\ 2vy 0 —Vg
Ve —2v, Vo 0

Note that the Lie bracket table for the minus Lie algebra basis matches the Lie bracket

table for the infinitesimal vectors, verifying Remark 5.2.5 in [70].

We compute the first few correction terms Moy o.¢, Mo, 1.t, Mo 2;t, Mo 3;¢ and My 4,; with

Indiff (see MAPLE file at the end of this Appendix).

First of all, from the normalization equations (4.3.51) we have that
1 1
Io,oIPO'l’o:ia Ip1 = po-x1 =0, 10,2200'562:*5,
so it is clear that
d d /1 d d d d 1
S ho)==(2)=0, So)==0)=0, S (Is)=—(-=)=0.
a Jo0) = <2> g To) = 0 =0, 5 (o) dt( 2)
So from (A.0.1) we get that
0= Moo, + Ioo, 0= Mo+ Io1, 0= Mpoy+ oo,

and therefore

Moot = —loo, Mot = —1Io1, Moos = —1Io2

as expected. From the MAPLE file attached at the end of this Appendix we can see that

d
afo,?) = (400150 — 2(To,0y + o,24)) 15 3 + (To2t — To,0:) 0,3 — To,1:t + To3ie

and therefore by (A.0.1) we can deduce that
Moz = (4101 — 2(To,0it + Lo.2:4))15 3 + (To2e — Toost)Los — To,1:t-

Also

d
aIOA = (40015 — 2(Tooy + o,2)) 15 4 + (To 2t — To,0:)To,a — To,1 + Toaye



211

and therefore by (A.0.1)
Moz = (400,150 — 2(Lo,oi + o,2:¢)) 154 + (To2:t — To,0i¢) To.a — To,1se-

One can guess that in general

d
qplod = (4o — 2(Loox + To2)) 155 + (To2 — Toost) Lo — Toselo it

and therefore by (A.0.1) we can deduce that

Mo+ = (410,16 — 2(Lo,0: + IO,Q;t))Ig,j + (o,2:6 — Lo,0:¢) 10,5 — Lo,1:t- (A.0.3)



> restart
L > with(Lineardlgebra) :
> read "indiff-src-2" :
Error, (in with) package Groebner does not export normalf
Error, (in with) package Groebner does not export gsolve
Error, (in with) package Groebner does not export inter reduce
)
)

Error, (in with) package Groebner does not export gbasis
| Exrror, (in with) package Groebner does not export termorder

> vars = [t] :ukns :== [x0,x1,x2,x3,x4] : GroupP = [a, b, c] :
> XiPhis == Matrix([ [0, 2-In[x0, [ 1],2-In[xI, [ 1],2-In[x2, [ 1],2-In[x3, [ 1), 2-In[x4, [ 111, [0,1,1,1,1,1],
[0.-1n[x0, [ 1P-In[x1, [ 1F~In[x2, [ 1Ps=In[x3, [ 11 -In[x4, [ 11]])

0 2]nx()’[] 2Inx1’[] 21nx2,[] 21nx3)[] 2[nX4,[]
XiPhis:== | 0 1 1 1 1 1 (€)]
2 2 2 2 2
0 —Inxo,[] _I”xl,[] —Inxz’[] —Inxi[] —Inx4,[]
> Negs = [lx0.1 1) = J.inlel. [ 1) nls2 (114 5 |
[> HNI([[1], [x0,x], %2, x3,x4]], trdeg) :
> Kmat( ) :
> mysubs = {In[x(), [11= %,In[xl, [11=0,In[x2,[ 1] =—%} :
> MyKmatrix == subs(mysubs, Kmat( ) )
In In
PR x0,[1] x2,[1]
MyKmatrix:= | =252 = =522 dny gy 22 gy F Ay gy =200 4 )

Here we check Remark 5.2.5 in [68] to make sure we are choosing the correct infinitesimal vector fields and basis of the Lie
algebra. The Lie bracket multiplication table for the basis of the Lie algebra has to be the minus Lie bracket multiplication
table for the infinitesimal vector fields.

> myeij == (i,j) >Matrix(2, 2, (k,I) —»ifk=iand /= then]1 else 0 endif);

myeij == (i,j) v Matrix(2,2, (k, 1) — if k=iand /= then | else 0 end if) 3

> al = myeij(1,1) -myeij(2,2);

1 0
1:= 4
a 0 _i “)
(> a2 = myeij(1,2);
0 1
2 = &)
a lo . )
> a3 == myeij(2,1);
00
3= 6
“ l ) ©
> al+a2 —a2+al —2a2;
@]
=> al+a3 —a3+al +2a3;
®

> a2-a3 —al3-a2 —al,

(&)




> myvl = [=2x-diff (f;x); 9
myvl = f—=2x ( &f]

> myv2 = fodiff (fx); 9
myv2 = f— &f

> myv3 = f—-Cdiff (£ x);

myv3 = f—-x* ( %f]

> mywvl (myv3(f(x,0,2))) — myv3 (mwl (f(x,9,2)) )0—2-myv3(f(x,y,2) ) :expand(%);
= 2 (w3 (f(x3,2) ) ) — myv3 (myv2(f(x,7,2) ) )0+ myvl (f(x,p,2)) :expand(%);

[ "We add a minus sign to the curvature matrix because Indiff gives the minus correction matrix.
> NO:=-(MyKmatrix[1,1]-al + MyKmatrix[1,2]-a2 + MyKmatrix[1,3]-a3)

In In
Moy Mo i
- + = I o
NO = I 1
n n
B x0. 011 _ a2 1)
Iy =4y 1y 20, 1y 2 2

> Idiff (In[x0, [ 1],1)

> myvl (myv2(f(x,0,2))) = myv2(mvl (f(x,3,2) ) +2-mw2(f(x,3,2) ) : expand(%);
0

Here we perform a few invariant differentiations that allow us to investigate the formula for the correction terms.

0
(> rdif(nlx1, [ 17,1)
i 0
(> tdiff(n[x2, [ 11, 1)
i 0
> diff (In[x3,[ 1], 1)
>
("2 gy g gy = 2ing (yy) gy g+ (CIng gy Fing () Ing (y —Ing gy ing gy
[> 1diff(In[x4, [ 1. 1)
2
(2 ) FaIng ()= 20ng ) Dy o+ (Fngg ) T g gy ) Ing o — g g g

10)

an

12)
a3)
(0))

as)

(16)

an

18)
19)

(20

@1
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Maple Files

1. Running example for §3, Discrete Moving Frames and Noether’s Finite Difference

Conservation Laws
2. 4.1 - Study of the discrete Fuler’s elastica
3. 4.2 - Study of SU(2)
4. 4.3.1 - The SL(2) linear action
5. 4.3.2 - The SA(2) linear action
6. 4.3.3 - The SL(2) projective action
7. Running example for §5, Commuting Induced Flows on the Curvature Invariants
8. 5.7 - The SL(2) linear action
9. 6.2 - The SE(2) action acting on multispaces
10. 6.3 - The projective SL(2) action acting on multispaces
11. Plots of Figure 7.1
12. 7.5.1 - Invariant Lagrangians involving only :—f
13. 7.5.2 (first example)

14. 7.5.2 (second example)
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Running example for Chapter 3. Discrete Moving Frames and Noether's Finite Difference Conservation Laws
| > restart

;> with ( LinearAlgebra) :
Lagrangian

S L (x[n +1] =x[n])

N | W

((u[n+2]=u[n+1]) (u[n+1]—u[n]))
X

L= xn-i—l ' ; /2 (1)
((un+2_un+l) (un-‘rl _un))

_Computation of the derivatives of the Lagrangian with respect to the variables x0, x1, u0, ul and u2 in order to
construct the Euler Lagrange equations later on

> diff (L, x[n])

' l 1) @

(g2 =y ) (Hypy — 4,

> diff (L x[n+1])
!

((un-'rZ_un-i-l) (un-i-l _un))

A (©))

> diff (L u[n])

_ 3(xn+l_xn) (_un+2+un+l) (4)
2 _ _ 5,2

| ((un+2 un+l) (un+l u”))

(> diff (L u[n+1])

T

3 (xn+1 _xn) (_2un+1 +un+u
| 2((Hygn = typ) (M4
> diff (L, u[n+2])

) 3 (1 =%) (M1~ %) (6)
| 2((un+2_un+l) (un+l_un))5/2
[ Action on the variables x0,x1,u0,ul and u2
| > X0 := k3~x[n] +a:
| > XI:= k3-x[n +1]+a:
| > U0:=MAul[n]+b:
| > Ul:==Au[n+1]+b:
| > U2:=Nu[n+2]+b:
We now check that the Lagrangian is invariant under the action
> subs({x[n]=X0,x[n+1]=XLu[n]=U0,uln+1]1=Ul,u[n+2]=U2}, L) :simplify( %, symbolic)
X

X —
n+1 n (7)

un+1)3/2(_un+1 +un)3/2

( _un +2 +

[ Normalisation equations
| > Eql = X0:
| > Eq2:=U0:
| > Eq3:=Ul—-1:
> solve({Eql, Eq2, Eq3}, {lambda, a, b} ) : simplify( %, symbolic)
X u 1

a- (I T ®)
(_un+1+un) Uy 4y T, U,y tu,

:> assign( %)
Frame
> rtho[n] = Marrix([[2*,0,a], [0, 1lambda, 51, [0,0,1]])




- 1 0 n
(“Uyr Tt )3 (U4 tuy,)
Py = 0 L ©®
w1 T nt1 U
0 0 1

[ We now check the equivariance of the frame
> unassign(lambda'a'b') :subs( {x[n]=X0,x[n +1]1=XL,u[n]=U0,u[n +1]=Ul,u[n +2]=U2},rho[n])

n
- rho[n]Matrixlnverse(Matrix( [ [k3,0,a], [0,lambda, 5], [0, O, 1]] ) : simplify (%, symbolic)

000
0 0 0 10)
000
[ Invariants
> simplify(tho[n).Matrix ([ [x[n +/j]], [u[n +Jj]],[1]]), symbolzc)
n+g+
(_ n+1 +u )
,1+!+ an
- n+1 tu
1
=First order differential invariants
> simplify(tho[n [Matrix ([ [x[n +j, t]], [uln +j,t]], [0]]), symbolic)
i
(_ n+1 Tu )3
s (1)
n+1 +”
0
=MaurerCartan matrix
| > rho[n +1]:=subs(n=n+1,tho[n]) :
> K[n]:=subs({x[n] =0,u}[n] =0,x[n+1]=ecta[n](t),u[n+1]1=1,uln+2]=kappa[n](?)}, %)
1 n, (1)
3 0 3
(—Kn(t)+1) (—Kn(t)+1)
K, = 0 1 1 (13)
-k, (1) +1 -k, (1) +1
0 0 1
[ (14)

Relationships between invariants
> simplify(K[n]Matrix ([ [Inv[x,n +1](¢) ], [Inv[u,n +17(¢) 1, [1]]), symbolic)

15)




[nv,,nJrl(t) T]”(t)
(5,0 =1)’
Invu,,H_1 (1) =1 s)
K (1) —1
1

_Relationships between first order differential invariants
> K[n]Matrix([ [Inv[x,n +1,2](2) ], [Inv[u,n +1,¢](¢) ], [0]])

_ Invx,n+l,t(t)
(-x,(0) +1)°
_ [nvu,n +1, t(t) (16)
-k, (1) +1
0

=Curvature matrix
| > diff (map(z—z(t),tho[n]), 1) :
> subs( { %xn(t) =sigmax[n](t), %xn+l(t) =Inv[x,n +1,1](1), % un(t) =sigmau[n](t), % un+1(t)

=Inv[u,n + 1,¢](1) },%) :

;> subs({x[n](t) =0,u[n](t) =0,x[n+1](t) =eta[n](t),u[n +1](t) =1, u[n +2](t) =kappa[n](?)}, %) :

> N[n]:= subs( {[nvx,n-i-l,t(t) = (kappa[n](t) — 1)3~sigmax[n + 1](t),[nvu,n+1,t(t) = (kappa[n](t) — 1)
-sigmau[n + 1](¢) }, %)

N o= 17)

n

-3 (Kn(t) - l) sigmaun+1(l) + 3 sigmau, (1), 0, -sigmax, (1) ],

[
[0, —(K () — l) sigmaun+1(t) + sigmau, (1) , -sigmau, (1) ],
[0

[EETE

,0,0]]

| (18)
_Syzygy and evolution of curvature invariants
[ > syzygy = simplify(map (z—diff (z,t),K[n]) — (subs({n=n+1},N[n]) K[n] —K[n].N[n]), symbolic) :

> simpliﬁ/( isolate(syzygy( 1,1), % K, (1) j, symbolic) : collect( %, sigmau, (1) ) :collect( %, sigmau, (1) )

d . .

" K, (1) =-x (1) (Kn(t) - l) sigmau, | (1) + (Kn(t) - l) sigmau, (1) — (—KnH(t) 19)

+ 1) Sigmaun+2(l) (Kn(t) — l)

[ > dik =%

> simplify( isolate(syzygy( 1,3), % n, (7 J, Symbolic) s subs(dtk, %) : simplify( %, symbolic) : collect( %,

sigmau, () ) :collect( %0, sigmau, _H(t) )

% N, (1) = (-3x,()m, (1) +3n,(1) ) sigmau, (1) + 3 sigmau, (1) n, (1) + (%, (1) — 1)3sigmaxn+1(t) 20)

— sigmax, (1)
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4.1+ Study of thediscrete Euler's elastica

restart

with( LinearAlgebra) -

#Smooth

Digits == 180 :

#Constants - matching the discrete case

el =
-0.0027634652177898342098779728443661535187662946732511797152043675313513483812619273394860\

3347433432703962009286825101479769504840417371597210550921864011313985769396159679400129765\
166 :

2=
-0.5654766564636770980474251008971958464313889772407313615969255866397582595379860866182326\
9377376917169152765748413054787963184294421097183065523234668195962109951176109526386314391\
3:

é3i=
0.08807514277141965839641341732650537391583841632048803256206881991412035341581762842951766\
6325901418322644183109661863048256374289287570647671448225702046187010924526358652518106901

#Equations

eql == -diff (x(1), t) - (kappa(t) )2 +2- diff (u(t), t) -diff (kappa(?), t) =cl :

eq2 :==-diff (u(t), t) - (kappa(t) )2 — 2-diff (x(t), ) a’ﬁ” kappa(?),t) =c2:

eq3 == (x(2) -diff (u(2), 1) — u(2) -diff (x(2), 1) ) x(£)% — 2-diff (kappa(t), t) - (u () -diff (u(1), 1) +x(1)
diff (x(¢), 1)) +2-kappa() =c3:

eq4 == x(1)* + 4-diff(kappa(t), t)2 — (cI? + c22) :

eq5 = diff (u(t),t) - (cI? + c22) + c2-kappa(t)2-2-cl-diff (kappa(t), t) :

1
eq6 = diff (kappa(t), 1) — & -sqrt(c1? + ¢22 — kappa()*) :

1
eq7 = diff (diff (kappa(1), 1), 1) + k()3 :

A == Array(1..300, i—.1-i, datatype = float) :

1 cl +c3 )4
Dkappa0 = 5 sqrt| cl? + 22 — 5 :

#Smooth solution

el <=¢3
sol == dsolve( [eq5, eq7,u(0) =1, kappa(0) = 5 D (kappa) (0) =Dkappa0}, numericj :

with( plots) :

1
“(cl-u(t) +c3—2-kappa(t)), u(?) ],t= 0..27.8328, color = black] :

newplot := odeplot(sol, [ 2

display( { newplot})



(VY

:> #Discrete
| > #lnitialdata
> Digits := 180 :

Pi
c[-1]:= evalf(cos(— 1000 ]J

Pi
s[-1] = evalf(sin[—m)]:
pi
c[-2]= evalf[cos[(- 100100 )]] 3

) Pi
s[-2]= evalf(sm( (— 10000 ))) :

h_2 =

0.01807026558575580431819934025161951204832629506030904491258477447516011803151326092139987\
3857783512784550087788714751702104605641636907433566886562118712144313331518015961922545323\
8:

h =

0.07905701725466538502221967992458954865940678225641592729827769302981276087058781105459817\

5430719383579808777839687204741195964747595078136596164145157709002624790159947453168119818\
4:;
x[0]:

0:
1:

sin(alphal j])?
> L= —————"—— :#Lagrangian
i h[J] grang

> EulerAlpha( j] = diff (L, alpha[ j]) :

> FEulerH[j] :=diff (L, h[]]) :
> newEulerAlpha = subs( {sin(alpha[ j]1) =s[],cos(alpha[j]) = ¢[ 1}, Eulerdlpha[ j]) #algebraic
> newEulerh := subs( { sin(alpha[ j]) =s[],cos(alpha[j]) =c[j]}, EulerH[ j]) #algebraic




I v I V‘"V II\TII

s[j—1]
eql :==c[j— 1]-subs({j=j— 1}, newEulerh) — newEulerh + m -subs( {j=j— 2}, newEulerAlpha)
s[j—1] o
- —h[j— 1 subs( {j=j— 1}, newEulerAlpha) :

subs( {j=j— 1}, newEulerAlpha) newFEulerAlpha

. — hLJ] hJ]
VU s (=g =23, mewutertpha) + LT L b (=i — 1}, newEuterdipha)

— o subs( {j=j— 2}, newEulerAlpha — 7 subs({j=j— 1}, newEulerAlpha) :
L= 1] s 4 =11 7 i

eq2 :=s[j— 1]-subs({j=j— 1}, newEulerh) +

eq3=c[jP? +s[jF—1:

#Vector of invariants
L , s[j] s[/] .

vl :==subs| j=j— 1,c[j]-newEulerh — m -newEulerAlpha + m subs(j=j— 1, newEulerdlpha) | :
. : c[/] c[/] .

v2:=subs| j=j— 1,s[ j]-newEulerh + L] -newEulerAlpha—m -subs(j =j — 1, newEulerAlpha) | :

v3 :=-subs(j=j— 1, newEulerAlpha) :
#Obtaining cosine and sine of the angle from conservation laws
1 ((clvl+v2-c2))
L= L= cl? + 22
(vI-c2 —v2-cl)
S[j—1]=-
L ] cl?2 + c22

C[0] == subs(j=0,C[j—1]) :
S[0] =subs(j=0,S[j—1]) :
(1)

#Initial conditions for the cosine and sine of the angle theta

Pi
C[0]:= evalf(cos(— 3000 )) :

Pi
S[0] = evalf(sin(—m)) :

#Moving Frame procedure

movingframe := proc(lold, costhetaold, sinthetaold, xold, yold)
local xnew, ynew;

xnew = lold- costhetaold + xold,

ynew := -lold-sinthetaold + yold,

Xnew,ynew;

end proc:

#Program
forifrom O to 845 do
Sfired = subs(j=1, {eql, eq2, eq3});
solve(fredunion {h[i] >0} union { -1 <¢[i] <1} union { -1 <s[i] <1} union {c[i] >0}, {c[{],s[i],
hlil});
evalf(%);
assign(%);
Clil=subs(j=iC[j—1]);
S[i]=subs(j=14S[j—1]);
x[i+ 1] := movingframe(h[i], C[i],S[i], x[i],¥[i]) [11; y[i + 1] := movingframe(h[ i], C[i], S[i], x[ {],
v 2}

enddo:

> with( plots) :



| points] := {seq([x
| > #Plot of the solution

b display( { disI, newplot} )

[i],y[i]],i=0.846,10) }

| > dis] == pointplot ( points1, color = black, symbol = cross, symbolsize = 20, titlefont =

["ARIAL", 15]) :

=>
| > #Initial data 2
> forifrom -2 to 1000 do

unassign( x[i]y[i]'c[i]';
end do:

>c[-1]= eva{f[cos(—%)) :

(-11= cvasn - 5. ) )
_evalf[cos(( 1000)])'

-2l _‘”"lf(s‘“[[ 1000 ]JJ

h = 1.26501189751620900700759078041 :
h = 0.131761310110213022802547421744 :
x[O] 0:
y[0]=1:

s[i15hLi]")

;> #Program
> forifrom 0 to 505 do
fred = subs(j=1i, {eql, eq2, eq3});

hli]});
evalf(%);
assign(%);
Cli]l==subs(j=iC[j—11]);
S[i]=subs(j=iS[j—1]);

ylin[2];
| enddo:
> with( plots) :
points2 := {seq([x[i],

y[i]1],i=0..506,10) } :

x[ i+ 1] == movingframe(h[i], C[i], S[i],x[i],y[i]) [1];

B
SRR R

solve(fredunion {A[i] >0} union { -1 < ¢[i] <1} union { -1 <s[7/] <1} union {c[i] >0}, {c[i],s[i],

yli+ 1] := movingframe(h[ i], C[i], S[i], x[{],



> #Plot of the solution

| > dis2 = poiniplot( points2, color = black, symbol = solidcircle, symbolsize = 12, titlefont = [ "ARIAL", 15 1) :
| > display( { newplot, dis2} )

;> #Plot of the smooth solution and both discrete solutions
> display( { newplot, dis1, dis2})

u

"

n'
-

L

1 0 1 ' 2

; f\ f\

e  Discrete solution1 -+ Discrete solution 2
Smooth solution

[>






4.2 - 2

| > restart

| > with(LinearAlgebra) :
FRAME in complex form

We first obtain the frame using the normalization equations
| > alpha := realpha + I-imalpha :
| > ALPHA = realpha — I-imalpha
| > beta = rebeta + I-imbeta :
| > BETA:= rebeta — I-imbeta :
| > z[n]=a[n](t) +1-D[n](1) :
| > z[n+1]:=a[n+1](t) +1-b[n+1](¢) :
| > Z[n]:=a[n](t) —Ib[n](?) :
| > Z[n+1]:=a[n+1](t) —I-b[n+1](1) :
| > alpha-z[n] +betaz[n +1]:
> expand(%)
b, ., (1) imbeta — b, (t) imalpha +1a, () imbeta +1b, (1) rebeta+1a, (1) imalpha +1b, (1) realpha
+a, (1) rebeta + a, (t) realpha

:> eql = imalphaa, (t) + realphab (1) +a, (1) imbeta +b, (t) rebeta:
[> -BETAz[n] + ALPHAz[n +1] :
> expand(%)

b, n , (2) imalpha — b, (1) imbeta —1a, (1) imalpha +1b, | (1) realpha +1a, (1) imbeta —1b (1) rebeta
+a, (1) realpha — a, (1) rebeta
:> eq2 = -imbetab, (1) +b, _H(t) imalpha — rebetaa, (1) +a, _H(t) realpha :
:> eq3 = imbetaa, (t) — rebetab, (1) —a, (1) imalpha+b, (1) realpha :
| > eqd = realpha2 + imalphc12 + rebetd® + imbeta® — 1 :
| > solve( {eql, eq2, eq3, eq4}, { realpha, rebeta, imalpha, imbeta} ) :
| > allvalues (%) :
| > %[1]:
| > assign(%) :
> alpha

1 1

—1b
a”(t) \/ an(f)z +an+1(f)2 +bn(l)2 +bn+1(t)2 ”(t) \/ an(t)z +an+l(t)2 +b (l)z +bn+1(t)2

n

> beta

1
/ a,()% +a, (02 +b (0> +b, (1) 41 (0)

T
—1 b

2 2 2 2 n+1
i /a”(t) ta, (0240 (0240, (1)
> ALPHA

1 1

+1b
a”(t) / an(f)z +an+1(l)2 +bn(f)2 +bﬂ+1(t)2 ”(t) \/ an(t)2 +an+1([)2 'i_bn(t)2 -i_bn-ﬁ-l(t)2
> BETA

+1 b
/an(t)2+“n+1(t)2+b(f)2+bn+1(t)2 w1 (0)

_Moving frame

(0))

2

(©))

(C))

(©))

6



> rho[n] := simplify( Matrix( [ [ alpha, beta], [ ~-BETA, ALPHA ), symbolic)

a (1) —1b (1) a,  (t) =1b, . (1)
Ja, (02 +a, (07 +b, (07 +b, (0> [a, (07 +a, (0 +b, (0> +b, (1)
Pu ™ a, . (6) +1b, , (1) a, () +1b, (1) @
Ja, (02 +a, (02 +b (0 +b, (02 [a, (07 +a, (0 +b, (0> +b, (1)
=INVARIANTS
>mysubs == {a[n](t) =Inv[a[n]](t),b[n](t) =0,a[n +1](¢) =0,b[n+1](¢t) =0,a[n +2](t) =Inv[a[n
+211(8), b[n +2](¢t) =Inv[b[n +2]](¢t),a[n +3]1(t) =Inv[a[n +3]](¢t),b[n +3](t) =Inv[b[n
+311(0) }
L ®)
| > z[n]=a[n](t) +1-b[n](1) :
| > z[n+1]=a[n+1](t) +1-b[n+1](2)
| > z[n+2]:=a[n+2](t) +1-b[n+2](1)
| > z[n+3]:=a[n+3](t) +1-b[n+3](2)
| > Z[n]:=a[n](t) —Ib[n](1) :
| > Z[n+1]:=a[n+1](t) —=I-b[n+1](2)
| > Z[n+2]=ua[n+2](t) —I-b[n+2](2)
| > Z[n+3]:=a[n+3](t) = I'b[n+3](1)
| >
> simplify(tho[ n]Matrix ([ [z[n]], [z[n +1]]]), symbolic)
Ja, (07 +a, (07 +b, (0> +b, ,(1)? } ©)
0
=> simplify (subs(mysubs, %), symbolic)
Inv, (1)
" (10)
0
=> simplify (simplify(tho[n |.Matrix([ [z[n +2]], [z[n +3]1]1), symbolic), size)
1 ((bn+3(t) _Ian+3(t))bn+l(t) +(an+2(t) (11)
Ja, (07 +a, (07 +b, (0> +b, (1)
16, ,(0)) a,() + (b, ,(1) —1a, 1 (1)) b, (1) + (a,,3(0) +Ibn+3(t))an+l(t))" ’
1
((Bysa(0) =1, 5 (1) b, oy (1) + (4,500
Ja, (02 +a, (07 +b, (07 +b, (1)
16, 5(0)) a,() + (La,  5(0) = b, 5(1)) b, (1) = (a,,,(1) +Ibn+2(t))an+l(t))} g
=> simplify (subs(mysubs, %), symbolic)
Inv, (1) +1Linv, (7)
n+2 n+2 (12)
Inv, (1) +1Linv, (1)
n+3 n+3

[ MAURER-CARTAN MATRIX
| > tho[n + 1] :=subs(n=n+1,tho[n]) :
> K0 = subs(mysubs, tho[n +1])




Inv, (2) = linv, (?)
0 n+2 n+2
/]nva ()% +v, (1)?
KO — n+2 n+2 (13)
Inv, (2) +1inv, (1)
_ n+2 n+2 0
/Inva (t)2 + Inv, (l)2
n+2 n+2
| (14)
[> myK0 := Matrix([ [0,sigma(t) ], [ -kappa(t),0]])
o(!
- (2 (15)
-x(1) 0
[ CURVATURE MATRIX
| > difiho0) == map (z—diff (z, t), tho[n]) :
[ d _ d _ d _
> mysubs2 = {E a,(t) =Invla[n], t](1), & b, (1) =Inv[b[n],t](1), @ a, () =Invla[n +1],1](1),
d
i Ebn_i_l(t)=Inv[b[n+1],t](t)}:
;> NO = subs(mysubs2, difrho0) :
| > NO := subs(mysubs, %) :
> NO = simplify( %, symbolic)
—Linv, ,t(t) Inv, ,z(t) — Linv, ,z(t)
n n+1 n+1
Inv, (1) Inv, (1)
NO:= ! ! (16)
-Linv, ’t(t) —Inv, ’[(t) Linv, )t(t)
n+1 n+1 n
Inva (1) Inva (1)
n n
[ Shift of curvature matrix
> SN = subs( {Inv[a[n], t1(t) =SInvlal[n], t](t), Inv[b[n], t](t) =SInv[b[n], t]1(t), Inv[a[n + 1],¢](t)
=SIwv[a[n +1],¢](¢), Inv[b[n + 1], 1] (1) =SInv[b[n +1],t](2), Inv, (t) =SInv, (1) },NO)
n n
—1SInv, ’[(t) SInv, ,z(t) — 18Iy, ’t(t)
n n+1 n+1
Snv, (1) Sinv, (1)
SNO = ! ! 17
—IS[nvb ,t( t) — S[nva ,t( t) ISInvb ’t(t)
n+1 n+1 n
Sinv, (1) Sinv,_ (1)
n n
_Syzygy and evolution of curvature invariants
| > syzygy := simplify(SNOmyK0 — myK0 « N0, symbolic) :
> -syzygy(2, 1)
> collect(%, Invy (1) )
"
Ix(t) Inv, (1) [SInv, (1) x(1)
n n 18
Inv, (1) * Sinv, (1) (18)
| n n
| > diﬁ”(\/an(t)z +b () +a,, (1)? +bn+1(t)2,t) :
> subs(mysubs2, %) : subs(mysubs, %) : simplify( %, symbolic) o




Inv, (1) (19)

=> restart

| FRAME in polar form

We first obtain the frame using the normalization equations
| > alpha := realpha + I-imalpha :
| > ALPHA = realpha — I-imalpha :

| > Dbeta = rebeta + I-imbeta :
| > BETA:= rebeta — I-imbeta :
> z[n] = r[n] (1) -0
;> zZln+1]=subs(n=n+1,z[n]) :
| > Z[n] = r[n](1) 'e—l-theta[n](t) .
;> Zln+1]=subs(n=n+1,Z[n]) :
| > alpha-z[n] +beta-z[n +1]:
10 (1) 16 (1)

> simplifj/(subs( {e " =cos(theta[n]) + I-sin(theta[n]),e "F! =cos(theta[n +1]) + I-sin(theta[n
_ —l—l])},%),symbolic) :

> expand(%)
-sin(6,) . (1) imalpha —sin(®, ) r,  (¢) imbeta +1cos(8, ) r, (1) imalpha +1sin(8, ) r, (1) realpha (20)

+ Icos( 0 (t) imbeta + 1 sin( 0 , (1) rebeta + cos( en) r (1) realpha

n+1)rn+1 n+1)rn+

+ cos( 0 rebeta

i R RANIC)
_> eql == cos(9n+1) 1, 41 (1) imbeta +sin( Gn_H) 1, .1 (1) rebeta +cos(6n) r, (1) imalpha
| +sin( Gn)rn(t) realpha :

| > -BETA-z[n] +ALPHA-z[n + 1] :

( 10 (1) 10 l(l)
> simpliﬁ/(subs {e " =cos(theta[n]) + I-sin(theta[n]),e "1 =cos(theta[n +1]) + I-sin(theta[n

— 11) }, %) Symbolic) :
> expand(%)
—s1n< ) r, (1) imbeta + s1n(6n+1) 7, 4 (1) imalpha + Icos( 6n> r, (1) imbeta — Isin( Gn) r, (1) rebeta 21

)
- Icos(e ) 1, (1) imalpha+lsin( 9n+l> 1, 4 (1) realpha — cos(en) r, (1) rebeta
+cos(6n+1) rn+l(t) realpha

> eql = —sin( Gn) r, (1) imbeta + sin( 0, +1) A (t) imalpha — cos( Gn) r, () rebeta

+ cos( 0 (t) realpha :

n+l) Tat1
> eq3 :=—cos(6n+1) 1 (0 imalpha—i—sin(@
- sin( Gn) r, (1) rebeta :

1) Ty 1 () realpha + cos(8, )1 (1) imbeta

| > eq4 = realpha2 + imalpha2 + rebetd® + imbeta® — 1 :

| > solve( {eql, eq2, eq3, eq4}, { realpha, rebeta, imalpha, imbeta}) :

| > allvalues (%) :
>

_>
>

S[1]:
assign( %)
simplify (alpha, symbolic) : convert(%, exp) : subs( 6, =8, (1), %) : alpha = %
=10 (1)
r(t)e "
o= 22)

VAU AL
> simplify(beta, symbolic) : convert( %, exp) :subs( Gn_H Gn_H( )s /) :beta:== %




(23)

Jr @2+, (07

> simplify(ALPHA, symbolic) : convert( %, exp) :subs( Gn = Gn(t) s %) :ALPHA = %

16 (1)
r(t)e "
ALPHA = . (24)

Jrn @+, (07

> simplify( BETA, symbolic) : convert( %, exp) :subs( GnJrl = enH (1), %) - BETA := %

10 (0
+1
rn-H(t)e "

S0+, (07

BETA :=

(25)

[ Points

> z[n] = r[n](z) - hetln) @,
zZln+1]=subs(n=n-+1,z[n]) :
Z[n +2]=subs(n=n-+2,z[n]) :
z[n+3])=subs(n=n+3,z[n]) :

[ ] — r[n](t) .e—I-theta[n](t) .
Zln+1]=subs(n=n+1,2Z[n]) :
Zln+2):=subs(n=n+2,7Z[n]) :
Zln+3]=subs(n=n+3,Z[n]) :
Frame
> tho[ n] := simplify( Matrix( [ [ alpha, beta], [ -BETA, ALPHA]]), symbolic)
=16 (1) —16 ()
n

n+1
r.(t)e ro(f)e

@2 +n @0 fro? +mﬂ(ﬁ

(26)

INVARIANTS

>mysubs == {r[n](t) =Inv[r[n]](¢),theta[n](¢) =0,r[n +1](¢) =0, theta[n + 1](¢) =Inv[theta[n +1]](¢
rln +2](¢) =Inv[r[n +2]](2), theta[n +2](t) =Inv[theta[n +2]](¢),r[n +3](¢) =Inv[r[n +3]](

_ theta[n +3](¢) =Inv[theta[n +3]](¢) } :

> simplify (tho[n].Matrix ([ [z[n]], [z[n +1]]1), symbolic)

—16 (0 Ie 0) —16 (1) 16 (1

H%e "I U (D%e " e

)!
t))

rn+1(

@7

(28)

=> simplify(simplify(tho[ n ) Matrix( [ [z[n +2]], [z[n +3]]1]), symbolic), size)



—16 ) 16 ) =10 (1) 10 (1)
roe TP (e "t (e " r ,(1)e "2
@2+, (0
16 (1) 10 (1) 106 (1) 10 (1)
oo e "t (e "R (e "o st e "
Jr @ +r ()7
[ > simplify( subs(mysubs, %), symbolic)
1 Inv (1)
Inv (e "T2
n+2
I Inv (2)
Inv (e "T3
n+3
[ MAURER-CARTAN MATRIX
| > tho[n + 1] :=subs(n=n+1,tho[n]) :
> KO0 := simplify(subs(mysubs, tho[n + 1)), symbolic)
—Iinv (1)
0 e n+2
K0 =
11nve 0)
-e n+2 0
[> myK0 :== Matrix([ [0,sigma(t) ], [ -kappa(t),0]])
myK0 = ()
-x(t) 0

=CURVATURE MATRIX
| > difiho0) := map (z—diff (z t), tho[n]) :
= [4 - 4
> mysubs2 = { & r, (&) =Inv[r{n], t](1), &
theta, |, (7) =Inv[theta[n +1],7](¢) } :

| dr
| > NO == subs(mysubs2, difrho0) :
| > NO := subs(mysubs, %) :

> NO = subs(In(e) = 1,simplify( %, symbolic) )

—I[nve ’t(t)

NO :

theta (1) = Inv[theta[n], ] (¢)

d

’Ern-i-l

_Shift of curvature matrix

> SNO = subs( {Inv[r[n], t1(t) =SInv[rn], t](t), Inv[theta[ n], t](¢) = Sinv[theta[n], t](¢), Inv[r[n + 1], ¢](?)
=SInv[r[n + 1], ¢](¢), Inv[theta[n + 1], ¢] (1) =SInv[theta[n +1],¢](2), Inv, (t) =SInv, (1)

n

(t) =Inv[r[n+1],¢](¢),

P)

n

(29)

(30)

31

(32)

(33)

(34)



—IInv (1)
Stwv, (e  "F
—1SInv, (1) ntl
6.1 Sinv,_ (1)
n
SN0 = 1inv (1) (35)
Siny, _H’t(t) e "l
1 ISnv, (1)
Sinv, (1) 6,1
n
[ SYZYGY and evolution of curvature invariants
| > syzygy := simplify (SNOmyK0 — myK0 « N0, symbolic) :
| > -syzygy(2,1) :
> collect(%, Inv, (1) )
n
Ix(2) (Slnve t(t) —l—]nve z(t)) (36)
n n

:> diff (sqrt( (r[n](2)) "2 + (r[n +1](2))"2),1) :
> subs(mysubs2, %) : subs(mysubs, %) : simplify( %, symbolic)

Inv, ’t(t) 37
| n
:Moving frame for the conjugate action of SU(2) on su(2)
| > restart:
with ( LinearAlgebra) :
| > = sqrt(x2 +yl2 +y22) :
| > g = Matrix([[al +1-a2,b] +1-b2], [ -b] +1-b2,al-I-a2]]) :
| > A= Matrix([ [{-x,yl +1y2], [-yI +1y2-Ix]]) :
| > B:= Matrix([[1z,0], [0,-1z]]) :
| > M = map(expand, gA — Bg) :

[ Normalization equations
[ > eql=M[1,1]:

| > eq2:=M[1,2]:
| > eq3:=M[2,1]:
| > eqd:=M[2,2]:
> mysols := solve( {eql, eq2, eq3, eq4}, {al, bl,a2,b2})

2 2 2 2
mysols = {al:ymz B (V2P 1,7 +x) b2 o a2 bl = (VZP 2 —x) a2 _b2y2 (38)
vl vl vl yl
b2—b2]

We write the condition a1? + a2* + b1* + b2® — 1interms ofthea2,b2,x,yl and y2- ( called x0,y0 and z0in thetext)
> myrell = simplify (expand(subs(mysols, al> +a2> +b1*> +b22 1)), symbolic)

myrell = %((—ZaZZx—4a2b2y2 +2b22x) 2 +yP+y2?2 + (22 422 +2y2%) a2 + (24 39)
y

F 2y +2y22) 622 — y1?)
> subs(® =—y12 —y22 + 7, myrell) : myrell = numer(simplify( %, symbolic) ) ;

myrell =272 a2*> +272b2> —2Za2’>x — 4 Za2 b2y2 + 2 Zb2* x — yI? (40)
[ > collect(myrell, {a2, b2}, distributed),
(27 —2Zx)a2?> —4Za2b2y2+ (272 +27Zx) b2> —yI? 41)

[ This is a conic, we apply usual theory. We first obtain the change of co-ords to make it an ellipse or a hyperbola




> Subs[aZ - X ,b2=Y— alpha~X’ myrellj sexpand( %) : collect( %, { X, Y}, distributed);
4-Zy1 4-Z-y1
Za 2 o 1 oc2 20
—y12+(222+22x)Y2+(———y——x—]XY+ + -2 _ 4+ r (42)
vl -yl yl 8yI>  8yI?  8zZyl?  4ylPZ
2
+ XL x2
8 Zyl®
(> coeff(%, Y, 1) : solve(%, alpha);
-2 43
| Z+x (43)
_> subs| a2 = X b2=Y+ X m rel]) s collect( %, { X, Y}, distributed) : map ( factor, %) :
4-Zyl’ 47(Z+x) ") o AR +map ( factor, ) :
subs(:? =22 — yI* — 2%, %) = map (simplify, %) ;
X2 2 2
———— +27Z(Z Y* —yl 44
i 8Z(Z+x) T22ZF0 -y (44
[ We have the ellipse. We do a final substitution to get it in terms of one angle
> subs(X=yl‘sqrt(8'Z~ (Z+x))-cos(theta), Y= sqﬁ(Z-Z}-jfZ—l—x) ) -sin(theta), %J s simplify( %, trig);
i 0 45)
> MyA2B2 = map(simpliﬁ/, subs[X:yl-sqrt(&Z- (Z+x))-cos(theta), Y= sqrt(2~Z)-;fZ+x) ) -sin(theta), {aZ
X y2-X .
= b2=Y+-—"—"— bolic |;
4-7y1° 4.7(Z+x) i U’Sym O’C)
Myd2B2 = | a2 = V2 JZ +x cos(6) b2 J2 (y2cos(0) +yIsin(6)) (46)
2JZ 2JZ JZ+x
> subs(x2 =7 —y]2 —y22, mysols) : simplify( %, symbolic) : select(has, %, {al, bl}) : subs(MyA2B2, %) :
simplify( %, symbolic) s subs(x? = 7 —yI2 —y22, %) : simplify( %, symbolic);
al = - V2 JZ+x sin(0) bl = V2 (cos(0) yI —sin(0) y2) @7)
27 ’ 2WZ T x

[ This is now the simplest expression for the frame co-ords, we need only one angle now
> mygsofar == % union MyA2B2;

mygsofar = |a1 _ V2 JZ+x sin(0) a2= V2 JZ+x cos(0) bl = J2 (cos(8) yI —sin(0) y2) b2 (48)
2JZ 27 2JZJZ+x
_ ﬁ(chos(G) +y1sin(9)) ]
2NZJZ+x

[ Here we just check that a1*2 + a2*2 + b1”2 + b1”2 is one.

N Simpm[[_l JZVZFxsin(0) |*, (1 V2 JZFx cos(0) j2+ 1 T (cos(8) yl —sin(8) y2) |
2 VZ 2 VZ 2 VZZ+x
2
+ (l (y2cos(0) +yIsin(0)) 2 ,symbolic] :
| 2 JZZ+x
| > subs(yl2 =72 X —y22, %) :
> simplify(%)
1 (49

[> 6= subs(mygsofar, g);

[ _ V2 JZ+x sin(0) n V2 VZ+x cos(0) 2 (cos(0) yI —sin(0) y2) (50)
27 27 ’ 2WZ T x

G:=




n I\/T (yZCos(O) +y1sin(6))

>

2JZ JZ+x
~ ﬁ(cos(e)yl—sin(e)yZ) n 1J2 (y2cos(0) + yIsin(0)) _ V2 JZ+x sin(0)
2JZ JZ+x 2JZ JZ+x 27
B 1J2 JZ+x cos(8)
i 2JZ
[ We now convert G into a matrix with exponential entries
1
—_— —1J2 JZ +x cos(0)
> NewG|[ 1, 1] := convert L V2 JZFx sin(6) + 2 , €Xp
i 2 Z Z
1 .
. —1(y2cos(0) +ylsm(6))\/7
> NewG|[ 1, 2] = convert L V2 (cos(8) y1 = sin(6) y2) + 2 » EXp
| 2 JVZJZ+x VZZ+x
1 .
. —1(y2cos(0) +yIsin(0)) V2
> NewG[2,1] = convert L V2 (cos(8) vl = sin(8) y2) + 2 , €Xp
_ 2 \/7\/Z+x \/7\/Z+x
1
—_— —I\/T\/Z+x cos(G)
> NewG|2,2] := convert L V2 JZ+x sin(8) _ 2 » €Xp
2 JZ JZ

> NewG = simplify(Matrix ( | [N?WG[ 1, 1],NewG[1,2]], [NewG[2,1], NewG[2,2]]]), symbolic)
I 19
—J2VZ
y V2 ZFxe JZ & (1 +1y2)
JZ 2JZJZ+x
1 —16
_ -—J2JZ+
J2 e (p1 +1)2) V2 *e
2JZJZ+x JZ

NewG =

_Here we check that the determinant is 1

> simpliﬁ/(subs(yl2 =72 -2 —y22, Determinant(NewG) ) )
1

:Calculating vector of invariants and adjoint matrix

| > restart .

[ Condition

| > alpha-ALPHA + beta-BETA=1 :

| > isolate( %, ALPHA) :

| > assign(%) :

Action

| > Z0:= alpha-z0 + beta-z/ :

| > Z1:=-BETA-z0+ ALPHA z1 :

| > mysubs := {alpha=1,beta=0, BETA=0} :
Here we calculate the infinitesimals

> diff (Z0, alpha)

z0
(> diff (20, beta)

zl
(> diff (20, BETA)

0

[> diff (21, alpha) :
> subs(mysubs, %)

(1)

(32)

(33)
(34)

(33)

-~



> diff (Z1, beta) :
> subs(mysubs, %)

diff (Z1, BETA) :
subs(mysubs, %)

v "V ]

;Action on the vector of infintesimals
restart

z0 = ALPHA-Z0 — beta-Z1 :

zl == BETA-Z0 + alpha-Z1 :

dz0 := alpha-dZ0 — BETA-dZ1 :
dzI = beta-dZ0 + ALPHA-dZ1 :
VALPHA = z0-dz0 — zI-dz1 :
simplify( %, symbolic)

v "V "V "V "V "V "V

;> vbeta = z1-dz0 :
> expand(%)

> VBETA =-z0-dz1 :
> expand(%)

| >

-ALPHA-BETA, BETA, ALPHA?]])

i Jr @ +r ()7
> Adjointrho = simplify( Adjoint, symbolic)
Adjointrho =

(6
2 2 (n+1
rn(t) rn-‘rl(t) rn-i—l(t)e

((20d20 — Z1dZ1) o.— 2 BETAZ0dZ1) ALPHA — (2 Z1 0.dZ0 + BETA (20dZ0 — Z1dZ1) ) B
-BETA 70dZ1 + BETAZ00,dZ0 — BETAZI 0.dZ1 + Z1 o> dZ0

VBETA = -ALPHA? Z0dZ1 — ALPHA Z0B dZ0 + ALPHA Z1 BdZ1 + Z1 B dZ0
> Adjoint == Matrix( [ [ alpha: ALPHA — beta-BETA, alpha-BETA,~-ALPHA-BETA], | -2-alpha-beta, o, B |, [2

o ALPHA — BBETA BETAo. -ALPHABETA

2 ALPHA BETA

Adjoint == 20ap
[ We evaluate the frame into the adjoint matrix
-16 (1
r(t)e "
> alpha:=
Jr @ +r ()2
L n n+1
-16 (#)
rn+1(t) © "
> beta:=
i Jr @ +r (02
16 (2)
(e "t
> BETA:=
i Jr @ +r ()2
16 (1)
r(t)e "
> ALPHA = -

(=96

rn(t)2+rn+l(t)2 rn(t)2+r

n—+1

(56)

(37

(38)

(39)

(60)

(61)

(62)

(63)



—1(6 (1) +06 (1) 210 (1) 21 (1)
_zrn(t)e <n+1 n )n+1(t) Vn(t)ze n n+1(t)ze n+1
n() +rn+1( )2 rn(l‘)z—’_rn+l(l‘)2 rt1(l‘)2—’_rn+l(t)2
I(e (1) +0 (1) 216 (1) 210 (1)
2’;1(t)e(n+l n )n+1(t) ’1_'_1(1‘)2e n+1 r I)Ze n
r (02 +r L (07 r (O, (02 (0L (07

[ Here we take the imaginary part
> Im(%) :evalc(%)

l‘)’ rpi(0sin(-8, () +ez(z)) r, (1) . r,(t) sin(6, (1) +6,( )2) ro (0 l (64)
r(0? +rn+1() (0% +r (1)
25, (1) sin(8, () +6,(0)r, () r(07sin(28,(0)) 1, (07sin(28, (1)
r(0)? +Fn+1()2 , (1) +rn+1()2 ’ r,(0)? +rn+1()2 l
27 (1) sin(0, | L(0) g (0 r(07sin(20, () (07 sin(26,(0) )
r(1)? +rn+1<>2 A G A O AU Ok ] ’




4.3.1 - SL(2) discrete linear case
> restart

> with(LinearAlgebra) :
Normalization equations
> eql =ax[n](t) +by[n](t) =1:

(1+b-c)
> eq2=cx[n](t) + T'y[n](f) =0:
[> eq3=ax[n+1](1) +b-y[n+1](z) =0
Frame
> solve({eql,eq2,eq3}, {a,b,c})
_ yn-i-l(t) b= xn-i-l(t)
Cxwy  0-yx (0 x @y (-0

| > assign(%)

> rho[n]:ZMatrix[ [a.b], c,simplzﬁ[(ltl&]”)
w1 () X, 1 (0)
p = | %0, )=y Ox @) x (0, 0) -
-y (1) x (1)

_Invariants and first order differential invariants
> rho[n]Matrix([[x[n+1](¢) ], [¥[rn+1](8)]1])

0
n n

x (0 y, () =y (@)x (1) ‘

> simplify(tho[ n.Matrix([ [x[n +2]1(¢) ], [ y[n +2]1(¢) 11), symbolic)

yn+1(t) xn+2(t) _xn+1(t) yn+2(t)

x (1), () =y (0x ()

v (0 x (0 +x (1), (1)

vk:= Matrix ([ [x[n +/]1(0) ], [y[n +j]1(2) 1])
[ t

vit:= Matrix ([ [x[n +j, t](2) ], [y[n +jt](£)]]) :
simplify(rho[ n].vk, symbolic)

v "V "V ]

(t) x

Vw1 (D %, 0 =%, (05, (0

x (1), (0 =y (0x ()

(7)

(0 x, (0 Fx (0,

> simplify(rho[ n].vlit, symbolic)

yn-‘rl(t) xn+j,t(t) _xn+l(t) yn-i—j,t(t)

x (0, (1) =y ()x ()

(0% 0 Fx (0, (0

n n+j,t

| Maurer-Cartan matrix

> mysubs = ( xn(t) =1,xnJrl

+2](¢) =Inv[x,n +2]) :

(1) =0,y[n](t) =0,y[n +1](¢) =Inv[y,n+ 1], y[n +2](¢t) =Inv[y,n +2],x[n

(0))

(0]

(©))

(C)

©))

6



> KO := subs(mysubs, subs(n =n + 1,rho[n]))

_ ]nvy, n+2 1
Inv
KO := Invy, n+1 Invx, n+2 »n+l
—Invy, ntl 0

[ Curvature matrix
| > diffrhot = simplify(map (z—diff (z, t), tho[n]) ) :

d d
> mysubs2 = a xn(t) =Inv[x, n, t], o xn_H(t) =Inv[x,n +1,1¢], E X 4o
d d
i =Inv[y, n,t], py yn_H(t) =Inv[y,n +1,t], py n+2(t) =Invly,n +2,t] | :
| > subs(mysubs2, diffrhot) :
> NO := simplify(subs(mysubs, %) )
- _ Invx,nJrl,t
nvx, n, t Inv
NO = ywn+1
-Inv Inv
»n,t X, n, t
[ > Trace( %)
0
[ Infinitesimals
> diff (alpha-x[n] + beta-y[n], alpha)
> diff (alpha-x[n] + beta-y[n], beta)
| yﬂ
> diff (alpha-x[n] + beta-y[n ], delta)
0

(1 + beta-delta)

> subs[ {alpha=1, beta=0, delta=0}, diﬁ‘( delta-x[n] + alpha yin], alpha) ]

v,

(1 + beta-delta)

> subs[ {alpha=1, beta=0, delta=0}, diff( delta-x[n] + alpha y[nl, betaj )

0

(1 + beta-delta)

> subs[ {alpha=1, beta=0, delta=0}, diﬁ’( delta-x[n ] + alpha -y[n],delta) J

X
n

_Syzygy and evolution of curvature invariants

1
kappa[n](?), W] [-tau[n](t),O]D

> MyKo0 := Matrix(

MyKO = % (1)

=> MyNO = subs( {Inv[y,n + 1] =tau[n](t) }, NO)

d
(1) =Inv[x,n +2,1], PR (1)
t n

(M

®

®

(10)

n

(12)

(13)

(14)

15)

(16)

(1n



Inv B Invx,n+1,t
x,n,t T ( t)
MyNO = n
-Inv Inv
»n,t X, n,t

> SNO = subs( {Inv[x, n,t] =Snv[x, n, t],Inv[x,n + 1,t] =SInv[x,n + 1, t], Inv[y, n, t] =SInv[y, n, t],Inv[y, n
+1,¢]=SInv[y,n + 1,t],tau[n] (1) =tau[n + 1](¢) }, MyNO)

Sinv
x,n+1,t
. —S]nvx, wi . o
SNO :== n+1
-Sinv Sinv
X, n,t

s Ity

> syzygy = simplify (SN0« MyK0 — MyK0 + MyNO, symbolic)
2
H (%,(2) (v, = Sv ) T, (1) +Invy’n,t> 1 (0 Sy T (1)

Syzygy =
&1 (0 7,00 ’
K"(t) 1nvx,n+l t_Invx,n t_S]an n,t
b
T, (1)
-Inv T, (1) — Slnv
i B _ xn+l,¢t " »n,t
[( Invx,n’t SInvx’n’t) T, (1) Slnvy’n’tKn(t), T (1) H
n
> isolate(syzygy(.z,2),1”")”_,_1’,)
Sinv
Inv =- e
x,n+1,t Tn(t)

> collect(syzygy(2, 1),Invx z)

5 'l

—SInvy’n tKn(t) - Slnvx’ T,(1) —71,(1) Invx’n

| , n,t o
SSInv 1

> simplify| subs| SInv = —2BL syzygy (1, 1) |, symbolic | :
| x,n+1,t Tn-&-l(t)

> collect( %, Inv ) : collect( %, SInv ) : collect( %, Inv )

X, n,t X, n,t yn,t
Invy y T, (1) SSlnvy ot
-Sinv t) + t) Inv + — = —
x,n,tKn( ) Kn( ) X, n,t Tn(t) Tn+1(l)2

;Computation of the adjoints
| > restart
| > with(LinearAlgebra) :
> Adg = Matrix([[a-d + b-c,-a-c,b-d], [ -2-a-b, a®,-b?], [2-c-d,-32, d?]])
ad+bc -ac bd
Adg = -2ab a?  -b?
2cd -2 a2

[ Evaluation of the frame into the adjoint matrix

yl
> a= .
| tau
x1
> bi=-—1
L tau
| > ¢:=-)0:

| > d:=x0:

17)

(18)

19)

(20)

21

(22)

(23)



> Adrho = simplify( Adg)

Evaluation of the Maurer Cartan matrix into the ajdoint matrix
| > a = kappa:

> AdKO = simplify(Adg)

[ > Equations = simplify(k+Adginv, symbolic) — V
Equations =

i - V3]
;> with ( Groebner) :

| ad—bc—1]
(> Basis(F, plex(a, b, ¢, kI, k2, k3) )

+2aV2—ckli—2k2d]

yIx0+x1y0 yly0  xIx0
T T T
Adrho = 2yl xlI yi2 xI?
R
-2 y0 x0 -y0? x0?

-ab
_b2

2

—1 KT
2 K
AdKO = | - -
T
0o -7
[ The general solution, Groebner basis computation
| > restart
| > with(LinearAlgebra) :
| > k= Matrix([ [k1, k2,k3]]) :
| > V= Matrix([[VI, V2,V3]]) :
| > Adg = Matrix([[a-d +b-c,-a-c,b-d], [ -2-a-b, a?,-b*], [2-c-d,-2, d*]]) :
> simplify( MatrixInverse( Adg) , symbolic) : Adginv = subs(a d —bc=1,%)
ad+bc cd
Adginvy == 2bd a?
2ac -

a

[d(akl+2bk2) —2k3ac+bckl—VI, -Ck3+cdkl +d>k2—V2,a®>k3—abkl —b2k2

> F = [ Equations(1, 1), Equations(1,2), Equations(1,3),a-d —b-c—1]
F=[d(akl+2bk2) —2k3ac+bckl—VI,-2k3+cdkl+d>k2—V2,a>k3—abkl—b>k2—V3,

[-VI2—4V2V3+kI2+4k2k3, k3 —cdkl—d>k2+V2,-VId+2bV2—2ck3+dkl, -cVI

(24)

(25)

(26)

@7

(28)

(29)

(30)



4.3.2 - SA(2) linear discrete case
| > restart

;> with ( LinearAlgebra) :

Group action
| > X[n]=ax[n]+by[n]+kl:
| > Y[n]:=cx[n]+dy[n] +k2:
Normalization equations

> d= (1+bc) .
| a
| > eql =X[n]:
| > eq2:=Y[n]:
| > eq3=ax[n+1]+by[n+1]+ki—1:
> eqgd=cx[n+1]+dyln+1]+k2:
| > eq5=ax[n+2]+by[n+2]+kl:

> solve({eql,eq2,eq3, eq4,eq5}, {a, b, c, ki, k2})

yn_yn+2 b (1)

a=- N
XV 41 7 %V +2 T X1V +xn+1yn+2 +xn+2yn T X241
X —X
= — — ”+ 2 + — ’czyn_yn+l’k]=
xnyn+1 xnyn+2 xn+1yn xn+1yn+2 xn+2yn xn+2yn+1

X0 Vn +2 X +2yn

- kK2=xy -X .,y
— — — ’ +1 +1

| YV +1 7 % Vn+2 xn+1yn+xn+1yn+2+xn+2yn Yn+2Yn+1 e " "

| > assign(%)

Moving frame

> rtho(n] = simplify(simplify( Matrix( [ [a, b, k1], ¢, d, k2], [0,0,1]]), symbolic), size)

o = Yn+2 " Vn , @)
" G2 7 2) %t T (0 =Y a1) S T5 (D1 ~Vat2)
Y T X t2
(V= Ins1) g2 7% (Va1 “Ins2) ~Fg1 (B0 Vi)

Va2 +xn +2

(yn+2 _yn) X +1 + (yn _yn+1) Xn 42 +xn (yn+1 _yn+2)

El

Y _yn+l’ _xn +xn+l’xnyn+l _xn+lyn

>

[0,0,1

[ Shift of the moving frame
> tho[n + 1] = subs(n=n+1,rho[n])

yn+3_yn+1 (3)
(yn+3_yn+1)xn+2+ (yn-i-l _yn+2)xn+3 +xn+1 (yn+2_yn+3)
xn+1 _xn-‘rS'

(yn-‘rl _yn+2) xn+3 +xn+1 (yn+2 _yn+3) _xn+2 (yn-‘rl _yn+3)

_xn+lyn+3 +xn+3yn+l

nt3 nt1) %2 T Dkt = Y042) %3 Tt Mgz = Vu43)

pn-i-l =

>

E)

yn+1 _yn+2’ _xn-i-l +xn+2’xn+1yn+2_xn+2yn+1 ’

l0,0,l




Invariants

> Points == Matrix([ [x[n],x[n + 1], x[n +2],x[n +3 ], x[n +m]], [y[n],y[n+1],y[n+2],y[n+3],y[n
+m]], [1,1,1,1,1]])
xn xn-i-l xn+2 xn+3 xn-i-m
Points = Yo Yust Ynt2 Yotz Ynsm (4)

1 1 1 1 1
=> Invariantsn = simplify (simplify(rho[ n].Points, symbolic), size)
Invariantsn — [O, 1.0, (n =n+3) %nta T (5 FX043) Yowo P03 ~ %430 ’ )
D =) B2 T (X T35 ) Va2 TN 1 ~ %1

D = Inam) Y2 T % % m) Yn2 T oam®n ~ % em
D =) %2 T (5 T35 ) Va2 TN 11 ~ %1

[0:0: (B2 =) Xarr (% =0s1) B2 T (Dt “as2) > (D0 Fo0s3) Ko T (0
1) Y3 T Gt Thg3)s (0t

,1,1,1, 1}

s

n

yn+m) xn+1 + (yn _yn+1) xl1+m+x (yn+1 _yner) ]’

_> mysubs == {x[n]=0,y[n]=0,x[n +1]=1,y[n+1]1=0,x[n+2]=0,y[n +2]=Inv[y,n +2],x[n +3]

_ =Inv[x,n +3],y[n+31=Inv[y,n +3],x[n +m]=Inv[x,n + m],y[n +m]=Inv[y,n +m]}
> Quickcheckl = subs(mysubs, Invariantsn )

01 0 Invx, n+3 Invx, n+m
Quickcheckl = 0 0 Inv, o Inv o Inv 6)
1 1 1 1 1
_Maurer Cartan matrix
> K:= subs(mysubs,tho[n +17])
K= Invy, n+3 1 - Invx, n—+3 (7)
_Invx, n+3 lnvy, n—+2 + Invy, n+2 ]nvy, n—+3 _Invx, n—+3 Invy, n—+2 + lnvy, n+2 Invy, n-+3
B lnvy, n+3
_Invx, n+3 Invy, n+2 + Invy, n+2 [nvy, n+3
_Invy, n+2’ -1, Invy, n+2 |
0,0,1 }
_Quick checks
> simplify(K[1,1]-K[2,2] —K[1,2]-K[2, 1], symbolic)
1 ®
1+ Invy, n+3 J
-Inv Inv + Inv —Inv
> simplify| simplify xntd yntd ynt2 ynt3 , symbolic |, size
Inv
yn+2
Invx, n+3 1 (9)
i Invy’nJr2 (Invx’n+3—l) —|—Invy’n+3

(1 +tau[n])

tau[n], ,~tau[n]|, [ -kappa[n],-1, kappa[n]], [0, O, 1]])
kappa[ 7 ]

> MyK := Matrix(

(10



1+7
Tn _T}’l
Kl‘l
MyK := (10)
K, —1 K,
0 0 1
[ > MyK(1,1) -MyK(2,2) — MyK(2,1) -MyK(1,2)
1 (11)

=Differential difference invariants relations
Re Sy = Matrix( [ [Slnvx n t], [SInv ] [O]]) :

y,n,t
> [l == MatrixInverse( MyK) .Sv

—Slnvx nt" 1, ¢
Kﬂ
11 = (12)
K Slnv T, Slnv
n X, n, »n,t

0

(> SSv = Marrix ([ [SSInv, ], [SSInv, , ], [01]) :

> 12 = simplify( MatrixInverse( MyK) subs(n =n + 1, MatrixInverse( MyK) ) .SSv, symbolic) : collect( %,
SSInvx " t) collect( %, SSInv ot )

(Kn(l +Tn+1) B (1 +Tn) Ti1+lKn+1) SSInvyn t + (_(1 +Tn) Kr21+1 +Kn+lKn) SS[an,n,t
Kn+1Kn KnJrlKn
(_Kn(l—i_rn )+ann+1 n+1)SS]nVy,nt + (Ki+lTn_Kn+1Kn)SS]nvx,n,t (13)
Kn+1 Kn—H
0

:> ]-2:=%:

Curvature matrix

> rhot[n] = subs({x[n]=x[n](t),x[n+1]=x[n+1](t),x[n+2]=x[n+2](t),y[n]=y[n](t),y[n+1]
=y[n+1](1),y[n +2]=y[n+2](z) },tho[n]) :

> diffrhot[ n] == map (z—diff (z, t), rhot[n]) :

> subs( { % x,(t) =Inv[x, n, t],
t], % X, 4o (1) =Inv[y,n+2,t]},%j :

> N = simplify(subs( {x[n](t) =0,y[n](t) =0,x[n +1](¢) =1, y[n+1](¢t) =0,x[n +2](¢) =0,y[n +2](?)
=kappa[n],x[n +3](¢) =Inv[n,x[n +3]],y[n +3](¢t) =Inv[n,y[n +3]1}, %), symbolic)

[nvx, n,t B Invx, n+2,t

d d

Eyn(t) :[nv[ysna t]’ Ex}’l+l( ) I}’IV[X n +1 t] n+1( ) :Inv[ysn +17
d

=Inv[x,n +2,t], Eyn+2(f)

Invx, n,t - lnvx, n+1,t¢ K _Invx n,t
Ni= " (14)
Invy, "t Invy nt1t —Invx, +Invx nt1t —Invy, nt
0 0 0
> N:= simpllﬁ/(subs( {Invx’n+1’t=ll( 1,1), Inv +1’t=11(2, 1),Invx’n+2,l=12( 1) }, %),symbolic)
([nv +Slnv )K +(1+T )Slnv 1 )
R n, X, n,t n n Y, n,t

N:= , 5 (ssmv,, (1+71,) €+ ( (v, as)

K" Kn+1 Kn

— SSlnvx, nt ) K, + SSInv

»nst Y1 (1 +TV!)>Kn+ -K SSInV,n, (1 +Tn+1))’ ~Inv,

x,n,t|



( —Invxy — SInv ) K — ( 1+ ‘cn) Sinv

X, n,t n »n,t

-Sinv, K — Sinv T +1Inv

x,n,tn n,tn n,t’
p Vs Kn

0,0,0

| > #Shift of the curvature matrix

> SN:= subs( {Inv[x, n, t] =Snv[x, n, t], mv[y, n, t] =Snv[y, n, t], Inv[x,n + 1,¢t] =SInv[x,n + 1, t], Inv[y, n
+ L, t]=Snv[y,n +1,¢t], Inv[x,n +2,¢t] =SInv[x,n + 2, t], kappa[n] =kappa[n + 1], SInv[ x, n, t]
=SSInv( x, n, t], SInv[ y, n, t] =SSInv[y, n, t], SInv[x,n + 1,¢t] =SSInv[x,n + 1, ¢], SInv[y, n + 1, t]
=SSInv[y,n + 1,t],SInv[x,n +2,¢] =SSInv[x,n + 2, t], kappa[n + 1] =kappa[n +2],tau[n] =tau[n
+ 1], tau[n + 1] =tau[n + 2], SSInv[x, n, t] = SSSInv[ x, n, t], SSInv( y, n, t] = SSSInv|[ y, n, t], SSInv[ x, n
+1,t] =88SInv[x,n + 1, t], SSInv[y,n + 1,¢] =SSSInv[y, n + 1, t], SSInv[x, n + 2, ¢t] =SSSInv[x,n +2,¢t]}

9 N)
(Stnv, , ,+SSinv,, Y%, +(1+7,, ) S, 1
. n, x,nt) n+l n+ yn,t 2
SN = : —(ssstmv,,  (1+7,,,)%, ., (16)
S+ Ko +2%0 41
( (Stnv, ,, = SSSInv,_,, ) K, .\ +SSSInv, /%, ) (1 +‘cn+l) ) Kyin — 1 S8ty (1
+‘Cn+2) ) S[nvxn z]
—SS]nvx’ L SSlnvy’ L + Slnvy’ o
(=St = SSIv, )%, — (1+7,.,) SSIw, -
’ Mot |
Kn +1
0,0,0
[ Differential--difference Syzygy and evolution of curvature invariants
| > Syzygy = simplify(SN-MyK — MyK N, symbolic) :
| > Syzygy(1,1) :
> collect( %, Inv e, t) collect( %, Inv ) collect( %, Slnv ) : collect( %, SInv ) : collect( %,
Yn,t X, n,t v,n,t
SSInv n ) collect( %, SSInv ot ) collect( %, SSSInv o t) : collect( %, SSSInv )
s ) ) Yt
2
(_Tn+2 n (1 +Tn+l) n+2 +Kn+1 n (1 +Tn+2) ) SSSInvy n,t (17)
2
Kn+1 n+2 n
(-6 (1+7,,,) %y 5, KoK, ., ) SSSTy T, (1+7,.,,) SSiv
+ n n+1 112+2 +1 n n+2 X, n,t n n+ Nyt 41 SS]I’le e
K-n+lK-n-‘r2Kn K”""l
(-K K2+ 1 +7 2 )SI -t — 1)1
+ n+1"n ( 3 n) n+1 n nvrnt+ ( n ) m}y,nt_,tlnv
K n X, n,t
| Kn +1 Kn n
| > Syzygy(2,3) :
> collect( %, Inv e, t) collect( %, Invy ; ) collect( %, S]nv o, z) : collect( %, Slnvy nt ) : collect( %,
SSlnvx " t) collect( %, SSInv ) collect( %, SSSInv o t) collect( %, SSSInv )
> 1y s »n,t
-k (1 +7 +1T 1T SSlnv K T —K X ) SSinv
( n( n+ ) n 1% ) vty (n+1 n n+1 n) xnl+<-Tn—1)S]nvn[ (18)
Kn +1 Kn +1 .
— K Slnv — Inv — K Inv
n x,n,t v, n,t n X, n,t

:Adjoint computations



Note we just compute the SL(2) part as the rest of the matrix can be done by hand
| > restart

;> with ( LinearAlgebra) :
> Adg = Matrix( [[ad+bc -acbd]][-2ab, az,—bz], [2-c-d,—cz, d2] 1)

ad+bc -ac bd
Adg:=| -2ab a* -b? 19)
2cd & &

[ Here we evaluate the frame into the adjoint matrix

> gi= W2=00) .
| kappa
[ . (x0—x2)
| kappa
:> c:=y0—yl:
[> d=xI—x0:
(> Adrho = simplify( Adg, symbolic)
Adrho = (20)
(20 —yl —y2)x0+ (-xI —x2)y0 +y2xI +x2yl (-y2+y0) (0 —yl)
[ K ’ K ’
(%0 —x2) (-x1 +x0)
- >
2 (-p24y0) (x0—x2) (-y2+y0)>  (x0—x2)* ]
K ’ K ’ K ’

-2 (y0—yI) (~xI +x0), -(y0—yl)?, (-xI +x0)?

|

[ Here we evaluate the Maurer Cartan matrix into the adjoint matrix

| > a:=tau:
> bim (1 +tau) :
_ kappa
| > ¢ :=-kappa:
| > d=-1:
> AdKO = simplify( Adg, symbolic)
o1—1 TK -1
K
Adk0=| 21(1+1) 2 (1+41)° 1)
T 2
K K
2K -K2 1

The general solution, Groebner basis computation
| > restart

| > with(Lineardlgebra) :
| > k= Matrix ([ [k, k2, k3, k4,k5]]) :
| > V= Matrix([[V1, V2,V3,V4,V5]]) :
| > Adg = Matrix([[a-d +b-c,-a-c,b-d], | -2-a-b, az,—bz], [2~c-d,—c2, dz] 1) :
(22)

[ > simplify( MatrixInverse( Adg) , symbolic) : Adginv := subs(ad — bc=1, %)

(23)




ad+bc cd -ab

Adginv:=| 2bd d&* -b
-2ac -2 42
> A= Marix([[0,0], [0,0], [0,0]])
0 0
A=1]0 0
0 0

[> Bi= Matrix( [ [a-d + b-beta, beta-d,-b-alpha], [ -a-beta — alpha-c,-c-beta, alpha-a]])
ad+bp Pd -ba

-afp—cao -cBp oa

> = Matrix([[d-b], [-c,a]])

-c a

-

> Adg = Matrix([ [ Adginv, A1, [B, C]])

ad+bc c¢cd -ab 0 0

2bd & - 0 0

Adg = -2ac -2 P& 0 0
ad+bpB PBd -ba d -b
-aB—co -cf oa -c a

=> Equations = simplify(k+Adg, symbolic) — V
Equations = | (-2k3c+ (kI +k4)d —Pk5)a+ (Bk4 +ckl +2dk2) b —ock5 — VI, k2d> + (Bk4
+ckl)d—k3F —k5cB—V2, -k2b* + (-akl —ak4) b +k3a> +k5Soa — V3, ~kSc +kdd — V4, k5a
i —k4b — V5]
;> with ( Groebner) :
> F:= [ Equations(1, 1), Equations(1,2), Equations(1, 3), Equations(1, 4), Equations(1,5),a-d —b-c — 1]
F:=[(-2k3c+ (kI +k4)d —PBk5)a + (Bk4d +ckl +2dk2) b —ock5 — VI, k2d* + (Bk4 +ckl) d
— k3P —k5cB—V2, -k2b* + (~akl —ak4) b +k3a> +kSoa — V3, ~ck5 +dkd — V4, aks — b k4
| —V5,ad—bec—1]
> Basis(F, plex(alpha, beta, d, b, a, k1, k2) )
(k1 (V52 S ka k5> +2 V4 V5> P kd k5 —2V5 P kA k5> + VA V5> ckd — 3 VAVS ck4? k5 + c k4 k5°

—VLV5k4*) + k2 (V52 A kS +3 V4V P k5> —2 V52 kdk5 +3 V4> V52 ck5 — 4 VA V5 c k4 k5?

+ kP kS VP VEE =2V V5kdkS) — V5 A k3 k4> kS — V52 P k3 k4> V4 + V52 P kd® k5 V4

2 V5P k3kA kS + V3 VA chkd? k5 + VA2 V5> ckd> +2ck3 k> VAVS — ckL kSVAVS — ck3kd* k5
+VIKLVEVS +V2VAVE k> — VA kP V5, Vda +V5c —kd, bkd V4 + V5 kS + VAVS — k4kS, -ck5
+did —V4,B(VAVS> P kd k5> +2 VA V5> P kd k5 —2VAV5 P k2 k5> + VL V5> chkd — 3 VAL V5 ckd? k5
VAL kS — VP V5k4?) + k2 (-V4V5E kS =3 VL V5 kS + VAP k4 kS =3 VL V5cks

+ V42 ckdk5? — V4 V5) — VAV5? A kd k5P — V2 V52 S kd k5 — V3V S kd k5> — 2 V42 V5% B k4 kS
—VAV5Ek3kP kS + VAVS S kA k5> — VIVA V5 P kd k5 — 3 V2 V4 V5> P kd k5 +2 V2 V5 P k4 k5
—V3VE P kAkS — VP V> kd — VA VS I3KA +2 VL V5P ka2 k5 + VA K3k k5 — VIV V5 c k4
— 22V VS ckd +3V2VAVS kA kS — V2 ek k5> + VL V5 ckd> + V2 VA V5 k42, VL V5 2

— kB kS VIV kA — VAKS k4 — VAI3 k> + V5 F k52 + VA2 V5 kd* + o (V4 V52 3 k52
F2VLVEPhS —2VAV5 P kd k5> + VL V52 e =3 VA V5 chkd k5 + VA ckd* k5> — VA V5 kd)

(23)

24

(25)

(26)

27

(28)

(29)

(30)



+ k2 (V4ckS? V5 + VA KSVS — VAK4kS?) + VAV5 chk3kd? — 2 VA V5> ckd +2 V4V kS
— 3V KAk +V2VE kS +3VS kP kS + VIV VS ¢+ V2VAVS ¢ —V3VE V5e
— VIV V5kd + VI VAKL kS — V2 VAV kd + V2 V5 kd? k5 — 2 VI VAVS ckd k5 + VI VA V5 P k5
— V3V V5P kS —5VAVS> P k4k5 —2V2 V5> ckd kS +2 V3 VA ckd kS +4 VAVS chd* k5 |



4.3.3 - SL(2) discrete projective case
> restart

> with(LinearAlgebra) :
Normalization equations

(a-x[n](t) +b) 1

> eql = =—:
cx[n](r) + LAbe) +ab'c) 2

B (ax[n+1](0) +b)

> eq2:= =0
cx[n+1](¢) +%

B (ax[n+2](t) +b) 1

> eq3:= =
cx[n+2](1) +(1+aA 2

=Frame

| > solve({eql,eq2,eq3}, {a,b,c}) :

| > allvalues (%) : %[ 1] :

| > assign(%) :

> rho[n]:=Matrix( [a,b], c,simplzjﬁz[(lt%)”)

=x, (1) +x, (1)
P, = - D , @
4x, () x,  (0) —4x () x, (1) —4x, ()" +4x, () x,  (2)

=x, (1) +x, (1)
- - P xn+1(t) ’
4x () x, (8) —4x, (1) x, ,(1) —4x, ()" +4x () x, (1)

(xn(t) =2x, (1) +x,,.,(1) ) / (2 (xn(t)

_xn+1(t))/_4xn(l) x, (0 —dx (x5 (1) —4x (02 +4x, (0% (1)

_xn+2(t))j’

xn(t) _xn+2(t)
(oot (0 =%, 200 (5,00 =5, (0 ot (0 78 l0) (5,00 =%, (0)
_Invariants

> simpliﬁ/[ (ax[n](t) +b)

cx[n] (1) + L) Jrab'c)

, symbolic]

(0]

N | —

> simpllﬁ/[ (ax[n+1](t) +b)

i (1+b-c)

, symbolic
cx[n+1](1)

0 (©))



(ax[n+2](t) +b)

cx[n+2](t) + %

> Simpliﬁ/[ , symbolic]

1

(a-x[n+3](t) +b)
ex[n+3](8) + (1+b)

> simpliﬁ/[ simpliﬁ/[ symbollc] size ]

_ (xn(t) — n+2 S(Z n+1
(zxn(t) +2xn+2( 1) —4x n+3(t))x ( ) ( (t) +2x ( )) n+2(t) +2xn+3(t) xn(t)
> simplify (ax[n+m](t) +b) , symbolic
[ ST ]
i} (%0 = n+2 )( ()+xn+1())
(an(t) +2x (t) - n+m( )) n+1 + +2xn+m(t))xn+2( ) +2xn+m(t) xn(t)
o (aﬂn+mﬂ() b)
> szmpllfy[ NI E 5} (tbe) Symbollc]
a
B ( (0 — +m,t )+xn+1( ))
(2xn(t) _4xn+l( ) +2xn+2(t)) n+mt ( +2xn+2( ))xn+l(t) _4xn(t) xn+2(t)

| Maurer-Cartan matrix

> mysubs = (xn(t) = %,xm_l(t) =0,x[n+2](1) :—%,x[n +3](t) =Inv[x,n +3]) :

> KO0 := subs(mysubs, subs(n =n + 1,rho[n]))

/_ Invx,n+3
/_ Inv, xn+3 -1 _2Invx,n+3
-1 —

ZIann+3 2
K0 = 1+Invx n+3 Invxn+3
LV SR (N U o Amiaes o1
-1 =21Inv 2 nvx, n+3 1 2 nvx, n+3
x,n+3 -— —In
2 x,n—+3
i 1+2- Inv
n+3
> kappa[n](¢) = (1 o0 )
( nvx n+3)
(1) = 1 —|—2[nvxn_i_3
i n 1—2[nvx,n_i_3
> isolate( %, Invxn+3)

[> K0:= simplify(subs( %, K0), symbolic)

(C))

©))

6

@)

®

®

(10)

an



KO :=

S50

2 [x (1) 4 [ (

3% (1) — 1

Je.( -

7\/1(”(1‘)—1\/](”(1‘)

_Shift of the Maurer Cartan matrix times the Maurer Cartan Matrix
> SKK = simplify(subs(n =n + 1, K0) K0, symbolic)

-1 -
n (1)
1
1)

2 /x,(

_Relationships between invariants

> Sinv[x, n, t] —simplify[ M, symbolicj
(K0(2,2))
4 Inv K (1)
_ x,n+1,tn

Slnvx’ nt= P
| x (1)
> isolate( %, Invx w1 t)

. _ Sty (%,(0 = 1)
x,n+1,t

4x, (1)
Inv[x,n +2,t]

> SSInv[x,n, t] = simpliﬁ/[

5 symbolic]

(-%SKK)(Z,I) +(SKK)(2,2)j
K(t)_l K (l‘)[l’lV
SShnv,_ -, = ( " ) n+l Lntl!
! 0 (K0 =)
> isolate( %o, I”Vx, n+2, t)
. _ SSIan,n’tKn(t) (KnJrl(t) — 1)
x,n+2,t

(,(0)
Invix,n +2,1]

—1) %, (0

> Shw[x,n +1,t] =simpliﬁ/[

;> subs(mysubs2, diffrhot) :
> NO := simplify( subs(mysubs, %) )

((—%KO)(Z,l) + (K0)(2,2))

5> symbolic]

_ ]nvx,n+2,t<Kn(t) — l)

Sinv =
x,n+1,¢t 4% (Z)
| n
Curvature matrix
| > diffrhot = simplify(map (z—diff (z, t), tho[n]) ) :
d d
> mysubs2 = ( & x, (1) =Inv[x, n, t], & x, 1 (8) =Inv[x,n +1,1], & X, 4ol

K1 (0 =1 (%,(0 +1) S8 (0 —1 (0 1
i 2 /%, (1) Kn(l‘)—l\/Kn(t) 4 [ (1) \/Kn(t)
S3K,(0) K, () +K, (1) +x, (1) +1 K, (1) 1(Kn+1(l‘)+l)
K, (0 =1k, () [ () [ (=1 2 [k, (0 =1 [k, (0 [x(0)

t) =Inv[x,n +2, t]) :

1n

12)

13)

(14)

15)

(16)

a7

(18)



Invx,n+2,t . [nvx, n,t -7
2 2 e n+1,1
NO = 8)
21 +21 — 41 Bl S WL VY
nvx, n+2,t nvx, n,t nvx, n+1,t 2 2
Sinv kK (1) — 1 SSinv K (1) (x (1) —1
> NO = simplify| subs| yInv, ., = x’n’t( 4 ) Anv = — ( ntl ) ,
4Kn(t) (Kn(t) 1)K’1+1(t)

NO) , symbolic

NO = ( ( ~Inv, at T SS]nvx, n. t) K, (1) +1nvx, n. t) K, (1) — SS[nvx’ . /X, (1) i S[nvx, nt (Kn(t) - 1) 19)
Z(Kn(t) —I)Kn_H(t) 4x (1)
1
2 Inv — Sinv + 2 SSinv K (1)
) 1
(Kn(t) 1)Kn+1(t)Kn(t) ((( X, n, t X, n, t x,n,t) n+
2
—2 SS]nvx, n, t) Kn(t) —2 Ko +1 (1) (Invx, nt S[m})@ n, t) K (1) — SInvx, n, S+ (1) )’
( (Invx’ nt™ SSInvx’ . z) K (1) — Invx’ n. t) K, _H(t) + SS]nvx, n. /%, ()
! 2 (5,00 =1) %, 4 (1
>
Infinitesimals
> subs| {alpha=1,beta=0, delta=0}, diff (alpha-x[] + beta) , alpha
(1 + beta-delta)
delta-x[n] + ——— =~
alpha
2x, 20)
> subs| {alpha=1, beta=0, delta =0}, diff (alpha-x[n] + beta) . beta
(1 + beta-delta)
delta-x[n] + —————~
alpha
| 1 (21)
> subs| {alpha=1,beta=0, delta=0}, diff (alpha-x[ ] + beta) ,delta
(1 + beta-delta)
delta-x[n] + ————~
alpha

- (22)

n

;Syzygy and evolution of curvature invariants
| > SN0 := subs( {Inv[x, n, t] = SInv[x, n, t],SInv[ x, n, t] = SSInv[ x, n, t], SSInv[ x, n, t] = SSSInv|[ x, n, t] }, NO) :
| > syzygy = simplify(map (z—diff (2, t), KO) — (SNO+K0 — K0+NO), symbolic) :

> isolate(syzygy(l, 1), d Kn(t)) :

L dr
> collect( %, Invx " t) : collect( %, Slnvx " z) : collect( %, SSInv)C n t) : collect( %, SSSInvx " z)
2 2 2
9 - (x,(07%, (1) —x,(0") SSStv,_, ) (-(2%,(0 +1) %, (1) +3%,(0)°) SSInv, | @3
dr " Kn+l(t) Kn+1(t)

+(=x, (1) +1) S+ (-6, (07 45, (1)) Iy,

| X, n,t n,t
|_Computation of the adjoints
| > restart

| > with(LinearAlgebra) :




> Adg = Matrix([[a-d + b-c,-a-c,b-d], | -2-a-b, az,—bz], [2‘C'd,—6'2, dz]])
ad+bc -ac bd

Adg:=| -2ab a* -b? 24)
2¢d  -F &

[ Here we evaluate the frame into the adjoint matrix
sqrt(x0 — x2)

> A:=
_ sqrt( (x0 —x1) - (x1 —x2))
> a:= l-A :
_ 2
x1
> bi=-—-4:
| 2
> o (x2 —2-x1 +x0) A
n x0 — x2
> di= (x0-x1 —2-x0-x2 +x1-x2) A
_ x0 — x2
> Adrho = simplify( Adg, symbolic)
- 2 - — _
Adrho = x0x2 + x1 ’ x2 +2x1 —x0 - ((x0+x2) xI —2x0x2) x1 , 25)
(x0 —x1) (xI —x2) 2 (x0—x1) (xI —x2) 2 (x0—x1) (xI —x2)
(x0 —x2) x1 x0 —x2  xIP(x0—x2)
2(x0—x1) (xI —x2)" 4 (x0—x1) (xI —x2)° 4 (x0—x1) (xI —x2) |
2 ((xf —2x2) x0 +xIx2) (x2—2x1 +x0) (x2 —2xI —i—xO)2
(x0 —x2) (x0—x1) (xI —x2) T (x0—x2) (x0—x1) (xI —x2)°
((xI —2x2) x0+x1x2)?
(x0 —x2) (x0—x1) (xI —x2)
[ Here we evaluate the Maurer Cartan matrix into the adjoint matrix
(kappa—1) )
> Bi=sqrt| ———— | :
L > ( 4 -kappa
| > a=58:
1
> b= —-B:
_ 2
> cim- (6-kappa +2) B
_ kappa — 1
| > d=28:
> AdK = simplify( Adg, symbolic)
-k —1 3k+1 Kk—1
2K 2k 8K
-Kk+1 K—1 -Kk+1
AdK = | — 2
4x 4x 16 x (26)
Sk—1 (3x+1)° k-1
K (k—1)x 4x

[ Here we evaluate the shift of the Mauer Cartan matrix into the adjoint matrix

(Skappa—l))
> Bi=sqrt| ————— | :
L sq( 4-Skappa
| > a=B8:
1
> b= —-B:
| 2
> com-A0Skappat2) p.

Skappa — 1



| > d=258:
> AdSK := simplify(Adg, symbolic)

> simplify(AdSK * AdK, symbolic)

-Skappa — 1 3 Skappa + 1 Skappa — 1
2 Skappa 2 Skappa 8 Skappa
. -Skappa + 1 Skappa — 1 -Skappa + 1
AdSK = 4 Skappa 4 Skappa 16 Skappa
-3 Skappa —1 (3 Skappa + 1 )2 Skappa — 1
Skappa (Skappa — 1) Skappa 4 Skappa

2 Skappa x

(Skappa +1) (x—1) }

( -Skappa + 1) € + Skappa +1 -3 Skappa Kz — 2 Skappa xk + K2 + Skappa + 2« + 1
’ 2 Skappa (x — 1)

5

(3K—1)Skappa2+ (2 —2) Skappa — x — 1

>

8 Skappa x
(Skappa — 1) (x+1)  (Skappa —1) (K+1)2 _ (Skappa — 1) (k—1)
4 Skappa x 4 Skappa (x — 1) 16 Skappa x

(3 Skappax — Skappa — « — 1 )2

(Skappa — 1) Skappa x
(x—1) (Skappa +1)?
4 (Skappa — 1) Skappa x

The general solution, Groebner basis computation
| > restart

with (LinearAlgebra) :
k= Matrix( [ [k, k2,k3]]) :
Vi=Matrix([[ VI, V2,V3]]) :

v "V "V "V "V

Adginy ==

> Equations = simplify(k+Adginv, symbolic) — V
Equations :=

;> with ( Groebner) :

| —be—1]
(> Basis(F, plex(a, b, ¢, k1, k2, k3) )

—ckl —2k2d]

Skappax (Skappa — 1) (x—1)

Adg = Matrix([ [a-d + b-c,~a-¢,b-d], [ -2-a-b, a*-b*], [2-c-d,-F*, d*]]) :
simplify( MatrixInverse( Adg) , symbolic) : Adginv := subs(ad — bc =1, %)
ad+bc cd -ab

2bd & -b?
-2ac A a4

> F:= [ Equations(1, 1), Equations(1,2), Equations(1,3),a-d —b-c — 1]
F=[d(akl+2bk2) —2k3ac+bckl —VI, -Pk3+cdkl +d*k2 —V2,a*k3 —abkl —b*k2 — V3,ad

[ Here we caluculate the shift of the Maurer Cartan matrix times the Maurer Cartan matrix into the adjoint

b

| d(aki+26k2) —283ac+bekl = VI -k3+cdkl +d k2~ V2 a*k3—abkl —b* k2~ V3 |

[-VI2—4V2V3 + k> +4k2k3, k3 —cdkl —d* k2 4+ V2, -VId +2bV2 —2ck3 +dkl, ~cVI+2a V2

@27

(28)

(29)

(30)

31

(32)

(33)



Running example for Chapter 5. Commuting induced flows on the curvature invariants
| > restart

;> with ( LinearAlgebra) :

Normalization equations

| > FEql = lambda-u[n] + epsilon:

| > Eq2:=lambda-u[n + 1] +epsilon —1:
> solve( {Eql, Eq2}, {lambda, epsilon})

u, 1
e= A= - 1)
| un un +1 un un +1
| > assign(%)
Frame
> rho[n] = Matrix( [ [ lambda, epsilon], [0, 1]])
_ 1 Uy
P, = e (2)
0 1
[ Invariants
> simplify(tho[n .Matrix( [ [u[n +j]], [1]]), symbolic)
“u . tu
n+tj n
u, —u, +1 (3)
1

_First order differential invariants
> simplify(tho[n.Matrix([ [u[n +J,¢]], [0]]), symbolic)
un o un+1 (4)
0
_MaurerCartan matrix
| > tho[n + 1] :=subs(n=n+1,tho[n]) :
> subs({u[n]=0,u[n+1]=Lu[n+2]=Inv[n+2]}, %)

1 1
1 —Inv, 1 —Inv, 4 Q)
0 1
> K[n] = subs 1 =kappa[n] (1), %
1 _Invn +2
K = -k, (1) «, (1) (6)
0 1
=Curvature matrix in terms of sigma_t
> K[n]Matrix([ [Inv[n + 1,¢]](2), [0]])
-, (2) Inv, (1)
n n N 7
. ™
[ > sigmat[n +1](¢) =%(1,1)
sigmat, | (1) = -x, (1) Inanrl’t(t) t))

> isolate( %, Inv, , | (1))
sigmat, (1)

K (1)

n

®

Invn +l,t(l) =




Curvature Matrix
| > diff (map(z—z(t),tho[n]), 1) :

> subs({% u, (1) =Inv[n,t](1), d (t) =Inv[n +1,¢t](1) },%) :

u
dt n+1
> subs({u[n](t) =0, u[ln+1](t) =Lu[n+2](t) =Inv[n +2]}, %)
Invl“(t) —Iner_l’t(t) —Invn’t(t)

0 0

> N[n]:= subs[ {Invn,t(t) :sigmat[n](t),Invn_H,l(t) =

_ sigmat[n +1](2) } %)

K, (1)
sigmat (7)
sigmat, (1) + =t -sigmat, (1)
]\/ﬂ = Ki’l ( t)
0 0

=Correction Terms
| > simplify(diff (map (z—z(t),tho[n]), t) Matrix([ [u[n +j]11(¢), [1]]), symbolic) :

> subs({% u, (1) =Inv[n, t](1), % u, o (2) =Inv[n +1,1](¢) },%) :
symbolic)
(Invn’t(t) _InVn+l,t(t) ) Invn+].(t) —Inv, (1)

0

[ Correction Matrix
> T:= Matrix([Inv[n, t](t), Inv[n +1,¢](¢) ])

T==[ Invn’t(t) Invn_H’t(t) ]

> Phi = Marrix([[0,11, [1,1]])

0 1 l
D =
1
> J:= Marrix([[1,0], [0,1]])
10
Ji=
01

> Kmatrix = -T+J+MatrixInverse(Phi-J)
Kmatrix= | 1y, (0) =,y (0) <Dy, () ]
_Syzygy and evolution of curvature invariant

| > simplify(map (z—diff (2, t), K[n]) — (subs({n=n+1},N[n])K[n] — K[n].N[n]), symbolic) :

> isolate( %(1, 1), % K, (1) ) : collect( %, sigmat, (1) ) : collect( %, sigmat, | | (1) )

sigmat,  , () x, (1)

K}’t-}-l(t)

d K (1) = (Kn(t) —1)sigmatn+l(t) —x (1) sigmat (1) +

B Hsigmat == rhs( %)
sigmat, , , () x, (1)

K11+1(t)

Hsigmat := (K (1) — 1) sigmat, (1) —x, () sigmat, (1) +

n n

_Fundamental Syzygy

> diff (map (z—z(s, t),rho[n]),s)Matrix( % u, (s, 1) ], [O]D :

> subs( { % u, (s, t) =Inv[n,t](s1), % u, (s, t) =Invin +1,1](s, 1), % u, (s, t) =Inv[n,s](s 1),

=> simplify(subs({u[n](t) =0, u[n +1](¢t) =1, uln+2](t) =Invin +2],u[n +j](t) =Inv[n +j] (1) }, %),

4
ds

(10)

an

(12)

13)

(14)

15)

(16)

17)

(18)



u, (s, t) =Invin +1,s](s, 1) },%J :

=> simplify(subs( {u[n](s,t) =0,u[n +1](s,¢) =L u[n+2](s,t) =Inv[n +2](s,t),uln +jl(s¢t) =Inv[n
+j1(s, 1) }, %), symbolic) :

. _ sigmat[n +1](s,t) )
> subs[ {Invn’t(s, t) =sigmat[n] (s, t),[nvn_’_l,t(s, t) =- , % | ¢

Kn(S, t)
_ sigmas[n +1](s, 1) } %]

> subs[ {Inv (s, 1) =sigmas[n](s, t),[nvn_H (s 0) =

n,s

K, (s, 1)
sigmas (s, 2)
sigmas, (s, 1) + =l sigmat, (s, 1)
K (s,1) (19)
0
> simpliﬁv[ simplify[ diﬁ‘( sigmas, (s, 1), t) - diﬁ‘( sigmat, (s, 1), s) + | sigmas, (s, 1)
sigmas (s, 2) sigmat (s, 2)
g ntl 7 sigmat, (s, 1) — | sigmat, (s, 1) + B sigmas, (s, t), symbolic |, size | :
Kn(s,t) Kn(s9t)
0, a i 0, a 7
collect( %, o sigmas, (s, 1) ) :collect( %, s sigmat, (s, 1) ) :
(> C=%
0 0 -sigmas (s, t) sigmat (s, ) + sigmas (s, ) sigmat (s, t)
C:=-— sigmat (s,t) + — sigmas, (s, 1) + K ntl ntl K (20)
as o K, (1)
_Commuting evolution flows
> Hsigmat = subs( {sigmatn (1) =sigmat, (s, 1), sigmat, | (1) =sigmat, (s, 1), sigmat__ ,(t) =sigmat, (s, 1),
kappa[n](t) =kappa[n](s,¢t), kappa[n + 1](¢) =kappa[n + 1](s, ¢) },Hsigmat) :
B Hsigmas = subs( {sigmatn (s, t) =sigmas, (s, t), sigmat, (s, t) =sigmas, , (s, 1), sigmat, (s, 1)
= sigmas, , , (s, 1) }, Hsigmat) :
| > diff (Hsigmas, t) — diff (Hsigmat, s) :
0 0 0
> subs( { = K, (s, ) = Hsigmas, 7 K, (s, 1) = Hsigmat, 7 Kn_H(s, t) =subs(n=n + 1, Hsigmat), » Kn_H(s, 1)
=subs(n =n + 1, Hsigmas) }, %j :
;> Mpylefthandside := simplify( %, symbolic) :
subs(n=n+2,C)- K (s1)
> HC:= simplify (Kn(s, t) —1 ) subs(n=n+1,C) - (s,t) -C+ , symbolic
K (s, 1)
L n+1
> Mpylefthandside — HC
0 21)

IV "V "V "V ]



;> restart
| > with(LinearAlgebra) :
5.7 - The SL(2) LinearAction

Correction Matrix
> T:= Matrix( [ sigmat[ n, x], sigmat[n,y], Inv[n + 1,x,¢]])

T:= [ sigmat, sigmat, Invn_‘_]’x’t

> Phi = Matrix([[1,0,0], [0,0, tau], [0,1,0]])

1 00
®:=|0 0
1
> Ji= Matrix([[1,0,0], [0,1,0], [0,0,1]])
10
J=10 1
0
=> Kmatrix := -T+J+ MatrixInverse(Phi«J)
Kmatrix := —sigmatmx —% —sigmatmy
=Frame
Vn+1 B Yn+1
> tho[n] = | %uVn+1 " Yu¥n+1 Y Vn+1 " V¥ +1
BL Tn
>
Vn+1 B Fn+1
P, =1 V1" V1 Vs T V41
-y, x,
=Fundamental syzygy
> M :=diff (map(z—z(s,t), tho[n]), S)Matrix( %xn(s, t) ], %yn(s, t) H) :

dt

d d
_yn+1(5, t) =1"V[y," + 1,[](5‘, t): a

d
A0, 3 2, (80 =Ilynd(s0. 3

t](s,t)j:

> mysubs2b := [ %xn(s, t) =Inv[x, n,s](s, t),ix (s,2) =Inv[x,n +1,s](s, t),ix

& S+ & w80 =Inv[x,n

d d d

+2,s](s,t)) :

| > M = subs(mysubs2a, M) :

> M = subs(mysubs2b, M) :

> mysubs = (xn(s, H=Lx (st =0y[n](st)=0y[n+1](st) =Invly,n +1](s 1), y[n+2](s1)
=Inv[y,n +2](s,t),x[n+2](st) =Inv[x,n +2](s,¢) ) :

> simplify (subs(mysubs, M), symbolic)

> mysubsla = [ %xn(s, t) =Inv[x, n, t](st), %xn+l(s, t) =Inv[x,n + 1, t](s, t),ixn+2(s, t)y =Inv[x,n +2,

Yy yolst) =Invly,n +2,

Va5, 1) =Inv[y,n

(0))

2

(©))

C)

(©))



—Invx’ 0. J(s0) Invx’ 0. (s, 0) Invy’n (s1) = Invx,n _H’S(s, t) Invyj n. (8, 1)
Invy, na1(80) 6)
—Invy’ . J(s7) Invx . (8, 7) +Invx, n. J(s1) Invy’ n. (8, 1)
>
> Simplify(subs( Inv =tau[n](s 1), Inv 1, (s,2) = sigmas|y,n + 11(s 1) s %),symbolic) :
R ntl.s tau[n](s, 1)
> subs( {Invx’ ns (s, 1) —szgmas[x nl(st), Invy’ n’s(s, t) =sigmas[y,n](s, t),]nvx’ n,t(s, t) =sigmat[x,n](s,t),
Iy, " (5.1) = sigmat[y,n (s, ) }. %)
-sigmas,_, (s, t) sigmat (s, 1) T (s, ) +szgmas 1 (s, 7) sigmaty R (8 10)
T (s0)’ 7
—sigmasy’ a8 10) sigmatx’ L0 + sigmasx’ a8 10) sigmaty’ 2 (8 10)
—sigmasx,n(s, t) sigmatx’ L8 0T (s, t) + sigmasy’ ar1(s0) sigmaty’ 2 (80
> simplify T (s, f)z
—sigmasy o8, 1) sigmat (s, t) + sigmas,_ (s,1) Sigmaty (8 1)
. . 2 . .
-sigmat, a(51) sigmas, (s,2) T, (s0) + szgmaty’ n1(80) sigmas, , (s, 1)
_ 2
T, (s 1)
—sigmaty’ 2 (810 sigmasx’ L850 + sigmatx, 2 (8 10) sigmasy’ 2(810)
a . a .
o Slgmasx’n(s, t) — ( & sigmat, a8 10) 5
+ 9 o , symbolic | : collect[ %, E sigmas, (s, 1) j : collect( %,
7 szgmasy’ (s, 2) — ( - szgmaty, 2 (8 10) j
a ) .
. sigmat, (s, 1) )
a . a .
" sigmat, L(510) + o Slgman,n(S, t) )
szgmas 1 (s,7) sigmaty W81 — sigmaty p1(81) sigmasy L8 10)
2 9 9
T, (s 1)
0 0
[ -2 sigmasy, L (8 10) sigmatx, J(80) + 2sigmasx’ L (5 10) sigmaty, W80 + o sigmasy, L(81) — &
sigmaty’ L (80) ] ,
>
| > C=%:
Commuting evolution flows
> Hsigmat = Matrix kappal[n](s, t) - (sigmat[x,n] (s, t) — sigmat[x,n +1](s,¢)) + ;sigmal[y,
tau[n] (s, ¢)

tau[n](s, 1)
tau[n + 1] (s, 1)?

t)sigmat[x,n + 1](s, t) +kappa[n](s, t)sigmat[y,n + 1](s, ) ]U :

nl(st) — sigmat[y,n +2](s, t) ], [tau[n](s, t) -sigmat[x,n] (s, t) +tau[n](s,

> Hsigmas =




. . sigmas. (s, t) T, (s, t) sigmas, (s, 1)
K, (s, 1) (szgmasx,n(s,t) —szgmasx,n+l(s,t)) + L1 -z y,r;2

T (8,1
"( ) T +1

(s, ¢

T, (s, 1) sigmas)@ L (81) + 7 (s, 1) sigmas

x’n+1(sa Z) + Kn(s, t) Sigmasy

,n+1(s’t)

;> simplify(map (z—diff (z, t), Hsigmas) — map (z—diff (z, s), Hsigmat) , symbolic) :
0 0 0 0
> subs( { = K, (s, ¢) = Hsigmas(1,1), > K, (s, t) = Hsigmat(1, 1), & T, (s, t) = Hsigmas(2,1), > T, (s 1)
0

= Hsigmat(2,1), — (s, ¢) =subs(n=n +1,Hsigmas(2,1)), o T, (s 1) =subs(n=n+1,

Qs Tn +1
Hsigmat(2,1)) }, %) :
;> Mylefthandside = simplify( %, symbolic) :

K (s2) (C(1,1)-subs(n=n+1,C(1,1))) +

> HC:= simplify [ Matrix

T, (s,1)

1) subs(n=n+2,C(2, 1
_ Lo 1) substn = - \’[r,,(s,w C(1,1) +1,(s0) subs(n=n +1,C(1,1))

2
Tn +1 (S’ t)
+kappa[n] (s, ¢) subs(n=n+1,C(2,1)) ] J,symbolic
[ > simplify( Mylefthandside — HC, symbolic)
0
9
. ©®)




6.2 - Multispaces. SE(2) curvature

| > restart :
| > with(LinearAlgebra) :
Coefficients
| > Ax = xt0:
((xt2 —xt0) 12 — (xtl — xt0) -t2)
> Bx:=
| tl-12- (t1 —12)
((xt2 —xt0) -t1 — (xt] —xt0) -12)
> Cx:=-2-
| tl-12-(tl — 12)
| > Au = ut0:
((ut2 — ut0) -t12 — (utl — ut0) -t22)
> By =
_ tl-12-(t1 —12)
e Cue . ((ut2 — ut0) -t1 — (utl — ut0) -12)
_ tl-2-(tl — 12)
|_Action
| > Xiilde := cos(theta) - (x —a) +sin(theta) - (u —b) :
| > Utilde := -sin(theta) - (x — a) + cos(theta) - (u —b) :
| > XOtilde := subs( {x = xt0, u = ut0}, Xtilde) :
| > Ultilde == subs( {x = xt0, u = ut0}, Utilde) :
| > Xltilde :== subs( {x=xtl,u =utl}, Xtilde) :
| > Ultilde := subs( {x=xtl,u=utl}, Utilde) :
| > X2tilde := subs( {x = xt2, u = ut2}, Xtilde) :
| > U2tilde = subs( {x =xt2, u = ut2}, Utilde) :

Normalisation equations

> norml = Simpliﬁ/(subs( {xt0 = X0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde},
_ Ax), symbolic) =0:

> norml = simplify(subs( { xt0 = X0tilde, ut0 = UOtilde, xt1 = X1tilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde},
Ax), symbolic) =0 :

> norm?2 = simplify(subs( { xt0 = X0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde},
Au), symbolic) =0 :

> norm3 = simplify (subs( { xt0 = XO0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde},
Bu), symbolic) =0 :

> solve( {norml, norm2, norm3}, {a, b, theta})

t12 ut) — t12 ut2 — 2% ut0 + t22 utl
a = xt0, b = ut0, © = arctan £ £ “ ‘ a
tI2 xt0 — t1% xt2 — t22 xt0 + t22 xt1
| > assign(%)
Taylor Series
1
> Mysubs == t1 = h, t2=2-h, xt0 = x,ut0 = u, xt =x + h-xt + 5 h2extt, xt2 =x +2-h-xt +2- h2-xtt, utl =u + h-ut
1
+ 5 R2eutt ut2=u +2-hout +2- h2-utt :
_Convergence to the smooth case of the parameters of the frame
| > subs(Mysubs, a) :
| > simplify (%, symbolic) :
| > map (limit, %, h=0) :
> simplify( %, symbolic)
x Q)

;> subs(Mysubs, b) :
| > simplify (%, symbolic) :
| > map (limit, %, h =0) :




> simplify( %, symbolic)

| u 3
:> subs( Mysubs, theta) :
:> simplify( %, symbolic) :
[> map (limit, %, h =0) :
> simplify( %, symbolic)
ut
arctan[ g j )

_Convergence to the smooth case of the invariants

> arclenghtl = simplify (subs( { xt0 = X0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde},
_ Bx), symbolic) :
| > arclenght2 = subs(Mysubs, arclenghtl) :

> arclenght3 := simplify(arclenght2, symbolic) : simplify(map (limit, %, h =0), symbolic)

V uf + xt? o)

> dotproductl = simplify (subs( { xt0 = XO0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde},
Cx), symbolic) :

;> dotproduct2 := subs( Mysubs, dotproductl) :
> simplify( %, symbolic)
ut utt + xt xtt

(6)
\ u +xt?
_> crossproductl = simplify(subs( { xt0 = X0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2
_ = U2tilde}, Cu), symbolic) :
| > crossproduct2 = subs( Mysubs, crossproductl) :
> simplify( %, symbolic)
-ut xtt + utt xt (7)
\ uf + xi?
_Moving frame
> rho := simplify( MatrixInverse( Matrix ( [ [ cos(theta),-sin(theta), a], [ sin(theta), cos(theta), b], [0,0,1]])),
_ symbolic) :
Convergence to the smooth case of the moving frame
| > taylorrho == subs( { Mysubs}, tho) :
> map (simplify, %, symbolic) :
| > map (limit, %, h=0) :
> simplify( %, symbolic)
xt ut _uut+xxt
\/ uf + xt? \/ uf + xt? \ uf + xt?
i ut xt -u Xt +utx (8)
\/ uf + xt? \/ uf + xt? v uf + xt?
0 0 1

| > Srho = subs( {xt0 =xtl, xtl = xt2, xt2 = xt3, ut0 = utl, utl = ut2, ut2 = ut3,t0 = t1, tl =2, 2 = 3}, rho) :
Maurer Cartan Matrix
| > K10 := Srho.MatrixInverse(rho) :

_Taylor Expansion for the Maurer Cartan Matrix

1
>KI10h:= subs(tO—O,tl—h, 122=2h,t3=6h,xt0 =x, ut0=u, xtl =x + hxt + 5 h2 xtt, xt2 =2 h2 xtt +2 h xt +x,xt3

1
=x+4h-xt+8h2 xttut]l =u +hut+? W2 utt ut2=2 h2 utt +2 hut +u, ut3=u +4 h-ut + 8 h? utt,KlOJ :



> map (limit, %, h =0)
1 0

0 1
0 0 1

0
0

_Convergence to the smooth case of the Maurer Cartan matrix
| > diffK10 = map (diff, KIOh, h) :

> simplify(map (limit, %, h = 0), symbolic)

;> with ( Student[ LinearAlgebra]) :
K10h — IdentityMatrix(3)

n KI0h[1,3]
> simplify(map (limit, %, h = 0), symbolic)

> M:=

~ut xtt + utt xt
(uft +x2)3 /2

0 -ut xtt + utt xt
uf? + xi?
ut xtt — utt xt 0
uf + xr?
0 0

ut xtt — utt xt
(uft +x2)3 /2

0 0

-/ uf? + x2

®

(10)

an



| > restart

| > with(LinearAlgebra) :

:6.3 - Multispaces. Lie group SL(2)

_Taylor Series

_Multispace action

MUxtilde ==

Coefficients
| > Au = ut0:
((ut2 — ut0) 12 — (utl — ut0) -t22)
> By =
_ 1112 (t1 — 12)
(w2 = we0) 11 — (el — w0) 12)
|~ Cu=2 t1-12- (11 — 12)
Action
. (a-ut)+b)
=> U0tilde := (cut0+d)
. (a-utl +b)
=> Ultilde == (cutl +d)
. (a-ut2+b)
> U2tilde = (cu2+4d)

1
> Mysubs == t1 =h,t2=2-hyutO=u, utl =u + h-ut + ?-hz-un‘, ut2=u +2-h-ut+2-h2-utt:

> MUtilde = simplify (subs( { ut0 = UOtilde, utl = Ultilde, ut2 = U2tilde}, Au), symbolic)

aut)+b
cut0+d

MUtilde :=

> MUxtilde = simplify (simplify (subs( { xt0 = XOtilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2
= U2tilde}, Bu), symbolic), size)

1

Cu), symbolic)
MUxxtilde =

C(cw2+d) (cut0+d) (cutl +d) 1142 (11 —12)
i — 122 ut2 (~utl +ut0)) ¢ +d ((ut0 — ut2) t12 — (-utl +ut0) t22)))
> MUxxtilde = simplify (subs( { xt0 = XO0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde},

((ad—bc) ((utl (ut0—ut2) ti?

2 ((utl (ut0—ut2) t1 — 2 ut2 (-utl +ut0)) ¢ +d ((ut0—ut2) t1 — (-utl +ut0) 12)) (ad —bc)

> subs( Mysubs, MUtilde )

[> ad—be—1:
| > isolate( %, d) :
| > assign(%)

;> subs( Mysubs, MUxtilde) :
> limit(%,h =0) :subs(ad —bc=1, %)

;> subs( Mysubs, MUxxtilde) :
> limit(%, h=0) :subs(ad —bec=1,%)

(cu2+d) (cut0+d) (cutl +d) t12 (t1 —12)

_Convergence of the action to the smooth one

au-+b
cu-+d

ut

(cu+d)2

cuutt —2 cuf +dutt
(cu—{—d)3

(0))

(0]

(©))

@

(©))

6



Normalisation equations
| > norml := simplify (subs( { ut0 = UOtilde, utl = Ultilde, ut2 = U2tilde}, Au), symbolic) =0 :
> norm?2 = simplify (subs( { xt0 = X0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde}, Bu)
_ symbolic) =1 :
> norm3 = simplify (subs( { xt0 = X0tilde, ut0 = UOtilde, xt1 = Xl1tilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde}, Cu)
_ symbolic) =0 :
| > solve( {norml, norm2, norm3}, {a, b,c}) :
| > allvalues (%) :
| > assign(%)
> q = simplify(simplify(a, symbolic), size)

Nt A 12 N ut]l — ut2
a = -
i V (ut0 — ut2) (-utl +ut0) [t — 12
> b= simplify (simplify (b, symbolic), size)
Nt N 12 N ut] — ut2 utO

b:=

V (ut0 — ut2) (-utl +ut0) 1 —12
> ¢ = simplify(simplify( c, symbolic), size)
(t1 —12) utQ— ¢t ut2 + t2 utl

Ci=-
Vil =12 2 Jutl —u2 \[ -ut] +ut0 [ ut0—ui2 \[ 11

(be+1)
c, H), symbolicJ

a

[_ I 12 Juil —ui2 VT 12 Jutl —ui2 ut0 :
V ut0 —ut2 | ~utl +ut0 [ t1 —12 ’ V ut0 —ut2 \| ~utl +ut0 [ t1 — 12 ’

[ (t1 — 12) ut0 — t1 ut2 + 12 utl

Vit =12\ 12 \Jut]l —ut2 [ ~ut] +ut0 \ ut0— ut2 |/ t ’

((-t1 4 12) wt2 + t1 ut0) utl — 12 ut0 ut2 ”

Vil =12 12 Jutl —u2 \[ -ut] +ut0 [ ut0 —us2 [ t1

_Convergence of the moving frame to the smooth one
| > rhoh = subs( { Mysubs}, rho) :

| > map (simplify, %, symbolic) : map (limit, %, h =0) :
> simplify( %, symbolic)

_Moving frame

[a,b],

> tho = simplify [ Matrix [

p =

1 u
N ut N ut
utt . wutt — 2 ul
2 uf /2 2 uf /2

_Convergence of the coefficients to the variables
> subs( Mysubs, Au)

u
;> subs( Mysubs, Bu) :
> [imit(%, h=0)
ut
;> subs( Mysubs, Cu) :
> [imit(%, h=0)
utt

[ Infinitesimal vector fields and convergence
| > unassign('a'b'c')
| > A == simplify(subs( { ut0 = UOtilde, utl = Ultilde, ut2 = U2tilde}, Au), symbolic) :

>

b

@)

®

®

(10

an
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> B = simplify(subs( { xt0 = XO0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde}, Bu),
_ symbolic) :

> C:= simplify(subs( { xt0 = XO0tilde, ut0 = UOtilde, xt1 = Xltilde, utl = Ultilde, xt2 = X2tilde, ut2 = U2tilde}, Cu),
_ symbolic) :
| > diff (4, a) :

> subs({a=1,b=0,c=0}, %) :

2 ut0 as)

;> subs( Mysubs, %) :

> [imit(%, h=0)
i 2u (16)
[ > diff (4, b) :
| > subs({a=1,b=0,c=0}, %) :
| > subs( Mysubs, %) :

> limit(%, h=0)
i 1 a7
[> diff (4, c) :

> subs({a=1,b=0,c=0},%):
I P (18)
;> subs( Mysubs, %) :

> [imit(%, h=0)

2 (19)

2 (20)

:> diff (B, a) :
> subs({a=1,b=0,c=0},%):
2 (w0 —ut2) 1P — (-utl +u0) 12%)

21

| (t1 —1¢2) tle2 21
;> subs( Mysubs, %) :

> limit(%,h=0)
| 2 ut (22)
[> diff (B,b) :

> subs({a=1,b=0,c=0}, %) :
i 0 23)
;> subs( Mysubs, %) :

> [imit(%, h=0)
L 0 (24)
[> diff (B, c) :

> simplify (subs({a=1,b=0,c=0}, %), symbolic) :

_ 2 2 _ 2 2
(ut® — wt22) t2 + (-ut®® + utl?) t2 25)

| tl 2 (tl —12)
;> subs( Mysubs, %) :

> limit(%,h=0)
| -2 u ut (26)
[ >
> diff (C,a) :

> simplify (subs({a=1,b=0,c=0}, %), symbolic) :

(4 ut0 — 4 ut2) t1 — 4 (-utl + ut0) 12 @7

tl 12 (tl —12)

:> subs( Mysubs, %) :



> limit(%, h=0)

2 utt
[> diff (G, b) :
> subs({a=1,b=0,c=0}, %) :
0
;> subs( Mysubs, %) :
> [imit(%, h=0)
0

> diff (C,c) :
> simplify(subs({a=1,b=0,c=0}, %), symbolic)
(-2¢14+2¢2) wt® +2 t1 w2 —2 12 utl?

(t1—12) tl 12
;> subs( Mysubs, %) :
> [imit( %, h=0)

-2 u utt — 2 uf

(28)

(29)

(30)

€2V

(32)



L restart
3- m!}\(,nlr:u:!

dwes P e
_)I

d'd
.-e nq - xqg{! LI P2 A2P (1G4
We can divide ont by oo 1Ds to simplify the ODE

(2(“1 seek the veetor Vit) such that

L= ¥= Marixt [[¥iid] ], [F30 ] ¥R 1) -

|{ | - | T T T
> N)l\ﬂ'::J ‘Eprr.n] -|‘;mr-] +[;Pj¥ﬁ-}|

= myPp= Norm’a’l ”

dmt? ' )
> myfipp = maplz—diff]= o), myPr) ¢
G>  with! Luncarlgetra) -
'Wawﬂumhmeltbqnhmhlm
L> mvd = myPpTranspose| myPpp) @
(> myEgRHS = -myd =V
[ Here are the eqos
L> myegs == [ I VIA, 0| =mEgRITS L, 1), A VX, o =mpEqRIS 2, L), iff V6,1 =mpEqRIES 3,11 ¢
[ We convert to being armeethnwhkl inputs the given space carve
= myleq s=proe| Q| glabalmyegs rmbsl PIA = 0 1], PX0 = 2| 2], P2e = 03], mpegs) - mapieval, %) end)

diffi Pl l [dlﬂ]f’)’rl .8 |[ahﬂ|P):r|r ”
mpls i

‘v need the initial dota i be orthogonal to P_s=myPp st t=0, W try for a parficular spacecurve, here called myQ)

G myg) o= [sin(2),£,1]:
| > plotCurve »= spacecirvelmy(, 1=-2 .2, calor= black, thickness=1T) :
[ subol r=0, mag(z—diff (500, mpi i

Cso Vill) arthogonal to P_s(0) is (1,11}
‘e use dsolve,mameric and odephod in the normal "f
> mysal 2= dsolved {op(my¥eqimp}). VD) =1, FA0] =1 VA0) =1], rnge = 2.2 mumeric -

:) et = adeplonmyzol, LmyQL1] +0.1 o, myQ[2] +001- PR, mpQ ]3] +0.1- A, eolor = black) :
[> piot3 = adeplatmysal, [my@{ 1] -1 Fitel, mpQ[ 2] — 0.1 #2008, myQ[ 31-0.1 F30 |, calor = hlack) :
>
[ This is the Normal frame.
L withiplotioals) ©
[> Mi:=an(3 ot} | :M2 = cpl 3 getdatalplotd ) )
A= Apmay| L2001 4,1, 3 dasanpe = ffa) -
forite200do

=MIE1.37;

display! gl poiygon AL L =1,200)myl = patch) -

B dligpley| plotCurve plot2NF, uxes = framed orieniation =[72,- 30,411

myFeq = proc( ) global nyegs; sublef{f]—QHl P2ty =002], P3¢ = Q[ 3], myegs); mapleval, "% ") end proc

[0,0,1]

m

@



0

02
04
“.S 0-6 n'nm)-.l-._! *P’J



[ This is the Fronet-Serret frame.

> mySum —prociA, 8 (4111 +B[11,A[2] +BI2], 413 + BL3] | endproc;

:» D = sqrtl difflwp@ 111, 02 +digfmp@I 21, 62 +adifllmp @1 31,012) ©

[ diffiz 6 ]
O 1= map| 7=~ m |

QS

Oppd = maplz—diff iz, Op! -
>

> Oplengh = st Q111 + Qppl122 4 Qppi 31

\
(> h! = seql mySiom (lambda- Jop. mpQ), lambda=0.17] :

> 03 1= seq| mySiom (lambda- Qo s, lambda =1 -0.1]) =
[> ploiCurvepp! o= gracecurvel { il 2.2, color=hlack) ©
latCirvepp = gpacecurvel [hh3], 1= 2.1, color = black) :

> o - ] = Dot e | ¢

mlniv

withiplaitools| ©

A= Area 1,199,141, Jdasanype = foan ;
faritn]%4de
ALL13]

MILL3Y
A[L21.3) = M[i+ 1,13];
AL 13 201+ L1.31;
Al 3] = M2 30,

endde:

2N = display|seq| polyganldL1,0= 1 199}, stvke = patch] ©
B
[>  ddisplay plotCirve plot2VF, axes = framed orientation =12, 30,411;

> M= apl3gerdaral plotCurvepp | | :M2 = api 3 gerdatal plorCurveppd | @

>y =procid, B [A[2]- B3] - Bi2]-4[3], 4|3 B[] - A[1]-8[3],401]-B]2] - 4[2)-8]1] | endproe,
myC = proe(d, B) [A[2] *B[3] — A[3]*B[2], — A[1]*B[3] + A[3]*B[1], A[1]*B[2] — A[2] *B[1]] end proc

mySum == proc(4, B) |A|1] + B[ 1], 4]2] + B[2), 4)3] + B[3]] end proc

)
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[Lagrangian involving kappa2/kappal

> restar !

L pig -

> Ci=Crioc2 =\0c

[ Lagrangian, euler operator and lambda
L kappal 42

v
=
i

~kapypralia) BT — kappad(s] £+ b, J WII;‘J.W =kappalis), L} <
Wr nll lbe unpnumnﬂtn veetor of imvarionts wiso 1 can set vijsp=wi in the list of equations

iwivlvim iy

hn'fi'— sy =0, L) ;

(- (g £ 4.5} + T - &qqmzr;.n
w2 = ahs(s =1}
w3 silify - i (E3 5} - Mz -hagper (5}
conver{wd, D 2wl 1= subs(s =1, %} :

Wil = mhulv=0.ws|
wh == Elt
wiill == gubslz =0, wé] ©
Euler Lugrange Equations
L= i = stmpdifv(aliffTE L &) + T mulsl - kappadlsh, 5) — kappalia) Lol o
L= eq = simpdifel d5F1E2 5 8] -] o) o (8), ) — kappra2ish - Leub) 2
F‘llﬂlnhg'lk
L eqf = mmplifilexpandi (vI{5]2 + 2052 + v
=)- gl = vi{s] vdis] — w205 wSis) o+ vdlahebls) -

ARG T

Mool -2t - p3l
o ecry ]

["We now enter the code to make sigma sccording to method written up in the thesis

L> impd 1= (xl.52, 23,280 — Matrint | [x2 + 522228, -2 b 2d ~ 225312 el 53 12200V (2 [cd o8 #2223 2l a2 48008, 2 [cf 22 — 23541 L[ -2 |xfoxd = 52080, 2 (xd 22 o3 ol 5 2R 58 +2L]7)
> with| Lineardigebra | :

[We do some hasic checks

> Determirant|med\x], £, 53, od) ) ! factor 1);

(2 +x2 4 xP 1 xd)

-anelbenl.! ks (x2.53 34)
> bl e, o) Marisd [[32), L2321, D] 1) < fisesor, %0

B B R e
B R R e
a4 [ +22 + 23+ a4

salan T --13 sin| ==
> myft = procips, el a2, o | oAl GC = sqrtied? +a2l +adliimpd| cos| == | - i
myR = proc| psi, al, a2, ad] local C; C = xsqu.tu.l‘ 2-‘-92"2 +03"2}.m}AIoos[]erNmel 1/2*psi) *al /C, sin| 1/2*psi) *a2/C, sin| 1/2*psi) *23/C) end proc

igma sends c=(cl,e2,c3) to (I C), and then rotates abut [@1,1L,0) and then sends (10,C) it (v1,v2,v3)
g ximmgrlif, w1 PL w23, w2 v3lsh + €y psilal, 0, O Chamll P el c2,c3 + O, wdlsl2 +02(02 4432 — €, el + e+ e — 2], (vidlsl, el ) ) maplsimplify, % smbolic) : map! combine, % trigh |

I*This makes a ratation matrix which has a given angle ahout o given axis R
M
oy uld

["We know Lhat L=sigmall.3]

L> eqZ i= diff| fal. o) =sigmal 1 3]

["this makes the equ for psi- 5o need to d this mryﬂnl

agml _ssigma®{-1}, then subs derivs of the vi's

fiff |z, ), sipmalone® | PL cf, o2, o3 + ClapRi - psits), 0 CTmu®(PL wf i), v20r), w3 0x} + 00 Lonbes [diff Tvi{s), ) =kappalis) - v2(s] + kappalis) v3(shd8f 112 s), ) = bappal|s) vl (=), diff1v30s), 5] = kappalls) wJi=), %) |

;> frod = %o

> smap| simpiify, fred. {vil62 422802 Fud02 — 02,08 402 4o — €2, {vilsl,od, ulls) } ) maplcombing % g} ©
Bigs = %:

{ solve Bigh] 1,2 - kappalis), diff(psils], 5| | @rimplifil % sembalict,

f-wdiel — M owliel 4 wdiel Wi

(n

@

@



> Hgs = %t
[ soobvel B8] 1, 21— kapped 6], diff Tpsiia) o) | s simpliil % aymbedics;

=We wse this equaiten for sigma, refies on vector (v1,v2,v3) stuyng sway from (0,0,C)
v2is] happad

= eg? = difipals), st —kappalis) +

Cremp = sri| o2 402 +ei2)
CC2temp = cl-cd — c2-c5 4ed-ch:
This is where we make the cholee of initial data 4

= |, kappai0) —?\D\'w}m- =1 mul|=1]:

e

> myiCrubs = | kappal|0] =1, D kappal |

=Tlii.| guarantees the second first integral condition
L= meyes = s eval, subs | opl syl Crudrs), |
[ © = smplifii nchaiop| myes), Cremp) );

[> ©C2:= simplife| subselap | mycs), CC2templ

[Fhis needs o be far from zern

> pext e sipbslompd € T

vF0) A+ O Cevadf T e

[We don't necd eqs, the first, first integral

[ The range is all that Maple can do before ranning ints singularities
> dsolveldl 0 ey P miom o Ciradls ic amge = 6.1363. LIST)

LT
with (plaesy |

is s (kappalis). kappa2is) _
> adeplofmyeal, | kappailal, kappalis |, calor = biack, refine = 21

["We check the first integral
> adeplonmyrol, [gviis)2 4+ w2502 +v3ln)2 ], color= hlock);

=wel ), e2 = whil e = wil, od = Wil oF = w3, of = will} | | :

{—vi{s) — C) {8} +vI{s) &I[s)

[> ot o= mpievat ey bl ([0 = w2000} = wd, w00] =30, vt = wedll, w510 = w50, {0} = i, ped (0] =1, 70 =1]
mylCs == |Z¢0! =L w01=0,vii0)= %. v 0)=- %. v3i0) =1, v} =1, v5(0) = %. vo[0) = -

vi{s) +C

oCc2:=10

2.03R3ITORIRA4TSVIS66

L> AJEgs = subs(oplmyes), {egl, o2, egd, eq7, vi(s] — wil, v2(s} — wl, w35l — w3, wlsh — wd, vlis] — wd, vols) — wi, agZ} ] o

proeix_rkf45_dae| ... end proe

246 10 14 18

Kl

1.0781260] |

L
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(6)

M

8

®



> adeplonmural, |5, vils2 +v252 +vdis/2], colar= black);

1.0781260
1.0781258,;
1.0781256
1.07812541
1.0781252

-6 -4 -10 1

8
["This is s, thetas))
{ [ happalis) ‘|‘| 1
> mfepm{m_.-m,[urm!_ S i.r»for=b.’.m§]'.

0.7

0.5

PR e b |

["Thil s s, kappais))
> display|odeplctimysol, [s kappa? |12 + bappa2( 12, color = black}, view=[ -2.2- 1401




['We check the second, first integral
> adeplonmyzal, (5 v s)-wdls) — v2is) w3ls) +v3is)-véils) |, color = black|;

9.x 10719

5.x1071°

2.x10°1°

-6-5-4-3-2 0

[We now want. XY, 2 and the V vector

ik Zs) o+ vdls) — mySigmarDe2[ 1,17} 2

We now shtain the V veetor from sigma

Lz my V! = awbs o myes) sgmal 2, 11} <k 2 2= subs(apimyes, sigmal 2, 2]) cmy b3 = subeloplmyest, sgmol 2,311
::- piat! = adepfafmysal, | myX. my¥, Ax| |, colar = htack thickness = 7) ¢
D> plot214 = odeplofimyral, [myX +0.2 mybi, my¥ + 0.2 my#2 215 + 0.2 myl'3], colar = hiack) |
D> ploe7 = odeplotmysal, Tyt~ 0.2 myV Ly — 0.3 my¥2 2s) - 02 gy 3], codor = black| :
L L L

= plodd = ndepl'o([m_vmf. [m,ex—' T wiyF L my¥ + gl BiyFL Ash + i m_vVJl. an’or=Mdd'] 3
i ( 1 1 1 )
> ploeizi= odt;u.fm'{u_vsm’. ln,u( gy PLagY + g w32+ g n\vVJ],r_\m’w=Hﬂd s
:1- withiplartants) |
> A 1= op| 3 gerdatalplar 2341 | JM2 1= apl S getdmtal plor 2T <

A= dvvay| 12011413 davarype = flaar) :

Foritel(] do

PlotINE = display(seq|polygoni AL = 1. 200 )ty de = patch) |

[ display(plot ], plot INF, axes = framed rientation = [55,34,-581);







| o

["We now make a similar plot of the Frenet Servet frame

Sinee we know all the derivatives explicitly. we can diffe rentiate exacily

Le awhelmyes sigmall, 111 califfl %4 5) © subalag 7, aliffi vl 5], capypa ] (2) -2 a) + daappa 22l v i (5], &) = kappad (5] -viis), diff Tvdis), 2) = kappalls)-vlis), %) - Xpp

L= sbslmyes sigmal |, 2] ) - affi% o) - suboleg T, diffl vl ls), 2} = RappeTia)-w2a) +buppodie o) i v, o) =kapped s -vdls), Jiff(v31s) Kappaisl-vIis) ¥ Yo
e {yes sigra] L, 3] | £ dfff % 51 ¢ auheieg?, dtffivd 7)) = kapperlis v s) - kappall s vs),Hif v2is], 5 = kappad(s)-vils), 4 vie), 50 = kappalis| (5], %) : Zpp =

‘e chanse to plot the third vector in the FS frame, here I eross P" is called F5v3

L~ Fivd o= subsloplmyes, [sigmal |, 2] -Zpp— sigmal 1, 31 ¥pp sigmal 1, 3] Xpp — sgmal 1, 1] Zpp sgmal 117 ¥pe - sipmal |, 2] Xpp] ] -

Lo demgrhFSudgnd = bl opmpcsl, (FSI[TR +FSGE[2R = FS[3121)

I 1

> mrs:wn{m,m, 4 0.2 ey P ¥ 12 e - P2, 2 4 0.2 e -psw|3|‘,mrm-—mmj:
[ 1 1
= Ky — B PO O . =
i PlatSFS = mmrm}\m«of\ 0 FSil L] ¥ = 0.2 e - P2, A5l — 0.2 e - P93 catar Mm].

[ We now generate the sweep surface for the FS frome
> ML= op | getdate plotdFE) ) A 12 i opl 3 getdaia plotSFE ) @

Bo= Arap( 1N AL Y datanypme = foar - N = 200

foritoydo

ol 1= displey fygoml BLi11i=1. M) styke = patch) :

[> display(plar26FSa plot], axes = framed orientasion =[55.-34,-8515;







—Application in biology first example. We follow the method used in the example regarding an invariant lagrangian

depending on kappa2/kappal .7 5 2 (first example)
| > restart

;> with (LinearAlgebra) :
| > Digits == 20 :
| > C:='C: CC2:='CC2"
Euler Lagrange equations
| > L= kappal-kappaZs — kappa2-kappals :
> Ls = kappal (s) -diff (kappa2(s), s) — kappa2(s) -diff (kappal(s),s)
Ls+S RI(H) (i KZ(S)) — 2(s) (i x‘l(s)) 1)
ds ds

> EKI = subs( { kappals = diff (kappal (s), s), kappa2s = diff (kappa2(s), s) }, diff (L, kappal) )
~diff (subs( { kappal = kappal (s), kappa2 = kappa2(s) }, diff (L, kappals) ), s)
Ekl=2< (s @
ds
> EK2:= subs( { kappals = diff (kappal (s), s), kappa2s = diff (kappa2(s), s) }, diff (L, kappa2) )
~diff (subs( { kappal = kappal (s), kappa2 = kappa?2(s) }, diff (L, kappa2s) ), s)
EK2:=-2 % Kl (s) (&)

> mus = EKI-kappa2(s) — EK2-kappal (s)

d

mus =2 ( e K2(s)) K2(s) +2 ( Kl (s) ) Kl (s) )

> mu:= int( %, s)
W=l (s)* +K2(s)” )
> lambda := -kappal (s) -EKI — kappa2(s) -EK2 + Ls — (subs( { kappal = kappal (s), kappa2 = kappa2(s) },
s

diff (L, kappals) ) -diff (kappal (s), s) + subs( { kappal = kappal (s), kappa2 = kappa2(s) }, diff (L,
kappa2s) ) -diff (kappa2(s),s) )

A:=-2xkl(s) (g—; KZ(S))+2K2(S) [% K'](S)) (6)
> eql = collect(simpli_v(diff(EK], s, s) +diff (kappa2(s) -mw, s) — kappal (s) -lambda, symbolic), % K2 (s) J
s 2 3
eql == (3K1(.v)'+3x‘2(s)") (% 1(2(.9))+2§?; K2 (s) 7

> eq2:= collect(simpliﬁz(diff( EK2, s, s) ~diff (kappal (s) -mu, s) -x2(s) -lambda, symbolic), ?:l; Kl (s)

T

2 2y (d d3
eq2=(-3xl(s)° =3K2(s)") (E K](S)) —25 Kl(s) )
—Vector of invariants
> wl = lambda;
wl =-2kl (s) (% K2(s)) +2K2(s) (% x1(s)) )
=> convert{wl, D) :wl0 = subs(s=0, %);
L wl0:=-2kl(0)D(x2)(0) +2x2(0) D(x/)(0) 10)
(> w2 = simplify( - (diff (EK1, s) +mu-kappa2(s)));
w2i= - (5)2 k2(s) — 2(s)° =2 L x2(s) (11)

> convert(w2,D) : w20 := subs(s=0, %);
w20 :=-x1(0)2K2(0) —k2(0)° —2D? (x2) (0) (12)
> w3 = simplify( -diff (EK2, s) + mu-kappal(s));
W=l et ea £

Kl () 13)




> convert(w3, D)
> w4 = muy
> convert(w4,D)

> wi:= EK2,

> convert(w3, D)

> wo:= EKI,

> convert(w6, D)

[ First integrals
d/ds psi(s)
—Caley Map

+x42]]):

: w60 :

> eq7 = diff (psi(s

w30 = subs(s=0, %);

w30:= Kl (0)° +x1(0) x2(0)7 +2D? (k1) (0)

0] 2
wed:=xl(s)” +x2(s)"

w40 = subs(s=0, %);

wd0 = k1 (0) + k2(0)>

w50 = subs(s=0,%);

subs(s=0, %);
w60 :=2D(x2) (0)

| > eq5 = simphfv(expand( (v](s)2 + v2(s)2 + v3(s)2) ) —cI2 —c2 —c3:
| > eq6:=vI(s)-v4(s) —v2(s)-vi(s) +v3(s) -v6(s) —'CC2"

v2(s) -kappa2(s) .

),s) =—kappal (s) + V3(s) +C

> myd == (xI,x2,x3,x4) =Marrix([ [.\cl2 +x22-x3*-x4*, -2 (x1-x4 —x2-x3),2
x3),x1?-x2% + x32-x4%,-2- (x1-x2 —x3-x4) |, [ -2+ (x]-x3 —x2-x4), 2+ (x1-x2 + x3-x4), x> ~x2*-x3*

This makes a rotation matrix which has a given angle about a given axis

> myR :=proc(psi, al, a2, a3) local C,C:= sqrt(a]2 +a2? + a32);myA [ cos( p751

sin( % ) a2 sin( p751 ) a3

G

local C;

end proc

» trig) :
| > sigma:=%:

[ nitial data

p end proc;
c ] PE

myR = proc(psi, al, a2, a3)

C:=sqrt(al™2 +a2"2 +a3"2);
myA(cos(1/2*psi),sin(1/2*psi) *al/C,sin(1/2*psi) *a2/C,sin(1/2*psi) *a3/C)

we know that Z'=sigma[1,3]
| > eqZ :=diff (Z(s),s) =sigma[1,3]:

| > Ctemp = sqrt(cl? +¢22 +¢3%) -
| > CC2temp == cl-c4 —c2-¢5 +c3-c6:

> mylCsubs = {kappaI(O) =1, D(kappal) (0) = l,D(Z)(kappal) (0) =1,kappa2(0) =

sin( 225—1 ) -al
&

1
2 bl

]

_Sigma sends c=(c1,c2,c3) to (0,0,C), and then rotates abut (0,0,C) and then sends (0,0,C) to (v1,v2,v3)
> map(sr'mplijj/, myR(Pi, vI(s),v2(s),v3(s) + C).myR(psi(s),0,0,C).myR(Pi, cl,c2,c3+C), {v](s)2 + v2(s)2
+v3(s) 2. Coelr+c?+e3 - }, {vi(s),cl}) : map ( simplify, %, symbolic) : map (combine, %,

D(kappa2) (0) =1,

(14)

(15)

(16)

17)

(18)

19)

(20)

(x1-x3+x2-x4) ], [2-(x]-x4 +x2

@1



D@ (kappa2) (0) =1

5 mylCs := map (eval, subs(op (myICsubs), {vI(0) =wi0,v2(0) =w20,v3(0) =w30,v4(0) =w40,v5(0) = w50,
v6(0) =w60, psi(0) =0,Z(0) =1}));
(0

mylCs = {Z(O) =1,9(0) =0,v/(0) = —1,v2(0) = -%,\3(0) = v =

-

[ This guarantees the second first integral condition
> mycs = map (eval, subs(op (mylCsubs), {cl=wl0, c2=w20, c3=w30, c4=w40, c5=w50,c6=w60}));

»v3(0) =—2,v6(0) (22)

21 13 )
P == = ofh n s nd ape Do g
nycs {E‘[ lyie2 5 ;03 . ,c4 1= c6 ..} (23)
> = simplify(subs(op (mycs), Ctemp) );
[> cc2:= simplify(subs(op (mycs), CC2temp) );
CC2:=0 (25)

[ This needs to be far from zero
> test:= subs(myICsunionmycs, v3(0) + C) : evalf(expand(%));
7.5457100693598957086 (26)

E AllEgs :== subs(op (mycs), {eql, eq2, eqb, eq7,vi(s) —wl, v2(s) — w2, v3(s) — w3, v5(s) — w5, v6(s) — w6,
eqZ}) :
The range is all that Maple can do before running into singularities

> dsolve( Al[Eqs union myICs union myICsubs, numeric, range =-6.15 ..3);
proc(x_rkf45 dae) ... end proc 27

;> mysol .= % :

| > with( plots) :

This is (kappal(s),kappa2(s)

> odeplot(mysol, [ kappal (s), kappa2(s) ], color = black);
1.2
1.0
0.8
0.6]
0.4

0.2

08 1.0 12 14 16 18
Kl

[ We check the first integral
> odeplot(mysol, [ s, vI(s)% +v2(s)* + v3(s)2], color = black);




18.453125031

18.453125021

~G=5=d=3~2-1 G 1 2 5
)

[ This is (s, theta(s))
> odeplot( mysol,

S, arctan( kappa2(s) ) }, color = black);
kappal (s)

6-5-4-3-2-18 1 7 3
iy

[ This is (s, kappa(s)"2)
> display(odeplot(mysol, [ s, kappal (s)* + kappa2(s)?], color = black) );

6—5—4-3-2-10 1 2 3

A




>

| >

We check the second, first integral

odeplot(mysol, [s,vI(s) -v4(s) —v2(s) -v5(s) +v3(s)-v6(s) ], color = black);

~8. x 1071
~1.x 10718

_We now want X,Y,Z and the V vector

mySigmaDc2 = subs(op (mycs), sigma-Matrix([ [c4], [ -c5], [¢6]])) :
myX = 1 ~(vi(s)-Z(s) +v5(s) + mySigmaDc2[2,1])

v3(s)
myY = I ~(v2(s)-Z(s) +v4(s) —mySigmaDc2[1,1]) :

v3(s)

myV1 == subs(op (mycs), sigma[ 2, 1]) : myV2 := subs(op(mycs), sigma[2,2]) : myV3 = subs(op (mycs),
sigma[2,3]) :
plotl :== odeplot(mysol, [ myX, myY, Z(s) 1, color = black, thickness=17) :

plot234 = odeplot( mysol, | myX + % ~myV1, myY + % ~myV2, Z(s) + % . myVS}, color = black) :

plot27 == odeplot(mysol myX-% myV1, myY + —;— myV2, Z(s) + % myV3] color=black) :

plot24 == odeplot( mysol, [va—% -myVl, myY—% -myV2, Z(s) —% -myV3|, color = black) :

plot22 == odeplot(mysol va+ —-myVI1, myY + % myV2, Z(s) + %-va.?] color = black) :

with ( plottools) :
M1 := op(3,getdata( plotl) ) :M2 := op (3, getdata( plot234) ) :
A = Array(1..200,1 .4,1..3, datatype = float) :
forito 200 do
Al41,1.3]=MI[i1.3];
A[i2,1.3]=MI[i+1,1.3];
A[43,1.3]=M2[i+1,1.3];
Ali4,1.3]=M2[i1.3];
end do:
plotINF := display(seq( polygon(A[i]),i=1.200),style = patch) :

M1 = op(3,getdata( plotl) ) :M2 = op (3, getdata( plot24) ) :
A= Array(1.200,1..4,1 .3,datatype = float) :
forito 200 do
A[51,1.3]):==MI[i1.3];
A[32,1.3)1:==MI[i+1,1.3];
A[i3,1.3]:=M2[i+1,1.3];



A[i4,1.3]:=M2[;1.3];
end do:
L plot2NF := display(seq( polygon(A[i]),i=1..200),style = patch) :
> M1 = op(3,getdata( plot24) ) :M2 = op (3, getdata( plot22) ) :
A= Array(1..5850,1..4,1 .3, datatype = float) :
forito 5850 do
A[i1,1.3]=MI[i1.3];
A[42,1.3]=MI[i+1,1.3];
Al43,1.3]=M2[i+1,1.3];
Ali4,1.3]:=M2[i1.3];
end do:
plot3NF := display(seq( polygon(A[i]),i=1..200),style = patch) :

> display( plotl, plotINF, plot2NF, axes = framed, orientation = [17,-31,-176]);

N




_Application in biology second example. We follow the method used in the example regarding an invariant lagrangian
depending on kappa2/kappal - 7.5.2 (second example)
> restart

> with(LinearAlgebra) :
> Digits := 20 :
> C:='C"CC2:="'CC2"
Euler Lagrange equations
| > L= kappals-kappa2ss — kappaZs-kappalss :
> Ls = diff (kappal(s), s) -diff (kappa2(s), s, s) — diff (kappa2(s), s) -diff (kappal(s), s, s)
(. &) (4 &
Ls-—(ald(s)j[gld(s)) (ds'd(s))[dsz'd()] )
> EKI = subs( { kappals = diff (kappal (s), s), kappa2s = diff (kappa2(s), s) }, diff (L, kappal) )
~diff (subs( { kappalss = diff (kappal (s), s, s), kappaZss = diff (kappa2(s), s, s) }, diff (L, kappals) ), s)
s), s

+ diff (subs( { kappals = diff (kappal (s), ) kappaZs diff (kappa2 ( )}, diff (L, kappalss) ), s, s)

&
EKl:=-2 - K2 2
PE (s) 2

> EK2:= subs( { kappals = diff (kappal (s), s), kappa2s = diff (kappa2 (s), s) },
~diff (subs( { kappalss = diff (kappal (s), s, s), kappa2ss = diff (kappa2 (s
~+ diff (subs( { kappals = diff (kappal (s), ) kappa2s = diff (kappa2 (s)
3

diff (L, kappa?2) )
s),s,8) }, diff (L, kappa2s) ), s)
,8) }, diff (L, kappa2ss) ), s, s)

i EK?2 :=2f§ Kl (s) 3
(> s = EKI-kappa2(s) — EK2-kappal (s)
3 3
I mus:Z—Z(i3 KZ())K‘Z(S)—Z(% Kl(s))ld(s) “)
> mu= int( %, s)
2 2 2 2
e [i Kl(s)) — 2l (s) [2_52 KI(s)] + (% KZ(S)) —212(s) [?E K2(s)) 5)

:> eq3 = -kappal (s) diff (EK1, s) — kappa2(s) -diff (EK2, s) — diff (lambda(s), s) :
4 4
>int(21d(s)[g (s))—zxz(s)(js Kl()) ):

> lambda := %

ds
(
d

o[ & (4 & d &
K.—Z(ds:’ KZ())K](S) z(ds’d(s)j[dsz’Q(S))—i_z(ds’d(s))[dgzm(s)) 6)
—2K2(s) [% ;d(s)]
> eql == simplify (simplify (diff (EK1, s, s) + diff (kappa2(s) -mu, s) — kappal (s) -lambda, symbolic), size)
eql = ($ ;d(s)) (g ;cz(s)) Jrz(a ;d(s)j 5 R0 | K(s) + (5 Kz(s)j —2($ 0]
d? d d’ a3
Id(s)) [ 2 K2 (s )sz(s) —4($ ;cz(s)) (@ KI(S)]K](S) —2K2(s) [dﬁ K2 (s )]
& d°
-2l K2 -2— K2
I Kl (s) [dﬁ (s )] 5 (s)
> eq2 = simplify(diff (EK2, s, s) -diff (kappal (s) -mu, s) -2 () -lambda, symbolic)
3 2 2
eq2==—(% Kl(s)) - (% Kl(s)) (% K2(s)) +4(% :d(s)) [ (iz K2 (s )]KQ(S) +2(% (t))]




d3 &
+ 2kl (s) [E «l (s ))+2§ «I (s)

_Vector of invariants
> wl = lambda;

3 2
w1:=2[d d

K2 (s ));d(s)—z(% ;d(s)) [— K‘Z(S)]-I—Z(

ds?
—252(s) [ T s ))
i ds®
[ > convert(wl, D) :wl0:= subs(s=0, %),
wil0:=2D%(x2)(0) kI (0) —2D(xl) (0) D?(x2) (0) +2D(x2) (0) D (ki) (0)
—2x2(0) D¥(x7) (0)
=> w2 = S‘fmpll)(j/( (diff (EK1, s) + mu-kappa2(s)));

4 d d (4 (4

W2=2 g K2 )+2(d52 KZ())KZ() +K2()[2KI(S)[—KI(S)] (ds m(s)] (ds
2
K'Z(S))]

B convert(w2, D

D) :w20 —subs( =0,%);
w20 == 2D<4 (2)(

)

(

(0) +2D? (:<2)<0):<2<0>2+r<2<0)(zKJ(O)D<2>(rd)(0>—D(:d)<0>
?)

-diff (EK2, s) + mu-kappal (s) );
w3:=—2d— Kl (s) —2 [i KQ(S)J K2(s) kl(s) —2 [i Kl (s )] K](S)2+K](s) ([i K](s))2
ds* ds® ds? ds

+ (% Kz(s))zj

=> convert(w3, D) : w30 := subs(s=0, %);

w30:=-2D (k1) (0) —2D? (x2) (0) k2(0) k1 (0) —2D (k1) (0) x1(0)* + 1 (0) (D(x1)(0)
+D(x2)(0)?)

_> w4 == mu,

e = (% KI(S))2—2K1(S) [— Kl(s)) +(

2) (0
[> w3 —Slmpllfy
4

2

> convert(w4,D) : w40 := subs(s=0, %);
wd0:=D(x1)(0)* —2x1(0) D? (k1) (0) +D(x2) (0)
> w) = EK2;

> convert(w5,D) : w50 = subs(s=0,%);
w30:= 2D (k) (0)
> w6 := EKI;
d3
w6 =-2 — K2(s)
ds’
> convert(w6,D) : w60 = subs(s=0, %);
w60 :=-2D3 (x2) (0)
[ First integrals
| > eq5 = simplify (expand|( (vl(s)2 + v2(s)2 + v3(s)2) )) —cl? —¢2* — 3
| > eq6:=vI(s) v4(s) —v2(s)-v5(s) +v3(s)-v6(s) —'CC2".
d/ds psi(s)

®

(10)

an

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)

(20)



v2(s) -kappa2(s)
vi(s) +C

> eq7 = diff (psi(s),s) =-kappal (s) +

Caley Map

> myd = (xI,x2,x3,x4) —Matrix( [ [x]2 +x22-x3*-x4%, -2 (xI-x4 —x2-x3),2+ (xI-x3 +x2-x4) |, [2- (x1-x4 + x2
(

)
-)63),)612—)622 +x3-x4%,-2- (xI-x2 —x3-x4) ], [ -2+ (xI-x3 — x2-x4), 2+ (xI-x2 +x3~x4),x12—x22—x32
+x41]);
myA = (x1,x2,x3,x4) + Matrix([ [xI> +x2> — x3* —x4%, -2x1x4 +2x2x3,2x1x3 +2x2x4], [2xI x4
+2x2x3, x1* — x2* +x3* — x4%, -2x2x1 +2x3x4], [ -2x1x3 +2x2x4,2x2x] +2x3x4, x1> — x2* — x3?

+x41])
sin( % ) -al
C

E

> myR :==proe(psi, al, a2, a3) local C; C := sqrt(al* + a2? +a32);myA[COS( % j

sin( b8l ) a2 sin( sl ) a3 ]
2 2
s end proc;
C C

myR = proc(psi, al, a2, a3)

local C;

C:=sqrt(al™2 +a2"2 +a3"2);

myA(cos(1/2*psi),sin(1/2*psi) *al/C,sin(1/2*psi) *a2/C,sin(1/2*psi) *a3/C)
end proc
_Sigma sends c=(c1,c2,c3) to (0,0,C), and then rotates abut (0,0,C) and then sends (0,0,C) to (v1,v2,v3)

@1

(22)

> map (simplify, myR(Pi, vI(s), v2(s), v3(s) + C).myR(psi(s),0,0,C).myR(Pi, cl, c2,¢c3 +C), {vl(s)2 -|-vZ(s)2

+ v3(s)2 —C P 4P 43— CZ}, {(vI(s),cl}) : map(simplify, %, symbolic) : map (combine, %,
_ trig) -
| > sigma:= % :
We know that Z'=sigma[1,3]
| > eqZ = diff (Z(s),s) =sigma[1,3]:

| > Clemp = sqrt(c]2 +c2? + c32) :
| > CC2temp = cl-c4 —c2-c5+c3c6:
Initial data

> myIlCsubs := {kappal(O) =1,D(kappal) (0) = I,D(z)(kappal) (0) = l,D(3)(kappa1) (0) =1,

D™ (kappal) (0) = 1,kappa2(0) = —, D (kappa2) (0) =1,D? (kappa2) (0) =1, D) (kappa2) (0) =1,

1
2
D™ (kappa2) (0) :1} :

[ > myICs := map ( eval, subs(op (myICsubs), {vi(0) =wl0,v2(0) =w20,v3(0) =w30,v4(0) =w40,v5(0) =w50,

v6(0) =w60, psi(0) =0,Z(0) =1}));
mylCs = {Z(O) =1,y(0)=0,vI(0) =1,v2(0) = %,v3(0) =—=3,v4(0) =—1,v5(0) =2,v6(0) = =2
[ Second first integral condition
> mycs = map (eval, subs(op (myICsubs), {cl =wl0, c2=w20, c3=w30, c4 =w40, c5 =w50,c6 =w60}) );
mycs = {cl= 1,c2= %,03= —3,c4d=—1,c5=2,c6=—-2

[> = simplify(subs(op (mycs), Ctemp) );

C:= —“65

2

> cc2 = simplify(subs(op (mycs), CC2temp) );
CC2:=0
[ This needs to be far from zero
> test:= subs(mylCsunionmycs, v3(0) + C) : evalf(expand( %) );

(23)

24

(25)

(26)

£



1.0311288741492748262 27

> AllEqs = subs(op (mycs), {eql, eq2, eq6, eq7,vI(s) —wl,v2(s) — w2, v3(s) —w3,v5(s) — w5, v6(s) — w6,

eqZ}) :
The range is all that Maple can do before running into singularities
> dsolve( AllEgs union myICs union myICsubs, numeric, range =-3 ..2.21);

proc(x_rkf45 dae) ... end proc (28)

;> mysol == %
| > with( plots) :
This is (kappal(s),kappa2(s))
> odeplot(mysol, [ kappal (s), kappa2(s) |, color = black, refine =2);

6]
5
4
K2 3
2

1.

"1 23 456
K/

[ We check the first integral
> odeplot(mysol, s, VI(S)2 +v2(s)% + v3(s)2 |, color = black);

16.25000003
16.250000021
16.25000001+

16.249999991
16.249999981

[ This is (s,theta(s))

, color = black) ;

> odeplot( mysol, [s, arctan( kappa2(s) )

kappal (s)




0.6 /
0.4
0/21

-3 - 1 2
0.2 s
0.41

[ This is (s,kappa(s)"2)
> display(odeplot(mysol, [ s, kappal (s) 2+ kappa?(s) 2 |, color = black) );

801
50;
30;

. 10
-3 -2 -1 0 1 2

[ We check the second, first integral
> odeplot(mysol, [s, vI(s) -v4(s) —v2(s)-v5(s) +v3(s)-v6(s) ], color =black);

2.%x 107171

1.5x 1017}

1. x 10717

_We now want X,Y,Z and the V vector

:> mySigmaDc2 = subs(op (mycs), sigmaMatrix( [ [c4], [ -¢5], [¢6]])) :

> myX:=

L <(vI(s)-Z(s) +v5(s) +mySigmaDc2[2,1]) :
v3(s)



> myY:=

23 0s) ~(v2(s)-Z(s) +v4(s) —mySigmaDc2[1,1]) :

B myV1 = subs(op(mycs), sigma[ 2, 1]) : myV2 := subs(op (mycs), sigma[2,2]) : myV3 := subs(op (mycs),
sigma[2,3]) :

;> plotl == odeplot(mysol, [ myX, myY, Z(s) 1, color = black, thickness =7) :
> plot234 = odeplot( mysol,

myX + % -myVl1, myY + % -myV2, Z(s) + % . myV3], color = black) :

> plot27 == odeplot(mysol, myX — %-myVI, myY — %-myVl Z(s) — %~myV3

, color = black) :

| > with( plottools) :
> MI = op(3,getdata( plotl) ) :M2 = op (3, getdata( plot27) ) :
A = Array(1.201,1..4,1..3,datatype = float ) :
forito201 do
Al 1,1.3]1=MI[i1.3];
A[42,1.3)=MI[i+1,1.3];
A[L3,1.3]=M2[i+1,1.3];
Alp4,1.3]1=M2[i1.3];
end do:
plotINF := display(seq( polygon(A[i]),i=1.201),style = patch) :

> M1 = op(3,getdata( plotl) ) :M2 = op (3, getdata( plot234)) :
A= Array(1.201,1..4,1..3,datatype = float ) :
forito201 do
Al 1,1.3]1=MI[i1.3];
Al52,1.31=MI[i+1,1.3];
Al53,1.3]1=M2[i+1,1.3];
Alp4,1.3]=M2[i1.3];
end do:
| plot2NF = display(seq( polygon(A[i]),i=1.201),style = patch) :
>
> display( plotl, plotINF, plot2NF, axes = framed, orientation = [ 55,-34,-881]);




IV "V ]




;> restart
| > with(LinearAlgebra) :
| > #Running Example for Chapter 8, Gauge transformations. SE(2)action
| > #Moving frame rhoA
| > #action
| > gu = cos(theta) -u(s, t) —sin(theta) -v(s, 1) +a:
| > gv = sin(theta) -u(s, ) + cos(theta) -v(s,¢) +b:
> gvs = diff (gv, s) :
| > gus = diff (gu, s) :
| > guss = diff (gus, s) :
| > gvss = diff (gvs, s) :
> simplify(solve( { gu, gv, gvs}, {theta, a, b} ), symbolic) 5
u(s,t) ( — u(s, 1) ) + ( — v(s, 1) j v(s, 1) ( — v(s, 1) j u(s,t) —v(st) ( — u(s, t) j
as Os
a=- ,b= ,0=
0 2 0 2 F) 2 R 2
/(a u(s,t)j +(E v(s,t)j /(—u(s,l)) +( v(s,t))
0 t
e & v(s, 1)
arctan| —————
P» u(s,t)

;> assign( %)
Frame
| > rhod = simplify( Matrix( [ [ cos(theta),-sin(theta), a], [sin(theta), cos(theta), b], [0, 0, 1]]), symbolic) :

> rhod = subs[ ( % u(s,t) )2 + ( % v(s, 1) )2 =1, %j

=Invariants
> rhoA Matrix([[u(s,t) ], [v(s,£) ], [1]])

> rhoAMatrix( %u(s, t) ], [%v(s, t) }, [O]D :subs( (%u(s, 1) )2 + (%v(s, 1) )2= 1,%)

1
0
0
> rhoA_Matrix( %u(s,t) ,[%v(s,t)],[O]D :subs[(%u(s,t))z—l—(%v(s,t))2=l,%j
0 0 ]
[& u(s,t))(% u(s,t)]—i—(g v(s,t)j(g v(s,t))
-(%v(st))(% u(st)j+(%u(s,t)j[% v(st))

> #Notethat(%u(s,t)) (%u(s,t)) + (%v(s,t)j [iv(s,t)) =0asD((%u(s,t))2+ (—v(s,

(0))

2

(©))

(C))



V"V" v ] v ] v "V"V"

v "V ]

V"V"V "V "V "V ] v

v "V "V ]

" ok 5 2 ) 2
A.Matri —u(s,t)|,| —v(st) |, [0 — u(s, — v(s, =1,%
rho. amx( asku(st) [askv(st)} [ ]]] sus[( u(st)) —I—(asv(st)) j
0 0
(— u(s,t)) (% u(s,t)j + (a v(s,t)] (% v(s,t))
0 0
—(& v(s,t)) (% u(s,t)j + (& u(s,t)) [% v(s,t))
0
#CurvatureMatrices
QAs == map (z—diff (z, s), rhoA ) MatrixInverse(rhoA) :
subs[ { % v(s, t) =Inv[v, 11](s, 1), % u(s,t) —0], %J :
subs(% %) :
Subs[% ) =1, %j :
subs(u(s,t) =0,v(s,t) =0,%) :
0As = simplify( %, symbolic)
0 Invv’”(s, ) —1
QOAs == | -Inv, ll(s, t) 0 0
0 0 0

QAt == map (z—diff (z, t), rhoA ) MatrixInverse(rhoA) :
62 o 0, .

0, P v(s, t) =Inv[v, 12](s, t) ]», %;j :

v(s, t) =Inv[v,11](s, 1), % u(s,t) —0], %j :

u(x,t) =0,v(x,t) =0,%) :
QAt == simplify( %, symbolic)

0 Invv’ 12 (8 1) —Invu’ 5 (8, 1)
QAt = Invv 1 (81) 0 —Invv’z(s, 1)
0 0 0

#Syzygy and H operator

syzygy = simplify(map (z—diff (z, s), QAt) — map (z—diff (z, t), QAs) — QAs.QAt + QAt.QAs, symbolic) :

isolale(syzygy(2, 3),1Inv, 12(s t) )

0
[nvv, n(s1) = s Invv,z(s, t) +Inv

", 11 (8 0) Invu,z(s, t)

subs( %, syzygy(1,2))

0 0 0
& (& [”V‘;,z(s’ t) +Invv,11(s, t) I"Vu,z(s’ t)) o Invv 11 (8 0)

(©))

)

@)

®

®



=

0
> isolate(%, o Inva 1 (80 )

P Invv’ (st = %
#SE(2)action + gauge
Moving frame rhoB
unassign('a''b'\c'\d"theta'/alpha(s, ¢) beta(s, ¢) delta(s, ¢) ')
with ( LinearAlgebra) :

#Moving frame
solve( { gu — alpha(s, t), gv — beta(s, t), gvs — delta(s, ¢) }, {theta,a,b}) :
simplify( %, symbolic) :
S == allvalues (%) :
S[1]:
assign( %)
0 2 0 2 0 2 0 2 2 (
rhoB ==subs( { (au(s,t)) + (gv(s,t)j —1,sqrt[ (&u(s,t)) + (&v(s,t)) —08(s, 1) J =sqrti 1
— (s, t)z) ’,simpliﬁ/(Matrix( [ [ cos(theta),-sin(theta), a], [sin(theta), cos(theta), 5], [0,0,1]]),

0 0
Inv, (s1) + (a Inv, |, (s1) ) Inv, 5 (s,t) +1Inv, (s 1) (& Inv, 5 (s, t)) (10)

"V "V "V "V "V "V "V "V "V "V ]

v

symbolic) ]

rhoB = H (% v(s,t) ) O(s, 1) + (% u(s, Z)j 1—5(s,t)2 , —(% u(s,t)jS(s, t) + (— v(s, (11)

t)) 1—5(s,t)2,(x(s,t) (% u(s,t))z—i-ot(s,t) (% v(s,t)) —u(s 1) (% u(s,t)) 1 —98(s,1)

—u(s,t) (% v(s,t))S(s, t) +v(st) (% u(s,t))ﬁ(s, t) —v(st) (% v(s, t)j\/ 1 —0(s, t)2 ],

[( 0 (s,t)jS(s,t) - (% v(s,t)) I—S(S,t)z, (% v(s,t))ﬁ(s,t) + (% u(s,

2 b}

a u
t)) 1 —8(s,1)°, (% v(s,t))zﬁ(s, 0 + (‘/ 1—8(s,8)° uls, 1) —v(s 1) 5(s,t)) (% v(s, t))

2 0 K]
- ( 1 —=08(s,8)" v(s, t) +u(st)d(s,t) —B(s, 1) ( & u(s, 1) ) j ( ™ u(s,t) ) },
> simplify(rhoB.MatrixInverse(rhod ), symbolic) :

0 2 0 2
> gauge:=subs[(&u(s,t)j +(&v(s,t)j =l,%j

> #Invariants

[0,0,1

0 2 0 2
> simplify(rhoB *Matrix( [ [u(s, t) ], [v(s,t) ], [1]]), symbolic) :subs( (&u(s, t)) + (&v(s, t)) —1,%)
als, t)
B(s, 1) (12)
1

> simpliﬁ/( rhoB - Matrix [

%u(s, t) }, [%v(s, t) }, [0]]),symbolic) :subs( [%u(s, t) )2 + (%v(s, t) )2

"




1—d(s,1)”
8(5,1) (13)
0
> Simpliﬁ}(rhoB~Matrix[ [% u(s,t) ], [% v(s,t) ], [O]U,symbolicJ ZSI/le[ ( % u(s,t) Jz + (%v(s, t) )2
=1, %J s collect(%, 8(s, t) )
H[(% v(s’t)J (% u(s,t)) - (% u(s,t)) (% v(s,t))j?i(s,t) + l—8(s,t)2 (% u(s, (14)
{) [% u(s,t)j—i— 1 —98(s,1) ( v(s,t))[% v(s,t)”, ,

s>

P, (2 o2 9 KLl —2-D(1) —
) )_Z(KBSM(S’I))[()SZ u(s,t>J+(asv(s,t> ((')SZV(S’t)j) 2-D(1) =0,
and thereforethese are &(s, t) (iv(s,t)) ﬁu(st) —(iu(st)j iv(s,t)

| [z 0]~ (gusn ) (Ga 0

> #Notethat(%u(s,t)) (ﬁu(s,t)) + (%v(s,t)j [g—zv(s,t)J =0asD( [%u(s,t))2+ (—v(s,
0

0s Os

and\/1—8(s,t)2 ((aisv(s,t)) [%u(s,t)) - (aisu(s,t)J (%v(s,t)jj

> rhoB-Matrix( % u(s,t) }, [% v(s, 1) ], [O]D :subs[ ( % u(s,t) )2 + (%v(s, t) )2=1,%j - collect( %,
3(s, 1))
H[(% v(s,t)) (% u(s,t)) — (% u(s,t)j [% v(s,t))ij(s,t) + (% u(s, (15)
4[) 1—8(s1) (% u(s, 1) +(% v(s,t)j 1 —8(s.0)° (% v(s,t)j], ,

(% u(s,t)) (ﬁ u(s,t)j —|—(% v(s,t)j [% v(s,t))]?i(s,t) - (% v(s,

o
t) I—S(S,Z)z (% u(s,t)) + (% u(s,t)) 1—8(.9,t)2 (% v(s,t)j],

#Invariants B in terms of Invariants A
unassign('a''b'\c'\d"theta')alpha(s, ¢) "beta(s, ¢) delta(s, ¢) ')
gu = cos(theta) -u(s, t) — sin(theta) -v(s,¢) +a:
gv:=sin(theta) -u(s, ) +cos(theta) -v(s,¢) +5b:

gvs = diff (gv, s) :

gus = diff (gu, s) :

guss = diff (gus, s) :

IV "V "V "V "V "V "V ]



v "V "V "V "V "V

gvss = diff (gvs, s) :
gust = diff (gus, t) :
gvst = diff (gvs, t) :
gut = diff (gu, 1) :
gvt = diff (gv, 1) :
gauge
1=8(s0)° -8(s1)  olsi)
8st) J1-8(s0> Blso)
0 0 1
subs(cos(theta = 5(s t) , sin(theta) =8(s,7),a=0(s,t),b=p(s, t),gu) :
subs[ % v(s, t) =Inv[v, 11], (,i (s, 2) =1, % v(s, t) =0,u(s, t) =0,v(s, 1) —0],%)
a(s, t)
subs(cos theta) = 1—6( ) ,sin(theta) =9(s,¢),a=0(s,1),b=B(s, t),gv) :
subs[ { % =0, — v(s t) =Inv[v, 11], % u(s, t) =1, % v(s, t) =0,u(s,t) =0,v(s,t) —0,, %j
B(s 1)
subs(cos(theta) = 1—=293(s, t)z , sin(theta) =8(s,1),a=0(s,1),B(s, 1) :0,gus) :

@ o & _ 9 G _ _ ol o
subs {¥ (s, 2) =0, g v(s, t) =Inv[v, 11], » u(s, t) =1, P» v(s, t) =0,u(s,t) =0,v(s,t) —0], AJ
1 —8(s,1)°

subs(cos theta) = 5(s t) , sin(theta) =8(s,1),a=0(s,1),B(s, 1) :0,gvs) :
subs[ { % v(s, t) =Inv[v, 11], (,i (s, 2) =1, % v(s, t) =0,u(s, t) =0,v(s,t) —0],%)
d(s, 1)
subs(cos(theta) =y 1-=23(s, t)2 ,sin(theta) =0(s,¢),a=0(s,1),B(s,2) :O,guss) :
subs[ % u(s,t) =0, % v(s, t) =Inv[v, 11], % u(s, t) =1, % v(s, t) =0,u(s,t) =0,v(s,t) —0,, %)
-0(s, 1) Inv, |

subs cos(theta) =/ 1 — 6(s t) , sin(theta) =98(s, t),a =a(s, ),B(s, ) =O,gut) :

b ﬁ = =] 113 zl3 t—O3 t) =1 2E t
su s[{ asz 0, v(s, t) =Inv[v, 11], ™ (s, 1) r v(s, t) =0, atu(s, ) =Inv[u, 2], % v(s, 1)

viv,2],u(s, t) =0,v(s, 1) =0],%j
1 —0(s,¢t)" Inv 2 —8(s, 1) Inv%2

subs cos(theta) = 1—6(s t)2 sin(theta) =9d(s, t),a=a(s, t),B(s, t) =0 gvt)
subs[ { % =0, — v(s t) =Inv[v, 11], % (s,2) =1, % v(s,t) =0 o (s,2) =Inv[u,2], — v(s, t)

[v,2],u(s,t) =0,v(s, t) = 0],%)

O(s, t) Inv

o T 1 —3(s, t)2 Inv,

(16)

17)

(18)

19)

(20)

@1

(22)

(23)



> subs cos (theta) = 1—5(s 0%, sin(theta) =8(s, ¢ )
I b @ =1 11 0 =1 0 & =1 12
> su SH¥ 0, 5 v(st) =In[u 11} u(s ) =1, = v(s0) =0, = u(s1) =Infu, 12],
_ds v(s, t) =Inv[v, 12],u(s,t) =0,v(s, 1) —0},%)
1 —8(s, t)2 Inv, 1, — 3(s, 1) Inv, |, (24)
| > subs(cos(theta) =y 1—20(s, 1)2 sin(theta) =9(s, t),a=a(s, t),B(s, t) =0, gvst)
> subs ﬁu(s t) =0 ﬁv(s t) =Inv[v, 11], 3 u(st) =1 3v(s t) =0, iu(s t) =Inv[u, 12]
o ’ et o s Ot ds Y
2 _ 0
e v(s, t) =Inv[v, 12 ),u(s, t) =0,v(s, t) = 0], %;)
d(s, 1) Inv, Tt 1 —3(s, 1)2 Invv, 12 (25)
;> #CurvatureMatrices
| > OBs = map(z—diff (z s), rhoB) MatrixInverse(rhoB) :
_> subs[ { % v(s, t) =Inv[v,11](s, 1), % u(s,t) =Inviu, 11](s, t) }, %j :
I b 3 = del %
=> sus(as elta(s, t), o)
s 2 1—-8(s10)°,
=> su (& - j
| > subs(u(x, t) =alpha(s, t),v(x, t) =beta(s, 1), %) :
> QBs = simplify(simplify( %, symbolic) , size)
OBs:= || Inv, || (s5,0) 8(s, 1) +1Inv, | (s,0) V1 =38(s, t)2 , (26)
0
Iy, 4y (5.0 8(s. ) 1=8(s,0)° +1m,y (5.0) 85,0 + 2 8s.0) —Imy (1)
1=8(s0)°
é((% o(s,t) + (B(S, t) Inv, |\ (s,1) +1nv, | (s,1) s, 1)) 8(s, t)) 1 —8(s 1)
1 —98(s, 1)
0
+ (& 8(s, t) ) Bs,t) + (8(s,0) = 1) (8(s,0) +1) (Inv,  (s,0) B(s, 1) = Inv, 1, (s,1) &l 1) +1))
I,y (5.0) 8(s 1) 1= 8(s,0)7 +Inv, | (s.0) (s, z)2+% 8(s.1) —Inv,_ (s, 1)
. : Invv 11(8:8) 8(s,
1-8(s0)°
2 1 0
t) +1nvu SOV 1=08(s1)", ——————— ( ( > B(s,t) + (Invv 11 (1) Bls,t) — Invu 11 (8,
1—8(s0)°

0 o(s ) — 1) 8 z)j 1—8(s.0)° — (% 8(s,t))(x(s, 0 — (85,0 = 1) (8(s,0) +1) (Bls




t) Invu’ 11 (8 0) +Invv’ (s 1) ols, 1) ) ) },

0,0,0

> OBt :== map (z—diff (z t), rhoB) MatrixInverse(rhoB) :

> subs( { 6(?2_(1? u(s, t) =Invlu, 12](s, t), v(s, t) =Inv[v, 12](s, t) }, %) :

v(s, t) =Inv[v,2](s, 1), %j :

&
Or Os

u(s, t) =Invfu,2](s 1), %) :
v(s, t) =delta(s, t),%) :

u(s,0) = 1 —8(s, t)z,%J :

>
;> subs(u(x,t) =alpha(s, t),v(x,t) =beta(s, ), %) :
| > OBt := simplify(simplify( %, symbolic) , size )
| > #Syzygy and H operator
> syzygy = simplify(map (z—diff (z, s), OBt) — map (z—diff (z, t), OBs) — QBs.OBt + QBt.0OBs, symbolic) :
> Eql = simplify(simplify(syzygy (1, 1) symbollc) size)

Eql = ﬁ(&”z((lnvv 12 ( P» ) Invv 11 (8 0) (% d(s, t)) — (s, 1) (—; Invv (s 27
0 0 il
t)-i—atlnvv11 )) 1 —9(s. -1 +8(s, 1) )(6 Invull(s,t))—[&lnvulz(
t)) d(s, 1) 2 (— d(s, 1) )Invu 1 (s, 8) — (% d(s, t))]nvu, 12 (8 1) 8(s, 1) + gg Inv, 12(s t))

=> Eq2 = simplify (simplify (syzygy (1, 2), symbolic), size)
1 0 0 )
Eq2 = ———-— ( ( - ( & O(s, t) ) Invu p(s1) + ( o O(s, 1) ) Invu, 11 (8 8) +8(s, ) ( — Invu (s (28)

N, o(s, t)2 o

1_
9 9 9
0 = o I s ))j 1-8(s,0” + (-1 +8(s07) [ 5 I, ll(s,t)) - [& Inv, 1, (s,

5 0 9 9
t)) d(s, 1) +1nvv)ll(s, t) 8(s, 1) (a d(s, t)) —Invv, 12 (1) 8(s, 1) (& S(s, Z)) + = P” Invv 12 (S t))

B 9

> simpliﬁ/( simpliﬁ/[ isolate(Eq2, P Inv, |, (s, 1) ), symbolic) , sizej :
;> subs( %, Eql) :
| > Eql = simplify (simplify( %, symbolic), size) :

0

> isolate(EqI o — Inv, 11 (s, 2) j :

B simplify( %, size)
0 0 5
3 [(& S(S,t))lnvu,”(s,t) - (& S(S,t))lnvuj 12(&1)) 1 =38(s,2) 0

o Invv (s =- + e 29)

(8(s,7) —1) (8(s,2) +1)

Invv 12(8 )

[ #Here we simplify the following coefficient




1 —8(s,0)°

g (8(s,2) — 1) (8(s,2) +1)

1 —8(s,1) (30)

[ > simplify( %, symbolic)

S —— (1)
| 1 —98(s,1)
B 0 0
o ([nvu,“(s,t) (56(5‘,2‘)) — (&S(S,t))lnvu’u(s,t)j 9
> Elnvv’u(s,t) = - +&Invv’ 12(817)
Vv 1—=238(s1)
0 0
( o o(s, 1) ) Invu’ (88— ( ™ o(s, 1) ) Invu’ 1o (8 1) o
o Invv’ (s = - + s Invv’ 1208 0) (32)
| 1 —0(st)
_Relationship between invariants . 5
> exprel == simpliﬁ/(Matrix( > Invuyz(s, t) }, [ > Invv, 5 (5,7) }, [0] ]) - QBsMatrix( [ [ Invu’ 5 (5,1) ],
[ Invv,z(s, t) ], [0]]),sizej
. . . . a
> simplify| simplify| subs {Invu’ 12 (s 1) =exprel(1,1), Invvj (8 1) =exprel(2,1) }, o Invvy 11 (8 0)
0 0
(Invu’ll(s,t) (ES(S,I)) — (ES(s,t)jInvu,lz(s,t)) 8 ‘ .
= - + * n, 12(s, t) |, symbolic |, size | :
| 1 —90(s, 1)
Evolution of Inv[v,[1,1]] in terms of the first order differential ingariants .
> collect( %, Invv, 5 (8, 1) ) : collect( %, Invu, 5 (8, 1) ) : collect( %, s Invv’ 5 (8, 2) ) : collect( %, s Invuy (8 2) ) :
collect[ %, % Invv, 5 (8 2) J : collect( %, % Invu’ 5 (8 2) )
(8(s,6) +1) (8(s, 1) — 1) il Inv. (s, 1)
0 a2 1 2
o Inv, | (s,1) = - > - W, ( (—25(s, t) (33)
1=38(s1) (1-8s0?%)

+2) (% 8(s, t)) + ( -, | (5.1) 8(s, 1) 1= 8(s, 0n* — Iy, (5.1) 8(s 0+, | (s, t)) (3(s,

0 +1) (8(s,2) —1)] (% Invugz(s,t))) - 1 T ((/ 1 —8(s,0)” 8(s,

(1-8(s.0)%)

1) Inv, | (s.1) +38(s, t)2]nvu’11(s, t) —Inv, | (s t)) (8(s,2) +1) (8(s,1) — 1) (% Inv, 5 (s,
1 0 2 5 d
) ) - ([S(s, 0| == o(s,1) | + [ 1=8(s,0)" 8(s,0) | = Inv, |, (51)
) (1-8s0%) " (a‘ ) (as 11 )
+ (1 —3(s, t)z) (% ”"v,u(s’t)) - % 3(s, t)] (8(s,0) +1) (8(s, 1) — 1)]1’%,2(& ,))
0 2 F
_ 1 7 ([ 1—5(s,t)2 [& S(S,t)) + [(—1 +8(s,¢)2) (& I”Vu,ll(s’t))

(1-8(s,07)




0

1 —8(s,7)° 8(s, 1) (& Inv, |\ (s, t))j (8(s,2) +1) (8(s,1) — I)JInvv’z(s, t))

(% 3(s, t))]nvu n(s0) (8(s0) +1) (8(s,0) —1)
3,2

(1-8(s07)
[> #Here we simplify the coefficients

> simpliﬁ/[ (8(sr) — 1) (S(S’;) +1) ,symbolicJ
-1 4+9(s, ¢)

1

> simplify 1 2 3 8(s, 1) 1 —3(s, t)2 (8(s,6) —1) (8(s, 1) +1) + (8(s, )
2 as
(-14+8(s0%)°
2 (\/ 1 —0(s,¢) Invv,ll(s, 1) —8(s, 1) Invu’ll(s, t)) (8(s, 1) + 1)2) ),symbolic]

;2 ( (Invv (s 0) é}(s,z)2+2i 8(s, 1) — Inv, |, (s, t))\/ 1=8(s,0)° —Inv, | (s,0) 8(s,1)°
-1 4+8(s, 1) as : ’

+Invu7 11 (8 1) 8(s, 1) )

> collect( %, Inv. .. (s,t)) :collect( %, Inv_ . (s, t)
u, 11 v, 11

0 2
(-8(s, t)3 +8(s, t))]nvu,“(s, ) N 2 (E 5(s,t)j 1 —3(s, 1)

Inv, |, (s,1) y 1 —38(s, t)2 +

symbolic] , Size J

Invu (88 1T —=38(s, t) —Inv. (s 1) 8(s, 1)

v, 11
1

i 1485 0) 1+ 8(s0)

2 2 2
> simpiit] - (805021 —5(s.0) +2/1 550 ) ,symbolic]

-1 4+9(s,¢)
| 1 —8(s,1)°
[~ 3
> simplify| - (S(S’ H_ =8 t)) ,symbolicj
-1 +8(s,1)
_ -8(s, 1)
2(—8(s,t)) 1 —8(s, 1)

> simplify| + 3 , symbolic

-1 4+3(s, 1) 5

E (E 8(s, t)j

i 1 —8(s,0)°

(8(5, 0 v, (s,0) +Inv (50 1= 8(s,0)° ) (8(s,) — 1) (8(s,1) +1)*
> simplify| simplify| — : 2 > )

(-1+48(s07)

(34

(35)

(36)

37

(38)

(39)

(40)
41)



1 0 2 p)
> simpliﬁz( 5 ((—(—a(s, t)) S(s, 1) 1 —=8(s,8)" + [—(S(S, 1) —1) (8(s,¢) +1) (s,

(—1+6(st)) &
0
)( Inv, 11(St)j +(8(s0) = 1)V 1-8(s,0)° (5(S,t)+1)(glnv 11(St))+(%6(s
1—8 2 )+1)J),symb0h’c)
02 4 2 0
) -1+9 d(s, 1) —28(s, 1) | = b , 4?2
-1 +38(s, 1) 2([(652 j +8(s.0%) + (3(s0) (St)+)(ag”vv,11(St)) (42)

2
—8(s, 1) (& 3(s, t)j j 1—8(s,1)° —8(s, 1) (3 Invu,“(s,t)) (8(s,8) —1)% (8(s, 1) +1)2)

as
| (43)
9 9
> collect( %, — Inv, ll(s t)) :collect(%, & 1nvv (s t))
(8(s,0* —28(5,0)° +1)J1=8(s0)° (%Invv“(s,t))
e ’ 44)
(-1+8(s,07%)
8(s,0) (8(s,) —1)% (8(s, 1) +1)2(% v, | (s t))
(-1+850%)°
2
) [(% )( 1+8(s,1)°) —8(s, 2) (% a(s,z)) ] 1—8(s0)°
| (-1+8(s0)%)
4 2 2
N Simphﬁ[_ (60" 1= 6(s.0)7 +268(s.02 1 —2 _J1-8s07) ’Symboh.c]
(-1+8(s0)7)
| 1—8(s0)° (45)
(8(s5,1)° —28(s5,2)° +8(s,7)) (%Invu (s 0)
> simplify| — 5 , symbolic
(-14+8(s07)
9
-0(s, 1) (a I”Vu,ll(s’ t)) 46)
> simplify
® 0 2
- -8(s Sl +[—3 8 1-5
o 2)2( Ji=ss0® [ Z80 ]+ (a0 ] a0 1=
(gSSi) 1 —38(s. )Symbollc]
2
-8(s, 1) (% S(S,t)) + [% S(S,t)J (8(s, 1) +1) (8(s, 1) — 1)
47

(1-5(s02) "

9 2
! - ((—1 +38(s,)7) (aﬁ(s,t)) + (—(8(s,t) —1) (8(s, 1)

> simplify
[ (-148(s07)




+1)J1=8(s0° (Elnvu’”(s, z)) — (8(s,8) — 1) 8(s, 2) (8(s,7) +1) (ilnvv’”(s, t))] (8(s, )

as as
—1) (8(s, 1) +1 )),symbolic)
/2( 0 0 0 2
(1-8(s.0?)° 2(& Inv, |, (s t)) +(-8(s,0° +8(s0)) (& Inv, |\ (s, t)) + (& S(s, t)) )
] -1 +8(s,1)°
i 0, a 0, 6
> collecl( %, & Invu, 11 (80) ) :collecl( %, & Invv, 11 (8 0) )
2
(-8(s,0)° +8(s,2) ) (% Inv, |, (s t)) (1-8(s.0?)° & [% Inv, |\ (s, t)) (& 3(s, t))
5 + 5 + > 49)
i -1 4+0(s,¢) -1 4+98(s,¢) -1 4+93(s,¢)
B 3
> simpliﬁ/{ - (S(S’ H” =8, t)) ,symbolicj
-1 4+98(s, 1)
i ~3(s, 1) (50)
2 2 2
> simpliﬁ/[ - (S(S’t) \/1 —3(s.0) _\2/1 —3(s.1) ) ,symbolic]
-1 4+93(s,¢)
i J1=8(s1)° (51)
S

0 2
- [ES(S,t)jlnvu’”(s,t) 1-8(s,0)" (8(s,0) —1) (8(s, 1) +1)

(-14550%)°
(% 3(s, t)jlnvu,“(s, NJ1=8(s07 (8(s,0) —1) (8(s,1) +1)

. — (52)
i (-1+8(s07)
B simplify( %, symbolic) 5
( > O(s, 1) ) Invu, 11(80)
(33)
i 1—8(s0)°
;> #Here we check Proposition 8.1.8
> Theol = subs([nvv (s t) =Inv, (s, 1), simplify(map (z—diff (z, s) , gauge) MatrixInverse(gauge) + gauge
.OAs.MatrixInverse( gauge), size) ) :
2
=> subs( {Invv’ 11 (88 =y 1—=3(s,1) -Inva’ 11 (8 1), Invu’ 11 (8 1) ==8(s, 1) ~Inva’ 1108 8) }, QBS) :
=>
| > simplify( %, size) :
| > % — Theol :
> simplify( %, symbolic)
000
000 (54)
000

> #Here we check Proposition 8.1.14

> A = simplify(gaugesimplify( map (z—diff (z, s), QAt) — map (z—diff (z, t), QAs) — QAs.QAt + QAt.OAs,
symbolic) MatrixInverse(gauge) ) :

"V ]

> B := simplify(map (z—diff (z, s), OBt) — map(z—diff (z t), OBs) — OBs.OBt + OBt.QOBs, symbolic) :



v "V ]

% — A

"V "V ]

5 v, 1

> subs( {Invu 11 (8 8) == 0(s, 1) Iny

t), Inv

8 1108 8) Invv (s 1) 1 —=30(s, t) Invu 1o (8 1) ==8(s,

v,ll(

1) Invv,z(s, t),lnvv’z(s, 1) :Invv’z(s, 1) 1 —98(s, t)2 +0(s, 1) Invu’z(s, 1) }, %) :
simplify( %, symbolic) :

oS O O
S O O
S O O

#Here we writeHB in terms of HA and TA

(a(s,t)—l)(S(s,t)H)( .

(5,1) = - : - (((—2a(s,t)2
1 1—8(s,4)° (1-5(s02)"

1

)_ (1-38(s07)

> ((S(S,t) —1) (8(s,2) +1) (—8(&

0
Inv — (s, t) + (s Inv 1(s, 1) —Inv, |, (s, t)) (Elnvvz(s, t) j)

1 —&( s,t)

0
(&I u”(s t)) +(1—5(s 1) ) (aglnvvll(s t)j — (%S(S,t)j)]lnvuz
1

9 2
1=8(s0° [ =8(s,0) | + (8(s,0) —1) (8(s,0) +1) ((-1
(1-8(s02)"" (( (ag J

+ (s, 1)2) ( :;Invu 11 (S, t)) —08(s, )y 1 —9(s, t)2 ( ;Invv e t))]]lnvv’z(s, t))

(8(s, 1) —1) (8(s,1) +1) Inv, (s (%a(s, t))

v "V "V "V ] v

0)
1

0 0
collect( %, % Invv, ) (s, 1) j : collect( %, & Invu’ 2(s, t) ) : collect[ %, * Invv, ) (s, 1) ) : collect( %, Inv

3/2

(1-8(s,0)%)

subs( {Invu’ 11 (s 8) ==delta(s, 7) -Invv’l (s, 1), Invv (st =v1- o(s, t)2 -Invv, 11 (8 7) }, %) :
rhs( %) :
simplify ( simplify ( %, symbolic) , size) :

: collect( %, [nvv, ) (s, 1) )

t)z)(

(-1+5(s,t
t))z(s(s’t)—l)(ﬁ(&) )Inv )-l— ( o )2(([(-1+6(s,
(s, 1)

0 0
)2)2 ([—(5(s,t) —1) (8(s,1) +1)Invv’11(s,t) [gS(s,t)j 1—8(s,t)2 + (&6(&

%B(S,t)j—(%ﬁstj ] 1 —8(s )% (8(s, 1)

+ (8(s, (8(s, 1) +1) (-S(S, 0 Inv, | (5.0 1=8(s 02 —8(s, 1) v

u,2(

) Inv, (s, 1), Inv, |, (s, 8) =Inv, |, (s, )V 1 —38(s, t) JAnv, (s, 1) =Inv, 5 (s,8) V1 —8(s, t)2 — O(s,

(35)

w11 (S

(st))

S’

(36)



"V ]

>

+1)2 Invl )]Inv ) ! )2((2(5<s,t)—1)(8(s,t>

1—|—8(s,t)2

1 ( j 1 —a(s ) (8(s.1) +1)21nvv,”<s,t>] [ilnvu,zm,r)))

ds
(8(5,1) — (% j

-1 +8(st

+

(8(s,1) = 1) (8(s,1) +1) 8(s. 1) Inv, |, (s, 1) [%5(& t)j 1 —8(s,1)°
.\ ,

2
(-1+5(s0?)
#simplifying coefficients

[2 (8(s,) —1) (8(s,1) +1) (%S(S,t)) 1=8(s,0° + (8(s,0) —1)* (8(s,1) +1)° v, |\ (s, t))

(-1+8(s0%)°
0 7 2 2
2(8(s,2) —1) (8(s,0) +1) (& 3(s, t)) 1—8(s,0)" + (8(s,6) —=1)" (8(s,¢) +1) Inv, | (st

)

(-1+8(0%)°
collect( %, Invv, 11 (s 7) )

2

0
(8(s.) — 1) (8(s.1) _'_1)2[”‘}%11(&0 N 2(8(s0) —1) (8(s,¢) +1) (&8(&”) 1 —38(s,1)
(-1+8(s02)° (-1+8(s02)°
2(8(s,0) —1) (8(s,0) +1) (%S(S,t)) 1—8(s,1)°
simplify > , symbolic
-1
( + (s, t) ) 5
2 (aS(S,t)j
1 —8(s,2)°
2
{((—1 +3(s,1)%) (%S(S,I)) - (%8(&;)) 8(s t)) 1—8(s, 1) J
simplify , symbolic
(-1+8(50%)°
2
o(s, 1) (%5(5‘ t)j—(%ﬁ(s,t)) o(s, 1) [%S(S,f))
(1-8(s0%)""
simplify( %, size )
2( @ 0 2 2
o(s, 1) (¥5(s,t)j - (aﬁ(s,t)) o(s, 1) — [QS(&”J
(1-8(s0%)""
1

9 2
(_1 (s t)2)2 ((‘(S(S,t) —1) (8(s,2) +1)Invv’11(s,t) (aﬁ(s,t)) 1-8(s,0) + (8(s,0)

—1) (%S(S,t))z(S(s,t) +1)j)

(37

(38)

(39)

(60)

(61)

(62)

(63)



0

1 (—(S(S, 0 =1) (8(s1) +1) Iy, | (1) (&S(S, t)) 1—8(s,0)° + (%8(& (63)

(-1 +8(s02)°
2
t)) (8(s,2) — 1) (8(s, ) +1))

B Collect( %, Invv, 11 (8 0) )

(8(s,) —1) (8(s,1) +1) (%a(s, r))\/ 1—8(s,1)° Inv, |, (5.1)

i} (64)
(-1 4+8(s0)%)°
9 2
(—S(S,Z)) (8(s,1) = 1) (8(s, 1) +1)
LA
| (-1+8(s0)°
(8(s,1) — 1) (8(s,0) +1) (%a(s, t)) 1—8(s0)°
> simplify| - 3 , symbolic
(-1+8(s07) ,
— (s, 1)
as
. (65)
| 1 —8(s,1)
B 2
(8(s, 1) — 1) (%S(S,t)) (8(s,t) +1)
> simplify 3 , symbolic
(-1+8(s07)
( % d(s, 1) )2
— (66)
| -1 +8(s,¢)
0 p)
8(s, 1) Inv, |, (s,1) (55(& t)) (8(s,2) = 1) (8(s,2) +1)y 1 —8(s, )
> simplify 3 , symbolic
(-1+8(s07) )
Invv, 11 (8 1) 8(s,1) ( > o(s, 1) )
- (67)

J1=38(s1)°

IV "V "V ]



restart

with ( LinearAlgebra) :

#8.1.21 Scaling and translating. Gauge transformations.
#Normalization Equations

Eql = lambda-u(x, t) + epsilon:

0
Eq2 := lambda- o u(x,t) —1:
solve( { Eql, Eq2}, {lambda, epsilon}) :
assign( %)

[ Frame
> RhoA = Matrix( [ [lambda, epsilon], [0, 1]])

IV "V ] v "V "V "V "V "V 1

RhoA = % M()C, t) % u(x, t) (1)

0 1

unassign( lambda''epsilon') :
#Normalisation Equations Gauge
Eql = lambda-u(x, t) + epsilon - alpha(x, ¢) :

0
Eq2 = lambda- ™ u(x,t) —beta(x, t) :

solve( { Eql, Eq2}, {lambda, epsilon} ) :
assign( %)
RhoB = Matrix( [ [ lambda, epsilon], [0, 1]])

v "V "V ] v "V "V "V ]

B(x, 1)

0 0
< < 2
o u(x,t) ar u(x,t)

0 1

RhoB =

> gauge := Matrix( [ [beta(x, t),alpha(x, )], [0,1]])

gaugezl Bz alx @)
0 1
_Quick check
> simplify(RhoB — gauge.RhoA, symbolic)
00
[ 0 ‘ @
:> #Invariants
> Rhod-Matrix([[u(x, 1)1, [1]1]) .
0
! )
> RhoA'Matrix( &u(X,t) , [O]D
1
0 (6)

> RhoA -Matrix[

% u(x,1) ] [O]D

(M



] v "V "V ]

v

I v "V ]

RhoA -Matrix[ u(x,t)

’[O]D

2|

simplify(RhoB «Matrix ([ [u(x,t) ], [1]1]), symbolic)
o(x, 1)
1

simplifj/(RhoB -Matrix( [ % u(x,t) ], [0] ] ) , symbolic)

B(x, )
0

simpllfy( RhoB « Matrix [ % u(x,t)

, [O]D,symbolicj

simpliﬁ/( RhoB - Matrix ( % u(x,t)

, [O]D,symbolicj

#Curvature Matrices
map (z—diff (z, x), RhoA ) MatrixInverse( RhoA) :

subs[ % u(x,t) =Inviu, [11]](x, t),%j :

0
QOAx = subs( ™ u(xt) =1, %J

QAx ==

map (z—diff (z, t), RhoA) MatrixInverse( RhoA) :

subs( % u(x,t) =Invlu, [12]](x, t),%) :

(M

®

®

(10

n

(12)

13)



0
> subs( o u(x,t) =Invfu, [2]](x, t),%) :

]
> QAt = subs( ™ u(x,t) =1, %)
—Invu, [12] (x, 1) —Invu, (2] (x, 1)

QAL =
0 0

| > #Curvature Matrices Gauge
> map(z—diff (z x), RhoB) .MatrixInverse( RhoB) :

> subs[ & u(x, t) =Invfu, [11]](x, t),%j :

R a’
B 0
> subs[ o u(x,t) =beta(x,t), %) :
=> OBx = simplify(subs( u(x, t) =alpha(x, t), %), size)
-Iny, (x,8) + — B(x,0)
OBx == D L ,
Bx, 1)
0 0 2
(a o(x,t) j Blx, 1) +oulx 1) Inv, 11y, (x 1) — [a B(x, 1) ) o(x, 1) —B(x 1)
B(x, 1) ’
0,0
=> map (z—diff (z, t), RhoB) .MatrixInverse( RhoB) :
> subs[ aizat =Inv[u, [12]](x, t),%) :
0
> subs( & =beta(x, t), %) :
0
> subs[ 5 =Inv, [2](x, t),%) :
> OBt = subs( u(x,t) :alpha(g, 1), %)
0Bt = _Invu’[lz](x, t) N 5 B(x, ¢) ’
B(x, 1) B(x, 1)
0 0
(E a(x,t))[’)( 1) +oux, 1) Inv, [12]( (& B(x,t))oc(x, t) —B(x, 1) Inv, [2]( t)

E}

B(x, 1)

0,0

;> #Here we check proposition 8.1.8

;> map (z—diff (z, x), gauge) MatrixInverse( gauge) + gauge.QAx.MatrixInverse(gauge) :

_> subs(lnv [11] (x,2) = m[nvu, [ (x, 1), %) :
> simplify( OBx — %, symbolic)
0 0
0 0

:> map (z—diff (z, t), gauge) MatrixInverse(gauge) + gauge » QAt » MatrixInverse(gauge) :

(14)

15)

(16)

17)

(18)



Inv

> subs( {Inv (x,t) = ;Inv o 12] (x,t) = mlnvu’ (2] (x, 1) }, %) :

u, [12] beta(x, t) u, [12] ( )
> simplify( OBt — %, symbolic)
0 0
19
o 19)
;> #Syzygy And H Operator
> syzygy == simapllﬁ/(map(z%dlﬁ‘(z,éx) , QAt) — map(z—}giiﬁ”( z, t), QAx) — QAx.QAt + QAt.QAx, symbolic)

Syzygy = [ [ e InVu, [12] (x,2) + o Invu’ [11] (x, 1), e Invu’ (2] (x,t) — Invu, [11] (x, 1) Invu’ (2] (x, 1) (20)
+Invu [12]( )|,

o]

> isolate(syzygy(1,2), Inv, 15, (x1))

Inv, (15, (%, ):a Inv, oy (% 0) 1y, g (0 2) T, o, (5, 1) 21)
> subs( %, SyZng’(ala 1) 2,) 9
s (& Inv, oy (x0) 1y, g () Inv, o) (x, )) + Inv, (1 (x0) (22)
B 6
> lsolate(%, Vi, [11](% t)j
) ® 9 0
gt Invu’[“](x, t) = g Invu’[z](x, t) + [& Invua[“]( )jlnv [2]( t) +Inv [11]( t) (& (23)

Invu’ (2] (x, 1) j

;> #Syzygy And H Operator Gauge
> syzygy = simplify(map (z—diff (z, x), QBt) — map (z—diff (z, t), OBx) — QBx.QBt + QBt.0OBx, symbolic)

syzygy = B(}i 1)2 (- (& Inv, (15 (%, 1) ) B(x,7) +B(x 1) (% Inv, 1y (% )) Iy, 1y (% 1) (& (24)
B(x, t)) — (% B(x, 1) )Inv [11](x’ t)) B(x t)z (OL(x, t) B(x,¢) (% I"Vu,[lz](x’ t)) —a(x,
t) B(x, t) (%Invu,[“](x,t))—oc(xt ( )Imiu[12 ) +o(x, 1) (— B(x

2

0
))Inv (1 (1) +B(x 1) Inv 1y (% & Vi )‘FB(X,I) (a B(x,

))Invu [2](x, t) —B(x 1) Invu,[z]( )Inv 11] )

0,0

6
> lSOlate(SyZygy(l D, 5 i (% ))

0

In

o Ve r1ny (%6 1) 25)




0
> Subs(lnv (x,t) = — Inv (x,2) —OBx(1,1)-Inv, [2](x, t),%)

u, [12] a2
0 1 0 0
5 Invu’[”](x, t) _W—,l‘)[ & a Invu’[z](x, t) (26)
0
(_]”Vu,[ll](x’ t) + ™ B(x, t)j[nvu,m](x, t) 9
_ ™ B(x, 1) — ™ ]”Vu,[z](x’ t)
0
( -Inv (x,8) + — B(x, 1) ) Inv (x, 1)
u, [11] A u, [2] 0 0
;> simplify( %, symbolic) :
| > simplify (%, size) :
> collect( %, % Invu, (2] (x, 1) j : collect( %, Invu’ (2] (x, 1) )
0 1 0 ® 0
p Inv, (1, (x0) = S t)z ( [B(x, t) ( . v, (1 (%) ) —B(x, 1) [ Pel B(x, 1) J -2 ( . B(x, 27)

0 2
1) )I’Wu, (11 (x, 1) +2 ( ™ B(x, 1) j ]Invu,[z] (x, 1) )

(ﬁ(x, 1) Inv, 11y, (x0) —2B(x1) (% B(x, t))) [% Inv, 5, (x, t)j

B(x.0’
0
[ % Inv, 5 (x, 1) ) B(x, t)2 + ( o B(x, 1) ) Inv, 1y (6 0) B, 1)

+

+

B(x, 1)

> #Here we check proposition 8.1.14

simplify( gauge.simplify(map (z—diff (z, x), QAt) — map(z—diff (z, t), QAx) — QAx.QAt + QAt.QAx, symbolic)
MatrixInverse( gauge) , symbolic) :

> subs( {Invu, [12] (x, 1)

_ 1 .
~ beta(x, t) dnv, (5 (%, 1) },%j :

V"

1

'Il’lvu, [12] (x, t),[nvu, [11] (x, 1) = W

" beta(x, 1) Ay, 1y (60, Inv, gy (x50)

:> simplify( %, symbolic) :
> expression = % — simplify(map (z—diff (z,x), OBt) — map (z—diff (z t), OBx) — OBx.OBt + OBt.QBx,
symbolic)
100
expression = 0 0 (28)
:> #Relationship between operators
_ sigma(x)
> /= Telx)
| > beta(x) - (diff (diff (£, x),x) +kappa(x)-diff (fx) + diff (kappa(x),x) -f) :
| > simplify (%, symbolic) :
| > simplify( %, size) :
2
> collect[%, d(icz (S(x)) :collect[%, i G(x)] :collect(%,c(x) )
2 2
[(% Blx) | BLx) () +Bx)” 4 ki) | 2 4 Bl | - [fﬁ B(x))B(x)]c(x) )
2

B(x)







> restart
> with(LinearAlgebra) :

> #ProjectiveActionSL2 - 8.2
Action

(au(x,t) +b)
=> U= cu(x,t) +d
> Ux:=subs(ad— bc=1,simplify(diff (U, x), symboalic) )

" u(x,t)

| (cu(x,t)-‘r-d)2
> Uxx = subs(a d — bc=1,simplify(diff (Ux, x), symbolic) )

Ux :=

0

(cu(x,t) +d)

®
[

2
a u(x,t)) c

u(x,t)] -2 [

Uxx ==

(cu(x,1) +d)3

> Uxxx = subs(a d — bc=1,simplify(diff (Uxx, x), symbolic) )

Uxxx ==

1

(cu(x,t) +d)

Z ((cu(x,t) +d)? (

ol

ad

(x,t)] -6 ((cu(x,t) +d) (

2

ax2

2 0
u(x,t)) c) (a

(1 +b-c) .

a

u(x,t) J c)

#Normalization Equations
solve({U, Ux — 1, Uxx}, {a,b,c}) :
S = allvalues (%) :

v "V "V "V ] v

u(x,t)) - [

S[1]
1 1
a= a—,b:— B E— u(x,t),c=
o ) o 40 2

assign( %)
rhoA = simpllﬁ/(sg'mpllﬁ/(Matrix( [[a,b], [c,d]]), symbolic), size)

v "V ]

2

gu(x,t)

1 0 2
3 " (§ u(x,t)j
a u(x,t

1
/ a u(x,t)
o2

2

u(x,t)
/ ™ u(x,t)

rhoA = 0 2
@ u(x,t) u(x,t) (@ u(x,t)J—Z (a u(x,t)j
0 3/2 0 3 /2
2(5 u(x,t)j 2[5 u(x,t))
;> #Checking the invariants
> U
0
> simplify ( Ux, symbolic)
1

> simplify ( Uxx, symbolic)

2|«

0))

2

(©))

(C))

©))

6

@)
®



0 ®

> simplify ( Uxxx, symbolic)

> ; (10)
2 (a u(x, t)j
;> unassign('a'\b'\c'\d")
| > #Normalization Equations Gauge
(1 +b-c)
> d= -, :
;> solve( { U — alpha(x, t), Ux — beta(x, t), Uxx — delta(x, ¢) }, {a, b,c}) :
| > §:= allvalues (%) :
> S[1]
® 0 0 5
([@ u(x,t)] o(x,t) B(x, 1) — [g u(x,t)j a(x, 1) 8(x, 1) +2 [g u(x,t)) B(x, 1) ]\/T
a= 5 5 : ,b (11)
4 (& u(x,t)j B(x,1)? 3
B(x, 1) [ a u(x,t) )
R 0 2 0
= —(( [@ u(x,t)j u(x,t) a(x,t) B(x,t) —2 [a u(x, t)] o(x,t) B(x,t) — [g u(x,
0 5 0 2
) ) u(x,t) ou(x,t) 8(x,¢) +2 (E u(x,t)j u(x, t) B(x, 1) ]\/T) 4 (& u(x,t)] B(x,
1
l)z R) ,C
B(x, 1) [ a u(x,t) )
1 a2 0
NES 3 [(@ u(x,t)j B(x, ¢) (a u(x,t))ﬁ(x,t)j
B(x, 1) (a u(x t)]
- 0
4 B(x, 1) ( o u(x,t) j
:> assign( %)
> rhoB = simplify (simplify(Matrix([ [a, b], [c, g] 1), symbolic), size) 5
a®
[ — u(x,t) j o(x,t) B(x,t) — ( — u(x 1) ) o(x,t) 8(x,t) +2 [ — u(x,t) ) B(x, t)2
rhoB = axz & o (12)

0 32 5
2( u(x,t)j B(x,1)> /2




0

1 ® 2
3 W (—[— (x, t)J u(x,t) o(xt) B(x, 1) +2 (a u(x, t)) o(x,
2 [a u(x,t)j B(x, 1)’ 2

0 0
t) B(x,t) + (a u(x, t)] u(x, t) o(x, t) 8(x, t) —2 [a u(x, t)) u(x,t) B(x, t)z) },

a2

o2 0
[@ u(x, Z)J B(x, 1) — [a u(x, t)) O(x, t)
0 32 >
2B(x 1) 72 (-5; u(x,t)j
0 2 1) 0
2 [a u(x, t)) B(x,t) — (@ u(x, t)j u(x, t) B(x,t) + (a u(x, t)) u(x,t) 8(x, 1)
0 32
2[5()c,t)3/2 (a u(x,t)j

> gauge := simplify(rhoB.MatrixInverse(rhoA ), symbolic)

a1 3 1) +2B(x07 alx)
2B(x0)* B0 )
gauge =
ERIEY)) 1
20’ B(x.1)
=Quick check
> simplify(gauge *rhoA — rhoB, symbolic)
0 0
0 0

"V ]

#Checking the invariants
o [ (au(x,t) +b) ) )
> U = simplify cu(xt) +d symbolic

| U:==a(xt)

diff (u(x, 1), x)
> Ux:= simpli}ﬁ/{ (culxni) +d)2 ,symbolicj
i Ux = B(x,¢)
[ 7 ( di (e — e (di 2
> U ==simphﬁ/[ (diff (diff (u(x, 1), x),x) - (cu(x,t) +d) —2-c (diff (u(x,1),x))*)  symbolic

(cu(x,t) +d)3
i Uxx == 8(x, 1)
;> simplify( Uxxx, symbolic) :
03 02
> collect( %, ¥ u(x, t)j :collect( %, @ u(x, t)]
a2 2 03
] 3 B(x, 1) (@ u(x,t)) N B(x, 1) [g u(x,t)] N 38(x,t)2
9 2 0 2B(x, 1)
2 r u(x,t) ax u(x,t)

;> a = gauge(1,1) :
| > b= gauge(1,2) :
| > c:=gauge(2,1) :
| > d:= gauge(2,2) :

(13)

(14)

15)

(16)

17)

(18)



> U

i a(x 1) (19)
> Ux
] Blx 1) (20)
> Uxx
i 8(x, 1) 1)
;> simplify ( Uxxx, symbolic) :
a3 a2 9
> simpliﬁ/(subs[ { g u(x, t) =Inv[111](x, 1), ¥ u(x, t) =0, E u(x, t) =lu(x,t) = 0’, %], symbolic]
2B(x 1) Inv, | (x.0) +38(x. 1)
(22)
2 B(x, 1)
;> #Curvature Matrices
| > map (z—diff (z, x), rhod ) Matrixinverse(rhod) :
| > simplify (%, symbolic) :
®3
> subs[ @ u(x,t) =Inv[111](x, 1), %J :
B @
> subs[ g u(x,t) =0, %j :
B 0
> QAx = subs( e u(x, t) =1, %j
0 —1
QAx = Inv111 (x,7) 23)
0
2
:> map (z—diff (z, t), rhoA) MatrixInverse(rhoA ) :
| > simplify (%, symbolic) :
03
=> Subs[ o o u(x, t) =Inv[112](x, 1), %] :
2
> subs[ @ u(x,t) =0, %J :
B @
=> subs[ o u(x,t) =Inv[12](x, t),%) :
0
> subs[ —u(xt) =1, %] :
_ ax
0
> QAt = subs( o u(x,t) =Inv(2](x1), %)
Inv12(x, t) ;
- 5 - nvz(x, t)
Odr == 24)
Invllz(x, t) Invlz(x, t)
2 2

;> #Syzygy and H operator
> syzygy == sim%liﬁ/(map(zﬁdiﬁ‘(z, x), QAt) — map (z—diff (z, t), QAx) — QAx.QAt + QAt.QAx, symbolic)

. 1’1"12()@ t) Invllz(x, t) [nvlll (x, 1) Inv2(x, t) 0

B : 4 : _ > e Invz(x, ) —l—]nvlz(X, 1) |, (25)

syzygy =




0 0 0

e I’ZV“Z(X, 1) o In"lll(xa 1) Invlll(x, t) Invlz(x, N [nvlz(X, 1)

2 N 2 2 > 2

+ —

Invnl(x, t) Inv2(x, t) Invnz(x, t) H
2 2

> isolate(syzygy( 1,2), Inv12 (x, 1) )

0
> QOBx:= subs( " u(x,t) =beta(x, 1), %]

OBx =

l 4 B(l 03 (21”v111(x= £) B(x 1) o(x ) —38(x, 1) alx 1) Blx, )> — 2 B(x, 1) [ (-B(x, 1)?

0 0
—o(x 1) 8(x,t) ) ( a B(x,t) j + B(x, t)2 O(x, 1) +B(x,¢t) alx, 1) ( a o(x, 1) J

olx, t) 8(x,t)> j) 1
2 T 4B(x, 1)

(x, 1) B(x, )> aulx, )% +38(x, 1) ou(x, 1) B(x, 1)

(—2 Inv111

0 0
+2B(x1)? ((-2 B(x, )2 aulx,t) —alx,£)> 8(x, 1)) [5 B(x, t)] +2B(x0)° (a o(x, t))

9 2
ags S(X,I)J Bx.1) o(x.)* =2 [B(X’”Z_W) ])]

0

Y B(L pe (2 Blx ) Inv, (6 0) =280 07 B(x0)> +2B(x, 1) 8(x, 1) [E Plx ”J

0
Invlz(x, t) = ™ Invz(x, t)
[ > subs( %, syzygy(1,1))
] a2 Invz(x, ) . Invllz(x, 1) ~ Inv“l(x, 1) Invz(x, 1)
2 2 2
> isolate( %, Invllz(x, t) )
a2
Invllz(x, t) = @ Invz(x, t) +Inv111(x, t) Invz(x, t)

—J @ 9

> subs[ {Invllz(x, t) = @ Invz(x, t) +Inv“1(x, 1) Invz(x, t),]nvlz(x, t) = E Invz(x, t) },syzygy(2, 1) ) :
B 0

> isolate( %, o Inv111 (x, 1) j

0 0
o Invlll(x, t) = ¥ Invz(x, t) + (a Invlll(x, t) ) Invz(x, t) +2 Invlll(x, t) ( r Invz(x, t) J
;> #Curvature Matrices Gauge
| > map(z—diff (z, x), rhoB) Matrixlnverse(rhoB) :
| > simplify (%, symbolic) :
03
=> subs[ g u(x,t) =Inv[111](x,t), %) :
a2
> subs[ ¥ u(x,t) =delta(x, ¢), %) :

(26)

@7

(28)

(29)

(30



9
—2B(x1)° (E 8(x, 1) j ) Bl e (—2 Inv, | (x 1) B(x, 03 a(xt) +38(x 1) a(x,

]
) Bx0)® +2B(x ) ( (-Bxn)? —olx1) 8(x.1)) [ o Blx1) ] +Bx 1) 8(x 1) +B(x 1) o

0 2
) [§ S(x’t)J ~ oc(x,t)28(x,t) J)]

;> map (z—diff (z, t), rhoB) MatrixInverse(rhoB) :
| > simplify (%, symbolic) :
03
> sub. L) =Inv[112](x, 1), % | :
i su s[ o or u(x, t) =Inv| 1(x, 1) oj
2
> subs[ @ u(x,t) =delta(x, ), %J :
B @
> sub L) =Inv[12](x, 1), % | :
i su s[ o u(x,t) =Inv[12](x, t) 0)

0
> subs g u(x,t) =beta(x, 1), %] :

]
> QBt:= simphﬁ/(simphﬁ/(subs[ o u(x,t) =Inv[2](x 1), %J, symbolicj , size)

0

OBt = [ ; B(l e ((B(x, 0% +o(x 1) 8(x1)) (5 B(x, z)j =B ) dnv, (x. 1) +B(x. 1) aulx, (31
i

1
1) Invllz(x, f) — [ o o(x, 1) ) B(x,2) o(x, ) —d(x, 1) Invlz(x, ) ox, 1) ), m (
0

-2 Inv, (x, 1) B(x,1)” +2 (E o(x, t)j Blx.0)® +20nv (x.0) B(x.0)* au(x, 1) =2 B(x 1) a(x,
9

0
t) [ o B(x,t) J —B(x, 1) o(x, l)zlnvlu(x, t) + [ o o(x, 1) ) B(x, 1) o(x, t)z + o (x, 1)2 o(x,

9
) Inv,, (x, 1) = ou(x, 1) 8(x, 1) (5 B(x, t)])],

8 9
[ B(x, 1) Inv, |, (x, 1) — B(x, 1) (E 8(x, t)j —3(x,1) Inv,, (x, 1) +8(x, 1) [E B(x, t))
2B(x,1)° )
: (B’ —Blx0)’ (3 ] - I n [3 5
2B(x 1)} Blx.t)" Inv, (x. 1) =B(x, )" | 7 Blxt) | =B(x 1) oulx, 2) Invy , (x,1) & 8,

0
1) ) B(x,t) o(x,t) +3(x,¢) Invlz(x, 1) ou(x, t) —o(x 1) 8(x,¢t) [ o B(x, 1) ) ) }
:> #syzygyGauge

| > syzygy = simplify(map (z—diff (2, x), OBt) — map (z—diff (z, t), OBx) — OBx.QBt + QBt.OBx, symbolic) :
| >

0
> simpliﬁ/( isolate(syzygy(Z, 1), o Invlll(x, t) ), symbolicj
0 1 5 0
™ Inv, (x, 1) = Bx 2 (Invlll(x, 1) B(x,t) —38(x,1) ) [ ™ B(x, 1) ) + ( Blx, 1) dnv, ,(x, ) (32)




0
0 F) 2 (a d(x, 1) j Invlz(x, 1)
+38(x,1) Invlz(x,t)) [E ﬁ(x,t)J +3 | 8(x 1) (E 3(x. t)) — 3
0 0
~ 3(x, 1) [a Invlz(x, f)) . B(x, 1) [a 1""112()@ 1) ~ O(x, t) Invllz(x, 1)
3 3 3
Inv, _(x,t) Inv,_ (x,1t)
+ 111 3 12 J B(X, l)]
.
0 d
- [1 - (—2 B(x, 1) (a B(x, t)] +2 B(x, 1) O(x, t)j (a Inv, (x, t)j
subs| Inv,__(x,t) =
1127 B(xa I)2
([ e [Femen) 2 (5
- -| =5 B(x, 1) +1 ) Bt +2 | — Blnd) | —2 | = Blx,
B(x0) a2 Px0) | Blxo) +1nv, (x0) B(x 1) a Px1) a B(x
2
t)j o(x, 1) ] Invz(x, t)) + a2 Invz(x, 1), %]
0 5 0
o v, (x0) = S0 (lnvlll(x, 1) B(x, 1) —38(x, 1) ) [E B(x, t)) + | -B(x, 33)
0 9
[ (—2 B(x, 1) (a B(x,t)] +2 B(x, 1) O(x, t)] (a Invz(x,t)j
! B(x1)’
1 2 0 2 0
+ Bx 1) ((—(@ B(x,t)) Blx,t) +1nv,  (x1) B(x, 1) +2 [a B(x,t)) -2 (a B(x,

2
t) ) o(x, t) ) Invz(x, t) ) + @ Invz(x, t)

+38(x,1t) Invlz(x,t)) [a B(x, t)] +3 [ 0(x1) (E

0
[ [ -2 B(x, ¢) [ o B(x, 1) j +2B(x¢t) o(x,¢t) ) [ " Invz(x, t) j

B(x,1)°




R 0 2 0
((—(— B(x,t)) B(x, 1) +Inv111(x,t) B(x,t) +2 [a B(x,t)j -2 (a B(x,

2 1
t) J d(x, 1) ) Invz(x, t) ) + a2 Invz(x, t) ] ] ) -3 o(x,

0 0
[ ( -2 B(x, 1) ( Y B(x, 1) ] +2B(x, 1) O(x,¢) ] ( a Invz(x, 1) j
! B(x, 1)’

0

1 ) , ,
2 (("(_ B(x,t)) B(x, 1) +Invm(x,t) B(x, 1) +2 [a B(x’t)J _9 (§ B(x,

+
B(x, 1) o
2 Invlll(x, t) ]nvlz(x, t)
1) ) d(x, t) ) Invz(x, 1) ) + F%) Invz(x, t) ) + 3 B(x, 1)
i i) d
( . Invz(x, t) J B(x, 1) —Invz(x, t) ( ™ B(x, 1) ] +Inv2(x, t) o(x,¢)
> subs| Inv, (x,t) = , %
_ 12 B(x, 1)
| > simplify( %, size) :
0 i) 35}
> collect( %, Invz(x, t) ) :collect( %, re Invz(x, t) J :collect( %, @ Invz(x, 1) j :collect[ %, ad Invz(x, t) ) :
K] ]
i collect( %, o B(x, 1) J :collect[%, o d(x, 1) ) :
> RHS =% 5
d (380607 Blxt) +Blxn)’ v (x1)) (5 Blx, t)) ®
RHS = ™ Inv,  (x 1) = PE + rey Inv, (x,1) (34)
0 2
>[5 e [z e +— ([3& 0B 1) 3[& Bl
- -3 8(x, x, t) — — B(x,
B(x, 1) B(x,1)° &

9 2 d
t) ) B(x, [)2 +2 B(x, t)zlnv“l(x, t) +6 [ " B(x, 1) J B(x, 1) ] (a Invz(x, t) j )

L1 ((66 2(i j 15 (15 ) +6[£ J(i
B(x,t)3 (X,t) a B(x,t) (x,t) o (x’[) B(x,t) 2 B(X,l) .

0 0 3 0
B(x, t)j B(x, 1) —3Inv1”(x, 1) (& B(x, t)) B(x,2) — 6 [g B(x, t)] + (a Invm(x,

0

) » , 39(x, 1) (E o(x, t))
I t)) B(x,2) = — [¥ B(x, t)j B(x, 1) )Invz(x, t)) + B(x1)
;> #Simplifying the coefficients

2 ® 0 2 2 2

{—3 B(x, ¢) (@ B(x, t)] +6 B(x, 1) (a B(x, t)j +2B(x¢) Inv, | (x1) =3 B(x,t) 8(x, 1) J

> 3 :
_ B(x 1)

> simplify( %, size)

£ =\



d 2 o
-38(x, 1) +2Invy (x,1) B(x, 1) +6 (a B(x,t)j -3 [—2 B(x,t)] B(x, 1)

o
B(x, 1)

1 [6 ( 0 ) [ ® J 2( o ) ( 0 ) )
’ “ac ’ Y > - > INEY ) _I o )
> Be) Blx,0) | o B(x 1) B(x,2) | —B(x,1) .~ Blxo) | +| 5 v, (x0) | B(x0)

0 3 0
-6 (a B(x,t)) —3B(x0) (a B(x,t))[nvlll(x,t) +6 [a B(x,t)) 8(x,t)2—3 [g o(x,

o) Biso 8o |
:> simplify( %, size) :

02
> collect( %, a2 B(x, 1) j :collect( %, % B(x, 1) ] - collect(%, &(x, 1)) :collect( %, Invlll (x, 1) )
0 ] 0
3Inv111(x, t) [5 B(x, t)j 6 0(x, t)2 [a B(x, t)j 30(x,1) (a o(x, t)j
- 3 + 3 - 3 (36)
B(x,1) B(x, 1) B(x, 1)
d 3 ) ]
6(gB(x,t)) 6[¥B(x,t)](53(x,t))
- 3 + 2
B(x, ) B(x, )
9 2 & 2
(a Invlll(x, t)j B(x, )" — (@ B(x, t)) B(x, 1)
+ 3
L Bx, 1)
1 1 ,( ® 0 o
> 2 pan) ((2 Blx 1) (@ B(x,t)) +12B(x 1) (g B(x,t)J (@ B(x,t)J —2B(x
0 ]

0 3
1) (a B(x, 1) ) Invlll(x, t) +2 B(x, ) &8(x, 1) Invlll(x, 1) — 12 [g B(x, t)] +3 [a B(x,

t)j 8(x,t)2 —38(x,t)3J ) :

simplify( %, size) :
03 a2
> collect[ %, P B(x, 1) ] : collect( %, a2

"V ]

0
B(x, 1) ] : collect( %, g B(x, 1) ] s collect(%, 8(x, 1) ) : collect( %,

Inv111 (x, 1) )

0 0 0 3
_ 2 _
[ vy B(x, 1) ]Inv o 3800 0)° . 38(x, 1) [ a B(x,t)j B 6 [ a B(x,t)] -
B(x,1)? B(x,1)? e 2B(x 1) 2B(x 1) B(x, 1)

6 (ﬁ B(x,t)j (% B(x,t)) ) = Bx, 1)

a2 a3
+ 2
a B(x7 t) B(x’ t)
| > # Here we write HA in terms of HB
1 20 (6 0B(x 02 +38(x 1)

> subs| Inv,  (x,t) = = ,RHS | :
_ 111 2 B(x, 1)
| > simplify( %, size) :

0 a2 03
> collect( %, Invz(x, t) ) :collect( %, g Invz(x, t) ] : collect[ %, a2 Invz(x, t) ) :collect[ %, s Invz(x, t) | :

0 0
collect[ %, — B(x, 1) J :collect[ %, — 0(x, 1) )
ot ot




0 9
38(x, 1) (E 5(x,t)j (ZB(x,t)zlnvlll(x,t) —38(x,z)2> (5 B(X,l)) 9
B(x, 1) * 2 B(x t)2 + [5 Invm(x, t)j B(x, 38)
0
(2BCe 0 v, (50) =38(x,0)7 B(x.1) ) [5 B(x, ”J 5
1= 2B(x 1) t o3 Inv, (x, 1)

d i)
3 (a B(x, t)) (@ Invz(x, t))
Bx,1)
9 2

2
([4 B(x,t)3lnv“1(x,t) +12 [a B(x, I)J B(x,2) —6 (@ B(x,

1
2B(x,1)°

0 1 0
t)) B(x,t)zj [a 1nv2(x,t)j) + 2B(x,t)3 ((2 [a 1nv“1(x,t)J B(x,t)3—41nv“1(x,
0 0 2 0 03

3
t) [g B(x,t)) B(x,t)2—12 (a B(x,t)) + 12 (g B(x,t)) (a B(x,t))[?)(x,t) -2 [g

0
30(x, 1) ( o O(x, 1) )

B(x, )

B(x,t) J B(x, t)z] Invz(x, t) ) +
:> #simplifying coefficients

3 ,( @2 0 2
1 [4 B(x, 1) Invlll(x, t) —6B(x,1) ( @ B(x, 1) ) +12 B(x,¢) ( o B(x, 1) ] j

2 B(x,1)°
5

>

2 @
4 B(x, t)31nv111(x, t) +12 [a B(x, t)) B(x,t) — 6 (—2 B(x, t)) B(x, t)z

ax
2B(x,1)°

(39)

> simplify( %, size)

2B(x.0)* Inv, | (x.1) +6 [% B(x, t)j2—3 (% B(x, t)j B(x, 1)
B(x.1)°

(40)

0
> collect( %, Inv111 (x, 1) ) : collecl( %, I B(x, ?) )

( 0 2 2 B

6| = B(x,t)) 3 (—2 (x,t)]

& &

5 - 41
v B(x, 1) B(x. 1) “h

2[nv111(

2 0

1] 9
> — ([2 B(x, t)3 [a Invlll(x, Z)J —4 B(x, t)zlnvlll(x, t) (a B(x,t)j -2 [3()c,t)2 [@ B(x,
3
t)j—f—l B(x,t)[aﬁ(x,t))(@B(x,t))—u(aﬁ(x,t)] )

2
1 9 5 9 ) 9 3
e 03 (2 (a Inv, | (x, t)) Blx, )" —4nv,  (x1) [a B(x, t)j B(x, )" —12 (a B(x, t)) 42)
a2 0 »
s (@ '3(“)] (a BW)) B(x1) —2 [5 B(m)} B(x,z)z)
=> simplify( %, size )
1 d 5 9 , 9 3
Blx)’ ([a Inv, || (x, t)j Blx, )" =21Inv, (x,1) [a B(x, t)J B(x,1)* —6 (a B(x, t)) 43)



>

>

V"

"V "V ]

vy

® 0 @ 2
+6 (@ B(x»f)) (E B(x,t)j B(x, 1) — [@ B(x,t)] Bx.1) )

0 0
collect( %, " Inv111 (x, ) ] : collect[ %, g B(x, 1) ]

0 3 ) 0
6 (g B(x, z)] (-2 Blx0)? tnv, | (x,1) +6 [@ B(x, t)J B(x, t)] (a B(x, t)) 3
+ + =
Bx 1)’ Bx, )’ v
*3
a8 P
Inv. (x,t) — ———————
H B(x, 1)
1 (2B v (6 0) =3B(x1) 8(x0)°)
2 B(x. 1)’
2B(x, 1)  dnv, | (x,1) =3 8(x,0)% B(x,1)
2B(x0)°
simplify( %, size)
2 B(x, 1) Inv, | (%, 0) +38(x, 1)
_ 2B(x.1)?
K]
collect( %, Inv111 (x, ) ) :collect[%, a B(x, 1) J
8(x, 1)
Invlll(x, t) — x t)z
#Checking proposition 8.1.8
map (z—diff (z, x), gauge) MatrixInverse( gauge) + gauge.QAx.MatrixInverse(gauge) :
1 20 (5 0) B(x o) =3 8(x.0)°
subs Invlll(x, t) = 5 2 ,% | :
B(x, 1)
simplify( % — OBx, symbolic)
0 0
0 0
unassign('a'\b'\c'\d")
(au(x,t) +b)
T cu(xt) +d)
Invt == subs(a d — b c =1, simplify(diff (gu, t), symbglic) )
o u(x,t)
Invt = ————"5
(cu(x,1) +d)2
2 0 0
subs[{ o u(x, t) =Inv[12](x, t), E u(x,t) =Inv[2](x 1), g u(x,t) =1, u(xt) —O]Jnvt] :
1 1
subs|d=——,c=-—+ S(X—’t),%
P 3/2
B(x, ) Blx. 1)
Inv, (x, 1) B(x, )
K]
o 4
Invt .=

(cu(x,t) +d)2 :

(44)

(45)

(46)

7

(48)

49)

(30)



Invix == diff (%, x)

2 0 0

e u(x,t) 2 [5 u(x,t)jc (a u(x,t)j

1 = — 51
e (cu(x,t) +d)2 (cu(x,t) —I—a?)3 D

Invtxx == simplify (diff ( %, x) , size) :

02 0 0
subsH o u(x,t) =Inv[12](x, 1), o u(x,t) =Inv[2](x, 1), " u(x,t) = I]Jnvtx] :

subs(u(x,t) =0,%) :
1 L §(x 1)

subs|d=——,c=-&7 — %>, %

[ B(x.1 2 Bxn’” ]

Invlz(x, t) B(x,t) +3(x, 1) Invz(x, t) (52)
03 02 0 0

subs( { a2 o u(x, t) =Inv[112](x, 1), o u(x,t) =Inv[12](x,t), E u(x,t) =Inv[2](x 1), g u(x,t)

= ll,lnvtxx) :

1 L §(x 1)

subs| u(x,t) =0, d=———,¢c=7% — %, ,%

[ Bvn 2 Bxn’?

simplify( %, symbolic) :
collect( %, Inv112 (x, 1) ) : collect( %, Invlz(x, t) ) : collect( %, Inv2 (x, 1) )

38(x, 1) Inv (x, 1)

2B(x 1)
-MatrixInverse( gauge) .map (z—diff (z, t), gauge) + MatrixInverse(gauge).QBt.gauge :
1 31nv (x,t) d(x, t)2 +493(x,t) B(x, t) Inv,_ (x,t) +2 B(x, t)2lnv (x, 1)
2 12 112
subs| \Inv, _(x,t) = = ,Inv,_(x, t)
112 2 B(x’ t) 12

,%}:

+20(x,1) Invu(x, t) +B(x, ) Inv, (x1t) (53)

112(

:Invlz(x, t) B(x, 1) +Inv2(x, t) d(x, 1), Invz(x, t) =beta(x, t) -Invz(x, t)

simplify( % — QAt, symbolic)
00 54
0 o (34)
#Checking proposition 8.1.14
MatrixInverse( gauge) simplify (map (z—diff (z,x), OBt) — map (z—diff (z, t), OBx) — OBx.OBt + OBt.QOBx,
symbolic) .gauge :
3 Invz(x, t) &(x, t)2
subs [nvllz(x, t) =B(x 1) Invnz(x, t) +28(x, 1) Invlz(x, t) + 5 B(x 1) ,Invlz(x, t) =Inv12(x,
t) B(x,¢) +Inv2(x, t) 8(x,t), Invz(x, t) =beta(x, ¢) -Invz(x, t),Inv[1](x,t) =beta(x, t), Inv[11](x, 1)
= del Il 111 b [ 111 SRRULICTUEN
= delta(x, ), Inv[ 1(x, t) =beta(x, t) -Inv] 1(x, t) + R beta(x. 1) |’ o
EXPRESION = simplify( % — simplify(map (z—diff (z,x), QAt) — map (z—diff (z, t), QAx) — QAx.QAt + QAt
.QAx, symbolic), symbolic)
0 0
EXPRESION'= | (33)
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