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Abstract

In this thesis, the calculation of Euler–Lagrange systems of ordinary difference equations is

considered, including the difference Noether’s Theorem. The discrete and difference moving

frame is presented, and it is shown that for any Lagrangian that is invariant under a Lie group

action on the space of dependent variables, the Euler–Lagrange equations can be calculated

directly in terms of the invariants of the group action. Furthermore, Noether’s conservation

laws can be written in terms of a difference moving frame and the invariants. It is shown that

this can significantly ease the problem of solving the Euler–Lagrange equations. We show

the calculations for a discretisation of the Lagrangian for the Euler’s elastica, and compare

our discrete solution to that of its smooth continuum limit. We also study in depth some

finite difference Lagrangians which are invariant under specific Lie group actions such as the

special unitary action, the linear and projective actions of SL(2), and the linear equi-affine

action which preserves area in the plane. We first find the generating invariants, and then

we write the Euler–Lagrange difference equations and Noether’s difference conservation laws

for any invariant Lagrangian, in terms of the invariants and a difference moving frame. We

then give the details of the final integration step, assuming the Euler–Lagrange equations have

been solved for the invariants. This last step relies on understanding the Adjoint action of

the Lie group on its Lie algebra. Effectively, for all three actions, we show that solutions to

the Euler–Lagrange equations, in terms of the original dependent variables, share a common

structure for the whole set of Lagrangians invariant under each given group action, once the

invariants are known as functions on the lattice. The projective special linear group action,

and the special euclidean action in R2 are explored using multispace theory.
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Moreover, we show how to compute the discrete correction matrices and prove that the

curvature matrix can be computed simply by knowing only the correction matrix and the

Lie algebra of the Lie group. We prove that the relationships between a discrete flow and its

induced curvature flow is in terms of a syzygy operator and that it is a linear shift operator

depending only on the curvature invariants. We also show how this is related to discrete

integrable systems for some Lie group actions.

We also present the Rotation minimising frame and show how to use the known symbolic

techniques despite the fact that it does not readily fit the known framework needed for these

techniques. We derive the invariant differentiation formulae and the syzygy operator needed to

obtain Noether’s laws for variational problems with a Euclidean symmetry using the Rotation

minimising frame and present some application in biological problems. We also develop the

relationships between two frames differing by a gauge in the general case and prove that the

curvature matrices of one frame can also be written in terms of the curvature matrices coming

from the other frame and study some examples.
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Introduction

The name of moving frames is associated with Élie Cartan, [14] who referred to them as repère

mobiles and used them to solve equivalence problems in differential geometry. However, moving

frames appear in earlier work by other authors such as Cotton, [17] and Darboux, [18] and

continued to be studied as shown in Green and Griffiths, [35, 36]. Work by Fels and Olver,

[24, 25] showed that, given a Lie group action, defining a frame as an equivariant map from

the manifold to the group led to symbolic recurrence formulae for the differential invariants

amongst many other insights.

The Fels and Olver approach is well suited to symbolic computation as presented in Olver,

[87, 88], Hubert, [41, 43, 44], and Hubert and Kogan, [45, 46]. Thanks to the invariant calculus

one can study differential systems which are either invariant or equivariant under the action

of a Lie group, see Mansfield, [78], and it can be implemented using Mathematica or Maple.

In Mansfield, [70], the author provides an introduction to the symbolic differential invariant

calculus together with some applications.

The theory of Lie group based moving frames is now well established with significant

applications. Related to this thesis are: construction of the invariant Euler-Lagrange equations

from their invariant Lagrangian, (Kogan and Olver, [63]), computation of symmetry groups and

classification of partial differential equations and integration of Lie group invariant differential

equations, (Mansfield, [69], Morozov, [82]), the Noether correspondence between symmetries

and invariant conservation laws, (Gonçalves and Mansfield, [32, 33]), integrable systems,

(Beffa, [2, 3, 4], Mansfield and van der Kamp, [73], Mansfield and R–E, [76]), symmetry

reduction of dynamical systems, (Hubert and Labahn, [47], Siminos and Cvitanovic, [101]),

Lie pseudo-groups, (Olver and Pohjanpelto, [90]) and applications to computer aided design

(Mansfield and R–E, [77]).

The theory of moving frames has been recently extended to the discrete case, leading

to new applications such as integrable differential–difference systems, (Beffa, Mansfield and

Wang, [6], Mansfield, R–E and Wang, [76]), invariant evolutions of projective polygons, (Beffa

and Wang, [7]), computer vision, (Olver, [89]) and numerical schemes for systems with a Lie

1



2 Introduction

symmetry, (Kim, [56, 57, 58], Mansfield and Hydon, [72], Rebelo and Valiquette, [97]).

The first results for the computation of discrete invariants using group-based moving

frames were given by Olver who called them joint invariants in [88]. But this approach was

not computationally useful. However, in Beffa, Mansfield and Wang, [6], a notion of a discrete

moving frame is introduced, which is essentially a sequence of frames, and which is adapted

to discrete computation. In that paper, discrete recursion formulae were proven for small

computable generating sets of invariants, called the discrete Maurer–Cartan invariants and

their recursion relations called syzygies were studied. The theory of discrete moving frames is

extended in Beffa and Mansfield, [5] by considering lattice based multispaces where the frame

is simultaneously a smooth frame and a frame defined on local difference approximations. In

Mansfield, R–E, Hydon and Peng, [74] and Mansfield and R–E, [75] a discrete analogue of the

theorems appearing in Gonçalves and Mansfield, [32, 33, 34] is presented. In both smooth and

discrete cases, it is shown how to calculate the invariant Euler–Lagrange system in terms of

the standard Euler operator, a syzygy operator specific to the action, and the invariant Lie

derivatives acting on the invariant volume form. It is also shown how to obtain the linear

space of conservation laws in terms of vectors of invariants, and the Adjoint representation of

a moving frame for the Lie group action. This new structure for the conservation laws allows

the calculations for the extremals to be reduced and given in the original variables, once the

Euler–Lagrange system is solved for the invariants.

This thesis will be divided in nine different chapters, this being the first one.

In §2, an introductory background is given in order to give context to the following chapters,

where the notion of moving frame is presented.

In §3, we introduce the discrete and difference moving frames. Given an invariant discrete

Lagrangian, a general formula for computing the discrete Euler–Lagrange equations in terms

of the invariants of the symmetry group and a way of expressing Noether’s conservation laws

in terms of a difference moving frame and the invariants of the symmetry group is presented.

The theory is illustrated with a running example.

In §4, we give some applications of the results presented in the previous chapter. Apart

from the study of systems that are inherently discrete, one significant application is to obtain

geometric (variational) integrators that have finite difference approximations of the continuous

conservation laws embedded a priori. This is achieved by taking an invariant finite difference

Lagrangian in which the discrete invariants have the correct continuum limit to their smooth

counterparts. We show the calculations for a discretization of the Lagrangian for Euler’s

elastica, and compare our discrete solution to that of its smooth continuum limit. We also

consider finite difference Lagrangians which are invariant under linear and projective actions of



3

SL(2), and the linear equi-affine action which preserves the area in the plane. We first find the

generating invariants, and then use the results appearing in §2 to write the Euler–Lagrange

difference equations and Noether’s difference conservation laws for any invariant Lagrangian,

in terms of the invariants and a difference moving frame. We then give the details of the final

integration step, assuming the Euler–Lagrange equations have been solved for the invariants.

This last step relies on understanding the Adjoint action of the Lie group on its Lie algebra.

For all three actions, we show that solutions to the Euler–Lagrange equations, in terms of

the original dependent variables, share a common structure for the whole set of Lagrangians

invariant under each given group action, once the invariants are known as functions on the

lattice. The study of SU(2) is also presented.

In §5, we explore when we have commuting flows on the invariants using discrete moving

frames, given two commuting equivariant flows. We show that the relationships between a flow

and its curvature flow is in terms of a syzygy operator. We prove that this is a linear shift

operator depending only on the curvature invariants. We analyse the condition for discrete

curve evolutions to commute in terms of a discrete moving frame. We exhibit two examples in

order to illustrate the theory and relate them to discrete integrable systems.

In §6, we recall the basics of lattice based multispace theory and explore applications for

two Lie groups studied in the previous chapters.

In §7, we show how to adapt the methods of Gonçalves and Mansfield, [32, 34] to study

variational systems with an Euclidean symmetry, using the Rotation Minimising frame. We

derive the recurrence formulae for the invariant differentiation expressions and the syzygy

operator needed to obtain Noether’s laws for variational problems with a Euclidean symmetry.

In §8, we develop the relationships between two frames differing by a gauge and explore a

few examples in order to illustrate the theory.

In §9, we summarise what has been done in this thesis and present some questions that

still need to be addressed.
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Introductory Background

In this chapter we present the necessary background regarding groups, Lie groups, group

actions, Lie algebras, infinitesimals, the Adjoint action, Calculus of Variations and moving

frames in order to understand the next chapters. This section is based on some results

appearing in Gonçalves and Mansfield, [32], Mansfield, [70], Mansfield and van der Kamp,

[73], and Olver, [84]. Some of the examples, "easy to understand" explanations, as well as all

the pictures have been developed by myself, most of them motivated by discussions with my

supervisor and the lecture notes on Lie groups and Lie algebras given by her on my first year

of my PhD. The examples and explanations that have not been developed by myself, have

been referenced.

2.1 Groups, Lie groups and Lie algebras

The definition of a group is natural in the sense that there are lots of structures that consist

of a set and a binary operation. For instance, the integers, the rational numbers, vectors,

matrices, permutations, symmetries... and the list is almost endless. Therefore, it is logical to

condense this feature of so many known objects in a definition.

Definition 2.1.1 (Group). A group is a set G equipped with a binary operation

G×G → G,

(a, b) → a · b

satisfying the following properties

• Closure: a · b ∈ G,

• Associativity: a · (b · c) = (a · b) · c,

• There exists e ∈ G such that a · e = e · a = a for all a ∈ G. We will call e the identity

element.

5



6 Introductory Background

• For all a ∈ G there exists a−1 ∈ G such that a · a−1 = a−1 · a = e. We will call a−1 the

inverse element of a.

Remark 2.1.2. A group G is commutative or abelian if a · b = b · a.

The groups we are going to be interested in are Lie groups. A Lie group is a group that

is also a differentiable manifold - which is just a (topological) space that locally looks like the

Euclidean space near each point - , so one can do calculus on it. Lie groups were named after

Sophus Lie, a Norwegian mathematician, who introduced and developed them in order to

integrate differential equations. Formally, we have the following definition:

Definition 2.1.3 (Lie group). A Lie group is a finite dimensional smooth manifold G together

with a group structure on G, such that the maps

µ : G×G → G,

(a, b) → a · b
and

ν : G → G,

a → a−1

are smooth.

Example 2.1.4. The set of 2× 2 rotation matrices form a group denoted by SO(2,R). It can

be parametrised as follows

SO(2,R) =


 cos θ − sin θ

sin θ cos θ

∣∣∣∣∣ θ ∈ R/2πZ

 .

The multiplication, which corresponds to the addition on angles, and the inversion, which

corresponds to the angle with opposite sign, are differentiable maps, where the binary operation

is the matrix multiplication. Therefore SO(2,R) is a Lie group.

Example 2.1.5. The Cantor set is created by iteratively removing the open middle third from

a set of segments. First, the open middle third from the interval [0, 1] is deleted, leaving two

line segments. Then, one removes the open middle third of each of these remaining segments,

leaving four line segments. This process is continued infinitely, where the n-th set is given

by Cn =
Cn−1

3
∪
(

2

3
+
Cn−1

3

)
for n ≥ 1, and C0 = [0, 1]. The Cantor set can be seen as a

(topological) group. This set cannot have the structure of a manifold as is totally disconnected

and not discrete. Therefore, it is a group that is not a Lie group. This group is homeomorphic

to the group of p-adic integers. One can create a continuous one to one mapping between the

Cantor group and the dyadic integers as follows:

∞∑
n=0

an
3n+1

→
∞∑
n=0

bn
2n+1

(2.1)
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where an ∈ {0, 2} and bn ∈ {0, 1}. In order to perform an addition of two sequences in the

Cantor group, one maps these sequences to the dyadic group and performs the addition, which

is coordinate-wise, with each coordinate addition in the integers mod pi+1. If any of the sums

is p or more, a carry of 1 needs to be taken to the next sum. Then, one take the result back to

the Cantor group using the map (2.1).

From now on, the groups that we will consider will be Lie groups as they are the groups of

interest in this thesis, as mentioned before. A very important Lie group is the general linear

group GL(n,F) - where F is R or C - which is the group of square matrices with non zero

determinant, together with the operation of matrix multiplication. It plays an important role

in the theory of representations.

Definition 2.1.6 (Representation). A representation is a map

φ : G→ GL(n,F)

such that

φ(g ∗ h) = φ(g) · φ(h)

where here ∗ denotes the product in the Lie group G and · denotes the matrix product.

Example 2.1.7. The special euclidean group SE(n) = SO(n)nRn is the Lie group of rotations

and translations in Rn. Let us denote R ∈ SO(n) the rotation part and v ∈ Rn the translation

part. If we define

φ : SE(n) → GL(n+ 1,R)

(R, v) →

 R v

0 1

 (2.2)

we obtain a matrix representation of SE(n).

2.1.1 Group actions

Let us consider a manifold M .

Definition 2.1.8 (Group action). A group G is said to act on a space M if there exists a map

α : G×M →M, (2.3)

such that

α(g2, α(g1, z)) = α(g2g1, z), (2.4a)
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or

α(g2, α(g1, z)) = α(g1g2, z) (2.4b)

are satisfied.

The actions that satisfy (2.4a) are called left actions, whereas the ones that satisfy (2.4b)

are called right actions.

We will assume that the map (2.3) is smooth in both elements of the group G and elements

of the space M .

Notation 2.1.9. From now on we will denote a left action with ∗ and a right action with •.

When the parity of the action is implicit or is not specified we will denote the action by ·.

Example 2.1.10. Consider a square situated in the origin with base parallel to the x-axis.

Suppose this square is rotated 45 degrees and translated 2 centimetres in the x-axis and 3

centimetres in the y-axis. What it is happening, mathematically speaking, is that the element

g =


√

2

2
−
√

2

2
2

√
2

2

√
2

2
3

0 0 1

 ∈ SE(2)

is acting on the points of the square situated in the origin and base parallel to the x-axis of the

form (x0, y0, 1), as shown in the next picture.

g
∈

SE
(2

)

x

y
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Example 2.1.11. Consider the Lie group of 2× 2 real matrices with determinant 1 denoted

by SL(2,R)

SL(2,R) =


 a b

c d

∣∣∣∣∣ a, b, c, d ∈ R and ad− bc = 1

 (2.5)

and the manifold M = R2. Let g ∈ SL(2,R). In this example, we will consider the projective

action of SL(2,R) acting on curves (x, u(x)) in R2 given by

(x, u(x))→ g · (x, u(x)) =

(
x,
au(x) + b

cu(x) + d

)
. (2.6)

Note that this action is not well defined if u(x) = −d
c
. To "fix" this, we add a new point ∞

and we extend the map as

g · (x,∞) =
(
x,
a

c

)
and g ·

(
x,−d

c

)
= (x,∞).

Let us consider g1, g2 ∈ SL(2,R) such that

g1 =

 a1 b1

c1 d1

 and g2 =

 a2 b2

c2 d2

 .

We have that

g1 · (g2 · u(x)) = g1 ·
(
a2u(x) + b2
c2u(x) + d2

)

=

a1

(
a2u(x) + b2
c2u(x) + d2

)
+ b1

c1

(
a2u(x) + b2
c2u(x) + d2

)
+ d1

=
a1(a2u(x) + b2) + b1(c2u(x) + d2)

c1(a2u(x) + b2) + d1(c2u(x) + d2)

=
(a1a2 + b1c2)u(x) + a1b2 + b1d2

(c1a2 + d1c2)u(x) + c1b2 + d1d2

= (g1g2) · u(x)

and therefore (2.6) is a left action.

Given a left action (g, z) 7→ g · z, we have that (g, z) 7→ g−1 · z is a right action. In

practice both right and left actions happen, and depending on the choice the difficulty of the

calculations can differ considerably. In the theory, only one is needed, so from now on we will

just consider left actions as the theory for right actions is parallel.
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Notation 2.1.12. The image of a variable under an action will be often denoted as

g · z = z̃.

Properties of the actions

In this thesis, we will be interested in some specific type of actions; free and regular actions.

In order to understand these actions we will first give a few definitions. Let G be a group

acting on M and let z ∈M .

Definition 2.1.13 (Orbit). The orbit of z is the set of points in M that are the image of z

when acted upon by an element g ∈ G, i.e.

O(z) = {g · z | ∀g ∈ G}.

Definition 2.1.14 (Stabilizer). For every z ∈M we define the stabilizer subgroup of G with

respect to z as the set of all elements in G that fix z, i.e.

Gz = {g ∈ G | g · z = z}.

Definition 2.1.15 (Free action). A group action on M is said to be free, if for all points

z ∈M , their stabilizers are just composed of the identity element, i.e.

Gz = {g ∈ G|g · z = z} = {e},

for all z ∈M .

Definition 2.1.16 (Regular action). A group action is regular if

(i) all orbits have the same dimensions,

(ii) for each z ∈ M , there are arbitrary small neighbourhoods U(z) of z such that for all

z′ ∈ U(z), U(z) ∩ O(z′) is connected - which is a set that cannot be partitioned into two

non-empty subsets such that each subset has no points in common with the set closure of

the other -.

Remark 2.1.17. The majority of the actions are not free and regular. However, one can

usually extend them in different ways in order to make them free and regular, as shown in the

running example in §3.
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2.1.2 Induced actions

Even though there are many different types of induced actions, we will introduce here the ones

that are relevant for this thesis.

Induced actions on functions

Let us denote by C∞(M,R) the set of smooth functions mapping M to RN . The action

induced by the left action G×M →M on C∞(M,R) in the following way

g • (f1(z), ..., fn(z)) = (f1(g ∗ z), ..., fn(g ∗ z))

is a right action. Furthermore, due to the fact that a left action on M corresponds to a right

action on the coordinates, the coordinates are functions from M to R.

Definition 2.1.18 (Invariant of an action). Given an action G ×M → M we say that the

function f : M → R is an invariant of such action if it satisfies

f(g · z) = f(z)

for all z ∈M .

If the property of a mathematical object does not change under a group action we say that

the group action is a symmetry preserving such property.

Example 2.1.19. Let us consider now another action of (2.5) given by

(u(x), v(x))→ g · (u(x), v(x)) = (au(x) + bv(x), cu(x) + dv(x)) (2.7)

where we have taken another parametrization of the curves in the plane. Note that this action

is a linear action. Given two curves (u1(x), v1(x)) and (u2(x), v2(x)) we have that

g ·

∣∣∣∣∣∣ u1(x) v1(x)

u2(x) v2(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ au1(x) + bv1(x) cu1(x) + dv1(x)

au2(x) + bv2(x) cu2(x) + dv2(x)

∣∣∣∣∣∣
= adu1(x)v2(x)− adu2(x)v1(x)− bcu1(x)v2(x) + bcu2v1(x)

= (u1(x)v2(x)− u2(x)v1(x))(ad− bc)

=

∣∣∣∣∣∣ u1(x) v1(x)

u2(x) v2(x)

∣∣∣∣∣∣ .
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We can see that the area is preserved, and therefore (2.7) is a symmetry preserving the

area, which is an invariant of (2.7).

For instance, let us suppose that the square centred at the origin with base parallel to the

x-axis with area 1 cm2 is transformed into a rhomboid of the same area.

What it is happening, mathematically speaking, is that the element

g =

 2 1

1 1


is acting on the points of the square preserving its area, as shown in the next picture.

g ∈ SL(2)

y

x

Induced actions on derivatives

To understand the prolonged action, let us situate ourselves in the simplest scenario possible.

If we have a group G acting on the curves (x, u(x)) where x̃ = x then there is an induced

action on its derivatives ux, uxx,... etc. This action is known as the prolonged action and it is

computed as follows:
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g · ux = g · du

dx
=

d(g · u)

d(g · x)
=

d(g · u)

dx
d(g · x)

dx

,

g · uxx = g · d2u

dx2 = g · d

dx

(
du

dx

)
=

d

d(g · x)

 d(g · u)

dx
d(g · x)

dx

 =
1

d(g · x)

dx

d

dx

 d(g · u)

dx
d(g · x)

dx

 ,

g · uxxx = g · d3u

dx3 = g · d

dx

(
d2u

dx2

)
=

d

d(g · x)

(
d2(g · u)

d(g · x)2

)

=
d

d(g · x)

dx

d

dx

(
d

d(g · x)

(
d(g · u)

d(g · x)

))
=

d

d(g · x)

dx

d

dx

 d

d(g · x)

dx

d

dx

 d(g · u)

dx
d(g · x)

dx


 ,

...

and so on.

Example 2.1.20. For (2.6) note that

d(g · x)

dx
=

dx

dx
= 1

and therefore

g · ux =
d(g · u)

dx

=
d

dx

(
au+ b

cu+ d

)
=
aux(cu+ d)− cux(au+ b)

(cu+ d)2

=
ux(ad− bc)
(cu+ d)2

=
ux

(cu+ d)2
,

g · uxx =
d(g · ux)

dx

=
d

dx

(
ux

(cu+ d)2

)
=

uxx

(cu+ d)2 − 2
cu2
x

(cu+ d)3
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and

g · uxxx =
d(g · uxx)

dx

=
d

dx

(
uxx

(cu+ d)2 − 2
cu2
x

(cu+ d)3

)
=

uxxx

(cu+ d)2 −
6cuxuxx

(cu+ d)3 +
6c2u3

x

(cu+ d)4 .

Hence the prolonged action of (2.6) on the space (x, u, ux, uxx, uxxx) is

x̃ = x,

ũ =
au+ b

cu+ d
,

ũx =
ux

(cu+ d)2
,

ũxx =
uxx

(cu+ d)2 − 2
cu2
x

(cu+ d)3 ,

ũxxx =
uxxx

(cu+ d)2 −
6cuxuxx

(cu+ d)3 +
6c2u3

x

(cu+ d)4 .

(2.8)

The prolonged action of (2.6) on the space (x, u, ux, uxx) was previously calculated in

Gonçalves and Mansfield, [32].

Now we consider the general case.

Remark 2.1.21. We will often use a multi-index notation to denote the derivatives.

Example 2.1.22.
∂4u2

∂x1∂x2
2∂x3

will be denoted by

u2
1223.

Let us consider p independent variables x = (x1, ..., xp) and q dependent variables u =

(u1, ..., uq). The space containing x will be denoted by X and the space containing u will be

denoted by U . The space containing finitely many derivatives of u will be denoted by U (n).

An element of U (n) will be denoted by u(n). The space containing x and u(n) will be denoted

by M = J(X × U (n)).

Example 2.1.23. If p = 2 and q = 1 we have that

(x, y, u, u1, u2, u11, u22, u12) ∈M = J(X × U (2))

in where we have assumed that the partial derivatives commute.
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Definition 2.1.24 (Differentiation operator). The total differentiation operator is given by

Di =
D

Dxi
=

∂

∂xi
+

q∑
α=1

∑
K

uαKi
∂

∂uαK
.

We will make the assumption of an R-dimensional group G acting on the left of the space

J(X × U (n)). The prolonged action is obtained explicitly as follows:

g · uαi..j = D̃i · · · D̃j ũα, (2.9)

where

D̃i =

p∑
k=1

(
(Dx̃)−1

)
ki

Dk (2.10)

and

Dx̃ =


∂x̃1

∂x1
. . .

∂x̃1

∂xp
...

. . .
...

∂x̃p
∂x1

. . .
∂x̃p
∂xp

 . (2.11)

Definition 2.1.25 (Prolonged action invariant). An invariant under the induced prolonged

action is called differential invariant.

Example 2.1.26. Now consider the group SL(2,R) acting on the variables (x, t, u(x, t)) as

follows

t̃ = t,

 x̃

ũ

 =

 a b

c d

 x

u


so t is invariant. Using (2.11) we obtain

Dx̃ =

 a+ bux but

0 1

 .

Therefore by (2.10)  D̃x

D̃t

 =


1

a+ bux
0

− but
a+ bux

1


 Dx

Dt

 .

From (2.9) we have that

ũx = D̃xũ =
ac+ ux(1 + bc)

a(a+ bux)
, ũxx = D̃2

xũ =
uxx

(a+ bux)3 , ũt = D̃tũ =
ut

a+ bux
.

This example appears in Mansfield, [70].
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Induced actions on products

Let us denote the product manifold of N -copies of M byM.

Definition 2.1.27. The product action induced onM is given by

g · (z1, ..., zN ) = (g · z1, ..., g · zN ).

A N -point invariant of the action is an invariant of the product action onM. These invari-

ants, called joint-invariants, were introduced in Olver, [88], as mentioned in the introduction.

However, the recursive expressions for these invariants does not seem to be computationally

useful. In §3, we will present a tool previously introduced by Beffa, Mansfield and Wang, [6]

that offers significant computational advantages.

2.1.3 Infinitesimals

Suppose that a1, a2, ..., ar are the parameters of groups elements near the identity of a Lie

group G.

Definition 2.1.28 (Infinitesimals of a prolonged action). Given a group action of G on

M = J(X × U (n)), the infinitesimals of the prolonged group action are defined to be the

derivatives of the x̃i, ũαK with respect to the group parameters aj at the identity, and are denoted

as
∂x̃i
∂aj

∣∣∣
g=e

= ξij ,
∂ũα

∂aj

∣∣∣
g=e

= φα,j ,
∂ũαK
∂aj

∣∣∣
g=e

= φαK,j .

A condensed form to write the infinitesimals is to write a table of infinitesimals of the form

xi uα uαK

aj ξij φα,j φαK,j

.

The prolonged infinitesimals φαK,j can also be calculated using the formula

φαK,j(x, u
(n)) = DK

(
φα,j −

∑
i

uαi ξ
i
j

)
+
∑
i

ξiju
α
Ki

where DK is a total derivative of order K. Setting

Qαj (x, u) = φα,j −
∑
i

uαi ξ
i
j

the tuple Qj(x, u) = (Q1, ..., Qq) will be called characteristic of the vector field vj , which is

given by

vj =
∑
i,α,K

ξij
∂

∂xi
+ φα,j

∂

∂uα
+ φαK,j

∂

∂uαK
.
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Definition 2.1.29. Let G×U → U be a smooth local Lie group action. If γ(t) is a path in G

with γ(0) = e, the identity element in G, then

v =
d

dt

∣∣∣
t=0

γ(t) · u (2.12)

is called the infinitesimal generator of the group action at u ∈ U , in the direction γ ′(0) ∈ TeG,

where TeG is the tangent space to G at e. In coordinates, the components of the infinitesimal

generator are φα = v(uα), so

v = φα
∂

∂uα
.

Example 2.1.30. For (2.8) the table of infinitesimals is of the form

x u ux uxx uxxx

a 0 2u 2ux 2uxx 2uxxx

b 0 1 0 0 0

c 0 −u2 −2uux −2(u2
x + uuxx) −2(uuxxx + 3uxuxx)

. (2.13)

Therefore, the prolonged infinitesimal vector fields corresponding to the parameters a, b and

c are

va = 2u
∂

∂u
+ 2ux

∂

∂ux
+ 2uxx

∂

∂uxx
+ 2uxxx

∂

∂uxxx
,

vb =
∂

∂u
,

vc = −u2 ∂

∂u
− 2uux

∂

∂ux
− 2(u2

x + uuxx)
∂

∂uxx
− 2(uuxxx + 3uxuxx)

∂

∂uxxx
.

(2.14)

For the non prolonged action, we have that (see Gonçalves and Mansfield, [32])

va = 2u
∂

∂u
,

vb =
∂

∂u
,

vc = −u2 ∂

∂u
.

(2.15)
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2.1.4 From Lie group to Lie algebra

The key idea to go from a Lie group to a Lie algebra is to look at G near the identity element.

e

G

g(t)

If we can represent our Lie group by matrices, we can consider a smooth path t→ g(t) in

G with g(0) = e and we can differentiate it. We define the tangent space of G at e to be

TeG =

{
d

dt

∣∣∣
t=0

g(t)
∣∣∣ g(0) = e and g is smooth

}
.

It is easy to show that TeG is a vector space.

Proposition 2.1.31. The tangent space of G at e is a vector space.

Proof. Let

v =
d

dt

∣∣∣
t=0

g(t) and w =
d

dt

∣∣∣
t=0

h(t)

and assume that G is a matrix Lie group. Let us use the notation
d

dt

∣∣∣
t=0

g(t) = g′(0). Then

d

dt

∣∣∣
t=0

(g(t)h(t)) = g′(0)h(0) + g(0)h′(0) = g′(0) + h′(0) = v + w

and
d

dt

∣∣∣
t=0

(kg(t)) = kg′(0) = kv for all k ∈ R.

Note that
d

dt

∣∣∣
t=0

h(t)−1 = −h(0)h′(0)h(0) = −h′(0).

Set now X = g′(0) ∈ TeG and consider the path t→ h(t)Xh(t)−1 in TeG where h(t) is a

smooth path in G and h(0) = e.
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Consider now
d

dt

∣∣∣
t=0

(
h(t)Xh(t)−1

)
= h′(0)X −Xh′(0) ∈ TeG.

If Y = h′(0) ∈ TeG then XY − Y X ∈ TeG.

Definition 2.1.32. We call [X,Y ] := XY − Y X the matrix Lie bracket.

Therefore we have that TeG is a vector space with a product.

In fact, TeG := g is a Lie algebra.

Definition 2.1.33 (Lie algebra). A Lie algebra L is a vector space with a bracket

[ , ] : L× L→ L

such that [ , ] is

• Bilinear: [aX1 + bX2, Y ] = a[X1, Y ] + b[X2, Y ] and [X, aY1 + bY2] = a[X,Y1] + b[X,Y2]

where a, b ∈ R and X,X1, X2, Y, Y1 and Y2 ∈ L.

• Skew-symmetric: [X,Y ] = −[Y,X] where X,Y ∈ L.

• Satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

where X,Y and Z ∈ L.

It is easy to check that TeG satisfies the properties above.

Example 2.1.34. The Lie algebra TeSL(2,R) = sl(2) is computed as follows:

Set

g(t) =

 a(t) b(t)

c(t) d(t)

 ∈ SL(2).

In the identity we have that a(0) = d(0) = 1 and b(0) = c(0) = 0. From the condition

a(t)d(t)− b(t)c(t) = 1

differentiating with respect to t and evaluating in the identity we have

a′(0) + d′(0) = 0
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and therefore

g′(0) =

 a′(0) b′(0)

c′(0) −a′(0)

 ∈ sl(2).

So

TeSL(2,R) = sl(2) =


 α β

γ −α

∣∣∣α, β, γ ∈ R

 .

A basis of sl(2) is

h =

 1 0

0 −1

 , e =

 0 1

0 0

 , f =

 0 0

1 0

 . (2.16)

It is simple to check that the following Lie bracket table holds

[ , ] h e f

h 0 2e −2f

e −2e 0 h

f 2f −h 0

(2.17)

Now we give a list of some common Lie groups and their correspondent Lie algebras (see

Kirillov, [59], Serre, [98] and Varadarajan, [107]).
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Lie group Description Lie algebra Description

Rn Euclidean space with addition Rn
Euclidean space with zero Lie

bracket. For n = 3 one can identify
the bracket with the cross product.

Cn Complex numbers with addition Cn Complex numbers with zero Lie
bracket

R× Real nonzero numbers with
multiplication

R Real numbers with zero Lie bracket

C× Complex nonzero numbers with
multiplication

R Complex numbers with zero Lie
bracket

R+ Real positive numbers with
multiplication

R Real numbers with zero Lie bracket

S1 = U

Complex number of modulus 1 with
multiplication. Also called the circle

group, is isomorphic to SO(2),
Spin(2) and R/Z

R Real numbers with zero Lie bracket

S3 = SP (1)

Quaternions of modulus 1 with
multiplication. Isomorphic to SU(2),
Spin(3) and double cover of SO(3)

H Quaternions

GL(n,R)
General linear group n × n real

matrices with non zero determinant
M(n,R) n × n real matrices

GL+(n,C)

General linear group of n × n

complex matrices with non zero
determinant. GL(1,R) is isomorphic

to C×

M(n,C) n × n complex matrices

GL+(n,R)

General linear group of n × n real
matrices with positive determinant.

GL+(1,R) is isomorphic to R+
M(n,R) n × n real matrices

SL(n,R)

Special linear group of n × n real
matrices with determinant 1.

SL(2,R) is isomorphic to SU(1, 1)

and Sp(2,R)

sl(n,R) n × n real matrices

SL(n,C)

Special linear group of n × n

complex matrices with determinant
1. SL(2,C) is isomorphic to

Spin(3,C) and Sp(2,C)

sl(n,C) n × n complex matrices

PSL(2,C)

Projective special linear group of
n × n complex matrices with
determinant 1. Isomorphic to

SO(3,C) and the Möbius group

sl(n,C) n × n real matrices with trace zero

O(n,R)
Orthogonal group of n × n real

orthogonal matrices.
so(n,R) skew–symmetric n × n real matrices

O(n,C)
Orthogonal group of n × n complex

orthogonal matrices.
so(n,C)

skew–symmetric n × n complex
matrices

SO(n,R)

Orthogonal group of n × n real
orthogonal matrices with

determinant 1.
so(n,R) skew–symmetric n × n real matrices

SO(n,C)

Orthogonal group of n × n complex
orthogonal matrices with

determinant 1.
so(n,C)

skew–symmetric n × n complex
matrices

Spin(n)
Spin group: double cover of SO(n).

Spin(1) is isomorphic to Z2.
so(n,R) skew–symmetric n × n real matrices

Sp(2n,R)
Symplectic group of real symplectic

matrices.
sp(2n,R)

n × n quaternionic matrices
satisfying X = −X∗

Sp(2n,C)
Symplectic group of complex

symplectic matrices.
sp(2n,C)

n × n complex matrices satisfying
JX = −XT J where J is the

standard skew–symmetric matrix

U(n)
Unitary group of complex n × n

unitary matrices.
u(n)

n × n complex matrices satisfying
X = −X∗

SU(n)

Special nitary group of complex
n × n unitary matrices with

determinant 1
su(n)

n × n complex matrices with zero
trace satisfying X = −X∗
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Other famous Lie groups are the so–called exceptional Lie groups G2, F4, E6, E7 and E8

which are not easy to describe in terms of matrix groups.

Apart from representations of Lie groups one can also consider representations of Lie

algebras. The most interesting one in this thesis is the adjoint representation.

Definition 2.1.35 (Adjoint representation). We define the adjoint representation as the map

ad : L→ gl(L)

such that

gl(L) : L→ L

and

ad(x)(y) = [x, y]. (2.18)

We will often write ad(x) = adx. Now we present an example in order to show how to

compute the adjoint representation in practice.

Example 2.1.36. Let us consider the Lie algebra sl(2) of the special linear group SL(2,R).

Recall the basis (2.16). Hence, an element of sl(2) can be written as αh+ βe+ γf . Therefore,

using (2.17) and (2.18) we have

adh(αh+ βe+ γf) = α[h, h] + β[h, e] + γ[h, f ] = 2βe− 2γf,

ade(αh+ βe+ γf) = α[e, h] + β[e, e] + γ[e, f ] = −2αe+ γh,

adf (αh+ βe+ γf) = α[f, h] + β[f, e] + γ[f, f ] = 2αf − βh

and hence
α

β

γ

 adh−→


0

2β

−2γ

 ,


α

β

γ

 ade−→


γ

−2α

0

 ,


α

β

γ

 adf−→


−β

0

2α


so

adh =


0 0 0

0 2 0

0 0 −2

 , ade =


0 0 1

−2 0 0

0 0 0

 , adf =


0 −1 0

0 0 0

2 0 0

 .

Definition 2.1.37 (Killing Form). The Killing form is the map B: L× L→ F, such that

B(x, y) = trace(adx, ady). (2.19)
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It is simple to check that the Killing form is symmetric, bilinear and associative. We will

also refer to the Killing form as the matrix associated to the map (2.19).

Example 2.1.38. For SL(2,R) we have that

B(h, h) = 8, B(h, e) = 0 B(h, f) = 0, B(e, e) = 0, B(e, f) = 4, B(f, f) = 0

and therefore (see Gonçalves and Mansfield, [32])

B =

h e f


h 8 0 0

e 0 0 4

f 0 4 0

. (2.20)

Even though in the previous example B is non–degenerate this is not always the case.

Definition 2.1.39 (Cartan’s Second Criterion). A Lie algebra L is semi-simple if and only if

the Killing form B is non–degenerate.

Without going into much detail, semi-simple Lie algebras over C are copies of SL(2,C)

glued together in beautiful ways. In particular, SL(2,C) is a semi–simple Lie algebra.

2.2 Matrix of infinitesimals and the Adjoint action

We next define the matrix of infinitesimals and the Adjoint matrix which will play a very

important role at the end of this chapter and §3. In this section, we make use of the theory

developed in Gonçalves and Mansfield, [32], [33], [34] and Mansfield, [70]. In Mansfield, R–E,

Hydon and Peng, [74] and Mansfield and R–E, [75] the Adjoint matrix is chosen to be the

inverse transpose of the Adjoint matrix appearing in Gonçalves and Mansfield, [32], [33], [34]

and Mansfield, [70]. In this thesis, we will be using the following convention: we will use the

form of the Adjoint matrix appearing in Gonçalves and Mansfield, [32], [33], [34] and Mansfield,

[70] in the smooth examples and the form of the Adjoint matrix appearing in Mansfield, R–E,

Hydon and Peng, [74] and Mansfield and R–E, [75] in the discrete cases. The theory appearing

in these last two papers concerning the Adjoint matrix will be presented §3.
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2.2.1 Matrix of infinitesimals and the Adjoint action: form adopted for

the smooth examples

Definition 2.2.1 (Matrix of infinitesimals). Let the group element near the identity be given

as g = g(a1, . . . , aR) so that the independent parameters of the group action are the ai, and let

z = (z1, z2, . . . , zp) be coordinates on M near z ∈M . The matrix Ω(z) of infinitesimals is an

R× p matrix, given by

Ω(z) = (φij), φij =
∂z̃j

∂ai

∣∣∣
g=e

. (2.21)

A vector field can be seen also as a map from the manifold to its tangent bundle,

v : M → TM, v(z) ∈ TzM, ∀z ∈M,

where the tangent bundle is essentially a manifold that assembles all the tangent vectors in M .

We denote the set of all vector fields on M as X (M). In coordinates z = (z1, . . . , zp) on M ,

vector fields can be rewritten of the form

v(z) =

p∑
i=1

fi(z)
∂

∂zi
= fT∇

where

∇ =

(
∂

∂z1
,
∂

∂z2
, · · · , ∂

∂zk

)T
.

For a smooth Lie group action G on a smooth manifoldM , there is a corresponding Adjoint

action on the set of all smooth vector fields X (M) of the manifold M .

Definition 2.2.2 (Adjoint action). The Adjoint action Ad on vector fields is defined as

Ad :G×X (M)→ X (M)

(g,v) 7→ Adg(v),
(2.22)

such that Adg(v)(z) = Tg−1v(g · z). Here Tg : TM → TM is the tangent map with respect to

the group action, g· : M →M .

Denoting g · z = z̃, we have

Adg(v) = f i(z̃)
∂

∂z̃

=
∂zi

∂z̃j
f j(z̃)

∂

∂zi
.

(2.23)
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Writing v = fT (z)∇, we can represent the Adjoint action as

Adg(v) =

((
∂z̃

∂z

)−1

f(z̃)

)T
∇, (2.24)

where
(
∂z̃

∂z

)
is the Jacobian of z̃ = g · z with respect to z.

Remark 2.2.3. The adjoint action (2.22) is a right action, while the adjoint action appearing

in §3 is a left action.

It can be shown from the definition of the Adjoint action (2.22) that the map

Ad :X (M)→ X (M)

h 7→ g−1hg,

takes TeG to itself.

The Adjoint action takes infinitesimal vector fields to infinitesimal vector fields, and one

obtains a representation of G, called the Adjoint representation. In co-ordinates, this yields a

representation of G in GL(R), where R = dim(G).

The fact that Adg(v) ∈ XG(M) implies that for any basis vi of XG(M), for i = 1, ..., R,

where R = dim(G)

Adg

(∑
i

αivi

)
=
∑
i

αiAdg(vi) =
∑
j

∑
i

αi(Ad(g))ijvj . (2.25)

Lemma 2.2.4. Let the matrix of infinitesimals for the group action G×M→ M, z̃ = g · z,

relative to given co-ordinates on G and M , be Ω(z). We denote the Jacobian matrix of the

group action as
(
∂z̃

∂z

)
. If the R×R matrix Ad(g) denotes the Adjoint representation of g ∈ G,

relative to same coordinates as for the infinitesimal matrix, then

Ad(g)Ω(z) = Ω(z̃)

(
∂z̃

∂z

)−T
. (2.26)

Example 2.2.5. Continuing with (2.8), restricting ourselves to the second prolongation, after

calculating the table of infinitesimals it is easy to build the matrix of infinitesimals which has
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the form (see Mansfield, [70])

Ω(u, ux, uxx) =

u ux uxx


a 2u 2ux 2uxx

b 1 0 0

c −u2 −2uux −2(u2
x + uuxx)

. (2.27)

In order to compute the Adjoint matrix associated to the Adjoint action, one can use the

infinitesimal vector fields instead of the prolonged infinitesimal vector fields in order to ease

the calculations.

Consider (2.15)

va = 2u
∂

∂u
, vb =

∂

∂u
, and vc = −u2 ∂

∂u
.

Recall from (2.6) that

ũ =
au+ b

cu+ d
.

Also, using the chain rule
∂

∂u
=
∂ũ

∂u

∂

∂ũ
=

1

(cu+ d)2

∂

∂ũ
.

Therefore
∂

∂ũ
= (cu+ d)2 ∂

∂u
.

Hence

ṽa = 2ũ
∂

∂ũ

= 2
au+ b

cu+ d
(cu+ d)2 ∂

∂u

= 2(au+ b)(cu+ d)
∂

∂u

= 2
(
acu2 + (ad+ bc)u+ bd

) ∂

∂u
,

ṽb =
∂

∂ũ

= (cu+ d)2 ∂

∂u

=
(
c2u2 + 2cdu+ d2

) ∂

∂u
,
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ṽc = −ũ2 ∂

∂ũ

= −
(
au+ b

cu+ d

)2

(cu+ d)2 ∂

∂u

= −(au+ b)2 ∂

∂u

= −
(
a2u2 + 2abu+ b2

) ∂

∂u
.

In conclusion

ṽa = (ad+ bc)va + 2bdvb − 2acvc, (2.28)

ṽb = cdva + d2vb − c2vc, (2.29)

ṽc = −abva − b2vb + a2vc. (2.30)

(2.31)

Therefore


ṽa

ṽb

ṽc

 = Ad(g)


va

vb

vc

 (2.32)

where

Ad(g) =

a b c


a ad+ bc 2bd −2ac

b cd d2 −c2

c −ab −b2 a2

. (2.33)

Lemma (2.2.4) is straightforward to check taking into account that (see Mansfield, [70])

∂(ũ, ũx, ũxx)

∂(u, ux, uxx)
=



1

(cu+ d)2 0 0

− −2cux

(cu+ d)3

1

(cu+ d)2 0

−2c((cu+ d)uxx − 3u2
x)

(cu+ d)4 − 4cux

(cu+ d)3

1

(cu+ d)2

 . (2.34)

We will illustrate with an example how the Adjoint action is obtained in Mansfield, R–E,

Hydon and Peng, [74] and Mansfield and R–E, [75] and we will present the theory in detail in

§3.
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Example 2.2.6. From (2.28) we have that

(
ṽa ṽb ṽc

)
=
(

va vb vc

)
ad+ bc cd −ab

2bd d2 −b2

−2ac −c2 a2

 .

Hence, we have that the induced action on these are

(
ṽa ṽb ṽc

)
=
(

va vb vc

)
R(g)−1

where

R(g) =

a b c


a ad+ bc −ac bd

b −2ab a2 −b2

c 2cd −c2 d2

. (2.35)

What we have is that Ad(g)T = R(g)−1.

Finally, we give some interesting properties regarding the Adjoint matrix and the Killing

form.

Lemma 2.2.7. The Killing form is invariant under the Adjoint action,i.e,

B(Ad(g)x,Ad(g)y) = B(x, y).

Corollary 2.2.8. Let B the Killing form of the Lie algebra L. Since B is invariant under the

Adjoint action and this action on the vector fields can be written as in (2.25), we have

B = Ad(g)BAd(g)T . (2.36)

2.3 Variational calculus and Noether’s Theorem

The variational calculus generalises the problem of finding extrema of functions in several

variables. It appears in so many disciplines, for instance in physics and engineering, and it

allows one to transform the problem of optimisation of a functional into the problem of solving

a differential equation. For systems of differential equations occurring in variational problems,

each conservation law of these systems arises from a corresponding symmetry property. This

was first proved by Emmy Noether in 1918 (see Noether, [83]). In order to use this Theorem

to find these conservation laws we first need to introduce some background on Calculus of
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Variations. Let us consider Ω ⊂ Rn an open, connected subset with smooth boundary ∂Ω.

Given a smooth function u = f(x) there exists an induced function u(n) = pr(n)f(x) called

the n−th prolongation of f and it is defined by the partial derivatives up to order n. We

adopt Olver’s notation in Olver, [84].

Example 2.3.1. For u = f(x) the second prolongation of this function is

u(2) = pr(2)f(x) = (u;ux;uxx).

This can be extended to many more variables. For example, for u = f(x, y) the second

prolongation is (see Olver, [84])

u(2) = pr(2)f(x, y) = (u;ux, uy;uxx, uxy, uyy).

A variational problem consists of finding the extrema - which are the maxima or minima -

of a functional

L[u] =

∫
Ω
L(x, u(n)) dx

in some class of functions u = f(x) defined over Ω. The element L(x, u(n)) is called the

Lagrangian of the variational problem L and it depends on x, u and derivatives of u.

Example 2.3.2. One of the most famous variational problems is the minimisation of the

Euclidean curvature squared of a curve (x, u(x))

L[u] =

∫
κ2 ds =

∫
u2
xx

(1 + u2
x)

5
2

dx (2.37)

where

κ =
uxx

(1 + u2
x)

3
2

and ds =
√

1 + u2
x dx.

This problem was solved by Euler, [20] using elliptic functions. Solutions are known as Euler’s

elastica. A good historical report can be found in Levien, [66].

Remark 2.3.3. The conditions of the class of functions over which L is extremised, will

depend on the boundary conditions and also on differentiability conditions required of the

extremals u = f(x).

We will assume that the extremals of the variational problem are smooth. To find the

extrema of functionals L[u] we use the variational derivative of L.

Definition 2.3.4 (Variational derivative). Let L[u] be a variational problem. The variational
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derivative of L is the unique q-tuple

δL[u] = (δ1L, ..., δqL),

such that
d

dε

∣∣∣
ε=0
L(u+ εv) =

∫
Ω
δL[f(x)] · v(x) dx (2.38)

whenever u = f(x) is a smooth function defined on Ω, and v(s) = (v1(x), ..., vq(x)) is a smooth

function with compact support in Ω - so it is zero outside Ω-, so that f + εη still satisfies

any boundary conditions that might be imposed on the space of functions over which we are

extremising L. The element

δαL =
δL
δuα

is the variational derivative of L with respect to uα.

Proposition 2.3.5. If u = f(x) is an extremal of L[u], then

δL[f(x)] = 0, x ∈ Ω. (2.39)

For the following, we need to introduce first the Divergence Theorem.

Theorem 2.3.6 (Divergence Theorem). Let Ω ⊂ Rn be a bounded open set with smooth

boundary ∂Ω. Let X = (X1, ..., Xm) be a smooth vector field defined on Ω ∪ ∂Ω whose

components have continuous first order derivatives. Then

∫
Ω

n∑
µ=1

∂µX
µ dV =

∫
∂Ω
X · ~n dS (2.40)

where the integral on the left is a volume integral over the volume V and the integral on the right

is a surface integral over the surface enclosing the volume. The surface has outward-pointing

unit vector ~n.

In order to find the general formula for the variational derivative, it is assumed that

L(x, pr(n)(f + εη)(x)) is continuous so the order of differentiation and integration can be

interchanged.

Therefore

d

dε

∣∣∣
ε=0
L(u+ εv) =

∫
Ω

d

dε

∣∣∣
ε=0

L(x,pr(n)(f + εv)(x)dx

=

∫
Ω

∑
α,J

∂L

∂uαJ
(x,pr(n)f(x)) · ∂Jvα(x)

dx.
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Since v has compact support - it is zero outside of Ω - , integrating by parts the above and

use (2.40) , the boundary terms can be eliminated as v vanishes in ∂Ω. Hence

d

dε

∣∣∣
ε=0
L(u+ εv) =

∫
Ω

{
q∑

α=1

[∑
J

(−D)J
∂L

∂uαJ
(x,pr(n)f(x))

]
vα(x)

}
dx. (2.41)

The operator appearing in (2.41) is the well-known Euler–Lagrange operator.

Definition 2.3.7 (Euler–Lagrange operator). For 1 ≤ α ≤ q, the α-th Euler–Lagrange

operator is given by

Eα =
∑
J

(−D)J
∂

∂uαJ

the sum extending over all multi-indices J = (j1, ..., jk) with 1 6= jk 6= p, k ≥ 0.

Example 2.3.8. In this example, α = 1 and the Euler operator takes the form

E =
∂

∂u
−Dx

∂

∂ux
+ D2

x

∂

∂uxx
− ...

In conclusion, the variational derivative of L[u] gives us the same result as applying the

Euler–Lagrange operator to the coefficient of the Lagrangian of L[u], i.e.

δL[u] = (δ1L[u], ..., δqL[u]) = (E1(L), ...,Eq(L)) = E(L).

Hence, equation (2.41) becomes

d

dε

∣∣∣
ε=0
L(f + εη) =

∫
Ω

{
q∑

α=1

[∑
J

Eα(L(x, pr(n)f(x)))

]
ηα(x)

}
dx.

Theorem 2.3.9. If u = f(x) is an extremal of the variational problem L[u] =
∫

Ω L(x, u(n)) dx,

then u = f(x) is a solution of the Euler–Lagrange equations

Eα(L) = 0, α = 1, ..., q.

This is possible thanks to the Fundamental Lemma of Calculus of Variations.

Theorem 2.3.10 (Fundamental Lemma of Calculus of Variations, Gelfand and Fomin, [31]).

If g(x) is a locally integrable function on Ω and

∫
Ω
g(x) · h(x) dx = 0

where h(x) has compact support, then g(x) = 0.
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Example 2.3.11. The Euler–Lagrange equation for the variational problem (2.37) is of the

form

0 = E(L) =
∂L

∂u
−Dx

∂L

∂ux
+ D2

x

∂L

∂uxx
− ...

Explicitly, we have that (see Euler, [20])

0 = E(L) = κss +
1

2
κ3. (2.42)

A symmetry group of a system of equations is a local group of transformations G that

acts on an open subset Ω ⊂ X × U such that it transforms solutions of the system into other

of its solutions. In the case of the Euler–Lagrange equations not all symmetry groups of

E(L) = 0 are variational symmetry groups of the original variational problem. This motivates

the following definition.

Definition 2.3.12 (Variational symmetry group, Olver, [84]). A local group of transfor-

mations G acting on M ⊂ Ω0 × U is a variational symmetry group of the functional

L[u] =
∫

Ω0
L(x, u(n)) dx if whenever Ω is a subdomain with closure Ω̄ ⊂ Ω0, u = f(x) is a

smooth function defined over Ω whose graph lies inM , and g ∈ G is such that ũ = f̃(x̃) = g·f(x̃)

is a single-valued function defined over Ω̃ ⊂ Ω0, then∫
Ω̃
L(x̃,pr(n)f̃(x̃))dx̃ =

∫
Ω
L(x,pr(n)f(x))dx.

The following theorem tells us the necessary and sufficient condition for a connected group

of transformations to be a variational symmetry group of a variational problem. But first we

need to define the diveregence of smooth functions.

Definition 2.3.13 (Total divergence, Olver, [84]). The total divergence of a p-tuple P of

smooth functions of x, u and derivatives of u is the function

DivP = D1P1 + D2P2 + ...+ DpPp.

Example 2.3.14. Suppose that u = u(x, y). For P = (uxuy, u
2) we have that

DivP = Dx(uxuy) + Dyu = uxxuy + uxuxy + 2uuy.

Now we are ready to give the infinitesimal criterion of invariance Theorem.

Theorem 2.3.15 (Infinitesimal criterion of invariance, Olver, [84]). A connected group of

transformations G acting on M ⊂ Ω0 × U is a variational symmetry group of the functional
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L[u] =
∫

Ω L(x, u(n)) dx if and only if

pr(n)v(L) + L Div ξ = 0

for all (x, u(n)) ∈M and every infinitesimal generator

v =

p∑
i=1

ξi
∂

∂xi
+

q∑
α=1

φα
∂

∂uα

of G.

Example 2.3.16. Consider the group action of rotations and translations of curves (x, u(x))

in the plane  x̃

ũ

 =

 cos θ − sin θ

sin θ cos θ

 x

u

+

 a

b

 . (2.43)

The induced action on ux and uxx are (see Mansfield, [70])

ũx =
dũ/dx

dx̃/dx
=

sin θ + cos θux
cos θ − sin θux

, ũxx =
1

dx̃/dx

d

dx

dũ/dx

dx̃/dx
=

uxx
(cos θ − sin θux)3

.

We therefore have that the table of infinitesimals is of the form

x u ux uxx

a 1 0 0 0

b 0 1 0 0

θ −u x 1 + u2
x 3uxuxx

. (2.44)

The prolonged infinitesimal vector fields are

pr(2)va =
∂

∂x
, pr(2)vb =

∂

∂u
, pr(2)vθ = −u ∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux
+ 3uxuxx

∂

∂uxx
.

We have that

pr(2)va(L) + LDxξ = 0, pr(2)vb(L) + LDxξ = 0,

pr(2)vθ(L) + LDxξ = (1 + u2
x)

∂

∂ux

(
u2
xx

(1 + u2
x)

5
2

)
+ 3uxuxx

∂

∂uxx

(
u2
xx

(1 + u2
x)

5
2

)

−

(
u2
xx

(1 + u2
x)

5
2

)
ux = 0.

Therefore by (2.3.15), the group of transformations (2.43) is a variational symmetry group of
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the functional (2.37).

Now we are finally ready to present Noether’s First Theorem.

Theorem 2.3.17 (Noether’s First Theorem, Noether, [83]). Suppose G is a local one-parameter

group of symmetries of the variational problem L[u] =
∫
L(x, u(n))dx. Let

v =

p∑
i=1

ξi
∂

∂xi
+

q∑
α=1

φα
∂

∂uα

be the infinitesimal generator of G, and

Qα(x, u) = φα −
p∑
i=1

ξiuαi , with α = 1, ..., q

the corresponding components of the characteristics of v. Then Q = (Q1, ..., Qq) is also a the

characteristic of a conservation law of the Euler–Lagrange equations E(L) = 0; in other words,

there is a p-tuple P (x, u(m)) = (P1, ..., Pp) such that

DivP = Q · E(L) =

q∑
α=1

QαEα(L)

is a conservation law in characteristic form for the Euler–Lagrange equations E(L) = 0.

For the special case of one-dimensional Lagrangians L(x, u, ux, uxx, ..)dx we have the

following Theorem appearing in Mansfield, [70]:

Theorem 2.3.18. Consider a one-dimensional Lagrangian L(x, u, ux, uxx, ...) dx with arbi-

trary order, that is invariant under the one-parameter group action

ε · (x, u) = (x̃, ũ). (2.45)

Let
d

dε

∣∣∣
ε=0

x̃ = ξ(x, u),
d

dε

∣∣∣
ε=0

ũ = φ(x, u),

be the infinitesimal generators of (2.45) then

(φ− uxξ) E(L) +
d

dx

(
Lξ +

∑
m=1

m−1∑
k=0

(−1)k
(

dk

dxk
∂L

∂um

)(
dm−1−k (φ− uxξ)

dxm−1−k

))
= 0,

where we have denoted

um =
dmu

dxm
.
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Therefore, the first integral for E(L) = 0 is

Lξ +
∑
m=1

m−1∑
k=0

(−1)k
(

dk

dxk
∂L

∂um

)(
dm−1−k (φ− uxξ)

dxm−1−k

)
= c,

where c is a constant. Moreover, if we consider the group action to be a translation in x, with

infinitesimals ξ = 1 and φ = 0, then uxE(L) is a total derivative when L does not depend

explicitly on x, i.e,

uxE(L) =
d

dx

(
L−

∑
m=1

m−1∑
k=0

(−1)k
(

dk

dxk
∂L

∂um

)
um−k

)
.

Example 2.3.19. For our example, the three first integrals for the Euler–Lagrange equation

(2.42) are (see Mansfield, [70])


c1

c2

c3

 =



1√
1 + u2

x

− ux√
1 + u2

x

0

ux√
1 + u2

x

1√
1 + u2

x

0

xux − u√
1 + u2

x

uux + x√
1 + u2

x

1



−κ2

−2κs

2κ



where the first component arises from the translation in x, the second component arises from

the translation in u and the third component arises from the rotation in the (x, u) plane about

the origin.

2.4 Moving frames

Consider a Lie group G whose action is free and regular in some domain M (see Definitions

2.1.15 and 2.1.16). Then the following holds (see picture below): for every z ∈M there exists

a neighbourhood U of z such that the group orbits of U have the dimension of the Lie group

G and they foliate U . There exists a cross-section K ⊂ U that intersects the group orbits of

U transversally such that the intersection of a group orbit of U with the cross-section K is a

single point. Finally, the element h ∈ G taking z ∈ U to {k} = O(z)
⋂
K is unique.

K

O(z)

k z

h

U
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The cross-section is transverse to the orbits that foliate the space

A moving frame can be define by choosing a group action with features mentioned in the

paragraph above.

Definition 2.4.1 (Moving Frame). Given a smooth Lie group action G×M →M , a moving

frame is an equivariant map ρ : U ⊂M → G where U is the domain of the frame.

A left equivariant map satisfies

ρ(g · z) = gρ(z) (2.46)

and a right equivariant map satisfies

ρ(g · z) = ρ(z)g−1. (2.47)

A frame satisfying (2.46) will be called left frame and a frame satisfying (2.47) will be called

right frame.

The following table holds (see Mansfield, [70])

left action right action

right frame ρ(g ∗ z) = ρ(z)g−1 ρ(g • z) = g−1ρ(z)

left frame ρ(g ∗ z) = gρ(z) ρ(g • z) = ρ(z)g

.

In order to find the frame, we let the cross-section K be given by a system of equations

ψi(z) = 0, for i = 1, 2, . . . , R, where R is the dimension of the group G. We then solve the

so-called normalization equations,

ψi(g · z) = 0, i = 1, . . . , R, (2.48)

for g as a function of z. The solution is the group element g ∈ G which maps z to k where

{k} = K ∩O(z), and is denoted by ρ. In other words, the frame ρ satisfies

ψi(ρ(z) · z) = 0, i = 1, . . . , R.

The conditions on the action mentioned in the first paragraph of section (2.4) are those for

the Implicit Function Theorem to hold (see Hirsch, [40]) so that the solution ρ is unique. A

consequence of uniqueness is that

ρ(g · z) = ρ(z)g−1
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that is, the frame is right equivariant, since both ρ(g · z) and ρ(z)g−1 solve the equation

ψi (ρ(g · z) · (g · z)) = 0. A left frame is obtained by taking the inverse of a right frame. In

practice, the ease of calculation can differ considerably depending on the choice of parity.

K

O(z)

k z
g ∗ z

ρ(z)
g

U

ρ(z)g−1

Using the cross-section we can construct a right moving frame

The cross-section K is selected by choice in order to simplify the calculations in the

applications at hand. Also, the cross-section K is not unique.

Example 2.4.2. Consider the action (2.6) and let us take the cross section K to be the

coordinate plane

u = 0, ux = 1, uxx = 0.

Therefore, the normalization equations are

ũ = 0, ũx = 1, ũxx = 0. (2.49)

Solving (2.49) for the group parameters we obtain the frame

a =
1
√
ux
, b = − u

√
ux
, c =

uxx

2u
3/2
x

. (2.50)

The frame (2.50) can be represented as

ρ =


1
√
ux

− u
√
ux

uxx

2u
3/2
x

2u2
x − uuxx
2u

3/2
x

 (2.51)

as shown in Gonçalves and Mansfield, [32]. The square root restricts the domain of the

frame. When making a choice of the root we make certain that the frame is the identity on the

cross-section.
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Note that

ρ(ũ, ũx, ũxx) =


1√
ũx

− ũ√
ũx

ũxx

2ũx
3/2

2ũx
2 − ũũxx

2ũx
3/2



=


cu+ d
√
ux

−au+ b
√
ux

uxx(cu+ d)− 2cu2
x

2u
3
2
x

−uxx(au+ b)− 2au2
x

2u
3
2
x

 = ρ(u, ux, uxx)g−1

so (2.51) is equivariant.

2.4.1 Invariants

Theorem 2.4.3. Given a right frame, we have that ι(z) = ρ(z) · z is an invariant.

Definition 2.4.4 (invariantization operator). The map z 7→ ι(z) will be called invariantizaton

operator. This operator extends to functions as f(z) 7→ f(ι(z)), and we call f(ι(z)) the

invariantization of f .

Definition 2.4.5 (normalized Invariants). Given a left or right action G×M → M and a

right frame ρ, the normalized invariants are the coordinates of ι(z) = ρ(z) · z.

The components of ι(z) for any prolonged action in the (xi, u
α, uαK)-space are represented

as follows

Ji = Ixi = ι(xi) = x̃i|g=ρ(z), IαK = ι(uαK) = ũαK |g=ρ(z)

where K is the multi-index of differentiation. For instance, Iu111 = ι(uxxx) = ũxxx|g=ρ(z).

Theorem 2.4.6 (Replacement Rule). If F (z) is an invariant of the Lie group action G×M →

M , and ι(z) is the normalized invariant for a moving frame ρ on M , then F (z) = F (ι(z)).

It follows that the normalized invariants provide a set of generators for the algebra of

invariants.

The Replacement rule allows us to express well-known invariants in terms of IαK even when

we cannot solve for the frame. One can construct symbolic invariant calculus, formulated

meticulously by Hubert [43], [44], [46], [45], from the normalization equations without solving

the frame.

Example 2.4.7. For our running example we have that (see Gonçalves and Mansfield, [32])

Iu = ρ · u = 0, Iu1 = ρ · ux = 1, Iu11 = ρ · uxx = 0, Iu111 = ρ · uxxx =
uxxx
ux
− 3

2

u2
xx

u2
x

.
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This last invariant is commonly known as Schwarzian derivative of u, and it is usually denoted

as {u;x} (see Mansfield, [70]).

2.4.2 Invariant differentiation

Definition 2.4.8. An invariant differential operator is defined by evaluating the transformed

differential operator on the frame, i.e,

Di =
D

Dx̃i

∣∣∣
g=ρ(z)

,

where
D

Dx̃i
is defined as (2.10).

Note that even though
∂

∂xi
uαK = uαKi,

the same does not hold for the invariant differential operators as

DiIαK 6= IαKi.

Remark 2.4.9. Note that if x̃i = xi then Di = Di.

We define the correction terms Nij and Mα
Kj as

DjJi = δij +Nij and DjIαK = IαKj +Mα
Kj (2.52)

where δij is the Kronecker delta.

Example 2.4.10. We introduce now an invariant variable t. For our running example, the

following equations

DxIu12 = Iu112,

DxIu112 = Iu1112 − 2Iu12I
u
111,

DxIu111 = Iu1111,

DtIu111 = Iu1112 − Iu12I
u
111

(2.53)

are easy to obtain by using (2.52). Note that now our independent variables are x and t that

correspond to the indices 1 and 2 respectively. For example Iu112 = ι(uxxt) = ũxxt|g=ρ(z).

The next theorem provides a formulae to compute correction terms.

Theorem 2.4.11. There exists a p×R correction matrix K such that

Nkj = ι

(
R∑
l=1

Kjlξ
k
l

)
, Mα

Kj = ι

(
R∑
l=1

Kjlφ
α
K,l

)
, (2.54)
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where l is the index for the group parameters and R = dim(G).

The correction matrix K can be computed without explicit knowledge of the frame. In

order to calculate it, we only need to know the normalization equations and the infinitesimals.

Suppose that the variables appearing in the normalization equations are ζ1, ..., ζn, p of which

are independent, and the remaining n− p are dependent variables and their derivatives. We

define the matrix T to be the invariant p× n total derivative matrix

Tij = ι

(
D

Dxi
ζj

)

and let Φ denote the R× n matrix of infinitesimals with invariantized arguments

Φij = ι

(
∂ζ̃j
∂gi

∣∣∣
g=e

)
.

Moreover, let J be the n × R transpose of the Jacobian matrix of the left-hand side of the

normalization equations with invariantized arguments, i.e.

Jij =
∂(ι(ψj))

∂(ι(ζi))
.

Using the above matrices we can obtain the correction matrix, as stated in the theorem below

Theorem 2.4.12. The correction matrix K, is given by

K = −TJ(ΦJ)−1, (2.55)

where T, J and Φ are defined above.

Example 2.4.13. Consider (2.6) and let us induce a dummy variable t such that t̃ = t and

u = u(x, t). Recall (2.49). We have that

ζ1 = u, ζ2 = ux and ζ3 = uxx

and

ψ1 = u, ψ2 = ux − 1 and ψ3 = uxx.

Taking into account the table of infinitesimals appearing in Example 2.1.30 it is easy to compute



2.4. Moving frames 41

the matrices Φ,J and T. They are of the form

Φ =

u ux uxx


a 0 2 0

b 1 0 0

c 0 0 −2

, J =

ι(ψ1) ι(ψ2) ι(ψ3)


Iu 1 0 0

Iu1 0 1 0

Iu11 0 0 1

, T =

u ux uxx( )
x 1 0 Iu111

t Iu2 Iu12 Iu112

and therefore by (2.55), (see Mansfield, [70]),

K =

a b c( )
x 0 −1 1

2I
u
111

t −1
2I

u
12 −Iu2 1

2I
u
112

. (2.56)

One can check that

M11 = 0, M12 = −Iu12, M21 = −Iu111, M22 = −Iu112

using (2.54) obtaining the expected result. Note that N11 = N12 = N21 = N22 = 0 as x̃ = x

and t̃ = t.

2.4.3 Syzygies and curvature matrices

We consider finite sets of generators of the differential algebra of invariants and the functional

and differential relations they satisfy. These relations are called syzygies. Before obtaining the

main differential syzygy we need to introduce the curvature matrices. Assume the Lie group

G is given as a matrix group.

Definition 2.4.14 (Curvature matrices). The matrices

Qi = (Diρ(z))ρ(z)−1 (2.57)

are called curvature matrices where i denotes an independent variable.

The entries of the curvature matrices are called curvature invariants. It is possible to

compute these matrices without explicit knowledge of the frame.

Theorem 2.4.15. The curvature matrices can be computed using just the normalization
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equations and the infinitesimals. Indeed,

Qi =
∑
j

Kijaj

where {aj} is a basis of the Lie algebra g and K is the correction matrix given in (2.55).

Definition 2.4.16 (Syzygy). A syzygy on a set of invariants is a functional dependency

relation between the invariants.

Therefore, a syzygy on a set of invariants is a function of invariants, which is identically

zero when the invariants are expressed in terms of the underlying variables.

Proposition 2.4.17. The curvature matrices (2.57) satisfy the syzygy

Dj(Qi)−Di(Qj) = ([Dj ,Di]ρ)ρ−1 + [Qj , Qi]. (2.58)

By equating components in (2.58), if the normalization equation do not involve time–

derivatives, then one can express the evolution of the curvature invariants κ in terms of It

as

κt = HIt (2.59)

where H is an invariant differential operator matrix involving just curvature invariants. We

will often call (2.59) the reduced form of (2.58).

Remark 2.4.18. We denote κ the curvature invariants. Note that the κ appearing in (2.37)

is not the same as the κ appearing in (2.61). Both expressions are denoted by κ as they are

curvature invariants for their examples respectively.

Example 2.4.19. Using (2.16) and (2.56) we obtain the curvature matrices

Qx =

 0 −1

1
2I

u
111 0

 , Qt =

 −1
2I

u
12 −Iu2

1
2I

u
112

1
2I

u
12

 (2.60)

and also the commutator

[Qx, Qt] =

 1
2(Iu112 − Iu2 Iu111) Iu12

1
2I

u
12I

u
111

1
2(Iu2 I

u
111 − Iu112)

 .

Using (2.58) and taking into account the relationships of the form (2.53) we obtain

κt = (D3
x + 2κDx +Dxκ)Iu2
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where we have set

κ = Iu111. (2.61)

The operator

H = D3
x + 2κDx +Dxκ (2.62)

is a famous Hamiltonian operator of the KDV equation. These results were previously obtained

by Gonçalves and Mansfield, [32] and Mansfield, [70].

2.4.4 Invariantized form of Calculus of Variations and Noether’s Theorem

We can write the Euler–Lagrange equations of an invariant Lagrangian under a Lie group

in terms of the invariants. Let us suppose that the Lagrangian depends on the independent

variables x = (x1, ..., xp), the dependent variables u = (u1, ..., uq) and also finitely many

derivatives of the dependent variables. We also assume that the action leaves x invariant.

In order to obtain an invariantized analogue of (2.38), we introduce a dummy independent

variable t that is invariant.

Note that the two variational problems

d

dε

∣∣∣
ε=0
L[uα + εvα] = Dt

∣∣∣
uαt =vα

L[uα]

give the same symbolic result. Applying Calculus of Variations to the invariant variational

problem ∫
L[κ]

where κ denotes the vector of curvature invariants, we obtain

0 = Dt
∫
L[κ]dx

=

∫ ∑
j,K

∂L

∂DKκj
DKDtκj

dx

=

∫ ∑
j,K

(−1)|K|DK
∂L

∂DKκj
Dtκj

dx + B.T.’s

=

∫ ∑
j,α

Ej(L)Hj,αIαt

dx + B.T.’s

=

∫ ∑
j,α

(
H∗j,αEj(L)

)
Iαt ] +

∑
i

D

Dxi

∑
J,α

Iαt,JC
α
i,J

dx + B.T.’s



44 Introductory Background

where this defines the coefficients Ci,J which are the coefficients of Iαt,J coming from the

integration by parts and where B.T.’s are the boundary terms, Ej(L) is the Euler operator

corresponding to variations in the curvature invariants andH∗j,α is the adjoint ofHj,α. Note that

Iαt contains the factor uαt which is the independent variation in the dependent variable. Thus,

from (2.3.10), the element Iαt must be zero and therefore, the invariantized Euler–Lagrange

equations are of the form

Eα(L) =
∑
j

H∗j,αEj(L). (2.63)

In matrix form we can write (2.63) as

Eu(L) = H∗Eκ(L).

Example 2.4.20. Let us consider the variational problem

∫
L(κ, κx)ds

where κ was defined in (2.61). This variational problem is invariant under (2.6). The operator

(2.62) satisfies H∗ = −H. Hence the invariantized Euler–Lagrange equation is

Eu(L) = (−D3
x − 2κDx − κx)Eκ(L) = 0.

Remark 2.4.21. This way of obtaining the invariantized Euler–Lagrange equations contrasts

with the method proposed by Kogan and Olver, [63] as stated in Gonçalves and Mansfield, [32].

The term
∑

J,α I
α
t,JC

α
i,J is a conservation law. Recall Noether’s First Theorem stated in

Theorem (2.3.17). We now give the invariant version of this Theorem appearing in Gonçalves

and Mansfield, [32] which generalises the result obtained in Boutin, [11].

Theorem 2.4.22 (Gonçalves and Mansfield, [32]). Let
∫
L(κ1, κ2, ...) dx be invariant under

the Lie group action G×M →M where M = J(X ×U (n)), with generating invariants κj and

g · xi = xi. Introduce a dummy variable t to effect the variation. Using integration by parts

Dt
∫
L(κ1, κ2, ...) dx =

∫ ∑
j,α

H∗j,αEκj (L)Iαt +
∑
i

Di

∑
J,α

IαtJCi,J

dx, (2.64)

where this defines the coefficients Cαi,J . Recall that IαtJ = I(uαtJ), where J is an index of

differentiation with respect to xi. Let (a1, ..., aR) be the coordinates of G near the identity e,

and vi, for i = 1, ..., R be the infinitesimal vector fields associated to each parameter defining

G. Moreover, let Ad be the Adjoint representation of G with respect to these vector fields. Let
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Ωα(I) for α = 1, ..., q be the invariantized form of the matrix of infinitesimals.

Then the R conservation laws obtained via Noether’s First Theorem can be rewritten in

the form ∑
i

Di
(
Ad(ρ)−1Vi(I)

)
= 0 (2.65)

where

Vi(I) =
∑
α

Ωα(I)Cαi (2.66)

and where

Cαi = (Cαi,J).

Remark 2.4.23. For the one–dimensional case we have that the conservation laws can be

written of the form (
Ad(ρ)−1V(I)

)
= c (2.67)

where

V(I) =
∑
α

Ωα(I)Cα.

Remark 2.4.24. Note that as this Theorem concerns the smooth case, we are adopting the

convention (2.2.1) for the Adjoint matrix.

Example 2.4.25. In order to compute the conservation laws we first need to keep track of the

boundary terms. We have that the boundary terms are of the form

Dx
(
Iu2D2

xEκ(L) + Eκ(L)D2
xI
u
2 + (DxEκ(L))DxIu2

)
and therefore, taking into account that DxIu2 = Iu12 and D2

xI
u
2 = Iu112 we have that

C =


D2
xEκ(L) + κEκ(L)

DxEκ(L)

Eκ(L)

 .

The invariantized form of (2.27) is

Ω(I) =

u ux uxx


a 0 2 0

b 1 0 0

c 0 0 −2

.
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Writing (2.33) in the original variables and using (2.65) the conservation laws are


1− uuxx

u2
x

2u

ux

uxx
ux
− uu2

xx

2u3
x

−uxx
2u2

x

1

ux
−u

2
xx

4u3
x

−u+
u2uxx
2u2

x

−u
2

ux
ux −

uuxx
ux

+
u2u2

xx

4u3
x




−2DxEκ(L)

κEκ(L) +D2
xEκ(L)

−2Eκ(L)

 =


c1

c2

c3



as appearing in Gonçalves and Mansfield, [32].

Conservation Laws for Semi-simple Lie groups

In the case where the Killing form is invertible, one can always obtain a first integral of the

Euler–Lagrange equation. This is the case for semisimple Lie groups. Let us denote gs the

semisimple Lie algebra of infinitesimal vector fields of a Lie group G. In the following, we will

consider one dimensional problems.

Note that from (2.67), multiplying both sides by cTB−1 we obtain

cTB−1Ad(ρ)−1V(I) = cTB−1c.

Substituting cT by V(I)TAd(ρ)−T we obtain

V(I)TAd(ρ)−TB−1Ad(ρ)−1V(I) = cTB−1c.

Using (2.36), i.e, B = Ad(ρ)BAd(ρ)T we obtain the first integral

V(I)TB−1V(I) = cTB−1c.

Theorem 2.4.26 (Gonçalves and Mansfield, [32]). Consider a semi-simple Lie algebra gs.

Let V(I) be the vector of invariants and let B be the Killing form of gs. Let L(κα, καx , ...) dx

be invariant under the group action G. Then

V(I)TB−1V(I) = cTB−1c

is a first integral for the Euler–Lagrange equations

Eu(L) = H∗Eκ(L)

where V(I) is given in (2.66) and c is a constant vector.

Example 2.4.27. In order to obtain the first integral of the Euler–Lagrange equation Eκ(L)
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we use (2.4.26) and (2.20) to get

4(DxEκ(L))2 − 8Eκ(L)D2
xEκ(L)− 8κ(Eκ(L))2 = c2

1 + 4c2c3.

The conservation law

−2Eκ(L)ux − c1u+ c2u
2 − c3 = 0 (2.68)

is obtained by making use of (2.67) and it is a first order ODE as shown in Gonçalves and

Mansfield, [32]. By setting

τ =

∫
1

2Eκ(L)
dx

the authors also show that (2.68) can be transformed into a Riccati equation with constant

coefficients as follows

uτ = −c1u+ c2u
2 − c3.

Hence the solution of (2.68) is

u(x) =
c1

2c2
−
√
c2

2 + 4c2c3

2c2
tanh

(
1

2

√
c2

2 + 4c2c3

∫
1

2Eκ(L)
dx+ c4

)

after solving for κ.
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Discrete Moving Frames and Noether’s Finite

Difference Conservation Laws

This chapter is based on the results presented in [74], which is a joint work with my supervisor

Elizabeth Mansfield and the authors Peter Hydon (University of Kent) and Linyu Peng

(Waseda Institute for Advanced Study). My contribution to this paper was the development

of the running example as well as the application to Euler’s elastica, which will be presented

in §4.1 as well as checking the theory and providing comments and observations. In this

chapter, some of the results and examples have been extended and where Proposition 3.5.3

and Theorem 3.5.10 have been included.

3.1 Introduction

Discrete moving frames, which are essentially a sequence of moving frames with overlapping

domains, arise with the need to use moving frames in discrete spaces. In order to adapt

discrete moving frames to prolongation spaces for the study of difference equations and their

conservation laws, the authors of [74] derive the difference moving frame. This adaptation

allows to write the Euler–Lagrange equations and conservation laws in terms of the invariant

variables in an appropriate space.

Conservation laws play an important role in the study of the solution of differential and

difference equations. Emmy Noether proved in 1918 (see Noether, [83]) that every Lie group of

symmetries of a physical system acting on the space of independent and dependent variables

has a corresponding conservation law. The equivalent theorems for difference equations as well

as other results by Noether have been developed in Dorodnitsyn, [19], Hydon, [48], Hydon and

Mansfield, [50] and Peng, [92]. For some complicated problems it is easier to work in terms of

the invariant variables rather than in the original variables. Once this invariant problem has

been solved, one can express the solution in the original variables. This can be achieved for

difference systems using discrete moving frames theory.

49



50 Discrete Moving Frames and Noether’s Finite Difference Conservation Laws

Let u = (u1, . . . , uq) ∈ Rq denote a not necessarily finite set of dependent variables, and

let S denote the forwards shift operator defined as follows

S : n 7→ n+ 1, S : f(n) 7→ f(n+ 1),

for all functions f whose domain includes n and n+ 1. In particular,

S : uαj 7→ uαj+1

on any domain where both uαj and uαj+1 are defined. The forward difference operator is S− id,

where id is the identity operator defined by

id : n 7→ n, id : f(n) 7→ f(n), id : uαj 7→ uαj .

We consider discrete Lagrangians of the form L[u] =
∑
n

L(n,u0, . . . ,uJ) where the

Lagrangian L depends on only a finite number of arguments. We seek sequences which

extremise the sum, in the sense that

d

dε

∣∣∣
ε=0

∑
n

L(n,u0 + εw0, . . . ,uJ + εwJ) = 0

for all functions w : Z → Rq. It is well known that the extremising sequences satisfy the

recurrence relation known as the discrete Euler–Lagrange equation, (see Hydon and Mansfield,

[49], and Kupershmidt, [64])

Euα(L) :=
J∑
j=0

S−j

(
∂L

∂uαj

)
= 0, where S−j = (S−1)j . (3.1.1)

Each Euα(L) depends only on n and u−J , . . . ,uJ , so the Euler–Lagrange equations are of

order at most 2J .

It is usual to suppress the n in the indices, and we follow that convention in this thesis.

For example, the expression un+2un − 2u2
n+3 will be written as u2u0 − 2u2

3.

In §3.2, the concept of difference prolongation space as an analogue of the jet space in the

case of differential equations is introduced.

In §3.3, the finite difference Calculus of Variations is briefly reviewed.

In §3.4, the discrete moving frame and the difference moving frame is introduced, which

gives the geometric framework for the results.

In §3.5, it is shown how a difference moving frame can be used to calculate the difference
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Euler–Lagrange equations directly in terms of the invariants. This calculation yields boundary

terms that can be transformed into the conservation laws, which require both invariants and

the frame for their expression. In §3.6, the Adjoint representation of the frame and the matrix

of infinitesimals is recalled. In §3.7, key results on the difference conservation laws that arise

via the difference analogue of Noether’s Theorem are formulated.

In §3.8, it is shown how the difference moving frame may be used to integrate a difference

system which is invariant under a Lie group action. Further, we show how the conservation

laws and the frame together may be used to ease the integration process, in cases where one

can solve for the frame, and in cases where one cannot.

The running example is a scaling and translation group invariant Lagrangian, with two

dependent variables defined on a one dimensional suitable discrete subgroup.

3.2 Difference prolongation spaces

In order to work with difference equations, the concept of difference prolongation space is

useful. A difference prolongation space is basically the discrete equivalent of the jet space

for differential equations. From now on equations that may have singularities will not be

considered.

The difference prolongation spaces are obtained from the space of independent and depen-

dent variables, Z× Rq. Over each base point n ∈ Z, the dependent variables take values in a

continuous fibre U ⊂ Rq, which has the coordinates u = (u1, . . . , uq). It is assumed that all

structures on each fibre are the same.

Let uj denote u(n+ j), for all sequences
(
u(m)

)
m∈Z. The fibre over n is the prolongation

space P (0,0)
n (U) ' U , and it has coordinates u0. The first forward prolongation space over

n is P (0,1)
n (U) ' U × U with coordinates z = (u0,u1). The J th forward prolongation space

over n is the product space P (0,J)
n (U) ' U × · · · × U (J + 1 copies) with coordinates z =

(u0,u1, . . . ,uJ). Including both forward and backward shifts, one can obtain the prolongation

spaces P (J0,J)
n (U) ' U × · · · ×U (J − J0 + 1 copies) with coordinates z = (uJ0 , . . . ,uJ), where

J0 ≤ 0 and J ≥ 0.

The total prolongation space over n, denoted by P
(−∞,∞)
n (U), has coordinates z =

(. . . ,u−2,u−1,u0,u1,u2, . . . ). Every prolongation space P (J0,J)
n (U) is a submanifold of the

total prolongation space over n. The same structures are repeated over each n as n is a free

variable. This yields the natural map

π : P (−∞,∞)
n (U) −→ P

(−∞,∞)
n+1 (U), π : z 7→ ẑ, (3.2.1)
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where the coordinates on P (−∞,∞)
n+1 (U) are denoted by a caret, so ûj refers to u(n+ 1 + j).

For difference equations, it is enough to use the restriction of S to finite prolongation

spaces. To adapt difference equations on a finite or semi-infinite interval, the constraint that

uj+1 = Suj is defined only if n+ j and n+ 1 + j are in the interval it is added.

The variable n will be treated as fixed, using powers of the shift operator S to represent

structures on prolongation spaces over any base point m as equivalent structures on all

sufficiently large prolongation spaces over n. This will allow difference moving frames to

be constructed. Throughout, we work formally, without considering convergence of sums or

integrals.

3.3 The difference variational calculus

The methods developed in this chapter will emulate the difference variational calculus as far

as possible, but using the invariant difference calculus.

Consider a discrete Lagrangian of the form

L[u] =
∑

L(n,u0,u1, . . . ,uJ), (3.3.1)

where uj = (u1
j , . . . , u

q
j) ∈ Rq. From now on the unadorned summation symbol denotes

summation over n and the range of this summation is a given interval in Z, which can be

unbounded. For sums over all other variables, the Einstein summation convention will be used

as far as possible. The variation of L[u] in the direction w is taken to be

d

dε

∣∣∣
ε=0
L[u + εw] =

∑
wαj

∂L

∂uαj
. (3.3.2)

Making repeated summation by parts, specifically

(Sjf) g = f S−jg + (Sj − id) (f S−jg) (3.3.3)

and pulling out the factor (S− id) from (Sj − id), it follows that

wαj
∂L

∂uαj
= wα0 S−j

∂L

∂uαj
+ (S− id)Au(n,w), where Au(n,w) =

J∑
j=1

j−1∑
l=0

S l

{
wα0 S−j

∂L

∂uαj

}
.

(3.3.4)

This defines the boundary terms. A formula to compute this boundary terms is given in (3.5).

The sum over n of the differences (S− id)Au telescopes, contributing only boundary terms

to the variation. If the variation is zero for every w we say that u is an extremal for the
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Euler–Lagrange system of difference equations

Euα(L) := S−j
∂L

∂uαj
= 0, α = 1, . . . , q (3.3.5)

which is a set of recurrence equations for u. The boundary terms will, in general be the

discrete analogue of the natural boundary terms. Moreover, the boundary terms yield natural

boundary conditions that must be satisfied if u is not fully constrained at the boundary.

Example 3.3.6. Consider the variational problem

L[x, u] =
∑

L(x0, u0, x1, u1, u2). (3.3.7)

The variation of L[x, u] in the direction of w = (wx, wu) is

d

dε

∣∣∣
ε=0
L[x+ εwx, u+ εwu] =

∑{
wx0

∂L

∂x0
+ wu0

∂L

∂u0
+ wx1

∂L

∂x1
+ wu1

∂L

∂u1
+ wu2

∂L

∂u2

}
=
∑{

wu0 Ex(L) + wu0 Eu(L) + (S− id)Au(n,w)
}
.

The Euler–Lagrange equations, for the variables x and u are

Ex(L) :=
∂L

∂x0
+ S−1

∂L

∂x1
= 0, Eu(L) :=

∂L

∂u0
+ S−1

∂L

∂u1
+ S−2

∂L

∂u2
= 0

respectively. The expression of Au(n,w) = Ax +Au is of the form

Ax = wx0 S−1
∂L

∂x1
, Au = wu0 S−1

∂L

∂u1
+ (S + id)

(
wu0 S−2

∂L

∂u2

)
.

Those variations that leave the Lagrangian invariant, up to a total difference term are now

considered.

Definition 3.3.8. Suppose that a non-zero function φ = (φ1(n,u), . . . , φq(n,u))T satisfies

φαj (n,u)
∂L

∂uαj
= (S− id)B(n,u), where φαj = Sjφ

α
0 , (3.3.9)

for some B(n,u) which may be zero. Then the Lagrangian L is said to have a one-parameter

local Lie group of variational symmetries with characteristic φ. The Lagrangian is invariant

under this symmetry if B = 0. If B 6= 0, this symmetry is called divergence symmetry.

The meaning of the word infinitesimal and its relation to symmetries, will made clear in

§3.6. The importance of symmetries is given in the next Theorem.
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Theorem 3.3.10 (Difference Noether’s Theorem). Suppose that a Lagrangian L has a vari-

ational symmetry with characteristic φ 6= 0. If u = ū is a solution of the Euler–Lagrange

system for L then (
(S− id){Au(n,φ)−B(n,u)}

)∣∣
u=ū

= 0. (3.3.11)

Proof. Substituting φ for w in (3.3.4) and using (3.3.9) it follows that

φα(n,u)Euα(L) + (S− id)Au(n,φ) = φαj (n,u)
∂L

∂uαj
= (S− id)B(n,u).

Therefore

φα(n,u)Euα(L) = (S− id) (B(n,u)−Au(n,φ)) .

If u = ū is a solution of the Euler–Lagrange system for L then Euα(L) = 0. Hence

(
(S− id){Au(n,φ)−B(n,u)}

)∣∣
u=ū

= 0.

The expression in Equation (3.3.11) is a conservation law for the Euler–Lagrange system.

As there is only one independent variable, the expression in brackets is a first integral, so every

solution of the Euler–Lagrange system satisfies

{
Au(n,φ)−B(n,u)

}∣∣
u=ū

= c,

where c is a constant.

Example 3.3.12. The Lagrangian

L(x0, u0, x1, u1, u2) =
x1 − x0

{(u2 − u1)(u1 − u0)}3/2
(3.3.13)

is of the form (3.3.7). Therefore the Euler–Lagrange equations are

((u1 − u0) (u0 − u−1))−
3
2 − ((u2 − u1) (u1 − u0))−

3
2 = 0,

(x1 − x0) (u1 − u2)

((u2 − u1) (u1 − u0))
5
2

+
(x0 − x−1) (−2u0 + u−1 + u1)

((u1 − u0) (u0 − u−1))
5
2

+
(x−1 − x−2) (u−1 − u−2)

((u0 − u−1) (u−1 − u−2))
5
2

= 0.

One can construct 3 first integrals by using (3.3.10):
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1. For φx = 1 and φu = 0 we have the first integral

S−1
∂L

∂x1
= c1.

2. For φx = 0 and φu = 1 we have the first integral

S−1
∂L

∂u1
+ (S + id)S−2

∂L

∂u2
= c2.

3. For φx = 3x and φu = u we have the first integral

3x0 S−1
∂L

∂x1
+ u0 S−1

∂L

∂u1
+ (S + id)

(
u0 S−2

∂L

∂u2

)
= c3

where c1, c2 and c3 are constants.

It has three variational symmetries, all with B = 0.

The first symmetry comes from the invariance of the Lagrangian under translations in x,

that is, x 7→ x + ε1 for all ε1 ∈ R, the second symmetry comes from from invariance under

translations in u, that is, u 7→ u+ε2, ε2 ∈ R and the third symmetry comes from the invariance

of the Lagrangian under the scalings of the form (x, u) 7→ (λ3x, λu), for λ ∈ R+.

Note that (3.3.13) has three first integrals for the system of Euler–Lagrange equations.

However, these first integrals are really complicated which makes the system tedious to solve.

Using coordinates adapted to the three symmetries, one can ease the calculations and deal

simultaneously with all Lagrangians which have these symmetries.

3.4 Discrete moving frames

We now turn our attention to discrete moving frames.

A discrete moving frame is a discrete analogue of a moving frame. The discrete moving

frame is adapted to discrete base points and it amounts to a sequence of frames defined on a

product manifold. Details on discrete moving frames and their applications can be found in

Beffa and Mansfield, [5] and Beffa, Mansfield and Wang, [6].

From now on, the manifold where G acts will be the product manifoldM = MN . It is

assumed that the action onM is free, taking the number of copies N of the manifold M to

be as high as necessary. For a discussion of this see Boutin, [11] and see Olver, [88] for an

example where the product action is not free for any N . Questions like the regularity and

freeness of the action will refer to the diagonal action on the product, specifically, given the
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action (g, zj) 7→ g · zj for zj ∈M , the diagonal action of G on z = (z1, z2, . . . , zN ) ∈M is

g · (z1, z2, . . . , zN ) 7→ (g · z1, g · z2, . . . , g · zN ).

Throughout this subsection, no assumptions are made about any relationship between the

elements z1, . . . , zN .

The definition of discrete moving frame is now given.

Definition 3.4.1 (Discrete Moving Frames: Beffa and Mansfield, [5] and Beffa, Mansfield

and Wang, [6]). Let GN denote the Cartesian product of N copies of the group G. A map

ρ : MN → GN , ρ(z) = (ρ1(z), . . . , ρN (z))

is a right discrete moving frame if

ρk(g · z) = ρk(z)g
−1, k = 1, . . . , N,

and a left discrete moving frame if

ρk(g · z) = gρk(z), k = 1, . . . , N.

As in the smooth case, obtaining a discrete frame via the use of normalization equations

yields a right discrete frame. As the theory for right and left frames is parallel, only right

frames will be considered.

A discrete moving frame is a sequence of moving frames (ρk) with a nontrivial intersection

of domains which, locally, are uniquely determined by the cross-section K = (K1, . . . ,KN ) to

the group orbit through z. The right moving frame component ρk is the unique element of the

group G that takes z to the cross section Kk. We also define for a right frame, the invariants

Ik,j := ρk(z) · zj . (3.4.2)

If M is q-dimensional, so that zj has components z1
j , . . . , z

q
j , the q components of Ik,j are the

invariants

Iαk,j := ρk(z) · zαj , α = 1, . . . q. (3.4.3)

Let ιk denote the invariantization operator with respect to the frame ρk(z), so that

Ik,j = ιk(zj), Iαk,j = ιk(z
α
j ).
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Figure 3.1: Replication of the cross-secction over n where Kk = SkK0.
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3.4.1 Difference moving frames

The construction of the discrete moving frame allows us to adapt the moving frame to any

discrete domain. Usually, M represents the fibres M over a sequence of N discrete points

where the geometric context may determine additional structures onM.

From §3.2, as n is a free variable, we can replicate the same structures over each base point

m, using powers of the natural map π, see Equation (3.2.1). Thanks to the shift operator

these structures can be represented on prolongation spaces over any given n. This indicates

that the natural moving frame for a given O∆E hasM = P
(J0,J)
n (U) for some suitable J0 ≤ 0

and J ≥ 0. Therefore, N = J − J0 + 1. From now on, the indices 1, . . . , N will be replaced by

J0, . . . , J and we will use Kk and ρk to denote the cross-sections and frames onM respectively.

The cross-section over n, denoted K0, is replicated for all other base points n+ k if and

only if the cross-section over n+ k is represented onM by

Kk = SkK0 (3.4.4)

for all k, see (3.4.1). If this condition holds, then by definition it follows that ρk = Skρ0 for all

k. Consequently, Kk+1 = SKk and ρk+1 = Sρk.

A difference moving frame is defined as follows:

Definition 3.4.5. A difference moving frame is a discrete moving frame such that M is a

prolongation space P (J0,J)
n (U) and (3.4.4) holds for all J0 ≤ k ≤ J .
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By definition, the invariants Ik,j given by a difference moving frame satisfy

SIk,j = Ik+1,j+1. (3.4.6)

Therefore, every invariant Ik,j can be expressed as a shift of I0,j−k.

Example 3.4.7. Consider the scaling and translation group action on R2 given by

(x, u) 7→ (λ3x+ a, λu+ b), λ ∈ R+, a, b ∈ R. (3.4.8)

The Lie group is the semi-direct product, R+ nR2. For the variables x0, u0, x1, u1, u2 we have

x̃0 = λ3x0 + a, ũ0 = λu0 + b, x̃1 = λ3x1 + a, ũ1 = λu1 + b, ũ2 = λu2 + b.

Therefore

L(x̃0, ũ0, x̃1, ũ1, ũ2) =
x̃1 − x̃0

{(ũ2 − ũ1)(ũ1 − ũ0)}3/2

=
λ3(x1 − x0)

{λ2(u2 − u1)(u1 − u0)}3/2

=
(x1 − x0)

{(u2 − u1)(u1 − u0)}3/2
.

Hence the Lagrangian (3.3.13) is invariant under (3.4.8). However, the action is not free on the

space R2 over n with coordinates (x0, u0). In order to achieve freeness, the action is extended

to the first forward prolongation space P (0,1)
n (R2) which has coordinates (x0, u0, x1, u1). The

action is given by

(x0, u0, x1, u1) 7→
(
λ3x0 + a, λu0 + b, λ3x1 + a, λu1 + b

)
.

Choosing the normalization equations

x̃0 = 0, ũ0 = 0, ũ1 = 1

and solving for the group parameters we obtain

λ =
1

u1 − u0
, a = − x0

(u1 − u0)3
, b = − u0

u1 − u0
. (3.4.9)
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A representation of a generic group element is given by

g(λ, a, b) =


λ3 0 a

0 λ b

0 0 1

 with


g · x

g · u

1

 = g(λ, a, b)


x

u

1

 . (3.4.10)

Note that this representation is faithful, which means that


λ3 0 a

0 λ b

0 0 1

 =


1 0 0

0 1 0

0 0 1

 implies that g = e

where e is the identity of G. Substituting (3.4.9) into (3.4.10) we obtain a matrix representation

of the moving frame

ρ0(x0, u0, x1, u1) =


1

(u1 − u0)3
0 − x0

(u1 − u0)3

0
1

u1 − u0
− u0

u1 − u0

0 0 1

 . (3.4.11)

Note that the frame satisfies

ρ0(x̃0, ũ0, x̃1, ũ1) =


1

λ3(u1 − u0)3
0 − x0 + a/λ3

(u1 − u0)3

0
1

λ(u1 − u0)
− u0 + b/λ

u1 − u0

0 0 1



=


1

(u1 − u0)3
0 − x0

(u1 − u0)3

0
1

u1 − u0
− u0

u1 − u0

0 0 1




λ−3 0 − a

λ3

0 λ−1 − b

λ

0 0 1


= ρ0(x0, u0, x1, u1)g(λ, a, b)−1

so it is equivariant. Note that
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ι0


xj

uj

1

 = ρ0 ·


xj

uj

1

 (3.4.12)

=


1

(u1 − u0)3
0 − x0

(u1 − u0)3

0
1

u1 − u0
− u0

u1 − u0

0 0 1




xj

uj

1

 =


xj − x0

(u1 − u0)3

uj − u0

u1 − u0

1

 .

(3.4.13)

Therefore

ι0(xj) := ρ0 · xj =
xj − x0

(u1 − u0)3
, ι0(uj) := ρ0 · uj =

uj − u0

u1 − u0
, j ∈ Z.

Setting

κ = ι0(u2) = ρ0 · u2, η = ι0(x1) = ρ0 · x1, (3.4.14)

for each j ∈ Z, it follows that

S
{
ι0(xj)

}
=
xj+1 − x1

(u2 − u1)3
=

xj+1 − x0

(u1 − u0)3
− x1 − x0

(u1 − u0)3(
u2 − u0

u1 − u0
− u1 − u0

u1 − u0

)3 =
ι0(xj+1)− η

(κ− 1)3

or using the Replacement Rule (2.4.6)

S
{
ι0(xj)

}
=
xj+1 − x1

(u2 − u1)3
= ι0

(
xj+1 − x1

(u2 − u1)3

)
=
ι0(xj+1)− ι0(x1)

(ι0(u2)− ι0(u1))3
=
ι0(xj+1)− η

(κ− 1)3
.

Also

S
{
ι0(uj)

}
=
uj+1 − u1

u2 − u1
=

uj+1 − u0

u1 − u0
− u1 − u0

u1 − u0
u2 − u0

u1 − u0
− u1 − u0

u1 − u0

=
ι0(uj+1)− 1

κ− 1

or using the Replacement Rule (2.4.6)

S
{
ι0(uj)

}
=
uj+1 − u1

u2 − u1
= ι0

(
uj+1 − u1

u2 − u1

)
=
ι0(uj+1)− ι0(u1)

ι0(u2)− ι0(u1)
=
ι0(uj+1)− 1

κ− 1
.

Therefore

ι0(uj+1) = (κ− 1) S
{
ι0(uj)

}
+ 1, ι0(xj+1) = (κ− 1)3 S

{
ι0(xj)

}
+ η. (3.4.15)
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This shows that the invariants with positive j can be written in terms of κ, η and their forward

shifts. Let us now set κj = Sjκ and ηj = Sjη for all j ∈ Z. In order to find the expression for

the invariants with negative indices j, we do the following: We first apply S−1 to both sides of

(3.4.15), obtaining

S−1

{
ι0(uj+1)

}
= (κ−1 − 1) ι0(uj) + 1, S−1

{
ι0(xj+1)

}
= (κ−1 − 1)3 ι0(xj) + η−1.

Now, we send j to j − 1 and consequently, j + 1 to j. We obtain

S−1

{
ι0(uj)

}
= (κ−1 − 1) ι0(uj−1) + 1, S−1

{
ι0(xj)

}
= (κ−1 − 1)3 ι0(xj−1) + η−1.

Isolating the invariantization of uj−1 and xj−1 we get

ι0(uj−1) =
S−1{ι0(uj)} − 1

κ−1 − 1
, ι0(xj−1) =

S−1{ι0(xj)} − η−1

(κ−1 − 1)3
.

It is important to note that S{ι0(uj)} 6= ι0(uj+1) as

S{ι0(uj)} = S{ρ0 · uj} = ρ1 · uj+1 6= ρ0 · uj+1 = ι0(uj+1).

However, it is possible to write the shift of the generating invariants in terms of other generating

invariants.

The discrete Maurer–Cartan group elements allow us to find relationships between invariants

and their shifts.

Definition 3.4.16 (Discrete Maurer–Cartan invariants). Given a right discrete moving frame

ρ, the right discrete Maurer–Cartan group elements are

Kk = ρk+1ρ
−1
k (3.4.17)

for J0 ≤ k ≤ J − 1.

These relationships are an example of syzygies.

Definition 3.4.18 (Syzygy). A syzygy on a set of invariants is a identity between invariants

that expresses functional dependency.

The equivariance of the frames yields that Kk is invariant under the action of G and

the components of the Maurer–Cartan elements are called the Maurer–Cartan invariants or

curvature invariants .



62 Discrete Moving Frames and Noether’s Finite Difference Conservation Laws

Since ρk is a frame for each k, the components of ρk(z) · z generate the set of all invariants

by the Replacement Rule (2.4.6).

Essentially the Maurer–Cartan group elements, are well-adapted to studying difference

equations. One can express all invariants in terms of a small generating set. Using (3.4.2) and

(3.4.17)

Kk · Ik,j = ρk+1ρ
−1
k · ρk · zj = ρk+1 · zj = Ik+1,j , (3.4.19)

and iterating this, Kk+1Kk · Ik,j = Ik+2,j , and so on. This leads to the following result:

Theorem 3.4.20 (See Proposition 3.11 in Beffa, Mansfield and Wang, [6] ). Given a right

discrete moving frame ρ, the components of Kk, together with the set of all diagonal invariants,

Ij,j = ρj(z) · zj, generate all other invariants.

The notion of a generating set from can be extended as follows:

Definition 3.4.21. A set of invariants is a generating set for an algebra of difference invariants

if any difference invariant in the algebra can be written as a function of elements of the

generating set and their shifts.

For a right difference moving frame, the identities Ij,j = SjI0,0 and Kk = SkK0 hold, so

Theorem (3.4.20) reduces to the following result:

Theorem 3.4.22. Given a right difference moving frame ρ, the set of all invariants is generated

by the set of components of K0 = ρ1ρ
−1
0 and I0,0 = ρ0(z) · z0.

As K0 is invariant, by the Replacement Rule, it follows that

K0 = ι0(ρ1) (3.4.23)

where ß0(ρ1) denotes the invariantization of ρ1 using ρ0. In matrix form, the elements of ρ1 of

the form zj are replaced by ρ0(z) · zj .

Example 3.4.24. The Euler–Lagrange equations associated to (3.3.13) define a subspace

of the prolongation space M = P
(−2,2)
n (R2), due to the fact that (3.3.13) is a second-order

Lagrangian. Therefore, we will be working on this space for the rest of this example. A

difference moving frame inM coming from (3.4.11) is constructed by considering the sequence

of frames ρk = Skρ0. Recall (3.4.12)
Ix0,j

Iu0,j

1

 = ι0


xj

uj

1

 = ρ0


xj

uj

1

 .
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Figure 3.2: Assuming a left action, in this way, the action by the Maurer-Cartan element
provides a change of coordinates from one set of generating invariants to another.

K0 K1

ρ0(z) · z ρ1(z) · zz

K0 = ρ1ρ
−1
0

ρ0

ρ1

O(z)

Taking the forward shift we obtain


SIx0,j

SIu0,j

1

 = ρ1


xj+1

uj+1

1

 =
(
ρ1ρ
−1
0

)
ρ0


xj+1

uj+1

1

 = K0


Ix0,j+1

Iu0,j+1

1


where the matrix K0 = ρ1ρ

−1
0 = ι0(ρ1) is of the form

K0 =


1

(κ− 1)3
0 − η

(κ− 1)3

0
1

κ− 1
− 1

κ− 1

0 0 1

 , (3.4.25)

where η and κ are defined in (3.4.14). Explicitly it follows that

Iu0,j+1 = (κ− 1) SIu0,j + 1, Ix0,j+1 = (κ− 1)3 SIx0,j + η. (3.4.26)

Note that equations (3.4.15) and (3.4.26) are consistent.

The Maurer–Cartan invariants for this example are the components of K0 and their shifts.

By Theorem (3.4.22), the algebra of invariants is generated by η, κ and their shifts, because

both components of I0,0 = ρ0 · (x0, u0) are zero.

For a complete discussion of Maurer–Cartan invariants for discrete moving frames, with

their recurrence relations and discrete syzygies, see Beffa and Mansfield, [5].
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3.4.2 Differential–difference invariants and the differential–difference syzygy

The introduction of a dummy variable t will be key to obtain the Euler–Lagrange equations in

terms of the invariants.

Consider now a smooth path t 7→ z(t) in the spaceM = MN and consider the induced

group action on the path and its tangent. The group action is extended to the dummy variable

t trivially, so that t is invariant and the action to the first-order jet space ofM as follows:

g · dz(t)

dt
=

d (g · z(t))
dt

.

If the action is free and regular onM, it will also be free and regular on the jet space and the

same frame may be used to find the first-order differential invariants, specifically

Ik,j; t(t) := ρk(z(t)) ·
dzj(t)

dt
. (3.4.27)

Let Ik,j(t) denote the restriction of Ik,j to the path z(t). Since the frame depends on z(t), we

have in general that

Ik,j; t(t) 6=
d

dt
Ik,j(t). (3.4.28)

For the computation of the invariantized form of the Euler–Lagrange equations, the

evolution of the curvature invariants are required to be written in terms of the first order

differential invariants and a linear differential operator, specifically

d

dt
κ = Hσ, (3.4.29)

where κ is a vector of generating invariants, H is a linear difference operator with coefficients

that are functions of κ and its shifts, and σ is a vector of generating first order differential

invariants of the form (3.4.27). There are two methods for finding (3.4.29):

Method 1 If the explicit formulae in the original variables of the curvature invariants are known,

(3.4.29) can be found by direct differentiation followed by the Replacement Rule, (2.4.6).

Method 2 By differentiating Maurer–Cartan matrix as follows

d

dt
Kk =

d

dt

(
ρk+1ρ

−1
k

)
=

(
d

dt
ρk+1

)
ρ−1
k+1Kk −Kk

(
d

dt
ρk

)
ρ−1
k . (3.4.30)

and equating components.

This motivates the following definition:
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Definition 3.4.31 (Curvature Matrix). The curvature matrix Nk is given by

Nk =

(
d

dt
ρk

)
ρ−1
k (3.4.32)

when ρk is in matrix form.

It can be seen that for a right frame, Nk is an invariant matrix that involves the first

order differential invariants. The above derivation applies to all discrete moving frames. For

a difference frame, moreover, Nk = SkN0 and (3.4.30) simplifies to the set of shifts of a

generating syzygy,
d

dt
K0 = (SN0)K0 −K0N0. (3.4.33)

As N0 is invariant, the Replacement Rule (2.4.6) yields the following:

N0 = ι0

(
d

dt
ρ0

)
. (3.4.34)

Finally, the differential–difference syzygies for the diagonal invariants are needed (see

Theorem (3.4.22)). For a linear (matrix) action,

d

dt
I0,0(t) =

(
d

dt
ρ0

)
ρ−1

0 · (ρ0 · z0(t)) + ρ0 ·
d

dt
z0(t) = N0I0,0(t) + I0,0; t(t). (3.4.35)

For nonlinear actions, the techniques described in Mansfield, [70], may be modified to accom-

modate difference moving frames, as we will show in more detail in §5.

In all the examples in this thesis, the diagonal invariants Iα0,0 are normalized to be constants.

However, this does not hold in general as sometimes it is necessary to chose a normalization

that makes off-diagonal invariants constants, in which case some diagonal invariants may

depend on z(t).

Remark 3.4.36. Equation (3.4.29) will be called the reduced form or canonical form of

(3.4.33).

Example 3.4.37. Suppose xj = xj(t) and uj = uj(t), etc. The aim is to compute the

expressions on the original variables of differential invariants and also obtain recurrence

relations. The action on the derivatives x′j = dxj/dt, u′j = duj/dt is induced by the chain rule

(also known as implicit differentiation), as follows:

g · x′j =
d (g · xj)
d (g · t)

=
d (g · xj)

dt
= λ3x′j , g · u′j =

d (g · uj)
d (g · t)

=
d (g · uj)

dt
= λu′j .
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Define


Ix0,j; t

Iu0,j; t

0

 = ρ0


x′j

u′j

0



=


1

(u1 − u0)3
0 − x0

(u1 − u0)3

0
1

u1 − u0
− u0

u1 − u0

0 0 1




x′j

u′j

0

 =


x′j

(u1 − u0)3

u′j
u1 − u0

0

 .

Therefore

Ix0,j; t = ρ0 · x′j =
x′j

(u1 − u0)3 , Iu0,j; t = ρ0 · u′j =
u′j

u1 − u0
. (3.4.38)

Taking the forward shift we obtain


SIx0,j; t

SIu0,j; t

0

 = ρ1


x′j+1

u′j+1

0

 =
(
ρ1ρ
−1
0

)
ρ0


x′j+1

u′j+1

0

 = K0


Ix0,j+1; t

Iu0,j+1; t

0


obtaining 

SIx0,j; t

SIu0,j; t

0

 =


1

(κ− 1)3
0 − η

(κ− 1)3

0
1

κ− 1
− 1

κ− 1

0 0 1




Ix0,j+1; t

Iu0,j+1; t

0

 .

It follows that

SIx0,j; t =
Ix0,j+1; t

(κ− 1)3 , SIu0,j; t =
Iu0,j+1; t

κ− 1
. (3.4.39)

In the same way, one can use the shift operator and ρkρ−1
0 = Kk−1Kk−2 · · ·K0 to obtain all

Ixk,j; t, I
u
k,j; t in terms of the generating Maurer–Cartan invariants,

σx := Ix0,0; t = ι0(x′0) = ρ0 · x′0 =
x′0

(u1 − u0)3 , σu := Iu0,0; t = ι0(u′0) = ρ0 · u′0 =
u′0

u1 − u0
,

and their shifts. The differential–difference syzygies (3.4.33) are now obtained where (3.4.34)

is used to calculate N0. It follows that

N0 = ι0

(
d

dt
ρ0

)
=


−3(ι0(u′1)− ι0(u′0)) 0 −ι0(x′0)

0 −(ι0(u′1)− ι0(u′0)) −ι0(u′0)

0 0 0

 . (3.4.40)
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From (3.4.39) for j = 0 it follows that

Ix0,1; t = (κ− 1)3 SIx0,0; t, Iu0,1; t = (κ− 1) SIu0,0; t

Substituting this into (3.4.40) N0 is obtained in terms of σx, σu and their shifts:

N0 =


−3 ((κ− 1)Sσu − σu) 0 −σx

0 − ((κ− 1)Sσu − σu) −σu

0 0 0

 . (3.4.41)

Inserting (3.4.25) and (3.4.41) into (3.4.33) yields, after equating components and simplifying,

dη

dt
=

[
(κ− 1)3 S− id

]
σx + 3η [ id− (κ− 1)S ]σu,

dκ

dt
= (κ− 1) [ id− κS + (κ1 − 1) S2 ]σu.

(3.4.42)

Therefore, the differential–difference syzygy between the generating difference invariants, η and

κ, and the generating differential invariants, σx and σu, can be put into the reduced form

d

dt

 η

κ

 = H

 σx

σu

 ,

where H is a linear difference operator whose coefficients depend only on the generating

difference invariants and their shifts.

3.5 The Euler–Lagrange equations for a Lie group invariant

Lagrangian

In this section the calculation of the Euler–Lagrange equations is presented, in terms of

invariants, for a Lie group invariant difference Lagrangian.

First, we make the following definition and propositions, which we will prove.

Definition 3.5.1. Given a linear difference operator
∑

j H = cjSj, the adjoint operator H∗ is

defined by

H∗(F ) =
∑
j

S−j(cjF )

and the associated boundary term AH is defined by

FH(G)−H∗(F )G = (S− id)(AH(F,G)),



68 Discrete Moving Frames and Noether’s Finite Difference Conservation Laws

for all appropriate expressions F and G.

Remark 3.5.2. Note that in the above definition cj denote the coefficients of Sj for each j,

not the j-shift of c0.

We now make the following remark:

Proposition 3.5.3. The equality

(Sk − id) = (S− id)

k−1∑
j=0

Sj

holds.

Proof. We prove this equality by induction. For k = 1 we have

(S− id)
0∑
j=0

Sj = (S− id) .

Let us suppose the equality holds for k. For k + 1 we have

(Sk+1 − id) = (Sk+1 − Sk + Sk − id)

= Sk (S− id) + Sk − id

= Sk (S− id) + (S− id)
k−1∑
j=0

Sj

= (S− id)

Sk +

k−1∑
j=0

Sj


= (S− id)

k∑
j=0

Sj

so it holds for k + 1 and therefore, by induction it holds for all k.

Proposition 3.5.4. For H =
∑m

k=0 ckSk where H∗ =
∑m

k=0 (S−kck) S−k it follows that

FH(G)−H∗(F )G = (S− id)AH(F,G)

where

AH(F,G) =
m∑
k−1

k−1∑
j=0

Sj

 (S−k (ckF )G)

for all appropriate expressions F and G.
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Proof.

FH(G)−H∗(F )G = F
m∑
k=0

ck (SkG)−
m∑
k=0

(S−k(ckF ))G (3.5.5)

=
m∑
k=0

(Fck (SkG)− (S−k(ckF ))G) (3.5.6)

=
m∑
k=0

((Sk − id) (S−k(ckF ))G) (3.5.7)

=
m∑
k=0

(S− id)

k−1∑
j=0

Sj

 (S−k (ckF )G)

 (3.5.8)

= (S− id)
m∑
k=0

k−1∑
j=0

Sj

 (S−k (ckF )G)

 (3.5.9)

where we have used Proposition 3.5.3.

Suppose a group action G×M →M is given and that a difference frame for this action

has been found. Any Lie group invariant Lagrangian L(n,u0, . . . ,uJ) can be written, in terms

of the generating invariants κ and their shifts κj = Sjκ, as L(n,κ0, . . . ,κJ1) for some J1. The

argument from the associated functional is dropped, setting

L =
∑

L(n,u0, . . . ,uJ) =
∑

L(n,κ0, . . . ,κJ1).

The discrete version of the Fundamental Lema of Calculus of Variations is as follows:

Theorem 3.5.10. Consider the inner product

< f, g >:=
∑

fngn

on the space `2

`2 =
{∑

fn

∣∣∣∑ f2
n <∞

}
.

If

< f, g >= 0 for all g

then f = 0.

Now the Invariant Euler–Lagrange Equations theorem is given:

Theorem 3.5.11 (Invariant Euler–Lagrange Equations). (See Mansfield, R–E, Hydon and

Peng, [74]). Let L be a Lagrangian functional whose invariant Lagrangian is given in terms of
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the generating invariants as

L =
∑

L(n,κ0, . . . ,κJ1),

and suppose that the differential–difference syzygies are

dκ

dt
= Hσ.

Then, it follows that

Eu(L) · u′0 =
(
H∗Eκ(L)

)
· σ, (3.5.12)

where Eκ(L) is the difference Euler operator with respect to κ and where here · denotes the

inner product. Consequently, the invariantization of the original Euler–Lagrange equations is

ι0
(
Eu(L)

)
= H∗Eκ(L). (3.5.13)

Proof. Set u = u(t). In order to effect the variation the calculation of

d

dt
L =

∑{
Eu(L) · u′0 + (S− id)(Au)

}
(3.5.14)

is replicated but computing it in terms of the invariants. This gives dL/dt =
∑

dL/dt, where

dL

dt
=

∂L

∂καj

dκαj
dt

=
∂L

∂καj
Sj

dκα

dt

=

(
S−j

∂L

∂καj

)
dκα

dt
+ (S− id)(Aκ)

= Eκ(L) · dκ

dt
+ (S− id)(Aκ)

= Eκ(L) · Hσ + (S− id)(Aκ)

=
(
H∗Eκ(L)

)
· σ + (S− id){Aκ +AH}.

(3.5.15)

The boundary terms arising from the first and second summations by parts are (S− id)Aκ

and (S − id)AH respectively where Aκ is linear in the dκα/dt and their shifts, while AH is

linear in the σα and their shifts. Also note that σ is the invariantized variation. By (3.5.10),

the identity (3.5.12) holds. Now note that

ι0(u′0) = σ.

Therefore, applying ι0 to (3.5.12) and comparing components of σ we obtain (3.5.13).
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Hence, the original Euler–Lagrange equations, in invariant form, are equivalent to

H∗Eκ(L) = 0.

Example 3.5.16. Consider an invariant Lagrangian of the form

L =
∑

L(η, κ,Sκ).

Making use of ηj = Sjη and κj = Sjκ we can write (3.4.42) as

dη

dt
= H11σ

x +H12σ
u,

dκ

dt
= H22σ

u, (3.5.17)

where
H11 = (κ− 1)3 S− id, H12 = 3η{id− (κ− 1) S},

H22 = (κ− 1) {id− κS + (κ1 − 1) S2}.

The invariantized Euler–Lagrange equations are by Theorem 3.5.11

H∗11Eη(L) = 0, H∗12Eη(L) +H∗22Eκ(L) = 0,

where
H∗11 = (κ−1 − 1)3 S−1 − id, H∗12 = 3η id− 3η−1(κ−1 − 1) S−1,

H∗22 = (κ− 1)id− κ−1(κ−1 − 1)S−1 + (κ−2 − 1)(κ−1 − 1)S−2.

Note that (3.3.13) can be written in terms of the invariants as follows

ι0

(
x1 − x0

{(u2 − u1)(u1 − u0)}3/2

)
=

ι0(x1)− ι0(x0)

{(ι0(u2)− ι0(u1))(ι0(u1)− ι0(u0))}3/2
= η(κ− 1)−3/2.

Therefore

Eη = (κ− 1)−3/2, Eκ = −3
2 η(κ− 1)−5/2.

Hence, the invariantized Euler–Lagrange equations are

(κ−1 − 1)3/2 − (κ− 1)−3/2 = 0, (3.5.18)

3
2

{
η(κ−1)−3/2−η−1(κ−1−1)−1/2+η−1(κ−1−1)−3/2−η−2(κ−1−1)(κ−2−1)−3/2

}
= 0. (3.5.19)

From (3.5.18)

κ =
κ−1

κ−1 − 1
.
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Therefore

κ1 =
κ

κ− 1
=

κ−1

κ−1−1
κ−1

κ−1−1 − 1
= κ−1.

It follows that

κj =


κ−1

κ−1 − 1
, if j is even,

κ−1, if j is odd.

Shifting backwards by S−j and setting κ−1−1 to be k1 where k1 is an arbitrary nonzero constant,

assuming that L is real-valued (κ > 1), the general solution of (3.5.18) is

κ = 1 + 1
4

[
k1 + k−1

1 + (k1 − k−1
1 )(−1)n

]2
. (3.5.20)

Therefore (3.5.19) simplifies to

k
3(−1)n+1

1 η +
(
k

3(−1)n

1 − k(−1)n

1

)
η−1 − k5(−1)n+1

1 η−2 = 0,

whose general solution is

η = k
3(−1)n

1

{
k2

(
(n+ 1)k

(−1)n+1

1 − nk(−1)n

1

)
+ k3(−1)n

}
, (3.5.21)

where k2 and k3 are arbitrary constants.

3.6 On infinitesimals and the Adjoint action

In §2.2, we introduced the matrix of infinitesimals and the Adjoint action as presented in the

series of papers by Gonçalves and Mansfield, [32, 33, 34]. Now we present the same concept as

derived in Mansfield, R–E, Hydon and Peng, [74] and Mansfield and R–E, [75] and we adopt

this form for the discrete case as stated in (2.2).

Recall (2.1.29). The infinitesimal generator is extended to the prolongation spaceM =

P
(J0,J)
n (U) by the prolongation formula

v(uαj ) =
d
dt

∣∣∣∣
t=0

γ(t) · uαj = φαj = Sjφ
α
0 , J0 ≤ j ≤ J,

see Hydon, [48]. In coordinates, the prolonged infinitesimal generator is

v = φαj
∂

∂uαj
.

Lemma 3.6.1. If a Lagrangian L[u] is invariant under the group action G×M→M, the
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components of the infinitesimal generator of the group action given by definition (2.1.29) form

the characteristic of a variational symmetry of L[u], as defined in definition 3.3.8.

Proof. Since the Lagrangian L is invariant, it follows that

L(u0,u1, . . . ,uJ) = L(g · u0, g · u1, . . . , g · uJ)

for all g. Thus

0 =
d
dt

∣∣∣∣
t=0

L (γ(t) · u0, γ(t) · u1, . . . ) = v(L) = φαj
∂L

∂uαj

where

φαj =
d
dt

∣∣∣∣
t=0

γ(t) · uαj .

By Definition 3.3.8, the components φα of the infinitesimal generator are the components of

the characteristic of a variational symmetry of L.

Each infinitesimal generator is determined by γ ′(0) ∈ TeG. Recall form (2.1.4) that TeG

is isomorphic to the Lie algebra g, which is the set of right-invariant vector fields on G.

Right-invariance yields a Lie algebra homomorphism from g to the set X of infinitesimal

generators of symmetries (see Olver, [84] for details). If the group action is faithful, this is an

isomorphism.

Also recall that the R-dimensional Lie group G has coordinates a = (a1, . . . , aR) in a

neighbourhood of the identity, e, so that the general group element is Γ(a), where Γ(0) = e.

Given local coordinates u = (u1, . . . , uq) on U , let û = Γ(a) · u. By varying each independent

parameter ar in turn, the process above yields R infinitesimal generators,

vr = ξαr (u)∂uα , where ξαr =
∂ûα

∂ar

∣∣∣
a=0

. (3.6.2)

These form a basis for X .

As X is homomorphic to g, the Adjoint representation of G on g gives rise to the Adjoint

representation of G on X . Given g ∈ G, recall from (2.1.4) that the Adjoint representation

Adg is the tangent map on g induced by the conjugation h 7→ ghg−1. The corresponding

Adjoint representation on X is expressed by a matrix, Ad(g), which is obtained as follows.

Having calculated a basis for X ,

vr = ξαr (u) ∂uα , r = 1, . . . , R,

let ũ = g · u and define

ṽr = ξαr (ũ) ∂ũα , r = 1, . . . , R.



74 Discrete Moving Frames and Noether’s Finite Difference Conservation Laws

Now express each vr in terms of ṽ1, . . . , ṽR and determine Ad(g) from the identity

(v1 · · · vR) = (ṽ1 · · · ṽR)Ad(g). (3.6.3)

Regarding the infinitesimal generators as differential operators and applying the identity

(3.6.3) to each ũα in turn, one obtains

(v1(ũα) · · · vR(ũα)) = (ξα1 (ũ) · · · ξαR(ũ))Ad(g). (3.6.4)

Example 3.6.5. Recall the action (3.4.8)

x̃ = λ3x+ a, ũ = λu+ b.

The group parameters are λ, a and b with identity (λ, a, b) = (1, 0, 0). It follows that

∂x̃

∂λ

∣∣∣
g=e

= 3x,
∂ũα

∂λ

∣∣∣
g=e

= u,
∂x̃

∂a

∣∣∣
g=e

= 1,
∂ũα

∂a

∣∣∣
g=e

= 0,
∂x̃

∂b

∣∣∣
g=e

= 0,
∂ũα

∂b

∣∣∣
g=e

= 1.

Hence, the table of infinitesimals is of the form

x u

λ 3x u

a 1 0

b 0 1

.

Therefore the vector of infinitesimals are of the form

vλ = 3x∂x + u∂u, va = ∂x, vb = ∂u.

Note that

∂x =
∂x̃

∂x
∂x̃ +

∂ũ

∂x
∂ũ, ∂u =

∂x̃

∂u
∂x̃ +

∂ũ

∂u
∂ũ

so

∂x = λ3∂x̃, ∂u = λ∂ũ.

It also follows from (3.4.8)

x = λ−3(x̃− a), u = λ−1(ũ− b).

Therefore
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vλ = 3x∂x + u∂u

= 3λ−3(x̃− a)λ3∂x̃ + λ−1(ũ− b)λ∂ũ

= 3(x̃− a)∂x̃ + (ũ− b)∂ũ

= 3x̃∂x̃ + ũ∂ũ − 3a∂x̃ − b∂ũ,

va = ∂x = λ3∂x̃,

vb = ∂u = λ∂ũ.

Hence

vλ = ṽλ − 3aṽa − bṽb, va = λ3ṽa and vb = λṽb.

Consequently,

(v1 v2 v3) = (ṽ1 ṽ2 ṽ3)Ad(g), where Ad(g) =


1 0 0

−3a λ3 0

−b 0 λ

 .

The matrix of infinitesimals introduced already in (2.2.1) is called in [74] matrix of

characteristics and it is given by the following definition:

Definition 3.6.6. The matrix of characteristics is defined to be the q ×R matrix

Φ(u) =
(
ξαr (u)

)
. (3.6.7)

The equivalent lemma to (2.2.4) is as follows:

Lemma 3.6.8. The follow identity holds

(
∂ũ

∂u

)
Φ(u) = Φ(ũ)Ad(g), (3.6.9)

where (∂ũ/∂u) is the Jacobian matrix.

The equation (3.6.9) can be extended to prolongation spaces with coordinates z =

(uJ0 , . . . ,uJ), where J0 ≤ 0 and J ≥ 0; the matrix of prolonged infinitesimals is defined

to be

Φ(z) =


Φ(uJ0)

...

Φ(uJ)

 .
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The infinitesimal generators vr, prolonged to all variables in z, satisfy (3.6.3), where the

tilde now denotes replacement of z by g · z. Applying this identity to g · z gives

(
∂(g · z)
∂z

)
Φ(z) = Φ(g · z)Ad(g). (3.6.10)

Example 3.6.11. It is easily checked that Equation (2.26) holds. Indeed, setting z =

(x0, u0, x1, u1) it follows that


λ3 0 0 0

0 λ 0 0

0 0 λ3 0

0 0 0 λ




3x0 1 0

u0 0 1

3x1 1 0

u1 0 1

 =


3x̃0 1 0

ũ0 0 1

3x̃1 1 0

ũ1 0 1




1 0 0

−3a λ3 0

−b 0 λ

 .

3.7 Conservation laws

In general, the conservation laws are not invariant. However, they are equivariant as they can

be written in terms of invariants and the frame.

In the non invariantized version of the calculation of the Euler–Lagrange equations and

boundary terms, the dummy variable t is taken to effect the variation to be a group parameter

for G, under which the Lagrangian is invariant. Then the resulting boundary terms yield

conservation laws, which gives the differential–difference version of Noether’s theorem. For

more details about this version of Noether’s theorem see Peng, [92]. It is then useful to identify

t with a group parameter by considering the following path in G:

t 7→ γr(t) = Γ
(
a1(t), . . . , aR(t)

)
, where ar(t) = t and al(t) = 0, l 6= r. (3.7.1)

Recall from §3.6 that a 7→ Γ(a) expresses the general group element in terms of the coordinates

a. On this path, each (u0)′ at t = 0 is an infinitesimal generator, from (3.6.2).

For the invariantized calculation, the dummy variable effecting the variation is identified

with each group parameter in turn. Recall the identity

d

dt
L (n,κ, . . . ,SJ1(κ)) =

(
H∗Eκ(L)

)
· σ + (S− id){Aκ +AH} (3.7.2)

from the proof of Theorem 3.5.11. Also recall that Aκ is linear in dκα/dt and their shifts, while

AH is linear in the σα and their shifts. As t is a group parameter and each κα is invariant,
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dκα/dt = 0. Hence, (3.7.2) reduces to

(
H∗Eκ(L)

)
· σ + (S− id)AH = 0, (3.7.3)

so (S− id)AH = 0 on all solutions of the invariantized Euler–Lagrange equations H∗Eκ(L) = 0.

From this condition, the conservation laws can be derived.

Theorem 3.7.4 (See Mansfield, R–E, Hydon and Peng, [74]). Suppose that the conditions of

Theorem 3.5.11 hold. Write

AH = CjαSj(σ
α),

where each Cjα depends only on n,κ and its shifts. Let Φα(u0) be the row of the matrix of

characteristics corresponding to the dependent variable uα0 and denote its invariantization by

Φα
0 (I) = Φα(ρ0 · u0). Then the R conservation laws in row vector form amount to

CjαSj{Φα
0 (I)Ad (ρ0)} = 0. (3.7.5)

That is, to obtain the conservation laws, it is sufficient to make the replacement

σα 7→ {Φα(g · u0)Ad(g)}
∣∣
g=ρ0

(3.7.6)

in AH.

Proof. Recall that

σα = ρ0 · (uα0 )′ =

(
d

dt
g · uα0

) ∣∣∣
g=ρ0

. (3.7.7)

To obtain the conservation laws, conflate t with the group parameter ar, making the replacement

ρ0 · (uα0 )′ 7→ d

dt

∣∣∣
t=0

ρ0 · γr(t) · uα0 (3.7.8)

in the boundary terms AH, where γr(t) is the path defined in (3.7.1). Using the chain rule, it

follows that for any g ∈ G,

d

dt

∣∣∣
t=0

(g · γr(t) · uα0 ) =

∂ (g · γr(t) · uα0 )

∂
(
γr(t) · uβj

)
∣∣∣∣∣

t=0

(
d

dt

∣∣∣∣
t=0

γr(t) · uβj

)

=
∂ (g · uα0 )

∂uβj

(
d

dt

∣∣∣∣
t=0

γr(t) · uβj

)
.

(3.7.9)
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In matrix form, (3.7.9) amounts to the following

d

dt

∣∣∣
t=0

(g · γr(t) · uα0 ) =

(
∂(g · z)
∂z

Φ(z)

)
(uα0 ,r)

=
(
Φ(g · z)Ad(g)

)
(uα0 ,r)

,

where (3.6.10) has been taken into account and where (uα0 , r) denotes the entry in the row

corresponding to uα0 and the rth column. Setting g = ρ0, the required replacement is

σα 7→
(
Φ(ρ0 · z)Ad(ρ0)

)
(uα0 ,r)

=
(
Φ(ρ0 · u0)Ad(ρ0)

)α
r
.

By using each parameter ar in turn, σα is replaced by a row vector,

σα 7→ Φα
0 (I)Ad(ρ0),

as required.

Note that Sjρ0 = ρj , so the conservation laws amount to

(S− id)
(
Cαj
(
SjΦ

α
0 (I)

)
Ad (ρj)

)
= 0. (3.7.10)

Also Ad(ρj)Ad(ρ0)−1 = Ad(ρjρ
−1
0 ) is invariant, which leads to the following corollary:

Corollary 3.7.11. The conservation laws for a difference frame may be written in the form

(S− id){V(I)Ad(ρ0)} = 0 (3.7.12)

where V(I) = (V1 · · · VR) is an invariant row vector. Specifically,

V(I) = Cjα
(
SjΦ

α
0 (I)

)
Ad
(
ρjρ
−1
0

)
. (3.7.13)

Corollary 3.7.14. On any solution of the invariantized Euler–Lagrange equations,

V(I)Ad (ρ0) = c, (3.7.15)

for some constant row vector c = (c1 · · · cR).

As the conservation laws depend only on the terms arising from AH, they can be calculated

for all Lagrangians in the relevant invariance class, in terms of the Eκ(L), independently of

the precise form that the Lagrangian takes.

Example 3.7.16. In order to compute the conservation laws, the boundary terms coming

from performing Calculus of Variations need to be performed first. To do this we use (3.5.4).
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Doing the calculation (3.5.15) while keeping track of the terms in AH we obtain

d

dt
L(η, κ, Sκ) = ι0{Ex(L)}σx + ι0{Eu(L)}σu + (S− id)Aκ

+ (S− id)
(
S−1{(κ− 1)3 Eη(L)} σx

)
+ (S− id) (−S−1{3η(κ− 1)Eη(L) + κ(κ− 1)Eκ(L)} σu)

+ (S2 − id) (S−2{(κ− 1)(κ1 − 1)Eκ(L)} σu) ,

where

Aκ =
dκ

dt
S−1

(
∂L

∂Sκ

)
and

AH = C0
x σ

x + C0
u σ

u + C1
u S(σu), (3.7.17)

where

C0
x = S−1{(κ− 1)3Eη(L)},

C0
u = −S−1{3η(κ− 1)Eη(L) + κ(κ− 1)Eκ(L)}+ S−2{(κ− 1)(κ1 − 1)Eκ(L)},

C1
u = S−1 {(κ− 1)(κ1 − 1)Eκ(L)} .

For this example the Adjoint representation evaluated on the frame is

Ad(ρ0) =


1 0 0

3x0

(u1 − u0)3

1

(u1 − u0)3
0

u0

u1 − u0
0

1

u1 − u0


and the invariantized form of the matrix of infinitesimals restricted to the variables x0 and u0

is

Φ0(I) =

 Φx
0

Φu
0

 = ι0

3x0 1 0

u0 0 1

 =

0 1 0

0 0 1

 .

Therefore, by (3.7.5), the conservation laws are of the form (S− id)AH = 0, where

AH = C0
x(0 1 0)Ad(ρ0) + C0

u(0 0 1)Ad(ρ0) + C1
uS
{

(0 0 1)Ad(ρ0)
}

=
[
C0
x(0 1 0) + C0

u(0 0 1) + C1
u(0 0 1)Ad(ρ1ρ

−1
0 )
]
Ad(ρ0).
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Note that the last equality is written in the form (3.7.12). Taking into account that

Ad(ρ1ρ
−1
0 ) = Ad(K0) = ι0(Ad(ρ1)) =


1 0 0
3η

(κ− 1)3

1

(κ− 1)3
0

1

κ− 1
0

1

κ− 1


it follows that AH = V(I)Ad(ρ0), where

V(I) =


S−1

{
(κ−1)Eκ(L)

}
S−1

{
(κ−1)3 Eη(L)

}
−S−1

{
3η(κ−1)Eη(L) + (κ−1)2 Eκ(L)

}
+ S−2

{
(κ−1)(κ1−1)Eκ(L)

}


T

.

For the particular Lagrangian (3.3.13), the solutions (3.5.20), (3.5.21) of the invariantized

Euler–Lagrange equations yield

V1 = − 3
2 η−1(κ−1−1)−3/2 = −3

4k2

[
k1+k−1

1 +(k1−k−1
1 )(2n−1)(−1)n

]
+ 3

2k3(−1)n,

V2 = (κ−1−1)3/2 = k
3(−1)n+1

1 , (3.7.18)

V3 = −3
2

[
η(κ−1)−3/2 + η−1(κ−1−1)−3/2

]
= −3k2k

(−1)n+1

1 .

In the used coordinates, the first element of (S− id)AH = 0 is the conservation law due to the

scaling invariance, the second is due to invariance under translation of x, and the third is due

to translation of u.

Corollary (3.7.11) can be used to write an alternate form of the Euler–Lagrange equations.

Equation (3.7.12) yields

SV(I)Ad(ρ1) = V(I)Ad(ρ0)

and therefore

V(I) = SV(I)Ad(K0). (3.7.19)

Corollary 3.7.20. If the components of V(I) are not all zero, the components of the vector

equation (3.7.19) are equivalent to the Euler–Lagrange equations.

Proof. Using (3.7.3) and (3.7.4) it follows that

0 =
(
H∗Eκ(L)

)
· σ + (S− id)V(I)Ad(ρ0)

from where the result follows.



3.8. Solving for the original dependent variables u0, once the generating invariants are known 81

Remark 3.7.21. There is another way to calculate the laws for difference frames. By

Corollary (3.7.11), one can use symbolic software to calculate the conservation laws in the

original variables, and then use the Replacement Rule (2.4.6), to obtain the invariantized first

integrals V(I) = ι0{Au(n,φ)}.

This follows from the fact that the Replacement Rule (2.4.6) sends ρ0 to the identity matrix.

The recurrence formulae can then be used to write V(I) in terms of the generating invariants,

namely, the methods to solve for the extremals in the original variables, given in the next

section, can still be used without having to perform the more complex, invariantized summation

by parts computation.

Example 3.7.22. For our running example, the invariantized first integrals are

1. For φx = 1 and φu = 0 we have the first integral

ι0

(
S−1

∂L

∂x1

)
= c1.

2. For φx = 0 and φu = 1 we have the first integral

ι0

(
S−1

∂L

∂u2
− ∂L

∂u0

)
= c2.

3. For φx = 3x and φu = u we have the first integral

ι0

(
S−1

∂L

∂u2

)
c3.

Note that c1, c2 and c3 are constants of integration.

3.8 Solving for the original dependent variables u0, once the generating invariants are

known

In the one dimensional case the solutions u0 to the original Euler–Lagrange equations, can

be obtained from the conservation laws once the invariant Euler–Lagrange equations have

been solved for the generating invariants κα. The starting-point is that κ is a known function

of n and some arbitrary constants, which are determined if initial data are specified. There

are three methods, depending on what it is known. The running example is used in order to

illustrate each method. Some applications will be shown in the next chapter.
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3.8.1 How to solve for u0 from the invariants, knowing only the Maurer–

Cartan matrix.

This method can be used for any invariant difference system. Indeed, when the Adjoint

representation of the Lie group is trivial, it is the only available method.

Assume that the Maurer–Cartan matrix K0 = ρ1ρ
−1
0 is known in terms of the generating

invariants, so that it can be written in terms of n and some arbitary constants. This gives the

system of recurrence relations for ρ0

ρ1 = K0ρ0. (3.8.1)

Definition 3.8.2. The system (3.8.1) is known as the set of Maurer–Cartan equations for

the frame ρ.

Once the Maurer–Cartan equations for ρ0 have been solved, u0 can be obtained from

uα0 = ρ−1
0 (ρ0 · uα0 ) = ρ−1

0 Iα0,0 (3.8.3)

where the invariant Iα0,0 is known, either from the normalization equations or from the set of

generating invariants already determined.

Example 3.8.4. From equation (3.4.25), the Maurer–Cartan matrix is

K0 =


(κ− 1)−3 0 −η(κ− 1)−3

0 (κ− 1)−1 −(κ− 1)−1

0 0 1

 .

Setting λk, ak and bk to be the parameter values for the group element ρk, the set of Maurer–

Cartan equations is 
λ3

1 0 a1

0 λ1 b1

0 0 1

 = K0


λ3

0 0 a0

0 λ0 b0

0 0 1

 .

This gives three recurrence relations for the group parameters:

λ1 = (κ− 1)−1λ0,

a1 = (κ− 1)−3 (a0 − η) ,

b1 = (κ− 1)−1 (b0 − 1) .

(3.8.5)
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Now suppose that the general solution of these recurrence relations is known. It follows that

x0 = ρ−1
0 · (ρ0 · x0) = λ−3

0 (ρ0 · x0 − a0) = −λ−3
0 a0,

u0 = ρ−1
0 · (ρ0 · u0) = λ−1

0 (ρ0 · u0 − b0) = −λ−1
0 b0

where the normalization equations ρ0 · x0 = 0 and ρ0 · u0 = 0 have been used.

3.8.2 Solving for u0 from the invariants and conservation laws when the

Adjoint representation is nontrivial

This method will be used when the Adjoint representation is not the identity representation.

Recall

V(I)Ad(ρ0) = c (3.8.6)

where c is a constant row vector. The components of V(I) depend only on κ, and they are

therefore known functions of n. As Ad(g) is known in terms of the group parameters, equation

(3.8.6) yields equations for these parameters.

If the Adjoint action of the group on its Lie algebra is not transitive, the algebraic system

of equations for the parameters may be under-determined. To complete the solution, it is then

necessary to add the Maurer-Cartan equations (3.8.1) to this system. Even so, the algebraic

equations coming from the conservation laws can ease considerably the problem of solving the

Maurer–Cartan equations alone. Once ρ0 is known as a function of n, Equation (3.8.3) yields

u0, as before.

Example 3.8.7. For the running example, (3.8.6) is

(V1 V2 V3)


1 0 0

−3a0 λ3
0 0

−b0 0 λ0

 = (c1 c2 c3).

From the third column, λ0 = c3/V3. Therefore, a first integral of the Euler–Lagrange equations

is
V2

(V3)3
=

c2

(c3)3
. (3.8.8)

The remaining equation is a linear expression for a0 and b0,

3a0V2 + b0V3 − V1 + c1 = 0. (3.8.9)

If one of the second and third equations of (3.8.5) can be solved, (3.8.9) yields the remaining

parameter.
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3.8.3 Solving for u0 from κ from the conservation laws, and with a non-

trivial Adjoint representation of ρ which is known as a function of

u0

Consider the conservation laws V(I)Ad(ρ0) = c and suppose that ρ0(u) is known as a function

of the dependent variables. Sometimes deriving explicit equations for u which are simple to

solve is possible.

Example 3.8.10. The conservation laws amount to

(V1 V2 V3)


1 0 0

3x0

(u1 − u0)3

1

(u1 − u0)3
0

u0

u1 − u0
0

1

u1 − u0

 = (c1 c2 c3). (3.8.11)

The first integral (3.8.8) is obtained once more and the simple recurrence relation from the

third column

u1 − u0 = V3/c3. (3.8.12)

Solving for u0, one can obtain x0 from the first column of (3.8.11).

For the Lagrangian (3.3.13), each Vr is given (3.7.18) in terms of n and ki, i = 1, 2, 3.

The first integral (3.8.8) yields c3 = −3k2 c
1/3
2 . Assuming that k2 is nonzero and defining

k4 = c
−1/3
2 , the general solution of (3.8.12) is

u0 = 1
4k4

[
2(k1+k−1

1 )n+ (k1−k−1
1 )(−1)n + k5

]
,

where k5 is an arbitrary constant. Finally, the first column of (3.8.11) gives

x0 = k3
4

[
k2nk

(−1)n

1 − 1
2k3(−1)n + k6

]
,

where k6 = c1/3 + k2(k1+k−1
1 +k5)/4 is the remaining arbitrary constant.



Applications for Finite Difference Noether’s

Conservation Laws

In this chapter, we present applications for difference moving frames and finite difference

Noether’s conservation laws for some particular Lie groups. We first show another use of

difference moving frames: to create symmetry-preserving numerical approximations. §4.1

illustrates this for the Euler elastica, which is invariant under the Euclidean group action in

R2. We extend the calculations appearing in Mansfield, R–E, Hydon and Peng, [74]. For this

example, we demonstrate how to obtain discrete invariants that have the correct continuum

limit to their smooth counterparts. The specific difference Lagrangian we consider is the

discrete analogue of that for Euler’s elastica, and we show how our results compare with that

of the smooth case. We also show that the discrete Euler–Lagrange system is a variational

integrator that has the analogues of all three conservation laws. In §4.2, we consider a complex

Lie group, specifically the special unitary group in C2. We obtain a difference moving frame

in two ways and perform invariant Calculus of Variations using the latest one. Further, we

obtain the conservation laws and obtain the moving frame for the conjugate action. In §4.3,

we consider three different semisimple Lie group actions and we extend the computations in

Mansfield and R–E, [75]. We show how to solve the integration problem taking advantage of the

properties of these groups after obtaining the Euler–Lagrange equations and the conservation

laws for Lagrangians that are invariant under these Lie group actions.

85
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4.1 Study of the discrete Euler’s elastica

Let us consider the smooth variational problem commonly known as Euler’s elastica, namely

L =

∫
κ2ds, κ =

uxx

(1 + u2
x)3/2

, ds =
√

1 + u2
x dx, (4.1.1)

where κ is the Euclidean curvature and s is the Euclidean arc length. This problem was

studied by Euler in 1744 [20] in which he obtains the Euler–Lagrange equation

κss +
1

2
κ3 = 0,

and a first integral. For a mathematical history of the problem see Leiven, [66].

In this section, we study a discrete variational problem analogous to this one.

The aim is to design the discrete Lagrangian such that the discrete Euler–Lagrange

equations and the discrete conservation laws become the smooth Euler–Lagrange equations

and conservation laws when taking an appropriate continuum limit. This allows us to construct

a variational integrator whose discrete conservation laws approximate the smooth ones.

In the smooth cases, the conservation of energy is achieved when a Lagrangian is invariant

under translations in the independent variable. In order to obtain the difference analogue,

the independent variable needs to appear as a discrete dependent variable and the difference

Lagrangian needs to be invariant under translation in this dependent variable. In this way,

the conservation of energy in the smooth case becomes a conservation of a linear momentum

in the difference analogue.

Note: That our method works in general is an open conjecture. In order to evidence this

conjecture, we calculate all the relevant quantities in detail.

Review of the smooth Euler’s elastica

This example was studied by Gonçalves and Mansfield in [34]. The Euclidean group of rotations

and translations in the plane acts on curves (x, u(x)) as

 x

u

 7→ Rθ

 x

u

+

 a

b

 =

 x̃

ũ

 , Rθ =

 cos θ − sin θ

sin θ cos θ

 . (4.1.2)

For the normalization equations

x̃ = 0, ũ = 0, ũx = 0, (4.1.3)
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solving by the group parameters, we obtain the smooth moving frame

ρ̂ =

 Rθ −Rθ

 x

u


0 1

 , (4.1.4)

where Rθ is the 2 by 2 rotation matrix with sin θ = −ux/
√

1 + u2
x and cos θ = 1/

√
1 + u2

x.

One can compute the curvature matrix with respect to s which has this form

ρ̂sρ̂
−1 =

1√
1 + u2

x

ρ̂xρ̂
−1 =


0 κ −1

−κ 0 0

0 0 0

 . (4.1.5)

It was shown in Gonçalves and Mansfield, [34], and Mansfield [70] that the conservation laws

for the Lagrangian (4.1.1) are, in terms of the moving frame ρ̂ derivatives with respect to the

arc length s, of the form

(−κ2 −2κs 2κ)


xs us xus − uxs

−us xs xxs + uus

0 0 1


︸ ︷︷ ︸

Ad(ρ̂ )

= (c1 c2 c3). (4.1.6)

Remark 4.1.7. Note that in (4.1.6) we have used the convention (3.7.15) as appearing in

[74].

Using the identity x2
s + u2

s = 1 in (4.1.6) we obtain

(−κ2 −2κs 2κ) = (c1 c2 c3)


xs −us u

us xs −x

0 0 1

 . (4.1.8)

Using the same identity, from the first of second column, we have that

κ4 + 4κ2
s = c2

1 + c2
2 (4.1.9)

which gives a first integral for the Euler–Lagrange equation. Eliminating xs from the first two

columns of (4.1.8) we obtain

us =
1

c2
1 + c2

2

(
2c1κs − c2κ

2
)
. (4.1.10)
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Figure 4.1: Smooth moving frame and discrete moving frame for SE(2)
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θ0

(x−1, u−1)

(x0, u0)

(x1, u1)

(x2, u2)

By solving (4.1.9), (4.1.10) and the third column of (4.1.8) in order to determine x, we obtain

the smooth solution in Figure (4.2) once the constants of integration c1 and c2 are determined.

Discrete Euler’s elastica

We want to take a difference frame with matching normalization equations and to take the

discrete analogues of the curvature and the arc length. First, we consider the action of SE(2)

in the plane where the points uj have coordinates (xj , uj) xj

uj

 7→ Rθ

 xj

uj

+

 a

b

 =

 x̃j

ũj

 . (4.1.11)

We take the analogous normalization equations to (4.1.3) to be

ρ0 · x0 = 0, ρ0 · u0 = 0, ρ0 · u1 = 0.

Solving for the parameters of the Lie group, we obtain the moving frame

ρ0 =

 Rθ0 −Rθ0

 x0

u0


0 1

 ,

using the standard representation (2.2) for n = 3. Note that Rθ0 is the 2 by 2 rotation matrix

that sends u1−u0 to a row vector with a zero second component, so that sin θ0 = −(u1−u0)/`

and cos θ0 = (x1 − x0)/`, where ` = |u1 − u0|.
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The Maurer-Cartan martix is of the form

K0 = ρ1ρ
−1
0 =

 Rhθ −Rθ1

 x1 − x0

u1 − u0


0 1

 =

 Rhθ −Rhθ

 `

0


0 1

 ,

where hθ = θ1 − θ0. Hence the generating invariants are hθ and `.

In order to obtain the discrete analogues of curvature and arc length, we approximate

ρ̂xρ̂
−1 by (ρ̂(x+ hx)− ρ̂(x)) ρ̂−1/hx =

(
ρ̂(x+ hx)ρ̂−1 − Id3

)
/hx, where Id3 is the 3 by 3

identity matrix, and ρ̂(x+ hx)ρ̂−1 to be approximated by K0 when x = x0 and hx = x1 − x0.

One can observe that the component of the first row and second column of the matrix

K0 − Id is − sinhθ and that, to first order in hθ, the component of the first row and third

column of the matrix K0 − Id is −`. Therefore, we can take the discrete analogue of ds to be

` and the discrete analogue of κ to be

κ = `−1 sinhθ.

Hence, we consider the variational problem

L =
∑

`−1 sin2 hθ,

which is the discrete analogue to (4.1.1).

It is possible to compute the evolution of the curvature invariants hθ and ` without

computing the curvature matrices and the differential–difference syzygy as mentioned in

(3.4.2). One can differentiate the expression in the original variables of the invariants and then

use the Replacement Rule, 2.4.6. This is done as follows:

First of all, the evolution of ` is computed by taking the derivative of |u1−u0| with respect

to t, i,e

d`

dt
=

d|u1 − u0|
dt

=
d

dt

√
(x1 − x0)2 + (u1 − u0)2

=
(x1 − x0)(x′1 − x′0) + (u1 − u0)(u′1 − u′0)

|u1 − u0|

= Ix0,1;t − Ix0,0;t.

In order to compute the evolution of hθ = θ1 − θ0 we first compute the evolution of
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θ0 and then we apply the forward difference operator (S − id) to the obtained result as

θ1− θ0 = (S− id)θ0. We make use of the expression of cos θ0 and sin θ0 in terms of the original

variables.

We have, on one hand

d

dt
cos θ0 = − sin θ0

dθ0

dt
=
u1 − u0

`

dθ0

dt

and on the other hand

d

dt
cos θ0 =

d

dt

x1 − x0

`

=
x′1 − x′0

`
− x1 − x0

`2
d`

dt

=
x′1 − x′0

`
− x1 − x0

`2
(x1 − x0)(x′1 − x′0) + (u1 − u0)(u′1 − u′0)

`

=
x′1 − x′0

`
− 1

`3
[(x1 − x0)2(x′1 − x′0) + (x1 − x0)(u1 − u0)(u′1 − u′0)]

= (x′1 − x′0)

[
(x1 − x0)2 + (u1 − u0)2

`3
− (x1 − x0)2

`3

]
− 1

`3
[(x1 − x0)(u1 − u0)(u′1 − u′0)]

=
(x′1 − x′0)(u1 − u0)2 − (u′1 − u′0)(x1 − x0)(u1 − u0)

`3
.

Therefore

dθ0

dt
=

(x′1 − x′0)(u1 − u0)− (u′1 − u′0)(x1 − x0)

`2

=
Iu0,0;t − Iu0,1;t

`
.

Hence
dhθ
dt

= (S− id)

(
Iu0,0;t − Iu0,1;t

`

)
.

The next step is to write I0,1;t in terms of I0,0;t. We have that

 Ix0,1;t

Iu0,1;t

 = Rθ0

 x′1

u′1

 = Rθ0R
−1
θ1
Rθ1

 x′1

u′1

 = R−∆θ0S

 Ix0,0;t

Iu0,0;t

 .

Therefore, the differential–difference syzygies are

` ′ = coshθ Sσx + sinhθ Sσu − σx,

h′θ = (S− id)
(
`−1[sinhθ Sσx − coshθ Sσu + σu]

)
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where we have set σx = Ix0,0;t and σu = Iu0,0;t. These syzygies can be written in canonical form

as follows:  `′

h′θ

 = H

 σx

σu

 (4.1.12)

where

H =

 coshθS− id sinhθS

(S− id)(`−1 sinhθS) −(S− id)(coshθS + id)

 .

Using (3.5.11), the invariantized Euler–Lagrange equations are

{S−1(coshθ) S−1 − id}E`(L) +
{

S−1

(
`−1 sinhθ

)
(S−2−S−1)

}
Ehθ(L) = 0,

{S−1(sinhθ) S−1}E`(L) +
{
`−1(S−1−id)− S−1

(
`−1 coshθ

)
(S−2−S−1)

}
Ehθ(L) = 0

where

Ehθ(L) =
∂L

∂hθ
= `−1 sin(2hθ), E`(L) =

∂L

∂`
= −`−2 sin2 hθ.

These equations are then solved for ` and hθ. Using (3.5.4) the boundary terms can be written

in the form

AH = C0
x I

x
0,0;t + C0

u I
u
0,0;t + C1

x S(Ix0,0;t) + C1
u S(Iu0,0;t),

where

C0
x = S−1

{
coshθ E`(L)− `−1 sinhθEhθ(L) + `−1 sinhθ S−1 (Ehθ(L))

}
,

C0
u = S−1

{
sinhθE`(L) +

(
S
(
`−1
)

+ `−1 coshθ − `−1 coshθ S−1

)
Ehθ(L)

}
,

C1
x = `−1 sinhθ S−1 {Ehθ(L)} ,

C1
u = − `−1 coshθ S−1 {Ehθ(L)} .

In order to obtain the conservation laws, we first need to compute the vector fields, the

matrix of infinitesimals and the Adjoint action. Recall the action (4.1.11). We have that

x̃0 = x0 cos θ − u0 sin θ + a, ũ0 = x0 sin θ + u0 cos θ + b,

x̃1 = x1 cos θ − u1 sin θ + a, ũ1 = x1 sin θ + u1 cos θ + b.

Therefore the table of infinitesimals is given by

x0 u0 x1 u1

a 1 0 1 0

b 0 1 0 1

θ u0 −x0 u1 −x1

.
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Hence the infinitesimal vector fields are

vθ = −u0∂x0 + x0∂u0 , va = ∂x0 , vb = ∂u0

and the matrix of infinitesimals and its invariantized form restricted to the variables x0 and

u0 are

Φ(u0) =

1 0 u0

0 1 −x0

 , Φ(I) =

1 0 0

0 1 0

 .

Now we are going to calculate the Adjoint matrix. We have that

∂

∂x0
=
∂x̃0

∂x0

∂

∂x̃0
+
∂ũ0

∂x0

∂

∂ũ0
,

∂

∂u0
=
∂x̃0

∂u0

∂

∂x̃0
+
∂ũ0

∂u0

∂

∂ũ0
,

so

∇ =

 ∂x̃0

∂x0

∂ũ0

∂x0
∂x̃0

∂u0

∂ũ0

∂u0

 ∇̃,
and then

∇̃ =
1

∂x̃0

∂x0

∂ũ0

∂u0
− ∂ũ0

∂x0

∂x̃0

∂u0

 ∂ũ0

∂u0
−∂ũ0

∂x0

−∂x̃0

∂u0

∂x̃0

∂x0

∇,
so in our case we have that

∇̃ =

 cos θ − sin θ

sin θ cos θ

∇.
Now we can compute ũ0∂x̃0 − x̃0∂ũ0 . We have that

ũ0∂x̃0 − x̃0∂ũ0 = (x0 sin θ + u0 cos θ + b) · (cos θ∂x0 − sin θ∂u0)−

− (x0 cos θ − u0 sin θ + a) · (sin θ∂x0 + cos θ∂u0) =

= u0∂x0 − x0∂u0 + (b cos θ − a sin θ)∂x0 + (−a cos θ − b sin θ)∂u0 .

Therefore (
ṽθ ṽa ṽb

)
=
(

vθ va vb

)
Ad(g(θ, a, b))−1

where

Ad
(
g(θ, a, b)

)
=


cos θ − sin θ b

sin θ cos θ −a

0 0 1

 .

Applying the replacement (3.7.6), simplifying and collecting terms, the conservation laws
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y

x

Figure 4.2: A plot of an extract of 847 points of the discrete solution for certain initial data
and an extract of 507 points of the discrete solution for a variation of the previous initial data.
This is compared with an accurate numerical solution of the third column of (4.1.8), (4.1.9)
and (4.1.10), and using a Fehlberg fourth-fifth order Runge-Kutta method with degree four
interpolant, with uniform step 0.1. The conservation laws are used in the solution in order to
match the initial data.

can be written in terms of the row vector of invariants as follows

(V1 V2 V3)

 Rθ0 JRθ0u0

0 1

 = (c1 c2 c3), where J =

 0 −1

1 0

 (4.1.13)

and where

V1 = S−1(coshθE`(L)) +
{

S−1

(
`−1 sinhθ

)
(S−2 − S−1)

}
Ehθ(L),

V2 = S−1(sinhθE`(L)) +
{
`−1(S−1 − id)− S−1

(
`−1 cos hθ

)
(S−2 − S−1)

}
Ehθ(L),

V3 = −S−1 (Ehθ(L)) .

Using Maple , we solve the discrete Euler–Lagrange equations for the invariants as an

initial data problem. Note that from (4.1.13) we have that

(V1 V2)Rθ0 = (c1 c2). (4.1.14)

Taking transposes

RTθ0(V1 V2)T = (c1 c2)T .

Therefore, multiplying by RTθ0(V1 V2)T on the left hand side of (4.1.14) and (c1 c2)T on

the right hand side of (4.1.14), and taking into account that Rθ0 is in SO(2) so RTθ0 = R−1
θ0

we
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y

x

y

x

(a) (b)

Figure 4.3: Plots (a) and (b) magnify two regions of Figure 2.

have that

(V1)2 + (V2)2 = (c1)2 + (c2)2 ,

which gives a first integral of the discrete Euler–Lagrange equations.

It is possible to obtain the solution in terms of the original variables by using the methods

of §(3.8.2). The initial data give the values of the constants c1, c2 and c3. We have used these

constants and the initial values (x0, u0) = (0, 1) to obtain the initial data for the smooth

solution. The discrete equations require one more initial datum than the smooth equations,

so that more than one discrete solution will have the same constants and starting point, and

hence more than one discrete solution can approximate a given smooth solution. In Figure

(4.2), we compare two discrete solutions with different initial step sizes, both approximating

the single smooth solution.

More sophisticated methods to derive discrete Lagrangians using interpolation are also

being explored in Beffa and Mansfield, [5].

Even though this numerical method is not very efficient, it shows that one can get the

discrete conservation laws as close as desired to the smooth ones.
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4.2 Study of SU(2)

Consider the special unitary group

SU(2) =


 α β

−β α

 : α, β ∈ C, |α|2 + |β|2 = 1


and the linear action on (z0, z1) given by

 z0

z1

 7→
 α β

−β α

 z0

z1

 =

 z̃0

z̃1

 (4.2.1)

that can be easily extended to (zj , zj+1) for j ∈ N. We take the normalization equations to be

=(z̃0) = <(z̃1) = =(z̃1) = 0 (4.2.2)

which yields the following moving frame

ρ0 =
1√

|z0|2 + |z1|2

 z0 z1

−z1 z0

 .

The invariants are of the form I0,j

I0,j+1

 = ρ0 ·

 zj

zj+1

 =
1√

|z0|2 + |z1|2

 z0zj + z1zj+1

z0zj+1 − z1zj


and the first order differential invariants are of the form I0,j;t

I0,j+1;t

 = ρ0 ·

 z′j

z′j+1

 =
1√

|z0|2 + |z1|2

 z0z
′
j + z1z

′
j+1

z0z
′
j+1 − z1z

′
j


where we assume that zj = zj(t) for all j in Z.

The Maurer–Cartan matrix is

K0 = ι0(ρ1) =
1

|I0,2|

 0 I0,2

−I0,2 0

 =

 0 κ

−κ 0

 ∈ SU(2)
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where we have set κ to be
I0,2

|I0,2|
, and the curvature matrix

N0 = ι0

(
d

dt
ρ0

)
=

1

η

 −i=(I0,0;t) I0,1;t

−I0,1;t i=(I0,0;t)

 ∈ su(2)

where we have set I0,0 to be η and where we have denote the imaginary number
√
−1 by i.

Therefore using (3.4.33) we get

d

dt
κ = i

κ

ηη1
(ηS + η1)=(I0,0;t).

Also note that

η =
√
|z0|2 + |z1|2 =

√
<(z0)2 + =(z0)2 + <(z1)2 + =(z1)2.

Therefore
d

dt
η =
<(z0)<(z0)′ + =(z0)=(z0)′ + <(z1)<(z1)′ + =(z0)=(z0)′√

<(z0)2 + =(z0)2 + <(z1)2 + =(z1)2
.

Using the Replacement Rule 2.4.6
d

dt
η = <(I0,0;t)

and therefore

d

dt

 η

κ

 =

 1 0

0 i
κ

ηη1
(ηS + η1)


 <(I0,0;t)

=(I0,0;t)

 . (4.2.3)

Note that a complex number z can be expressed in terms of its modulus r and its argument

θ as follows

z = reiθ = r(cos θ + i sin θ)

where

<(z) = r cos θ and =(z) = r sin θ.

Therefore the normalization equations (4.2.2) yield

r̃0 sin θ̃0 = r̃1 cos θ̃1 = r̃1 sin θ̃1 = 0.

We can take the normalization equations to be

θ̃0 = r̃1 = 0
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which yields the following moving frame

ρ0 =
1√

r2
0 + r2

1

 r0e
−iθ0 r1e

−iθ1

−r1e
iθ1 r0e

iθ0

 .

The invariants are of the form I0,j

I0,j+1

 = ρ0 ·

 zj

zj+1

 =
1√

r2
0 + r2

1

 r0rje
i(θj−θ0) + r1rj+1e

i(θ1−θj+1)

r0rj+1e
i(θj+1+θ0) + r1rje

i(θ1+θj+1)


and similarly, the first order differential invariants are of the form

 I0,j;t

I0,j+1;t

 = ρ0 ·

 z′j(t)

z′j+1(t)

 =
1√

r2
0 + r2

1

 r0r
′
je

i(θ′j−θ0) + r1r
′
j+1e

i(θ1−θ′j+1)

r0r
′
j+1e

i(θ′j+1+θ0) + r1r
′
je

i(θ1+θ′j+1)

 .

Note that

I0,j = Ir0,je
iIθ0,j and I0,j;t = Ir0,j;te

iIθ0,j;t

where we are denoting Ir0,j and I
θ
0,j the invariantized forms of rj and θj respectively and Ir0,j;t

and Iθ0,j;t the invariantized forms of r′j and θ
′
j respectively. The Maurer–Cartan matrix is

K0 = ι0(ρ1) =

 0 e−iI
θ
0,2

−eiI
θ
0,2 0

 =

 0 τ

−τ 0

 ∈ SU(2)

where we are setting eiI
θ
0,2 to be τ . The curvature matrix has the form

N0 = ι0

(
d

dt
ρ0

)
=

 −iI
θ
0,0;t

Ir0,1;t

Ir0,0

−
Ir0,1;t

Ir0,0
iIθ0,0;t

 ∈ su(2).

Therefore using (3.4.33) we get

d

dt
κ = iτ(id + S)Iθ0,0;t.

Also note that

Ir0,0 =
√
r2

0 + r2
1.

Therefore
d

dt
Ir0,0(t) =

r0r
′
0 + r1r

′
1√

r2
0 + r2

1

.
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Using the Replacement Rule 2.4.6

d

dt
Ir0,0(t) = Ir0,0;t

and therefore denoting Ir0,0 by η we have the differential–difference syzygy

d

dt

 η

τ

 =

 1 0

0 iτ(id + S)

 Ir0,0;t

Iθ0,0;t


which has a simpler form than (4.2.3) which makes it more suitable for the Calculus of

Variations.

Consider the Lagrangian

L[η, τ, τ1, ..., τJ1 ] =
∑

L(τ, τ1, ..., τJ1) + λ(η − 1).

Setting Ir0,0;t to be σr and Iθ0,0;t to be σθ and applying Calculus of Variations we have

d

dt
L[η, τ ] = λ

dη

dt
+

dL

dτ

dτ

dt
+

dL

dτ1

dτ1

dt
+ ...+

dL

dτJ1

dτJ1
dt

= Eτ (L)
dτ

dt
+ λ

dη

dt

= Eτ (L)iτ(id + S)σθ + λσr

= (iτ + τ−1S−1) Eτ (L)σθ + λσr + (S− id)
(
τ−1(S−1Eτ (L))σθ

)
.

Therefore, the Euler–Lagrange equation is of the form

(iτ + τ−1S−1) Eτ (L) = 0

and the boundary terms are of the form

(S− id)
(
τ−1(S−1Eτ (L))σθ

)
.

Hence

Cθ0 = τ−1(S−1Eτ (L)).

In order to compute the conservation laws, we first need to compute the matrix of infinitesimals

and the adjoint representation.

Recall the action (4.2.1). We have that

z̃0 = αz0 + βz1, z̃1 = −β̄z0 + ᾱz1. (4.2.4)
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The table of infinitesimals is

z0 z1

α z0 −z1

β z1 0

β̄ 0 −z0

.

Hence, the infinitesimal vector fields for this action are

vα = z0∂z0 − z1∂z1 , vβ = z1∂z0 , vβ̄ = −z0∂z1 .

Note that

∂z0 =
∂z̃0

∂z0
∂z̃0 +

∂z̃1

∂z0
∂z̃1 , ∂z1 =

∂z̃0

∂z1
∂z̃0 +

∂z̃1

∂z1
∂z̃1 ,

so

∂z0 = α∂z̃0 − β̄∂z̃1 , ∂z1 = β∂z̃0 + ᾱ∂z̃1 .

We also have from (4.2.4)

z0 = ᾱz̃0 − βz̃1, z1 = β̄z̃0 + αz̃1.

Therefore

vα = z0∂z0 − z1∂z1

= (ᾱz̃0 − βz̃1)(α∂z̃0 − β̄∂z̃1)− (β̄z̃0 + αz̃1)(β∂z̃0 + ᾱ∂z̃1)

= (αᾱ− ββ̄)(z̃0∂z̃0 − z̃1∂z̃1)− 2ᾱβ̄z̃0∂z̃1 − 2αβz̃1∂z̃0

= (αᾱ− ββ̄)ṽα − 2αβṽβ + 2ᾱβ̄ṽβ̄,

vβ = z1∂z0

= (β̄z̃0 + αz̃1)(α∂z̃0 − β̄∂z̃1)

= αβ̄(z̃0∂z̃0 − z̃1∂z̃1)− β̄2z̃0∂z̃1 + α2z̃1∂z̃0

= αβ̄ṽα + α2ṽβ + β̄2ṽβ̄,
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vβ̄ = −z0∂z1

= −(ᾱz̃0 − βz̃1)(β∂z̃0 + ᾱ∂z̃1)

= −ᾱβ(z̃0∂z̃0 − z̃1∂z̃1) + β2z̃1∂z̃0 − ᾱ
2z̃0∂z̃1

= −ᾱβṽα + β2ṽβ + ᾱ2ṽβ̄.

We have that the induced action on these are

(
ṽα ṽβ ṽβ̄

)
=
(

vα vβ vβ̄

)
Ad(g)−1

where

Ad(g) =

α β β̄


α αᾱ− ββ̄ αβ̄ −ᾱβ

β −2αβ α2 β2

β̄ 2ᾱβ̄ β̄2 ᾱ2

. (4.2.5)

The invariantized form of the matrix of infinitesimals restricted to the variables z0 and z1

is

Φ0(I) =

α β β̄( )
z0 1 0 0

z1 0 0 −1

and then the replacement required by (3.7.6) is given by

Skσz0 7→
(

1 0 0
)
SkAd(ρ0) and Skσz1 7→

(
0 0 1

)
SkAd(ρ0)

where we have denoted Iz0,0;t by σz0 and Iz0,1;t by σz1 . However, in this case we are interested

in replacing σθ0 . Note that

d

dt
z0 =

d

dt
r0e

iθ0 + ir0e
iθ0 d

dt
θ0.

Therefore using the Replacement Rule 2.4.6 and taking into account that we are setting η to

be 1 because of the constraint imposed when performing Calculus of Variations we have that

σz0 = σr0 + iσθ0 .



4.2. Study of SU(2) 101

Hence we can conclude that σθ0 is the imaginary part of σz0 , and therefore

σθ0 7→ =
((

1 0 0
)
Ad(ρ0)

)
.

We obtain Noether’s Conservation Law in the form

k = τ−1(S−1Eτ (L))=
((

1 0 0
)
Ad(ρ0)

)
(4.2.6)

where the vector k = (k1, k2, k3) is a vector of constants and where

Ad(ρ0) =
1

r2
0 + r2

1


r2

0 − r2
1 r0r1e

i(θ1−θ0) −r0r1e
i(θ1+θ0)

−2r0r1e
−i(θ1+θ0) r2

0e
−2iθ0 r2

1e
−2iθ1

2r0r1e
i(θ1+θ0) r2

1e
2iθ1 r2

0e
2iθ0

 .

Explicitly, we have that the conservation law (4.2.6) is of the form

k = τ−1(S−1Eτ (L))
r0r1

r2
0 + r2

1

(
0 sin(θ1 − θ0) − sin(θ1 + θ0)

)
.

Moving frame for the conjugate action of SU(2) on su(2)

There exists an isomorphism between the quaternions and SU(2) given by

q = a+ bi + cj + dk↔

 a+ bi −c+ di

c+ di a− bi

 = g

where

a2 + b2 + c2 + d2 = 1.

Note that the lie algebra su(2) is spanned by


 0 i

i 0

 ,

 0 1

−1 0

 ,

 i 0

0 −i


and therefore an element of su(2) can be represented as

 ix0 y0 + iz0

−y0 + iz0 ix0

 .
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Let us consider the conjugate action of SU(2) on su(2)

g 7→ gAg−1

where A ∈ su(2). Therefore the action is given by

 ix̃0 ỹ0 + iz̃0

−ỹ0 + iz̃0 ix̃0

 = g

 ix0 y0 + iz0

−y0 + iz0 ix0

 g−1. (4.2.7)

Therefore, for all (x0, y0, z0) ∈ R3 we have that


x0

y0

z0

 7→ C(A)


x0

y0

z0

 =


x̃0

ỹ0

z̃0


where C(A) is a rotation in SO(3) explicitly given by


a2 + b2 + c2 + d2 −2(ac+ bd) 2(bc− ad)

2(ac− bd) a2 − b2 − c2 + d2 −2(ab+ cd)

2(ad+ bc) 2(ab− cd) a2 − b2 + c2 − d2

 .

The homomorphism

C : SU(2)→ SO(3),

A 7→ C(A).

is known as the Caley map. Let us consider now the normalization equations

ỹ0 = z̃0 = z̃1 = 0,

i.e,

gAg−1 =

 ix̃0 0

0 −ix̃0

 .

The action is nonlinear but one can easily linearise the equations in order to get the explicit

frame as follows

gA =

 ix̃0 0

0 −ix̃0

 g. (4.2.8)



4.3. Study of SL(2) actions 103

Solving for the parameters a, b, c, d after a lengthy computation, we can get the frame

ρ0 =

 iFeiθ FGeiθ

−FḠe−iθ −iFe−iθ


where

F =

√
(Ix0,0 + x0)√

2Ix0,0

, G =
y0 + iz0

2(Ix0,0 + x0)
, Ix0,0 =

√
x2

0 + y0
2 + z0

2 and θ =
1

2
arctan

(
α1

α2

)

and

α1 = z1(Ix0,0+x0)−y0(v+x1), α2 = y1(Ix0,0+x0)−y0I
x
0,0(v+x1), v =

x̄ · (Sx̄)

Ix0,0
, x̄ = (x0, y0, z0).

The method extends to all the Spin group actions. Examples of Spin groups are for

instance SU(n) or Sp(n) - see (2.1.4) for their description. Future work would include to find

applications to Spin group invariant Lagrangians appearing in quantum physics.

4.3 Study of SL(2) actions

In this section we show the finite difference analogue for the smooth variational problems with

an SL(2) and SL(2) nR2 symmetry that were considered using moving frame techniques in

Goņalves and Mansfield, [32, 34] and Mansfield, [70].

4.3.1 The linear action of SL(2) in the plane

We consider the action of SL(2) on the prolongation space P (0,0)
n (R2), which has coordinates

(x0, y0). This action is given by

 x0

y0

 7→
 a b

c d

 x0

y0

 =

 x̃0

ỹ0

 , ad− bc = 1. (4.3.1)

The infinitesimal vector fields and the adjoint action

For our calculations we need the adjoint representation of SL(2) relative to this group action.

From (4.3.1) we have that x̃0 = ax0 + by0 and ỹ0 = cx0 + dy0 where d =
1 + bc

a
.



104 Applications for Finite Difference Noether’s Conservation Laws

Therefore the table of infinitesimals is of the form

x0 y0

a x0 −y0

b y0 0

c 0 x0

and the infinitesimal vector fields for this action are

va = x0∂x0 − y0∂y0 , vb = y0∂x0 , vc = x0∂y0 .

Note that

∂x0 =
∂x̃0

∂x0
∂x̃0 +

∂ỹ0

∂x0
∂ỹ0 , ∂y0 =

∂x̃0

∂y0
∂x̃0 +

∂ỹ0

∂y0
∂ỹ0

so

∂x0 = a∂x̃0 + c∂ỹ0 , ∂y0 = b∂x̃0 + d∂ỹ0 .

We also have from (4.3.1)

x0 = dx̃0 − bỹ0, y0 = −cx̃0 + aỹ0.

Therefore

va = x0∂x0 − y0∂y0

= (dx̃0 − bỹ0)(a∂x̃0 + c∂ỹ0)− (−cx̃0 + aỹ0)(b∂x̃0 + d∂ỹ0)

= (ad+ cb)(x̃0∂x̃0 − ỹ0∂ỹ0) + 2cdx̃0∂ỹ0 − 2abỹ0∂x̃0

= (ad+ cb)ṽa − 2baṽb + 2cdṽc,

vb = y0∂x0

= (−cx̃0 + aỹ0)(a∂x̃0 + c∂ỹ0)

= −ac(x̃0∂x̃0 − ỹ0∂ỹ0)− c2x̃0∂ỹ0 + a2ỹ0∂x̃0

= −acṽa + a2ṽb − c2ṽc,

vc = x0∂y0

= (dx̃0 − bỹ0)(b∂x̃0 + d∂ỹ0)

= bd(x̃0∂x̃0 − ỹ0∂ỹ0) + d2x̃0∂ỹ0 − b
2ỹ0∂x̃0

= bdṽa − b2ṽb + d2ṽc.
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We have that the induced action on these are

(
ṽa ṽb ṽc

)
=
(

va vb vc

)
Ad(g)−1

where

Ad(g) =

a b c


a ad+ bc −ac bd

b −2ab a2 −b2

c 2cd −c2 d2

. (4.3.2)

The discrete frame, the generating invariants and differential invariants and their

syzygies

We consider the normalization equations

x̃0 = 1, x̃1 = ỹ0 = 0. (4.3.3)

Solving for a, b and c, we obtain the moving frame

ρ0(x0, y0, x1, y1) =

 y1

τ
−x1

τ

−y0 x0

 ∈ SL(2) (4.3.4)

where we have set τ = x0y1 − x1y0. Then ρk = Skρ0 gives the discrete moving frame (ρk).

The Maurer–Cartan matrix is

K0 = ι0(ρ1) =

 κ
1

τ

−τ 0

 (4.3.5)

where we have set κ =
x0y2 − x2y0

x1y2 − x2y1
.

By (3.4.22) the algebra of invariants is generated by τ , κ and their shifts.

We now consider xj = xj(t), yj = yj(t) and we define some first order differential invariants

by setting

Ixk,j;t(t) := ρk · x′j and Iyk,j;t(t) := ρk · y′j , (4.3.6)

where x′j =
d

dt
xj(t) and y′j =

d

dt
yj(t). We set the notation

σx := Ix0,0;t(t) and σy := Iy0,0;t(t). (4.3.7)

For our calculations, we need to know Ix0,2;t(t), Ix0,1;t(t) and Iy0,1;t(t) in terms of σx and σy.
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We have  Ix0,1;t(t)

Iy0,1;t(t)

 = ρ0

 x′1

y′1


= ρ0ρ

−1
1 ρ1

 x′1

y′1


= K−1

0

 Sσx

Sσy


=

 −Sσy

τ

τSσx + κSσy

 .

(4.3.8)

Setting τj = Sjτ and κj = Sjκ we have that

 Ix0,2;t(t)

Iy0,2;t(t)

 = K−1
0 (SK−1

0 )

 S2σ
x

S2σ
y


=

 −τ1

τ
−κ1

τ

κτ1 κκ1 −
τ

τ1


 S2σ

x

S2σ
y

 .

(4.3.9)

The curvature matrix is of the form

N0 = ι0

(
d
dt
ρ0

)
=

 −σx −
Ix0,1;t(t)

τ

−σy σx

 ∈ sl(2). (4.3.10)

From (3.4.33), using (4.3.8) and (4.3.9) equating components and simplifying we obtain

d
dt
κ = κ(id− S)σx +

(
1

τ
− τ

τ2
1

S2

)
σy,

d
dt
τ = τ(S + id)σx + κSσy (4.3.11)

so that
d
dt

 κ

τ

 = H

 σx

σy


where

H =

 κ(id− S)
1

τ
− τ

τ2
1

S2

τ(id + S) κS

 . (4.3.12)
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The Euler–Lagrange equations and conservation laws

We now consider a Lagrangian of the form

L[x, y] =
∑

L(τ, τ1, . . . τJ1 , κ, κ1, . . . , κJ2).

Using (3.5.11) , we have that the Euler–Lagrange equations are

0 = (id− S−1)κEκ(L) + (id + S−1) τEτ (L),

0 = −S−2

(
τ

τ2
1

Eκ(L)

)
+

1

τ
Eκ(L) + S−1 (κEτ (L)) .

(4.3.13)

To obtain the conservation laws we need only the boundary terms arising from E(L)H (σx σy)T−

H∗(E(L)) (σx σy)T . Using (3.5.4) these boundary terms are (S− id)AH where

AH = Cx0σx + Cy0σy + Cy1Sσy

= [−S−1 (κEκ(L)) + S−1 (τEτ (L))]σx

+

[
S−1 (κEτ (L))− S−2

(
τ

τ2
1

Eκ(L)

)]
σy

−S−1

(
τ

τ2
1

Eκ(L)

)
Sσy,

(4.3.14)

where this defines Cx0 , C
y
0 and Cy1 .

To find the conservation laws, we first calculate the invariantized form of the matrix of

infinitesimals restricted to the variables x0 and y0

Φ0(I) =

a b c( )
x0 1 0 0

y0 0 0 1

.

The replacement (3.7.4) is given by

Skσx 7→
(

1 0 0
)
SkAd(ρ0)

and

Skσy 7→
(

0 0 1
)
SkAd(ρ0).

Since SAd(ρ0) = Ad (K0)Ad(ρ0), after collecting terms and simplifying we obtain the Noether’s

Conservation Laws in the form
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k =
[
Cx0
(

1 0 0
)

+ Cy0
(

0 0 1
)

+ Cy1
(

0 0 1
)
Ad(K0)

]
Ad(ρ0)

= V(I)Ad(ρ0)
(4.3.15)

where

Ad(ρ0) =


x0y1 + x1y0

τ

y0y1

τ
−x0x1

τ

2
x1y1

τ2

y2
1

τ2
−x

2
1

τ2

−2x0y0 −y2
0 x2

0


and

Ad(K0) =


−1 κτ 0

−2
κ

τ
κ2 − 1

τ2

0 −τ2 0


and where Cx0 , C

y
0 and Cy1 are defined in Equation (4.3.14), the vector k = (k1, k2, k3) is a

vector of constants and where this equation defines V(I) = (V 1
0 V 2

0 V 3
0 ). Explicitly, the

vector of invariants V(I) is of the form

V(I) = S−1

(
τEτ (L)− κEκ(L) Eκ(L) κEτ (L)− S−1

( τ
τ2

Eκ(L)
) )

.

Recall that from (S−id)(V(I)Ad(ρ0)) = 0 we obtain the discrete Euler–Lagrange equations

in the form SV(I)Ad(ρ1ρ
−1
0 ) = V(I) which yields the equations

(
V 1

0 V 2
0 V 3

0

)
=
(
V 1

1 V 2
1 V 3

1

)
−1 κτ 0

−2
κ

τ
κ2 − 1

τ2

0 −τ2 0

 . (4.3.16)

The general solution

Suppose that we can solve for the discrete frame (ρk). Then taking into account that the

normalization equations for ρk are ρk · (xk, yk)T = (1, 0)T we have that

 xk

yk

 = ρ−1
k

 1

0

 =

 dk −bk
−ck ak

 1

0

 =

 dk

−ck

 .

We present the following Theorem:

Theorem 4.3.17. Given a solution (κk), (τk) to the Euler–Lagrange equations, so that the

vector of invariants SkV(I) = (V 1
k V 2

k V 3
k ) appearing in the conservation laws are known

and satisfy V 2
k 6= 0 for all k, (4.3.15), and that three constants k = (k1, k2, k3)T satisfying
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k3(k2
1 + 4k2k3) 6= 0 are given, then the general solution to the Euler–Lagrange equations, in

terms of (xk, yk) is

 xk

yk

 =

 0 1

−1 0

Q

 ∏k
l=0 ζlλ1,l 0

0
∏j
l=0 kζlλ2,l

Q−1

 c0

d0


where here, c0 and d0 are two further arbitrary constants of integration,

Q =

 k1 −
√
k2

1 + 4k2k3 k1 +
√
k2

1 + 4k2k3

2k3 2k3

 , (4.3.18)

and where

λ1,l = V 1
l −

√
k2

1 + 4k2k3, λ2,l = V 1
l +

√
k2

1 + 4k2k3, ζl = − τl
2V 2

l

. (4.3.19)

Proof. If we set

ρ0 =

 a0 b0

c0 d0

 , a0d0 − b0c0 = 1 (4.3.20)

and write (4.3.15) in the form kAd(ρ0)−1 = V(I) as three equations for {a0, b0, c0, d0}, we

obtain
(a0d0 + b0c0)k1 + 2b0d0k2 − 2a0c0k3 = V 1

0 ,

c0d0k1 + d2
0k2 − c2

0k2 = V 2
0 ,

−a0b0k1 − b20k2 + a2
0k3 = V 3

0 .

(4.3.21)

Computing a Gröebner basis associated to these equations, together with the equation a0d0 −

b0c0 = 1, using the lexicographic ordering k3 < k2 < k1 < c0 < b0 < a0, we obtain

k2
1 + 4k2k3 − (V 1

0 )
2 − 4V 2

0 V
3

0 = 0, (4.3.22a)

k3c
2
0 − k1c0d0 − k2d

2
0 + V 2

0 = 0, (4.3.22b)

2b0V
2

0 − 2c0k3 + (k1 − V 1
0 )d0 = 0, (4.3.22c)

2a0V
2

0 − c0(k1 + V 1
0 )− 2k2d0 = 0. (4.3.22d)

We note that (4.3.22a) is a first integral of the Euler–Lagrange equations, (4.3.22b) is a conic

equation for (c0, d0) while (4.3.22c) and (4.3.22d) are linear for (a0, b0) in terms of (c0, d0).

We have

ρ1 =

 κ
1

τ

−τ 0

 ρ0



110 Applications for Finite Difference Noether’s Conservation Laws

where ρ1 = Sρ0. Hence

c1 = −τa0, and d1 = −τb0.

Back-substituting for a0 and b0 from (4.3.22c) and (4.3.22d) yields, assuming V 2
0 6= 0

 c1

d1

 =
−τ
2V 2

0

V 1
0

 1 0

0 1

+

 k1 2k2

2k3 −k1

 c0

d0

 . (4.3.23)

Now, setting

c0 =

 c0

d0

 , c1 =

 c1

d1

 , ζ0 =
−τ
2V 2

0

and X0 = V 1
0

 1 0

0 1

+

 k1 2k2

2k3 −k1


equation (4.3.23) can be written as

c1 = ζ0X0c0. (4.3.24)

Diagonalising X0 we obtain Λ0 diagonal such that

Λ0 = Q−1X0Q =

 λ1
0 0

0 λ2
0


where

λ1
0 = V 1

0 −
√
k2

1 + 4k2k3 and λ2
0 = V 1

0 +
√
k2

1 + 4k2k3

and

Q =

 k1 −
√
k2

1 + 4k2k3 k1 +
√
k2

1 + 4k2k3

2k3 2k3

 . (4.3.25)

Note that Q is a constant matrix. Therefore it is now simple to solve the recurrence relation.

From (4.3.24), supposing k3

√
k2

1 + 4k2k3 6= 0 so Q−1 exists, we obtain

ck+1 = Q

 ∏k
l=0 ζlλ1,l 0

0
∏k
l=0 ζlλ2,l

Q−1c0

where here, c0 is the initial data. Using the normalization equations

 xk

yk

 = ρ−1
k

 1

0

 =

 dk −bk
−ck ak

 1

0

 =

 dk

−ck

 =

 0 1

−1 0

 ck

dk


the result follows.

Remark 4.3.26. This proof does not make use of (4.3.22b). However, it is consistent with
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the second component of (4.3.16) as we show now. We have that (4.3.22b) can be written as

(
c0 d0

) k3 −k1

2

−k1

2
k2


 c0

d0

 = −V 2
0

and therefore (
c1 d1

) k3 −k1

2

−k1

2
k2


 c1

d1

 = −V 2
1 . (4.3.27)

Substituting (4.3.27) into (4.3.23) yields after simplification the equation

V 2
1 = −τ2V 3

0

as stated.

4.3.2 The SA(2) = SL(2)nR2 linear action

A general element of the equi-affine group SA(2) = SL(2) n R2, is given by (g, α, β) where

g ∈ SL(2) and α, β ∈ R. The standard representation of this group is given by

(g, α, β) 7→


a b α

c d β

0 0 1

 .

We consider the equi-affine group action on P (0,0)
n (R2) with coordinates (x0, y0) given by

(g, α, β) · (x0, y0) = (x̃0, ỹ0) = (ax0 + by0 + α, cx0 + dy0 + β), ad− bc = 1. (4.3.28)

The infinitesimal vector fields and the Adjoint action

The table of infinitesimals for (4.3.28) is of the form

x0 y0

a x0 −y0

b y0 0

c 0 x0

α 1 0

β 0 1
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Therefore the infinitesimal vector fields are of the form

va = x∂x − y∂y, vb = y∂x, vc = x∂y, vα = ∂x, vβ = ∂y.

Note that

∂x0 =
∂x̃0

∂x0
∂x̃0 +

∂ỹ0

∂x0
∂ỹ0 , ∂y0 =

∂x̃0

∂y0
∂x̃0 +

∂ỹ0

∂y0
∂ỹ0 ,

so

∂x0 = a∂x̃0 + c∂ỹ0 , ∂y0 = b∂x̃0 + d∂ỹ0 .

We also have from (4.3.1)

x0 = dx̃0 − bỹ0 − αd+ βb, y0 = −cx̃0 + aỹ0 − βa+ αc.

Therefore

va = x0∂x0 − y0∂y0

= (dx̃0 − bỹ0 − αd+ βb)(a∂x̃0 + c∂ỹ0)− (−cx̃0 + aỹ0 − βa+ αc)(b∂x̃0 + d∂ỹ0)

= (ad+ cb)(x̃0∂x̃0 − ỹ0∂ỹ0) + 2cdx̃0∂ỹ0 − 2abỹ0∂x̃0

− (α(ad+ bc) + 2abβ)∂x̃0 + (β(ad+ bc)− 2cdα)∂ỹ0

= (ad+ cb)ṽa − 2abṽb + 2cdṽc − (α(ad+ bc) + 2abβ)ṽα + (β(ad+ bc)− 2cdα)ṽβ,

vb = y0∂x0

= (−cx̃0 + aỹ0 − βa+ αc)(a∂x̃0 + c∂ỹ0)

= −ac(x̃0∂x̃0 − ỹ0∂ỹ0)− c2x̃0∂ỹ0 + a2ỹ0∂x̃0 + a(cα− aβ)∂x̃0 + c(cα− aβ)∂ỹ0

= −acṽa + a2ṽb − c2ṽc + a(cα− aβ)ṽα + c(cα− aβ)ṽβ,

vc = x0∂y0

= (dx̃0 − bỹ0 − αd+ βb)(b∂x̃0 + d∂ỹ0)

= bd(x̃0∂x̃0 − ỹ0∂ỹ0) + d2x̃0∂ỹ0 − b
2ỹ0∂x̃0 + b(bβ − dα)∂x̃0 + d(bβ − aα)∂ỹ0

= bdṽa − b2ṽb + d2ṽc + b(bβ − dα)ṽα + d(bβ − aα)ṽβ,

vα = ∂x0 = a∂x̃0 + c∂ỹ0 = aṽα + cṽβ,

vβ = ∂y0 = b∂x̃0 + d∂ỹ0 + bṽα + dṽβ.
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We have that the induced action on these vector fields is

(
ṽa ṽb ṽc ṽα ṽβ

)
=
(

va vb vc vα vβ

)
Ad(g, α, β)−1

where

Ad(g, α, β)−1 =

a b c α β



a ad+ bc cd −ab 0 0

b 2bd d2 −b2 0 0

c −2ac −c2 a2 0 0

α αd+ bβ βd −bα d −b

β −aβ − αc −cβ αa −c a

. (4.3.29)

and where

Ad(g, α, β) =

a b c α β



a ad+ bc −ac bd 0 0

b −2ab a2 −b2 0 0

c 2cd −c2 d2 0 0

α −α(ad+ bc) + 2abβ a(cα− aβ) b(bβ − dα) a b

β β(ad+ bc)− 2cdα c(cα− aβ) d(bβ − dα) c d

. (4.3.30)

Remark 4.3.31. We note that (4.3.30) can be written as

Ad(g, α, β) =


Id3 0

α

 −1 0 0

0 0 −1

+ β

 0 −1 0

1 0 0

 Id2


 Ad(g) 0

0 g

 (4.3.32)

where Id2 and Id3 are the 2× 2 and 3× 3 identity matrices respectively.

The discrete frame, the generating invariants and difference invariants and their

syzygies

We consider the normalization equations

x̃0 = ỹ0 = ỹ1 = x̃2 = 0 and x̃2 = 0. (4.3.33)
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Solving for the group parameters a, b, c, d, α and β we obtain the following standard matrix

representation of the moving frame

ρ0 =


y2 − y0

κ

x0 − x2

κ

x2y0 − x0y2

κ

y0 − y1 x1 − x0 x0y1 − x1y0

0 0 1

 ,

where

κ = (y1 − y2)x0 + (y2 − y0)x1 + (y0 − y1)x2

is an invariant as κ = ρ0 · y2.

We define the discrete moving frame to be (ρk) where ρk = Skρ0. The Maurer–Cartan

matrix is

K0 = ι0(ρ1) =


τ

1 + τ

κ
−τ

−κ −1 κ

0 0 1

 (4.3.34)

where κ is given above, and

τ =
x0(y1 − y3) + x1(y3 − y0) + x3(y0 − y1)

x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)
=
ρ0 · y3

κ1

where we have used the Replacement Rule 2.4.6, and where κk = Skκ. By (3.4.22) the algebra

of invariants is generated by τ , κ and their shifts.

Computing the curvature matrix, we obtain

N0 = ι0

(
d
dt
ρ0

)
=


σx − Ix0,1;t(t)

σx − Ix0,2;t(t)

κ
−σx

σy − Iy0,1;t(t) Ix0,1;t(t)− σx −σy

0 0 0

 (4.3.35)

where we have set σx := Ix0,0;t(t) and σy := Iy0,0;t(t).

To obtain ρ0 · x′j = Ix0,j;t(t), ρ0 · y′j = Iy0,j;t(t), j = 1, 2 in terms of σx, σy, τ , κ and their

shifts, we have, since the translation part of the group plays no role in the action on the

derivatives,

I0,1;t = ρ0


x′1

y′1

0

 = ρ0ρ
−1
1 ρ1


x′1

y′1

0

 = K−1
0


Sσx

Sσy

0


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and similarly

I0,2;t = ρ0


x′2

y′2

0

 = ρ0ρ
−1
1 ρ1ρ

−1
2 ρ2


x′2

y′2

0

 = K−1
0 (SK−1

0 )


S2σ

x

S2σ
y

0

 .

Finally from (3.4.33) and the relations above, we have the differential-difference syzygy in

reduced form

d

dt

 τ

κ

 = H

 σx

σy

 , where H =

 H11 H12

H21 H22

 (4.3.36)

with

H11 = −τ +

(
1 +

κ

κ1
(1 + τ)

)
S + τS2 −

κ

κ2
1

[κ2(1 + τ1)− κ1] S3,

H12 = −1 + τ

κ
+
τ(1 + τ1)

κ1
S2 −

κ

κ2
1κ2

[κ2τ2(1 + τ1)− κ1(1 + τ2)] S3,

H21 = −κ− κS + (τκ1 − κ)S2,

H22 = −1− (1 + τ)S +

(
ττ1 −

κ(1 + τ1)

κ1

)
S2.

(4.3.37)

The Euler–Lagrange equations and the conservation laws.

We consider a invariant Lagrangian of the form L(τ, . . . , τJ1 , κ, . . . , κJ2). Then by (3.5.11) we

have that the Euler–Lagrange equations are

0 = H∗11Eτ (L) +H∗21Eκ(L),

0 = H∗12Eτ (L) +H∗22Eκ(L)
(4.3.38)

where the Hij are given in Equation (4.3.37).

The boundary terms contributing to the conservation laws are

AH = AH11(Eτ (L), σx) +AH21(Eκ(L), σx) +AH12(Eτ (L), σy) +AH22(Eκ(L), σy)

=

2∑
k=0

CxkSkσx + CykSkσ
y

(4.3.39)
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where this defines the Cxk , C
y
k . Explicitly

Cx0 =S−1(1 +
κ

κ1
(1 + τ)Eτ (L)) + S−2(τEτ (L)) + S−3

(
− κ

κ2
1

(κ2(1 + τ1 − κ1)

)
Eτ (L))

+ S−1(−κEκ(L)) + S−2((τκ1 − κ)Eκ(L)),

Cx1 =S−1(τEτ (L)) + S−2

(
− κ

κ2
1

(κ2(1 + τ1 − κ1)

)
Eτ (L)) + S−1((τκ1 − κ)Eκ(L)),

Cx2 =S−1

(
− κ

κ2
1

(κ2(1 + τ1 − κ1)

)
Eτ (L)),

Cy0 =S−2(
τ(1 + τ1)

κ1
Eτ (L)) + S−3(− κ

κ2
1κ2

(κ2τ2(1− τ1)− κ1(1 + τ2))Eτ (L))

− S−1(1 + τ)Eκ(L)) + S−2(ττ1 −
κ(1− τ1)

κ1
Eκ(L)),

Cy1 =S−1(
τ(1 + τ1)

κ1
Eτ (L)) + S−2(− κ

κ2
1κ2

(κ2τ2(1− τ1)− κ1(1 + τ2))Eτ (L))

+ S−1(ττ1 −
κ(1− τ1)

κ1
Eκ(L)),

Cy2 =S−1(− κ

κ2
1κ2

(κ2τ2(1− τ1)− κ1(1 + τ2))Eτ (L)).

(4.3.40)

To obtain the conservation laws we need the invariantized form of the matrix of infinitesimals

restricted to the variables x0 and y0

Φ0(I) =

a b c α β( )
x0 0 0 0 1 0

y0 0 0 0 0 1

and then using (3.7.6) the replacements required to obtain the conservation laws from AH are

Skσx 7→
(

0 0 0 1 0
)
SkAd(ρ0), Skσy 7→

(
0 0 0 0 1

)
SkAd(ρ0).

Hence, the conservation laws are given by (S− id)A = 0 where

A =
[ (

0 0 0 1 0
)

(Cx0 + Cx1Ad(K0) + Cx2Ad(K0(SK0)))

+
(

0 0 0 0 1
)

(Cy0 + Cy1Ad(K0) + Cy2Ad((SK0)K0))
]
Ad(ρ0)

= V(I)Ad(ρ0)

(4.3.41)
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and

Ad(K0) =


Id3 0 τ −κ 0

κ 0 −τ

 Id2





−2τ τκ −1 + τ

κ
0 0

−2τ(1 + τ)

κ
τ2 −(1 + τ)2

κ2
0 0

2κ −κ2 1 0 0

0 0 0 τ
1 + τ

κ

0 0 0 −κ −1


.

This defines the vector of invariants, V(I) =
(
V 1

0 , V
2

0 , V
3

0 , V
4

0 , V
5

0

)T where the Cxj , C
y
j are

defined in Equation (4.3.39) and (4.3.40).

Therefore we can write the conservation laws in the form

k = V(I)Ad(ρ0) (4.3.42)

where k = (k1, k2, k3, k4, k5) is a vector of constants and where

Ad(ρ0) =


Id3 0 x0y2 − x2y0

κ
x1y0 − x0y1 0

x0y1 − x1y0 0
x2y0 − x0y2

κ

 Id2


 (Ad(g))

∣∣
ρ0

0

0 g
∣∣
ρ0



and

Ad(g))
∣∣
ρ0

=


(2y0 − y1 − y2)x0 − (x1 + x2)y0 + y2x1 + x2y1

κ

(y0 − y2)(y0 − y1)

κ

(x0 − x2)(x1 − x0)

κ
2(y0 − y2)(x0 − x2)

κ2

(y0 − y2)
2

κ2
− (x0 − x2)

2

κ2

2(y0 − y1)(x1 − x0) −(y0 − y1)
2 (x0 − x1)

2


with

g
∣∣
ρ0

=


y2 − y0

κ

x0 − x2

κ

y0 − y1 x1 − x0

 .

We will show in the next section that a first integral of the Euler–Lagrange equations is given

by

k1k4k5 + k2k
2
5 − k3k

2
4 = V 1

0 V
4

0 V
5

0 + V 2
0 (V 5

0 )
2 − V 3

0 (V 4
0 )

2
. (4.3.43)
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The general solution

Given the vector of invariants and the constants in the conservation laws (4.3.42) we now show

how to obtain the solution to the Euler–Lagrange equations in terms of the original variables.

Theorem 4.3.44. Suppose a solution (τk), (κk) to the Euler–Lagrange equations (4.3.38), is

given, so that the vector of invariants (SkV(I)) appearing in the conservation laws (4.3.41) is

known, and that V 4
0 V

5
0 6= 0. Suppose further that a vector of constants k = (k1, k2, k3, k4, k5)

satisfying k4k5 6= 0 is given. Then the general solution to the Euler–Lagrange equations, in

terms of (xk, yk) is given by


xk

yk

1

 = ρ−1
k


0

0

1

 =


−αkdk + βkbk

αkck − βkck
1

 (4.3.45)

where, setting µ := k1k4k5 + k2k
2
5 − k3k

2
4,

a0 = −V
5

0

V 4
0

c0 +
k4

V 4
0

,

b0 = −V
5

0 k5

V 4
0 k4

c0 +
k4k5 − V 4

0 V
5

0

V 4
0 k4

,

d0 =
k5

k4
c0 +

V 4
0

k4
,

α0 =
µV 5

0(
V 4

0 k4

)2 c2
0 +

(
k2k

2
5 + k3k

2
4 + µ

)
V 4

0 (V 5
0 )2 − 2µk4k5V

5
0(

V 4
0 k4

)2
V 5

0 k5

c0

+
1(

V 4
0 k4

)2
V 5

0 k5

(
k2k5

(
V 4

0 V
5

0

)2 − (k2k
2
5 + k3k

2
4 + µ

)
V 4

0 V
5

0 k4 + k2
4k5

(
V 3

0 (V 4
0 )

2
+ µ

))
,

β0 = − µ

k2
4V

4
0

c2
0 −

V 4
0

(
k2k

2
5 + k3k

2
4 + µ

)
k2

4k5V 4
0

c0 +
k2

4V
2

0 − k2(V 4
0 )2

k2
4V

4
0

(4.3.46)

and where

ck =

k−1∏
l=0

(
κlV

5
l

V 4
l

− 1

)
c0 −

k−1∑
l=0

k−1∏
m=l+1

(
κlV

5
m

V 4
m

− 1

)
k4κl
V 4
l

(4.3.47)

where in this last equation, c0 is the initial datum, or constant of integration.

Proof. If we can solve for the discrete frame (ρk)

ρk =


ak bk αk

ck dk βk

0 0 1

 ,

then we have by the normalization equations (4.3.33) that (4.3.45) holds. We consider (4.3.42)
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as five equations for {a0, b0, c0, d0, α0, β0}, which can be written in the form

0 =(a0d0 + b0c0)k1 + 2b0d0k2 − 2a0c0k3 + (bβ0 + d0α0)k4 − (a0β0 + c0α0)− V 1
0 ,

0 =− c2
0k3 + c0k1d0 − c0k5β0 + k2d

2
0 + k4d0k2 − V 2

0 ,

0 =a2
0k3 − a0b0k1 + a0k5α0 − b20k2 − b0k4α0 − V 3

0 ,

0 =− c0k5 + k4d0 − V 4
0 ,

0 =a0k5− b0k4 − V 5
0 .

Computing a Gröbner basis associated to these equations with the lexicographic ordering

k2 < k1 < a0 < b0 < d0 < β0 < α0, we obtain the first integral noted in Equation (4.3.43),

and the expressions for a0, b0, d0, α0 and β0 in terms of c0 given in (4.3.46), provided V 4
0 , V 5

0 ,

k4 and k5 are all non zero.

From ρ1 = K0ρ0 we can obtain a recurrence equation for (ck), specifically,

c1 = −κa0 − c0 =

(
κV 5

0

V 4
0

− 1

)
c0 −

k4κ

V 4
0

where we have back substituted for a0 from (4.3.46). This is linear and can be easily solved

to obtain the expression for ck given in (4.3.47). Substituting this into the shifts of (4.3.46)

yields (ak), (bk), (dk), (αk) and (βk) and substituting these into (4.3.45) yields the desired

result.

4.3.3 The SL(2) projective action

In this example, we study the SL(2) projective action acting on discrete variables given by

x̃0 = g · x0 =
ax0 + b

cx0 + d
, ad− bc = 1. (4.3.48)

We show how to calculate the recurrence relations when the action is nonlinear. We detail

the calculations for a class of one-dimensional SL(2) Lagrangians, which are invariant under

(4.3.48).
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The Adjoint action

The infinitesimal vector fields for this action were previously computed in (2.15). They are of

the form

va = 2x∂x, vb = ∂x, vc = −x2∂x. (4.3.49)

We have (see Example (2.2.6) for the full calculation) that the induced action on these are

(
ṽa ṽb ṽc

)
=
(

va vb vc

)
Ad(g)−1

where

Ad(g) =

a b c


a ad+ bc −ac bd

b −2ab a2 −b2

c 2cd −c2 d2

(4.3.50)

which matches with (4.3.2) as expected.

The discrete frame, the generating invariants and their syzygies

We consider the normalization equations

x̃0 =
1

2
, x̃1 = 0, x̃2 = −1

2
. (4.3.51)

Solving these for the group parameters, together with ad− bc− 1, we find the moving frame

ρ0 =

√
x0 − x2√

(x0 − x1)(x1 − x2)

 1

2
−x1

2
x2 − 2x1 + x0

x0 − x2

x0x1 − 2x0x2 + x1x2

x0 − x2

 (4.3.52)

and we take ρk = Skρ0.

The generating discrete invariants

The famous, historical invariant for this action, given four points, is the cross ratio,

κ =
(x0 − x1)(x2 − x3)

(x0 − x3)(x2 − x1)
. (4.3.53)

Using the Replacement Rule 2.4.6 we have that

κ =
1 + 2Ix0,3
1− 2Ix0,3

.
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The Maurer–Cartan matrix is then,

K0 = ι0(ρ1) =

√
κ− 1

4κ

 1
1

2

−6κ+ 2

κ− 1
1

 . (4.3.54)

By (3.4.22), the discrete invariants are generated by κ and its shifts.

We now show how to obtain the recurrence relations for this non-linear action.

The generating differential invariants

We now consider xj = xj(t) where t is an invariant parameter. In order to compute the

generating differential invariants we first need to compute the induced action on the derivatives

with respect to t of xj(t).

We have that

g · x′j = g · dxj
dt

=
d(g · xj)
d(g · t)

=

d(g · xj)
dt

d(g · t)
dt

=
d

dt
(g · xj) =

x′j
(cxj + d)2

.

Hence we have for

ρk =

 ak bk

ck dk


that

ρk · x′j =
x′j

(ckxj + dk)2
.

We define

σxj := ρ0 · xj,t =
x′j

(c0xj + d0)2
=

x′j(x1 − x0)

(x0 − x2)(x0 − x1)
(4.3.55)

where c0 and d0 are given in (4.3.52). In terms of the σxj , the curvature matrix is given by

N0 = ι0

(
d
dt
ρ0

)
=

 1

2
σx2 −

1

2
σx0 −σx1

2σx0 − 4σx1 + 2σx2 −1

2
σx2 +

1

2
σx0

 . (4.3.56)

We now obtain the recurrence relations for the σxj . We have for all k and j that

ρk · x′j =
x̃′j

(c̃kx̃j + d̃k)2

∣∣∣∣∣
ρ0

=
ρ0 · x′j

(c̃k|ρ0ρ0 · xj + d̃k|ρ0)2
.
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Note that ρ̃k = ρkg
−1 due to the fact that the frames ρk are equivariant. Hence

 ãk b̃k

c̃k d̃k

∣∣∣∣∣
ρ0

= ρkρ
−1
0 = ρkρ

−1
m−1 · · · ρ1ρ

−1
0 = (Sm−1K0) · · ·K0.

In particular, we have

Sσx0 = ρ1 · x′1 =
ρ0 · x′1

((K0)2,1ρ0 · x1 + (K0)2,2)2
=

4κ

κ− 1
σx1 (4.3.57)

since ρ0 · x1 = 0 and ρ0 · x′1 = σx1 . Next,

S2σ
x
0 = ρ2 · x′2 =

ρ0 · x′2
(((SK0)K0)2,1ρ0 · x2 + ((SK0)K0)2,2)2

=
κ1(κ− 1)

(κ1 − 1)κ
σx2 (4.3.58)

where we have used the normalization equations, ρ0 · x1 = 0 and ρ0 · x2 = −1/2.

Similarly, one can prove that

Sσx1 =
κ− 1

4κ
σx2 . (4.3.59)

We can now calculate the differential difference syzygy. Calculating (3.4.33) and equating

components and using the syzygies (4.3.57), (4.3.57) and (4.3.59), we obtain

d

dt
κ =

κ(κ− 1)κ1(κ2 − 1)

κ2(κ1 − 1)
S3σ

x
0 +

κ(κ1 − 1)

κ1
S2σ

x
0 − (κ− 1)Sσx0 − κ(κ− 1)σx0

= Hσx0
(4.3.60)

where this defines the linear difference operator H.

The Euler–Lagrange equations and the conservation laws

We consider a Lagrangian of the form

L[x] =
∑

L(κ, κ1, . . . , κJ).

From (3.5.11) we have that the Euler–Lagrange equation is

0 = H∗(Eκ(L)) = S−3(αEκ(L)) + S−2(βEκ(L)) + S−1(γEκ(L)) + δEκ(L)

where

α =
κ(κ− 1)κ1(κ2 − 1)

κ2(κ1 − 1)
, β =

κ(κ1 − 1)

κ1
, γ = −(κ− 1), δ = −κ(κ− 1). (4.3.61)
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In order to calculate the conservation law, we need the matrix of infinitesimals, which is

Φ0 =
( a b c

x0 2x0 1 −x2
0

)
and so its invariantized form

Φ0(I) =

( a b c

x0 1 1 −1

4

)
.

From (3.5.4) we have that the boundary terms are of the form

AH(Eκ(L), σx0 ) = (S−3(γEκ(L)) + S−2(βEκ(L)) + S−1(αEκ(L)))σx0

+ (S−1(βEκ(L)) + S−2(αEκ(L))) Sσx0 + S−1(αEκ(L))S2σ
x
0 .

(4.3.62)

Hence by (3.7.4) the conservation law is

k = (S−1(γEκ(L)) + S−2(βEκ(L)) + S−1(αEκ(L))) Φ0(I)Ad(ρ0)

+ (S−3(βEκ(L)) + S−2(αEκ(L))) Φ0(I) (SAd(ρ0))

+ S−1(αEκ(L))Φ0(I) (S2Ad(ρ0)) .

(4.3.63)

Using

SAd(ρ0) =Ad(ρ1) = Ad(K0)Ad(ρ0),

S2Ad(ρ0) =Ad(S(K0))Ad(K0)Ad(ρ0)

and collecting terms, we obtain the conservation law of the form

k = V(I)Ad(ρ0) (4.3.64)

where this defines the vector V(I) = (V 1
0 V 2

0 V 3
0 ) and where

Ad(ρ0) =


x21−x0x2

(x0−x1)(x1−x2)
2x1−x2−x0

2(x0−x1)(x1−x2)
x1(2x0x2−x1(x0+x2))

2(x0−x1)(x1−x2)

(x0−x2)x1
2(x0−x1)(x1−x2)

x0−x2
4(x0−x1)(x1−x2)

x21(x2−x0)
4(x0−x1)(x1−x2)

2(x2−2x1+x0)((x1−2x2)x0+x1x2)
(x0−x2)(x0−x1)(x1−x2) − (x2−2x1+x0)2

(x0−x2)(x0−x1)(x1−x2)
((x1−2x2)x0+x1x2)2

(x0−x2)(x0−x1)(x1−x2)

 .
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Explicitly, V(I) is given by

V(I) =

(
1 1

1

4

)
{(S−1(γEκ(L)) + S−2(βEκ(L)) + S−1(αEκ(L)))

+ (S−3(βEκ(L)) + S−2(αEκ(L)))Ad(K0)

+ S−1(αEκ(L))Ad(S(K0))Ad(K0)}

where

Ad(K0) =


−κ+ 1

2κ

3κ+ 1

2κ

κ− 1

8κ−κ+ 1

4κ

κ− 1

4κ

−κ+ 1

16κ

−3κ+ 1

κ
−(3κ+ 1)2

(κ− 1)κ

κ− 1

4κ


and where

Ad(S(K0))Ad(K0) =
1

κκ1


(1−κ1)κ+κ1+1

2
(1−3κ1)κ2+2(1−κ1)κ+1

2(κ−1)
(κ1+1)(1−κ)

8

(κ1−1)(κ+1)
4

(κ1−1)(κ+1)2

4(κ−1)
(κ1+1)(1−κ)

16

(3κ−1)κ21+2(κ−1)κ1−κ−1
κ1−1 − (κ1(3κ−1)−κ−1)2

(κ1−1)(κ−1)
(κ−1)(κ1+1)2

4(κ1−1)

 .

The general solution

If we can solve for the discrete frame (ρk) then we have

xk = ρ−1
k ·

1

2
=
dk − 2bk
2ak − ck

(4.3.65)

since ρk · xk =
1

2
is the normalization equation.

Recall that the Adjoint representation in this example matches the one for (4.3.1) as is the

adjoint representation of the same Lie group. Therefore we make use of the simplification of

the algebraic equations for the group parameters in (4.3.21). However, the Maurer–Cartan

matrix is different, and so the recurrence relations needed to compute the solution are different.

Nevertheless, we again find that the remaining recurrence relations are diagonalisable, and are

therefore easily solved.

We again have equations (4.3.22a)–(4.3.22d), where now the V i
0 are those of equation
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(4.3.64). Recall that these equations are of the form,

k2
1 + 4k2k3 − (V 1

0 )
2 − 4V 2

0 V
3

0 = 0, (4.3.66a)

k3c
2
0 − k1c0d0 − k2d

2
0 + V 2

0 = 0, (4.3.66b)

2b0V
2

0 − 2c0k3 + (k1 − V 1
0 )d0 = 0, (4.3.66c)

2a0V
2

0 − c0(k1 + V 1
0 )− 2k2d0 = 0. (4.3.66d)

The recurrence relation is ρ1 = K0ρ0, explicitly: a1 b1

c1 d1

 =

√
κ− 1

4κ

 1
1

2

−6κ+ 2

κ− 1
1

 a0 b0

c0 d0

 .

Therefore

c1 =

√
κ− 1

4κ

(
−6κ+ 2

κ− 1
a0 + c0

)
, d1 = −

√
κ− 1

4κ

(
−6κ+ 2

κ− 1
b0 + d0

)
.

Using these to eliminate a0 and b0 from (4.3.66c) and (4.3.66d), leads to the linear system,

 c1

d1

 = QΛ0Q
−1

 c0

d0


where Q is a constant matrix

Q =
1

2µ

 µ+ k1 µ− k1

2k3 −2k3


and Λ0 = (λ1

0, λ
2
0) where

λ1
0 =

1

2
√
κ− 1

√
κV 2

0

(
−(3κ+ 1)

(
µ+ V 1

0

)
+ (κ− 1)V 2

0

)
,

λ2
0 =

1

2
√
κ− 1

√
κV 2

0

(
(3κ+ 1)

(
µ− V 1

0

)
+ (κ− 1)V 2

0

)
where we have set

µ =
√
k2

1 + 4k2k3.

We have then that ck

dk

 = Q

 ∏k−1
l=0 λ

1
l 0

0
∏k−1
l=0 λ

2
l

Q−1

 c0

d0


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where in this last, c0 and d0 are the initial data and λlk = Skλl0.

Substituting these into the kth shifts of (4.3.66c) and (4.3.66d), specifically,

2bkV
2
k − 2ckk3 + (k1 − V 1

k )dk = 0, (4.3.67a)

2akV
2
k − ck(k1 + V 1

k )− 2k2dk = 0 (4.3.67b)

yields the expressions for ak and bk needed to obtain, finally, xk given in (4.3.65).



Commuting Flows on the Curvature Invariants

In this chapter, we first show how to construct the correction matrix in the discrete case. We

also compare the evolutions on the Lie group and on the Lie algebra in the smooth framework

with the discrete one and we prove that the relationship between a flow and its induced

curvature flow is in terms of a linear shift operator depending only on curvature invariants. We

analyse the condition for discrete curve evolutions to commute in terms of a discrete moving

frame and give an alternate proof of Theorem 11 in Mansfield and Van der Kamp, [73] for

the smooth case and prove the theorem for the discrete case. We use a very simple Lie group

action as a running example. Finally, we exhibit an example in order to illustrate the theory

developed in this chapter and relate this examples to discrete integrable systems.

5.1 Introduction

Discrete moving frames have been proven useful for the study of discrete integrable systems,

which arise as analogues of curvature flows for polygon evolutions in homogeneous spaces (see

Beffa and Wang, [6]). Most integrable systems have a natural discretization that preserves the

integrability features, described by difference equations. For instance, the Toda Lattice (see

Toda, [105])
d2us
dt2

= exp(us−1 − us)− exp(us − us+1) (5.1.1)

and the Volterra Lattice (see Manakov, [68])

d2qs
dt2

= qs(qs+1 − qs−1) (5.1.2)

are the most famous discretizations of the well known Korteweg-de Vries (KdV) equation

ut + uxxx − 6uux = 0.

127
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Using Flaschka coordinates (see Flaschka, [28], [29])

qs =
dus
dt

, ps = exp(us − us+1)

equation (5.1.1) can be re-written of the form

dps
dt

= ps(qs − qs+1),
dqs
dt

= ps−1 − ps

which is a complete discrete integrable system (see Flaschka, [28],[29], and Manakov, [68]).

Further, there exists a relationship between equation (5.1.2) and

dps
dt

= p2
s(ps+1 − ps−1)

by the Miura transformation qs = psps−1 which is an integrable discretization of the modified

KdV equation

ut + uxxx + 6σu2ux = 0, σ = ±1.

In this chapter we understand integrability as the existence of an infinite set of commuting

evolutions. Our results inform the discussion on when discrete equivariant flows and their

invariantization are both integrable as is commonly observed.

The smooth case was previously studied in Mansfield and van de Kamp, [73] where a

method that provides the evolution equation for the curvature invariants of a curve as in (2.59)

is presented. It is shown that it derives from a syzygy between sets of invariants. For instance,

in the case of the linear action of SL(2) on (x, u), the syzygy (2.58) has the form

DtQx −DxQt = −2ItQ
x + [Qt, Qx]

provides the relation

Dtκ = (D2
x − 4κ)It.

The study in Mansfield and Van der Kamp, [73] further makes a comparison between the

symmetry condition of the curve evolutions and the curvature evolutions. Given two invariant

curve evolutions it is shown that the symmetry condition for curvature evolutions to commute

appears as a differential consequence of the syzygy between different evolution invariants. For

the same example, it can be verified that

Ds(D2
x − 4κ)It −Dt(D2

x − 4κ)Is = (D2
x − 4κ)(DsFt[κ]−DtFs[κ])
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where

It = Ft[κ] and Is = Fs[κ]

are constraints imposed in order to describe the curve moving in different time directions.

In this chapter we derive the discrete analogue of the results appearing in Mansfield and

Van der Kamp, [73] and show that the condition for two curvature evolution to commute is a

differential consequence of the condition for two curve evolutions to commute.

In §5.2, we present our running example in both smooth and discrete formats. In §5.3, we

explore the invariant differentiation, we present the correction terms and the correction matrix

for the discrete case and prove their construction. In §5.4, we compare the evolutions on the

Lie algebra and the evolutions on the Lie group in the continuous and in the discrete case, as

well as the differential syzygy (2.58) with the differential–difference syzygy (3.4.33). We also

present one of the main theorems of this chapter regarding the reduced form of the differential

– difference syzygy. In §5.5, we show that the condition for two curvature evolution to commute

is a differential consequence of the condition for two curve evolutions to commute. In §5.7,

we illustrate the theory using the SL(2) linear action and we relate it to discrete integrable

systems.

5.2 Presentation of our running example: linear transforma-

tions

We first introduce the linear transformations group action in the continuous and discrete case,

which will be our running example throughout the chapter.

5.2.1 The smooth case

Example 5.2.1. Consider the group of linear transformations acting on curves (x, u(x)) such

that

x→ x = x̃, u→ λu+ ε = ũ.

Since x is invariant, the prolongation action is simple to calculate. We obtain

ũJ = λuJ

where J is the index of differentiation.

Let us take the cross section K to be the coordinate plane u = 0 and ux = 1. Thus the
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normalization equations are

ũ = 0, ũs = 1. (5.2.2)

Solving equations (5.2.2) in terms of u, ux, ... yields

λ =
1

ux
, ε = − u

ux
.

In matrix form, the frame is obtained by substituting the values of the parameters on the frame

into a matrix representation of the generic group element. For a standard representation of

the group of linear transformations

g =

 λ ε

0 1

 (5.2.3)

we obtain

ρ =

 1

ux
− u

ux

0 1

 .

Note that

ρ(ũ, ũx) =

 1

ũx
− ũ

ũx

0 1

 =

 1

λux
−λu+ ε

λux

0 1

 =

 1

ux
− u

ux

0 1


 1

λ
− ε
λ

0 1

 = ρ(u, ux)g−1

which is the equivariance of a right frame for a left action.

For the linear transformation group (5.2.1) the invariants are of the form

ι(u) = ρ · u = 0, ι(ux) = ρ · ux = 1, ι(uJ) = ρ · uJ =
uJ
ux
.

5.2.2 The discrete case

Example 5.2.4. Consider the group G of linear transformations and its action on the pro-

longation space P (0)
n (R) with coordinate u0. On this prolongation space, the action is given

by

u0 7→ λu0 + ε = ũ0. (5.2.5)

Taking the normalization equations ũ0 = 0, ũ1 = 1, and solving for the parameters λ and ε

yields the following moving frame

ρ0 =

 − 1

u0 − u1

u0

u0 − u1

0 1


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where the solutions for λ and ε have been substituted into (5.2.3). The invariants are of the

form

Iu0,0 = ρ0 · u0 = 0, Iu0,1 = ρ0 · u1 = 1, Iu0,j = ρ0 · uj =
uj − u0

u1 − u0
.

The Maurer-Cartan matrix is

K0 = ι0


 − 1

u1 − u2

u1

u1 − u2

0 1


 =

 − 1

1− Iu0,2
1

1− Iu0,2
0 1

 =

 −κ κ

0 1

 ∈ G

where we have set κ to be
1

1− Iu0,2
. Suppose now that uj = uj(t). The first order differential

invariants are of the form

Iu0,j;t = ρ0 · u′j =

 − 1

u0 − u1

u0

u0 − u1

0 1


 u′j

0

 =
u′j

u1 − u0
.

For the next calculation we need the invariant Iu0,1;t expressed in terms of Iu0,0;t which we will

denote σt from now on. We have that

Sσt = ρ1 · u′1 = ρ1ρ0ρ
−1
0 · u

′
1 = K0I

u
0,1;t = −κIu0,1;t

and therefore Iu0,1;t = −Sσt
κ

.

The curvature matrix is

N0;t = ι0

 u′0 − u′1
(u0 − u1)2

u′0(u0 − u1)− u0 (u′0 − u′1)

(u0 − u1)2

0 0


=

 Iu0,0;t − Iu0,1;t −Iu0,0;t

0 0


=

 σt +
Sσt
κ

−σt

0 0

 ∈ g

(5.2.6)

where g is the Lie algebra of G.
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5.3 Invariant differentiation

In this section we introduce the discrete analogue of §2.4.2. In the continuous case (definition

4.5.3, [70]) a set of distinguished invariant operators is defined by evaluating the transformed

total differential operators of the frame. In the discrete case, the total derivative with respect

to t plays the role of the linear derivations. We have

Dt = Dt =
d

dt
=

d̃

dt

∣∣∣
g=ρk

.

Recall from (3.4.2) and (3.4.27)

Ik,j = ρk · zj and Ik,j;t = ρk · z′j

and from (3.4.28) recall that the invariantization and derivation do not commute, i.e,

d

dt
Ik,j =

d

dt

(
z̃j

∣∣∣
g=ρk

)
6=
(

d

dt
z̃j

) ∣∣∣
g=ρk

= z̃′j

∣∣∣
g=ρk

= Ik,j;t

where Ik,j = Ik,j(t) and Ik,j;t = Ik,j;t(t). We define the time-correction terms Mk,j;t by

d

dt
Ik,j = Mk,j;t + Ik,j;t. (5.3.1)

Note that differentiating Ik,j = ρk · zj with respect to t and using (3.4.27) and (2.4.6) we

obtain

d

dt
Ik,j =

d

dt
(ρk · zj)

=

(
d

dt
ρk

)
· zj + ρk ·

(
d

dt
zj

)
=

(
d

dt
ρk

)
ρ−1
k ρk · zj + ρkρ

−1
k ρk ·

(
d

dt
zj

)
= ιk

((
d

dt
ρk

)
· zj
)

+ Ik,j;t.

Isolating ιk
((

d

dt
ρk

)
· zj
)

we obtain the expression for Mk,j;t.
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Example 5.3.2. The correction terms are of the form

M0,j;t = ι0

((
d

dt
ρ0

)
uj

)

= ι0


 u′0 − u′1

(u0 − u1)2

u′0(u0 − u1)− u0 (u′0 − u′1)

(u0 − u1)2

0 0


 uj

1




= ι0

 (uj − u0) (u′0 − u′1) + u′0(u0 − u1)

(u0 − u1)2

0


=

 Iu0,j(σt − Iu0,1;t)− σt

0

 .

For instance, the correction terms M0,0;t and M0,1;t are of the form

M0,0;t = −σt and M0,1;t = −Iu0,1;t (5.3.3)

as expected. Note that we have ignored the last component of the vector.

Proposition 5.3.4. Assuming that t is the only smooth parameter and that the normalization

equations do not involve t, there exist a 1×R correction row K = {Kl} where l = 1, ..., R such

that

Mk,j;t =
R∑
l=1

Klφk,j;l (5.3.5)

where

φk,j;l = ιk

(
∂ũj
∂al

)
. (5.3.6)

Proof. By definition we have that

Ik,j = ρk · zj = g · zj
∣∣∣
g=ρk

= z̃j

∣∣∣
g=ρk

.

Note that we can write z̃j as a function depending on the variables zm and the group parameters

al. We set z̃j = fj(zm, a
l). Therefore

Ik,j = fj(zm, a
l)
∣∣∣
g=ρk

.

Hence

d

dt
Ik,j =

dfj(zm, a
l)

dt

∣∣∣
g=ρk

+
∑
l

∂fj(zm, a
l)

∂al
dal

dt

∣∣∣
g=ρk

= Ik,j;t +
∑
l

φk,j;l
dal

dt

∣∣∣
g=ρk

.
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Setting
dal

dt

∣∣∣
g=ρk

= Kl (5.3.7)

we obtain the required result.

The correction row K with respect to the moving frame ρk can be calculated without

explicit knowledge of the frame as follows: Suppose the ϑ ordered variables appearing in the

normalization equations are ζj , where j = 1, ..., ϑ. The row T = {Tj} is the invariant 1× ϑ

matrix

Tj = ιk

(
d

dt
ζj(t)

)
. (5.3.8)

We denote

Φ = {Φjl} = ιk

(
∂ζ̃j
∂al

)
the R× ϑ matrix of invariant generators. Let ψλ, λ = 1, ..., R be the normalization equations,

the matrix J = {Jjλ} is the invariant ϑ×R matrix such that

Jjλ = ιk

(
∂ψλ
∂ζj

)
. (5.3.9)

Theorem 5.3.10. The correction matrix which provides the error terms in the process of

invariant differentiation in (5.3.5) is given by

K = −TJ(ΦJ)−1. (5.3.11)

Proof. Recall that the normalization equations are of the form

ψλ(g · zm) = 0, for λ = 1, ..., R. (5.3.12)

They depend on the variables zm, but also depend on the parameters of the group al. Therefore,

we can rewrite the normalization equations of the form Ψλ(ζj , a
l) = 0, where λ = 1, ..., R

and where we have denoted the variables appearing in the normalization equations by ζj .

Differentiating this equation with respect to t we obtain

0 =
∑
j

dζj
dt

∂Ψλ

∂ζj
+
∑
l

dal

dt

∂Ψλ

∂al
(5.3.13)

Now, from (5.3.12)
∂ψλ
∂al

=
∂g · zm
∂al

∂ψλ
∂g · zm

. (5.3.14)

Taking into account that ψλ(g · zm) = Ψλ(ζj , a
l), substituting (5.3.14) into (5.3.13) and using
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the invariantizing operator ιk

0 = TJ + K(ΦJ).

Isolating K we obtain the required result.

Example 5.3.15. The variables appearing in the normalization equations (5.2.2) are u0 and

u1. Therefore,

ζ1 = u0 and ζ2 = u1.

Thus ϑ = 2. Note that as the group action depends on two paramenters we have that R = 2.

Hence,

T =

(
ι0

(
d

dt
ζ1

)
ι0

(
d

dt
ζ2

) )
=
(
Iu0,0;t Iu0,1;t

)
.

The matrix of invariant generators has the form

Φ =


ι0

(
∂ζ̃1

∂a1

)
ι0

(
∂ζ̃1

∂a2

)

ι0

(
∂ζ̃2

∂a1

)
ι0

(
∂ζ̃2

∂a2

)
 =

 ι0(u0) 1

ι0(u1) 1

 =

 0 1

1 1



where a1 = λ and a2 = ε and finally

J =

 ι0

(
∂ψ1

∂ζ1

)
ι0

(
∂ψ1

∂ζ2

)
ι0

(
∂ψ2

∂ζ1

)
ι0

(
∂ψ2

∂ζ2

)
 =

 1 0

0 1

 .

Therefore

K = −TJ(ΦJ)−1 =
(
Iu0,0;t − Iu0,1;t −Iu0,0;t

)
.

Thus the correction terms can be calculated as follow

M0,0;t = K1φ0,0;1 +K2φ0,0;2 = (Iu0,0;t − Iu0,1;t) · 0 + (−Iu0,0;t) · 1 = −σt,

M0,1;t = K1φ0,1;1 +K2φ0,1;2 = (Iu0,0;t − Iu0,1;t) · 1 + (−Iu0,0;t) · 1 = −Iu0,1;t

that match with those ones calculated before in (5.3.3).

Theorem 5.3.16. The curvature matrix can also be given by

Nk =
∑
l

Klal (5.3.17)

where {al}, j = 1, ..., dim(g) is the basis of the Lie algebra g of the group G.
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Proof. On one hand we have

d

dt
ρk(z̃m)

∣∣∣
g=ρk

=
d

dt
ρk(g · zm)

∣∣∣
g=ρk

=
d

dt
ρk(zm) · g−1

∣∣∣
g=ρk

= Nk.

On the other hand
d

dt
ρk(z̃m)

∣∣∣
g=ρk

=
r∑
l=1

∂ρk
∂al

dal

dt

∣∣∣
g=ρk

=
r∑
j=1

Klal.

Example 5.3.18. The Lie algebra of the Lie group of linear transformations is spanned by

the basis a1 =

 1 0

0 0

 , a2 =

 0 1

0 0

 .

Therefore the curvature matrix can be computed as follows:

N0 = K1

 1 0

0 0

+K2

 0 1

0 0


= (Iu0,0;t − Iu0,1;t)

 1 0

0 0

− Iu0,0;t

 0 1

0 0


=

 Iu0,0;t − Iu0,1;t −Iu0,0;t

0 0

 .

Note that this matches the matrix obtained in (5.2.6).

Remark 5.3.19. It is important to note that the order of the elements of the Lie algebra

have to match the order of the infinitesimal vector fields in the sense that the Lie bracket

multiplication for the −aj is the same as the bracket multiplication for the infinitesimal vector

fields (see Remark 5.2.5 in Mansfield, [70]).

5.4 Evolutions on the Lie group and on the Lie algebra

In the smooth case, the evolution of the curvature invariants is easily understood in terms

of an evolution on the Lie algebra, (see Section 3 in Mansfield and Van der Kamp, [73]).

Considering the 1 + 1 dimensional case (x, t) 7→ z(x, t), the maps

x 7→ Qx := (Dxρ(z))ρ(z)−1, t 7→ Qt := (Dtρ(z))ρ(z)−1 (5.4.1)

are curves in the Lie algebra g of G.
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In the discrete case, discrete curves evolve in the space by the shift operator and inducing

a path which allow us to differentiate with respect to the invariant t the discrete curves evolve

in the time (see (3.4.2)). In the discrete case Nk plays the role of Qt, and while both of them

are in the Lie algebra, Kk playing the role of Qx is in the group while Qx is in the algebra.

Therefore, discrete curves evolve in the space in the group and not in the algebra, while the

smooth curves evolve in the space in the algebra. Recall that Qx and Qt satisfy the syzygy

(2.58). We can say that the analogue discrete to (2.58) is (3.4.33).

Remark 5.4.2. Recall (3.4.33)

d

dt
K0 = (SN0)K0 −K0N0.

Note that multiplying both sides by K−1
0(

d

dt
K0

)
K−1

0 = (SN0)−K0N0K
−1
0 = (S−AdK0(N0))N0

we obtain an element in g where Ad is the left Adjoint action.

Theorem 5.4.3. If the normalization equations do not involve time-derivative invariants then

it is always possible to rewrite the syzygy (3.4.33)

d

dt
K0 = (SN0)K0 −K0N0

in its reduced form (3.4.29)
d

dt
κ = Hσ

where H is an invariant linear shift operator involving curvature invariants only.

Proof. On the left hand side the entries of K0 are the curvature invariants, so the entries of
d

dt
K0 are the derivatives of the curvature invariants, which are the components of

d

dt
κ. On the

right hand side, the entries of N0 will depend on the components of σt = I0,0;t, I0,1;t, ..., I0,j;t.
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Notice that we can always write

I0,j;t = ρ0 · z′j
= ρ0ρ

−1
1 ρ1 · z′j

= K−1
0 ρ1 · z′j

= K−1
0 ρ1ρ2

−1ρ2 · z′j
= K−1

0 S(ρ0ρ1
−1)ρ2 · z′j

= K−1
0 (SK−1

0 )ρ2 · z′j
= ...

= K−1
0 (SK−1

0 )(S2K
−1
0 )...(Sj−1K

−1
0 )ρj · z′j

= K−1
0 (SK−1

0 )(S2K
−1
0 )...(Sj−1K

−1
0 )Sj(ρ0 · z′0) = Pσt,

where P is the invariant linear shift operator matrix of the form

K−1
0 (SK−1

0 )(S2K
−1
0 )...(Sj−1K

−1
j )Sj

involving curvature invariants only. Therefore, we can write every entry of N0 and SN0 as

linear combinations of Pjσt. Therefore, as the entries of K0 are the curvature invariants, by

equating components and reorganising we can write

d

dt
κα =

∑
β

Pα,βj σβt .

Hence
d

dt
κ = Hσt

where H is an invariant matrix shift operator involving curvature invariants only of the form

H = {H}αβ = {Pα,βj }.

In (5.4.1) we define the curvature matrices with respect to the parameters x and t. In the

case that Dx = Dx and Dt = Dt we have that

DtQ
x −DxQ

t = DxDt(ρ)ρ−1 −Dx(ρ)ρ−1Dt(ρ)ρ−1 −DtDx(ρ)ρ−1

+ Dt(ρ)ρ−1Dx(ρ)ρ−1 = [Qt, Qx]

where we have used the fact that

[Dx,Dt] = 0.

Hence we have the following syzygy

DtQ
x = DxQ

t + [Qt, Qx]. (5.4.4)
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This syzygy along with (3.4.33) motivate the following definitions:

Definition 5.4.5. Let us define the F operator acting on g as

FQi = Di − adQi (5.4.6)

where ad is given by (2.18).

Definition 5.4.7. We define the discrete F∆ operator acting on G as

F∆
N0

= (S− id)N0 + adN0 . (5.4.8)

Note that for i = x applying (5.4.6) to Qt we obtain

FQx(Qt) = Dx(Qt) + [Qt, Qx]

and that applying (5.4.8) to K0 we obtain

F∆
N0

(K0) = (SN0)K0 −K0N0.

Remark 5.4.9. It follows from (5.4.6), (5.4.8) and (5.4.3) that given an expression of the

form

C = F∆
A (B)

where A ∈ g and B ∈ G, after equating components we can always get an expression of the

form

C(σt, σs) = Ha.

where a is is a vector containing the components of A, H is the linear shift operator appearing

in (5.4.3) depending on the components of B and their shifts. In the smooth case, it follows

from Remark 10 in Mansfield and Van der Kamp, [73] that given an expression of the form

C = FA(B)

where A,B ∈ g, after equating components we can always get an expression of the form

C(σt, σs) = Ha

where H is a linear differential operator.



140 Commuting Flows on the Curvature Invariants

Example 5.4.10. Using the syzygy (5.4.4) we can write the evolution of the curvature invari-

ants κ in terms of the evolution invariant σt as follows

κt =
κS2σt

Sκ
+ (κ− 1) Sσt − κσt.

Therefore there exists a linear shift operator H such that

κt = Hσt (5.4.11)

where

H =
κS2

Sκ
+ (κ− 1) S− κ.

5.5 Lifting integrability

Following the theory developed in Mansfield and Van der Kamp, [73], in this section we answer

the question whether integrability of a curvature evolution does lift to the motion of its curve in

the discrete case. We also understand integrability as existence of infinitely many generalized

symmetries and we prove in the discrete framework that a symmetry of the curvature evolution

gives rise to a symmetry of the curve evolution. Suppose now that zj = zj(s, t) for all j in Z.

The lowest order syzygy between time derivatives of evolution variables is

∂

∂t

∂

∂s
z0(s, t)− ∂

∂s

∂

∂t
z0(s, t) = 0. (5.5.1)

Given two evolutions of the discrete curve

∂

∂t
z0(s, t) = Pt[z0] and

∂

∂s
z0(s, t) = Ps[z0]

where [z0] denotes the dependence of z0 and its shifts, we say that the curve evolutions

commute if

(
∂

∂t
Ps[z0]

) ∣∣∣ ∂
∂t
z0(s, t) = Pt[z0]

−
(
∂

∂s
Pt[z0]

) ∣∣∣ ∂
∂s
z0(s, t) = Ps[z0]

= 0.

We will call this condition the symmetry condition. Now let us consider curve evolutions

that are invariant under a group action. The lowest order syzygy involving invariant time

derivatives of the fundamental evolution invariants is

C(σt, σs) =
∂

∂t
σs −

∂

∂s
σt +M0;s,0;t −M0;t,0;s = 0, (5.5.2)
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where

σt = I0,0;t = ρ0 ·
∂

∂t
z0(s, t) and σs = I0,0;s = ρ0 ·

∂

∂s
z0(s, t)

and where

M0;t,0;s :=
∂

∂t
ρ0

(
∂

∂s
z0(s, t)

)
and M0;t,0;s :=

∂

∂s
ρ0

(
∂

∂t
z0(s, t)

)
.

Further, we will call (5.5.2) fundamental syzygy.

Example 5.5.3. The correction terms are of the form

M0;s,0;t = ι0

(
∂

∂s
ρ0

(
∂

∂t
u0(s, t)

))
= σtσs +

σtSσs
κ

.

Analogously

M0;t,0;s = σsσt +
σsSσt
κ

.

Therefore the fundamental syzygy is

C(σt, σs) =
∂

∂t
σs −

∂

∂s
σt +

σtSσs
κ
− σsSσt

κ
= 0.

Now suppose that two invariant evolution of a curve are given by

σt = Ft[κ] and σs = Fs[κ] (5.5.4)

where [κ] denotes the dependence of the curvature invariants and their shifts. Recall that

under the conditions of (5.4.3) we have

∂

∂t
κ = Hσt and

∂

∂s
κ = Hσs.

Therefore using (5.5.4) we have

∂

∂t
κ = HFt and

∂

∂s
κ = HFs.

The invariant symmetry condition is given by

(
∂

∂t
Fs

) ∣∣∣ d

dt
κ = HFt

−
(
∂

∂s
Ft

) ∣∣∣ d

ds
κ = HFs

+ (M0;s,0;t −M0;t,0;s)
∣∣∣
σt=Ft,σs=Fs

.

In other words

C(σt, σs)
∣∣∣
σt=Ft,σs=Fs

= 0.
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Remark 5.5.5. When the action of the Lie group neither depends nor acts on the variables t

and s and no evolution variables appear in the normalization equations, the identities (5.5.1)

and (5.5.2) are related by

ρ0

(
∂

∂t

∂

∂s
z0(s, t)− ∂

∂s

∂

∂t
z0(s, t)

)
=

∂

∂t
σs −

∂

∂s
σt +M0;s,0;t −M0;t,0;s. (5.5.6)

Consider for the smooth case the curvature matrices with respect to the parameters s and

t. From (5.4) interchanging variables and rearranging the terms of the equation we obtain the

following compatibility condition

C(Qt, Qs) = DtQ
s −DsQ

t + [Qs, Qt] = 0. (5.5.7)

Let us now consider the curvature matrices with respect to the parameters s and t in the

discrete case

N0;t =

(
∂

∂t
ρ0

)
ρ−1

0 and N0;s =

(
∂

∂s
ρ0

)
ρ−1

0 .

We have that
∂

∂s
N0;t =

(
∂

∂s

∂

∂t
ρ0

)
ρ−1

0 −
(
∂

∂t
ρ0

)
ρ−1

0

(
∂

∂s
ρ0

)
ρ−1

0

and analogously

∂

∂t
N0;s =

(
∂

∂t

∂

∂s
ρ0

)
ρ−1

0 −
(
∂

∂s
ρ0

)
ρ−1

0

(
∂

∂t
ρ0

)
ρ−1

0 .

Hence

∂

∂t
N0;s −

∂

∂s
N0;t =

(
∂

∂t

∂

∂s
ρ0

)
ρ−1

0 −
(
∂

∂s
ρ0

)
ρ−1

0

(
∂

∂t
ρ0

)
ρ−1

0 −
(
∂

∂s

∂

∂t
ρ0

)
ρ−1

0

−
(
∂

∂t
ρ0

)
ρ−1

0

(
∂

∂s
ρ0

)
ρ−1

0 = [N0;t, N0;s].

Therefore the compatibility condition in the discrete case is

C(N0;t, N0;s) =
∂

∂t
N0;s −

∂

∂s
N0;t + [N0;s, N0;t] = 0. (5.5.8)

Note that both compatibility conditions (5.5.7) and (5.5.8) have the same structure.

Remark 5.5.9. Also note that the expression

C(σt, σs) =
∂

∂t
σs −

∂

∂s
σt +M0;s,0;t −M0;t,0;s (5.5.10)
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is equivalent to

C(N0;t, N0;s) =
∂

∂t
σs −

∂

∂s
σt +N0;sσt −N0;tσs

as

N0;sσt =

(
∂

∂s
ρ0

)
ρ−1

0 ρ0

(
∂

∂t
z0(s, t)

)
=

∂

∂s
ρ0

(
∂

∂t
z0(s, t)

)
= M0;s,0;t

and

N0;tσs =

(
∂

∂t
ρ0

)
ρ−1

0 ρ0

(
∂

∂s
z0(s, t)

)
=

∂

∂t
ρ0

(
∂

∂s
z0(s, t)

)
= M0;t,0;s.

In general, the condition on the functions Fs and Ft for the discrete curve evolution to

commute is

0 =
∂

∂t

∂

∂s
z0(s, t)− ∂

∂s

∂

∂t
z0(s, t)

=
∂

∂t
(ρ−1

0 · Fs)−
∂

∂s
(ρ−1

0 · Ft)

= −
(
ρ−1

0

(
∂

∂t
ρ0

)
ρ−1

0

)
· Fs − ρ−1

0 ·
(
∂

∂t
Fs

)
+

(
ρ−1

0

(
∂

∂s
ρ0

)
ρ−1

0

)
· Ft − ρ−1

0 ·
(
∂

∂s
Ft

)
= ρ−1

0 ·
(
N0;t Fs −N0;s Ft +

∂

∂t
Fs −

∂

∂s
Ft

)
.

(5.5.11)

Proposition 5.5.12. The F operator satisfies

[FQi ,FQk ] = adC(Qi,Qk).

Proof. Let us consider

FQi(Qj) = DiQ
j + [Qj , Qi], FQk(Qj) = DkQ

j + [Qj , Qk].

Therefore we have

FQi(FQk(Qj)) = DiDkQ
j + Di[Q

j , Qk] + [DkQ
j + [Qj , Qk], Qi] (5.5.13)

and

FQk(FQi(Qj)) = DkDiQ
j + Dk[Q

j , Qi] + [DiQ
j + [Qj , Qi], Qk]. (5.5.14)

Substracting (5.5.14) to (5.5.13) we obtain

FQi(FQk(Qj))−FQk(FQi(Qj)) = [Qj ,DiQ
k]− [Qj ,DkQ

i] + [Qj , [Qk, Qi]]

= adC(Qi,Qk)Q
j
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and therefore

[FQi ,FQk ] = adC(Qi,Qk).

Proposition 5.5.15. The F∆ operator satisfies

[F∆
A ,F∆

B ] = F∆
[A,B]

for appropriate expressions A and B.

Proof. Now let us consider

F∆
A (C) = (SA)C − CA, and F∆

B (C) = (SB)C − CB

for appropriate expressions A,B and C. Therefore we have

F∆
A (F∆

B (C)) = (SA)((SB)C − CB)− ((SB)C − CB)A

= S(AB)C − (SA)CB − (SB)CA+ CBA
(5.5.16)

and
F∆
B (F∆

A (C)) = (SB)((SA)C − CA)− ((SA)C − CA)B

= S(BA)C − (SB)CA− (SA)CB + CAB.
(5.5.17)

Substracting (5.5.17) to (5.5.16) we obtain

F∆
A (F∆

B (C))−F∆
B (F∆

A (C)) = S[A,B]C − C[A,B] = F∆
[A,B](C)

and therefore

[F∆
A ,F∆

B ] = F∆
[A,B].

Remark 5.5.18. Note that F is a derivation of Lie Algebras while F∆ is an homomorphism

of Lie Algebras. This is expected due to the nature of the derivative operator and shift operator.

Smooth Discrete

Product D(f · g) = D(f) · g + f ·D(g) S(f · g) = (Sf) · (Sg)

Bracket ∂[x, y] = [∂x, y] + [x, ∂y] φ[x, y] = [φx, φy]
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Here ∂ is a derivation and φ is an homomorphism. Note that in the smooth case, the Liebnitz

law is satisfied whereas in the discrete case it is not. Recall that adQi ∈ Der(L) and therefore

is clear that FQi is a derivation.

Proposition 5.5.19. The following identity

[Dt,Ds]Q
x = FQx(C(Qt, Qs))

is satisfied.

Proof. Recall that

DtQ
x = DxQ

t + [Qt, Qx], (5.5.20a)

DsQ
x = DxQ

s + [Qs, Qx]. (5.5.20b)

Differentiating (5.5.20a) with respect to s we obtain

DsDtQ
x = DsDxQ

t + [DsQ
t, Qx] + [Qt,DsQ

x]

= DsDxQ
t + [DsQ

t, Qx] + [Qt,DxQ
s] + [Qt, [Qs, Qx]].

(5.5.21)

Analogously differentiating (5.5.20b) with respect to t we obtain

DtDsQ
x = DtDxQ

s + [DtQ
s, Qx] + [Qs,DxQ

t] + [Qs, [Qt, Qx]]. (5.5.22)

Substrating (5.5.22) to (5.5.21) we obtain

[Dt,Ds]Q
x = Dx

(
DtQ

s −DsQ
t + [Qs, Qt]

)
+ [DtQ

s −DsQ
t + [Qs, Qt], Qx]

= FQx(DtQ
s −DsQ

t + [Qs, Qt])

= FQx(C(Qt, Qs))

we obtain the required result.

Proposition 5.5.23. The following identity

[
∂

∂t
,
∂

∂s

]
K0 = FC(N0;t,N0;s)(K0)

is satisfied.

Recall that
∂

∂t
K0 = (SN0;t)K0 −K0N0;t, (5.5.24a)
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∂

∂s
K0 = (SN0;s)K0 −K0N0;s. (5.5.24b)

Differentiating (5.5.24a) with respect to s we obtain

∂

∂s

∂

∂t
K0 =

∂

∂s
(SN0;t)K0 + (SN0;t)

∂

∂s
K0 −

(
∂

∂s
K0

)
N0;t −K0

(
∂

∂s
N0;t

)
= S

(
∂

∂s
N0;t

)
K0 + S(N0;tN0;s)K0 − (SN0;t)K0N0;s

− (SN0;s)K0N0;t +K0N0;sN0;t −K0
∂

∂s
N0;t.

(5.5.25)

Analogously differentiating (5.5.24b) with respect to t we obtain

∂

∂t

∂

∂s
K0 =

∂

∂t
(SN0;s)K0 + (SN0;s)

∂

∂t
K0 −

(
∂

∂t
K0

)
N0;s −K0

(
∂

∂t
N0;s

)
= S

(
∂

∂t
N0;s

)
K0 + S(N0;sN0;t)K0 − (SN0;s)K0N0;t

− (SN0;t)K0N0;s +K0N0;tN0;s −K0
∂

∂t
N0;s.

(5.5.26)

Substrating (5.5.26) to (5.5.25) we obtain

[
∂

∂t
,
∂

∂s

]
K0 = S

(
∂

∂t
N0;s −

∂

∂s
N0;t + [N0;s, N0;t]

)
K0 −K0

(
∂

∂t
N0;s −

∂

∂s
N0;t + [N0;s, N0;t]

)
= F∆

∂

∂t
N0;s −

∂

∂s
N0;t + [N0;s, N0;t]

(K0)

= FC(N0;t,N0;s)(K0)

obtaining the required result.

Theorem 5.5.27. The symmetry condition for two curvature evolutions is a differential

consequence of the symmetry condition on the curve evolutions. We have

∂

∂t

∂

∂s
κ− ∂

∂s

∂

∂t
κ = HC(σt, σs)

where

C(σt, σs) =
∂

∂t
σs −

∂

∂s
σt +N0;sσt −N0;tσs.

Proof. From (5.4.9), (5.5.9) and (5.5.23) the proof is straightforward.

Remark 5.5.28. In the continuous case the authors of [73] show that

Dt1HIt2 −Dt2HIt1 − [Dt1 ,Dt2 ]κ = HC(It1 , It2) (5.5.29)

and they state that this implies that integrability does not necessarily lift from the curvature
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x

s

t

I0,k;s

I0,k;t

I0,k

I0,0;s

I0,0;t

I0,0;s,tC

Figure 5.1: A graphic explanation of
[
∂

∂t
,
∂

∂s

]
κ = HC being the syzygy of a syzygy.

evolution to the curve evolution. The same occurs in the discrete case. However, most commonly

studied integrable curvature equations are homogeneous polynomials or rational functions of

the differential invariants. Since in these classes the kernel of the differential operator H is

empty, pairs of integrable equations result (see Langer and Perline, [65]). The same occurs

for discrete integrable curvature equations. The authors also give an outline of the proof of

(5.5.29). Here we give an alternative proof, which is now straightforward using (5.4.9) and

(5.5.19).

Smooth Discrete

Syzygy

DtQ
x = DxQ

t + [Qt, Qx]
d

dt
K0 = (SN0;t)K0 −K0N0;t

Compatibility condition

DtQ
s −DsQ

t + [Qs, Qt] = 0
∂

∂t
N0;s −

∂

∂s
N0;t + [N0;s, N0;t] = 0

F and F∆ operator

FQi = Di − adQi F∆
N0;ti

= (S− id)N0;ti + adN0;ti

F operator bracket

[
FQi ,FQk

]
= adC(Qi,Qk)

[
F∆
N0;t

,F∆
N0;s

]
= F∆

[N0;t,N0;s]

Evolution of curvature matrix / Maurer–Cartan matrix

[Dt,Ds]Q
x = FQx(C([Qt, Qs]))

[
∂

∂t
,
∂

∂s

]
K0 = F∆

C([N0;t,N0;s])
(K0)
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Example 5.5.30. We show for this example that the symmetry condition for two curvature

evolutions is a differential consequence of the symmetry condition on the curve evolutions.

We show using Maple (See Appendix) that

∂

∂t
Hσs −

∂

∂s
Hσt = HC(σt, σs).

5.6 Integrable differential–difference equations

In order to relate our examples to discrete integrable systems, we will make use of the

theory appearing in Khanizadeh, Mikhailov and Wang, [54] as well as the list of Integrable

differential–difference equations appearing in such paper. We introduce some essential concepts

first.

Consider the differential–difference equation

ut = K[u] (5.6.1)

where K[u] is a smooth vector-valued function depending of u and its shifts. Suppose that a

is a function of u. The Frechét derivative is defined as

a? =
∑
k

(
∂a

∂u1
k

, ...,
∂a

∂uNk

)
Sk.

The variational derivative of a is defined as

δu(a) =

(
∂a

∂u1
k

, ...,
∂a

∂uNk

)∑
k

Sk(a).

If (5.6.1) is Hamiltonian, then we can write it in the form

ut = H(δu(f))

where here H denotes a Hamiltonian (pseudo)–difference operator - so it might include

backward shifts - and f the Hamiltonian function.

Example 5.6.2. It is possible to relate the previous results to integrable systems as follows:

Recall Iu0,1;t =
Sσt
κ

and therefore σt = S−1(κIu0,1;t). Hence (5.4.11) is equivalent to

κt = (−κS + κ− κ2 + κS−1κ)Iu0,1;t = κ(−S + id− κ+ S−1κ)Iu0,1;t.
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Setting Iu0,1;t = κ, we obtain

κt = −κκ1 + κ2 − κ3 + κκ2
−1 = κ(κ− κ1) + κ(κ2

−1 − κ2).

which is a Volterra type equation

ut = f(u−1, u, u1)

as listed in Khanizadeh, Mikhailov and Wang, [54].

5.7 The SL(2) linear action

In this example we consider the SL(2) linear action previously studied in §4.3.1. After

computing the correction terms and verifying (5.3.5), (5.3.11) and (5.3.17), we show that

the symmetry condition of the discrete curve evolutions is a differential consequence of the

symmetry condition of the curvature evolutions. Furthermore, we relate this example to the

Toda lattice.

The first three correction terms with respect to the moving frame ρ0 (4.3.4) are

M0,0;t =

 −σxt
−σyt

 ,

M0,1;t =

 −Ix0,1;t

σyt I
y
0,1;t

 ,

M0,2;t =

 −σxt Ix0,2 − Ix0,1;tI
y
0,2

τ

−Ix0,2σ
y
t + Iy0,2σ

x
t

 .

(5.7.1)

The variables appearing in the normalization equations (4.3.3) are x0, y0 and x1. Therefore,

ζ1 = x0, ζ2 = y0 and ζ3 = x1.

Thus ϑ = 3. Note that as the group action depends on three paramenters we have that R = 3.

Hence,

T =

(
ι0

(
d

dt
ζ1

)
ι0

(
d

dt
ζ2

)
ι0

(
d

dt
ζ3

) )
=
(
σxt σyt Ix0,1;t

)
.
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The matrix of invariant generators has the form

Φ =



ι0

(
∂ζ̃1

∂a1

)
ι0

(
∂ζ̃1

∂a2

)
ι0

(
∂ζ̃1

∂a3

)

ι0

(
∂ζ̃2

∂a1

)
ι0

(
∂ζ̃2

∂a2

)
ι0

(
∂ζ̃2

∂a3

)

ι0

(
∂ζ̃3

∂a1

)
ι0

(
∂ζ̃3

∂a2

)
ι0

(
∂ζ̃3

∂a3

)


=


ι0(x0) 0 ι0(x1)

ι0(y0) 0 ι0(y1)

0 ι0(x0) 0

 =


1 0 0

0 0 τ

0 1 0



where a1 = a, a2 = b and a3 = c. Finally

J =


ι0

(
∂ψ1

∂ζ1

)
ι0

(
∂ψ1

∂ζ2

)
ι0

(
∂ψ1

∂ζ3

)
ι0

(
∂ψ2

∂ζ1

)
ι0

(
∂ψ2

∂ζ2

)
ι0

(
∂ψ2

∂ζ3

)
ι0

(
∂ψ3

∂ζ1

)
ι0

(
∂ψ3

∂ζ2

)
ι0

(
∂ψ3

∂ζ3

)

 =


1 0 0

0 1 0

0 0 1

 .

Therefore

K = −TJ(ΦJ)−1 =

(
−σxt −

Ix0,1;t

τ
−σyt

)
. (5.7.2)

Hence the correction terms can be calculated as follow K1,1 · 1

K1,3 · 1

 =

 −Ix0,0;t

−Iy0,0;t

 = M0,0;t, K1,2 · Iy0,1
−K1,1 · Iy0,1

 =

 −Iu0,1;t

Iu0,0;tI
y
0,1

 = M0,1;t,

 K1,1 · Ix0,2 +K1,2 · Iy0,1
−K1,1 · Iy0,2 +K1,2 · Ix0,2

 =

 −Ix0,0;tI
x
0,2 −

Ix0,1;tI
y
0,2

Iy0,1

−Ix0,2I
y
0,0;t + Iy0,2I

x
0,0;t

 = M0,2;t

which matches with the correction terms (5.7.1) calculated using (??).

Recall the Lie algebra basis of the Lie group (2.16). Therefore the curvature matrix can

be computed as follows

N0;t = −σxt

 1 0

0 −1

− Ix0,1;t

τ

 0 1

0 0

− σyt
 0 0

1 0


=

 −σxt −
Ix0,1;t

τ

−σyt σxt


matching that one obtain in (4.3.10).

Now we show for this example that the symmetry condition for two curvature evolutions is
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a differential consequence of the symmetry condition on the curve evolutions.

The fundamental syzygy is

C(σt, σs) =

 C1

C2

 =

 σyt Sσ
y
s − σysSσyt
τ2

+
∂

∂t
σxs −

∂

∂s
σxt

2σxsσ
y
t − 2σysσxt +

∂

∂t
σys −

∂

∂s
σyt

 .

We have
∂

∂t
Hσs =

(
∂

∂t
H
)
σs +H ∂

∂t
σs

where

(
∂

∂t
H
)
σs =


∂

∂t
κ(id− S) −

∂

∂t
τ

τ2
−

 ∂

∂t
τ

τ2
1

− 2
τ
∂

∂t
τ1

τ3
1

S2

∂

∂t
τ(id + S)

∂

∂t
κS


 σxs

σys

 .

Analogously
∂

∂s
Hσt =

(
∂

∂s
H
)
σt +H ∂

∂s
σt

where

(
∂

∂s
H
)
σt =


∂

∂s
κ(id− S) −

∂

∂s
τ

τ2
−

 ∂

∂s
τ

τ2
1

− 2
τ
∂

∂s
τ1

τ3
1

 S2

∂

∂s
τ(id + S)

∂

∂s
κS


 σxt

σyt

 .

And therefore, simplifying both expressions using Maple (See Appendix)

∂

∂t
Hσs −

∂

∂s
Hσt =

 κ(id− S)
1

τ
− τ

τ2
1

S2

τ(id + S) κS


 C1

C2


= HC(σt, σs).

We now consider the change of variable η = −κτ . We obtain

ηt = −η
2Sσyt
τ2

− σyt + 2 ησxt +
τ2S2σ

y
t

Sτ2
,

τt = −ηSσyt
τ

+ τSσxt + τ σxt .
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Therefore there exists a linear shift operator H(η, τ) such that

 ηt

τt

 = H(η, τ)

 σxt

σyt

 where H(η, τ) =

 2η −η
2S

τ2
+
τ2S2

Sτ2
− id

τ(S + id) −η
τ

S

 .

Let us set γ := −Sσyt
τ2

. We can write the evolution of the curvature invariants η and τ in

terms of the evolution invariants σxt and γ as follows

ηt = κ(S− id)σxt + ητγ, τt = 2τσxt +
(
(S−1η

2)S−1 − η2S + τ2
)
γ.

Therefore  ηt

τt

 =

 η(S− id) ητ

2τ S−1η
2 − η2S + τ2

 σxt

γ


where we have used the notation S−1η

2 = S−1(η2)S−1. Let us set

Ĥ =

 η(S− id) ητ

2τ S−1η
2 − η2S + τ2


and let us define the matrix

P =

 (id− S−1)η 2τ

0 −4


and compute the pseudo-difference operator

ĤP =

 η(S− S−1)η 2η(S− id)τ

2τ(id− S−1)η −4(S−1η
2 − η2S)

 (5.7.3)

which is clearly symmetric. Let us set H2 := ĤP.

Theorem 5.7.4. The operator H2, given by (5.7.3) is a Hamiltonian operator. It forms a

Hamiltonian pair with Hamiltonian operator

H1 =

 0 2η(S− id)

2(id− S−1)η 0

 .

Proof. Let us introduce the following transformation

p = η2, q = τ. (5.7.5)
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Its Frechét derivative is

D(p, q) =

 2η 0

0 1

 .

Note that D(p, q) = D(p, q)∗.

Under this transformation the operators H1 and H2 become

H̃1 = D(p, q)H1D(p, q)∗ = 4

 0 p(S− id)

(id− S−1)p 0

 ,

H̃2 = D(p, q)H2D(p, q)∗ = 4

 p(S− S−1)p p(S− id)q

q(id− S−1)p pS− S−1p

 .

Setting

H1 :=

 0 p(S− id)

(id− S−1)p 0

 and H2 :=

 p(S− S−1)p p(S− id)q

q(id− S−1)p pS− S−1p


we have that these two operators form a hamiltonian pair for the well-known Toda-Lattice in

Flaschka coordinates (see Adler, [1], Khanizadeh, Mikhailov and Wang, [54] and Suris, [103])

pt = p(q1 − q), qt = p− p−1 (5.7.6)

where q1 = Sq and p−1 = S−1p.

Theorem 5.7.7. The evolution of the curvature invariants for the SL(2) linear action induces

a completely integrable system in its curvatures η and τ equivalent to the Toda-Lattice (see

Toda (5.7.6)).

Proof. Recall  ηt

τt

 = Ĥ

 σxt

γ

 .

and suppose we can write  α

γ

 = P

 a

b

 .

Therefore  ηt

τt

 = H2

 a

b

 .
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For a = 0, b = 1 we get

ηt = 2η(τ1 − τ), τt = 4(η2 − η2
−1) (5.7.8)

where τ1 = Sτ and η−1 = S−1η. Using (5.7.5) the system (5.7.8) is converted to the system

pt = 4p(q1 − q), qt = 4(p− p−1) (5.7.9)

which is equivalent to (5.7.6) (notice that (5.7.9) just differs to (5.7.6) by a constant factor).

Remark 5.7.10. For the system (5.7.8) we have the following hamiltonian structure

H1 =

 0 2η(S− id)

2(id− S−1)η 0

 , f1 = η2 +
τ2

2
,

H2 =

 η(S− S−1)η 2η(S− id)τ

2τ(id− S−1)η −4(S−1η
2 − η2S)

 , f2 = τ,

i.e,  ηt

τt

 = H1δ(f1) = H2δ(f2).



Application of Multispaces for some Lie Groups

It is possible to construct a discrete moving frame as the limit of a continuous one, and

vice-versa, by coordinating the transverse sections that determine them. This was achieved by

Beffa and Mansfield in [5], where the authors define the concept of multispace, a manifold

including the jet bundle and cartesian products of the base space simultaneously. A frame on

a multispace contains the smooth and the discrete frame and one can be obtained from the

other by taking an appropriate continuum limit. In this paper, the authors also show that the

discrete invariants converge to differential invariants and local discrete syzygies converge to

differential syzygies. In this chapter, we give a very brief introduction to multispaces and we

study the SE(2) case where we explore the convergence of the discrete frame to the smooth

frame and discrete curvature invariants to the smooth ones. For all these examples we show

convergence of the Maurer–Cartan matrix to the curvature matrix with the respect to the

space independent variable. We also study the projective SL(2) action and show convergence

of the discrete action to the smooth one as well as the convergence of the discrete frame and

discrete infinitesimals to the smooth ones.

6.1 A very brief introduction to multispaces

The concept of multispace arises as a consequence of creating a manifold that is smooth and

discrete at the same time. A multispace looks like the jet space, but also includes discrete

versions of the jet space where a frame is simultaneously a smooth frame and a frame on a

discrete space. The equivariance is successfully maintained in the continuum limit and the

discrete Maurer–Cartan invariants and discrete syzygy coalesce to the smooth ones. In order

to achieve this, the process starts making use of interpolation methods, where the coefficients

are given by the solution of a linear system of equations.

Under coalescence of the points at which the interpolation is calculated, Lagrange inter-

polation becomes Hermite interpolation, ending with the Taylor approximation to a surface

when all the interpolation points coalesce, as shown in Figure (6.1).
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Figure 6.1: Hyperplane coalescence.
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6.2 The Lie group action SE(2) acting on multispaces

Recall the Lie group action of rotations and translations of curves in the plane (4.1.2). The

aim is to choose an interpolation polynomial that will allow us to construct a moving frame in

the multispace. We will show that this frame encodes the discrete and smooth information

and that taking an appropriate continuum limit, the discrete curvature invariants converge to

the smooth ones and that the Maurer–Cartan matrix converge to the corresponding curvature

matrix in the smooth case.

6.2.1 Action and moving frame

Recall that the curvature invariants for (4.1.2) are the arc length

ds =
√

1 + u2
x

and the curvature

κ =
uxx

(1 + u2
x)3/2

which is an invariant of order two. Therefore, as we want to show that the discrete curvature

invariants obtained using multispace theory converge to the smooth ones, we need a polynomial

interpolator of at least order two.

We choose the order two polynomial interpolator of the points t0, t1, t2 with base point
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t0 = 0. For the variable x(t) we have

p(x(t)) = A(x(t)) +B(x(t))t+
1

2
C(x(t))t2. (6.2.1)

In order to obtain an expression for the coefficients A(x(t)), B(x(t)) and C(x(t)) we solve the

equations

x0 = A(x(t)),

x1 = A(x(t)) +B(x(t))t1 +
1

2
C(x(t))t21,

x2 = A(x(t)) +B(x(t))t2 +
1

2
C(x(t))t22

for A(x(t)), B(x(t)) and C(x(t)) where we have set x(ti) to be xi for i = 0, 1, 2. Using Cramer’s

rule we obtain

A(x(t)) = x0,

B(x(t)) =

∣∣∣∣∣∣∣∣∣∣∣
1 x0 0

1 x1
1

2
t21

1 x2
1

2
t22

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 0

1 t1
1

2
t21

1 t2
1

2
t22

∣∣∣∣∣∣∣∣∣∣∣

=
(x2 − x0)t21 − (x1 − x0)t22

t1t2(t1 − t2)
,

C(x(t)) =

∣∣∣∣∣∣∣∣∣∣∣
1 0 x0

1 t1 x1

1 t2 x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 0

1 t1
1

2
t21

1 t2
1

2
t22

∣∣∣∣∣∣∣∣∣∣∣

= 2
(x2 − x0)t1 − (x1 − x0)t2

t1t2(t2 − t1)
.

For the variable u(t), the order two interpolator of the points t0, t1, t2 with base point

t0 = 0 will be

p(u(t)) = A(u(t)) +B(u(t))t+
1

2
C(u(t))t2. (6.2.2)
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Solving the equations

u0 = A(u(t)) +B(u(t))t0 +
1

2
C(u(t))t20,

u1 = A(u(t)) +B(u(t))t1 +
1

2
C(u(t))t21,

u2 = A(u(t)) +B(u(t))t2 +
1

2
C(u(t))t22

for A(u(t)), B(u(t)) and C(u(t)) where we have set u(ti) to be ui for i = 0, 1, 2 and using

Cramer’s rule once more we obtain

A(u(t)) = u0,

B(u(t)) =
(u2 − u0)t21 − (u1 − u0)t22

t1t2(t1 − t2)
,

C(u(t)) = 2
(u2 − u0)t1 − (u1 − u0)t2

t1t2(t2 − t1)
.

Making the group action (4.1.11) acting on the coeffients A(x(t)), A(u(t)) and B(u(t)), we

can construct the normalization equations which are of the form

Ã(x(t)) = Ã(u(t)) = B̃(u(t)) = 0.

Solving for the group parameters θ, a, b, we obtain the frame

ρM =

 RθM −RθMz(t0)

0 1

 (6.2.3)

where

RθM =

 cos θM − sin θM

sin θM cos θM


with

θM = − arctan
(u1 − u0)t22 − (u2 − u0)t21
(x1 − x0)t22 − (x2 − x0)t21

, and z(t0) = (x0, u0).

We now consider the Taylor series

t1 = h, t2 = 2h, x0 = x, u0 = u,

x1 = x+ hxt +
1

2
h2xtt, x2 = x+ 2hxt + 2h2xtt,

u1 = u+ hut +
1

2
h2utt, u2 = u+ 2hut + 2h2utt.

(6.2.4)

Substituting this into (6.2.3) and taking the limit when h tends to 0 we obtain the smooth
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moving frame

ρ =



xt√
ut2 + xt2

ut√
ut2 + xt2

− ut u+ xt x√
ut2 + xt2

− ut√
ut2 + xt2

xt√
ut2 + xt2

ut x− uxt√
ut2 + xt2

0 0 1


which matches the smooth one obtained in (4.1.4). Hence we have shown that the discrete

moving frame (6.2.3) obtained via multispace theory converges to the smooth moving frame

(4.1.4).

6.2.2 Curvature invariants and Maurer–Cartan matrix

Inducing the action (4.1.11) on B(x(t)), C(x(t)) and C(u(t)) and using the Taylor series (6.2.4),

we can see that in the limit, these are the arclength, the dot product and the crossproduct

of (xt, ut) and (xtt, utt) respectively, both divided by the arc length, which are invariants. In

order words, taking the limit when h tends to zero of

Ã(u(t)) = ũ0,

B̃(u(t)) =
(ũ2 − ũ0)t21 − (ũ1 − ũ0)t22

t1t2(t1 − t2)
,

C̃(u(t)) = 2
(ũ2 − ũ0)t1 − (ũ1 − ũ0)t2

t1t2(t2 − t1)

where ũ0, ũ1 and ũ2 are given by (4.1.11). We get that

Ã(u(t)) −→
√
x2
t + u2

t , B̃(u(t)) −→ xtxtt + ututt√
x2
t + u2

t

, C̃(u(t)) −→ xtutt − utxtt√
x2
t + u2

t

.

These results were obtained by Beffa and Mansfield in [5] using another (but similar) Taylor

approximation strategy.

Computing KM = (SρM)ρ−1
M , we obtain the multispace Maurer-Cartan matrix. Taking

the Taylor series

t1 = h, t2 = 2h, t3 = 6h, x0 = x, u0 = u,

x1 = x+ hxt +
1

2
h2xtt, x2 = x+ 2hxt + 2h2xtt, x3 = x+ 4hxt + 8h2xtt,

u1 = u+ hut +
1

2
h2utt, u2 = u+ 2hut + 2h2utt, u3 = u+ 4hut + 8h2utt
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we have that

lim
h→0

d

dh

(
KM

∣∣∣
Taylor

)
=


0

xt utt − xtt ut
ut2 + xt2

−
√
ut2 + xt2

−xt utt − xtt ut
ut2 + xt2

0 0

0 0 0


and

lim
h→0

KM

∣∣∣
Taylor

− Id3

−KM[1,3]

∣∣∣
Taylor

=



0
xt utt − xtt ut
(ut2 + xt2)3/2

1

− xt utt − xtt ut
(ut2 + xt2)3/2

0 0

0 0 0


=


0 κ 1

−κ 0 0

0 0 0


(6.2.5)

where Id3 denotes the 3×3 identity matrix and where we have used the approximation method

presented in §4.1. Note that (6.2.5) matches (4.1.5). Hence, the discrete Maurer–Cartan

matrix obtain via multispace theory converges to the smooth curvature matrix with respect to

s.

Remark 6.2.6. In practice, the Taylor approximation used in §4.1 was

x0 = x, x1 = x+ h, x2 = x+ 2h,

u0 = u, u1 = u+ hux +
1

2
h2uxx, u2 = u+ 2hux + 2h2uxx.

As explained in §4.1, taking an appropriate continuum limit we obtain the equivalent to the

smooth curvature and the smooth arc–length in the discrete case. Explicitly

lim
h→0

d

dh

(
K0

∣∣∣
Taylor

)
=


0

uxx
(1 + u2

xx)
−
√

1 + u2
x

− uxx
(1 + u2

xx)
0 0

0 0 0


and

lim
h→0

K0

∣∣∣
Taylor

− Id3

−K0[1,3]

∣∣∣
Taylor

=



0
uxx

(1 + u2
xx)

3
2

−1

− uxx

(1 + u2
xx)

3
2

0 0

0 0 0


.
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6.3 The projective SL(2) action acting on multispaces

Recall the action (2.6)

(x, u(x))→ g · (x, u(x)) =

(
x,
au(x) + b

cu(x) + d

)
.

In this example, we will consider prolongations of order 2. Recall from (2.8)

x̃ = x, ũ =
au+ b

cu+ d
, ũx =

ux
(cu+ d)2

, ũxx =
uxx

(cu+ d)2 − 2
cu2
x

(cu+ d)3 .

Therefore, we choose an order 2 interpolator to the points t0, t1 and t2 with base point

t0 = 0. Our interpolator will be

p(u(t)) = A(u(t)) +B(u(t))t+
1

2
C(u(t))t2.

In order to obtain an expression for the coefficients A(u(t)), B(u(t)) and C(u(t)) we solve the

equations

u0 = A(u(t)) +B(u(t))t0 +
1

2
C(u(t))t20,

u1 = A(u(t)) +B(u(t))t1 +
1

2
C(u(t))t21,

u2 = A(u(t)) +B(u(t))t2 +
1

2
C(u(t))t22

for A(u(t)), B(u(t)) and C(u(t)). Using Cramer’s rule we obtain

A(u(t)) = u0,

B(u(t)) =
(u2 − u0)t21 − (u1 − u0)t22

t1t2(t1 − t2)
,

C(x(t)) = 2
(u2 − u0)t1 − (u1 − u0)t2

t1t2(t2 − t1)
.

Let us set
M(u) = u0,

M(ux) =
(u2 − u0)t21 − (u1 − u0)t22

t1t2(t1 − t2)
,

M(uxx) = 2
(u2 − u0)t1 − (u1 − u0)t2

t1t2(t2 − t1)
.

(6.3.1)

Consider the Taylor’s series

t1 = h, t2 = 2h, u0 = u,

u1 = u+ hux +
1

2
h2uxx, u2 = u+ 2hux + 2h2uxx.

(6.3.2)
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Substituting (6.3.2) into (6.3.1) and taking the limit when h tends to zero, we have that

M(u)→ u, M(ux)→ ux, M(uxx)→ uxx.

Recall the prolongation action of the SL(2) projective action (2.8) and the action in the

discrete case (4.3.48).

ForM(u),M(ux) andM(uxx) we have

M̃(u) = ũ0,

M̃(ux) =
(ũ2 − ũ0)t21 − (ũ1 − ũ0)t22

t1t2(t1 − t2)
,

M̃(uxx) = 2
(ũ2 − ũ0)t1 − (ũ1 − ũ0)t2

t1t2(t1 − t2)

(6.3.3)

where ũ0, ũ1 and ũ2 are given by

ũ0 =
au0 + b

cu0 + d
, ũ1 =

au1 + b

cu1 + d
, ũ2 =

au2 + b

cu2 + d
.

One can check that substituting (6.3.2) into (6.3.3) and taking the limit when h tends to 0

results in
M(u)→ au+ b

cu+ d
,

M(ux)→ ux

(cu+ d)2 ,

M(uxx)→ uxx

(cu+ d)2 − 2
cu2
x

(cu+ d)3

which matches (2.8).

Recall in the smooth case, for the normalization equations (2.49)

ũ = 0, ũx = 1 and ũxx = 0

we obtained (2.50)

a =
1
√
ux
, b = − u

√
ux
, c =

uxx

2u
3
2
x

.

For the normalization equations

M̃(u) = 0, M̃(ux) = 1 and M̃(uxx) = 0
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we obtain

a = −

√
t1t2(u1 − u2)

(u0 − u2)(u0 − u1)(t1 − t2)
:=M(a),

b = u0

√
t1t2(u1 − u2)

(u0 − u2)(u0 − u1)(t1 − t2)
:=M(b),

c = − (t1 − t2)u0 − t1u2 + t2u1√
(u0 − u2)(u0 − u1)(u1 − u2)(t1 − t2)t1t2

:=M(c).

Again, using (6.3.2) and taking the limit when h tends to zero we have that

M(a)→ 1
√
ux
, M(b)→ − u

√
ux
, M(c)→ uxx

2u
3
2
x

.

The table of infinitesimals for the multispace action is

M(u) M(ux) M(uxx)

a 2u0 −2
(u0 − u2)t21 − (u0 − u1)t22

t1t2(t1 − t2)
4

(u0 − u2)t1 − (u0 − u1)t2
t1t2(t1 − t2)

b 1 0 0

c −u2
0

(u2
0 − u2

2)t21 − (u2
0 − u2

1)t22
t1t2(t1 − t2)

2
(t2 − t1)u0 + 2t1u

2
2 − 2t2u

2
1

t1t2(t1 − t2)

.

Note that the first column is the table of infinitesimals for the discrete case. Also,

substituting (6.3.2) and taking the limit when h tends to zero, one can check that the table of

infinitesimals for the multispace action converges to the one of the smooth case (2.44).

The convergence of the smooth curvature invariants to the discrete ones and the Maurer-

Cartan matrix to the curvature matrix with respect to x requires further research.
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Variational Systems with a Euclidean Symmetry

using the Rotation Minimizing Frame

In this chapter, we study variational systems for space curves, for which the Lagrangian or

action principle has a Euclidean symmetry, using the Rotation Minimizing frame, also known

as the Normal, Parallel or Bishop frame (see Bishop, [8] and Wang and Joe, [110]). Such

systems have previously been studied using the Frenet–Serret frame. However, the Rotation

Minimizing frame has many advantages and can be used to study a wider class of examples.

We achieve our results by extending the powerful symbolic invariant calculus for Lie group

based moving frames, to the Rotation Minimizing frame case. To date, the invariant calculus

has been developed for frames defined by algebraic equations. By contrast, the Rotation

Minimizing frame is defined by a differential equation.

We derive the recurrence formulae for the symbolic invariant differentiation of the symbolic

invariants. We then derive the syzygy operator needed to obtain Noether’s conservation laws

as well as the Euler–Lagrange equations directly in terms of the invariants, for variational

problems with a Euclidean symmetry. We show how to use the six Noether laws to ease the

integration problem for the minimizing curve, once the Euler–Lagrange equations have been

solved for the generating differential invariants. Our applications include variational problems

used in the study of strands of proteins, nucleic acids and polymers.

7.1 Introduction

The study of variational problems with Euclidean symmetry is an old problem, indeed, Euler’s

1744 study of elastic beams is such a case. However, methods to analyse such problems

efficiently and effectively, are still of interest.

In this chapter, we consider variational problems for curves in 3-space for which the

Lagrangian is invariant under the special Euclidean group SE(3) = SO(3) nR3 acting linearly

165
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in the standard way, that is,


x

y

z

 7→ R


x

y

z

+


a

b

c

 , R ∈ SO(3). (7.1.1)

The Euler–Lagrange equations satisfied by the extremising curves have SE(3) as a Lie symmetry

group, and can therefore be written in terms of the differential invariants of the action, and

their derivatives with respect to arc-length. Further, the six dimensional space of Noether’s

laws are key to analysing the space of extremals.

To date, the Frenet–Serret frame has been used to analyse Euclidean invariant variational

problems, and this requires that the Lagrangian can be written in terms of the Euclidean

curvature and torsion. Because the Frenet–Serret frame can be derived using algebraic equations

(at each point) on the relevant jet bundle, the powerful symbolic calculus of invariants can be

used, to obtain not only the Euler–Lagrange equations directly in terms of the curvature and

torsion, but the full set of Noether’s laws can also be written down directly using both the

invariants and the frame (Gonçalvez and Mansfield, [33]).

Let us denote the space curve as s 7→ P (s) ∈ R3, where s is arc-length, and the tangent

vector to this curve by P ′, so that ′ = d/ds. By the definition of arc-length, |P ′|2 = P ′ ·P ′ = 1.

Then provided P ′′ 6= 0, the left Frenet–Serret frame is given by

σ`FS =

(
P ′(s)

P ′′(s)

||P ′′(s)||
P ′(s)× P ′′(s)
||P ′′(s)||

)
∈ SO(3). (7.1.2)

From a computational point of view, the Frenet–Serret frame is convenient as it can be

computed straightforwardly at arbitrary points along the curve. However, it is undefined

wherever the curvature is degenerate, such as at inflection points or along straight sections of

the curve. The left Frenet–Serret frame is left equivariant, that is, if at any point z = P (s) on

the curve, since R ∈ SO(3) acts linearly in the standard way on the tangent space TzR3, then

it is readily seen that

σ`FS 7→
(
RP ′(s)

RP ′′(s)

||RP ′′(s)||
RP ′(s)×RP ′′(s)
||RP ′′(s)||

)
= Rσ`FS .

The Euclidean curvature κ and the torsion τ at the point P (s) are then the nonzero components
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of the invariant so-called curvature matrix, specifically,

σ−1
FSσ

′
FS =


0 −κ 0

κ 0 −τ

0 τ 0

 . (7.1.3)

In contrast to this frame, relatively parallel frames were described by Bishop, [8] who

detailed what is now known variously as the Normal, Parallel, Bishop or Rotation Minimizing

frame. The Rotation Minimizing frame has many advantages over the Frenet–Serret frame.

First of all, unlike the Frenet–Serret frame, the Rotation Minimizing frame is defined at all

points of a smooth curve. The Rotation Minimizing frame may be used to study a larger class of

variational problems, because while the generating invariants for the symbolic invariant calculus

given by the Frenet–Serret frame, curvature and torsion, are of order 2 and 3 respectively, those

given by the Rotation Minimizing frame are both of order only 2. Finally, for the Rotation

Minimizing frame, its computation, approximation and its applications, have been extensively

used and studied in the Computer Aided Design literature,(see Bloomenthal and Riensenfeld,

[9], Pottmann and Wagner, [96], Siltanen and Woodward, [100], Han, [38], Farouki,[28], Farouki

and Sakkalis, [29], Farouki, Gentili, Giannelli, Sestini and Stoppato, [23], Klok, [62], Poston,

Fang and Lawton, [95], Guggenheimer, [37], Wang, Jüttler, Zheng and Liu, [111]).

One reason is that the sweep surfaces they generate are, in general, superior, (see Wang

and Joe, [110]); as illustrated in Figure 7.1, sweep surfaces generated from the Frenet–Serret

frame can exhibit strong twisting at inflection points.

Bishop, [8] defines a normal vector field along a curve to be relatively parallel if its derivative

is proportional to the tangent vector. The equation used in the Computer Aided Design

literature for the relatively parallel normal vector V = V (s) to the curve s 7→ P (s) is (see

Wang and Joe, [110]),

V ′ = −(P ′′ · V )P ′. (7.1.4)

The function of proportionality between V ′ and P ′ is chosen to guarantee that, without

loss of generality, we may suppose that |V | ≡ 1 and P ′ · V ≡ 0, see Proposition 7.2.4. Then

the left Rotation Minimizing frame is

σ`RM = (P ′ V P ′ × V ). (7.1.5)

We have that σ`RM is left equivariant and, as shown by Bishop, [8], the invariant curvature
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Figure 7.1: Given a curve in space, we compare the sweeping surface generated by the Frenet–
Serret frame with the one generated by the Rotation Minimizing frame along the curve. In
this case, the curved plotted is (sin t2, t2, t). We can see that the Rotation Minimizing frame
gives a less abrupt surface so it is more preferable than the Frenet-Serret frame for computer
design purposes.

Surface sweeping given by V Surface sweeping given by P ′′

using the Rotation Minimizing frame using the Frenet–Serret frame

matrix
(
σ`RM

)−1 (
σ`RM

)′ takes the form

(
σ`RM

)−1 (
σ`RM

)′
=


0 −κ1 −κ2

κ1 0 0

κ2 0 0

 , (7.1.6)

that is, where the (2, 3)-component is guaranteed to be zero.

Since both the Rotation Minimizing and the Frenet–Serret frames share the same first

column, we have for some angle θ = θ(s), (see Figure (7.2)),

σ`RM = σ`FS


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 . (7.1.7)

Calculating
(
σ`RM

)−1 (
σ`RM

)′, using (7.1.3), and (7.1.7), and comparing the result to (7.1.6)

leads to the well known relations,

κ1 = κ cos θ, κ2 = κ sin θ, θs = τ. (7.1.8)



7.1. Introduction 169

Figure 7.2: Diagram of a Rotation Minimizing frame and a Frenet–Serret frame of a curve
P (s) in R3. Note that P ′(s) is common in both frames.

V

P ′

P ′ × V P ′ × P ′′

||P ′′||

P ′′

||P ′′||

P (s)

θ

1

Treating the Rotation Minimizing frame as a gauge transformation of the Frenet–Serret

frame, together with

θ(s)− θ0 =

∫ s

s0

τ(s) ds

has been proven to lack numerical robustness for a general space curve, (see Guggenheimer,

[37]). This makes the use of the Rotation Minimizing frame defined in terms of the normal

vector V , as in (7.1.5), to be a better choice in the application literature, and is our choice

here.

As shown in §2.5, the formulae for the recurrence relations in the symbolic invariant

calculus require the equations defining the frame to be algebraic at each point in the domain

of the frame, and indeed, the equations defining the Frenet–Serret frame, despite involving the

components of P (s), P ′(s) and P ′′(s), are algebraic at each point of the relevant jet bundle.

However, the recurrence formulae for the invariant derivatives defined using the Rotation

Minimizing frame need to be derived in another way, because the equations defining the frame

are not algebraic in the jet variables. Indeed, considering (7.1.8), it would seem that the

Rotation Minimizing frame is defined by a relation on the invariants, τ and θs, or, a differential

equation on an extended space, one which includes either θ, or V .

Our approach is to extend the manifold on which the group acts, to include the vector V

and its derivatives, in such a way that the differential equation defining V is a simple constraint

for our variational problem. Because the group acts linearly on P ′, V and their derivatives, it

turns out to be straightforward to write down a set of generating invariants, the recurrence

formulae for their invariant differentiation and their differential syzygies. With these to hand,
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the methods used by Gonçalvez and Mansfield, [33] can be adapted to obtain Euler–Lagrange

equations directly in terms of the invariants and to write down the six Noether conservation

laws.

In §7.2, the symbolic invariantized form of the curvature matrices for the Rotation Mini-

mizing frame are found, and we derive the recurrence formulae for the symbolic differential

invariants and the syzygy operator we will need in the sequel.

In §7.3, we obtain the Euler–Lagrange equations and Noether’s laws for a Lagrangian with

a Euclidean symmetry, using the results of §7.2.

In §7.4, the use of Noether’s laws to ease the integration problem is carried out.

In §7.5, some examples and applications are presented.

7.2 The extended right Rotation Minimizing frame

We will consider derivatives with respect to arc-length s of our curve s 7→ P (s), where we note

that arc-length is a Euclidean invariant, and we will also consider the evolution of this curve

with respect to a ‘time’ parameter t, which we declare to be invariant under our SE(3) action.

Since the symbolic invariant calculus is standardly carried out for a right frame, we consider

a right Rotation Minimizing frame, ρRM , which we need for our application to include the

translation component of the Special Euclidean group SE(3).

We consider the Lie group SE(3) to act on an enlarged manifold (jet bundle) having local

coordinates to be the components of

P, P ′, P ′′, . . . , P (n) =
dn

dsn
P, . . . , V, V ′, V ′′, . . . V (n) =

dn

dsn
V, . . .

where the left action is, for g = (R,a) ∈ SE(3) = SO(3) nR3,

P 7→ RP + a, P (n) 7→ RP (n), n > 0, V (n) 7→ RV (n), n ≥ 0.

In the standard representation of SE(3) in GL(4,R),

g = (R,a) 7→

R a

0 1

 ,

our extended right Rotation Minimizing frame for this action is defined to be,

ρRM =

σRM −σRMP

0 1

 (7.2.1)
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where

σRM =
(
σ`RM

)T
∈ SO(3). (7.2.2)

The curvature matrix is, by direct calculation and noting that σRMP ′ = (1 0 0)T ,

Qs = ρ′RMρ
−1
RM =


σ′RMσ

−1
RM

−1

0

0

0 0

 . (7.2.3)

To obtain the complete set of normalized invariants and the (reduced) curvature matrix

σ′RMσ
−1
RM , we first consider solutions of the defining equation for V .

Proposition 7.2.4. Given a curve s 7→ P (s) ∈ R3 such that P ′ · P ′ = |P ′|2 = 1, and suppose

that V = V (s) satisfies equation (7.1.4), which for convenience we give again here,

V ′ = −(P ′′ · V )P ′ (7.2.5)

together with the initial conditions V (s0) = 1, V (s0) · P ′(s0) = 0. Then

1. V · P ′ ≡ 0

2. V · V ≡ 1

3. For any constant ψ ∈ R,

W = cosψ V + sinψ P ′ × V

also solves equation (7.2.5) with |W | ≡ 1 and W · P ′ ≡ 0.

Proof. 1. By direct calculation, the scalar product V ·P ′ is constant with respect to s. The

result follows from the assumption on the initial data.

2. Equation (7.2.5) implies V ′ · V = −(P ′′ · V )(P ′ · V ) = 0 by 1. above. Hence V · V is

constant with respect to s. The result follows from the assumption on the initial data.

3. Since (7.2.5) is linear in V , it suffices to prove thatW = P ′×V also solves Equation (7.2.5).

We have by the orthogonality of both V and P ′′ to P that V = b(s)P ′′ + c(s)P ′ × P ′′

for some coefficients b(s), c(s). Then P ′ × V = b(s)P ′ × P ′′ − c(s)P ′′ and

(P ′ × V )′ = P ′′ × V + P ′ × V ′

= P ′′ × V

= c(s)(P ′′ · P ′′)P ′.
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But P ′′ · (P ′ × V ) = −c(s)P ′′ · P ′′ and hence

W ′ = −(P ′′ ·W ) · P ′

as required.

The proposition shows that if V solves (7.2.5) and for some s0, V (s0) has unit length

and is orthogonal to P (s0), then σRM ∈ SO(3) for all s, and this we now assume. In the

applications, it is necessary to ensure the initial data for V holds when integrating for the

frame. The proposition shows further that in fact there is a one-parameter family of Rotation

Minimizing frames, determined by the initial data for V .

Let so(3) denote the set of 3× 3 skew-symmetric matrices, the Lie algebra of SO(3). We

have by direct calculation that

σ′RMσ
−1
RM =


0 P ′′ · V P ′′ · (P ′ × V )

−P ′′ · V 0 0

−P ′′ · (P ′ × V ) 0 0

 ∈ so(3). (7.2.6)

We now write down the symbolic normalized invariants, and obtain σ′RMσ
−1
RM in terms of

them. We denote the components of P (s) as P (s) = (X(s), Y (s), Z(s)) and that of the n-th

derivative with respect to s as P (n) = (X(n), Y (n), Z(n)).

By construction,

ρRM · P = 0

and by definition of the action,

ρRM · P (n) = σRMP
(n)

where n > 0. We now recall the standard symbolic names of these normalized invariants, as

σRMP
(n) = (ι(X(n)), ι(Y (n)), ι(Z(n)))T . (7.2.7)

Since ((ι(X ′), ι(Y ′), ι(Z ′))T = σRMP
′ = (P ′ · P ′, V · P ′, (P ′ × V ) · P ′)T = (1, 0, 0)T , we make

the following definition:

Definition 7.2.8 (Arc-length constraint). The equation ι(X ′) = 1 is denoted as the arc-length

constraint.
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Differentiating (7.2.7) with respect to s, yields

d

ds


ι(X(n))

ι(Y (n))

ι(Z(n))

 =
d

ds
(σRM )σ−1

RM


ι(X(n))

ι(Y (n))

ι(Z(n))

+


ι(X(n+1))

ι(Y (n+1))

ι(Z(n+1))

 . (7.2.9)

Setting n = 1 and recalling

σRMP
′ = (1, 0, 0)T ,

we have from (7.2.6) and (7.2.9) that


0

0

0

 =


ι(X ′′)

ι(Y ′′)

ι(Z ′′)

+


0

−P ′′ · V

−P ′′ · (P ′ × V )

 .

Therefore we can write down
d

ds
(σRM )σ−1

RM in terms of the normalized invariants, specifically,

d

ds
(σRM )σ−1

RM =


0 ι(Y ′′) ι(Z ′′)

−ι(Y ′′) 0 0

−ι(Z ′′) 0 0

 . (7.2.10)

Inserting this into Equation (7.2.9) yields the all important recurrence formulae for the symbolic

invariant differentiation of the normalized invariants of the P (n).

We next consider the normalized invariants of the V (n), which are

σRMV
(n) = (ι(V

(n)
1 ), ι(V

(n)
2 ), ι(V

(n)
3 ))T , n ≥ 0. (7.2.11)

Differentiating both sides of (7.2.11) with respect to s yields the recurrence formula for

the invariant differentiation of the symbolic normalized invariants of the components of V (n),

d

ds


ι(V

(n)
1 )

ι(V
(n)

2 )

ι(V
(n)

3 )

 =
d

ds
(σRM )σ−1

RM


ι(V

(n)
1 )

ι(V
(n)

2 )

ι(V
(n)

3 )

+


ι(V

(n+1)
1 )

ι(V
(n+1)

2 )

ι(V
(n+1)

3 )

 . (7.2.12)

Setting n = 0 into this, and since σRMV = (0, 1, 0)T we have that


0

0

0

 =


ι(V ′1)

ι(V ′2)

ι(V ′3)

+


ι(Y ′′)

0

0

 . (7.2.13)



174 Variational Systems with a Euclidean Symmetry using the Rotation Minimizing Frame

Finally, taking a right orthonormal frame σRM = (P ′ V P ′ × V )T , where we have

momentarily relaxed the differential equation condition on V , calculate σ′RMσ
−1
RM and write

the components in terms of the normalized invariants using the Replacement Rule, (2.4.6), we

obtain

σ′RMσ
−1
RM =


0 ι(Y ′′) ι(Z ′′)

−ι(Y ′′) 0 ι(V ′3)

−ι(Z ′′) −ι(V ′3) 0

 . (7.2.14)

We thus see that (2, 3)-component of σ′RMσ
−1
RM being zero, which is what makes σRM a Rotation

Minimizing frame, yields a constraint on the symbolic invariant ι(V ′3). The invariantization of

the differential equation for V yields


ι(V ′1)

ι(V ′2)

ι(V ′3)

 = −ι(Y ′′)


1

0

0

 .

Using calculations similar to those above, it can be seen that the first two components of

this equation relate to the orthonormality of V with respect to P ′. We thus make the following

definition:

Definition 7.2.15 (Rotation Minimizing frame constraint). The equation ι(V ′3) = 0 is denoted

as the Rotation Minimizing frame constraint.

When deriving the differential syzygy needed in the sequel, we will write the (reduced)

curvature matrix with respect to s for the Rotation Minimizing frame as

d

ds
(σRM )σ−1

RM =


0 ι(Y ′′) ι(Z ′′)

−ι(Y ′′) 0 ι(V ′3)

−ι(Z ′′) −ι(V ′3) 0

 , ι(V ′3) = 0. (7.2.16)

This is because we will need to calculate the evolution of ι(V ′3) with respect to time.

7.2.1 The time evolution of the frame

We now suppose that our curve s 7→ P (s) evolves in time. The time derivatives of our variables

are denoted as
d

dt
P (n) = P

(n)
t and

d

dt
V (n) = V

(n)
t and the action is, for g = (R,a) ∈ SO(3)nR,

and all n ≥ 0,

P
(n)
t 7→ g · P (n)

t = RP
(n)
t and V

(n)
t 7→ g · V (n)

t = RV
(n)
t .
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The normalized differential invariants are the components of

ι(P
(n)
t ) = σRMP

(n)
t , ι(V

(n)
t ) = σRMV

(n)
t , n = 0, 1, 2, . . .

The curvature matrix for the extended Rotation Minimizing frame, with respect to time, is

d

dt
ρRMρ

−1
RM =

 d

dt
σRM σ−1

RM −σRMPt

0 0

 =


d

dt
σRM σ−1

RM

−ι(Xt)

−ι(Yt)

−ι(Zt)

0 0

 . (7.2.17)

Calculating the invariant matrix
d

dt
(σRM )σ−1

RM ∈ so(3) yields

d

dt
(σRM )σ−1

RM =


0 P ′t · V P ′t · (P ′ × V )

−P ′t · V 0 Vt · (P ′ × V )

−P ′t · (P ′ × V ) −Vt · (P ′ × V ) 0



=


0 ι(Y ′t ) ι(Z ′t)

−ι(Y ′t ) 0 ι(V ′3,t)

−ι(Z ′t) −ι(V ′3,t) 0


where we have used the Replacement Rule, Theorem (2.4.6), recalling σRMP ′ = (1 0 0)T and

σRMV = (0 1 0)T .

Differentiating both sides of σRMP ′ = (1, 0, 0)T with respect to t yields

σRMP
′
t +

(
d

dt
(σRM )σ−1

RM

)(
σRMP

′) =


0

0

0


so that indeed, 

ι(X ′t)

ι(Y ′t )

ι(Z ′t)

 =


0

P ′t · V

P ′t · (P ′ × V )

 .

Further, differentiating both sides of σRMV = (0, 1, 0)T with respect to t yields

σRMVt +

(
d

dt
(σRM )σ−1

RM

)
(σRMV ) = (0 0 0)T
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so that 
ι(V1,t)

ι(V2,t)

ι(V3,t)

 =


−P ′t · V

0

Vt · (P ′ × V )

 .

7.2.2 The syzygy operator H

Recall the extended Rotation Minimizing frame, ρRM , and the curvature matrices, Qs =

ρ′RMρ
−1
RM , Qt =

d

dt
ρRMρ

−1
RM . Equations (7.2.1), (7.2.3), (7.2.17) and repeated here for

convenience,

ρRM =

σRM −σRMP

0 1

 (7.2.18)

and

Qs = ρ′RMρ
−1
RM =


σ′RMσ

−1
RM

−ι(X ′)

0

0

0 0

 . (7.2.19)

where we have not yet imposed the arc length constraint ι(X ′) = 1 since we need its time

evolution, and

Qt =
d

dt
ρRMρ

−1
RM =


d

dt
σRM σ−1

RM

−ι(Xt)

−ι(Yt)

−ι(Zt)

0 0

 . (7.2.20)

The non-constant components of Qs are the generating invariants of the algebra of invariants

of the form F = F (P, P ′, P ′′, . . . , V, V ′, V ′′, . . . ); every invariant of this form can be written as

a function of ι(Y ′′), ι(Z ′′) and their derivatives with respect to s.

The syzygy operator H that we need for our calculations in the Calculus of Variations,

relates the time derivatives of these generating invariants to the s derivatives of the components

of ι(Pt) and ι(Vt), occurring in Qt. In our case here, the syzygy operator H can be calculated

by examining the components of the compatibility condition of the curvature matrices Qs and

Qt, (5.4.4)
d

dt
Qs − d

ds
Qt =

[
Qt, Qs

]
(7.2.21)

which follows from the fact the derivatives with respect to t and s commute (see [70], §5.2).

We use σ′RMσ
−1
RM in the form of Equation (7.2.14), that is, with the Rotation Minimizing

constraint not yet imposed, as we will need its variation with respect to time in the sequel.
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Calculating the components of Equation (7.2.21) yields,

d

dt
ι(X ′) =

d

ds
ι(Xt)− ι(Y ′′)ι(Yt)− ι(Z ′′)ι(Zt),

d

dt
ι(Y ′′) =

d2

ds2
ι(Yt) +

d

ds

(
ι(Y ′′)ι(Xt)

)
+ ι(V3,t)ι(Z

′′),

d

dt
ι(Z ′′) =

d2

ds2
ι(Zt) +

d

ds

(
ι(Z ′′)ι(Xt)

)
− ι(V3,t)ι(Y

′′),

d

dt
ι(V ′3) =

d

ds
ι(V3,t) + ι(Y ′′)

d

ds
ι(Zt)− ι(Z ′′)

d

ds
ι(Yt)

(7.2.22)

or in the form we require,

d

dt


ι(X ′)

ι(Y ′′)

ι(Z ′′)

ι(V ′3)

 = H


ι(Xt)

ι(Yt)

ι(Zt)

ι(V3,t)


where

H =



d

ds
−ι(Y ′′) ι(Z ′′) 0

ι(Y ′′)
d

ds
+

d

ds
ι(Y ′′)

d2

ds2
0 ι(Z ′′)

ι(Z ′′)
d

ds
+

d

ds
ι(Z ′′) 0

d2

ds2
−ι(Y ′′)

0 −ι(Z ′′) d

ds
ι(Y ′′)

d

ds

d

ds


. (7.2.23)

We note that H is an invariant, linear differential operator matrix.

7.3 Invariant Calculus of Variations

We consider an SE(3) invariant Lagrangian of the form

L[X ′, Y ′, Z ′, X ′′, Y ′′, Z ′′, ...] =

∫
L(κ1, κ2, κ1,s, κ2,s, ...) + µζ + λ(η − 1) ds

where we have set ζ = ι(V ′3), η = ι(X ′), κ1 = ι(Y ′′) and κ2 = ι(Z ′′), and where µ and λ are

Lagrange multipliers for the Rotation Minimizing frame constraint (Definition 7.2.15) and the

arc-length constraint (Definition 7.2.8) respectively.

Recall the Euler operator with respect to a dependent variable u is defined by

Eu(L) =
∑
n

(−1)n
dn

dsn
∂L

∂u(n)

where u(n) =
dn

dsn
u. We will denote this operator by just Eu for simplification. We apply the

invariantized version of the calculation of the Euler–Lagrange equations presented in §2.5.4, to
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obtain

0 =


EX

EY

EZ

EV3

 = H∗


Eη

Eκ1

Eκ2

Eζ


that is,

0 = EX = −κ1
d

ds
Eκ1 − κ2

d

ds
Eκ2 − λs, (7.3.1)

0 = EY =
d2

ds2
Eκ1 +

d

ds
(κ2µ)− κ1λ, (7.3.2)

0 = EZ =
d2

ds2
Eκ2 − d

ds
(κ1µ)− κ2λ, (7.3.3)

0 = EV3 = Eκ1κ2 − Eκ2κ1 − µs. (7.3.4)

Remark 7.3.5. Note that

−κ1
d

ds
Eκ1 − κ2

d

ds
Eκ2 = − d

ds
(κ1Eκ1 + κ2Eκ2) + κ1,sE

κ1 + κ2,sE
κ2 .

Also, by equation (7.17) in Mansfield, [70] we have that

κ1,sE
κ1 + κ2,sE

κ1

=
d

ds

(
L−

∑
m=1

m−1∑
k=0

(−1)k
((

dk

dsk
∂L

∂κ1,m

)
κ1,m−k +

(
dk

dsk
∂L

∂κ2,m

)
κ2,m−k

))
.

Therefore, λs is a total derivative and we obtain

λ = −κ1Eκ1 − κ2Eκ2 + L−
∑
m=1

m−1∑
k=0

(−1)k
((

dk

dsk
∂L

∂κ1,m

)
κ1,m−k −

(
dk

dsk
∂L

∂κ2,m

)
κ2,m−k

)
(7.3.6)

where the constant of integration has been absorbed into λ by Remark 7.1.9 of Mansfield, [70].

This result for λ relates to the invariance of the Lagrangian under translation in s, that is, we

have invariance under s 7→ s+ ε and hence a corresponding Noether law.

To obtain the Noether conservation laws, we need to calculate the infinitesimals of our

group action, its associated matrix of infinitesimals, and the right Adjoint action of the Lie

group SE(3) on the infinitesimal vector fields. For the Lie group SE(3) and the left linear

action, the precise calculations appear in Gonçalvez and Mansfield, [33] with the end results

needed for our case here recorded in the proof of the following Theorem. Elements in the Lie

group SE(3) are, in a neighbourhood of the identity element, described by six parameters,
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three translation parameters, a, b and c, and three rotation parameters, θxy, θyz and θxz where

θxy is the (anticlockwise) rotation in the (x, y)-plane, and similarly for θyz and θxz.

We obtain that Noether’s laws are as given in the following theorem:

Theorem 7.3.7. The conservation laws are of the form

 σTRM 0

DXσTRM DσTRMD





λ

− d

ds
Eκ1 − µκ2

− d

ds
Eκ2 + µκ1

µ

Eκ2

Eκ1


=



c1

c2

c3

c4

c5

c6


(7.3.8)

where

X =


0 −Z Y

Z 0 −X

−Y X 0


D = diag(1,−1, 1), and the ci are constants.

Proof. In order to compute the conservation laws, we need the boundary terms AH, the (right)

Adjoint representation of the frame ρRM and the invariantized matrix of infinitesimals, which

we defined above. We now consider these in turn.

Let E(L) =
(
Eη Eκ1 Eκ2 Eζ

)
and let φt = (ι(Xt) ι(Yt) ι(Zt) ι(V3,t))

T . Then the boundary

terms AH are defined by
d

ds
AH = E(L)Hφt −H∗E(L)φt.

By direct calculation, we obtain

AH = λι(Xt) +

(
− d

ds
Eκ1 − µκ2

)
ι(Yt) +

(
− d

ds
Eκ2 + µκ1

)
ι(Zt)

+ Eκ1ι(Y ′t ) + Eκ2ι(Z ′t) + µι(V3,t)

= CXι(Xt) + CY ι(Yt) + CZι(Zt) + CY ′ι(Y ′t ) + CZ′ι(Z ′t) + CV3,tι(V3,t)

where this defines the coefficients C and where we have used the syzygies

ι(Y ′t ) =
d

ds
ι(Yt) + κ1ι(Xt), ι(Z ′t) =

d

ds
ι(Zt) + κ2ι(Xt)

to eliminate derivatives of ι(Yt) and ι(Zt) in the boundary terms.

In Gonçalves and Mansfield, [33], the authors show the (right) Adjoint representation of
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SE(3) with respect to the generating infinitesimal vector fields of the action,

va = ∂X , vb = ∂Y , vc = ∂Z , vY Z = Y ∂Z − Z∂Y , vXZ = X∂Z − Z∂X , vXY = X∂Y − Y ∂X

(7.3.9)

is of the form, for g = (R,a),

Ad(g) =

 R 0

DAR DRD


where R ∈ SO(3), D is the diagonal matrix D = diag(1,−1, 1) and A is the matrix

A =


0 −c b

c 0 −a

−b a 0


where a = (a, b, c)T is the translation vector component of g.

Hence

Ad(ρRM )−1 =

 σTRM 0

DXσTRM DσTRMD

 where X =


0 −Z Y

Z 0 −X

−Y X 0

 .

The invariantized matrix of infinitesimals with respect to the basis (7.3.9) is

Φ(I) =



X Y Z Y ′ Z ′ V3

a 1 0 0 0 0 0

b 0 1 0 0 0 0

c 0 0 1 0 0 0

θyz 0 0 0 0 0 1

θxz 0 0 0 0 1 0

θxy 0 0 0 1 0 0


.

Finally, the conservation laws obtained via Noether’s theorem for the unidimensional case

are (2.67)

Ad(ρ)−1V(I) = c (7.3.10)

where

V(I) =
∑
α

Φα(I)Cα =

(
λ − d

ds
Eκ1 − µκ2 − d

ds
Eκ2 + µκ1 µ Eκ2 Eκ1

)T
(7.3.11)
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as required.

Remark 7.3.12. A quick check on this result is obtained by noting the following. Differenti-

ating (7.3.8) with respect to s and multiplying by Ad(ρRM ), we get

d

ds
V(I) =

d

ds
(Ad(ρRM ))Ad(ρ)−1V(I)

i.e,

d

ds
V(I) =



0 κ1 κ2 0 0 0

−κ1 0 0 0 0 0

−κ2 0 0 0 0 0

0 0 0 0 −κ1 κ2

0 0 −1 κ1 0 0

0 −1 0 −κ2 0 0


V(I). (7.3.13)

We observe that the first four rows are equivalent to the Euler-Lagrange equations while last

two rows are identically 0, as expected.

7.4 Solution of the integration problem

The conservation laws (7.3.8) can reduce the integration problem. We write these in the form,

 σTRM 0

DXσTRM DσTRMD

 w1(I)

w2(I)

 =

 c1

c2

 (7.4.1)

where V(I) = (w1(I),w2(I))T , c = (c1, c2)T and recalling

X =


0 −Z Y

Z 0 −X

−Y X 0

 .

Since σRM ∈ SO(3) we have from

σRMc1 = w1(I) (7.4.2)

that

|c1| = |w1(I)|. (7.4.3)

Further, multiplying the second component of Equation (7.4.1) on the left by c1(I)TD, since
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D2 = I, we obtain

wT
1 Dw2 = cT1 Dc2. (7.4.4)

In order to solve Equation (7.4.2), as far as we can, for the components of σRM in terms of

the components of c1 and w1(I), we use the Cayley representation C of elements of SO(3).

We define

C(x1, x2, x3, x4) =


x2

1 + x2
2 − x3

3 − x2
4 −2(x1x4 − x2x3) 2(x1x3 + x2x4)

2(x1x4 + x2x3) x2
1 − x2

2 + x3
3 − x2

4 −2(x1x2 − x3x4)

−2(x1x3 − x2x4) 2(x1x2 + x3x4) x2
1 − x2

2 − x3
3 + x2

4

 .

Then provided x2
1 + x2

2 + x3
3 + x2

4 = 1, C(x1, x2, x3, x3) ∈ SO(3), has an axis of rotation

(x2, x3, x4)T and the angle of rotation ψ satisfies 2x2
1 − 1 = cosψ. Hence we may define, for

an angle ψ and axis of rotation a = (a1, a2, a3)T 6= 0,

R(ψ,a) = C

(
cos

(
ψ

2

)
, sin

(
ψ

2

)
a1

|a|
, sin

(
ψ

2

)
a2

|a|
, sin

(
ψ

2

)
a3

|a|

)
∈ SO(3).

There are two cases.

Case 1. If w1 + c1 is bounded away from zero, we note that σRM may be taken to be

a product of a rotation about c1 + (0, 0, |c1|)T with angle π followed by a rotation about

(0, 0, |c1|)T with any angle ψ and a rotation about w1 + (0, 0, |c1|)T with angle π, that is,

σRM = R(π,w1 + (0, 0, |c1|)T )R(ψ(s), (0, 0, |c1|)T )R(π, c1 + (0, 0, |c1|)T ).

This solves for σRM up to the angle ψ. If we differentiate this with respect to s, right multiply

by σ−1
RM

σ−1
RM = R(π, c1 + (0, 0, |c1|)T )R(−ψ(s), (0, 0, |c1|)T )R(π,w1 + (0, 0, |c1|)T )

using (7.3.13) and taking into account that

d

ds
(σRM )σ−1

RM =


0 κ1 κ2

−κ1 0 0

−κ2 0 0


we obtain a remarkable equation for ψ, specifically,

ψs = −κ1 +
V2(I)

|c1|+ V3(I)
κ2 (7.4.5)
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where recall V2(I) and V3(I) are the second and third components of the vector of invariants,

V(I), and also, by definition, the second and third components of w1.

Case 2. If w1 − c1 is bounded away from zero, we note that σRM may be taken to be a

product of a rotation about c1 + (0, 0,−|c1|)T with angle π followed by a rotation about

(0, 0,−|c1|)T with any angle ψ and a rotation about w1 + (0, 0,−|c1|)T with angle π, that is,

σRM = R(π,w1 + (0, 0,−|c1|)T )R(ψ(s), (0, 0,−|c1|)T )R(π, c1 + (0, 0,−|c1|)T ).

Since the matrix on the right and the matrix on the left are constant, we obtain the same

equation for ψ as above, but with the signs of c1 reversed. Hence in this case,

ψs = κ1 +
V2(I)

|c1| − V3(I)
κ2. (7.4.6)

In either case, we obtain σRM up to a quadrature. There is a significant overlap in the

domains of the two cases, and matching one to the other, as needed, is not a problem.

Next, we seek P . We note the first row of σRM is P ′, and so we can always obtain P by

quadrature. However, we note that only one component needs to be calculated this way, as the

second component of Equation (7.4.1) provides algebraic equations for two of the components

of P , i.e,

X =
1

V3(I)
(V4(I) + ZV2(I)− (σDc2)1),

Y =
1

V3(I)
(V5(I) + ZV1(I) + (σDc2)2)

where Z has been solved previously by quadrature.

We conclude by noting that the conservation laws provide two first integrals of the Euler–

Lagrange equations. They may be used to solve for P in terms of two quadratures, and they

also solve for the normal vector V in terms of one quadrature, that of ψ. Finally, we note that

it is easy to obtain the Frenet–Serret frame from our calculations, since it is defined in terms

of P ′ and P ′′.
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7.5 Examples and applications

We examine a Lagrangian which is not possible to study in the Frenet–Serret framework.

Secondly, we study functionals used to model some biological structures, invariant under SE(3)

and depending on the curvature, torsion and their derivatives, but using our results for the

Rotation Minimizing frame.

We first show that every Lagrangian which can be written in terms of the Euclidean

curvature κ and torsion τ can be written in terms of the invariants, κ1 and κ2. From (7.1.8)

we have that

κ1 = κ cos θ, κ2 = κ sin θ

and therefore, using tan θ = κ2/κ1 and θs = τ we have,

κ =
√
κ2

1 + κ2
2, τ =

κ1κ2,s − κ1,sκ2

κ2
1 + κ2

2

. (7.5.1)

But the converse is not true. Lagrangians which depend only on κ2/κ1 cannot be written

in terms of κ and τ . Our first example is the simplest such Lagrangian, which we study simply

because we can.

7.5.1 Invariant Lagrangians involving only κ2/κ1

Let us consider the Lagrangian

L
[
κ2

κ1

]
=

∫
1

2

(
κ2

κ1

)2

+ λ (η − 1) + µζ ds =

∫
tan θ2 + λ (η − 1) + µζ ds

where recall η = 1 is the arc-length constraint and ζ = 0 is the Rotation Minimizing frame

constraint.

Using the results of the previous section, we obtain the Euler–Lagrange equations−12
d

ds
κ1

2

κ5
1

+
3

d2

ds2
κ1

κ4
1

− 1

2κ1

κ2
2 +

12
d

ds
κ1

d

ds
κ2

κ4
1

−
2

d2

ds2
κ2

κ3
1

− µs

κ2

−
2

d

ds
κ2

2

κ3
1

+ µ
d

ds
κ2 = 0,

(7.5.2)
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− κ3
2

2κ2
1

+

6
d

ds
κ2

1

κ4
1

−
2

d2

ds2
κ1

κ3
1

κ2

d2

ds2
κ2

κ2
1

−
4

d

ds
κ1

d

ds
κ2

κ3
1

− µsκ1 − µ
d

ds
κ1 = 0, (7.5.3)

µs +
κ3

2

κ3
1

+
κ2

κ1
= 0 (7.5.4)

where λ =
1

2

(
κ2

κ1

)2

has been solved using (7.3.6).

Further, the vector of invariants V(I) needed for the conservation laws is

V(I) =



1

2

(
κ2

κ1

)2

−κ2

κ4
1

(κ4
1µ− 2κ1

d

ds
κ2 + 3κ2

d

ds
κ1)

−

d

ds
κ2

κ2
1

+
2κ2

d

ds
κ1

κ3
1

+ µκ1

µ
κ2

κ2
1

−κ
2
2

κ3
1



.

Solving (7.5.2), (7.5.3) along with (7.4.4), (7.4.5) and (7.4.6) for κ1, κ2, µ and ψ with initial

conditions
κ1(0) = 1, κ2(0) =

1

2
,

d

ds
κ1(0) = 1,

d

ds
κ2(0) = 1,

λ(0) = 1, µ(0) = 1, Z(0) = 1, ψ(0) = 0

we obtain the following solutions, see Figures (7.3), (7.4), (7.5).

Note: For this example and the following ones, the range is all that Maple can do before

running into singularities.

7.5.2 Applications in biology

In order to model strands of proteins, nucleic acids and polymers, some authors have made

use of the classic Calculus of Variations and studied the Euler–Lagrange equations of an

energy functional depending on the curvature, torsion and their first derivatives, of the protein

strand. In Thamwattana, McCoy and Hill, [106] and McCoy, [79] the authors consider protein

backbones and polymers as a smooth curve in R3 and use the Frenet–Serret equations in order

to compute a variation to the curve. The Euler–Lagrange equations are obtained for these

type of functionals. In Feoli, Nesterenko and Scarpetta, [27] the same method is used to obtain

the Euler–Lagrange equations for functionals which are linear in the curvature.

In this section we study two examples of the families of functionals studied, but in terms of
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Figure 7.3: Solutions for the invariants κ1, κ2, θ and κ2. From the graphs, we can see that
there is a functional dependency between the two normal curvatures that resembles a logarithm.
The value of theta reaches a maximum close to s = 1 before it reaches a singularity. For κ2 we
also find a singularity when s = 1, which is expected from the previous graph.

κ1 vs κ2 s vs θ s vs κ2

Figure 7.4: Plots of the first integrals. In the following pictures, we check that the conservation
laws V1(I)2 +V2(I)2 +V3(I)2 and V1(I)V4(I)−V2(I)V5(I) +V3(I)V6(I) are actually conserved
along s. The singularity in s = 1 shows in these graphs as expected.

s vs V1(I)2 + V2(I)2 + V3(I)2 s vs V1(I)V4(I)− V2(I)V5(I) + V3(I)V6(I)
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Figure 7.5: Sweep surfaces using the Rotation Minimizing frame and the Frenet–Serret frame
along the extremal curve.

Plot of V along the extremal curve Plot of P ′′ along the extremal curve
using the Rotation Minimizing frame using the Frenet–Serret frame

the invariants κ1 and κ2. The conversion of a functional given in terms of Euclidean curvature

and torsion to one given in terms of κ1 and κ2 is given in Equation (7.5.1).

The Lagrangian
∫
κ2τ ds =

∫
κ1κ2,s − κ1,sκ2 ds

For the Lagrangian ∫
κ1κ2,s − κ1,sκ2 ds

the Euler–Lagrange equations are

2κ2,sss + 3κ2,sκ
2 = 0, (7.5.5)

−2κ1,sss − 3κ1,sκ
2 = 0. (7.5.6)

The conservation laws are of the form (7.3.10) where

V(I) = (2(κ1,sκ2 − κ1κ2,s) − 2κ2,ss − κ2κ
2 − 2κ1,ss + κ1κ

2 κ2 − 2κ1,s 2κ2,s)
T .

Solving (7.5.5), (7.5.6) along with (7.4.5) and (7.4.6) for κ1, κ2 and ψ with initial conditions

κ1(0) = 1, κ2(0) =
1

2
,

d

ds
κ1(0) = 1,

d

ds
κ2(0) = 1,

d2

ds2
κ1(0) = 1,

d2

ds2
κ2(0) = 1, ψ(0) = 0

and integrating to obtain the extremizing curve and its Rotation Minimizing frame, we obtain
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the following solutions, see Figures (7.6), (7.7), (7.8).

The Lagrangian
∫
κ2τ3 + τ(2κ2

s − κκss) + κκsτs ds =
∫
κ1,sκ2,ss − κ1,ssκ2,s ds

We now consider ∫
κ1,sκ2,ss − κ1,ssκ2,s ds.

The Euler–Lagrange equations are

−2κ2,ssss +
d

ds
(κ2µ)− κ1λ = 0, (7.5.7)

2κ1,ssss −
d

ds
(κ1µ)− κ2λ = 0 (7.5.8)

where

λ = 2κ2,sssκ1 − 2κ1,sκ2,ss + 2κ2,sκ1,ss − 2κ2κ1,sss

and

µ = κ2
1,s + κ2

2,s − 2(κ1κ1,ss + κ2κ2,ss).

The conservation laws are of the form (7.3.10) where

V(I) = (λ 2κ2,ssss − µκ2 − 2κ1,ssss + µκ1 µ 2κ1,sss − 2κ2,sss).

Solving (7.5.7), (7.5.8) along with (7.4.5) and (7.4.6) for κ1, κ2 and ψ with initial conditions

κ1(0) = 1, κ2(0) =
1

2
,

d

ds
κ1(0) = 1,

d

ds
κ2(0) = 1,

d2

ds2
κ1(0) = 1,

d2

ds2
κ2(0) = 1,

d3

ds3
κ1(0) = 1,

d3

ds3
κ2(0) = 1, ψ(0) = 0

and integrating to obtain the extremizing curve and its Rotation Minimizing frame, we obtain

the following solutions, see Figures (7.9), (7.10), (7.11).
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Figure 7.6: Solutions for the invariants κ1, κ2, θ and κ2. The plots show that there is a linear
dependency between κ1 and κ2. We can therefore suppose that κ2 = λ1κ1 + λ2 where λ1 and
λ2 are real numbers. We can also see that both θ and κ2 have a periodic behaviour along s
reaching their maxima and minima at the same s.

κ1 vs κ2 s vs θ s vs κ2

Figure 7.7: Plots of the conservation laws. Again, we check that the conservation laws
V1(I)2 + V2(I)2 + V3(I)2 and V1(I)V4(I) − V2(I)V5(I) + V3(I)V6(I) are actually conserved
along s.

s vs V1(I)2 + V2(I)2 + V3(I)2 s vs V1(I)V4(I)− V2(I)V5(I) + V3(I)V6(I)
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Figure 7.8: Sweep surface using V from the Rotation Minimizing frame along the extremal
curve

Figure 7.9: Solutions for the invariants κ1, κ2, θ and κ2. In this case, we also find a
linear dependency between the curvature invariants. However, now θ and κ2 don not evolve
periodically along s. A minimum can be found for θ and κ2 for approximately s = −1.5.

κ1 vs κ2 s vs θ s vs κ2
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Figure 7.10: Plots of the first integrals. The conservation laws are conserved along s as shown
in the following plots.

s vs V1(I)2 + V2(I)2 + V3(I)2 s vs V1(I)V4(I)− V2(I)V5(I) + V3(I)V6(I)

Figure 7.11: Sweep surface using V from the Rotation Minimizing frame along the extremal
curve.
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Moving Frames and Gauge Transformations

The aim of this chapter is to study the relationships between two moving frames when one is

the gauge transformation of the other. We show that the differential invariants, the curvature

matrices and the differential syzygy of one of the frames can be written in terms of the ones

coming from the other frame and vice–versa. We use the SE(2) action as our running example

and the SL(2) projective action as a detailed example in order to illustrate the theory. Some

of the results are also illustrated for the linear transformations on curves action.

8.1 Moving frames and gauge transformations

Consider two moving frames

ρA : M → G and ρB : M → G. (8.1.1)

If

ρB = χ · ρA (8.1.2)

where χ ∈ G, we will say that χ is a gauge (see Figure (8.1)).

Example 8.1.3. Consider the special Euclidean group SE(2) of rotations and translations

acting on curves (u(s), v(s)) on the plane parametrized by the arc length

 ũ

ṽ

 =

 cos θ − sin θ

sin θ cos θ

 u

v

+

 a

b

 .

193
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Figure 8.1: By choosing two different cross-section, we obtain two moving frames related by a
gauge.

KA KB

ρA(z) · z ρB(z) · z
z

χ = ρBρA
−1

ρA

ρB

O(z)

For the normalization equations ũ = 0, ṽ = 0 and ṽs = 0 we obtain the moving frame (see

Gonçalves and Mansfield, [33]) - also obtained previously in (4.1.4)

ρA =


us vs −uus − vsv

−vs us −vus + vsu

0 0 1


while for normalization equations ũ = α, ṽ = β and ṽs = δ we obtain the moving frame

ρB =


δvs + us

√
1− δ2 −δus +

√
1− δ2vs α+ δ(vus − uvs)−

√
1− δ2(uus + vvs)

δus −
√

1− δ2vs δvs + us
√

1− δ2 β − δ(uus + vvs) +
√

1− δ2(uvs − vus)

0 0 1


where α, β and δ are constants. Note that (8.1.2) is satisfied where

χ =


√

1− δ2 −δ α

δ
√

1− δ2 β

0 0 1

 .
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8.1.1 Differential invariants

Let us set IAK and IBK to be the invariants as defined in (2.4.5) for ρA and ρB satisfying (8.1.1).

Proposition 8.1.4. Given two moving frames ρA and ρB as in (8.1.1) such that (8.1.2) is

satisfied, the differential invariants of the frame ρA can be written in terms of the differential

invariants of the frame ρB and vice-versa as follows

IBK = χ · IAK , IAK = χ−1 · IBK . (8.1.5)

Proof. From (2.4.5) and (8.1.2) we have that

IBK = ρB · zK = χ · ρA · zK = χ · IAK .

Finally, making the inverse of the gauge transformation act on the left we obtain IAK =

χ−1 · IBK .

Remark 8.1.6. Note that · is not the standard multiplication but the group product which

matches the multiplication of matrices when using representation matrices in linear group

actions. At the end of this chapter we give an example of a non-linear action in order to

illustrate the theory for these type of actions.

Example 8.1.7. For the moving frame ρA (see Gonçalves and Mansfield, [33])

IA =


Iu,A

Iv,A

1

 = ρA ·


u

v

1

 =


0

0

1

 ,

IA1 =


Iu,A1

Iv,A1

0

 = ρA ·


us

vs

0

 =


1

0

0

 ,
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IA11 =


Iu,A11

Iv,A11

0

 = ρA ·


uss

vss

0

 =


0

usvss − vsuss

0

 ,

IAK =


Iu,AK

Iv,AK

0

 = ρA ·


uK

vK

0

 =


usuK + vsvK

usvK − vsuK

0


while for the moving frame ρB we have that


Iu,B

Iv,B

1

 = ρB ·


u

v

1

 =


α

β

1

 ,


Iu,B1

Iv,B1

0

 = ρB ·


us

vs

0

 =


√

1− δ2

δ

0

 ,


Iu,B11

Iv,B11

0

 = ρB ·


uss

vss

0

 =


δ(ussvs − vssus)

√
1− δ2(usvss − vsuss)

0

 ,


Iu,Bk

Iv,Bk

0

 = ρB ·


uK

vK

0

 =


√

1− δ2(usuK + vsvK)− δ(uKvs − vKus)

δ(uKvs − vKus) +
√

1− δ2(usvK − vsuK)

0

 .

Note for any K (8.1.5) is satisfied as


Iu,BK

Iv,BK

1

 =


√

1− δ2 −δ α

δ
√

1− δ2 β

0 0 1




Iu,AK

Iv,AK

1

 .

8.1.2 Curvature matrices

Let us denote QiA and QiB the curvature matrices defined in (2.57) of ρA and ρB respectively.

Proposition 8.1.8. Given two moving frames ρA and ρB such that ρB = χ · ρA where χ is a

gauge transformation, the curvature matrices for the moving frame ρB can be written in terms
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of those ones of the moving frame ρA as follows

QiB = χiχ
−1 + χQiAχ

−1 (8.1.9)

where χi = Diχ.

Proof. Inserting (8.1.2) in QiB = Di(ρ
B)ρB

−1 and using QiA = Di(ρ
A)ρA

−1 we obtain

QiB = Di(ρ
B)(ρB)

−1
= Di(χ·ρA)(χ · ρA)

−1
= (χi ·ρA+χDiρ

A)(ρA)
−1
χ−1 = χiχ

−1+χQiAχ
−1.

Example 8.1.10. Using (2.57), for the moving frame ρA we have (see Mansfield and van der

Kamp, [73])

QsA =


0 Iv,A11 −1

−Iv,A11 0 0

0 0 0

 and QtA =


0 Iv,A12 −Iu,A2

−Iv,A12 0 Iv,A2

0 0 0


and for the moving frame ρB we have

QsB =


δIv,B11 + Iu,B11 λ − (δ2−1)I

v,B
11 +δλI

u,B
11 +δs

λ

(
αs+

(
βI

u,B
11 +I

v,B
11 α

)
δ
)
λ+δsβ+λ

2
(
I
v,B
11 β−αIu,B

11 +1
)

λ

(δ2−1)I
v,B
11 +δI

u,B
11 λ+δs

λ
δIv,B11 + Iu,B11 λ

(
βs+

(
I
v,B
11 β−αIu,B

11 −1
)
δ
)
λ−δsα−λ2

(
βI

u,B
11 +I

v,B
11 α

)
λ

0 0 0


and

QtB =


δIv,B12 + Iu,B12 λ − (δ2−1)I

v,B
12 +δI

u,B
12 λ+δt

λ

(
αt+

(
βI

u,B
12 +αI

v,B
12

)
δ−Iu,B

2

)
λ+βδt+λ

2
(
βI

v,B
12 −αI

u,B
12

)
λ

(δ2−1)I
v,B
12 +δI

u,B
12 λ+δt

λ
δIv,B12 + Iu,B12 λ

(
δ(βI

v,B
12 −αI

u,B
12 )−Iv,B

2 +βt

)
λ−αδt−λ2

(
βI

u,B
12 +αI

v,B
12

)
λ

0 0 0


where λ =

√
1− δ2.

Taking into account that

Iu,B2 = Iu,A2

√
1− δ2 − Iv,A2 δ,

Iv,B2 = Iu,A2 δ + Iv,A2

√
1− δ2,

Iu,B12 = −Iv,A12 δ,

Iv,B12 = Iv,A12

√
1− δ2

(8.1.11)
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and
Iu,A2 = Iu,B2

√
1− δ2 + Iv,B2 δ,

Iv,A2 = −Iu,B2 δ + Iv,A2

√
1− δ2,

Iv,A12 =
Iv,B12√
1− δ2

= −I
u,B
12

δ

(8.1.12)

equations (8.1.9) can be easily verified.

8.1.3 Differential syzygy

Recall that the curvature matrices satisfy the relationship (2.58). If

Ds = Ds and Dt = Dt

the vanishing commutator [Ds,Dt] = 0 yields that the syzygy (2.58) can be written as follows

DsQ
i
t −DtQ

i
s = [Qis, Q

i
t]. (8.1.13)

Proposition 8.1.14. The differential syzygy for the moving frame ρB can be written in terms

of the differential syzygy for the moving frame ρA as follows

DsQ
t
B −DtQ

s
B − [QsB, Q

t
B] = Adχ

(
DsQ

t
A −DtQ

s
A − [QsA, Q

t
A]
)

(8.1.15)

where Ad is left adjoint action.

Proof. Differentiating QtB with respect to s we have that

DsQ
t
B = Ds(χtχ

−1 + χQtAχ
−1)

= χstχ
−1 − χtχ−1χsχ

−1 + χsQ
t
Aχ
−1 + χ

(
DsQ

t
Aχ
−1 −QtAχ−1χsχ

−1
)
.

Analogously, differentiating QsB with respect to t we have that

DtQ
s
B = Dt(χsχ

−1 + χQsAχ
−1)

= χstχ
−1 − χsχ−1χtχ

−1 + χtQ
s
Aχ
−1 + χ

(
DtQ

s
Aχ
−1 −QsAχ−1χtχ

−1
)
.

Hence

DsQ
t
B −DtQ

s
B = −χtχ−1χsχ

−1 + χsχ
−1χtχ

−1 + χsQ
t
Aχ
−1 − χtQsAχ−1

+ χDsQ
t
Aχ
−1 − χQtAχ−1χsχ

−1 − χDtQ
s
Aχ
−1 + χQsAχ

−1χtχ
−1.
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We also have

[QsB, Q
t
B] = [χsχ

−1 + χQsAχ
−1, χtχ

−1 + χQtAχ
−1]

= χsχ
−1χtχ

−1 + χsχ
−1χQtAχ

−1 + χQsAχ
−1χtχ

−1 + χQsAQ
t
Aχ
−1

− χtχ−1χsχ
−1 − χtχ−1χQsAχ

−1 − χQtAχ−1χsχ
−1 − χQtAQsAχ−1

and therefore

DsQ
t
B −DtQ

s
B − [QsB, Q

t
B] = χ

(
DsQ

t
A −DtQ

s
A − [QsA, Q

t
A]
)
χ−1

obtaining the required result.

Example 8.1.16. Equations (8.1.9) and (8.1.15) have been checked for this running example

with Maple (see Appendix).

8.2 Linear transformations action on curves

Recall the group of linear transformations acting on curves (x, u(x))

x→ x = x̃, u→ λu+ ε = ũ.

given in (5.2.1).

Recall that for the normalization equations

ũ = 0, ũs = 1

we obtained the moving frame

ρA =

 1

ux
− u

ux

0 1

 .

Recall also that for the linear transformation group (5.2.1) the invariants are of the form

ι(u) = ρA · u = 0, ι(ux) = ρA · ux = 1, ι(uJ) = ρA · uJ =
uJ
ux
.

Using (2.57) we obtain the curvature matrices

QxA =

 −IA11 −1

0 0

 and QtA =

 −IA12 −IA2
0 0

 .
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From (2.58) and setting IA11 to be κA and IA2 to be σA we obtain the syzygy of the form (2.59)

κAt = (D2
x + κADx + κAx )σA

where

κA =
uxx
ux

and σA =
ut
ux
.

Now we consider the normalization equations u = α and ux = β, where α and β are constants.

Solving these equations for the group parameters yields

λ =
β

ux
, ε = α− βu

ux
.

In matrix form,

ρB =

 β

ux
α− βu

ux

0 1

 .

Note that ρA and ρB satisfy (8.1.2) where

χ =

 β α

0 1

 .

Note that

ρB(ũ, ũx) =

 β

ũx
α− βũ

ũx

0 1


= χ

 1

λux
−λu+ ε

λux

0 1


= χ

 1

ũx
− ũ

ũx

0 1


 1

λ
− ε
λ

0 1


= χ · ρA(u, ux)g−1

= ρB(u, ux)g−1

which is the equivariance of a right frame for a left action. The invariants are of the form

ι(u) = ρB · u = α, ι(ux) = ρB · ux = β, ι(uJ) = ρB · uJ = β
uJ
ux
.
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Using (2.57) we obtain the curvature matrices

QxB =

 βx − IB11

β
α

(
IB11 − βx

β

)
+ αx − β2

0 0

 ,

and

QtB =

 βt − IB12

β
−α

(
IB12 − βt

β

)
+ αt − βtIB2

0 0

 .

Note that

Dx

 IB2

0

 = QxB

 IB2

0

+

 IB12

0


and therefore

IB12 = DxI
B
2 −

βx − IB11

β
IB2 . (8.2.1)

Equations (8.1.9) and (8.1.15) have been checked for this example with Maple (see

Appendix).

8.3 Projective SL(2) case

Recall the projective SL(2) action (2.6) on curves in the plane studied in §2

ũ =

 a b

c d

 · u =
au+ b

cu+ d
, where ad− bc = 1.

For the normalization equations u = 0, ux = 1, uxx = 0 (2.49) we obtained the moving frame

(2.50)

ρA =


1
√
ux

− u
√
ux

uxx

2u
3/2
x

2u2
x − uuxx
2u

3/2
x


while now for the normalization equations u = α, ux = β, uxx = γ we obtain the moving frame

ρB =


uxxαβ − uxαδ + 2β2ux

2u
3/2
x β3/2

uxαδu− 2β2uxu+ 2βαu2
x − uxxαβu

2u
3/2
x β3/2

uxxβ − uxδ
2u

3/2
x β3/2

2βu2
x − βu+ uδux

2u
3/2
x β3/2


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where α, β and γ are constants. Note that we have that ρB = χ · ρA where

χ =


2β2 − αδ

2β3/2

α√
β

δ

2β3/2

1√
β

 .

Using (2.4.5) we computed the invariants (2.4.7)

IA = ρA · u = 0, IA1 = ρA · ux = 1, IA11 = ρA · uxx = 0, IA111 = ρA · uxxx =
uxxx
ux
− 3

2

u2
xx

u2
x

.

We can also compute the invariants for the frame ρB which are of the form

IB = ρB · u = α, IB1 = ρB · u = β, IB11 = ρB · u = γ,

IB111 = ρB · u = β

(
uxxx
ux
− 3

2

u2
xx

u2
x

)
+

3

2

δ2

β
.

We know from (2.8) that

ũ = g · u =
au+ b

cu+ d
,

ũx = g · ux =
ux

(cu+ d)2 ,

ũxx = g · uxx =
(cu+ d)uxx − 2cux

(cu+ d)3 ,

ũxxx = g · uxxx =
uxxx

(cu+ d)2 −
6cuxxux

(cu+ d)3 +
6c2u3

x

(cu+ d)4

and therefore
IB = χ · IA = ũ

∣∣
g=χ,uk=IAK

= α,

IB1 = χ · IA1 = ũx
∣∣
g=χ,uk=IAK

= β,

IB11 = χ · IA11 = ũxx
∣∣
g=χ,uk=IAK

= γ,

IB111 = χ · IA111 = ũxxx
∣∣
g=χ,uk=IAK

= βIA111 +
3

2

δ2

β

verifying (8.1.5). The curvature matrices associated to the frame ρA where computed in (2.60)

which are of the form

QsA =

 0 −1

IA111

2
0

 and QtA =

 −I
A
12

2
−IA2

IA112

2

IA12

2

 .
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Using (2.57) we have that the curvature matrices associated to the frame ρB are of the form

QsB = 1
2

 (β2+αδ)βx−δβ2+α(β(IB111−δx)−δ2)
β3

−2 β4+2αxβ
3+2αβ2(δ−2 βx)−α2(β(IB111−δx)−δ2+δβx)

β3

βIB111−βδx−δ
2+δβx

β3

δβ2−β2βx−αβIB111+αβδx+δ2α−αδβx
β3

 ,

QtB = 1
2

 (β2+αδ)βt−β2IB12+α(β(I
B
112−δt)−I

B
12δ)

β3

−2 β3IB2 +2 β3αt+2αβ2(IB12−2 βt)−α2(β(IB112+δt)+δ(I
B
12−βt))

β3

βIB112−βδt−I
B
12δ+βtδ

β3

β2IB12−β
2βt−βIB112α+βδtα+I

B
12δα−βtαδ

β3

.

Taking into account that

IB2 = βIA2 , IB12 = βIA12 + δIA2 , IB112 = βIA112 + 2δ +
3δ2

2β
IA2

and that

IA2 =
IB2
β
, IA12 =

IB12

β
− δ

β2
IB2 , IA112 =

IB112

β
− 2

δ

β2
IB12 +

δ2

2β3
IB2

equations (8.1.9) and (8.1.15) are easily verified.

Note that IA112 and IA12 can be written in terms of IA2 as

IA12 = DxI
A
2 and IA112 = D2

xI
A
2 + IA111I

A
2 .

Also IB112 and IB12 can be written in terms of IB2 as

IB12 =

(
δ − βx
β

+ Dx

)
IB2 ,

IB112 =

(
D2
x +

2(α− βx)

β
Dx +

IB111β − βxxβ + 2β2
x − 2βxδ

β

)
IB2 .

Equations (8.1.9) and (8.1.15) have been checked for this example with Maple (see

Appendix).
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Conclusions and Future Work

In this thesis, the theory of discrete moving frames and Noether’s finite difference conservation

laws is discussed. Given a discrete Lagrangian with a Lie group of variational symmetries,

a discrete moving frame allows us to express the Euler–Lagrange equations in terms of the

invariants and Noether’s conservation laws in terms of the discrete frame and a vector of

invariants. This makes explicit the equivariance of the conservation laws. The solutions of the

Euler–Lagrange equations can then be solved in terms of the original variables.

We apply this theory to three group actions of the semisimple Lie group SL(2), the special

unitary group SU(2) and the special euclidean group SE(2), where we study a symmetry

preserving discretization of the Euler’s elastica.

We show how to construct the correction terms, correction matrix and curvature matrix

associated to a discrete frame. We prove that one can always write the evolution of the curvature

invariants in terms of the first order differential invariants and a linear shift operator, coming

from a differential–difference syzygy between the curvature matrix and the Maurer–Cartan

matrix. This is possible when the normalization equations do not involve time derivatives.

We also prove that the symmetry condition for two curvature evolutions is a differential

consequence of the symmetry condition on the curve evolutions. Some examples are developed

and related to discrete integrable systems.

We give a brief introduction to multispaces and construct the multispace moving frame

and its invariants for some Lie groups. In these examples, using interpolation in order to

define coordinates, we show that the discrete moving frame converges to a smooth one. We

also show that the discrete invariants and syzygies approximate their smooth equivalents. In

the last example, we construct the multispace prolonged action and the table of infinitesimals

and show how taking a continuum limit yields convergence to the smooth results.

We have developed the Calculus of Variations for invariant Lagrangians under the Euclidean

action of rotations and translations on curves in 3-space, using the Rotation Minimising frame.

We obtain the Euler-Lagrange equations in their invariant form and their corresponding

conservation laws. These results yield an easier form than those obtained in Gonçalves and
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Mansfield, [34]. We also show how to ease the integration problem using the conservation laws

and to recover the extremals in the original variables. We show how to minimize the angle

between the normal and binormal vector and give an application in the study of biological

problems.

We study the relationship between two moving frames differing by a gauge and how the

differential operator linking the curvature invariant with the differential invariants of one of

the frames can be expressed in terms of the other.

Future work includes:

• Extending the techniques developed in §3.8 for higher dimensional cases.

• Studying applications of Noether’s finite difference conservation laws for other Lie groups

such as the spin group and the symplectic group.

• Optimising the use of the difference frame appearing in the example of the discrete

Euler’s elastica in the approximations of the conservation laws.

• Developing a package in Maple that allows us to compute the invariant form of the

Euler–Lagrange equations and conservation laws for particular Lie groups.

• Studying the conjecture of the operator H to be pre-hamiltonian (see Carpentier,

Mikhailov and Wang, [12], [13]).

• Constructing the discrete Rotation Minimising frame and obtaining the invariant Euler-

Lagrange equations and conservation laws.

• Generalizing our results to obtain a symbolic calculus of invariants in a broad class

of problems for which the frame is not defined in terms of algebraic equations in the

coordinates of the manifold on which the Lie group actions.

• Studying joint invariants in problems where two helices appear and interact with each

other.

• Investigating the minimization of functionals that are invariant under higher dimensional

Euclidean actions.

• Discretizing the results appearing in §8, Moving frames and gauge transformations and

finding applications to other fields.

• Stuying the relationships between the H operators coming from two moving frames

differing by a gauge.



Indiff Package for Finite Difference Systems

In this appendix, we describe how to adapt the Maple package Indiff (Mansfield, [78]) for

finite difference systems.

Given the independent and dependent variables from a finite system, the group parameters

of a Lie group, the matrix of infinitesimals and the normalization equations, the Indiff

package computes, among other things, the correction matrix as well as syzygies between the

invariants.

In order to use the package Indiff, it is necessary to open a Maple file and then read the

Indiff package. The independent variables are given in a list denoted vars, the dependent

variables are given in a list denoted unks, and the group parameter names are given in a list

denoted GroupP.

In the smooth case, we consider derivatives of order K of the variables uα, i.e, uαK , and

their invariantized form is denoted in Indiff by In[u[alpha],[K]]. In the discrete case, we

treat each shift of each variable as a different variable. For example, recall (4.3.1) in where we

are considering the variables x0, y0 and their shifts. We will be treating x0, its shifts, y0 and

its shifts as different variables.

Variable Input Maple invariantization syntax

x0 x0 In[x0,[]]

y0 y0 In[y0,[]]

x1 x1 In[x1,[]]

y1 y0 In[y1,[]]

Now recall (3.4.2) in where the induced group action on the path and its tangent was considered

and the group action to the dummy variable t was extended trivially. The first order differential

invariants with respect to the variable t will be denoted as In[z,[1]] where z is a discrete

variable.
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For example, in (4.3.1) we would have

Invariant Maple syntax

Ix0,0;t In[x0,[1]]

Iy0,0;t In[y0,[1]]

Ix0,1;t In[x1,[1]]

Iy0,1;t In[y1,[1]]

In §5, we introduced a second dummy variable. Suppose we have two dummy variables t1

and t2 as in (5.7). We would have the following:

Invariant Maple syntax Invariant Maple syntax

Ix0,0;t1
In[x0,[1]] Ix0,1;t2

In[x1,[2]]

Iy0,0;t1
In[y0,[1]] Iy0,1;t2

In[y1,[2]]

Ix0,0;t2
In[x0,[2]] Ix0,1;t1,t2

In[x1,[1,2]]

Iy0,0;t2
In[y0,[2]] Iy0,1;t1,t2

In[y1,[1,2]]

Ix0,1;t1
In[x1,[1]] Ix0,1;t1,t2

In[x1,[1,2]]

Iy0,1;t1
In[y1,[1]] Iy0,1;t1,t2

In[y1,[1,2]]

In order to compute the correction matrix and the syzygies between the invariants, we first

give Maple a list of dummy variables denoted vars, a list of as many discrete variables as we

are going to use in our computations and at least as many as appearing in the normalization

equations denoted by unks and a list of the group parameters denoted by GroupP. After that,

we write the infinitesimal action of the Lie symmetry group in matrix form and we denote it

by XiPhis.

Note that we have to write as many 0′s columns in the beginning of the matrix as we have

dummy variables. In the discrete cases presented in this thesis is either just one column for t,

or two columns for t1 and t2. The normalization equations are given using the invariantized

syntax of the variables as a list which is denoted as Neqs.

In order to compute the correction matrix, Maple needs to use the procedure HNI, which

calculates the highest invariantized derivative terms. This procedure has three arguments.

The first one is the index of the derivatives appearing in our calculations, the second one is

the variables appearing in the calculations in order, and the third one is the order we are

using, which will always be in the examples of this thesis, the total degree ordering, denoted

by ttdeg. Finally, the command Kmat() give us the minus correction matrix.

Note that from (5.3.17) and choosing an appropriate order of the Lie algebra basis (see

Remark 5.2.5 in [70]) one can compute the curvature matrix after obtaining the correction

matrix by using the command Kmat().
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The package Indiff also allows one to compute invariant differentiation thanks to the

procedure Idiff, which has two arguments: the first one is the invariant we want to differentiate

and the second one is the variable we are going to differentiate with respect to.

Recall (5.3.1)
d

dt
Ik,j = Mk,j;t + Ik,j;t (A.0.1)

where

Ik,j = ρk · zj and Ik,j;t = ρk · zj,t. (A.0.2)

One can use the procedure Idiff to compute the correction terms, as we will show in the

following example.

We illustrate all the above by considering the projective action of SL(2) on R studied in

section (4.3.3). Recall the curvature matrix associated to the discrete projective SL(2) action

from (4.3.56)

N0 = ι0

(
d
dt
ρ0

)
=

 1

2
σx2 −

1

2
σx0 −σx1

2σx0 − 4σx1 + 2σx2 −1

2
σx2 +

1

2
σx0

 , where σxj := Ixj,0;t.

Also recall that a basis of sl(2) is (2.16)

h =

 1 0

0 −1

 , e =

 0 1

0 0

 , f =

 0 0

1 0


with Lie bracket table (2.17)

[ , ] h e f

h 0 2e −2f

e −2e 0 h

f 2f −h 0

From (4.3.49) we have that

va = 2x∂x, vb = ∂x, vc = −x2∂x.
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It is straightforward to check that their Lie bracket table is of the form

[ , ] va vb vc

va 0 −2vb 2vc

vb 2vb 0 −va

vc −2vc va 0

Note that the Lie bracket table for the minus Lie algebra basis matches the Lie bracket

table for the infinitesimal vectors, verifying Remark 5.2.5 in [70].

We compute the first few correction terms M0,0;t,M0,1;t,M0,2;t,M0,3;t and M0,4;t with

Indiff (see Maple file at the end of this Appendix).

First of all, from the normalization equations (4.3.51) we have that

I0,0 = ρ0 · x0 =
1

2
, I0,1 = ρ0 · x1 = 0, I0,2 = ρ0 · x2 = −1

2
,

so it is clear that

d

dt
(I0,0) =

d

dt

(
1

2

)
= 0,

d

dt
(I0,1) =

d

dt
(0) = 0,

d

dt
(I0,2) =

d

dt

(
−1

2

)
= 0.

So from (A.0.1) we get that

0 = M0,0;t + I0,0, 0 = M0,1;t + I0,1, 0 = M0,2;t + I0,2,

and therefore

M0,0;t = −I0,0, M0,1;t = −I0,1, M0,2;t = −I0,2

as expected. From the Maple file attached at the end of this Appendix we can see that

d

dt
I0,3 = (4I0,1;t − 2(I0,0;t + I0,2;t))I

2
0,3 + (I0,2;t − I0,0;t)I0,3 − I0,1;t + I0,3;t

and therefore by (A.0.1) we can deduce that

M0,3;t = (4I0,1;t − 2(I0,0;t + I0,2;t))I
2
0,3 + (I0,2;t − I0,0;t)I0,3 − I0,1;t.

Also
d

dt
I0,4 = (4I0,1;t − 2(I0,0;t + I0,2;t))I

2
0,4 + (I0,2;t − I0,0;t)I0,4 − I0,1;t + I0,4;t
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and therefore by (A.0.1)

M0,4;t = (4I0,1;t − 2(I0,0;t + I0,2;t))I
2
0,4 + (I0,2;t − I0,0;t)I0,4 − I0,1;t.

One can guess that in general

d

dt
I0,j = (4I0,1;t − 2(I0,0;t + I0,2;t))I

2
0,j + (I0,2;t − I0,0;t)I0,j − I0,1;tI0,j;t

and therefore by (A.0.1) we can deduce that

M0,j;t = (4I0,1;t − 2(I0,0;t + I0,2;t))I
2
0,j + (I0,2;t − I0,0;t)I0,j − I0,1;t. (A.0.3)
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(6)(6)
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(4)(4)

(9)(9)

> > 

(3)(3)

> > 

> > 

Error, (in with) package Groebner does not export normalf
Error, (in with) package Groebner does not export gsolve
Error, (in with) package Groebner does not export inter_reduce
Error, (in with) package Groebner does not export gbasis
Error, (in with) package Groebner does not export termorder

Here we check Remark 5.2.5 in [68] to make sure we are choosing the correct infinitesimal vector fields and basis of the Lie
algebra. The Lie bracket multiplication table for the basis of the Lie algebra has to be the minus Lie bracket multiplication 
table for the infinitesimal vector fields.
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0

0

0
We add a minus sign to the curvature matrix because Indiff gives the minus correction matrix.

Here we perform a few invariant differentiations that allow us to investigate the formula for the correction terms.

0

0

0
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Maple Files

1. Running example for §3, Discrete Moving Frames and Noether’s Finite Difference

Conservation Laws

2. 4.1 - Study of the discrete Euler’s elastica

3. 4.2 - Study of SU(2)

4. 4.3.1 - The SL(2) linear action

5. 4.3.2 - The SA(2) linear action

6. 4.3.3 - The SL(2) projective action

7. Running example for §5, Commuting Induced Flows on the Curvature Invariants

8. 5.7 - The SL(2) linear action

9. 6.2 - The SE(2) action acting on multispaces

10. 6.3 - The projective SL(2) action acting on multispaces

11. Plots of Figure 7.1

12. 7.5.1 - Invariant Lagrangians involving only κ2
κ1

13. 7.5.2 (first example)

14. 7.5.2 (second example)
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(7)(7)

Running example for Chapter 3, Discrete Moving Frames and Noether's Finite Difference Conservation Laws

Lagrangian

Computation of the derivatives of the Lagrangian with respect to the variables x0, x1, u0, u1 and u2 in order to 
construct the Euler Lagrange equations later on

1
3 2

Action on the variables x0,x1,u0,u1 and u2

We now check that the Lagrangian is invariant under the action

Normalisation equations

Frame
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We now check the equivariance of the  frame

Invariants

First order differential invariants

MaurerCartan matrix

Relationships between  invariants
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Relationships between first order differential invariants

Curvature matrix

Syzygy and evolution of curvature invariants















> > 

> > 

(5)(5)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(6)(6)

> > 

> > 

> > 

> > 

(2)(2)

(1)(1)

(4)(4)

(3)(3)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(7)(7)

> > 

> > 

> > 

> > 

4.2 - SU(2)

FRAME in complex form
We first obtain the frame using the normalization equations

Moving frame
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INVARIANTS

MAURER-CARTAN MATRIX
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CURVATURE MATRIX

Shift of curvature matrix

Syzygy and evolution of curvature invariants
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FRAME in polar form
We first obtain the frame using the normalization equations
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Frame

INVARIANTS
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MAURER-CARTAN MATRIX

CURVATURE MATRIX

Shift of curvature matrix
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SYZYGY and evolution of curvature invariants

Moving frame for the conjugate action of SU(2) on su(2)

Normalization equations

We write the condition 

This is a conic, we apply usual theory. We first obtain the change of co-ords to make it an ellipse or a hyperbola



(48)(48)

> > 

> > 

(42)(42)

> > 

(45)(45)

> > 

(43)(43)

(13)(13)

(23)(23)

(49)(49)

> > 

(29)(29)

(50)(50)

> > 

> > 

(19)(19)

> > 

> > 

(47)(47)

(7)(7)

> > 

(44)(44)

> > 

(46)(46)

> > 

(35)(35)

We have the ellipse. We do a final substitution to get it in terms of one angle

0

This is now the simplest expression for the frame co-ords, we need only one angle now

Here we just check that a1^2 + a2^2 + b1^2 + b1^2  is one.

1



(55)(55)

(42)(42)

> > 

(53)(53)

(52)(52)

> > 

> > 

(51)(51)

> > 

(13)(13)

> > 

(23)(23)

> > 

(29)(29)

> > 

(50)(50)

(56)(56)

> > 

> > 

> > 

> > 

(19)(19)

(54)(54)

(7)(7)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(35)(35)

> > 

We now convert G into a matrix with exponential entries

Here we check that the determinant is 1

1
Calculating vector of invariants and adjoint matrix

Condition

Action

Here we calculate the infinitesimals

z0

z1

0



> > 

> > 

> > 

> > 

> > 

> > 

> > 

(62)(62)

> > 

(57)(57)

(42)(42)

> > 

> > 
> > 

(59)(59)

(13)(13)

(23)(23)

> > 

> > 

(29)(29)

(50)(50)

> > 

(56)(56)

> > 

> > 

(19)(19)

> > 

(60)(60)

> > 

(58)(58)

(63)(63)

(7)(7)

(61)(61)

> > 

> > 

> > 

(35)(35)

> > 

> > 

> > 

0

Action on the vector of infintesimals

We evaluate the frame into the adjoint matrix



(13)(13)

(23)(23)

> > 

(29)(29)

(50)(50)

(64)(64)

(56)(56)

> > 

> > 

(42)(42)

(19)(19)

> > 

(63)(63)

(7)(7)

(35)(35)

Here we take the imaginary part



(4)(4)

> > 

> > 

> > 

(3)(3)

(2)(2)

> > 

(6)(6)

> > 

> > 

(5)(5)

> > 

(1)(1)

> > 

> > 
> > 

> > 

> > 

> > 

> > 

> > 

4.3.1 - SL(2) discrete linear case

Normalization equations

Frame

Invariants and first order differential invariants

Maurer-Cartan matrix



> > 

> > 

> > 

(9)(9)

> > 

(15)(15)

(7)(7)

(17)(17)

(10)(10)

(14)(14)

> > 

> > 

> > 

> > 

(11)(11)

> > 

(8)(8)

> > 

> > 

> > 

> > 

(12)(12)

> > 

(16)(16)

(13)(13)

Curvature matrix

0
Infinitesimals

xn

yn

0

0

xn

Syzygy and evolution of curvature invariants



> > 

(7)(7)

(17)(17)

(19)(19)

> > 

(23)(23)

> > 

(22)(22)

> > 

> > 

> > 

> > 

> > 

> > 

(18)(18)

> > 

(21)(21)

> > 
> > 

> > 
> > 

(20)(20)

Computation of the adjoints

Evaluation of the frame into the adjoint matrix



> > 

> > 

> > 

(24)(24)

(30)(30)

> > 

> > 

> > 

(28)(28)

> > 

> > 

> > 

> > 

> > 

(7)(7)

(17)(17)

> > 

(25)(25)

> > 

> > 

> > 

> > 

(27)(27)

(26)(26)

> > 

(29)(29)

Evaluation of the Maurer Cartan matrix into the ajdoint matrix

The general solution, Groebner basis computation



> > 

(2)(2)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(3)(3)

> > 

> > 
> > 

(1)(1)

4.3.2 - SA(2) linear discrete case

Group action

 equations

Moving frame

Shift of the moving frame



> > 

> > 

(7)(7)

> > 

> > 

(10)(10)

> > 

> > 

> > 

(9)(9)

(6)(6)

> > 

(8)(8)

(4)(4)

(5)(5)

Invariants

Maurer Cartan matrix

Quick checks

1



> > 

(11)(11)

(12)(12)

(13)(13)

(10)(10)

(14)(14)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(4)(4)

(15)(15)

1
Differential difference invariants relations

Curvature matrix



(18)(18)

> > 

(16)(16)

(10)(10)

> > 

> > 

(17)(17)

> > 

> > 

(4)(4)

(15)(15)

> > 
> > 

Differential--difference Syzygy and evolution of curvature invariants

Adjoint computations



> > 

(20)(20)

> > 

(10)(10)

> > 

> > 

> > 

> > 

(4)(4)

(21)(21)

> > 

> > 

> > 

> > 

> > 

> > 

(19)(19)

(22)(22)
> > 

> > 

> > 

(15)(15)

> > 

> > 

(23)(23)

> > 

> > 
Note we just compute the SL(2) part as the rest of the matrix can be done by hand

Here we evaluate the frame into the adjoint matrix

Here we evaluate the Maurer Cartan matrix into the adjoint matrix

The general solution, Groebner basis computation



> > 

(25)(25)

(29)(29)

(10)(10)

> > 

(24)(24)

(28)(28)

> > 

> > 

> > 

> > 

> > 

> > 

(30)(30)

(4)(4)

(15)(15)

(23)(23)

(27)(27)

(26)(26)



(10)(10)

(30)(30)

(4)(4)

(15)(15)

(23)(23)

> > 



(2)(2)

> > 

> > 

> > 

> > 

(1)(1)

> > 

> > 

(3)(3)

> > 

> > 
> > 

> > 

> > 

4.3.3 - SL(2) discrete projective case

Normalization equations

Frame

Invariants

1
2

0



> > 

(7)(7)

> > 

(9)(9)

(5)(5)

> > 

> > 

> > 

> > 

(8)(8)

(6)(6)

> > 

(10)(10)

> > 

> > 

(4)(4)

(11)(11)

Maurer-Cartan matrix



(12)(12)

> > 

> > 

(18)(18)

> > 

> > 

(17)(17)

> > 

> > 

(15)(15)

> > 

> > 

(13)(13)

> > 

> > 

(4)(4)

> > 

(11)(11)

(16)(16)

(14)(14)

Shift of the Maurer Cartan matrix times the Maurer Cartan Matrix

Relationships between invariants

Curvature matrix



> > 

(20)(20)

(18)(18)

> > 

> > 

(22)(22)

> > 

> > 

(23)(23)

(19)(19)

> > 

(21)(21)

> > 

> > 

> > 

(4)(4)

> > 

> > 

(11)(11)

> > 

Infinitesimals

1

Syzygy and evolution of curvature invariants

Computation of the adjoints



> > 

> > 

(25)(25)

> > 

> > 

> > 

> > 

(26)(26)

> > 

> > 

> > 

(11)(11)

> > 

> > 

(18)(18)

> > 

> > 

> > 

> > 

> > 

> > 

(4)(4)

> > 

(24)(24)

Here we evaluate the frame into the adjoint matrix

Here we evaluate the Maurer Cartan matrix into the adjoint matrix

Here we evaluate the shift of the Mauer Cartan matrix into the adjoint matrix



> > 

(29)(29)

(27)(27)

> > 

(30)(30)

(31)(31)

> > 

> > 

(32)(32)

> > 

> > 

(11)(11)

(28)(28)

> > 

> > 

(18)(18)

> > 

(33)(33)

> > 

> > 

> > 

> > 

(4)(4)

> > 

(24)(24)

> > 

Here we caluculate the shift of the Maurer Cartan matrix times the Maurer Cartan matrix into the adjoint

The general solution, Groebner basis computation



> > 

(3)(3)

> > 

(6)(6)

> > 

(7)(7)

> > 

(9)(9)

> > 

(5)(5)

> > 

> > 

> > 

(8)(8)

> > 

(1)(1)

> > 

> > 

> > 

> > 

(2)(2)

> > 

> > 

(4)(4)

Running example for Chapter 5, Commuting induced flows on the curvature invariants

Normalization equations

Frame

Invariants

First order differential invariants

MaurerCartan matrix

Curvature matrix in terms of sigma_t



> > 

(17)(17)

> > 

(16)(16)

(14)(14)

> > 

(12)(12)

(18)(18)

> > 

> > 

> > 

> > 

> > 

(11)(11)

> > 

> > 

> > 

> > 

(10)(10)

> > 

> > 

(13)(13)

(15)(15)

> > 

> > 
Curvature Matrix

Correction Terms

Correction Matrix

Syzygy and evolution of curvature invariant

Fundamental syzygy



> > 

(21)(21)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(20)(20)

(19)(19)

> > 

> > 

> > 

> > 

> > 

> > 
Commuting evolution flows

0



(1)(1)

(3)(3)

> > 

> > 

> > 

(4)(4)

> > 

> > 

> > 

> > 

> > 

(6)(6)

(2)(2)

> > 

> > 

> > 

(5)(5)

> > 

> > 

> > 

> > 
5.7 - The SL(2) LinearAction
Correction Matrix

Frame

Fundamental syzygy



> > 

(7)(7)

> > 

> > 

> > 

> > 

> > 

(8)(8)

> > 

(6)(6)

> > 
Commuting evolution flows



(6)(6)

(9)(9)

> > 

> > 

> > 

> > 

> > 

> > 

> > 



> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

> > 

> > 

> > 

> > 

> > 

(2)(2)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

6.2 - Multispaces, SE(2) curvature 

Coefficients

Action

Taylor Series

Convergence to the smooth case of the parameters of the frame

x



> > 

> > 

(4)(4)

> > 

> > 

> > 

(5)(5)

> > 

> > 

(7)(7)

> > 

> > 

> > 

> > 

> > 

> > 
> > 
> > 

> > 

> > 

> > 

> > 

> > 

> > 

(6)(6)

(8)(8)

> > 

(3)(3)u

Convergence to the smooth case of the invariants

Moving frame

Convergence to the smooth case of the moving frame

Maurer Cartan Matrix

Taylor Expansion for the Maurer Cartan Matrix



> > 

> > 

> > 

> > 

> > 

> > 

(11)(11)

(9)(9)

> > 

(10)(10)

> > 

(3)(3)

Convergence to the smooth case of the Maurer Cartan matrix



> > 

(2)(2)

> > 
> > 

(3)(3)

> > 

> > 

> > 

> > 

(4)(4)

(6)(6)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(5)(5)

(1)(1)

> > 

> > 

6.3 - Multispaces. Lie group SL(2)

Coefficients

Action

Taylor Series

Multispace action

Convergence of the action to the smooth one

ut
2

3



> > 

(11)(11)

(12)(12)

> > 

> > 

(10)(10)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(13)(13)

> > 

> > 

> > 

> > 

(7)(7)

(9)(9)

> > 
> > 

(14)(14)

(8)(8)

> > 

Normalisation equations

Moving frame

Convergence of the moving frame to the smooth one

Convergence of the coefficients to the variables

u

ut

utt
Infinitesimal vector fields and convergence



(22)(22)
> > 

> > 

> > 

> > 

(27)(27)

(20)(20)

(21)(21)

> > 

(16)(16)
> > 

(17)(17)

> > 

> > 

> > 

(23)(23)

> > 

> > 
(24)(24)

> > 

> > 

(25)(25)

> > 

(19)(19)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(18)(18)
> > 

> > 

> > 

(26)(26)
> > 

(15)(15)

> > 

> > 

> > 

:

1

:

:

:
0

0

:

:



> > 

> > 

> > 

> > 

(31)(31)

> > 

(28)(28)

> > 

> > 

(32)(32)

> > 

> > 
(30)(30)

(29)(29)

> > 
:

0

0

























-7.5.2 (first example)













> > 

(6)(6)

> > 
> > 

(8)(8)

(7)(7)

> > 

(3)(3)

> > 

(4)(4)

(5)(5)

> > 

> > 

(2)(2)

> > 

> > 

> > 

(1)(1)

> > 

> > 

> > 

> > 

> > 

Application in biology second example. We follow the method used in the example regarding an invariant lagrangian
depending on kappa2/kappa1

Euler Lagrange equations

- 7.5.2 (second example)



> > 

> > 

(15)(15)

> > 

(8)(8)

(12)(12)

(19)(19)

(17)(17)

> > 

(14)(14)

(16)(16)

> > 
(20)(20)

(18)(18)

> > 

(9)(9)

> > 

(11)(11)

> > 

> > 

> > 

> > 

(13)(13)

(10)(10)

> > 

> > 

> > 

Vector of invariants

First integrals

d/ds psi(s)



(26)(26)

(23)(23)

> > 

(24)(24)

(8)(8)

> > 

> > 

> > 

(25)(25)

> > 

> > 

> > 

> > 

> > 

(27)(27)

> > 

> > 

> > 

> > 

(22)(22)

> > 

(21)(21)

Caley Map

Sigma sends c=(c1,c2,c3) to (0,0,C), and then rotates abut (0,0,C) and then sends (0,0,C) to (v1,v2,v3)

We know that Z'=sigma[1,3]

Initial data

Second first integral condition

This needs to be far from zero



> > 

(8)(8)

> > 

> > 

> > 

(27)(27)

> > 

> > 

> > 

> > 

(28)(28)

1.0311288741492748262

The range is all that Maple can do before running into singularities

This is (kappa1(s),kappa2(s))

We check the first integral

This is (s,theta(s))



> > 

> > 

> > 

> > 

(8)(8)

> > 

(27)(27)

This is (s,kappa(s)^2)

We check the second, first integral

We now want  X,Y,Z and the V vector



> > 

> > 

> > 

> > 

> > 

(8)(8)

> > 

> > 

> > 

(27)(27)

> > 

> > 

> > 



> > 

> > 
> > 

(8)(8)

> > 

(27)(27)



> > 

> > 

> > 
> > 

> > 

> > 

> > 
> > 

(3)(3)

> > 

> > 

> > 

> > 

> > 

> > 

(4)(4)

(2)(2)

(1)(1)

> > 

> > 

> > 
> > 

> > 

Frame



> > 

> > 

(9)(9)

(5)(5)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(7)(7)

(6)(6)

> > 

> > 

(8)(8)

> > 

> > 

> > 

> > 

> > 

> > 

> > 



> > 

> > 

> > 

(11)(11)

> > 

> > 

> > 

> > 

> > 

> > 

(5)(5)

> > 
> > 

> > 

> > 

(12)(12)

(10)(10)

> > 

> > 

> > 

> > 

> > 

(13)(13)



> > 

> > 

> > 

(5)(5)

(14)(14)

> > 

> > 

> > 

(15)(15)

(10)(10)

> > 

> > 

> > 

> > 

> > 

> > 

(13)(13)



> > 

> > 

> > 

(17)(17)

(5)(5)

> > 

> > 

> > 

> > 

(21)(21)

> > 

(10)(10)

> > 

> > 

(13)(13)

> > 

(23)(23)

> > 

> > 

> > 

> > 

> > 

(20)(20)

> > 

> > 

(18)(18)

> > 

(22)(22)

(16)(16)

> > 

> > 

> > 

(19)(19)



> > 

> > 

> > 

> > 

(5)(5)

(24)(24)

> > 

> > 

> > 

> > 

> > 

(25)(25)

(10)(10)

> > 

> > 

> > 

> > 

> > 

(26)(26)

(13)(13)



> > 

> > 

> > 

> > 

(5)(5)

> > 

> > 

(28)(28)

> > 

> > 

> > 

> > 

(10)(10)

(26)(26)

(13)(13)

(27)(27)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(30)(30)

(29)(29)

> > 

> > 

#Here we simplify the following coefficient



> > 

> > 

> > 

> > 

> > 

(5)(5)

> > 

> > 

> > 

(10)(10)

(32)(32)

(31)(31)

> > 

(30)(30)

(33)(33)

(26)(26)

> > 

(13)(13)

Relationship between invariants

Evolution of Inv[v,[1,1]] in terms of the first order differential invariants



> > 

> > 

> > 

> > 

> > 

> > 

(5)(5)

(40)(40)

> > 

(41)(41)

(36)(36)

(38)(38)

> > 

> > 

(10)(10)

> > 

(37)(37)

> > 

(30)(30)

> > 

(35)(35)

(39)(39)

(34)(34)

(33)(33)

(26)(26)

> > 

(13)(13)

1

1

1



> > 

> > 

(44)(44)

> > 

> > 

> > 

(47)(47)

(5)(5)

> > 

> > 

> > 

> > 

> > 

(43)(43)

(42)(42)

(10)(10)

(48)(48)

(30)(30)

(46)(46)

(33)(33)

(45)(45)

(26)(26)

> > 

(13)(13)

1
2

3 2



> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(5)(5)

> > 

(51)(51)

> > 

> > 

> > 

(10)(10)

> > 

> > 

(48)(48)

> > 

> > 

(33)(33)

(26)(26)

(13)(13)

> > 

(50)(50)

> > 

> > 

(54)(54)

> > 

> > 

(53)(53)

> > 

> > 

(42)(42)

(30)(30)

(49)(49)

(52)(52)



> > 

> > 

> > 

> > 

> > 

> > 

(5)(5)

> > 

> > 

> > 

> > 

(10)(10)

(48)(48)

> > 
> > 

> > 

(56)(56)

(33)(33)

(26)(26)

(13)(13)

> > 

(55)(55)

> > 

> > 

> > 

(42)(42)

> > 

> > 

(30)(30)



> > 

(61)(61)

(63)(63)

(60)(60)

> > 

> > 

> > 

> > 

(5)(5)

> > 

> > 

> > 

> > 

(62)(62)

(10)(10)

(48)(48)

(59)(59)

> > 

(56)(56)

(33)(33)

(26)(26)

(13)(13)

(58)(58)

> > 

> > 

> > 

> > 

(42)(42)

> > 

(57)(57)

(30)(30)



(64)(64)

> > 

> > 

> > 

> > 

(63)(63)

> > 

> > 

> > 

(5)(5)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(42)(42)

(67)(67)

(10)(10)

(48)(48)

(30)(30)

(65)(65)

(56)(56)

(33)(33)

(26)(26)

(66)(66)

(13)(13)

1



> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(6)(6)

> > 

(7)(7)

> > 

(4)(4)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(5)(5)

(1)(1)

(3)(3)

> > 

(2)(2)

> > 

Frame

Quick check



> > 

> > 

> > 

(7)(7)

(9)(9)

> > 

> > 

> > 

(8)(8)

> > 

> > 

(10)(10)

> > 

(13)(13)

> > 

(11)(11)

(12)(12)

> > 



> > 

(15)(15)

> > 

> > 

(7)(7)

> > 

> > 

> > 

> > 

> > 

(16)(16)

> > 

> > 

(17)(17)

> > 

> > 

> > 

(14)(14)

(18)(18)

> > 

> > 

> > 

> > 



> > 

> > 

> > 

(7)(7)

(22)(22)

> > 

> > 

> > 

> > 

(25)(25)

(20)(20)

(23)(23)

> > 

> > 

(19)(19)

(21)(21)

> > 

> > 

(24)(24)



> > 

(26)(26)

> > 

(7)(7)

> > 

> > 

(29)(29)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(27)(27)

(28)(28)

> > 

> > 
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