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Abstract

Today the world is filled with continuous deluge of digital information which are ever

increasing by every fraction of second. Real-time analog information such as images,

RF signals needs to be sampled and quantized to represent in digital domain with help of

measurement systems for information analysis, further post processing and storage. Photonics

offers various advantages in terms of high bandwidth, security, immunity to electromagnetic

interference, reduction in frequency dependant loss as compared to conventional electronic

measurement systems. However the large bandwidth data needs to be acquired as per

Nyquist principle requiring high bandwidth electronic sampler and digitizer. To address

this problem, Photonic Time Stretch has been introduced to reduce the need for high speed

electronic measurement equipment by significantly slowing down the speed of sampling

signal. However, this generates massive data volume. Photonics-assisted methods such

as Anamorphic Stretch Transform, Compressed Sensing and Fourier spectrum acquisition

sensing have been addressed to achieve data compression while sampling the information. In

this thesis, novel photonic implementations of each of these methods have been investigated

through numerical and experimental demonstrations.

The main contribution of this thesis include (1) Application of photonic implementation

of compressed sensing for Optical Coherence Tomography, Fiber Bragg Grating enabled

signal sensing and blind spectrum sensing applications (2) Photonic compressed sensing

enabled ultra-fast imaging system (3) Fourier spectrum acquisition for RF spectrum sensing



v

with all-optical approach (4) Adaptive non-uniform photonic time stretch methods using

anamorphic stretch transform to reduce the the number of samples to be measured.



Table of contents

List of figures x

List of tables xxiii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of objectives and main contributions of the thesis . . . . . . . . . 8

1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background Theory 13

2.1 Photonic Time Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Theory of Compressed Sensing . . . . . . . . . . . . . . . . . . . 23

2.2.2 Photonic Implementation of Compressed Sensing . . . . . . . . . . 28

2.2.2.1 Time Domain Photonic Compressed Sensing . . . . . . . 28

2.2.2.2 Spatial Domain Photonic Compressed Sensing . . . . . . 30

2.2.2.3 Spectral Domain Photonic Compressed Sensing . . . . . 33

2.3 Signal Sensing with Fourier Spectrum acquisition . . . . . . . . . . . . . . 35

3 Photonic Compressed Sensing for Data Compression 39



Table of contents vii

3.1 Time Domain Photonic Compressed Sensing for Optical Coherence Tomog-

raphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Background on Optical Coherence Tomography . . . . . . . . . . . 40

3.1.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.5 Time Domain Photonic Compressed Sensing for OCT with Improved

Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.6 RF synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.7 Evaluation of Minimization Algorithms in Compressive Sensing

PTS-OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.7.1 Reconstruction accuracy . . . . . . . . . . . . . . . . . . 57

3.1.7.2 Computation cost . . . . . . . . . . . . . . . . . . . . . 59

3.1.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Spectral Domain Photonic Compressed Sensing for blind spectrum sensing 64

3.2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1.1 Random pattern generation . . . . . . . . . . . . . . . . 66

3.2.1.2 Photonic Compressed Sensing . . . . . . . . . . . . . . 67

3.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 High throughput compressed FBG sensing . . . . . . . . . . . . . . . . . . 78

3.3.1 Results with Time Domain Photonic Compressed Sensing . . . . . 80

3.3.1.1 Monotonic profile . . . . . . . . . . . . . . . . . . . . . 80



Table of contents viii

3.3.1.2 S-shaped profile . . . . . . . . . . . . . . . . . . . . . . 83

3.3.2 Results with Spectral Domain Photonic Compressed Sensing . . . . 84

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 Overall Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Spatial Domain Photonic Compressed Sensing for Ultrafast Single-Pixel Imag-

ing 90

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Reconstruction of image and comparison with traditional STEAM

imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.2 Resolution information from the random patterns . . . . . . . . . . 97

4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 All-optical FFT scanning for blind spectrum sensing 102

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 System calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.2 Single tone reconstruction . . . . . . . . . . . . . . . . . . . . . . 107

5.3.3 Multi tone reconstruction . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1 Dual tone reconstruction with non-uniform sampling . . . . . . . . 109

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



Table of contents ix

6 Adaptive non-uniform photonic time stretch for high-speed signal detection for

data compression 113

6.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 AST filter with quadratic time delay . . . . . . . . . . . . . . . . . 117

6.2.2 AST filter with cubic time delay . . . . . . . . . . . . . . . . . . . 123

6.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Summary and Future Work 128

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2.1 Future work based on AST system proposed in this thesis: . . . . . 131

7.2.2 Future work for SD-PCS system based on cascaded MZI proposed

in this thesis: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.3 Future work for UF-PCS imaging system . . . . . . . . . . . . . . 132

7.2.4 Potential future work for compressed sensing . . . . . . . . . . . . 133

References 134

Appendix A Publications produced from work reported in this thesis 148

Appendix B Equipment used in the experiments 151

Appendix C Sample MATLAB code used for post-processing 157



List of figures

1.1 Schematic of generic microwave photonic link . . . . . . . . . . . . . . . . 2

1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Photonic time stretch concept with temporal and spectral profiles as function

of length of dispersive element. Inset shows the dispersive element denoted

in this thesis which is a DCF. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Summary of time stretch theory. When higher order dispersion is negligible,

the injective mapping is established resulting in Photonic time stretch . . . 17

2.3 Linear time stretch for TS-ADC . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Anamorphic Stretch Transform vs linear time stretch. a)Actual signal. A

10 GHz sinusoidal signal with 1 sec duration should be sampled at 20 GS/s

for faithful reconstruction. The overall number of samples to be stored are

20 GSamples followed by quantization. b) Linear Time Stretch method is

conventional PTS to reduce the sampling rate to 1 GHz but increases the

duration to 10 s making the number of stored samples remains same, 20

GSamples c) Anamorphic Stretch Transform uses selective stretching which

reduces the sampling rate over certain temporal duration which reduces the

number of samples to be stored and compressed . . . . . . . . . . . . . . . 19

2.5 Anamorphic stretch Transform in imaging . . . . . . . . . . . . . . . . . . 21

2.6 Compressed sensing in a nutshell: Imaging example . . . . . . . . . . . . . 22



List of figures xi

2.7 Theory of CS in nutshell: Random mixing . . . . . . . . . . . . . . . . . . 23

2.8 Compressed sensing in 1D: Matlab simulation example . . . . . . . . . . . 25

2.9 Typical example of Time Domain Photonic Compressed sensing based on

PTS for imaging application . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Typical example of spatial domain Photonic Compressed sensing for imaging

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Typical example of spatial domain Photonic Compressed sensing for imaging

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.12 Signal sensing by Fourier spectrum acquisition : Matlab simulation example 37

3.1 Comparison of different biomedical imaging methods. CM:Confocal Mi-

croscopy, OCT: Optical Coherence Tomography US: UltraSound MRI:Magnetic

Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Block diagram of the proposed TD-PCS-OCT experimental setup. . . . . . 45

3.3 Simulation results for a two-layer PTS-OCT measurement. (a) Temporal

interference pattern as a result of path length difference. The time-stretched

original pulse is shown in red dotted line. (b) The spectrum profile of the

optical interference pattern, clearly showing two carrier frequencies of 3.5

GHz and 4 GHz. (c) The reconstructed signal in time domain using 70

measurements. (d) The reconstructed Fourier spectrum showing two strong

tones which match with the original signal. . . . . . . . . . . . . . . . . . 49



List of figures xii

3.4 Experiment results for a single-layer PTS-OCT measurement. (a) The tem-

poral interference pattern for five successive pulses. (b) The first 5 PRBS

patterns. (c) The modulated waveforms with red marking showing no pattern

for exact amount of duration of a bit 0. (d) The compressed optical pulses

using a SMF with opposite dispersion profile. The peak power of compressed

pulses produce the measurements. (e) Overlapped temporal waveforms for

the reconstructed signal (in solid line) and the original signal (in red dash

line). (f) Fourier domain representation of the reconstructed signal (in solid

line) and the original signal (in red dash line). . . . . . . . . . . . . . . . . 52

3.5 Experimental results for a second single-layer sample with different path

length difference. (a) The original interference pattern in time domain. (b)

Fourier transform of the original interference pattern showing a single carrier

frequency of 800 MHz. (c) The reconstructed time domain waveform with 33

measurements. (d) The reconstructed DFT domain signal clearly identifying

the 800 MHz frequency component. . . . . . . . . . . . . . . . . . . . . . 53

3.6 Experimental results showing data compressed PTS-OCT with improved

frequency resolution. (a) The original temporal interference waveform with

a carrier frequency of 725 MHz. (b) Its Fourier transform shows two closely

located frequency peaks at 700 and 750 MHz. (c) The constructed temporal

waveform based on normal one pulse integration. (d) Reconstructed DFT

signal showing only the 750 MHz signal. This indicates a total failure in

frequency identification. (e) and (f) show the reconstruction results based on

dual pulse integration. The 725 MHz frequency component is successfully

identified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Conventional procedure for RF synchronization . . . . . . . . . . . . . . . 56

3.8 Procedure followed in this thesis for RF synchronization . . . . . . . . . . 56



List of figures xiii

3.9 The reconstructed frequency domain signals for all five algorithms corre-

sponding to a compression ratio of 40%. Red line is the ground truth signal

and blue line represents reconstruction. From left to right, top row: (a)

NESTA and (b) l1 Magic; middle row: (c) ADMM Basis pursuit and (d)

lasso; bottom row: (e) Matlab lasso for non-standardised data and (f) stan-

dardised data respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Evaluation of reconstruction accuracy. (a) RMSE of reconstructed signal

calculated over entire frequency range. All five candidate algorithms show a

descending trend. NESTA and l1 Magic algorithm yield the smallest RMS er-

ror. (b) RMSE of reconstructed signal calculated for the frequencies spanned

by the 4 dominant peaks only. Error rates similar for all five algorithms for

small number of measurements. Relative performance of NESTA and l1

Magic improves as the number of measurements increases. . . . . . . . . . 60

3.11 The computational time as a function of the number of measurements.

ADMM Lasso, Matlab Lasso, Matlab Lasso (standardized) and l1 Magic

show small linear increase with respect to number of measurements. Basis

pursuit is unstable for measurements <110 due to slow convergence rate . . 61

3.12 Simulation results of compressive sensing of single tone signal 1GHz with

L1 reconstruction algorithm. a) FFT spectrum of the original (red) and the

reconstructed (blue) signals; b) Time domain of original(red) and recon-

structed(blue) signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.13 Simulation result showing improvement of compression ratio using a Gaussian-

shaped analog random bit sequence. The bandwidth of frequency peaks have

been reduced. The inset shows the reconstructed temporal waveform, clearly

indicating the removal of Gaussian envelope. . . . . . . . . . . . . . . . . 64



List of figures xiv

3.14 Schematic for SD-PCS experimental setup based on cascaded MZI structure

with variable optical delay element . . . . . . . . . . . . . . . . . . . . . . 66

3.15 Temporal and spectral domain responses of cascaded dispersion-unbalanced

MZIs. (a) Spectral domain output and (b) time domain response of the first

MZI with a fixed time delay of 50ps; (c) individual spectral domain and (d)

time domain response of the second MZI alone with delay of 50ps . . . . . 69

3.16 Quasi random patterns from cascading effect. a) Temporal domain represen-

tation of Random pattern when variable delay is 17.5ps b) Corresponding

FFT spectrum c) Temporal domain representation of Random pattern when

variable delay is 21.25ps d) Corresponding FFT spectrum e) Correlation of

the random patterns generated by varying the delay in second MZI from

1.25ps to 50ps in steps of 1.25ps . . . . . . . . . . . . . . . . . . . . . . . 70

3.17 Simulation results for 3 tone signal. a) a 3-tone RF signal input repetitive of

20 ns b) Gaussian random patterns with time delay varying from 1.25ps to

5ps c) Corresponding mixed signals d) Summed measurements of varying

amplitude levels representing the dot product of random pattern with RF

signal d) Output after electro optical mixing with RF signal e) Reconstructed

output in time domain after l1 reconstruction f) Reconstructed signal in

Fourier domain showing successful reconstruction of all 3 tones blue rep-

resenting reconstructed signal with red color representing original signal’s

FFT representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.18 Experimentally generated optical random patterns. a) Random pattern of

MZI-1 b) c) Cascaded MZI response with 230ps as variable optical delay in

MZI-2 set to 230ps e) Cascaded MZI response with 330ps as variable optical

delay in MZI-2 set to 330ps. . . . . . . . . . . . . . . . . . . . . . . . . . 73



List of figures xv

3.19 Correlation of the random patterns generated by varying the delay in second

MZI from 230ps to 330ps in steps of 2ps. . . . . . . . . . . . . . . . . . . 74

3.20 Experimental results with two-tone RF spectrum a) Input test RF signal time

domain b) Corresponding FFT representation c) Reconstructed RF signal in

time domain shown in blue color. The smoothed version is shown in red color

for comparison with original RF signal d) Corresponding FFT representation

showing two strong peaks at 0.4GHz and 1GHz. . . . . . . . . . . . . . . 75

3.21 Experimental results with single tone RF spectrum a) Reconstructed 1GHz

tone in time domain b) Corresponding FFT representation c) Reconstructed

0.5GHz tone in time domain d) Corresponding FFT representation. . . . . . 75

3.22 FFT representations of the random patterns shown in Fig. 3.18 .a) FFT of the

cascaded MZI structure when optical delay in MZI-2 set to 230ps. b) FFT of

the cascaded MZI structure when optical delay in MZI-2 set to 330ps. . . . 76

3.23 Simulation results for verifying the bandwidth of the proposed setup using

VPI-transmission maker software. a) Cross correlation between the random

patterns b) Test RF signal in time domain c) Corresponding frequency domain

showing RF frequencies 5GHz, 8GHz and 60GHz. d) Reconstructed RF

signal from mixing and integration and l1 reconstruction e) Reconstructed

RF signal in FFT domain showing strong spectral powers at exact locations

as input RF signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.24 Schematic of proposed and simulated TD-PCS-FBG system with traditional

binary PRBS based random mixing. . . . . . . . . . . . . . . . . . . . . . 80



List of figures xvi

3.25 Simulation results for TD-PCS-FBG system with monotonic strain profile. a.

Original time stretched sensing signal in time domain b. FFT respresentation

of the time domain signal c. Spectrogram of the sensing signal showing linear

frequency chirp d. Two PRBS sequences used for mixing e. Mixed signal

with PRBS and sensing signal. f. Time domain reconstruction of sensing

signal upon l1 reconstruction with 62.5% compression ratio g. Corresponding

FFT domain representation h. Spectrogram showing clear chirp profile. The

l1 reconstruction results are repeated for 75 % ,87.5% and 100 % compression

ratios and the time domain reconstruction is shown in Fig. i. l. and o. ,

corresponding FFT domain representation in Fig. j. m. and p. , and

corresponding chirp profiles are shown in Fig. k. n. and q. . . . . . . . . . 81

3.26 Simulation results for TD-PCS-FBG system with S-shaped strain profile. a.

Original time stretched sensing signal in time domain b. FFT respresentation

of the time domain signal c. Spectrogram of the sensing signal showing linear

frequency chirp d. Two PRBS sequences used for mixing e. Mixed signal

with PRBS and sensing signal. f. Time domain reconstruction of sensing

signal upon l1 reconstruction with 50% compression ratio g. Corresponding

FFT domain representation h. Spectrogram showing clear chirp profile. The

l1 reconstruciton results are repeated for 62.5%, 75 % ,87.5% and 100 %

compression ratios and the time domain reconstruction is shown in Fig. i. l.

o. and r. , corresponding FFT domain representation in Fig. j. m. p. and s. ,

and corresponding chirp profiles are shown in Fig. k. n. q. and t. . . . . . . 82

3.27 Schematic of proposed and simulated SD-PCS-FBG system with all-optical

random patterns generated from cascaded MZI setup . . . . . . . . . . . . 84

3.28 Correlation between the patterns generated from cascaded MZI setup for

SD-PCS-FBG system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



List of figures xvii

3.29 Reconstruction results for downward chirp signal with all-optical random

pattern generation and mixing. a. Temporal domain reconstruction with 200

measurements with 50% compression ratio. b. Corresponding FFT domain

with 200 measurements with 50% compression ratio. c. Spectrogram of

the reconstructed signal. The results with 62.5% and 72.5% compression

ratios are shown respectively with time domain reconstruction in Fig. d.

and g. , corresponding FFT domain representation in Fig. e. and h., and

corresponding chirp profiles are shown in Fig. f. and i. . . . . . . . . . . . 86

3.30 Reconstruction results for S-bend chirp signal with all-optical random pat-

tern generation and mixing. a. Temporal domain reconstruction with 200

measurements with 50% compression ratio. b. Corresponding FFT domain

with 200 measurements with 50% compression ratio. c. Spectrogram of

the reconstructed signal. The results with 62.5% and 72.5% compression

ratios are shown respectively with time domain reconstruction in Fig. d.

and g. , corresponding FFT domain representation in Fig. e. and h., and

corresponding chirp profiles are shown in Fig. f. and i. . . . . . . . . . . . 87

3.31 Root Mean Square Error results for TD-PCS-FBG system and SD-PCS-FBG

system. a) RMSE as a function of compression ratio for uniform strain signal

b) RMSE as a function of compression ratio for S-shaped strain signal . . . 88



List of figures xviii

4.1 Schematic of Proposed UF-PCS imaging system. Step-1 is performed with

experimental setup with tuneable laser source. Step-2 is verified through

simulations in MATLAB. Step 1:Experimental calibration. Step 2: Proposed

Compressive Imaging system. MMF:Multimode Fibre, Storage: A computer

used used to record and store the patterns, MLL:Mode locked laser with a

pulse with of 800fs and repetition rate of 20MHz, DCF: Dispersion Compen-

sating Fibre of 1ns/nm chromatic dispersion, PD:free space Photo Detector,

Processor: A computer with signal processing capability to extract the image

from measurements acquired from scope and patterns recorded from calibration 93

4.2 Four of the recorded patterns from beam profiler. The wavelength step size

considered is 0.1 nm from 1550 nm . . . . . . . . . . . . . . . . . . . . . 94

4.3 Correlation matrix of the patterns recorded from beam profiler. This is a

symmetric matrix with diagonal being represented by the auto correlation of

the pattern which is close to unity. . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Self correlation variation for three wavelengths against time duration. . . . 96

4.5 Comparison of results with compressed imaging and conventional STEAM

sensing. a) Original image with pixel size 27X27. b) to f) Reconstructed

images with l1 minimization algorithm from with increased number of mea-

surements. g) to k) The sampled images from traditional STEAM imaging

system which are emulated by downsampling the original image. . . . . . . 98

4.6 Comparison of MSE for speckle based compressed imaging vs binary pat-

terns based compressed imaging . . . . . . . . . . . . . . . . . . . . . . . 98



List of figures xix

4.7 Nyquist resolution limit. a)Pattern captured by beam profiler with 540X540

pixel resolution b) 2D spectral domain representation after removing the low

frequency components c) Superimposed spectral domain representation of

individual rows of the image followed by columns of the image shown in

Fig. a. d) The random pattern after removing the high spatial frequency

low spectral power components shown in Fig. f. e) Corresponding 2D

spectral FFT f) superimposed representations after removal of high frequency

components g) The random pattern after removing the high spatial frequency

low spectral power components shown in Fig. i. h) Corresponding 2D

spectral FFT i) superimposed representations after removal of high frequency

components j) The random pattern after removing the high spatial frequency

low spectral power components shown in Fig. f. k) Corresponding 2D

spectral FFT l) superimposed representations after removal of high frequency

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Schematic of experimental set-up. OC:Optical Power splitter/Combiner,

PC:Polarization Controller, PM:Phase Modulator, DC: DC bias signal, IFFT:

Inverse FFT , RF Sync.:RF synchronization, EDFA: Erbium Doped Fibre

Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Time delay - Frequency relation after adjusting the offset. The insets show

the time domain and FFT representations at a particular optical delay of

130ps. Blue color shows the experimental result. The results from theoretical

calculations is shown in red . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Optical pulse comparison for individual DC voltage applied to phase modulator.106



List of figures xx

5.4 Demonstration with single tone RF signal. a) Phase shifted and time stretched

gaussian optical pulse carrier signal in time domain with 80ns duration at 4ps

optical delay. b)Electro-optically mixed optical signal c)Fourier spectrum

acquisition showing strong single tone at 9ps optical delay with calibration

curve. Red line is the calculated while Blue line is experimental observation

d) Time domain reconstruction of the acquired FFT . . . . . . . . . . . . . 108

5.5 Demonstration with multitone RF signal. a) Input RF spectrum. b) Recon-

structed FFT spectrum. The experimental calibration line is shown in blue

color while theoretical calculated line is shown in red color. . . . . . . . . . 108

5.6 Demonstration of dual tone reconstruction with 0.5ps resolution a) Original

signal FFT representation b) reconstructed FFT with experimental calibration 110

5.7 Demonstration of anamorphic sampling of FFT. a) Unsuccessful FFT re-

construction by sparse uniform sampling with 3ps delay resolution with

experiment calibration b) FFT reconstruction with anamorphic sampling

with experiment calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Simulation results. a) Input multitoned RF signal with highest frequency

40.2GHz b) Corresponding FFT spectrum of signal c) Phase-shifted optical

carrier. Inset shows RF magnitude spectrum d) Signal encoded phase-shifted

optical carrier. Inset shows RF magnitude spectrum e) Reconstructed time

domain signal from inverse transformation f) Reconstructed FFT spectrum

with frequency shown in green color. Optical time delay is shown in X-axis. 111

6.1 Schematic diagram of the proposed and simulated adaptive non-uniform

photonic time stretch system. . . . . . . . . . . . . . . . . . . . . . . . . . 114



List of figures xxi

6.2 Simulation results on the microwave photonic phase filtering. (a) The original

input RF signal under test. (b) Stretched RF signal by the microwave photonic

phase filter with a linear frequency-dependent time delay response. (c)

Spectrogram of the original RF signal. (d) Spectrogram of the RF signal

after microwave photonic filtering, showing a frequency chirp rate of 2 GHz/ns.117

6.3 (a) Time stretched optical pulse by the first dispersive element. (b) Optical

pulse modulated with the pre-stretched RF signal. (c) Corresponding optical

spectrum verifying that the RF signal is also encoded in to spectral domain.

(d) One-to-one mapping between time and frequency according to (b) and (c).119

6.4 (a) The time delay function of the designed AST filter with quadratic group

delay. (b) Non-uniformly stretched optical pulse by the AST filter. (c) The

reconstructed RF signal following the signal recovery algorithm implemented

in digital domain. (d) Spectrogram of AST stretched optical pulse after photo-

detection showing the non-uniform photonic time stretch . . . . . . . . . . 121

6.5 (a) A second RF signal under test. (b) Pre-stretched RF signal by the same

microwave photonic phase filter with linear frequency-dependent time delay

response. (c) Spectrogram of the original RF signal. (d) Spectrogram of the

pre-stretched RF signal by the microwave photonic phase filter . . . . . . . 122

6.6 (a) Modulated optical pulse carrier after non-uniform stretching at the AST

filter. (b) The reconstructed RF signal after digital signal recovery . . . . . 122

6.7 (a) Time delay as a function of optical frequency in the AST filter with cubic

group delay response. (b) Non-uniformly stretched optical pulse carrying

RF signal by the AST filter. (c) The reconstructed RF signal following the

signal recovery algorithm implemented in digital domain. (d) Spectrogram

of non-uniformly stretched optical pulse confirming TBP reduction of the

captured RF signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



List of figures xxii

6.8 (a) Modulated optical pulse after non-uniform stretching with the AST filter

with cubic time delay. (b) The recovered RF signal 2 after digital signal

processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1 Summary of thesis work . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 AST quad filter using Photonic Crystal Fibre . . . . . . . . . . . . . . . . . 131

7.3 Proposed spectral domain photonic time stretch compressed sensing based

OCT system that can sense the A-scan profile of sample . . . . . . . . . . . 132

B.1 Mendocino series FPL type C -band Desktop 1550nm femtosecond laser . . 151

B.2 Tektronix Arbitrary Waveform Generator 7122C . . . . . . . . . . . . . . . 152

B.3 Agilent 86100A Wideband sampling scope . . . . . . . . . . . . . . . . . 152

B.4 Tektronix realtime oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . 153

B.5 E4440A PSA Spectrum Analyzer . . . . . . . . . . . . . . . . . . . . . . . 154

B.6 Optical Spectrum Analyzer Agilent 86146B . . . . . . . . . . . . . . . . . 154

B.7 Dispersion Compensating Fibre OFS SMFDK-S-020-03-01 . . . . . . . . . 155

B.8 General Photonics Variable Optical Delay Line VDL-001 . . . . . . . . . . 155

B.9 General Photonics Motorized Optical Delay Line MDL-001 . . . . . . . . 156

B.10 Amonics Optical Fibre Amplifier Pre Amplifier AEDFA-PA-35-B-FA . . . 156



List of tables

1.1 Components of photonic link . . . . . . . . . . . . . . . . . . . . . . . . . 3

6.1 TBP Reduction for two different RF signals using AST filter with quadratic

time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 TBP Reduction for the first RF signals using an AST filter with cubic time

delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.1 Specifications of MLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.2 Specifications of AWG: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.3 Specifications of sampling oscilloscope: . . . . . . . . . . . . . . . . . . . 153

B.4 Specifications of realtime oscilloscope: . . . . . . . . . . . . . . . . . . . . 153

B.5 Specifications of electrical spectrum analyser: . . . . . . . . . . . . . . . . 154

B.6 Specifications of optical spectrum analyser: . . . . . . . . . . . . . . . . . 154

B.7 Specifications of DCF: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.8 Specifications of optical delay line: . . . . . . . . . . . . . . . . . . . . . . 155

B.9 Specifications of motorized optical delay line: . . . . . . . . . . . . . . . . 156

B.10 Specifications of optical amplifier: . . . . . . . . . . . . . . . . . . . . . . 156



Chapter 1

Introduction

1.1 Overview

Microwave photonics [1–4] studies interaction between the fields of microwave technology

and light wave technology for the applications ranging from wireless sensors [5], com-

munications [6–8], radar [9–11], instrumentation and biomedical applications [12–15]. In

general, this field has been classified as [4, 16] generation [17], processing [18, 19] and

measurement [20] of microwave/RF or THz [8] signals. Processing analog information such

as microwave/RF signals in optical domain has several advantages compared to its electronic

counterpart, such as high bandwidth, low information dependant loss(approx. 0.2 dB/km for

standard single mode fibre at 1550 nm wavelength range) and immunity to electromagnetic

interference [21]. Real-time measurement of RF signal or characterization of microwave pho-

tonics system/devices require ultra-fast optical measurement system. However, the inherent

consequence of continuous ultra-fast measurement is the big data produced. This thesis work

mainly focusses on ultra-fast photonic measurement systems using optical signal processing

methods described below and next few chapters for sensing 2D images, Optical Coherence

Tomography, Radio Frequency and distributed Fibre Bragg Grating sensed signals with data

compression techniques. Within the scope of this thesis, a generic microwave photonic link
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for analog information capturing can be illustrated as shown in Figure 1.1 that can cover 1D

signal measurement or 2D image detection [20].

Fig. 1.1 Schematic of generic microwave photonic link

As shown in Fig.1.1, an optical carrier generates light beam and is encoded with informa-

tion to be captured. Followed by Photonic processing module, detection and post-processing,

the information can be reconstructed or certain properties of the information can be extracted

using machine learning. Typical components or examples for each of the module are shown

in table 1.1.

In general, any measurement system is expected to be (1) High Speed: Data needs

to be acquired and processed quickly. In particular, the sampling system should sample

high bandwidth signals at twice the maximum frequency as per Nyquist-Shannon principle

and this necessitates high speed acquisition. (2) High resolution: Highly accurate with

fine resolution (3)High operation stability (4) Economically feasible: Affordable with low

energy consumption(i.e., greener solution) (5) Compact footprint: The physical size of unit

is expected to be smaller which can be achieved by integrating into Photonic Integrated

Circuit. However, not only the physical footprint of the optical system but also the data to

be sampled and stored should be compact in size which can be referred to as digital size. In

this thesis, reducing digital size of the ultrafast signal measurement system has been mainly

discussed. Also, methods have been proposed and demonstrated to make measurement
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Table 1.1 Components of photonic link

Component Several eamples

Optical
carrier 1. A narrow-band Continuous Wave laser

2. A broadband ultra-short pulsed laser that can be produced by mode
locked lasers [22]

3. A super continuum source [23]

4. A broadband incoherent source [24]

5. A multi-wavelength source [25, 26]

Information

1. 1D microwave/RF signal

2. 2D image

Encoder

1. Mach-Zehnder modulator to sense the RF information

2. Michelson interferometry

3. Spectrum-encoded imaging system involving lenses and diffrac-
tion gratings

Processing

1. 1D random pattern for mixing

2. 2D spatial pattern

3. Optical spectral filter

Detection

1. A Photodetector followed by Analog-to-digital converters and data
storage units.

2. CCD/CMOS camera in case of direct imaging

Post-
processing 1. Information analysis which is processed with Digital signal pro-

cessing units used for reconstruction of exact information

2. Required target parameters using big data analytics or deep learn-
ing algorithms[27]
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systems economically feasible by employing low speed photodetectors and digitizers for

high-speed signal detection.

Due to recent matured technology in generation of high speed signals and the need for

capturing information at high scanning rate, ultrafast measurement systems [20, 28, 29] have

gained importance in biomedical[30, 31], security[32] and communications[33] fields. This

ultrafast sampling is crucial to convert high speed analog information such as 1D signals

and 2D images from analog continuous domain to sampled and quantized digital domain for

post-processing computational analysis. In order to sample high speed data, the measurement

system encounters these 2 limitations.

Nyquist criterion: High speed sampling electronic equipment is required to sample the

information sufficiently as per Nyquist principle which states that the sampling rate should

be atleast twice the maximum frequency of analog information for faithful reconstruction or

analysis.

To suppress this high speed requirement, the concept of Photonic Time stretch(also known

as dispersive fourier transform [16, 34]) method has been introduced and studied. This

method has significantly slowed down frequency of the information so that it can be sampled

with low speed electronic digitizers. An additional advantage is that the signal can not

only be sensed in time domain, but also in optical wavelength domain using a spectral

channelization approach [16]. However, this has not addressed the problem of digital size or

data compression. As a simplified example, a 10GHz RF signal requires 20GS/s digitizer for

sampling. With photonic time stretch, if the RF signal is modulated to optical domain, and

stretched by a factor of 10, the effective RF signal frequency is 1GHz. Hence, a 2GS/s photo

detector and electronic digitizer is sufficient to capture the signal. However, the effective RF

signal is longer in time making overall TBP or the number of samples to be stored in the

system after sampling, remains unchanged. Hence, this "Big Data" problem remains.
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"Big Data" problem: For example, a 1D multi-toned RF signal of maximum frequency

10GHz would require an analog to digital converter sampling at 20GS/s rate and if sampled

for 4 seconds assuming 10bit quantization resolution per sample, total data volume of

93GB can be generated and a modern UHD Blue ray disk would be completely filled. If

the signal is stretched using photonic time stretch principle, the number of samples to

be stored remains the same as the TBP is unchanged. Exemplifying the scenario with

2D image, a current 4K image with 3840X2160 resolution would require processing of

8 million pixels per image at a certain frame rate. Its unimaginable to process such "Big

data” [35] images without compression[36]. To address this, Conventional JPEG2000 has

been developed which is extremely successful image compression algorithm to reduce the

image size to great extent without loosing much graphical detail to the human perception

by zeroing out the low spectral powered wavelet coefficients based on certain threshold.

However, an entire image has to be captured before this post processing algorithm takes

place [37]. The case is more intense in case of video streaming, capturing a sequence of

scans. This continuous torrent of data necessitated the need for data compression methods.

There are multiple solutions proposed for this problem which resulted in (A) Achieving data

compression while sampling the information (B) Reducing the need for high speed electronic

sampling scopes and detectors and effectively reducing the cost of the overall system. A few

existing approaches are introduced as solutions. (1) Anamorphic Stretch Transform(AST) (2)

Compressed Sensing(CS) (3) Signal Sensing with Basis Acquisition.

AST:One solution being, feature selective time stretch where certain segments with rich

information of the signal/image is stretched/highly sampled and remaining part is coercively

sampled which can be defined as AST [38] or non-linear sampling. Due to the nature of

sampling, it is mainly employed in optical domain with Photonic Time Stretch principle which

maps broadband spectrum of an ultra-short optical pulse to a time stretched waveform using

chromatic dispersion. This enables spectro-temporal information transfer and has become
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an emerging and enabling technique for various microwave photonics applications. The

background theory will be discussed in Chapter 2 in detail. The AST method is considered

to be an enhanced version of Photonic Time Stretch principle. If the region of interest of the

signal is known as priory, interested segments of the signal can be stretched further using

customized optical group delay filter which can stretch selected range of wavelengths over

time. As the time is mapped to optical frequency, time domain of the selective region will

be stretched further enabling us to sample the high frequency transients with low speed

digitizers. To perform this, a time-bandwidth engineered custom-fibre bragg grating with

pre-defined group delay-optical frequency function is placed as aforementioned optical group

delay filter [35, 39–42]. The AST method has found applications in flow-cytometry, data

compressed time stretch imaging [43]. However, as mentioned, this requires prior knowledge

of "Region of Interest” of the information either in time or spatial domain and hence, the

system has to reconfigure the time stretch filter for different inputs with different regions of

interest. In this thesis, an adaptive non-uniform sampling method has been demonstrated to

address this issue by pre-stretching the information before AST.

CS:Alternatively, aforementioned big data problem and high speed electronic detection

requirement can be addressed with CS which is a signal processing paradigm where sensed

information can be reconstructed with far less measurements than the traditional electronic

detectors [37, 44–47]. In this method, the sensing information is mixed with a set of random

masks and are individually summed and considered as measurements and the original

information is reconstructed during post-processing stage using l1-minimization methods

having known the random patterns as priory. This enables data compression and reduces

the necessity of using high speed electronic digitizers. However, it is assumed that the

information is sparse in some transformation domain such as Fourier, gabor, wavelet or

even temporal domain and that the set of random masks are incoherent. The information

can be reconstructed during post-processing stage where the obtained measurements and
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random masks are given as inputs. Applications for Compressed sensing range from ultra-

wideband RF signals in software-defined radio [48], bind RF spectrum sensing, electronic

warefare to imaging, trace gas sensing and video compressing, THz imaging [49–51], 3D

imaging[52] and Hyperspectral imaging[53]. Of lately, there has been interest in photonic

compressed sensing system owing to large bandwidth availability and other advantages with

optical domain in contrast to conventional electronics such as GHz information processing

capability and already existing imaging technologies. In general, Photonic implementation of

Compressed Sensing systems can be categorized into 3 different types based on the domain

of random pattern mixing. (1) Time Domain Photonic Compressed Sensing (2) Spectral

Domain Photonic Compressed Sensing (3) Spatial Domain Photonic Compressed Sensing.

These methods developed within the thesis work will be discussed in detail in subsequent

chapters.

Signal sensing with Fourier Spectrum Acquisition:Aforementioned CS method requires

random patterns to be known as priory for reconstruction, in case of traditional binary

patterns generated from SLM or electronic PRBS generators or random patterns generated

from all-optical methods. This specific requirement can be eliminated by scanning the entire

information in its transformation domain also referred to as "Basis Scan". The basis can

be Fourier domain [54–58] or Wavelet domain such as haar basis[59] to name a few. In

Fourier spectrum acquisition method, the sensing information is mixed with a set of phase

shifted and harmonic signals or patterns and the information is reconstructed by inverse

transformation during post-processing[56, 55]. To achieve data compression, frequency

based thresholding has been demonstrated [55]. However, the scanning time is longer than

traditional CS approach as sensing will be done 4 times higher. This method requires

sweeping of phase shifted RF signals to scan the whole frequency band which would require

high speed and expensive RF generators or Arbitrary Waveform Generator. In this thesis, a

novel photonics-assisted Fourier spectrum acquisition method has been demonstrated, which
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scans the spectrum of an unknown signal with single pixel photodetector without high speed

RF generator.

1.2 Summary of objectives and main contributions of the

thesis

Objectives: In this thesis, the main objectives can be summarized as (1) To reduce massive

data volume (digital size) during information sensing by utilizing various compressed sensing

methods. (2) To acquire information using low speed electronic sampler and digitizers

(3) Reduce physical size of overall measurement system by employing novel all-optical

methods (4) To explore compressed sensing enabled ultra-fast imaging system (5) To explore

alternative systems to sparsity constrained compressed sensing methods by investigating

all-optical methods for basis scan.

Main contributions of the thesis: In this thesis, three different types of photonic imple-

mentation of compressed sensing systems for applications such as biomedical OCT scanning

(single layer model), distributed FBG sensing have been proposed and experimentally demon-

strated. With help of numerical simulations and experimental setup, photonic compressed

sensing has been demonstrated for Michelson OCT system and data compression has been

achieved [60–62]. The work has been extended for measuring strain sensing with distributed

FBG grating [63] . However the used binary random masks require high bandwidth front

end electronic equipment which are expensive and induce signal loss. In addition, they have

huge physical size making over all system bulky. The overall limitations of this system have

been presented in [64]. To overcome these difficulties, analog all-optical random pattern

generation by cascaded Mach-Zehnder Interferometric structures have been demonstrated.
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This work has been published in [65]. These generated optical random patterns have been

applied to blind RF spectrum sensing [66] and distributed FBG sensing.

Realtime ultra-fast imaging has been area of interest to achieve high imaging speeds.

Utilizing compressed sensing capability to reconstruct an image with reduced number of

measurements, in this thesis, photonic compressed sensing enabled ultra-fast imaging system

that can sense the images with 20 Million frames per second[67] has been proposed. This

has been achieved by wavelength dependant chaotic nature of multimode fibre.

In addition to compressed sensing systems, a method to generate the phase shifted

sinusoidal illumination patterns in optical domain utilizing electro-optic phase modulator

and optical delay line elements have been proposed and experimentally demonstrated. The

advantage is that it can generate upto 150GHz with a commercially available delay line and

low sampling detector that may not be (to the best of our knowledge) determined by current

state-of-the-art electronic detectors. With this setup, an unknown radio frequency spectrum

has been sensed. This method can have applications in imaging, OCT and ultra-wideband

RF signal sensing[54].

With AST approach, an adaptive non-uniform photonic time stretch method has been

proposed based on microwave photonics pre-stretching that achieves blind detection of high-

speed RF signals with reduced TBP. Non-uniform photonic time stretch using both quadratic

and cubic group delay response has been demonstrated with significant TBP compression

ratio[68].

1.3 Organization of Thesis

• In Chapter 1, a brief introduction on ultra-fast measurement systems have been

presented. Major contribution and organization of thesis has been summarized with

help of general schematics.
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Fig. 1.2 Thesis structure

• In Chapter 2, a background review of the methods used in ultra-fast measurement

systems been discussed with numerical equations. The general concept of Photonic

Time Stretch has been explained for ultra-short pulsed optical source such as Mode

locked laser and various alternatives to produce the time stretch method have been

referenced. Followed by this, Anamorphic Stretch Transform or non-linear photonic

time stretch concept has been discussed with help of figures in detail. An alternative

method of compressed sensing has been discussed along with various types of Photonic

Compressed Sensing systems with current state of the art techniques. Similarly,

background theory for spectrum sensing by Fourier spectrum acquisition is another

approach which has been discussed.

• In Chapter 3, a brief introduction on Optical Coherence Tomography and specifically,

SS-OCT system has been discussed. Followed by this, data compression in high-

throughput photonic time-stretch OCT by exploiting the spectral sparsity of the encoded
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reflection profile using time domain photonic compressed sensing approach have been

presented. By direct optical implementation, the necessity of high speed electronic

equipment followed by storage constraints have been heavily relaxed. In addition, a

method of improving frequency measurement resolution in the proposed system has

been demonstrated. A number of optimization algorithms for the post-processing of the

OCT signals have been compared in terms of accuracy and efficiency. Similarly, time

domain photonic compressed sensing system for measuring strain and temperature

using fully distributed FBG sensors have been demonstrated with a brief introduction

on OTS-FDR [28].

Due to the limitations present in time domain photonic compressed system, a novel

spectral domain photonic compressed sensing has been proposed and experimentally

demonstrated for detection of unknown RF spectrum. The technique is based on

photonic time stretch involving cascaded MZIs for spectral domain random mixing

explained in great detail in chapter 3. In a proof-of-concept experiment, successful

detection of single tone and two-tone RF signals with very low compression ratio using

very low detection bandwidth has been demonstrated. The method has been extended

to strain sensing using distributed FBG interrogation technique.

• In Chapter 4, a brief introduction on single pixel imaging has been presented em-

phasising the necessity of high speed imaging. Conventional approaches can reach

imaging rates of 1000’s of frames per second. Utilizing the ability of compressed

sensing system to reconstruct a naturally sparse image with few number of samples, an

ultra-fast optical imaging method with multimode fibre has been demonstrated. This

has been achieved by generating incoherent 2D speckle patterns by varying optical

wavelength. A real-time imaging speed of 20 Million frames per second has been

proposed in a proof-of-concept demonstration. However, the image size is dependant

on field of view of the fibre. The schematic and principle related to this method
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has been explained in detail with experimentally generated speckle patterns and with

numerical simulations.

• In Chapter 5, an all-optical approach for Fourier spectrum scanning of a blind spec-

trum sensing has been proposed and experimentally demonstrated. Any arbitrary signal

in time domain can be sensed indirectly in Fourier domain by measuring the magnitude

and phase spectra. This has been implemented by generating phase shifted sinusoidal

illumination patterns followed by post-processing techniques. A brief introduction

based on previous methods has been presented followed by the approach of generating

these phase shifted sinusoidal illumination patterns directly in optical domain based on

PTS method. The entire Fourier spectrum can hence, be scanned for non-zero DFT

coefficients with a uniform tunable resolution at very low speed. Fourier spectrum

scanning of single tone 1GHz and multi tone RF signals with as low as 50MS/s sam-

pling rate has been demonstrated. A method to improve the measurement rate has been

proposed. However the scanning rate is dependant on the number of measurements

which is typically few Hz or below. This has been explained in great detail in chapter

5.

• In Chapter 6, an adaptive non-uniform photonic time stretch method based on mi-

crowave photonics pre-stretching that achieves blind detection of high-speed RF signals

with reduced TBP has been presented. In general, AST is constrained by "region of

interest" of the sensing signal. A method has been proposed to relax this constraint.

• In Chapter 7, Overall summary has been provided based on the work presented in this

thesis. A final discussion has been drawn along with prospective future work based on

the this work.



Chapter 2

Background Theory

In this chapter, a complete literature review of PTS [34, 16], CS, Signal sensing with

Fourier spectrum acquisition methods followed by a summery of the work done in this thesis

have been discussed along with theoretical explanations, numerical equations supported by

referenced work from various research groups.

2.1 Photonic Time Stretch

As explained in [69, 70], there exists a duality between paraxial diffraction in space and

dispersion of narrowband pulses. Based on diffraction-dispersion analogy, quadratic time-

phase modulation can be acted as a time lens. Under second order dispersion approximation

[71, 72], if a transform limited ultrashort optical pulse is propagated through highly dispersive

fibre as pictorized in Figure 2.1, the output pulse in time domain is tuned to magnitude

spectrum of the input pulse and an injective mapping between time domain and optical

frequency/wavelength can be established. This is known as PTS [73], [74], also known

as dispersive Fourier transform [75, 71, 16], Real-Time Fourier transform [76], [77], or

wavelength-to-time mapping [78–80]. After PTS, the pulse diminishes in peak amplitude as

the pulse energy is constant requiring an optical amplifier to improve the pulse power and it
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length of dispersive element. Inset shows the dispersive element denoted in this thesis which
is a DCF.

is assumed that non-linear effects are neglected in the dispersive device. However, resent

research suggests that the amplification can be avoided with dissipative solitons [81].

Considering that the impulse response of the dispersive element as H(ω) = |H(ω)|×

e− jΦ(ω), where |H(ω)| is the amplitude spectrum and Φ(ω) is the phase spectrum.

As per the Taylor series expansion, the phase spectrum Φ(ω) can be expanded around

the central optical frequency ω0 as,

Φ(ω) = Φ(ω0)+(ω −ω0)Φ̇(ω0)+
1
2
(ω −ω0)

2
Φ̈(ω0) (2.1)

assuming that the higher order derivative terms have negligible values compared to optical

phase Φ(ω0) and other product terms.

Hence the impulse response H(ω) can be re-arranged as,

H(ω) ∝ |H(ω)|× exp(− jΦ0)exp(− jΦ̇0ω))exp(− j
1
2

Φ̈0ω
2) (2.2)
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The system response h(t) can be obtained by inverse FFT of H(ω) which can be written

as,

h(t)= IFFT (H(ω))∝

∫
∞

−∞

|H(ω)|×exp(− jΦ0)exp(− jΦ̇0ω))exp(− j
1
2

Φ̈0ω
2)×exp( jωt)dω

(2.3)

Ignoring the constant terms and assuming that the dispersion element has no effect on

magnitude spectrum,

h(t) ∝

∫
∞

−∞

exp

[
− j

Φ̈0

2

(
ω − −Φ̇0

Φ̈0

)2]
× exp( jωt)×dω (2.4)

This is a well known integral [82, 83] and h(t) can be derived as,

h(t) ∝ exp
(

j
−Φ̇0

Φ̈0
t + j

t2

2Φ̈0

)
(2.5)

The above expression can be written as,

h(t) ∝ exp
(

j
(t − Φ̇0)

2

2Φ̈0

)
(2.6)

If the time limited input considered as x(t), the output y(t) can be formulated as,

y(t) = x(t)∗h(t) (2.7)

y(t) ∝

∫ t ′=∞

t ′=−∞

x(t ′)exp
(

j
(t − t ′)2

2Φ̈0

)
dt ′ (2.8)

y(t) ∝

∫ t ′=∞

t ′=−∞

x(t ′)exp
(

j
t2

2Φ̈0

)
exp
(

j
t ′2

2Φ̈0

)
exp
(

j
−tt ′

Φ̈0

)
dt ′ (2.9)

If the input pulse is time limited and the pulse width t ′2 << Φ̈0 where

Φ̈0 =
dτ

dν
in ps2 which can be expressed in two different forms given below.
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Φ̈0 =
−λ 2

c Ψ̈ = 2∗π ∗Dω where Ψ̈ = dτ

dλ
in ps/nm Dω = dτ

dω
in ps2/rad

With above approximation, the term exp
(

j t ′2
2Φ̈0

)
can be neglected to be 1 and the overall

output temporal response can be approximated as,

y(t) ∝ exp
(

j
t2

2Φ̈0

)∫ t ′=∞

t ′=−∞

x(t ′)exp
(

j
−tt ′

Φ̈0

)
dt ′ (2.10)

which can be re-written ignoring the phase reference as,

y(t) ∝ X(ω)

]
ω= t

Φ̈0

(2.11)

The above equation explains that output time domain is proportional to spectral response

with injective mapping between time and optical frequency domains. Because of the inverse

relation between the wavelength and optical frequency, there will be inverse one-one mapping

between wavelength and time.

However, the explained theory works under two important assumptions. First assumption

is that input is transform limited, ultra-short pulse. Also, the square of the pulse width should

be negligible compared to dispersion parameter Φ̈0. The second assumption is that the higher

order dispersion is not present or negligible compared to lower order terms. The presence of

higher order dispersion distorts injective mapping between time and optical frequency into

many to one [84]. This has been shown graphically in Figure 2.2.

The aforementioned PTS concept is implemented mainly with pulsed source and highly

dispersive element followed by optical amplification. The dispersive element can be designed

for various optical wavelengths regime. Generally, Single mode Fibre(SMF) and more

specifically DCF can be used. However, DCF has better dispersion to loss ratio but its

mainly available in 1550nm. Alternatively, a Ch-FBG [34] can be used. The advantage with

Ch-FBG is that they are compact, easily customizable and foot print of dispersion can be

significantly reduced with monolithic integration. The drawback of using Ch-FBG may be
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Φ 𝜔 = 𝚽 𝛚𝟎 + (𝜔 − 𝜔0)  𝚽 𝛚𝟎 +
1

2
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6
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3
)
𝑡2

Fig. 2.2 Summary of time stretch theory. When higher order dispersion is negligible, the
injective mapping is established resulting in Photonic time stretch

the GVD distortion which can be converted to fast temporal modulation. Another technique

is to use the chromo-model dispersion with diffraction grating and Multimode Fibre setup.

For biomedical applications in 800nm regime, small core fibres can be used for PTS [34].

Alternatively, a FACED device has been demonstrated for PTS in visible wavelength [85].

For wavelengths at 500nm, 2.0µm, PTS approaches have been demonstrated [86, 87]. While

these demonstrates the wavelength to time mapping, the VIPA involves mapping wavelength

range to space facilitating 2D spectral shower[31] when combined with above methods.

Recently, PTS method has also been demonstrated without dispersion approximation

using an acousto-optical frequency shifting followed by round trip cavity to achieve time-

frequency mapping [88].

The optical source can generally be a mode locked laser or a super continuum source.

It has also been demonstrated with an incoherent source [89]. Alternative to PTS, there

have been demonstrations of using frequency combs [90]. These can be generated from
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Fig. 2.3 Linear time stretch for TS-ADC

multi-wavelength source followed by cascaded modulation from an RF source [26] or optical

frequency combs generated from micro resonator [91] followed by cascaded modulation.

The PTS technology has been used in numerous applications from imaging to biomed-

ical applications such as OCT [92, 93, 12, 14, 94, 15, 95], microscopy [89, 96, 55],high

speed imaging [97, 74], photonic analog to digital converter [98–100], optical wireless

communications [101] and capturing non-repetitive events [102].

If the PTS achieves time-wavelength mapping, the high RF frequency information may

not be captured and it needs to be stretched further. This can be achieved by linear time

stretch method where the optical signal subjected to dispersive fourier transform is further

stretched with another dispersive element and the stretch factor is the ratio of second ele-

ment’s dispersion to that of the first [99, 16, 103]. The process has been depicted in Figure

2.3. A MLL can generate ultra-short broadband optical pulses which are stretched using

dispersion compensating fibre (DCF1) as per PTS principle. The time stretched pulses are

amplified with EDFA and electro-optically modulated with fast RF signal. The encoded

optical pulses are amplified and stretched further with DCF2 and low speed PD can be able

to sense the RF signal. Based on this method, a femtosecond single shot digitizer [104] has

been designed with a stretch factor of around 250 to increase the effective bandwidth of low

speed photodetector and electronic sampler. TS-ADC has been proposed to linearly stretch

the signal and WDM is used to sense the signal using parallel optical filter and during the
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post-processing, the signal can be reconstructed.

Photonic Time Stretch with Mode locked Laser is the main foundation for rest of the thesis

for works reported in chapters 3,4,5 and 6.

Anamorphic Stretch Transform: Despite that the conventional linear time stretch is

useful in boosting the bandwidth of the system, apparently the record time is increased by the

stretch factor making the overall TBP constant. Recently, non-uniform photonic time stretch,

also known as AST [38, 35, 40], has been proposed to address this issue based on selective

stretching: the information rich (high-frequency) region of the input signal is stretched more

with nonlinear group delay such that it can be sampled with finer resolution than the slower

temporal features [40]. An illustrative example is shown in Fig. 2.4.

10GHz 1s

𝑓𝑚𝑎𝑥 Time

20 G Samples

𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑜𝑟 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

1GHz 10s 20 G Samples

𝑓𝑚𝑎𝑥 Time 𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑜𝑟 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

1GHz 5s 10G Sample

𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑜𝑟 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

Data Compression ratio : 50%

a)

b)

c)

Fig. 2.4 Anamorphic Stretch Transform vs linear time stretch. a)Actual signal. A 10 GHz
sinusoidal signal with 1 sec duration should be sampled at 20 GS/s for faithful reconstruction.
The overall number of samples to be stored are 20 GSamples followed by quantization.
b) Linear Time Stretch method is conventional PTS to reduce the sampling rate to 1 GHz
but increases the duration to 10 s making the number of stored samples remains same, 20
GSamples c) Anamorphic Stretch Transform uses selective stretching which reduces the
sampling rate over certain temporal duration which reduces the number of samples to be
stored and compressed
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A multitoned RF signal with maximum frequency of 10 GHz (occupied only for some

duration) and record time 1 second requires storage of 20 GSamples for reconstruction. With

Linear time stretch of factor 10, the maximum frequency can be reduced to 1GHz. However,

the record time is increased by same factor. Hence, the TBP remains constant. With AST, if

the 10 GHz frequency location is known, Only that segment can be stretched and the number

of samples can be reduced to 10 Gsamples making the compression ratio as 50%. However,

prior knowledge of the spectral-temporal profile of the input RF signal is needed in order

to design the signal-specific AST filter [42], which is usually not feasible and practical in

real-time detection of unknown high-speed RF signals. Moreover, the AST filter needs to be

reconfigured for new RF signals with different instantaneous frequency profiles. This makes

the implementation of AST filter with engineered nonlinear group delay response more

challenging. Therefore a generalized adaptive non-uniform photonic time stretch design for

blind detection of arbitrary RF signals with TBP reduction is highly desired. An illustrative

application for AST in imaging is shown in Figure 2.5.

A mode locked laser followed by dispersion compensating fibre stretches the ultra-short

pulse and maps to optical spectrum. The stretched pulse is amplified and directed to fibre

collimator (FC) and magnified using beam expander setup. A diffraction grating is used

to spatially disperse the optical wavelength to space thereby, time to wavelength to space

mapping can be achieved. If image is spatially encoded to this stretched pulse using lenses,

the information can be encoded to spectral and temporal domains. The encoded pulse can

be directed to AST filter which stretches the temporal profile based on the group delay of

optical wavelengths designed in AST filter. Hence, selective stretching in time domain can be

achieved [43]. The reshaped signal can be sampled at relatively low speed photodetector and

low speed electronic digitizers. With post-processing, the information can be reconstructed

with digital signal processing unit.
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Fig. 2.5 Anamorphic stretch Transform in imaging

In Chapter 6, an alternative system has been proposed which can overcome this limitation

of "Region of Interest". This can be implemented using a microwave photonic phase filter

for pre-chirping the input RF signal and an AST filter to non-uniformly stretch the optical

pulse carrying transformed RF signal. The microwave photonic phase filter with frequency-

dependent time delay separates the high frequency (information-rich) part of an unknown

microwave/RF signal from its low frequency components across the entire duration of the

time limited signal. A following non-uniform PTS system based on AST filter is designed

based on the spectral-temporal distribution pre-defined by the microwave photonic stretching

filter. Without any knowledge of spectral-temporal distribution of the unknown RF signal and

without reconfiguring the non-uniform stretch filter for different RF signals, the proposed

approach enables reduction of TBP in blind detection of time-limited RF signals using this

non-uniform photonic time stretch method.
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2.2 Compressed Sensing

Compressed sensing(CS) [105, 106, 45, 107] is a signal processing paradigm based on

proposition that natural images/signals have a sparse representation in a transformation

domain (e.g. wavelet domain) and can be reconstructed from under sampled data or a reduced

number of measurements in a single-pixel receiver scheme leading to overall compressed data

volume. The overall CS detection of image in a nutshell has been illustrated in below Figure

2.6. The information is mixed with a binary spatial mask and focussed onto a single pixel

.

.

.

Σ 𝑦(1)

Σ 𝑦(2)

Σ 𝑦(𝑚)

.

.

.

1011..N digits

0010..N digits

1110..N digits

y

PRBS ɸ 

Image is sparse in 
DCT domain

matrix IDCT is
known

Reconstruction 
Program

(L1 minimization)

Output 
Image

Fig. 2.6 Compressed sensing in a nutshell: Imaging example

photodetector which represents the dot product of the information vector with binary mask

vector. The mask is refreshed with another binary sequence which is independent of previous

mask and the process is repeated m times to obtain m measurements. In the post processing

of l1 reconstruction, the image is reconstructed by inputting the obtained dot products and

the random masks which are used to obtain those dot products. Since the transformation

domain in which the information is sparse and the length of the signal are known as priory,
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Fig. 2.7 Theory of CS in nutshell: Random mixing

the image or signal can be reconstructed faithfully without any need for high speed sampling

equipment with reduced number of measurements achieving data compression.

2.2.1 Theory of Compressed Sensing

The theory of compressed sensing can be divided into three sub fields. (1) Sparsity of the

input (2) Incoherence between the random sequences (3) Reconstruction of the signal [107].

Sparsity: A signal is said to be sparse if most of components are negligible or zero. Since

the images are naturally sparse, they can be compressed using successful algorithms such as

JPEG, MPEG by storing largest coefficients in some transformation domain such as DCT,

DFT or wavelet domains to name a few. As an example, a 1D signal, x of length N, is

considered to be the information to be sampled which is sparse in Discrete Fourier Transform

domain ψN×N , the DFT domain signal can be represented as,

sNX1 = ψNXN xNX1 (2.12)

and the signal can be written as,

xNX1 = ψ
−1
NXN

sNX1 (2.13)
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Problem of Compressed Sensing: Currently, if x is sampled at Nyquist rate acquiring N

samples, it can be faithfully reconstructed. However, our aim in this method is to obtain

x with fewer number of measurements. if x is assumed to be K-sparse i.e., K << N in a

transformation domain as shown in Fig. 2.7, general linear measurement process can be

considered by computing m < N inner products between signal x and a "certain” collection

of vectors, φmXN . These vectors should be of length N, same as the information x. If the dot

products are measured resulting in y, it can be represented as,

ym×1 = φm×N xN×1 = φm×N ψ
−1
NXN

sNX1 = Am×N sN×1 (2.14)

where A = φψ−1.

Random matrices: For stable reconstruction of information x, The set of collection of

vectors φmXN should be a 2 dimensional random matrix such as independent random variables

with equal probability and measurements m should satisfy following condition.

m ≥ cKlog(
N
K
) (2.15)

where c is a universal constant.

Reconstruction: Finally, the reconstruction of information can be executed by solving the

minimization problem,

min(||s||1) subject to y = As (2.16)

results in sparse solution s̃. Since information length is known and the transformation domain

in which the information signal is sparse is known, x̃ can be reconstructed. The compression

ratio is defined as m/N.
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0.5GHz,1GHz, 1.25GHz

As per Nyquist theorem, it would 
require 2.5Gbps ADC to recover the 
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Fig. 2.8 Compressed sensing in 1D: Matlab simulation example

1D Example: As a simple illustration, a multi toned signal of duration 80ns has been con-

sidered with 0.5GHz, 1GHz and 1.25GHz as frequency tones. In normal scenario, a 2.5GS/s

digitizer is required to sample the signal followed by quantizer for faithful reconstruction.

Hence, signal length N can be defined as,

N = Overall duration of the signal in sec×Nyquist Sampling rate of the signal = 200

(2.17)

Instead of conventional sampling, if compressed sensing approach is used with the number of

measurements chosen to be 20, the signal can be reconstructed making overall compression

ratio as 10%.

The compressed sensing enables signal reconstruction with far less measurements than

sampling at Nyquist rate. This saves storage space on the system for the acquired signal.

This enables high speed acquisition as only 10% of the detector time is required, however

post-processing time is longer than expected. This method depends on signal sparsity and

estimated non-zero DFT coefficients in Fourier domain as explained in equation 2.15. Also,

the front end is more complex as a Nyquist data rate incoherent random patterns need to be
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generated and modulated onto the information. The acceptable compression ratio depends

on threshold root mean square error for a number of signal measurements.

The quality of reconstruction of the result can be estimated by correlation or RMSE

method in comparision with actual signal. In this thesis, we measured RMSE for 1D

signals and MSE for images as a quantitative measure for CS reconstruction. However, the

acceptable compresstion ratio for a CS system is determined based on number of factors

such as non-zero coefficients in the transformation domain. The compression ratio varies

for every signal/image as outlined in [108]. However, the acceptable compression ratio of

CS system can be estimated based on testing with all combinations of signals. In this thesis,

the acceptable compression ratio has been estimated based on signal/image under test based

on RMSE or MSE measured against compression ratio. In [109], 90% correlation has been

considered as baseline for preserving the reconstruction result through simulation results. In

this thesis, an estimated compression ratio has been calculated in simulation results.

CS for imaging: If the information is an image is directly sampled in 2D, the explained

theory slightly changed. A target 2D image IN×N is mixed with m random patterns each of

same size as target image, φN×N where m also corresponds to number of measurements. By

vectorizing the image into 1D as INN×1 and m random patterns as (Rm×NN), the CS system

can be simplified into 1D model. The image INN×1 assumed to be sparse in DCT domain,

the measurement vector ym×1 can be described as the dot product between the image and

random patterns,

ym×1 = Rm×NN .INN×1 (2.18)

Image INN×1 can be represented in transformation domain ψNN×NN as,

sNN×1 = ψNN×NN .INN×1 (2.19)



2.2 Compressed Sensing 27

where sNN×1 denotes the transformation domain representation. Hence the equations can be

summarized as,

ym×1 = Rm×NN .ψ
−1sNN×1 = An×NN .sNN×1 (2.20)

where

Am×NN = Rm×NN .ψ
−1
NN×NN (2.21)

In the reconstruction program, the measurement vector ym×1 and Rm×NN are given as

inputs and the transformation domain ψNN×NN is known, Hence sNN×1 can be reconstructed

using total variation minimization algorithm ,

(TV )1 min TV (s) subject to As = y (2.22)

From the retrieved transformation representation output s̃, the image can be reconstructed

as,

ĨNN×1 = ψNN×NN .s̃NN×1 (2.23)

and can be de-vectorized to get the 2D image ĨN×N . The compression ratio in this case,

would be m
N2 .

Since the introduction of CS theory, there have been number of implementations [48,

110, 107, 111–114, 44, 115–117] with application in security, imaging and signal processing.

Though the front end equipment such as random pattern mixer is complex, data compression

can be achieved if information is sparse and very low speed detectors are sufficient for

detecting high frequency information.
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2.2.2 Photonic Implementation of Compressed Sensing

Due to high bandwidth availability and already existing imaging modalities in optics and

photonics field, Photonic compressed sensing has become more of interest. Within the scope

of this thesis, the Photonic compressed sensing has been categorised as 3 techniques.

1. Time Domain Photonic Compressed Sensing : Electronically generated random pat-

terns are mixed with optical carrier in time domain with help of electro-optical interac-

tion such as modulators.

2. Spatial Domain Photonic Compressed Sensing : The random pattern is generated

in spatial domain. This can also be referred to as ”Structured Illumination based

Compressed Sensing".

3. Spectral Domain Photonic Compressed Sensing : The random patterns are generated

and mixed in spectral domain with help of diffraction gratings or spectral filters.

2.2.2.1 Time Domain Photonic Compressed Sensing

Photonic compressed sensing for image or signal detection can be acheived with electronically

generated random patterns from high speed Arbitrary Waveform Generator and can be

mixed with electro-optic modulator. This has been illustrated for imaging, blind spectrum

sensing [118–124] using CW laser, pulsed laser or multi-wavelength laser with electro-optic

modulation being the common element.

Compressed Sensing based Photonic Time Stretch (CS-PTS) enables optical information

processing with compressed sensing. An example of Time Domain Photonic Compressed

Sensing has been depicted in Figure 2.9.

A mode locked laser followed by dispersion compensating fibre is used as carrier which

stretches the ultra-short pulse and maps to optical spectrum. The stretched pulse is amplified

and directed to FC and magnified with beam expander setup. A diffraction grating (sometimes,
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Fig. 2.9 Typical example of Time Domain Photonic Compressed sensing based on PTS for
imaging application

may include Virtually Imaged Phase Array (VIPA)) is used to spatially disperse the optical

wavelength to space and thereby, time to wavelength to space mapping can be achieved. If

image is spatially encoded to this stretched pulse using lenses, the image/information can be

encoded to spectral and temporal domains as well. The encoded pulse can then be directed

to Electr-Optic MZM where a PRBS is encoded. The PRBS is generated in time domain

from Arbitrary Waveform Generator or Programmable Pattern Generators. After mixing, the

pulses are amplified and compressed using Single Mode Fibre (SMF) to represent the dot

product of PRBS and encoded image. A low speed PD detects the power and sampled using

low speed electronic scope. The process is repeated m times to obtain m measurements. By

inputting PRBS sets and measurements, the image can be reconstructed in post-processing

stage using l1or TV minimization algorithms using DSP unit.

The applications of this method include RF spectral sensing [125] and imaging/mi-

croscopy [126, 127, 96].

In chapter 3, Time Domain Photonic Compressed Sensing method for OCT application

has been discussed. In this case, simulation results have been presented for multilayer sample
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and experimental results have been presented for single layer reflection sample enabling data

compression with help of traditional PRBS based compressed sensing. A comprehensive

analysis and further simulation and experimental verifications are presented.

Furthermore, a dual pulse integration method has been demonstrated to show the capa-

bility of improving frequency measurement resolution in the proposed system, leading to

improved depth resolution in OCT measurement. A number of optimization algorithms for

the reconstruction of the frequency domain OCT signals have also been compared in terms

of frequency reconstruction accuracy and efficiency.

Time Domain Photonic Compressed Sensing method has been demonstrated for Linearly

Chirped Fiber Bragg Grating (LCFBG) sensing OTS-FDR[28] which has been proved to

be promising tool for high speed and high resolution fully distributed sensors due to its

longer grating length and broader reflection bandwidth than uniform FBGs. However its

capability is not only limited by the sampling rate of oscilloscope and the bandwidth of the

Photodetector which are expensive to afford but also, occupies more memory with number of

strain gauges to be measured and this data needs to be reduced to improve storage efficiency.

These limitations can be addressed with the help of compressed sensing which acquires high

speed RF signals with less number of samples than the Nyquist rate, thus, solving the big

data problem and the need for high speed electronic equipment.

2.2.2.2 Spatial Domain Photonic Compressed Sensing

Compressed sensing can also be achieved by mixing in spatial domain which can be referred

to as "Structured Illumination sensing"[128, 129]. This method is mainly used to sample

images because of the spatial mixing involved. However, there have been demonstrations to

reconstruct RF spectrum [130] using wavelength dependant speckle patterns from multimode

fibre. In conventional image sampling, the image is acquired with CCD/CMOS camera.

Single Pixel Imaging method enables to detect 2D image with low speed electronic sampler
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Fig. 2.10 Typical example of spatial domain Photonic Compressed sensing for imaging
application

and digitizer without any significant reduction in quality. Spatial domain photonic compressed

sensing can be regarded as a variant of single pixel imaging [44] where under-sampled

measurements are used to detect the naturally sparse image enabling data compression.

Another variant for single pixel imaging is "basis scan" where complete set of patterns

either in Fourier domain or wavelet domain[59, 57] are illuminated onto the object to

be sampled[59, 129]. This has been explained in section 2.3. For compressed sensing

reconstruction, under sampled measurements are considered with independent random

patterns. Generally these patterns are binary in nature and generated with SLM [130, 49, 51]

or DMD [131, 132] which have low refresh rate but can work at single wavelength[129]. An

example of typical Spatial Domain Photonic Compressed Sensing system is shown in Figure

2.10.

An optical carrier, generally a continuous wave laser generates light beam is directed

to fibre collimator(FC) and magnified with beam expander setup. A spatial Light Modula-

tor/Digital Micromirror Device induces random pattern to optical beam for some exposure
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time. Using a projection lens, the encoded optical random pattern is encoded with image

information. After reflection from mirror, the optical beam is focussed onto single pixel

PD and interface unit collects power measurement and the process is repeated m times to

obtain m measurements. By inputting random pattern set and measurements, the image can

be reconstructed using l1 minimization algorithms using DSP unit.

In [133], an ultra-fast resonance modulation scheme has been demonstrated based on

wavelength dependant, non uniform cavity that can generate incoherent patterns with wide-

band source. There have been demonstrations where instead of binary patterns using SLM or

DMD, speckle patterns in multimode structure followed by 2D array of low speed Photode-

tectors have been implemented to sense multiple dot products at a single time instant [134] or

using scattering medium [135] instead of multimode fibre with spatial impurity such as Zinc

Oxide. The two dimentional PD array can be simplified by inducing impurities in fibre that

have properties dependant on wavelength of the light as demonstrated in [136]. However,

wavelength sweeping is limited in speed.

Since, the conventional structured illumination methods based on DMD,SLM or a liquid

crystal array fall short in refresh rate, making it a real challenge for video rate and high-

speed imaging applications, such as studying dynamic phenomena in living cells, neural

activity, and microfluidics, and capturing important rare events, in chapter 4, the multimode

fibre based compressed ultra-fast imaging system has been demonstrated where wavelength

sweeping has been demonstrated with PTS method. Hence, a new approach for ultra-fast

(20 Mfps) structured illumination single-pixel imaging has been made possible using light

beam speckles out of a multimode fiber due to wavelength dependant multimode interference.

The generation of incoherent 2D speckle patterns for a range of 500 wavelengths have

been experimentally demonstrated. The incoherence among these patterns can be measured

using cross-correlation result. For demonstrated wavelength-dependent optical speckle

patterns, low correlation has been obtained which verifies the utility of multimode interference
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based structured illumination in compressed sensing based single-pixel imaging. Ultra-fast

wavelength sweeping is achieved by stretching optical pulses from a mode-locked laser using

chromatic dispersion. Therefore, high imaging speeds can be achieved. Typical imaging

speed is close to repetition rate of the modelocked laser which is few 10’s of MHz or even

GHz if number of wavelengths are sacrificed.

2.2.2.3 Spectral Domain Photonic Compressed Sensing

Photonic compressed sensing can also be achieved by manipulating the optical spectrum

with random pattern sequence. While the Spatial Domain Photonic Compressed Sensing can

be demonstrated for all optical sources, the spectral domain mixing can be done only for

wideband sources such as broadband incoherent source[24], coherent mode locked laser[137],

super-continuum sources or multi-wavelength laser source. Followed by time/spectral domain

encoding of information, the pulses are spectrally encoded with random pattern through

diffraction grating and SLM to binarize the optical spectrum with specific wavelength

resolution (commercially available spectral filters). While the spectral filtering has been

demonstrated using SLM[130], the refresh rate of SLM is relatively slow to obtain the

measurements.

A typical example of Spectral Domain Photonic Compressed Sensing system is shown in

Figure 2.11.

A wideband optical source is used as carrier, is amplified and directed to fibre collima-

tor(FC) and magnified using beam expander setup. A diffraction grating is used to spatially

disperse the optical frequency to space and thereby, time to wavelength to space mapping

can be achieved. If image is spatially encoded to this stretched pulse using lenses, the

image/information can be encoded to spectral and temporal domains. The encoded pulse can

be directed to Spectral Shaper where the spectrum is modulated with electronically generated

PRBS. After mixing, the pulses are amplified and sensed in time domain using low speed
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Fig. 2.11 Typical example of spatial domain Photonic Compressed sensing for imaging
application

photodetector followed by electronic scope. The process is repeated m times to obtain m

measurements. By inputting PRBS sets and measurements, the image can be reconstructed

using minimization algorithms in post-processing stage using DSP unit.

In any compressed sensing system, mixing information with repeatable and deterministic

random sequences is a crucial step in implementing Photonic Compressed Sensing. Current

traditional technologies like PRBS mixing, SLM/DMD are either expensive or slow. To

completely eliminate electronic bottleneck in Photonic Compressed Sensing, all-optical

approaches are highly demanded. This will have multiple advantages such as (1) Achieving

data compression (2) Reduction in overall system cost (3) Improved energy efficiency as

loss can be significantly reduced (4) Reduction in physical size as commercially available

electronic generators are bulky.

In section 3.2, a novel all-optical random sequence generation and mixing approach has

been presented for Spectral Domain Photonic Compressed Sensing system for detection

of RF signals. In contrast to spatial-domain and time-domain random mixing solutions,

random sequence generation using a spectral filter based on wavelength-to-time mapping
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in time stretched optical pulses have been proposed. The spectral filter will provide various

reproducible random spectral response. This is made possible by using two cascaded

dispersion-unbalanced MZIs. The overall spectral response represents a broadband random

spectral pattern. Owing to the dispersion-induced wavelength-to-time mapping, spectral

random filtering enables equivalent temporal mixing of RF signals and all-optically generated

random sequences. Fast tuning of the overall spectral response is realized by changing the

optical time delay module within the MZIs. This method avoids high-speed electronic PRBS

generator and modulator, electronic bottleneck in random mixing has been overcome and

is also cost effective. With this approach, lossy electro-optic mixing using MZM, bulky

Arbitrary Waveform Generator (AWG) and EDFA can be avoided enabling increased energy

efficiency. However, the random spectral filter requires one time calibration using high speed

electronic detector before performing actual measurements. The challenges are to control

the phase instability in interferomteric structure and designing the fast tunable optical delay

element. This technique was experimentally demonstrated for blind RF spectrum sensing

and proposed the system’s utility for FBG sensing signals with numerical demonstrations.

As an alternative to our proposed system, there has been research on generating such

spectral domain random patterns through customized photonic integrated chip with the help

of microring resonators[138, 139] which requires customized fabrication.

2.3 Signal Sensing with Fourier Spectrum acquisition

As mentioned in [44], Single Pixel Imaging reduces the required size, complexity and cost

of overall system. In addition to sensing flexibility, the single pixel imaging system utilizes

higher quantum efficiency of photodiode as compared to conventional CCD/CMOS camera

and that the fill factor of a DMD is more than CCD/CMOS array. In general, there are three

types of scanning methods in this technique. (1) Raster Scan: Single pixel detector takes

equal number of measurements as number of pixels and reconstructs the image. (2) Basis
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Scan: A single sensor takes equal number of measurements from different combinations of

the pixels as determined by scanning function such as harmonic sinusoidals. (3) Compressed

Sensing: A single sensor take number of measurements less than number of pixels and image

is reconstructed through l1 minimization algorithms. In general, CS approaches fall short in

two aspects: (1) Nyquist rate random/speckle patterns are required for random mixing. (2)

By its nature, CS approach only works for sparse signals.

In this section, Single Pixel Imaging through Basis Scan approach has been discussed.

Unlike CS, the object is illuminated with complete patterns associated with particular basis.

The basis can be Fourier scan[56, 55], wavelet scan[140], wavelet based on Haar transform

[59] or hadamard basis[57]. However, the processing time is very slow due to the limitation

of the components used. Previous methods utilizes either Programmable pattern generator

which is limited in bandwidth and expensive[59, 55] or Digital MicroMirror Devices[57]

which are limited in speed.

In this section, N-step phase shifting(N = 4) sinusoidal structured illumination has been

presented for Fourier basis scan as illustrated in [56, 55]. In general, the method can be

demonstrated for N ≥ 3 [56].The method with N=4 has been illustrated below.

Theory of Signal sensing with Fourier spectrum acquisition: The information signal

either a 1D RF signal or a vectorized 2D image denoted as xN×1 with sampling time of

δ t. Here, Number of samplesN is relative term dependant on speed of signal generator.

Instead of sampling the signal with binary patterns as in CS method or traditional Nyquist

sampling method, 4-phase shifted sinusoidal patterns are considered for mixing and the dot

product of both vectors is considered as measurement that can be acquired with very low

speed photodiode and electronic digitizer. The sampling illumination patterns are harmonic

frequencies whose fundamental frequency is inverse of overall length of the information

signal xN×1, f .

f =
1

N ×δ t
(2.24)
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Fig. 2.12 Signal sensing by Fourier spectrum acquisition : Matlab simulation example

When signal x is multiplied with cosine signal of frequency f and phase 0, and overall

summed power measured as msmt0,

msmt0 = xN×1.cos(2π f Nδ t) (2.25)

Similarly when phase shifted by π

2 ,π ,3π

2 , the measured powers are denoted as below.

msmt π

2
= xN×1.cos(2π f Nδ t +

π

2
) (2.26)

msmtπ = xN×1.cos(2π f Nδ t +π) (2.27)
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msmt 3π

2
= xN×1.cos(2π f Nδ t +

3π

2
) (2.28)

Combining above equations, the spectral component at the frequency f can be obtained as,

y = (msmt0 −msmtπ)+ j(msmt π

2
−msmt 3π

2
) (2.29)

Taking m measurements by tuning the frequency from f to f × (N −1),

ym×1 = (msmt0 −msmtπ)m×1 + j(msmt π

2
−msmt 3π

2
)m×1 (2.30)

The reconstructed image or signal can be obtained by computing inverse Fourier transfor-

mation of ym×1. The compression ratio is 4m
N .

This has been illustrated with a simulation as shown in Figure 2.12.

Due to the limitations of speed and cost involved in several approaches, all-optical

methods for Fourier basis scan is highly desired. In chapter 5, an all-optical PTS approach

for Fourier spectrum acquisition has been proposed and experimentally demonstrated for

broadband RF signal detection based on spectral shaping using MZI. Without using any

high-speed electronic signal generator, modulator and photodetector, this method achieves

data compression and completely eliminates the electronic bottleneck in high-speed RF

spectrum sensing. Though this method is an alternative for aforementioned methods such as

compressed sensing and AST, the record time is longer. However, the information can be

obtained without any need for random sequence. The system capturing bandwidth increased

to 150GHz hence the system’s bandwidth is limited by signal sensing MZM whose bandwidth

is limited [141].

Other than aforementioned methods, the data compression can also be achieved by

collecting changes in sequence of scans such as run-length encoding [142].



Chapter 3

Photonic Compressed Sensing for Data

Compression

This chapter discusses research work on application of two approaches of Photonic imple-

mentation of Compressed Sensing systems explained in chapter 2. (1) Time Domain Photonic

Compressed Sensing system (abbreviated as TD-PCS) for Optical Coherence Tomography

and FBG sensing. (2) An improved approach for Spectral Domain Photonic Compressed

Sensing (abbreviated as SD-PCS) has been proposed and demonstrated for blind RF spectrum

sensing and FBG sensing.

3.1 Time Domain Photonic Compressed Sensing for Opti-

cal Coherence Tomography

In this section, the method of Time Domain Photonic Compressed Sensing for Optical

Coherence Tomography(abbreviated as TD-PCS-OCT) system has been experimentally

demonstrated. In following subsections, background on OCT systems has been presented

followed by our approach of achieving data compression in OCT system by using time
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domain photonic compressed sensing mechanism.

Remainder of this section 3.1 is an extended or modified versions of published papers

[65, 63, 61, 64].

3.1.1 Background on Optical Coherence Tomography

Optical coherence tomography (OCT) is an indispensable tool for high-resolution volumetric

scanning of the internal structure of an object. Since its invention [92], OCT has been used and

further improved as an in-vivo diagnostic tool for biological tissues such as ocular structures

[93] with resolution of few micrometers, finer than conventional ultrasound scanning as

illustrated in Fig. 3.1. OCT measures reflection profile of optical beam which is termed as

Axial Scan or A-scan. By measuring several A-scans produces B-Scans and stack of several

B-scans produces volumetric scanning.

OCT has applications in different fields depending on the wavelength regime used. OCT

at visible wavelengths are mainly used in biomedical fields[143, 144]. OCT at 1050 nm

has applications in biomedical field that requires deeper penetration and enhanced imaging

range[145].The optical wavelengths around 1300 can be used for applications requires deeper

penetration but limited by water absorption. OCT at long wavelengths from 1300nm to

1550nm and above is mainly used for industrial applications for Non-Destructive Testing,

material characterization and imaging the paintings[146]. Recently, 4µm OCT has been

demonstrated for analysing metallic structures[147]. In this thesis we discuss OCT in 1550nm

regime for proof of concept application in Non Destructive Testing.

As shown in Fig 3.1, the resolution is improved for OCT system in comparison with

standard clinical practices such as MRI,CT, Ultrasound and the penetration depth is improved

compared to confocal microscopy. On the other hand, since OCT provides high-resolution
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depth-resolved images of strongly scattering media in a contact-free way, this technique has

also been proposed for non-biological applications, such as non-destructive testing (NDT)

and contactless material characterization [148]. High-speed OCT is highly desirable for NDT

applications where fast image acquisition is essential. Examples include observation of rapid

dynamic processes and inspection of fast moving objects without motion artifacts.

The discovery of Fourier-Domain OCT (FD-OCT) has provided higher scan rates, offering

greater stability and better signal-to-noise ratio compared to traditional time domain OCT

methods [149]. In the last decade, extensive efforts have been made to increase the utility of

FD-OCT towards further higher measurement speeds. Impressive MHz axial scan rates have

been achieved by using a new type of high-speed frequency-sweeping optical source based

on Fourier-domain mode locking (FDML) [150], and by using optical channelled spectrum

measurement [151]. An FDML laser consists of longer cavity length, a semiconductor

amplifier and a tunable Fabry-Perot filter enabling higher scanning speed. Apart from
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targeting high-speed axial scanning, Master-Slave interferometry [152] was recently reported

as an alternative high-speed solution for real-time en-face display of frequency-domain

OCT images. FD-OCT can be subdivided as Spectral Domain OCT (SD-OCT) and Swept

Source OCT (SS-OCT). In SD-OCT, a broadband light source is used in combination with

spectrometer[15, 12]. In SS-OCT, a tunable light source is used in combination with high

speed photodetector[12].

In this thesis, SS-OCT has been mainly focussed followed by Photonic Time Stretch OCT

method which is considered to be a variant of SS-OCT. In general, any SS-OCT measurement

system is ideally expected to be :

1. Ultra high axial resolution determined by the tuning bandwidth and source wavelength

2. High axial scan(A-scan) range which depends on the line width of each of the source

wavelength while penetration depth depends on sample’s absorption/reflection spectra.

3. High Sensitivity which depends on the interference of the reflection profile with

the reference optical beam which depends on the optical line width and receiver’s

sensitivity

4. High A-scan rate/ high A-scans per sec which depends on the wavelength sweeping

speed of the source.

5. Lower number of acquisition data samples for an OCT signal to be stored.

6. Within the sampling range of the detector which is a photodetector.

To address high speed A-scan rates, PTS technique has also been explored [153–156]. As

explained in chapter 2, this method uses large chromatic dispersion in optical fibres to map

the broadband spectrum of an ultra-short optical pulse into a temporal waveform. Therefore,

frequency-domain OCT measurement can be achieved alternatively in time-domain using

a high-speed single-pixel photodetector (PD), which enables PTS-OCT to operate at the



3.1 Time Domain Photonic Compressed Sensing for Optical Coherence Tomography 43

axial scan rate equivalent to the pulse repetition rate of the laser, typically ranging from tens

of MHz to even GHz. PTS-OCT was first implemented in the fiber-optic communication

band (i.e., ∼1550 nm) [153], in which ultrafast PDs and good dispersive elements with

large dispersion-to-loss ratio are commercially available. PTS-OCT operating at a shorter

wavelength range has also been implemented offering better axial resolution and less water

absorption in biological samples [154]. Amplified time stretch OCT with greatly improved

sensitivity based on broadband Raman amplification has been recently demonstrated to allow

high-speed OCT imaging of biological tissues [155, 156].

While the PTS technique has enabled high-throughput OCT measurement due to the

use of high-speed hardware, the instruments inherently produce an extremely high-rate data

volume. For example, for a PTS-OCT system running at an axial scan rate of nearly 100

MHz [154], with each OCT waveform having one thousand sampled pixels, and a high-speed

ADC with a typical 10 bits of digitization accuracy [76], the produced data rate can be as

high as one trillion bits per second. This deluge of OCT image data will overwhelm even

the most advanced data acquisition circuits in acquiring high speed data and the backend

digital signal processors in processing this huge information.Therefore, new and efficient

photonic approaches, to address this extremely broadband bandwidth, emerging massive data

problems in ultra-fast OCT systems.

If the Axial scan(A-scan) of PTS-OCT produces a sparse reflection profile with only few

peaks in transformation domain, Compressed sensing can be used to reduce the number of

samples per A-scan for a set of random patterns and this can be extended to entire volumetric

scanning. As a result of reduced number of samples, the overall scanning time can be reduced.

For detecting the samples, a very low speed photodetector can be used. However, the process

requires 2 additional components compared to PTS-OCT. A high bandwidth AWG is needed

to produce high speed random binary sequence and an electro-optic modulator is required to

modulate the electrical random sequence to optical carrier.
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To reduce the number of samples, research efforts have also been made to explore the use

of CS method in OCT systems for data compression. For example, in [157], a CS method

has been employed in post processing to reconstruct 3D OCT images from a subset of the

original images by exploiting the image sparsity in certain transform domain. In [158], CS

has been implemented in spectral domain OCT to reduce the total amount of original data

from a CCD camera. The random under-sampling of OCT spectral data was achieved by

randomly addressing the pixels in the CCD camera or applying a pre-set k-space mask [159].

Various reconstruction algorithms based on non-local approach [160] and energy-guided

learning approach [161] have been studied to produce better reconstruction results from

under-sampled data sets. Graphics processing units (GPU)-based parallel processing has

improved reconstruction speed and achieved real-time CS spectral domain OCT [162].

In this work, TD-PCS method has been explored and experimentally demonstrated for

application of Optical Coherence Tomography (abbreviated as TD-PCS-OCT) to address

high speed A-scan rate requirement and low sample acquisition. Thus, basic limitation of

Nyquist-Shannon sampling principle has been overcome at the detection unit and importantly

the need for high speed electronic detectors has been reduced. Both random mixing and

signal integration are implemented in the optical domain based on temporal modulation of

time stretched optical pulse using PRBSs and pulse compression using SMF with opposite

dispersion value. The proposed method not only overcomes the bottleneck of big data

problems [163] but also provides an economic alternative to high-speed PTS-OCT data

acquisition as a very low speed (50MHz) detector is capable enough to capture compressed

OCT data, which otherwise demands tens of GS/s sampling rate [153–156].

Note: Conventionally TD-OCT is a method that has been developed for OCT volumetric

scanning in time domain. However, in this context, Time domain should be understood as

time domain photonic compressed sensing method developed for photonic time stretch OCT

method.
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Fig. 3.2 Block diagram of the proposed TD-PCS-OCT experimental setup.

The remainder of this section is organized as follows. the principle of the proposed

TD-PCS-OCT system has been described in detail. The simulation results to verify the

optical system for randomization and integration with reconstruction algorithm has been

presented in section 3.1.3. Experimental demonstration of data compressed PTS-OCT for

a single-layer sample with various depth profiles is carried out and presented in section

3.1.4. A new optical compressive sensing scheme based on dual pulse compression to

improve the reconstruction frequency resolution is demonstrated and reported in section

3.1.5. Synchronization procedure followed in our system has been presented in section 3.1.6.

In section 3.1.7, our evaluation of a number of reconstruction algorithms for TD-PCS-OCT

is presented. Discussions on potential improvement in compression ratio are provided in

section 3.1.8. Finally, the work is summarized in section 3.1.9.
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3.1.2 Principles

Schematic diagram of our proposed TD-PCS-OCT system is shown in Fig. 3.2. The optical

source is a passive MLL that produces a series of broadband ultra-short optical pulse train.

The optical pulse is first stretched by a DCF generating a broadband passive wavelength

swept optical carrier. The stretched pulse is amplified and sent to a Michelson interferometer

for real-time spectral-domain OCT measurement. Each frequency component of the pulse

spectrum hence illuminates the sample successively in time. The back-reflected pulses from

different layers of the sample are interferometrically combined with an unmodulated pulse

reflected from a reference mirror at the optical coupler, resulting in an interference fringe

in the time domain. The concept of PTS-OCT can also be understood based on frequency

or wavelength-to-time mapping: depth information of the sample is first encoded to optical

pulse spectrum, which is further mapped to a temporal waveform by large group velocity

dispersion (GVD) of the DCF. The wavelength-to-time mapping relation is written as ,

y(t) = X(ω)
∣∣∣
ω= t

Φ̈0

(3.1)

ω =
t

Φ̈0
(3.2)

∆λ =
∆t
Ψ̈

(3.3)

where Ψ̈ is the total chromatic dispersion (in ps/nm) of the DCF. Finally a spectral inter-

ferogram can be captured in real time using a high-speed single-pixel photodetector.The

spectrum of each broadband pulse are one-one mapped to the temporal domain by large

Group Velocity Dispersion (GVD), Φ̈0 of the DCF as explained [77] and in chapter 2 and

re-iterated with equation 3.3.
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Interferometric setup: In the Michelson-type interferometer set up, one optical fibre arm

ends with a fixed fibre Faraday mirror and other arm is focused onto a moveable mirror,

which emulates a single reflection-layer sample. This interferometer set up produces an

interference fringe pattern in both the time and frequency domains. The optical path length

difference between two arms is considered to be

∆l = (ngL−L1) (3.4)

where ng is the refractive index of the fibre in the fixed arm, L is the optical fibre length in

fixed arm, L1 is the free space length between the collimator and the tunable mirror. Free

spectral range(FSR) in terms of frequency and wavelength can be calculated as,

∆ν =
c

2∆l
(3.5)

∆λ =
λ 2

2∆l
(3.6)

From equations 3.3 and 3.6, the relation between RF frequency of the interference pattern

and optical path length difference can be established as,

fRF =
1
∆t

=
2∆l
λ 2Ψ̈

(3.7)

Therefore, the optical path length difference and hence the depth information of the

sample can be uniquely determined from the RF frequency at a refresh rate identical to the

pulse repetition rate.

As explained in section 2.2, Compressed sensing theory shows that a frequency-sparse

signal, such as the time-encoded OCT signal, can be recovered from a reduced number of

measurements in a single-pixel receiver scheme such as the PTS-OCT system, which leads

to significant data compression if incoherent set of random patterns are used. This normally
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involves three successive steps [45]: random pattern mixing, integration, and down-sampling.

The original signal can be then reconstructed following a minimization algorithm as explained

in chapter 2. To implement TD-PCS system, each of the spectrally encoded optical pulses are

modulated with a pseudo-random bit sequence (PRBS) using an electro-optical modulator.

The bit rate of the PRBS defines Nyquist rate of the detection system.

3.1.3 Simulation Results

A simulation is first performed using a commercial simulation tool VPItransmissionMaker

to verify the method. The schematic shown in Fig. 3.2 is considered and the input optical

pulse is assumed to have a Gaussian shape with a full-width at half maximum (FWHM)

of 800 fs and repetition rate of 50MHz, and the DCF has total dispersion of 1.28 ns/nm.

The original ultra-short optical pulse is significantly stretched in time after dispersion as

shown with dashed line envelop in Fig. 3.3.a. The sample used in the simulation has a

two-layer structure with a layer-to-layer separation of 0.768 mm. After reflection from the

Michelson interferometer, the spectral interferogram is mapped to a time-domain waveform

due to the frequency-to-time mapping. The obtained waveform is shown in Fig. 3.3.a with

solid line. Since reflection from each layer within the sample turns into unique frequency

with respect to the reference arm, each path length difference converts to a single-tone RF

frequency in time domain. Fig. 3.3.b shows the corresponding Fourier spectrum, which has

two strong frequency peaks at 4 GHz and 3.5 GHz respectively. The power of the peaks

indicates the strength of reflection from individual layers. An excellent match with the given

model in Eq. 3.7 is observed. Note that there is an additional frequency component close to

the baseband, which is corresponding to inter-layer interference and can be removed during

post-processing.

The encoded and stretched optical pulse carrying depth information is then mixed with a

PRBS pattern of 10 Gbps, which leads to an original signal length of N=200. Signal integra-
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Fig. 3.3 Simulation results for a two-layer PTS-OCT measurement. (a) Temporal interference
pattern as a result of path length difference. The time-stretched original pulse is shown in red
dotted line. (b) The spectrum profile of the optical interference pattern, clearly showing two
carrier frequencies of 3.5 GHz and 4 GHz. (c) The reconstructed signal in time domain using
70 measurements. (d) The reconstructed Fourier spectrum showing two strong tones which
match with the original signal.

tion is realized based on pulse compression using a Single mode Fibre (SMF) with opposite

dispersion profile, which generates a single measurement result. Multiple measurements are

implemented with different PRBS patterns and used to run l1 minimization reconstruction.

By taking 70 measurements, the reconstructed DFT domain signal is shown in Fig. 3.3.d and

corresponding time domain representation is calculated using inverse Fourier transform and

shown in Fig. 3.3.c. It is evident that a good reconstruction is obtained with a compression

ratio of 35%.
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3.1.4 Experiment Results

To verify the utility of the proposed TD-PCS-OCT system, a proof of concept experiment

has been designed and implemented based on the setup shown in Fig. 3.2. In the experiment,

the optical source is a passively mode locked laser (Calmar Mendocino FP laser), which

produces a series of ultrashort optical pulses with FWHM of 800 fs and repetition rate of

50MHz at central wavelength 1550nm with optical bandwidth of 12nm. After being time

stretched using a DCF(OFS SMFDK-S-020-03-01) with total dispersion of -1.04ns/nm, the

optical pulses are amplified and directed to a Michelson-type OCT setup where one arm is

an optical fibre ended with a fibre Faraday mirror and the other is in free-space towards a

moveable mirror emulating as a single-layer sample. Tuning to a particular path difference,

the depth profile is encoded into the RF frequency of the mapped temporal waveform.

The first five consecutive pulses are captured using a high-speed PD and a real-time

oscilloscope and shown in Fig. 3.4.a. The stretched Gaussian pulse is encoded with a single

tone RF frequency indicating the strong single-layer reflection from the sample. The Fourier

transform of the interference waveform is indicated by the red dotted line in Fig. 3.4.e. A

clear peak at 650 MHz is obtained, which corresponds to an optical path length difference

of 0.81 mm. PRBS patterns at 2.5 Gbps are generated by an arbitrary waveform generator

(AWG, Tektronix AWG7122C) as shown in Fig. 3.4.b. Considering Nyquist rate of 2.5 Gbps

and pulse period of 20 ns, the original signal length is N=50. Mixing of PRBS patterns with

the encoded optical pulses is implemented using a 10 GHz MZM with the results captured by

the oscilloscope and shown in Fig. 3.4.c. Passing the randomly mixed pulses through a SMF

with opposite dispersion profile, signal integration has been realized via pulse compression.

The compressed pulses are detected with a 2.5GHz PD and shown in Fig. 3.4.d. The pulses

have a pulse-width of 0.4 ns which is inversely proportional to the PD bandwidth. The

peak power of each pulse indicates the integration of mixed optical pulse and leads to a

single measurement result. Overall 33 measurements have been taken to reconstruct the
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original signal following an l1-Magic minimization algorithm as described in [112]. The

reconstructed DFT domain signal is shown with solid line in Fig. 3.4.f. The target frequency

(650 MHz) has been successfully recovered with a compression ratio of 66%. Fig. 3.4.e

shows the reconstructed time domain signal and the original signal with blue solid and red

dotted line respectively. A good match in time-domain reconstruction has been achieved

and data compression is achieved in system at the cost of reduced axial scan rate. The

effective axial scan rate in this experiment is 1.51 MHz. A better compression ratio (due to

fewer number of measurements) will increase the scan rate as number of pulses required are

reduced.

A second experiment was carried out to verify the utility of the system at different

imaging depths. The moveable mirror is tuned further to get an increased optical path length

difference of 0.99 mm. The mapped spectrally-encoded optical pulse has a higher carrier

frequency of 800 MHz, with its time-domain and frequency-domain representations shown

in Fig. 3.5.a and 3.5.b respectively. The same random mixing and optical pulse compression

processes are carried out. With 33 measurements, the reconstructed time-domain and DFT

domain signals are shown in Fig. 3.5.c and 3.5.d respectively. The reconstructed signal

matches well with the original signal with a compression ratio of 66%.

3.1.5 Time Domain Photonic Compressed Sensing for OCT with Im-

proved Resolution

As demonstrated, the TD-PCS-OCT system achieves significant data compression. However,

it suffers from one difficulty that it can only reconstruct discrete frequency tones (a frequency

grid) in the OCT spectrum, which are harmonic tones of the laser repetition rate, due to the

periodic nature of the optical pulse train. The minimum frequency resolution that can be

resolved is as same as the repetition rate [48]. If the RF frequency is near a midpoint of the
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Fig. 3.4 Experiment results for a single-layer PTS-OCT measurement. (a) The temporal
interference pattern for five successive pulses. (b) The first 5 PRBS patterns. (c) The
modulated waveforms with red marking showing no pattern for exact amount of duration
of a bit 0. (d) The compressed optical pulses using a SMF with opposite dispersion profile.
The peak power of compressed pulses produce the measurements. (e) Overlapped temporal
waveforms for the reconstructed signal (in solid line) and the original signal (in red dash
line). (f) Fourier domain representation of the reconstructed signal (in solid line) and the
original signal (in red dash line).
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Fig. 3.5 Experimental results for a second single-layer sample with different path length
difference. (a) The original interference pattern in time domain. (b) Fourier transform of
the original interference pattern showing a single carrier frequency of 800 MHz. (c) The
reconstructed time domain waveform with 33 measurements. (d) The reconstructed DFT
domain signal clearly identifying the 800 MHz frequency component.

frequency grid, frequency detection will fail [164]. In the application of TD-PCS-OCT, this

difficulty leads to only discrete depth profiles and limits its applications in practical scenarios.

More sophisticated reconstruction algorithms based on joint-sparsity-based matching

pursuit has been proposed to address this issue [165]. Here, a new optical scheme has

been demonstrated based on dual pulse integration that enables the reconstruction of non-

harmonic tones using only the basic minimization algorithm. This will allow frequency

reconstruction resolution less than the pulse repetition rate and unblock the detection of

midpoint frequencies.

In the experiment setup, the optical path length difference is set to be 0.905 mm such that

the carrier RF frequency of temporal interference pattern is 725 MHz, which is obviously not

a harmonic tone of 50 MHz but a midpoint in the frequency grid with 50 MHz separation.
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Fig. 3.6 Experimental results showing data compressed PTS-OCT with improved frequency
resolution. (a) The original temporal interference waveform with a carrier frequency of 725
MHz. (b) Its Fourier transform shows two closely located frequency peaks at 700 and 750
MHz. (c) The constructed temporal waveform based on normal one pulse integration. (d)
Reconstructed DFT signal showing only the 750 MHz signal. This indicates a total failure
in frequency identification. (e) and (f) show the reconstruction results based on dual pulse
integration. The 725 MHz frequency component is successfully identified.
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The original spectrally-encoded temporal waveform is captured using the oscilloscope and

shown in Fig. 3.6.a and its Fourier transform is plotted in Fig. 3.6.b. Two closely located

frequency peaks at 700 MHz and 750 MHz are presented due to the frequency grid. After

normal compressive sensing process, the reconstructed time-domain and DFT-domain signals

are shown in Fig. 3.6.c and 3.6.d respectively. The reconstructed frequency shows 750 MHz

only and identification of actual 725 MHz frequency has totally failed. This is because 750

MHz component has a slightly higher power than 700 MHz as shown in Fig. 3.6.b and the

reconstruction algorithm only can pick up one stronger frequency. Here, two successive

PRBS-mixed optical pulses have been integrated to form one measurement element for

compressive sensing. As shown in Fig. 3.6.f, the actual carrier frequency of 725 MHz is

accurately identified thanks to dual pulse integration, and a compression ratio of 66% is

achieved. Note that the detection speed has to be reduced as a trade-off.

3.1.6 RF synchronization

In any system consisting of individual electronic and optical sources, it is essential to

synchronize their electronic clocks to reduce any phase fluctuations, distortions in results. In

the scope of this thesis, it has been mandatory to synchronize the pattern generator(In our

case, Tektronix AWG7122C) with Mode locked laser(calmar Mendocino FP Laser) which

emits optical pulses at a repetition rate of 50MHz.

Normally it is custom to use a derived clock from pulsed laser by detecting with a high

speed photodetector and isolating a single RF frequncy comb by a narrow bandpass filter.

This comb since its a single tone signal, can be used as stable clock for rest of the system

such as RF signal generator. The process is depicted in Fig. 3.7.

However, in our case, since the repetition frequency of the mode locked laser is 50MHz,

the comb spacing is 50MHz after being detected by Photodetector. To our knowledge,

50MHz narrow bandpass filter that can completely attenuate remaining combs and that has
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Fig. 3.7 Conventional procedure for RF synchronization

large frequency range has not been available or is too costly. After several attempts, an

alternative approach has been considered.

Measurement setup

MLL

AWG or RF generator

Oscilloscope

Fig. 3.8 Procedure followed in this thesis for RF synchronization

In all our experiments, Arbitrary waveform generator has been used as the signal source.

The MLL has been generating an impulse clock at 50MHz repetition rate. Using this

as reference clock with help of co-axial cable, internal clock multiplier factor has been

inputted to AWG system software to compute the data rate of the PRBS or any arbitrary

signal. For example, to generate 2.5GS/s clock, 50 is given as multiplication factor. The

synchronization setup is shown in Fig. 3.8. For faithful reconstruction of the information,

the MLL clock should be synchronized with PRBS random pulses. Any offset may result in

poor reconstruction.
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3.1.7 Evaluation of Minimization Algorithms in Compressive Sensing

PTS-OCT

This section 3.1.7 is a collaboration work done with Forensic Imaging Group, School of

Physical Sciences, University of Kent

Thus far in this work, a primal-dual interior point method for l1 minimization has been used

for PTS-OCT signal reconstruction. In this section, a number of alternative optimization

algorithms for the reconstruction of PTS-OCT signals have been compared in terms of their

reconstruction accuracy and efficiency. This will provide useful information in selection of

appropriate algorithms for this particular PTS-OCT scheme.

In the context of compressive sensing, the time-stretched measurements can be modelled

as a basis pursuit or a lasso l1 minimization problem. Note that these minimization problems

have a slightly different mathematical form to Eq. 2.16. Five sparsity promoting algorithms

were compared: primal-dual interior point method (l1 Magic) [166], alternating direction

method for multipliers for basis pursuit (ADMM BP) and lasso (ADMM Lasso) [167], lasso

method using coordinate descent (Matlab Lasso) and its standardised version [168], and

NESTA [169].

3.1.7.1 Reconstruction accuracy

To make a fair comparison, without loss of generality, the original PTS-OCT signal is

set to have four dominant carrier frequencies (2.6 GHz, 2.9 GHz, 3.6 GHz and 4.6 GHz)

corresponding to a four-layer sample. A PRBS vector with probability of 0.5 and sampling

rate of 10 Gbps is used to mix with the original PTS-OCT signal, which makes the overall

signal length to be 200. The reconstructed frequency spectrum is shown, at a common

compression ratio of 40% (80 measurements), for each of the five algorithms as shown in Fig.

3.9. The red line is the ground truth signal and blue line represents the reconstructed results.

NESTA produces an acceptable result in which the dominant peaks are all reconstructed and
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(a) (b)

(c) (d)

(f)(e)

Fig. 3.9 The reconstructed frequency domain signals for all five algorithms corresponding
to a compression ratio of 40%. Red line is the ground truth signal and blue line represents
reconstruction. From left to right, top row: (a) NESTA and (b) l1 Magic; middle row: (c)
ADMM Basis pursuit and (d) lasso; bottom row: (e) Matlab lasso for non-standardised data
and (f) standardised data respectively.

l1 Magic performs similarly well. ADMM Basis pursuit produces a less noisy signal but the

energy at the frequency bands of interest is suppressed, which results in a less accurate result.

This is also the case for ADMM lasso. Matlab lasso produces a large frequency drift for the

weakest frequency peak at 4.6 GHz.

The reconstruction accuracy was evaluated using the RMSE in the frequency domain.

Reconstruction errors were first calculated, over the whole frequency range, for different

numbers of measurements ranging from 30 (15% compression ratio) up to a maximum of

200 measurements (no compression) as shown in Fig. 3.10.a. The RMSE for the two ADMM

methods is unstable but exhibits a decreasing trend w.r.t. measurements. Conversely, l1

Magic and NESTA show a smoothly decreasing error w.r.t. measurements and have the
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lowest error of the 5 algorithms tested. For the Matlab lasso algorithm, standardization

reduces the error for fewer measurements but the error converges with non-standardised

result as the number of measurements increases.

Since the four dominant frequency bands indicate the most important information, RMSE

was calculated again for four dominant frequency peaks only with the results shown in

Fig. 3.10.b. Similar to Fig. 3.11.a, NESTA and l1 Magic yield the smallest error over the

frequency range. The reconstruction error for ADMM basis pursuit is again very unstable

w.r.t. the number of measurements. Note at 70 to 90 measurements, ADMM basis pursuit

achieves similar results to NESTA. This implies its advantage in reducing noise. In contrast,

ADMM lasso remains stable at high sampling densities. Furthermore, standardisation for

Matlab lasso has little effect on RMSE.

3.1.7.2 Computation cost

For each algorithm, the processing time for reconstruction was measured 5 times and averaged.

The code was run in Matlab on a 64-bit Windows 10 machine with an Intel Core i7 CPU @

3.07GHz and 8GB RAM. As shown in Fig. 3.11 the processing time for most algorithms

is within 1 second except ADMM Basis pursuit which takes longer time than 1.5 seconds,

with the peak at 2.4 seconds. This is due to its slow converge speed. ADMM is an iterative

algorithm that executes quicker when the number of iterations is reduced at the expense of

accuracy. The ADMM lasso is the fastest of the 5 algorithms with relatively small increase in

computation time w.r.t. the number of measurements. Note, NESTA takes much more time

than l1 Magic although they have similar RMSE.
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(b)

(a)

Fig. 3.10 Evaluation of reconstruction accuracy. (a) RMSE of reconstructed signal calculated
over entire frequency range. All five candidate algorithms show a descending trend. NESTA
and l1 Magic algorithm yield the smallest RMS error. (b) RMSE of reconstructed signal
calculated for the frequencies spanned by the 4 dominant peaks only. Error rates similar for
all five algorithms for small number of measurements. Relative performance of NESTA and
l1 Magic improves as the number of measurements increases.
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Fig. 3.11 The computational time as a function of the number of measurements. ADMM
Lasso, Matlab Lasso, Matlab Lasso (standardized) and l1 Magic show small linear increase
with respect to number of measurements. Basis pursuit is unstable for measurements <110
due to slow convergence rate

3.1.8 Discussions

In our proof-of-the-concept experimental demonstrations presented for TD-PCS-OCT system,

33 measurements were required to reconstruct the original signal with a signal length of 50,

leading to a compression ratio of 66%. There is great potential to improve the compression

ratio based on the following three principles.

Despite a single carrier RF frequency to be identified for a single-layer sample, the

reconstructed DFT domain signal is not a single-tone but a Gaussian frequency distribution

with a 3-dB bandwidth of 200 MHz. In signal reconstruction, more calculation resources

and hence more measurements are required to reconstruct the whole Gaussian frequency

band, which however does not carry any useful information (apart from the central peak

frequency) leading to a sacrificed compression ratio. This can be illustrated by simple

MATLAB simulation as shown in Fig. 3.12.

Considering a single tone 1 GHz signal at 10 Gb/s sampling rate, the overall signal

length is N = 200 as shown in Figure 3.12 in both frequency and time domains in red
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Fig. 3.12 Simulation results of compressive sensing of single tone signal 1GHz with L1
reconstruction algorithm. a) FFT spectrum of the original (red) and the reconstructed (blue)
signals; b) Time domain of original(red) and reconstructed(blue) signal

dots. A set of binary random sequences have been mixed and integrated with the signal.

Using L1 reconstruction, the reconstructed signal in FFT and time domains are shown

in Figure 3.12 in blue color. As observed, the bandwidth occupied by the single tone is

50MHz and the number of non-zero tones are 3 and the number of measurements are as

low as 10 making the compression ratio 5% whereas the OCT signals in the experiments

and simulations in previous sections were convolutions of tones with time stretched MLL

Gaussian pulses, which results in semi sparse signal with more non zero frequency tones, 27

in single layer experimental results which need to be retrieved. This concept is similar to axial

scan resolution limit in SS-OCT system. Figure 3.4 shows the single tone signal convoluted

with time stretched MLL Gaussian pulses. As the number of measurements required linearly

dependent on sparse tones, the number of measurements required are higher in this case. This

issue can be improved by stretching the optical pulse further to a longer time window. Then

the Fourier domain bandwidth will be effectively reduced. With a full-stretch of 100% duty

cycle, the Fourier domain bandwidth for each carrier frequency can be as low as the pulse

repetition rate [170], which is 50 MHz in our case. The compression ratio can be improved

by 4 times.
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Secondly, the compression ratio can be significantly improved by increasing the PRBS

rate. In our demonstration, PRBS patterns are sampled at 2.5 Gbps, which is purely limited

by the bandwidth of our AWG equipment. Low Nyquist rate not only limits the compression

ratio but also the detection bandwidth of the PTS-OCT system. High data rate PRBS

generator is a real challenge due to the electronic bottleneck. One solution is to partially

compress over-stretched and PRBS-modulated optical pulse to increase the effective PRBS

sampling rate [165].

Thirdly, the problem of Gaussian frequency band in the reconstructed DFT domain signal

can be tackled from a different perspective. Here, PRBS-modulated Gaussian pulse has

been used as an analog random bit sequence, rather than binary PRBS patterns as used in

traditional compressive sensing systems. The use of Gaussian-shape analog random bit

sequence in the reconstruction algorithm will effectively remove the Gaussian envelope of

the information-carrying optical pulse and hence reduce the bandwidth of carrier frequencies

in DFT domain. This method can be implemented purely in the digital domain during

signal reconstruction and no hardware changes, such as pulse over-stretching and partially

compression, are required. More simulations are carried out to verify this approach with

parameters as same as used in previous sections. As shown in Fig. 3.13, the bandwidth

of frequencies of interest (3.5 and 4 GHz) has been greatly reduced due to the removal of

Gaussian envelope (see inset of Fig. 3.13). Only 20 measurements are required to reconstruct

the signal shown in Fig. 3.13, leading to a greatly improved compression ratio of 10%. The

method has been improvised to spectral filter with cascaded MZI structure to eliminate the

electronics mostly. The method has been presented in next section.

3.1.9 Conclusion

In this section, a data compression approach has been proposed and experimentally demon-

strated based on for OCT systems. Random mixing and integration processes were imple-
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Fig. 3.13 Simulation result showing improvement of compression ratio using a Gaussian-
shaped analog random bit sequence. The bandwidth of frequency peaks have been reduced.
The inset shows the reconstructed temporal waveform, clearly indicating the removal of
Gaussian envelope.

mented in the optical domain directly free from the electronic bottleneck. High-throughput

axial scanning at 1.51 MHz has been achieved using low-speed data acquisition at 50 MS/s

due to photonic compressive sensing with a compression ratio of 66%. A new dual pulse

integration approach has been proposed and experimentally demonstrated to improve the

frequency resolution of the system. Though simulation, a Gaussian-shape analog random bit

sequence was used in the reconstruction algorithm, which leads to an improved compression

ratio of 10%. In addition, a number of optimization algorithms for the reconstruction of the

PTS-OCT signals have been studied in terms of reconstruction accuracy and efficiency.

3.2 Spectral Domain Photonic Compressed Sensing for blind

spectrum sensing

As explained in chapter 2 and in previous section, the main limitation in TD-PCS system

is the requirement of high-speed random sequence and high speed electro optic mixing.

In this section,a novel approach of Spectral Domain Photonic Compressed Sensing (SD-
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PCS) system has been demonstrated. In the following subsections, principle of generating

random patterns in optical domain has been presented followed by the application in blind RF

spectrum sensing. The method has been extended to Linearly Chirped Fibre Bragg Grating

based strain sensing.

In this section, novel approach of SD-PCS method based on cascaded MZI has been

demonstrated for detection of single-tone and two-tone RF signals with <25% compression

ratio using only 50 MHz detection bandwidth. In contrast to other methods, analog random

patterns have been generated using a spectral filter based on wavelength to time mapping

in time stretched optical pulses [65]. The spectral filter using two cascaded dispersion

unbalanced Mach-Zehnder Interferometers (MZIs) provides random spectral response. This

spectral response changes with change in optical delay of one of MZI structure. Since, no

high speed PRBS required in this approach, electronic bottleneck is overcome in random

mixing. While in previous section, 66% compression ratio has been reported, which is due

to convolution of encoded information with electrical spectrum of time stretched Gaussian

optical pulse. This method reduces the compression ratio significantly to less than 20% as

the Gaussian analog random sequence is used as a random pattern to retrieve the encoded

information.

The remainder of this section 3.2 is organized as follows. In section 3.2.1, the principle

and methods of the proposed system have been explained in detail. Section 3.2.2 is presented

with simulation results to verify proposed system followed by experimental results in section

3.2.3. Discussions on improvements are provided in section 3.2.4. The work is summarized

and concluded in section 3.2.5 .
Remainder of this section 3.1 is an extended or modified versions of published conference

paper [66].
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3.2.1 Principles
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Fig. 3.14 Schematic for SD-PCS experimental setup based on cascaded MZI structure with
variable optical delay element

Schematic diagram of our proposed SD-PCS system based on cascaded MZI structure

is shown in Fig. 3.14. The overall principle has been explained in subsections as Random

pattern generation, Photonic Compressed sensing process.

3.2.1.1 Random pattern generation

The optical source is a passive mode locked laser (MLL) that produces a series of broad-

band ultrashort pulses. Each optical pulse is time stretched by Dispersion Compensating

Fibre(DCF) to map the temporal domain to Fourier domain and are processed with Cascaded

MZI structure as shown in Fig. 3.14. MZI-1 response shows the chirped response with

central frequency dependent on optical delay. The spectral response can be modelled as,

H1(ω) =
1
2

[
1+ e− jω∆t1+ j φω2

2

]
(3.8)
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where ∆t1 is the fixed time delay between two arms, and denotes the dispersion unbalance

controlling chirp rate and FSR of MZI filter respectively. The chirped response is processed

with MZI-2 with opposite chirp rate to produce a cascaded response. The convolution of

MZI-2 impulse responses produces a pseudo random pattern which can be changeable with

varying the delay of one of the MZIs. The cascaded spectral response of MZIs can be

modelled as,

∣∣∣H(ω)
∣∣∣= [cos

[
φω2

2
+

ω(∆t2 −∆t1)
2

]
+ cos

[
ω(∆t2 +∆t1)

2

]]
(3.9)

where ∆t2 is the variable time delay between two arms in the second MZI. It is crucial that

these patterns should be distinct for successful reconstruction. This distinctiveness can be

modelled by calculating cross correlation between any 2 patterns.

3.2.1.2 Photonic Compressed Sensing

Unlike the conventional systems where the random sequence is either generated by electronic

AWG or SLM/DMD, in this case, the random patterns are generated in optical domain.

Hence, compressed sensing process can be subdivided into 3 steps. 1) Calibration phase:

The patterns are measured with high speed detector and high speed oscilloscope one time

and are stored in computer against the variable delay values. 2) Sensing phase: Utilizing

all-optical mixing and integration methods, the integrated power measurements are taken at

50MS/s rate which is the repetition rate of MLL. 3) Post-processing phase: Utilizing Digital

Signal Processing tools, the information is reconstructed.

1.Calibration phase:

The patterns are directly measured using high speed photodetector and oscilloscope. Although

the pattern is acquired with sampling rate of oscilloscope with length N, the over all nyquist

rate of the system is based on minimum spectral power received by photodetector and

maximum sampling rate of the oscilloscope. Hence the bandwidth of the overall measurement
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system can be estimated as,

fmax = min
(maximum Sampling rate of oscilloscope

2
, fmaxby photodetector

)
(3.10)

Hence, the sampled random patterns are sufficiently integrated so that the over all length

of the signal that can be determined as,

N =
2× fmax

MLL repetition rate
(3.11)

2.Sensing phase:

Once the spectral range is determined, the unknown RF signal, xN×1 which is assumed to be

sparse in DFT domain ψN×N , the sparse representation of x can be written as, s = ψx. When

the RF signal mixed with m random patterns φm×N generated from cascaded MZI structure

by varying the optical delay in MZI-2 with M different values, the integration produces M

compressed measurements, yM×1 .

3.Post-processing phase:

By inputting the measurement vector ym×1 and stored random patterns with effective length

N estimated as per 3.11 and solving the l1 minimization equation explained in section 2.2,

the unknown RF signal can be reconstructed in Fourier domain and temporal domain. During

this entire process the RF signal generator and oscilloscope are synchronized to MLL to lock

the optical carrier with RF signal. The static delay in MZI arm is compensated by adding

additional fibre in other arm.

3.2.2 Simulation Results

In this section, simulation results have been presented using VPItransmission maker software.

As shown in Fig 3.14, MLL generates broadband ultra-short optical pulse train with 50MHz
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Fig. 3.15 Temporal and spectral domain responses of cascaded dispersion-unbalanced MZIs.
(a) Spectral domain output and (b) time domain response of the first MZI with a fixed time
delay of 50ps; (c) individual spectral domain and (d) time domain response of the second
MZI alone with delay of 50ps

repetition rate with FWHM of 800fs. The optical pulses are time stretched using 960 ps/nm

DCF.

The first MZI has fixed optical delay line in one arm and 500m Single mode Fibre in

another arm. This produces a chirped response as shown in Fig.3.15. Fig. 3.15.a shows

spectral response and corresponding time domain response is shown in Fig. 3.15.b. The

chirp rate is controlled by Single Mode Fibre (SMF) dispersion and the central frequency is

controlled by fixed optical delay in MZI-1 as per Eq. 3.8. The cascaded MZI responses are

shown in Fig.3.16. Fig. 3.16.a shows temporal response of cascaded MZI when the optical

delay of second MZI is set to 17.5 ps. The corresponding FFT domain is shown in Fig. 3.16.b.

For another delay value of 21.25ps, the temporal and FFT domain responses are shown in

Fig 3.16.c and 3.16.d. The nyquist rate of the patterns can be determined by observing the

RF spectrum of the cascaded MZI responses in Fig. 3.16.b and 3.16.d. The power drops
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Fig. 3.16 Quasi random patterns from cascading effect. a) Temporal domain representation of
Random pattern when variable delay is 17.5ps b) Corresponding FFT spectrum c) Temporal
domain representation of Random pattern when variable delay is 21.25ps d) Corresponding
FFT spectrum e) Correlation of the random patterns generated by varying the delay in second
MZI from 1.25ps to 50ps in steps of 1.25ps

significantly after 10GHz. hence, can be considered as maximum frequency detectable by the

system. One of measure of distinctiveness between the patterns is cross correlation between

the patterns. The cross correlation is measured between the patterns and are presented in Fig.

3.16.e. The maximum cross correlation between any two different patterns is 70.41% with

average cross correlation between any two different patterns is 45.76% after removing the

highly correlated tail part which is low in amplitude.
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Fig. 3.17 Simulation results for 3 tone signal. a) a 3-tone RF signal input repetitive of 20 ns
b) Gaussian random patterns with time delay varying from 1.25ps to 5ps c) Corresponding
mixed signals d) Summed measurements of varying amplitude levels representing the dot
product of random pattern with RF signal d) Output after electro optical mixing with RF
signal e) Reconstructed output in time domain after l1 reconstruction f) Reconstructed
signal in Fourier domain showing successful reconstruction of all 3 tones blue representing
reconstructed signal with red color representing original signal’s FFT representation.
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Each random pattern generated is electro optically mixed with a test 3-tone RF signal

shown in Fig. 3.17.a. The Corresponding FFT domain representation is shown in Fig. 3.17.f

in red color. Time domain random patterns with cascaded MZI response are shown in Fig.

3.17.b. First four patterns are shown with optical delay in second MZI varying from 1.25ps

to 5ps. The mixed patterns are shown in Fig. 3.17.c. Corresponding integrated measurements

are shown in Fig. 3.17.d. each representing the dot product of unknown RF signal with

Gaussian random pattern. The random pattern is down sampled to N=800 as per maximum

frequency condition represented in Eq. 3.10 for faithful reconstruction and for inputting

to l1 minimization program. After generating the random patterns with 40 different delay

values, integration and reconstruction process, the reconstructed signal temporal domain

representation is shown in Fig. 3.17.e and corresponding FFT domain representation is

shown in Fig. 3.17.f in blue color with original FFT is shown in red color. A good match has

been obtained between the original signal and reconstructed signal. The compression ratio in

this case was 5%.

3.2.3 Experimental Results

To verify the utility of proposed SD-PCS system, a proof of concept experiment has been

implemented as shown in Fig. 3.14. In the experiment, a passively mode locked laser (Calmar

Mendocino FP laser) has been used as optical carrier which generates a series of ultrashort

broadband optical pulses with 50MHz repetition and FWHM of 800fs. Following time stretch

of -1.04ns/nm with DCF(OFS SMFDK-S-020-03-01), the optical pulses are processed with

cascaded MZI structure with variable time delay to generate random patterns. The MZI-1

has fixed optical delay (VDL-001) in one arm and 50m fibre in another arm. The response of

MZI-1 with time stretched optical pulse is shown in Fig. 3.18.a. MZI-2 has 500m SMF and

variable optical delay (VDL-002) in one arm and few meter SMF in another to compensate

for any static delay. The individual response of MZI-2 with optical delay 230ps, 330ps are
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Fig. 3.18 Experimentally generated optical random patterns. a) Random pattern of MZI-1
b) c) Cascaded MZI response with 230ps as variable optical delay in MZI-2 set to 230ps e)
Cascaded MZI response with 330ps as variable optical delay in MZI-2 set to 330ps.

shown in Fig. 3.18.b and 3.18.c in inset. The cascaded response of both MZIs are shown in

Fig. 3.18.b and 3.18.c. The corresponding RF spectra of the cascaded response is shown in

Fig. 3.22.a and 3.22.b. on a log scale.

As discussed in previous section, the distinctiveness between the random patterns can

be best described by calculating the cross correlation between random patterns. The cross

correlation for experimentally generated random patterns are shown in Fig. 3.19. The

maximum cross correlation was 76% which is in good agreement with simulated random
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Fig. 3.19 Correlation of the random patterns generated by varying the delay in second MZI
from 230ps to 330ps in steps of 2ps.

patterns. The cross correlation can be reduced further if the optical delay step is increased

which in this case is 2ps.

The experimentally generated random patterns are used for compressed sensing approach

and the results are presented in Fig.3.20. The input two tone RF signal is shown in Fig.

3.20.a. and corresponding FFT domain representation is shown in Fig. 3.20.b showing peaks

at 0.4GHz and 1GHz. The FFT representation of reconstructed signal is shown in Fig. 3.20.d

and time domain representation is shown in Fig. 3.20.c blue color. The smoothened version

of the signal is shown in red color showing a good match with original signal shown in Fig.

3.20.a. With similar procedure, the single tones 0.5GHz and 1GHz were also reconstructed

successfully and are shown in Fig. 3.21.

3.2.4 Discussions

The proposed system has significant advantage over conventional TD-PCS system by means

of all-optical generation, mixing and integration of random patterns with temporally encoded

information. However, finding the nyquist rate of the system is crucial to determine the
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Fig. 3.20 Experimental results with two-tone RF spectrum a) Input test RF signal time domain
b) Corresponding FFT representation c) Reconstructed RF signal in time domain shown in
blue color. The smoothed version is shown in red color for comparison with original RF
signal d) Corresponding FFT representation showing two strong peaks at 0.4GHz and 1GHz.

0 4 8 12 16 20
0

0.25

0.5

0.75

Time (ns)

A
m

p
li
tu

d
e
 (

a
.u

.)

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Frequency (GHz)

S
p

e
c
tr

a
l 
P

o
w

e
r 

(a
.u

.)

0 50 100 150 200 250
0

0.25

0.5

0.75

1

Time (ns)

A
m

p
li
tu

d
e
 (

a
.u

.)

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Frequency (GHz)

S
p

e
c
tr

a
l 
P

o
w

e
r 

(a
.u

.)

a) b)

c) d)

Fig. 3.21 Experimental results with single tone RF spectrum a) Reconstructed 1GHz tone in
time domain b) Corresponding FFT representation c) Reconstructed 0.5GHz tone in time
domain d) Corresponding FFT representation.
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capability. In this section, one of the approach to determine the maximum RF frequency that

can be captured by the system has been discussed. FFT of the random patterns on log scale

has been shown in Fig. 3.22 for four different optical delay values. As it can be observed the

FFT domain has spectral power variation for different frequencies and for different optical

delay values, the spectral power varies for a specific frequency. It can be observed that the

RF spectral power significantly drops after 10GHz implying that the remaining frequency

components’ presence is negligible in the pattern.

Fig. 3.22 FFT representations of the random patterns shown in Fig. 3.18 .a) FFT of the
cascaded MZI structure when optical delay in MZI-2 set to 230ps. b) FFT of the cascaded
MZI structure when optical delay in MZI-2 set to 330ps.

The maximum capturing frequency can be extended to tens of GHz by changing the

length of SMF and adjusting the optical delay values. Few more simulation results have been

presented explaining this proposal.

The proposed schematic is shown in Fig. 3.14. The SMF length in MZI-1 is 5km and

optical delay is adjusted to be 50ps. SMF length in MZI-2 is 5km and optical delay is varied

from 0 to 100ps in steps of 2ps. The cross correlation between the 51 patterns is shown in

Fig. 3.23.a. The maximum cross correlation is calculated to be 67.48%. A 3 tone RF signal

5GHz, 8GHz and 60GHz has been applied as input and has been successfully reconstructed

with 0.6% compression ratio. The Nyquist frequency limit in this case is 100GHz assuming

that the random patterns are calibrated with high speed photo-detectors.
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Fig. 3.23 Simulation results for verifying the bandwidth of the proposed setup using VPI-
transmission maker software. a) Cross correlation between the random patterns b) Test
RF signal in time domain c) Corresponding frequency domain showing RF frequencies
5GHz, 8GHz and 60GHz. d) Reconstructed RF signal from mixing and integration and l1
reconstruction e) Reconstructed RF signal in FFT domain showing strong spectral powers at
exact locations as input RF signal.
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As observed in Fig. 3.23.b and 3.23.d, the spectral powers of original and reconstructed

tones slightly differ as the reconstruction is due to spectral mixing and reconstructed spec-

tral power is governed by the spectral powers of random patterns used in the system. The

photonic compressed sensing system requires predictable random patterns i.e., the random

patterns used for reconstruction and used in mixing should be identical. The optical phase

and poilatization sensitivity will distort the random patterns and these effects need to be miti-

gated by either stabilizing the Mach-Zehnder interferometric setup or monolithic integration

through Photonic Integrated Circuits.

3.2.5 Conclusions

A novel approach of SD-PCS system based on cascaded MZI structure has been demonstrated

for RF signal detection. The technique has potential to sense higher frequency tones of

few GHz and the compression ratio can be as low as 20%. The Nyquist frequency of the

system can be increased further by changing the length of SMF in the MZI arms. Though

bandwidth is ultimately limited by Mach-Zehnder modulator for blind spectrum sensing, this

approach can find potential applications in imaging and optical coherence tomography such

biomedical applications where spatial or spectral domain encoding takes place. However,

one time calibration is needed for storing the random patterns during calibration phase using

high speed digitizer before taking actual measurements.

3.3 High throughput compressed FBG sensing

High-throughput fully distributed fiber Bragg grating (FBG) sensors based on optical time-

stretch frequency-domain reflectometry (OTS-FDR) [171, 28] has proved to be a promising

tool for high temporal and spatial resolution distributed strain sensing. The dynamic dis-

tributed strain information along the FBG sensor can be reconstructed from the instantaneous
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RF frequency of the captured temporal interference waveform. An unprecedented measure-

ment speed of 50 MHz with high spatial resolution of 31.5 µm and strain resolution of 9.1

µε have been demonstrated per 25 mm gauge length. This approach has been successfully

applied to high-speed strain and pressure sensing in dynamic extremes of magnetic materials

[172]. However its capability is essentially limited by the sampling rate and bandwidth of

back-end electronic digitizer. More importantly, this real-time FBG sensor interrogation

system continuously generates huge volume of data at high data rate, which challenges

current electronic circuitry, data storage device, and digital signal processing units. The

electronic bottleneck and big-data challenge in high-throughput FBG sensor interrogation

systems can be addressed with the help of photonic compressed sensing techniques addressed

in previous sections of TD-PCS and SD-PCS systems.

In this section with numerical simulations, the first application of photonic compres-

sive sensing technique in a data-efficient interrogation system has been proposed for high-

throughput distributed FBG sensors, which reduces the bandwidth requirement for photode-

tectors and digitizers and compresses the overall data size using TD-PCS system. TD-PCS

system for FBG sensing has been abbreviated as TD-PCS-FBG system. Followed by this,

SD-PCS system based on cascaded MZI has been simulated as traditional TD-PCS system

requires expensive binary PRBS mixing. With 60% compression ratio, the strain profile has

been reconstructed with TD-PCS-FBG and SD-PCS-FBG systems. The following sections

are purely simulation based approaches modelled in MATLAB.

The schematic of the proposed system is shown in Fig.3.24. The OTS-FBG module

includes a pulsed laser, a reference FBG and a sensing FBG, and a dispersive fiber [171].

Due to the non-uniform strain applied to the FBG sensor, a chirped temporal interference

waveform within a short interval of 20 ns was generated. Each chirped waveform carrying

strain information is mixed with a set of PRBS in digital domain at a bit rate of 20 Gbps, and

fully compressed to form one element of the outputting measurements. The measurements
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Fig. 3.24 Schematic of proposed and simulated TD-PCS-FBG system with traditional binary
PRBS based random mixing.

can be down-sampled at 50MHz, which not only reduces the bandwidth requirement for the

photodetector and digitizer, but also compresses the overall data size. With the knowledge

of PRBS sequence and the measurements, the original chirped signal can be reconstructed

from compressed data set using l1 minimization. All useful frequency information, which

represents the distributed non-uniform strain with a discrete jump, has been successfully re-

covered with 60% compression. As the number of measurements increases, the reconstructed

signal asymptotes towards actual information signal.

3.3.1 Results with Time Domain Photonic Compressed Sensing

In this section, the results obtained with TD-PCS system have been presented for monotonic

FBG strain profile and S-shaped strain profile.

3.3.1.1 Monotonic profile

As shown in Fig. 3.24, a passive mode locked laser is used to generate an optical pulse train

with 20ns repetition rate with 800fs pulse width. The pulses are directed via 60km DCF



3.3 High throughput compressed FBG sensing 81

Fig. 3.25 Simulation results for TD-PCS-FBG system with monotonic strain profile. a.
Original time stretched sensing signal in time domain b. FFT respresentation of the time
domain signal c. Spectrogram of the sensing signal showing linear frequency chirp d. Two
PRBS sequences used for mixing e. Mixed signal with PRBS and sensing signal. f. Time
domain reconstruction of sensing signal upon l1 reconstruction with 62.5% compression ratio
g. Corresponding FFT domain representation h. Spectrogram showing clear chirp profile.
The l1 reconstruction results are repeated for 75 % ,87.5% and 100 % compression ratios and
the time domain reconstruction is shown in Fig. i. l. and o. , corresponding FFT domain
representation in Fig. j. m. and p. , and corresponding chirp profiles are shown in Fig. k. n.
and q.

(Group Velocity Dispersion of -1.044ns/nm) resulting in a stretched optical pulse of around

12ns. The time stretched signal is processed through OTS-FBG interrogation setup and in
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Fig. 3.26 Simulation results for TD-PCS-FBG system with S-shaped strain profile. a. Original
time stretched sensing signal in time domain b. FFT respresentation of the time domain
signal c. Spectrogram of the sensing signal showing linear frequency chirp d. Two PRBS
sequences used for mixing e. Mixed signal with PRBS and sensing signal. f. Time domain
reconstruction of sensing signal upon l1 reconstruction with 50% compression ratio g.
Corresponding FFT domain representation h. Spectrogram showing clear chirp profile.
The l1 reconstruciton results are repeated for 62.5%, 75 % ,87.5% and 100 % compression
ratios and the time domain reconstruction is shown in Fig. i. l. o. and r. , corresponding FFT
domain representation in Fig. j. m. p. and s. , and corresponding chirp profiles are shown in
Fig. k. n. q. and t.
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balanced setup, the output should be single tone sine signal with constant RF frequency.

However, if the strain is introduced the signal is distorted and would produce a chirped

signal. For one such setting the output signal is shown in Fig. 3.25.a and corresponding FFT

representation is shown in Fig. 3.25.b where it can be observed that the wideband signal has

6GHz as maximum frequency. The spectrogram is shown in Fig. 3.25.c. showing downward

chirp from few GHz to MHz. A binary PRBS is generated with 20Gbps bit rate or 50ps

bit period making the signal length N=400. Two such sequences each with length 400 are

shown in Fig. 3.25.d. and corresponding electro-optically mixed signal is shown in Fig.

3.25.e. The sensing signal is mixed with m number of PRBS sequences each of length 400

and are optically integrated to represent a single measurement which can be captured at

50MHz speed. The sensing signal can be reconstructed using l1 minimization algorithm as

described in section 2.2. Solving the equation 2.16, the signal can be reconstructed. With

250 measurements, a compression ratio of 62.5 %, the time domain and corresponding FFT

and spectrogram is shown in Fig. 3.25.f,g,h respectively. As it can be observed from Fig.

3.25.h, the downward chirp can be easily recognized and the chirp slope determines the

strain induced in the sensing FBG with respect to reference FBG. Similarly the number of

measurements,m are increased from 250 to 400 in steps of 50 and the results are shown

respectively. As it can be observed, the reconstructed signal,FFT and spectrograms are close

to match original sensed signal. Hence, with 60 % measurements, the strain parameters can

be obtained instead of sampling the complete signal saving the storage space with high speed

electronic detectors [63].

3.3.1.2 S-shaped profile

The results are repeated for S-shaped strain profile and original sensed signal is shown in

Fig. 3.26.a. and corresponding FFT and spectrograms are shown in Fig. 3.26.b and 3.26.c

respectively. The PRBS sequences and mixed signals are shown in Fig. 3.26.d and 3.26.e
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Fig. 3.27 Schematic of proposed and simulated SD-PCS-FBG system with all-optical random
patterns generated from cascaded MZI setup

respectively. With number of measurements m = 200, the reconstructed signal along with

FFT and spectrograms are shown in Fig. 3.26.f,g,h respectively and the results are repeated

in steps of 50 from 250 to 400. The sensing signal has low maximum frequency of 3GHz

compared to signal represented in 3.25.a. Hence it required few number of measurements to

get the spectrogram with a compression ratio of 50 %.

3.3.2 Results with Spectral Domain Photonic Compressed Sensing

In this section, the results with SD-PCS system based on cascaded MZI structure have been

presented.

As shown in proposed schematic Fig. 3.27, the time stretched pulses from passive mode

locked laser and -1.044ns/nm DCF are directed through cascaded MZI setup where MZI-1

has variable delay in one arm and 500m Single mode Fibre(SMF) in another arm where

as MZI-2 has optical variable delay and SMF in one arm and direct connection in another

arm making both the MZIs of opposite chirp. The variable delay of the first MZI is varied

from 0ps to 50ps in steps of 5ps and variable delay in MZI-2 is varied from 1.25ps to 50ps
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Fig. 3.28 Correlation between the patterns generated from cascaded MZI setup for SD-PCS-
FBG system

insteps of 1.25ps producing overall 400 patterns. The patterns are quasi random and the cross

correlation between the patterns are shown in Fig. 3.28 that has maximum cross correlation

of 73 % removing the highly correlated tail part which can be further improved using high

GVD single mode fibre. These patterns are now directed to FBG interrogation setup resulting

in embedded strain information. The mixed patterns are compressed with 1.044ns/nm SMF

for the purpose of optical integration which can be easily detected by low pass 50MHz

photodetector followed by low speed electronic digitizer hence reducing the overall speed of

electronic detectors and eliminating the need for high bandwidth binary PRBS generation.

This also reduce the optical loss due to electro-optic mixing in the conventional PRBS mixing

as all-optical random pattern generation has been used hence reducing the need for high

optical amplification saving the energy. However, the patterns should be reproducible for

faithful reconstruction.

The measurements acquired and corresponding patterns used for the process are given as

inputs to l1 reconstruction algorithm and the results for monotonic chirp signal are shown
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Fig. 3.29 Reconstruction results for downward chirp signal with all-optical random pattern
generation and mixing. a. Temporal domain reconstruction with 200 measurements with
50% compression ratio. b. Corresponding FFT domain with 200 measurements with 50%
compression ratio. c. Spectrogram of the reconstructed signal. The results with 62.5% and
72.5% compression ratios are shown respectively with time domain reconstruction in Fig. d.
and g. , corresponding FFT domain representation in Fig. e. and h., and corresponding chirp
profiles are shown in Fig. f. and i.

in 3.29. First column shows the time domain reconstruction of downward chirp signal

with 50%, 62.5% and 72.5% compression ratio respectively and second column shows the

FFT representation of reconstructed signal followed by third column with corresponding

spectrograms confirming the chirp slope and the results are in agreement with actual input

signal 3.25.a . The results for S-bend chirped signal are shown in Fig. 3.30 with 50%, 62.5%

and 72.5% compression ratio respectively confirming proposed theory of all-optical random

pattern generation for wideband signals and can be compared with the original signal 3.30.a.
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Fig. 3.30 Reconstruction results for S-bend chirp signal with all-optical random pattern
generation and mixing. a. Temporal domain reconstruction with 200 measurements with
50% compression ratio. b. Corresponding FFT domain with 200 measurements with 50%
compression ratio. c. Spectrogram of the reconstructed signal. The results with 62.5% and
72.5% compression ratios are shown respectively with time domain reconstruction in Fig. d.
and g. , corresponding FFT domain representation in Fig. e. and h., and corresponding chirp
profiles are shown in Fig. f. and i.

3.3.3 Discussion

In this section, Time Domain and Spectral Domain Photonic Compressed Systems have been

demonstrated for strain profiles from distributed FBG interrogation method. As explain in

section 3.1.8, the time stretched optical pulse is associated with 3dB electrical bandwidth

of 200MHz. Hence, the actual spectrum to be detected will be a convolution of electrical

bandwidth of time stretched optical pulse with actual wideband chirp signal that has been

encoded. In TD-PCS-FBG system, the compression ratio is as high as 62.5% as the number

of non zero tones to be retrieved are higher. However, SD-PCS-FBG system offers better

compression ratio of 50% as the random pattern is guassian and works best if the random

patterns generated are stable and reproducible. The RMSE has been calculated and repre-
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a) b)

Fig. 3.31 Root Mean Square Error results for TD-PCS-FBG system and SD-PCS-FBG system.
a) RMSE as a function of compression ratio for uniform strain signal b) RMSE as a function
of compression ratio for S-shaped strain signal

sented in Fig. 3.31. It can be observed that RMSE is higher for SD-PCS system compared to

TD-PCS system mainly due to the tail part of the random sequence which does not have any

power.

3.3.4 Conclusion

Already existing TD-PCS and novel approach of SD-PCS system based on cascaded MZI

system have been simulated for measuring strain signal encoded by distributed FBG interro-

gation. While a wideband signal has been sensed with low speed detectors in TD-PCS-FBG

system, the compression of 50-70% has been achieved. SD-PCS-FBG system offers better

compression ratio of 50% with careful calibration of random patterns.

3.4 Overall Summary

In this chapter, Time Domain Photonic Compressed Sensing method has been presented

for Optical Coherence Tomography and achieved 66% data compression for single layer

model with experiment results. This is achieved by encoding 33 sets of Pseudo Random

Bit Sequence of 2.5GS/s data rate with OCT axial scanning information signal. The MLL

generates optical pulses at 50MHz repetition rate. Since 33 pulses are required to reconstruct

this information, the A-scan rate is 1.51MHz. A method has been proposed to improve the
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resolution beyond the theoretical limitation of 50MHz by dual pulse integration. Spectral

Domain Photonic Compressed Sensing method has been demonstrated using spectral filter

built by cascaded MZI structure for RF spectrum sensing hence achieved 10% compression

with reconstruction of dual tone signal. Approaches for compressed FBG sensing achieving

60% data compression have been proposed with results.



Chapter 4

Spatial Domain Photonic Compressed

Sensing for Ultrafast Single-Pixel

Imaging

This chapter is an extended version of a published paper[67].

In this chapter, real time ultra-fast imaging method based on compressed sensing has been

proposed utilizing wavelength dependant spatial domain random patterns. This is second

type of Photonic implementation of Compressed Sensing that has been discussed in chapter

2. This system has been abbreviated as UF-PCS imaging system through out this chapter.

Followed by introduction of Single-pixel imaging and ultra-fast imaging methods, the

main principle of UF-PCS imaging system has been presented followed by experiment and

numerical results.
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4.1 Introduction

Single Pixel Imaging: As explained in chapter 2.2 and [44], Single Pixel Imaging has

been emerged as an alternative modality to direct imaging with advantages such as reduction

in size, complexity, cost and improved fill factor. Single Pixel Imaging can be implemented

with Raster Scan, Basis Scan or Compressed Sensing approaches. While Raster Scan and

Basis Scan methods takes same number of measurements as number of pixels resulting

100% sampling of the image, Compressed Sensing method reconstructs image with reduced

number of measurements depending on the sparsity of acquiring image.

In general, Single Pixel Imaging based on Compressed Sensing can be implemented with

SLM or DMD. However, these devices suffer from slower refresh rate of few Hz. Recently,

this method has been improved and demonstrated with time domain Photonic Compressed

Sensing required electronic PRBS generators for electro-optic mixing which are expensive

and require electro-optic conversion along with significant amplification. However, the imag-

ing rates cannot exceed few KHz as multiple pulses are needed to capture image. Research

efforts have been made by pre-compressing low PRBS encoded optical pulse for enhanced

bit rate requiring Electro-optic modulator and dispersive elements in photonics domain [165].

Efforts have been made by generating random patterns as an alternative to electronic PRBS

to eliminate electronics part in generating random sequence through multi-mode interfer-

ence methods which requires PD array to sense the compressed measurements[173] and

multicore fibers requires wavelength scanning mainly for imaging[174], spatial resonance

methods[133]with special component fabrication, generation of multiple path spectral filters

based on customized fabrication micro-ring silicon based resonators.

Ultra-fast Single Pixel Imaging Ultrafast imaging systems are of essential for analysing

transient and non repetitive events in single shot approach as explained and reviewed in [32].

The applications of the mentioned approaches being laser pulse characterization and other
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non-linear phenomenon.Ultra-fast imaging systems can be broadly classified into 2 categories.

1) Burst sampling 2) Continuous sampling. Majority of ultra-fast imaging methods would

either be applied only for very short time such as ps time scale[96] which included PTS

based Sequentially Timed All-optical Mapping Photography (STAMP) method and CS based

Compressed Ultrafast Photography (CUP) methods. These ultrafast burst imaging systems

are hence limited to isolated ultra low time scales and are limited by electronic digitizers and

sensors. On the other hand, real time continuous sampling has applications in biomedical

imaging systems which, demands continuous sampling of diagnostics information[175].

The current state of the art STEAM imaging is a single pixel imaging method which has

continuous sampling scheme however, this results in continuous generation of data that

need to be sampled. Huge amount of data has to be compressed at the time of saving to

disk using JPEG compression and other digital compression techniques which demands

data compression in High speed imaging system. In this chapter, the ultra-fast imaging

requirement has been combined with current Spatial Domain Photonic Compressed Sensing

systems to demonstrate Spatial Domain Photonic compressed sensing enabled ultra-fast

imaging system. This has been abbreviated as UF-PCS system. In UF-PCS system, a new

approach for ultrafast (20 Mfps) structured illumination single-pixel imaging using light

beam speckles out of a multimode fiber due to multimode interference. The experimental

results show that excitation of high-order modes, and hence the multimode interference,

are strongly wavelength-dependent. Cross correlation result of 500 wavelength-dependent

optical speckle patterns shows flat and low correlation of 7.4% between different illumination

patterns, verifying the utility of multimode interference based structured illumination in

UF-PCS imaging system. By measuring multiple dot products of a sparse image with a set

of known speckle based random patterns generated by wavelength dependent chaos inside

multimode fibre structure, the image can be reconstructed using an l1 minimization algorithm.

Update of the random speckle pattern can be easily obtained by sweeping the incident
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wavelength which is achieved by stretching ultra-fast optical pulses from a mode-locked

laser using chromatic dispersion i.e., PTS principle. Therefore, imaging speed as high as

the repetition rate of the pulse train, which is 20 MHz in our system, can be achieved. As

the number of wavelengths are 500 in steps of 0.1 nm, a successful reconstruction of 27X27

pixel image with a compression ratio of upto 20% has been demonstrated.

4.2 Principles

Fig. 4.1 Schematic of Proposed UF-PCS imaging system. Step-1 is performed with ex-
perimental setup with tuneable laser source. Step-2 is verified through simulations in
MATLAB. Step 1:Experimental calibration. Step 2: Proposed Compressive Imaging system.
MMF:Multimode Fibre, Storage: A computer used used to record and store the patterns,
MLL:Mode locked laser with a pulse with of 800fs and repetition rate of 20MHz, DCF:
Dispersion Compensating Fibre of 1ns/nm chromatic dispersion, PD:free space Photo De-
tector, Processor: A computer with signal processing capability to extract the image from
measurements acquired from scope and patterns recorded from calibration

The schematic is shown in Fig. 4.1. The tunable laser source with wavelength range from

1518nm to 1568nm emits single wavelength continuous optical beam onto a collimator(NA

= 0.49). The beam size is expanded using 4-f lens setup (two plano-convex lens with 30mm

and 100mm focal lengths). An objective lens(X10, 0.4NA) is used to couple the light into
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Multimode fibre(2m length, core diameter of 200 µm, 0.39 NA).The entire imaging process

involves 2 steps. In step-1, the speckle patterns are recorded with a beam profiler with light

passing through Multimode Fibre from a single wavelength source with optical lens setup.

Because of the cross talk between different spatial modes, this causes intensity distribution in

the spatial domain which can generate quasi random spatial pattern. The pattern is different

for each wavelength. A tunable laser source is used to sweep the wavelengths from 1518 nm

to 1567.9 nm with step width of 0.1 nm manually. Four of the recorded patterns are shown in

Fig. 4.2.

Fig. 4.2 Four of the recorded patterns from beam profiler. The wavelength step size considered
is 0.1 nm from 1550 nm

As observed, The patterns are quite distinct from other and this can be evidenced by

calculating cross correlation matrix shown in 4.3 for first 500 patterns observed with average

cross correlation is calculated to be 7.4%.
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Fig. 4.3 Correlation matrix of the patterns recorded from beam profiler. This is a symmetric
matrix with diagonal being represented by the auto correlation of the pattern which is close
to unity.

In any compressed sensing process, a set of ideal random patterns are expected to be

repeatable as accurately as possible. Since the random patterns are now generated using

chaotic nature of Multimode Fibre, the stability of the patterns over the time has been

recorded and is shown in Fig. 4.4. It has been observed that the correlation does not change

significantly over time with 0.97 over the time of 2 hours. So the image can be mixed at a

later time against the pattern being recorded with beam profiler. The difference in time can

be a maximum of around 2 hours and calibration can be repeated there after for every 2 hours

for reliable reconstruction.

Having recorded these patterns, the passive mode locked laser with 800fs pulse width and

20MHz repetition rate to generate a series of ultra-short pulses which are time stretched with

1ns/nm DCF hence creating injective mapping between temporal and wavelength domain

thus achieving the high speed sweeping of wavelengths in time domain at a rate of 20MHz.

Assuming that wavelength spacing as 0.1nm, this can generate 500 wavelengths in 50 ns. The

stretched pulse goes through Multimode fibre and each wavelength undergoes chaotic spacial
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Fig. 4.4 Self correlation variation for three wavelengths against time duration.

mixing generating a random pattern and mixes with the image placed after the fibre and all

500 wavelengths mixes with the image generating 500 measurements which will be detected

with high speed free space Photo detector 10GHz and high speed electronic oscilloscope.

It is essential that scope and Mode locked laser are synchronized to get the corresponding

measurement for corresponding wavelength. A naturally sparse image of 27X27 pixel size

can be reconstructed with these many wavelength based patterns. A numerical demonstration

has been presented here.

The post processing involves reconstruction of the image from the measurements captured

from scope and patterns recorded from beam profiler. The theory of compressed sensing has

been presented in chapter 2.
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4.3 Results

Two aspects of results have been presented. One aspect describes the data compression by

utilizing spectral sparsity and comparison of the reconstruction results against traditional

STEAM output with same data size output.

Second aspect describes the resolution limit of the speckle patterns based compressive

imaging system. Also, a detailed explanation of finding the Nyquist spatial frequency has

been presented here.

4.3.1 Reconstruction of image and comparison with traditional STEAM

imaging

The reconstruction results have been presented for a sample image shown in Fig. 4.5.a. with

various number of wavelengths/measurements upto maximum of 500 wavelengths which

is the fundamental limit of the proposed system hence maximum compression rate is 68%

for 27X27 pixel image. The results are presented in comparison with direct down sampled

images illustrating CCD images.

Speckle patterns based CS results obtained above have been compared with conventional

binary patterns based CS. The results are presented in Fig. 4.6.

4.3.2 Resolution information from the random patterns

In this subsection, an approach to estimate Nyquist sampling rate has been presented for the

proposed system by measuring the recognizable spectral power of the calibration equipment

which in this case is beam profiler.

Though the pixel resolution is 540X540, the random pattern cannot resolve the image

of that size as the spatial resolution is limited by the average grain size of speckle patterns.

The actual random pattern captured by the beam profiler along with spectral profile of the
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Fig. 4.5 Comparison of results with compressed imaging and conventional STEAM sensing.
a) Original image with pixel size 27X27. b) to f) Reconstructed images with l1 minimization
algorithm from with increased number of measurements. g) to k) The sampled images from
traditional STEAM imaging system which are emulated by downsampling the original image.

Fig. 4.6 Comparison of MSE for speckle based compressed imaging vs binary patterns based
compressed imaging
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random pattern is presented followed by several spatial low pass filters to remove the high

frequency components to see any significant difference in the pattern.

a) d) g) j)

b) e) h) k)

c) f) i) l)

Fig. 4.7 Nyquist resolution limit. a)Pattern captured by beam profiler with 540X540 pixel
resolution b) 2D spectral domain representation after removing the low frequency components
c) Superimposed spectral domain representation of individual rows of the image followed by
columns of the image shown in Fig. a. d) The random pattern after removing the high spatial
frequency low spectral power components shown in Fig. f. e) Corresponding 2D spectral
FFT f) superimposed representations after removal of high frequency components g) The
random pattern after removing the high spatial frequency low spectral power components
shown in Fig. i. h) Corresponding 2D spectral FFT i) superimposed representations after
removal of high frequency components j) The random pattern after removing the high spatial
frequency low spectral power components shown in Fig. f. k) Corresponding 2D spectral
FFT l) superimposed representations after removal of high frequency components.

As observed, the actual figure captured by beam profiler with 540X540 pixel resolution

is shown in Fig. 4.7.a. The corresponding 2D spectral domain representation is shown in Fig.

4.7.b. after removing the dominant low frequency component with a low pass filter and actual

spectral power variation is shown in Fig. 4.7.c where the spectral power significantly falls

for higher spatial frequencies. The higher spatial frequencies >150 are now suppressed using

a low pass filter and the result is shown in Fig. 4.7.f. The corresponding random pattern is
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shown in Fig. 4.7.d. and the corresponding 2D FFT representation is shown in Fig. 4.7.e.

Similarly the superimposed spectral domain representations of the pattern after removing the

higher spatial frequencies >50 are shown in Fig. 4.7.i and corresponding random pattern is

shown in Fig. 4.7.g and 2D FFT representation is shown in Fig. 4.7.h. and the procedure

is repeated for spatial frequencies >25 and are represented in Fig. 4.7.l, 4.7.k and 4.7.j.

As observed from the patterns with original 4.7.a and suppressed high frequency random

pattern in Fig. 4.7.j, some of the high frequency features have been lost marginally and this

can be considered Nyquist frequency limit for the system. Hence any 50X50 image can be

successfully reconstructed by the CS system.

4.4 Discussions

In this proposed setup, a tunable laser is used to sweep the wavelengths to record the speckle

patterns at the distal end of the multimode fibre and the patterns are used for CS imaging

method in simulation environment. However, in general case, a MLL is used to sweep the

wavelengths at a faster rate determined by repetition rate of the laser and it is crucial to

calibrate the each wavelength generated from MLL. This can be done by using programmable

optical filter or a combination of diffraction grating and amplitude SLM to allow only one

wavelength with linewidth. Once the imaging system is calibrated, the optical filter can be

removed or all one pattern can be inputted to allow all wavelengths.

4.5 Conclusion

In this chapter, an ultrafast imaging technique(UF-PCS system) that captures sparse image

within 50ns time scale has been demonstrated. This has been achieved by attributing

wavelength dependant chaos of multimode fibre structure to conventional compressive time

stretch imaging system. The random patterns were generated experimentally by sweeping the
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wavelength from 1518nm to 1567.9nm with 0.1nm wavelength step followed by multimode

fibre structure. Thus, generated random speckle patterns have been analysed for all 500

wavelengths. A 27X27 pixel image assumed to be sparse in some transformation domain

has been considered and computationally mixed with experimentally generated patterns and

integrated to single power measurements which represent the corresponding dot product

of the wavelength dependant random speckle pattern with given 2D image and the results

are compared against conventional STEAM imaging. The variation of random pattern as

time duration is observed and it linearly reduces to 95% for a duration of 5 hours. The

cross correlation of all 500 patterns are calculated to show the incoherence nature of these

speckle patterns and minimum cross correlation is observed to be around 7.4% indicating the

patterns are repeatable and incoherent. Hence can be used in compressive imaging system. A

method to calculate the Nyquist resolution limit has been presented for generated random

pattern. The pattern’s 2D FFT is taken and using a digital lowpass filtering techniques,

the high spatial frequency information is zeroed out to see any significant difference in the

pattern. After removing the spatial frequencies from 25, the pattern varies significantly from

original pattern, hence it can be concluded that the number of resolvable points in the random

pattern is around 50X50. Since the considered image is 27X27, it is well within the expected

resolution limit. The capability can be further improved by exciting more modes in the

multimode fibre structure using mode scrambler enabling higher Nyquist rate limit.



Chapter 5

All-optical FFT scanning for blind

spectrum sensing

This chapter is an extended version of a published conference paper[54].

In this chapter, an all-optical approach for FFT scanning for blind RF spectrum sensing

has been proposed and experimentally demonstrated. This method can be classified as Basis

Scan methodology of Single Pixel Imaging. Compressed sensing based on Single Pixel

Imaging requires specific set of random patterns and information sparsity is a prerequisite

for enabling data compression. In case of Basis Scan, any arbitrary signal can be sensed by

scanning in a particular basis. Here, a novel all-optical approach of Fourier basis scan has

been demonstrated with a proof-of-concept experimental demonstration for RF spectrum

sensing.

5.1 Introduction

As discussed in chapter 2, there has been research on acquiring an image without direct line of

sight by acquiring the Fourier spectrum. In [56], a technique has been proposed to illuminate
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the image with a N-step phase shifting(N=4) sinusoidal harmonic patterns instead of binary

patterns and the imaging can be reconstructed with IFT algorithm. However the method

suffers from low imaging speed and low acquisition time. The method has been improved

with photonic time stretch based phase shifting as proposed in [55] where pattern generation

rate is increased and acquiring speed has been significantly improved by phase shifted RF

generated sinusoidal patterns by employing Arbitrary waveform generator. However, the

maximum scanning frequency is limited by AWG sampling rate and is also expensive. This

technique requires Electro optic modulator which is also bandwidth limited and lossy.

In this chapter, a novel all-optical FFT scanning method has been proposed for sensing

arbitrary RF signal based on variable optical delay and phase modulator based MZI which

produces modulated and phase shifted gaussian pulses without any need for RF equipment

and and also removes electro-optic modulator for generation. Upon electro-optic mixing of

unknown RF signal and optical integration, the FFT can be acquired. With this approach, FFT

reconstruction of single tone 1GHz, dual tone (1GHz, 2.5GHz) and multitone signals(0.4GHz,

1GHz, 1.8GHz, 2.5GHz) have been demonstrated experimentally.

The method and results are presented in subsequent sections with section 5.2 explaining

the principles used in this set up and in section 5.3, the experimental results have been

presented. In section 5.4, limitations and prospects of the method has been discussed

followed by conclusions in section 5.5.

5.2 Principles

The schematic of proposed experimental setup is shown in Fig. 5.1. A passive MLL is

time stretched using DCF thanks to Dispersive fourier transformation technique, time to

wavelength mapping has been established and can be represented by,

∆λ =
∆t
Ψ̈

(5.1)
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Fig. 5.1 Schematic of experimental set-up. OC:Optical Power splitter/Combiner,
PC:Polarization Controller, PM:Phase Modulator, DC: DC bias signal, IFFT: Inverse FFT ,
RF Sync.:RF synchronization, EDFA: Erbium Doped Fibre Amplifier

The time stretched pulse has been directed to Mach-Zehnder interferometric setup with one

arm being programmable/tunable optical delay and other arm equipped with polarization

controller and electro-optic phase modulator with static delay compensated in both the arms

at pre-experiment stage. By tuning the optical delay in MZI structure, Change in optical

delay results in encoded gaussian pulse as per,

∆ fRF =
c×∆t

λ 2 × Ψ̈
(5.2)

The input to the phase modulator is a variable power supply or programmable power

supply with 5 different voltage levels synchronized with MLL at sampling rate same as

repetition rate of the mode locked laser. This can be achieved by an FPGA or a low speed

AWG followed by an RF amplifier. The output of MZI is a 4-phase shifted and modulated

gaussian pulses. Modulating with unknown RF signal with help of electro-optic modulator

biased at quadrature point and integrating the each RF mixed optical pulses and followed by

digital signal processing, FFT magnitude spectrum of the original signal can be reconstructed

and time domain waveform can be reconstructed with IFT algorithm as explained in chapter

2.



5.3 Experiment Results 105

5.3 Experiment Results

A proof of concept experiment has been designed and implemented based on conceptual

schematic shown in Fig. 5.1. In experiment, a passive MLL(Calmar Mendocino FP laser)

generates a series of ultra-short optical pulses with FWHM 800fs and 50MHz repetition rate.

Each pulse is time stretched with DCF(OFS SMFDK-S-020-03-01) and amplified to achieve

observable time-frequency mapping and directed to MZI setup consisting of PM-PC in one

arm and Variable Optical delay(VDL-001) in another arm. The optical time delay between

paths of MZI converts to an RF frequency that can be described by eq. 5.2 . PM modulates

the phase of the optical carrier with respect to the RF signal applied which in this case is a

variable power supply, a stair case RF signal with 1.5V step size from -3V to 3V repetitive of

100ns.

5.3.1 System calibration

The static RF delay should be compensated at the pre-experimental stage and static optical

delay in MZI arms is compensated by adding additional fibres of few cm length. By tuning

the delay from 0ps to 50ps in steps of 0.5ps and by measuring the RF frequency for each

delay step, the result is obtained as shown in Fig. 5.2 and are compared against theoretical

calculations obtained from eq. 5.2 represented in black color. The offset occurs mainly due

to adjustments in fibre arms to improve the visibility and position of Polarization Controller.

Hence the system requires calibration of offset for every experiment and is not fixed. The

offset is adjusted by shifting the experimental results as shown in Fig. 5.2. The time domain

waveform for an optical delay of 10ps is shown in inset along with its RF frequency spectrum.

As the optical delay is tuned from 0 to 50ps , the frequency of the time domain waveform

shifted from 0 to 6 GHz. The optical pulses are observed for individual DC voltages are

shown in Fig. 5.3 confirming the phase shift in interferogram upon DC voltage.
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Fig. 5.2 Time delay - Frequency relation after adjusting the offset. The insets show the time
domain and FFT representations at a particular optical delay of 130ps. Blue color shows the
experimental result. The results from theoretical calculations is shown in red

Fig. 5.3 Optical pulse comparison for individual DC voltage applied to phase modulator.
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5.3.2 Single tone reconstruction

The output of MZI,phase shifted interferogram is electro-optically modulated with amplified

arbitrary RF signal, in this case 1GHz RF signal. The output is captured for every optical

delay with a delay step of 0.5ps acquiring 103 power measurements. Fig. 5.4 explains our

single tone reconstruction result. Fig. 5.4.a shows phase shifted and time stretched optical

pulses at an optical delay of 4ps. Electro-optically mixing this optical signal with single

tone RF signal, the mixed signal is shown in Fig. 5.4.b. This optical output is acquired

and digitally summed to represent single power measurement at a capture rate of 50MS/s.

Hence each optical delay, 4 phase shifted measurements have been obtained. The process

repeated for next step of optical delay of 0.5ps and is repeated 102 times. Vectorising

the measurements as msmt0 corresponding to -3V, msmtπ/2 corresponding to -1.5V, msmtπ

corresponding to 0V, msmt3π/2 corresponding to +1.5V each of length 103 for 103 optical

delay steps. The FFT of the unknown RF signal can be reconstructed with equation explained

in [56]. The procedure has been explained in chapter 2. The frequency resolution is linearly

proportional to delay step used in acquisition, dispersion Ψ̈ as determined in Eq. 5.2. The

FFT obtained is shown in Fig. 5.4.c. showing the successful reconstruction of single 1GHz

RF tone with a small error which is within 50MHz. The reconstructed tone in this case

is 1.026GHz considering the adjustment of the offset. The absolute value of FFT optical

power retrieves FFT magnitude spectrum of RF signal and is presented in Fig. 5.4.c along

with calibration curve for this experiment to measure the RF frequency. Experimentally

measured calibration is shown in blue and theoretically calculated curve is shown in blue.

Time domain waveform can be reconstructed from IFFT of the obtained measurements. The

result is represented in Fig. 5.4.d showing successful reconstruction after removing the noise

floor in Fig. 5.4.c.
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Fig. 5.4 Demonstration with single tone RF signal. a) Phase shifted and time stretched
gaussian optical pulse carrier signal in time domain with 80ns duration at 4ps optical delay.
b)Electro-optically mixed optical signal c)Fourier spectrum acquisition showing strong single
tone at 9ps optical delay with calibration curve. Red line is the calculated while Blue line is
experimental observation d) Time domain reconstruction of the acquired FFT
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Fig. 5.5 Demonstration with multitone RF signal. a) Input RF spectrum. b) Reconstructed
FFT spectrum. The experimental calibration line is shown in blue color while theoretical
calculated line is shown in red color.
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5.3.3 Multi tone reconstruction

In this demonstration, a multitone signal (0.4GHz, 1GHz, 1.8GHz and 2.5GHz) is considered

to show the robustness of the proposed system and the input signal is shown in Fig. 5.5.a.

Scanning with 0.5ps delay resolution from 0 to 50.5 ps, 408 measurements acquired. By

vectorization and reconstruction, the reconstructed FFT is shown in Fig. 5.5.b. after adjusting

the offset in the experiment calibration. The acquired FFT tones are 0.3891GHz, 0.9869GHz,

1.764GHz and 2.481GHz showing successful reconstruction of the tones.

5.4 Discussions

The aforementioned method senses information by entirely scanning the FFT through 4-phase

shift method. However, if the region of interest is known or there has been prior information

about the frequency distribution, the over all number of measurements can be reduced and

the signal can be reconstructed faithfully. One such approach has been described below.

5.4.1 Dual tone reconstruction with non-uniform sampling

A dual tone signal 1GHz and 2.5GHz is reconstructed with the same method with 0.5ps

optical delay resolution. The input signal FFT is shown in Fig. 5.6.a. and the reconstruction

result is shown in Fig. 5.6.b. As observed, the low frequency Gaussian is not scanned is

because of starting scanning RF frequency is 200MHz offset with respect to theoretical

calculations shown in red line of 5.6.b. The proposed system can be demonstrated for

anamorphic sampling the FFT of the signal by using high sampling density in the frequency

interested region. Fig. 5.7.a. shows sparse uniform sampling of FFT with 3 ps optical

delay resolution acquiring 68 power measurements resulting unsuccessful reconstruction

as the scanning step misses the spectral distribution of the tones. With the same number of
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Fig. 5.6 Demonstration of dual tone reconstruction with 0.5ps resolution a) Original signal
FFT representation b) reconstructed FFT with experimental calibration

measurements, the information rich region is over sampled as shown in Fig. 5.7.b in red

color with 64 power measurements with successful reconstruction.
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Fig. 5.7 Demonstration of anamorphic sampling of FFT. a) Unsuccessful FFT reconstruction
by sparse uniform sampling with 3ps delay resolution with experiment calibration b) FFT
reconstruction with anamorphic sampling with experiment calibration

The proposed method eliminates the use of electronic generators like AWG and enhances

the frequency spectrum capability which scans upto 150 GHz if a commercial 1200ps

optical delay line is used with careful calibration. However, the overall system capability is

dependant on Mach-Zehnder modulator’s commercial availability to sense the high frequency

RF signals. As a proof of concept demonstration, a simulation result has been presented with

schematic shown in Fig. 5.1 that senses a multitone(1GHz, 3.4GHz, 4.2GHz, 5GHz, 10.2GHz,

20.5GHz, 35.3GHz and 40.2GHz) RF signal as shown in Fig. 5.8.a. The corresponding FFT

representation is given in Fig. 5.8.b. The MLL acts as passive ultrashort pulse generator

with 20ns repetition time. The femtosecond pulses are time stretched with a dispersion

compensating fibre of 0.96 ns/nm dispersion. The time stretched pulses are directed to an
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Fig. 5.8 Simulation results. a) Input multitoned RF signal with highest frequency 40.2GHz
b) Corresponding FFT spectrum of signal c) Phase-shifted optical carrier. Inset shows
RF magnitude spectrum d) Signal encoded phase-shifted optical carrier. Inset shows RF
magnitude spectrum e) Reconstructed time domain signal from inverse transformation f)
Reconstructed FFT spectrum with frequency shown in green color. Optical time delay is
shown in X-axis.
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MZI setup consisting of PM in one arm and optical delay line in another arm. The phase

modulator is given a stair case input changing the phase from 0 , pi/2, pi, and 3 pi/2 with 80ns

duration. The optical delay is varied from 1ps to 400ps in steps of 1ps. The phase shifted and

phase stretched optical carrier is shown in 5.8.c. and corresponding electro-optically mixed

signal is shown in 5.8.d. with their RF spectra shown in individual insets. The calibration

curve is shown in Fig. 5.8.e in blue color while theoretically calculated calibration line is

shown in red and the obtained FFT spectrum using Eq. 2.30. The corresponding time domain

reconstruction is shown in Fig. 5.8.f. is obtained from IFFT of spectrum obtained.

5.5 Conclusion

A novel all-optical approach for spectrum sensing with Fourier spectrum acquisition has been

proposed using Phase Modulator and optical delay line in interferometric manner followed

by phase shifting, sensing and integration to sense the RF signals up to 3GHz experimentally

and up to 40GHz with simulations without any need for high speed electronic RF generators.

Reconstruction of single tone and multitoned signals have been presented. A new approach

of anamorphic sampling[176] has been demonstrated using only selective range of basis

scanning by tuning optical delay.



Chapter 6

Adaptive non-uniform photonic time

stretch for high-speed signal detection

for data compression

An AST Method that reduces TBP there by reducing the number of samples to be stored on

the storage. This chapter continues the detailed version of AST explained in chapter 2 with

the research work done in this thesis work in order to reduce the number of samples there by

attaining data compression. This chapter is a revised version of a published paper[68].

As explained in section 2.1, the Anamorphic Stretch Transform technique is mainly used

in optical domain in order to highly sample pre-known information rich region and coercive

sample the remaining region mimicking the biological human eye. In this chapter, a method

of compressing the data volume of high speed input RF signal without knowing the region of

interest with compressed time band width product has been proposed and verified through

numerical simulations. However, the method sacrifices the measurement speed at the benefit

of rich sampling and data compression.
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Fig. 6.1 Schematic diagram of the proposed and simulated adaptive non-uniform photonic
time stretch system.
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6.1 Principle

Schematic diagram of the proposed adaptive non-uniform photonic time stretch system for

blind detection of arbitrary RF signals has been shown in Fig. 6.1. Optical pulses generated

from a passively mode-locked laser were pre-stretched by a first dispersive element e.g.,

dispersion compensating fibre. The initially time stretched optical pulse serves as the quasi-

continuous wave optical carrier. Different from previous PTS-ADC [103, 98, 104] and AST

[38, 35, 40, 42] systems, in the proposed method the input RF signal is first pre-stretched

by a microwave photonic phase filter with frequency-dependent time delay response using

a quadratic phase function instead of conventional amplitude before direct modulation on

the stretched optical carrier at an electro-optical modulator. Due to the large microwave

dispersion introduced by the microwave photonic phase filter, the high frequency components

of the unknown RF signal were separated from its low frequency elements in time, leading

to a frequency-chirped RF signal with its spectral-temporal profile mainly determined by

the microwave photonic phase filter. The transformed RF signal then modulates the optical

carrier at the modulator. A second dispersive element, serving as the AST filter, further

stretches the modulated optical pulse to slow down the high-speed part of the RF signal such

that it can be captured using a lower-speed PD and electronic ADC reducing the TBP and

number of samples representing the overall RF information. Low speed ADC collects few

number of samples as per the Nyquist sampling theorem. To achieve this, the AST filter

has a non-uniform group delay response such that particular part of the optical spectrum

carrying high-frequency components (fine features) of the RF signal will be selectively

stretched (slowed down) more than those carrying low-frequency RF elements. Therefore,

TBP of the detected RF signal has been greatly reduced. Design of AST filter was usually

signal-dependent in previous systems [38, 35, 40, 42]. As the time frequency distribution of

the modulating RF signal is uniquely determined by the microwave photonic phase filter, the

AST filter has been designed based on the time delay response of the microwave photonic
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phase filter, which is independent of the RF information. Finally the non-uniformly stretched

optical pulse, which carries the selectively slowed RF signal is detected by a low-speed

PD with a reduced TBP. RF signal recovery is implemented in the digital domain or post

processing after acquisition using electronic digitizers. Signal recovery algorithm consists of

two steps: inverse AST processing and inverse RF phase filtering. Its important to note that a

calibration need to be performed to note the phase and magnitude spectra of both AST and

microwave photonic RF filters where an un-modulated optical pulse passes through the same

AST filter, is included to remove the effect of Gaussian envelope of the optical carrier, as

shown in Fig. 6.1.

6.2 Results

Numerical simulations have been implemented using a commercial simulation tool (VPIpho-

tonics) to demonstrate the utility of the proposed approach in TBP-reduced blind detection

of arbitrary RF signals. In the proposed system, an input RF signal under test is firstly

pre-stretched by a microwave photonic phase filter, which provides deliberately designed

nonlinear phase response corresponding to a frequency-dependent time delay, or microwave

dispersion. The pre-stretched RF signal then modulates an optical carrier at a MZM, which

has been biased at quadrature point to ensure linear intensity modulation. The optical carrier

has been obtained by stretching ultrashort optical Gaussian pulses from a 50 MHz passive

mode-locked laser with full-width at half-maxim (FWHM) pulse width of 800 fs using a first

dispersive element with total group velocity dispersion (GVD) of -1050 ps/nm. An optical

AST filter with deliberately designed non-linear time delay response then selectively slowed

down the RF-encoded optical pulse to compress the TBP of the detected RF signal.



6.2 Results 117

6.2.1 AST filter with quadratic time delay

As a proof-of-the-concept demonstration, a time-limited RF signal involving both high fre-

quency features (a narrow Gaussian spike) and low frequency components (a slow Gaussian

envelope with limited time duration) has been used as the input RF information signal under

test, as shown in Fig. 6.2.a. Fig. 6.2.c shows the spectrogram of the input signal, from

which it can be observed that most RF frequency components are confined within a narrow

time window. The microwave photonic phase filter has been designed to provide quadratic

0 5 10 15 20 25
3

3.5

4

4.5

5

5.5

Time in ns

A
m

p
lit

u
d

e
 [

a.
u

.]

0 5 10 15 20 25 30 35 40

0.8

0.85

0.9

0.95

1

Time in ns

A
m

p
lit

u
d

e
 [

a.
u

.]

Time in ns Time in ns

a)

c)

b)

d)

12.85 13.154

5.2

12 16 200.75

0.85

0.95

Fig. 6.2 Simulation results on the microwave photonic phase filtering. (a) The original input
RF signal under test. (b) Stretched RF signal by the microwave photonic phase filter with a
linear frequency-dependent time delay response. (c) Spectrogram of the original RF signal.
(d) Spectrogram of the RF signal after microwave photonic filtering, showing a frequency
chirp rate of 2 GHz/ns.

phase response corresponding to a linear frequency-dependent group delay of 2 GHz/ns.

Despite that microwave photonic filters normally provide amplitude-only variation with linear

phase response or constant microwave delay [18], microwave photonic phase filters with

tunable highly nonlinear phase response, hence frequency-dependent group delay response

up to several GHz/ns have been reported based on nonlinear optical chromatic dispersion
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[177, 178] and successfully applied in chirped microwave waveform compression [179].

Enabled by microwave frequency-dependent time delay, the high frequency Gaussian spike

in the original input RF signal is shifted with longer delay and stretched as per the designed

chirp rate. As a result, the instantaneous frequency components of the transformed RF signal

are separated in ascending order as shown in Fig. 6.2.b. Fig. 6.2.d presents the spectrogram

of the RF signal after microwave photonic pre-stretching, clearly showing a frequency chirp

rate of 2 GHz/ns. Therefore, significant microwave dispersion from the microwave photonic

phase filter has transformed the input RF signal with unknown frequency profile to a linearly

chirped microwave waveform with its spectral-temporal profile determined by the microwave

photonic filter. Note that despite the increased TBP for the transformed chirped microwave

signal due to pre-stretching, overall TBP compression will be achieved thanks to the follow-

ing non-uniform optical time stretch at the designed AST filter. The pre-stretched RF signal

then modulates an optical carrier at an MZM. The stretched optical pulse carrier also has

a temporal Gaussian shape as shown in Fig. 6.3.a, which verifies the dispersion-induced

wavelength-to-time mapping [180]. After intensity modulation at the MZM, the observed

modulated optical pulse is shown in Fig. 6.3.b and the corresponding optical spectrum is

shown in Fig. 6.3.c. By comparing the spectral and temporal representations of the modulated

optical pulse, a linear relationship between time and frequency is obtained as shown in Fig.

6.3.d and can be represented in the form of equation as shown in equation 6.1 where c is

velocity of light, D is the dispersion of the dispersive element used in ps/nm/km, L is length

of dispersive element in km, fc is the central optical frequency which is 193.55 THz mapped

to time instant tc.

t − tc =
(c.D.L

f 2
c

)
× ( f − fc) (6.1)

Thanks to this one-to-one mapping, it can be observed that the RF signal is encoded onto the

optical spectrum of the pulse carrier. To achieve the desired TBP compression through non-
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Fig. 6.3 (a) Time stretched optical pulse by the first dispersive element. (b) Optical pulse
modulated with the pre-stretched RF signal. (c) Corresponding optical spectrum verifying
that the RF signal is also encoded in to spectral domain. (d) One-to-one mapping between
time and frequency according to (b) and (c).

uniform optical time stretch, an AST filter providing quadratic time delay is first designed

according to the quadratic phase response of the microwave photonic filter. The group delay

response of the AST filter is given by

∆τ( f ) = K1 × ( f − f0)
2 (6.2)

where f is the instantaneous optical frequency, f0 denotes the central optical frequency

with zero time delay, and K1 is the second-order dispersion coefficient of the AST, which

has been determined by the chirp rate of the microwave photonic phase filter. The time

delay characteristics of the designed AST filter is shown in Fig. 6.4.a. The central frequency

f0 is carefully selected such that the whole optical pulse spectrum falls in the frequency

region f > f0. Therefore, higher optical frequency components of the modulated optical
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pulse, which also carry higher RF frequency information, will experience higher chromatic

dispersion and hence being stretched more than those carrying lower RF frequency. As a

result, the modulated optical pulse is selectively stretched due to nonuniform dispersion in

the AST filter and TBP of the resulting signal can be greatly compressed. Fig. 6.4.b shows

the non-uniformly stretched optical pulse by the AST filter. The selectively stretched RF

signal is detected using a highspeed PD and its spectrogram is shown in Fig. 6.4.d. It can be

observed that RF frequency chirp becomes nonlinear and higher frequency components have

been stretched more compared to lower frequency parts. TBP of the captured RF signal is

reduced in our proposed system. Table 6.1 summaries TBP of the original RF signal (1) and

the non-uniformly stretched signal in our proposed system. It can be observed that TBP value

has been reduced by 28%, corresponding to a compression ratio of 72%. Reconstruction

of the original RF signal from the captured stretched RF signal is implemented in digital

domain following two steps: (1) inverse AST processing, which recoveries the pre-stretched

RF signal before AST stretching; (2) inverse RF phase filtering, which transforms the pre-

stretched RF signal back to the original one according to the microwave photonics filter

response. Note that a small portion of pre-stretched optical pulse bypasses MZM but goes

through the same AST filter to allow an optical calibration process, which removes the effect

of Gaussian envelope of the optical carrier. The reconstructed RF signal is shown in Fig.

6.4.c. Compared to the signal as shown in Fig. 6.2.a, a good match with the original RF

signal has been clearly evidenced. To demonstrate that the proposed approach is valid for

different RF signals with unknown instantaneous frequency profile, a second RF signal 2

with high frequency information occurring at different position is selected as the original

input signal, as shown in Fig. 6.5.a. Fig. 6.5.b shows the pre-stretched RF signal by the same

microwave photonic phase filter with a chirp rate of 2 GHz/ns. Fig. 6.5.c and d. present

the corresponding spectrograms for the original and filtered RF signals respectively. The

recovery results for the second RF signal are shown in Fig. 6.6.
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Table 6.1 TBP Reduction for two different RF signals using AST filter with quadratic time
delay

Parameters Original RF
signal

Stretched
RF signal

Original RF
signal 2

Stretched
RF signal 2

Time Dura-
tion

25 ns 45 ns 25 ns 40 ns

Max. Fre-
quency

15 GHz 6 GHz 15 GHz 7 GHz

TBP 375 270 375 280
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Fig. 6.4 (a) The time delay function of the designed AST filter with quadratic group delay.
(b) Non-uniformly stretched optical pulse by the AST filter. (c) The reconstructed RF signal
following the signal recovery algorithm implemented in digital domain. (d) Spectrogram of
AST stretched optical pulse after photo-detection showing the non-uniform photonic time
stretch
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Fig. 6.6 (a) Modulated optical pulse carrier after non-uniform stretching at the AST filter. (b)
The reconstructed RF signal after digital signal recovery
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The reconstructed RF signal matches well with the original signal as shown in Fig. 6.5.a.

Characteristics of non-uniform time stretch for the second RF signal are also summarized

in Table 6.1, and TBP reduction by 25% has been achieved. It has been verified that the

proposed method works for time-limited RF signals with different spectra-temporal profiles.

6.2.2 AST filter with cubic time delay

To explore the capability of the proposed approach for better TBP reduction in high-frequency

RF signal detection, a second AST filter providing cubic time delay response has been

designed. The group delay response of the AST filter is given by

∆τ( f ) = K2 × ( f − f0)
3 (6.3)

where K2 is the third-order dispersion coefficient of the AST filter, which can be deter-

mined by the chirp rate of the microwave photonic phase filter. The characteristic of the

designed AST filter is shown in Fig. 6.7.a. The central frequency is selected such that the

whole pulse spectrum falls in the region f > f0. The RF signal 1 as shown in Fig. 6.2.a

is used again as the original input signal. Fig. 6.7.b presents the modulated optical pulse

carrying the transformed RF signal after being non-uniformly stretched by the AST filter with

cubic time delay response. Its spectrogram is shown in Fig. 6.7.d. It can be observed that RF

frequency chirp becomes nonlinear and higher frequency components have been stretched

more compared to lower frequency parts. Due to the large nonlinear time delay produced by

the AST filter, the resulting non-uniformly stretched optical pulse has a longer time duration

(140 ns). At the same time, the maximum RF frequency carried by the stretched optical pulse

has been reduced to 1.5 GHz. Therefore, the overall effect is that TBP of the captured RF

signal is reduced in our proposed system thanks to the highly nonlinear time delay at the

AST filter. Table 6.2 summaries the TBP of the original RF signal and the corresponding
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non-uniformly stretched signal in the case of an AST filter with cubic time delay response. It

can be observed that TBP value has been reduced by 44%. Reconstruction of the original

RF signal is implemented in digital domain following the two abovementioned steps, with

the result shown in Fig. 6.7.c, which matches well with the original RF signal as shown

in Fig. 6.2.a. The AST filter with cubic time delay is also tested with a different input RF

signal 2 as shown in Fig. 6.5.a to demonstrate that the proposed system is independent of

the instantaneous frequency profile of the input RF signals. The same microwave photonic

phase filter with a chirp rate of 2 GHz/ns is used to pre-stretch the input RF signal before

modulating the
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Fig. 6.7 (a) Time delay as a function of optical frequency in the AST filter with cubic group
delay response. (b) Non-uniformly stretched optical pulse carrying RF signal by the AST
filter. (c) The reconstructed RF signal following the signal recovery algorithm implemented
in digital domain. (d) Spectrogram of non-uniformly stretched optical pulse confirming TBP
reduction of the captured RF signal.

optical carrier. Fig. 6.8.a shows the modulated optical pulse after nonuniform stretching

at the AST filter. It can be observed that the high frequency components have been stretched
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Fig. 6.8 (a) Modulated optical pulse after non-uniform stretching with the AST filter with
cubic time delay. (b) The recovered RF signal 2 after digital signal processing

Table 6.2 TBP Reduction for the first RF signals using an AST filter with cubic time delay

Parameters Original RF
signal

Stretched
RF signal

Time Dura-
tion

25 ns 140 ns

Max. Fre-
quency

15 GHz 1.5 GHz

TBP 375 210
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further, evidenced by TBP reduction of 44%. The recovery result for the second RF signal

is shown in Fig. 6.8.b. It can be seen that the proposed method works for RF signals with

different time-frequency distributions.

6.2.3 Discussions

The utility of the proposed adaptive approach in RF signal detection with reduced TBP

has been demonstrated using numerical simulations which can guide in implementing the

actual filters in experiments such as frequency dependant time delay filter and AST filter.

The simulations have verified that if the filters are calibrated to record the phase profiles,

the information can be reconstructed with high probability of capturing high frequency

information or transient events in the signal.The most important element in the system is the

microwave photonic phase filter with frequency dependent time delay, which transforms the

spectra-temporal profile of the RF signal. The designed microwave photonic phase filter can

be implemented based on nonlinear optical chromatic dispersion [177, 178], optical delay

to microwave delay conversion [179], and non-uniformly spaced delay-line filter [181]. A

second key element in the proposed system is the AST filter. Despite extensive theoretical

and simulation studies on the AST approach including this work, quite little experimental

study on this topic has been reported so far, mainly due to the lack of good optical filter

offering an engineered group delay or dispersion profile. Potential good candidates to achieve

the particularly designed AST filter include customized fibre Bragg gratings [40, 182, 183],

chromo-modal dispersion mechanism [184] with the aid of mode-selective excitation [185],

and photonic crystal fibre (PCF) with precisely controlled chromatic dispersion profile [84].

In the presented demonstrations, only time-limited RF signals have been tested using the

proposed method. This is due to the limited time aperture of the photonic time stretch

system, which is the reciprocal of the pulse repetition rate. Passively mode-locked laser has
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a repetition rate in the order of 10 MHz, corresponding to a time aperture of 100 ns, which

would suffice for many high-frequency RF signals.

6.3 Conclusion

Non-uniform photonic time stretch enables TBP reduction in high-speed RF signal detection

by selectively stretching the RF spectrum of interest. However, prior knowledge of the

spectral-temporal profile of the RF signal is always needed. In this chapter, a new adaptive

photonic time stretch scheme by pre-chirping the input RF signal using a microwave photonic

phase shift is proposed to overcome this limitation. Using the proposed approach, blind

detection of RF signals with different spectra-temporal profiles have been demonstrated. TBP

compression ratios of 72% and 56% have been achieved using non-uniform time stretch filters

with quadratic and cubic time delays respectively. The proposed adaptive photonic time-

stretch system works without the knowledge of the unknown RF signals, hence providing

a more promising solution for real-time detection of arbitrary RF signal with reduced TBP.

The concept developed can be adapted to address data compression issues in wider fields

such as high-speed communications, ultrafast measurement and massive sensor network.



Chapter 7

Summary and Future Work

7.1 Summary

This thesis mainly focussed on optical techniques to boost the capturing capability of ultrafast

measurement systems by exploring signal processing techniques such as anamorphic stretch

transform, compressed sensing and fourier spectrum sensing in optical domain.

The Photonic compressed sensing, a sub-nyquist sampling technique to sense sparse

signals in optical domain has been explored for Optical Coherence Tomography for Bio-

Medical applications and distributed strain sensing for industrial applications. The numerical

and experimental results have been presented in this thesis. First, Time Domain Photonic

Compressed Sensing system has been demonstrated with electrically generated binary random

patterns. The advantages with this method is that, (1) Data compression (2) Reduced the high

speed requirement of electronic detection systems. However, there have been limitations

such as, (1) High speed electronic random pattern generator requirement to enable time

domain compressed sensing (2) Usage of electro-optic effect which some extent is lossy

and may require amplifier for faithful detection (3) Electrical bandwidth of pulsed source

compromises data compression (4) Huge physical size of electronic generator.
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To reduce these limitations, electrically generated binary PRBS sequences are replaced

with all-optical analog random patterns generated from cascaded Mach-Zehnder Interfer-

ometric configuration utilizing dispersion in single mode fibres and optical delay lines in

opposite chirp configurations. This has been referred as Spectral Domain Photonic Com-

pressed Sensing system based on cascaded MZI. The method has been applied for blind RF

spectrum sensing and FBG sensing. This method have several advantages such as, (1) Data

compression (2) Reduced the high speed requirement of electronic detection systems (3)

Reducing the need for high speed electronic random pattern generator (4) Avoided usage of

electro-optic conversion followed by amplification, hence improved the energy efficiency

(5) Reduced the effect of Electrical bandwidth of optical pulse on data compression (6)

The physical size of overall system has been reduced as there is no electronic high speed

equipment involved. However, this method has a few limitations such as, (1) Sensitivity to

environment issues such as polarization, disturbance to interferometric structure (2) Periodic

calibration for random patterns is essential with high speed equipment once before capturing

actual measurements.

The research on generating 2D optical speckle patterns caused by wavelength dependant

chaos inside multimode fibre structure has been discussed and for a set of 500 wavelengths,

uncorrelated patterns have been generated and successful reconstruction of a 2D image with

compressed sensing has been presented.

The thesis presented experimental investigation of Fourier spectrum sensing with all-

fibre interferometric time stretched harmonic sinusoidal patterns with optical delay line and

electro-optic phase modulator. The RF spectrum has been scanned non-linearly with tunable

optical delay and the successful reconstruction of single tone and multi-toned RF signals

have been presented.

Microwave group delay filter followed by Dispersive Fourier Transform has been uti-

lized for mapping the RF frequency spectrum to optical spectrum. Anamorphic stretch
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transform(AST) has been processed to stretch the high frequency information to bring the

overall information signal into the bandwidth limit of electronic sensing equipment. Two

types of AST filters, quadrautic and cubic group delay filters have been investigated and TBP

compression has been achieved.

In conclusion, various enhancement techniques have been presented for measurement sys-

tems utilizing photonic time stretch as main tool. Different compression schemes have been

studied and enhancement techniques have been presented with numerical and experimental

demonstrations for various application fields such as bio-medical imaging and distributed

FBG sensing, microwave spectrum sensing. A tabular summary has been presented with

various parameters as per this thesis work in Fig. 7.1.

Parameters specific to 
this thesis work

Time domain Photonic 
Compressed 
Sensing(chap:3.1)

Spectral domain 
Photonic Compressed 
Sensing(chap:3.2)

Spatial domain 
Photonic Compressed 
Sensing for High 
speed 
Imaging(chap:4)

All-optical FFT 
scanning for blind 
spectrum 
sensing(chap:5)

AST(chap:6)

Type of investigation Experimental Experimental Simulation and 
experimental

Experimental Simulation

Type of information 1D 1D 2D 1D 1D

Dependancy on 
electronics

Low speed 
detector/digitizer , 
high speed frontend 
AWG,EOM

Low speed 
detector/digitizer, No 
frontend

High speed electronic 
detector, No frontend

Low speed detector, 
Very Low speed 
frontend, EOM

Low speed Digitizers; 
High speed frontend 
modulator

Dependancy on 
Information

Should be sparse Should be sparse Naturally sparse Not required; User 
selective

High

Measurement speed 1.51MHz Few 10’s Hz 50MHz Few 10’s Hz Few MHz

Compression ratio m/N – 50-70% m/N – 10% m/N – 66% 4m/N
User selective

Information 
dependant

Post-processing time High Low Very High Very Low Low

Calibration May not be required 
as PRBS is binary and 
electronically 
generated

Required Required Required Required twice for AST 
filter and RF filter

Environmental issues 
sensitivity

Low High High High Simulation

Loss High; Electro-optic 
modulator

Very Low Medium Low Simulated

Accuracy The information spectrum is always associated with gaussian distribution due to the nature of optical carrier

Fig. 7.1 Summary of thesis work
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7.2 Outlook

The current thesis work can be extended further as follows.

7.2.1 Future work based on AST system proposed in this thesis:

Fig. 7.2 AST quad filter using Photonic Crystal Fibre

The AST filter proposed and explained in chapter 6, can be extended and demonstrated

with Photonic Crystal Fibre which has non-linear dispersion curve w.r.t. wavelength.
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7.2.2 Future work for SD-PCS system based on cascaded MZI pro-

posed in this thesis:

Spectral domain photonic compressed sensing based on cascaded MZI structure has low

electronic bottleneck with low loss and RF blind spectral sensing has been demonstrated

in chapter 3. This can be extended to imaging, Strain sensing or OCT volumetric scanning.

The proposed schematic of spectral domain photonic compressed sensing based Michelson

interferometry OCT system has been presented in Fig. 7.3

Fig. 7.3 Proposed spectral domain photonic time stretch compressed sensing based OCT
system that can sense the A-scan profile of sample

7.2.3 Future work for UF-PCS imaging system

High speed compressed imaging based on multimode interference enables us to continuously

sample images at 50MHz rate which can be used for video rate imaging for microscopy and

flow-cytometry based applications. A proof-of-concept demonstration is presented in chapter

4. However, the computer interface units for realtime data acquisition, post-processing and

streaming of images can be further investigated.
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7.2.4 Potential future work for compressed sensing

Each of the frequency band of EM spectrum can be used for imaging. Microwave imaging

has been explored to find hidden objects[186]. Using compressed sensing, the objects can be

sensed with low speed detectors. Recently in-fibre diffraction has been demonstrated as an

alternative for the free-space diffraction grating structure. Photonic information processing is

an emerging area which has been used for forecast systems, reducing non-linear distortions

in communication channel, pattern recognition. Determining a 2D image based on neural

networks can be a complex idea but has big prospects such as automated cell labelling and

detection.

As explained in chapter 1, the compactness or physical size of measurement system

can be reduced with Photonic Integrated Circuits(PIC). The advantages with PIC include,

reduction to the sensitivity to environment issues, improving operational stability, reduced

size and low power consumption[20]. The proposed work can be integrated to PIC to envision

compact ultrafast measurement systems.
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Appendix B

Equipment used in the experiments

Following are the list of equipment used in the experiments and their specifications.

Fig. B.1 Mendocino series FPL type C -band Desktop 1550nm femtosecond laser

Table B.1 Specifications of MLL

Parameters Typical values

Central Wavelength 1550 nm
Optical bandwidth 9-16 nm
Pulse width 800 fs
Repetition rate 50 MHz
Optical Power 10-20 mW
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Fig. B.2 Tektronix Arbitrary Waveform Generator 7122C

Table B.2 Specifications of AWG:

Parameters Typical Values

Sampling Rate 12 GS/s
Amplitude +4 dBm
Resolution 10 bit
Modulation Bandwidth 4.8 GHz

Fig. B.3 Agilent 86100A Wideband sampling scope
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Table B.3 Specifications of sampling oscilloscope:

Parameters Typical Values

Optical channel 9/125 SMF, 53 GHz RF band-
width PD, max. optical power:
20 mW

Electrical channel 1.85mm male input, 63GHz
RF bandwidth, max. signal
input: ±2Vdc

TBP 375

Fig. B.4 Tektronix realtime oscilloscope

Table B.4 Specifications of realtime oscilloscope:

Parameters Typical Val-
ues

Analog
Bandwidth

23 GHz

Sampling
rate

100 GS/s

Maximum
number of
samples
recorded

31.25 M
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Fig. B.5 E4440A PSA Spectrum Analyzer

Table B.5 Specifications of electrical spectrum analyser:

Parameters Typical Values
Detection Bandwidth 3 Hz to 26.5 GHz

Fig. B.6 Optical Spectrum Analyzer Agilent 86146B

Table B.6 Specifications of optical spectrum analyser:

Parameters Typical Values

Wavelength range 600-1700 nm
Resolution bandwidth 0.06 nm
Sensitivity -90 dBm
Dynamic Range -70 dB



155

Fig. B.7 Dispersion Compensating Fibre OFS SMFDK-S-020-03-01

Table B.7 Specifications of DCF:

Parameters Typical Values

Wavelength range 1550 nm
Compensated fibre length 20 km
Dispersion -330 ps/nm
Connector type FC/APC

Fig. B.8 General Photonics Variable Optical Delay Line VDL-001

Table B.8 Specifications of optical delay line:

Parameters Typical Values
Maximum Optical Delay 600 ps
Insertion Loss 1 dB
Optical Wavelength 1550 nm ±50nm



156

Fig. B.9 General Photonics Motorized Optical Delay Line MDL-001

Table B.9 Specifications of motorized optical delay line:

Parameters Typical Values
Maximum Optical Delay 330 ps
Insertion Loss 1 dB
Optical Wavelength 1550 nm ±50nm

Fig. B.10 Amonics Optical Fibre Amplifier Pre Amplifier AEDFA-PA-35-B-FA

Table B.10 Specifications of optical amplifier:

Parameters Typical Values
Optical Wavelength Range 1530-1563 nm
Connector Type FC/APC
Maximum optical gain 35 dB
Input Signal Range -40 - -10 dBm



Appendix C

Sample MATLAB code used for

post-processing

% l1eq_pd .m

%

% Solve

% min_x | | x | | _1 s . t . Ax = b

%

% R e c a s t a s l i n e a r program

% min_ {x , u} sum ( u ) s . t . −u <= x <= u , Ax=b

% and use p r ima l−d u a l i n t e r i o r p o i n t method

%

% Usage : xp = l1eq_pd ( x0 , A, At , b , p d t o l , pdmax i t e r , c g t o l

, c g m a x i t e r )

%

% x0 − Nx1 v e c t o r , i n i t i a l p o i n t .

%
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% A − E i t h e r a h a n d l e t o a f u n c t i o n t h a t t a k e s a N v e c t o r

and r e t u r n s a K

% v e c t o r , o r a KxN m a t r i x . I f A i s a f u n c t i o n hand le ,

t h e a l g o r i t h m

% o p e r a t e s i n " l a r g e s c a l e " mode , s o l v i n g t h e Newton

s y s t e m s v i a t h e

% C o n j u g a t e G r a d i e n t s a l g o r i t h m .

%

% At − Handle t o a f u n c t i o n t h a t t a k e s a K v e c t o r and

r e t u r n s an N v e c t o r .

% I f A i s a KxN mat r ix , At i s i g n o r e d .

%

% b − Kx1 v e c t o r o f o b s e r v a t i o n s .

%

% p d t o l − T o l e r a n c e f o r p r ima l−d u a l a l g o r i t h m ( a l g o r i t h m

t e r m i n a t e s i f

% t h e d u a l i t y gap i s l e s s t h a n p d t o l ) .

% D e f a u l t = 1e−3.

%

% p d m a x i t e r − Maximum number o f p r ima l−d u a l i t e r a t i o n s .

% D e f a u l t = 5 0 .

%

% c g t o l − T o l e r a n c e f o r C o n j u g a t e G r a d i e n t s ; i g n o r e d i f A

i s a m a t r i x .

% D e f a u l t = 1e−8.

%
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% c g m a x i t e r − Maximum number o f i t e r a t i o n s f o r C o n j u g a t e

G r a d i e n t s ; i g n o r e d

% i f A i s a m a t r i x .

% D e f a u l t = 2 0 0 .

%

% W r i t t e n by : J u s t i n Romberg , C a l t e c h

% Email : jrom@acm . c a l t e c h . edu

% C r e a t e d : Oc tobe r 2005

%

f u n c t i o n xp = l1eq_pd ( x0 , A, At , b , p d t o l , pdmax i t e r , c g t o l

, c g m a x i t e r )

l a r g e s c a l e = i s a (A, ’ f u n c t i o n _ h a n d l e ’ ) ;

i f ( n a r g i n < 5) , p d t o l = 1e−3; end

i f ( n a r g i n < 6) , p d m a x i t e r = 5 0 ; end

i f ( n a r g i n < 7) , c g t o l = 1 e8 ; end

i f ( n a r g i n < 8) , c g m a x i t e r = 200 ; end

N = l e n g t h ( x0 ) ;

a l p h a = 0 . 0 1 ;

b e t a = 0 . 5 ;

mu = 1 0 ;
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g r a d f 0 = [ z e r o s (N, 1 ) ; ones (N, 1 ) ] ;

% s t a r t i n g p o i n t −−− make s u r e t h a t i t i s f e a s i b l e

i f ( l a r g e s c a l e )

i f ( norm (A( x0 )−b ) / norm ( b ) > c g t o l )

d i s p ( ’ S t a r t i n g p o i n t i n f e a s i b l e ; u s i n g x0 = At* i n v ( AAt ) *y . ’

) ;

AAt = @( z ) A( At ( z ) ) ;

[w, c g r e s , c g i t e r ] = c g s o l v e ( AAt , b , c g t o l , c g m a x i t e r , 0 ) ;

i f ( c g r e s > 1 / 2 )

d i s p ( ’A*At i s i l l −c o n d i t i o n e d : c a n n o t f i n d s t a r t i n g p o i n t ’ )

;

xp = x0 ;

r e t u r n ;

end

x0 = At (w) ;

end

e l s e

i f ( norm (A*x0−b ) / norm ( b ) > c g t o l )

d i s p ( ’ S t a r t i n g p o i n t i n f e a s i b l e ; u s i n g x0 = At* i n v ( AAt ) *y . ’

) ;

o p t s . POSDEF = t r u e ; o p t s .SYM = t r u e ;

[w, hcond ] = l i n s o l v e (A*A’ , b , o p t s ) ;

i f ( hcond < 1e−14)

d i s p ( ’A*At i s i l l −c o n d i t i o n e d : c a n n o t f i n d s t a r t i n g p o i n t ’ )

;
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xp = x0 ;

r e t u r n ;

end

x0 = A’*w;

end

end

x = x0 ;

u = ( 0 . 9 5 ) * abs ( x0 ) + ( 0 . 1 0 ) *max ( abs ( x0 ) ) ;

% s e t up f o r t h e f i r s t i t e r a t i o n

fu1 = x − u ;

fu2 = −x − u ;

lamu1 = −1. / fu1 ;

lamu2 = −1. / fu2 ;

i f ( l a r g e s c a l e )

v = −A( lamu1−lamu2 ) ;

Atv = At ( v ) ;

r p r i = A( x ) − b ;

e l s e

v = −A*( lamu1−lamu2 ) ;

Atv = A’* v ;

r p r i = A*x − b ;

end

sdg = −( fu1 ’* lamu1 + fu2 ’* lamu2 ) ;

t a u = mu*2*N/ sdg ;
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r c e n t = [− lamu1 . * fu1 ; −lamu2 . * fu2 ] − ( 1 / t a u ) ;

r d u a l = g r a d f 0 + [ lamu1−lamu2 ; −lamu1−lamu2 ] + [ Atv ; z e r o s (

N, 1 ) ] ;

resnorm = norm ( [ r d u a l ; r c e n t ; r p r i ] ) ;

p d i t e r = 0 ;

done = ( sdg < p d t o l ) | ( p d i t e r >= p d m a x i t e r ) ;

w h i l e (~ done )

p d i t e r = p d i t e r + 1 ;

w1 = −1/ t a u *( −1 . / fu1 + 1 . / fu2 ) − Atv ;

w2 = −1 − 1 / t a u * ( 1 . / fu1 + 1 . / fu2 ) ;

w3 = − r p r i ;

s i g 1 = −lamu1 . / fu1 − lamu2 . / fu2 ;

s i g 2 = lamu1 . / fu1 − lamu2 . / fu2 ;

s i g x = s i g 1 − s i g 2 . ^ 2 . / s i g 1 ;

i f ( l a r g e s c a l e )

w1p = w3 − A( w1 . / s i g x − w2 . * s i g 2 . / ( s i g x . * s i g 1 ) ) ;

h11pfun = @( z ) −A ( 1 . / s i g x . * At ( z ) ) ;

[ dv , c g r e s , c g i t e r ] = c g s o l v e ( h11pfun , w1p , c g t o l ,

c g m a x i t e r , 0 ) ;

i f ( c g r e s > 1 / 2 )
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d i s p ( ’ Cannot s o l v e sys tem . R e t u r n i n g p r e v i o u s i t e r a t e . (

See S e c t i o n 4 of n o t e s f o r more i n f o r m a t i o n . ) ’ ) ;

xp = x ;

r e t u r n

end

dx = ( w1 − w2 . * s i g 2 . / s i g 1 − At ( dv ) ) . / s i g x ;

Adx = A( dx ) ;

Atdv = At ( dv ) ;

e l s e

w1p = −(w3 − A*(w1 . / s i g x − w2 . * s i g 2 . / ( s i g x . * s i g 1 ) ) ) ;

H11p = A*( s p a r s e ( d i a g ( 1 . / s i g x ) ) *A’ ) ;

o p t s . POSDEF = t r u e ; o p t s .SYM = t r u e ;

[ dv , hcond ] = l i n s o l v e ( H11p , w1p , o p t s ) ;

i f ( hcond < 1e−14)

d i s p ( ’ Ma t r i x i l l −c o n d i t i o n e d . R e t u r n i n g p r e v i o u s i t e r a t e .

( See S e c t i o n 4 of n o t e s f o r more i n f o r m a t i o n . ) ’ ) ;

xp = x ;

r e t u r n

end

dx = ( w1 − w2 . * s i g 2 . / s i g 1 − A’* dv ) . / s i g x ;

Adx = A*dx ;

Atdv = A’* dv ;

end

du = ( w2 − s i g 2 . * dx ) . / s i g 1 ;
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dlamu1 = ( lamu1 . / fu1 ) .*(− dx+du ) − lamu1 − ( 1 / t a u ) * 1 . / fu1 ;

dlamu2 = ( lamu2 . / fu2 ) . * ( dx+du ) − lamu2 − 1 / t a u * 1 . / fu2 ;

% make s u r e t h a t t h e s t e p i s f e a s i b l e : keeps lamu1 , lamu2 >

0 , fu1 , fu2 < 0

indp = f i n d ( dlamu1 < 0) ; i ndn = f i n d ( dlamu2 < 0) ;

s = min ( [ 1 ; −lamu1 ( indp ) . / dlamu1 ( indp ) ; −lamu2 ( indn ) . /

dlamu2 ( indn ) ] ) ;

i ndp = f i n d ( ( dx−du ) > 0) ; i ndn = f i n d ((−dx−du ) > 0) ;

s = ( 0 . 9 9 ) *min ( [ s ; −fu1 ( indp ) . / ( dx ( indp )−du ( indp ) ) ; −fu2 (

indn ) . / ( − dx ( indn )−du ( indn ) ) ] ) ;

% b a c k t r a c k i n g l i n e s e a r c h

s u f f d e c = 0 ;

b a c k i t e r = 0 ;

w h i l e (~ s u f f d e c )

xp = x + s *dx ; up = u + s *du ;

vp = v + s *dv ; Atvp = Atv + s * Atdv ;

lamu1p = lamu1 + s * dlamu1 ; lamu2p = lamu2 + s * dlamu2 ;

fu1p = xp − up ; fu2p = −xp − up ;

rdp = g r a d f 0 + [ lamu1p−lamu2p ; −lamu1p−lamu2p ] + [ Atvp ;

z e r o s (N, 1 ) ] ;

r c p = [− lamu1p . * fu1p ; −lamu2p . * fu2p ] − ( 1 / t a u ) ;

rpp = r p r i + s *Adx ;

s u f f d e c = ( norm ( [ rdp ; r c p ; rpp ] ) <= (1− a l p h a * s ) * resnorm ) ;

s = b e t a * s ;
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b a c k i t e r = b a c k i t e r + 1 ;

i f ( b a c k i t e r > 32)

d i s p ( ’ S tuck b a c k t r a c k i n g , r e t u r n i n g l a s t i t e r a t e . ( See

S e c t i o n 4 of n o t e s f o r more i n f o r m a t i o n . ) ’ )

xp = x ;

r e t u r n

end

end

% n e x t i t e r a t i o n

x = xp ; u = up ;

v = vp ; Atv = Atvp ;

lamu1 = lamu1p ; lamu2 = lamu2p ;

fu1 = fu1p ; fu2 = fu2p ;

% s u r r o g a t e d u a l i t y gap

sdg = −( fu1 ’* lamu1 + fu2 ’* lamu2 ) ;

t a u = mu*2*N/ sdg ;

r p r i = rpp ;

r c e n t = [− lamu1 . * fu1 ; −lamu2 . * fu2 ] − ( 1 / t a u ) ;

r d u a l = g r a d f 0 + [ lamu1−lamu2 ; −lamu1−lamu2 ] + [ Atv ; z e r o s (

N, 1 ) ] ;

resnorm = norm ( [ r d u a l ; r c e n t ; r p r i ] ) ;

done = ( sdg < p d t o l ) | ( p d i t e r >= p d m a x i t e r ) ;
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d i s p ( s p r i n t f ( ’ I t e r a t i o n = %d , t a u = %8.3e , P r i m a l = %8.3e ,

PDGap = %8.3e , Dual r e s = %8.3e , P r i m a l r e s = %8.3 e ’ , . . .

p d i t e r , t au , sum ( u ) , sdg , norm ( r d u a l ) , norm ( r p r i ) ) ) ;

i f ( l a r g e s c a l e )

d i s p ( s p r i n t f ( ’ CG Res = %8.3e , CG I t e r = %

d ’ , c g r e s , c g i t e r ) ) ;

e l s e

d i s p ( s p r i n t f ( ’ H11p c o n d i t i o n number =

%8.3 e ’ , hcond ) ) ;

end

end

The below code is used to reconstruct OCT signal from 66% measurements. A binary

sequence is used as PRBS in this case.

c l c ; c l e a r a l l ; c l o s e a l l ;

k =1; f o r i = 3820875: 1 e5 : 8720875

y1 ( k ) = max ( cp ( i −1500:1: i +1500−1) ) ; k=k +1; % f i n d t h e l o c a l

maxima of t h e compressed p u l s e s measured wi th lowspeed

P h o t o d i o d e

end

y=y1 ( 1 : 1 : 3 3 ) ’ ; % t a k e on ly 33 measurements

f o r i = 1 : 1 : 5 0
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A1 ( i , : ) = p r b s ( ( i −1) * 5 0 + 1 : 1 : ( i ) *50) ; % The PRBS used i n t h e

AWG has been s p l i t i n t o 50 random s e q u e n c e s each of

l e n g t h 50 p o i n t s

end

A=A1 ( 1 : 1 : 3 3 , : ) ; % on ly 33 PRBS s e q u e n c e s a r e t a k e n

N=50; % s i g n a l l e n g t h

A_m = A* i f f t ( eye (N) ) ; % The ta = PRBS*IDFT

A_m_actual = [ r e a l (A_m) −imag (A_m) ; imag (A_m) r e a l (A_m) ] ;

m e a s 1 _ a c t u a l = [ r e a l ( y ) ; imag ( y ) ] ;

x0 = p inv ( A_m_actual ) * m e a s 1 _ a c t u a l ; % i n i t i a l p o i n t

x = l1eq_pd ( x0 , A_m_actual , A_m_actual ’ , me as 1_ ac tu a l , 1 e −3 ,21)

; % L1−magic

x _ r e a l = x ( 1 : 5 0 , 1 ) ;

x_imag = x ( 5 1 : 1 0 0 , 1 ) ;

z = complex ( x _ r e a l , x_imag ) ;

x _ h a t = ( abs ( i f f t ( z ) ) ) ; %r e c o n s t r u c t e d OCT s i g n a l

s i g = i n t e r p 1 ( x_ha t , [ 0 . 1 : 0 . 1 : 4 0 ] , ’ s p l i n e ’ ) ; % i n t e r p o l a t e d

s i g n a l

f i g u r e ( 1 ) ; c r e a t e f i g u r e ( t ime , i n t e r _ 5 0 0 ) ;
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t = t ime ( 1 : 1 e5 ) ; % t ime s c a l e

M= l e n g t h ( i n t e r ( 1 : 1 e5 ) ) ; % a c t u a l i n t e r f e r e n c e p u l s e

measured wi th h igh speed o s c i l l o s c o p e

d e l t a t =( t ( 2 )− t ( 1 ) ) ; % s a m p l i n g i n t e r v a l

T= d e l t a t *M; % a c t u a l s i g n a l d u r a t i o n

t =(−T / 2 : d e l t a t : T/2− d e l t a t ) ;

d e l t a f =1 /T ; % f r e q u e n c y r e s o l u t i o n

F =1/ d e l t a t ; % o v e r a l l bandwid th

f = l i n s p a c e (−F/2− d e l t a f , F / 2 ,M) ;

Y_w= f f t s h i f t ( f f t ( i n t e r ( 1 : 1 e5 ) ) ) ; % FFT of t h e i n t e r f e r e n c e

p u l s e

p l o t ( f , abs (Y_w) ) ;

r f i = 1 : 1 : 5 0 ;

r _ f = ( ( r f i −26) / 2 5 * 1 . 2 5 ) ;

r _ t = ( r f i −1) * 0 . 5 ;

t i m e _ i n t e r p o l a t e d = i n t e r p 1 ( r _ t , [ 1 : 0 . 1 : 4 0 ] , ’ s p l i n e ’ ) ; %

i n t e r p o l a t e d t ime

s i g _ i n t e r p o l a t e d = i n t e r p 1 ( x_hat , [ 0 : 0 . 1 : 3 9 ] , ’ s p l i n e ’ ) ; %

i n t e r p o l a t e d r e c o n s t r u c g e d s i g n a l from L1 m i n i m i z a t i o n

a l g o r i t h m .
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