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1. Introduction

The wreath product G�Sn of a finite group G with a symmetric group Sn is a natural group-theoretic 
construction with many applications. For example, wreath products Sm�Sn of two symmetric groups are 
of great importance in the representation theory of the symmetric group. It is also natural to consider the 
wreath product A�Sn of an algebra A with a symmetric group Sn, see for example the work of Chuang and 
Tan in [1]. The notion of a cellular algebra was introduced by Graham and Lehrer in [4] and has since found 
broad application. The question arises as to whether a cellular structure on an algebra A yields a cellular 
structure on the algebra A�Sn, and in [3] Geetha and Goodman showed that this is so in the case that A is 
not only cellular but cyclic cellular, meaning that all of the cell modules of A are cyclic [3, Theorem 4.1]. 
Their proof is quite combinatorial in nature, and draws on the work of Dipper, James, and Mathas in [2]
and of Murphy in [11]. However, we shall prove (section 4) that A�Sn is cellular for any cellular algebra A, 
by exhibiting it as an iterated inflation of tensor products of group algebras of symmetric groups. Iterated 
inflations were originally introduced by König and Xi in [8], but we shall use this concept in the form given 
in [5]. The advantage of taking this approach is a far simpler proof than the one given in [3], and hence 
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much easier access to the powerful machinery of cellular algebra theory which allows us to easily prove 
the nice results on A � Sn given in Section 5. The price for this simplicity is that order obtained on the 
set of cell indices of A � Sn is somewhat cruder than the order obtained in [3], and hence contains less 
representation-theoretic information; see the discussion at the end of Section 4 for more details. Since (as 
far as the author is aware) all cellular algebras which occur in practice are in fact cyclic cellular, the result 
presented in this article is in effect a weaker version of the result of Geetha and Goodman. However, we feel 
that the much simpler proof afforded by the method of iterated inflations is of interest in its own right.

We shall also obtain a convenient graphical description of a well-known method of constructing A�Sn

modules (section 3), and in section 5 we bring this description together with the cellularity result to deliver 
results on the representation theory of A � Sn, in particular a description of the simple modules and a 
semisimplicity condition. These results require no extra assumptions on the field (e.g. algebraic closedness).

2. Recollections and definitions

We let k be a field of characteristic p (p may be zero or a prime). By a k-algebra, we shall mean a 
finite-dimensional unital associative k-algebra; we shall abbreviate ⊗k to ⊗; all of our modules will be 
right modules of finite k-dimension. By an anti-involution on a k-algebra A, we mean a self-inverse k-linear 
isomorphism a �→ a∗ such that (ab)∗ = b∗a∗ for all a, b ∈ A.

For n a non-negative integer, a composition of n is a tuple of non-negative integers whose sum is n, and 
if μ = (μ1, . . . , μt) is a tuple of non-negative integers then we call the numbers μi the parts of μ, and define 
|μ| to be the sum μ1 + · · · + μt, so that μ is a composition of |μ|. A composition whose entries are positive 
and appear in non-increasing order is a partition. Note that n = 0 has exactly one partition, the empty 
tuple, which we shall write as ().

2.1. Cellular algebras

We refer the reader to [4] for basic information and notation on cellular algebras. We shall refer to 
elements of the poset Λ indexing the cell modules of a cellular algebra as cell indices, and we shall write 
the anti-involution on a cellular algebra A as a �→ a∗. Recall that to each cell index λ we associate a finite 
set M(λ), and we have a cellular basis of A whose elements are indexed by the disjoint union of the sets 
M(λ) ×M(λ) for λ ∈ Λ; we write the cellular basis element indexed by (S, T ) ∈ M(λ) ×M(λ) as Cλ

S,T . We 
call the tuple (Λ, M, C) the cellular data of A with respect to ∗. Since we are using right modules we take 
the multiplication rule for cellular basis elements to be

Cλ
S,Ta ≡

∑
X∈M(λ)

Ra(T,X)Cλ
S,X (1)

modulo cellular basis elements of lower cell index (where Ra(T, X) ∈ k). Then the right cell module Δλ is 
the vector space with basis {CT : T ∈ M(λ)}; our form of the multiplication rule (1) means that the action 
of A on Δλ is

CTa =
∑

X∈M(λ)

Ra(T,X)CX . (2)

Let us recall some basic results on cell modules, see [4, sections 2 and 3]. Indeed, each cell module is equipped 
with a bilinear form, whose radical is either the whole cell module or else its unique maximal A-submodule; 
we shall call these bilinear forms the cell forms and their radicals the cell radicals. We let Λ0 be the set of 
λ ∈ Λ such that the cell radical of Δλ does not equal Δλ, and for λ ∈ Λ0 we let Lλ be the quotient of Δλ
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by its cell radical; thus Lλ is a simple A-module, and the modules Lλ for λ ∈ Λ0 are in fact a complete list 
of all the simple right A-modules up to isomorphism without redundancy.

2.2. The symmetric group

We let Sn denote the symmetric group on the set {1, 2, . . . , n}, and we take Sn to act on the right, so 
that the product σπ of permutations is calculated by first applying σ and then applying π; thus we write 
permutations to the right of their arguments. We shall find it convenient to represent permutations via 
permutation diagrams; for example, we represent (1, 2, 3)(5, 7) ∈ S7 by the diagram

,

where the ith node on the top row is connected by a string to the (i)σth node on the bottom row. To calculate 
the product σπ in Sn using permutation diagrams, we connect the diagram for σ above the diagram for π, 
and then simplify the resulting diagram to yield the permutation diagram of σπ. For μ a composition of n, 
we write Sμ for the Young subgroup of Sn associated to μ.

Let us denote the dominance order on partitions by �. The reverse dominance order is the order obtained 
by reversing all the relations in the dominance order. The group algebra kSn is known to be a cellular algebra 
[10, Theorem 3.20], with respect to the anti-involution ∗ defined by setting σ∗ = σ−1 for σ ∈ Sn, and a 
tuple of cellular data including the partially ordered set Pn consisting of all partitions of n endowed with 
the reverse dominance order. Note that [10, Theorem 3.20] mentions the dominance order rather than the 
reverse dominance order, but we note that the definition of a cellular algebra used there [10, 2.1], has the 
opposite convention on the ordering of the elements of the poset of cell indices compared to [4], so that 
in the sense of our definition of a cellular algebra, we do indeed have the reverse dominance order. We 
shall not need the details of the cellular basis occurring in this structure, but we note that for λ ∈ Pn, the 
right cell module associated to λ by this structure, which we shall denote by Sλ, is the (contragredient) 
dual of the right Specht module defined by James in [6].2 Further, the simple modules are indexed by 
p-restricted partitions. If p = 0 then all partitions are considered p-restricted, while if p > 0 then a partition 
is p-restricted if the difference between any two consecutive parts is less than p. Note that () is p-restricted 
for all p � 0. For λ p-restricted, we denote the associated simple module by Dλ [10, Theorem 3.43].

The following result may easily be proved by directly verifying the axioms for a cellular algebra; in fact, 
it is merely a special case of the general result that a tensor product of cellular algebras is cellular, see for 
example section 3.2 of [3].

Proposition 1. Let n1, . . . , nr be non-negative integers. Then the group algebra k(Sn1×· · ·×Snr
) is a cellular 

algebra with respect to the map given by (σ1, . . . , σr) �−→ (σ−1
1 , . . . , σ−1

r ) for σi ∈ Sni
and a cellular structure 

where the poset of cell indices is Pn1 × · · · × Pnr
with the order where (λ1, . . . , λr) � (μ1, . . . , μr) means 

λi � μi for all i; the cell module associated to (λ1, . . . , λr) is Sλ1 ⊗ · · · ⊗ Sλr with the action

(x1 ⊗ · · · ⊗ xr) · (σ1, . . . , σr) = (x1σ1) ⊗ · · · ⊗ (xrσr)

for xi ∈ Sλi , σi ∈ Sni
, and the cell form is given on pure tensors by

2 See [10], “Warning” on p. 38 and “Note 2” on page 54, but note that the original published text incorrectly states that the cell 
module obtained is the dual of the right James Specht module associated to the conjugate of λ; see the correction to the Warning 
in the author’s errata.
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〈x1 ⊗ · · · ⊗ xr, y1 ⊗ · · · ⊗ yr〉 = 〈x1, y1〉 · · · 〈xr, yr〉

where each bilinear form on the right hand side is the appropriate cell form of some Sλi.

Let σ ∈ Sn. Then an inversion of σ is a transposition (i, j) in Sn such that 1 ≤ i < j ≤ n but 
(i)σ > (j)σ, and the Coxeter length of σ is defined to be the total number of inversions of σ; we shall simply 
call this the length of σ. It is well-known that if μ is a composition of n, then each right coset Sμσ of Sμ

contains a unique element of minimal length, and further that if μ = (μ1, . . . , μr), then for any given right 
Sμ-coset, the element of minimal length is the unique element γ of the coset such that in the sequence 
(1)γ−1, . . . , (n)γ−1, the elements 1, . . . , μ1 occur in increasing order, as do the elements μ1 + 1, . . . , μ1 +μ2, 
the elements μ1 +μ2 +1, . . . , μ1 +μ2 +μ3, and so on. Equivalently, an element σ of Sn is of minimal length 
in its coset Sμσ if and only if, in its permutation diagram, the strings attached to the first μ1 nodes on 
the top row do not cross each other, the strings attached to the next μ2 nodes on the top row do not cross 
each other, and so on. For example, the permutation whose diagram appears in the diagram (10) below is 
of minimal length in its Sμ coset for μ = (3, 2, 3). For any μ a composition of n, we define Rμ to be the 
unique system of minimal-length right Sμ-coset representatives in Sn.

2.3. Iterated inflation of cellular algebras

Iterated inflations of cellular algebras were first introduced by König and Xi in [8], but we shall use them 
as presented in [5]. We shall now summarise the content of [5]; note however that we give the form using 
right cell modules, rather than the left cell modules used in [5].

Let A be a k-algebra, with an anti-involution ∗. Suppose that we have, up to isomorphism of k-vector 
spaces, a decomposition

A ∼=
⊕
μ∈I

Vμ ⊗Bμ ⊗ Vμ

of A, where I is a finite partially ordered set, each Vμ is a k-vector space, and each Bμ is a cellular algebra 
over k with respect to an anti-involution ∗ and cellular data (Λμ,Mμ, C). We shall henceforth consider A
to be identified with this direct sum of tensor products, and we shall speak of the subspace Vμ ⊗ Bμ ⊗ Vμ

as the μ-th layer of A. Suppose that for each μ ∈ I, we have a basis Vμ for Vμ and a basis Bμ for Bμ. Let 
A be the basis of A consisting of all elements u ⊗ b ⊗w for all u, w ∈ Vμ and all b ∈ Bμ, as μ ranges over I. 
Suppose that for each μ ∈ I, we have for any u, w ∈ Vμ and any b ∈ Bμ that

(u⊗ b⊗ w)∗ = w ⊗ b∗ ⊗ u, (3)

and suppose further that for any μ ∈ I we have maps φμ : Vμ ×A → Vμ and θμ : Vμ ×A → Bμ such that 
for any u, w ∈ Vμ and any b ∈ Bμ, we have for any a ∈ A that

(u⊗ b⊗ w) · a ≡ u⊗ b θμ(w, a) ⊗ φμ(w, a) mod J(< μ), (4)

where J(< μ) =
⊕

α<μ Vα⊗Bα⊗Vα. Then by [5, Theorem 1], A is cellular with respect to ∗ and the cellular 
data (Λ, M, C), where Λ is the set {(μ, λ) : μ ∈ I and λ ∈ Λμ} with the lexicographic order, M(μ, λ) is 
Vμ ×Mμ(λ), and C(μ,λ)

(x,X),(y,Y ) = x ⊗ Cλ
X,Y ⊗ y.

Further by [5, Proposition 2], for each μ ∈ I there is a unique Bμ-valued k-bilinear form ψμ on Vμ such 
that for any u, w, x, y ∈ Vμ and b, c ∈ Bμ we have ψμ(y, u) = ψμ(u, y)∗ and

(x⊗ c⊗ y)(u⊗ b⊗ w) ≡ x⊗ c ψμ(y, u)b⊗ w mod J(< μ). (5)



R. Green / Journal of Pure and Applied Algebra 224 (2020) 819–835 823
Finally (see [5, Proposition 3]), let (μ, λ) ∈ Λ, and let Δλ be the right cell module of Bi corresponding 
to λ. The right cell module Δ(μ,λ) of A may be obtained by equipping Δλ ⊗ Vμ with the action given, for 
a ∈ A, x ∈ Vμ and z ∈ Δλ, by (z⊗x)a = z θμ(x, a) ⊗φμ(x, a). Moreover, if 〈· , ·〉 is the cell form on Δλ⊗Vμ

and 〈· , ·〉λ is the cell form on Δλ, then for any x, y ∈ Vμ and any z, v ∈ Δλ, we have

〈z ⊗ x, v ⊗ y〉 = 〈z ψμ(x, y), v〉λ = 〈z, v ψμ(y, x)〉λ. (6)

3. Wreath product algebras

We recall the notion of the wreath product of an algebra with a symmetric group from [1]. Indeed, let 
A be a finite-dimensional unital associative k-algebra. Consider the k-vector space kSn ⊗A⊗n, and further 
let us write a pure tensor x ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an in this vector space as (x ; a1, a2, . . . , an). Then we have a 
well-defined multiplication which is given by

(σ; a1, a2, . . . , an)(π; b1, b2, . . . , bn) = (σπ; a(1)π−1b1, a(2)π−1b2, . . . , a(n)π−1bn)

for σ, π ∈ Sn and ai, bi ∈ A; we define the wreath product A�Sn of A and Sn to be the unital associative 
k-algebra so obtained.

We assume that the reader is familiar with the notion of diagram algebras, for example the Brauer or 
Temperley-Lieb algebras. We can consider A�Sn to be a kind of diagram algebra. Indeed, we may represent 
a pure tensor (σ; a1, a2, . . . , an) in A�Sn, where σ ∈ Sn and ai ∈ A, by a diagram obtained by drawing the 
permutation diagram associated to σ, with the nodes of the bottom row replaced by the elements ai. For 
example, if n = 5 and σ = (1, 4, 3, 5, 2), then we represent the element (σ; a1, a2, a3, a4, a5) by

a1 a2 a3 a4 a5 .

Such diagrams are useful for computing products, as we now show by an example. Indeed, keep n = 5 and σ =
(1, 4, 3, 5, 2), and let π = (1, 3, 5)(2, 4). Then to compute the product (σ; a1, a2, a3, a4, a5)(π; b1, b2, b3, b4, b5), 
we draw the diagram corresponding to the first factor above the one corresponding to the second factor, to 
obtain

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

and we then slide each ai down its string to meet some bj , and then resolve the two connected permutation 
diagrams into a single diagram, to obtain

a5b1 a4b2 a1b3 a2b4 a3b5

which corresponds to the element 
(
(1, 2, 3)(4, 5); a5b1, a4b2, a1b3, a2b4, a3b5

)
, which is indeed the product of 

the two elements we started with.
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Note that, unlike the usual diagram basis of the Brauer or Temperley-Lieb algebras, the set of all such 
diagrams is not a basis of A�Sn. A basis of such diagrams can be formed by fixing a basis C of A, and then 
taking the set of all elements (σ; a1, . . . , an) for σ ∈ Sn and ai ∈ C; however the product of two such basis 
elements will not in general be a scalar multiple of another basis element as is the case for the diagram basis 
of the Brauer or Temperley-Lieb algebras.

It is easy to show that there is a well-defined anti-involution ∗ on A�Sn given by

(σ; a1, . . . , an)∗ =
(
σ−1 ; a∗(1)σ, . . . , a∗(n)σ

)
, (7)

where σ ∈ Sn and a1, . . . , an ∈ A. In terms of diagrams, this map corresponds to the operation of taking a 
diagram, flipping it about the horizontal line half-way between its two rows of nodes (so that the elements 
ai lie on the top row), replacing each element ai with its image a∗i under the anti-involution on A, and then 
sliding each element a∗i to the bottom of its string.

Now there is a standard method of constructing modules for A�Sn from A-modules and symmetric group 
modules; see for example Section 3 of [1]. Indeed, let μ be an r-part composition of n, X1, . . . , Xr be 
A-modules, and for each i = 1, . . . , r let Yi be a kSμi

module. We write A�Sμ for the subalgebra of A�Sn

spanned by all elements (σ; a1, . . . , an) where ai ∈ A and σ ∈ Sμ. Then X⊗μ1
1 ⊗ · · · ⊗X⊗μr

r ⊗ Y1 ⊗ · · · ⊗ Yr

is naturally a A�Sμ-module via the action

(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr)(σ; a1, . . . , an) = x(1)σ−1a1 ⊗ · · · ⊗ x(n)σ−1an ⊗ y1σ1 ⊗ · · · ⊗ yrσr,

where the elements σi ∈ Sμi
are such that under the natural identification of Sμ with Sμ1 × · · · × Sμr

, σ is 
identified with (σ1, . . . , σr). Then inducing from A�Sμ to A�Sn (that is, applying the functor − ⊗A�Sμ

A�Sn) 
yields a module which we may easily see is isomorphic as a k-vector space to

X⊗μ1
1 ⊗ · · · ⊗X⊗μr

r ⊗ Y1 ⊗ · · · ⊗ Yr ⊗ kRμ, (8)

where kRμ is the vector space on the basis Rμ of minimal-length coset representatives, with the action 
given by

(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ)(σ; a1, . . . , an) =

x(1)θ−1a(1)ζ ⊗ · · · ⊗ x(n)θ−1a(n)ζ ⊗ y1θ1 ⊗ · · · ⊗ yrθr ⊗ ζ, (9)

where γ ∈ Rμ, and ζ ∈ Rμ and θ ∈ Sμ are such that γσ = θζ. Letting X be the tuple (X1, . . . , Xr) and Y
be the tuple (Y1, . . . , Yr), we denote the module so obtained by Θμ(X, Y ).

We now introduce a diagrammatic representation for certain pure tensors in the module Θμ(X, Y ) which 
provides a very convenient and intuitive understanding of the action of A�Sn. Indeed, let us take a pure tensor 
x1 ⊗ · · · ⊗xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ in (8), where γ ∈ Rμ. We represent this element by taking the permutation 
diagram of γ, labelling the nodes on its lower row from left to right with the elements x(1)γ−1, . . . , x(n)γ−1 , 
then linking together the first μ1 nodes on the top row and labelling them with y1, linking together the next 
μ2 nodes on the top row and labelling the linked nodes with y2, and so on. For example, take n = 8, r = 3, 
μ = (3, 2, 3), and γ = (2, 3, 6)(5, 8, 7) (γ may be seen to be an element of Rμ from its permutation diagram 
in (10), since the strings associated to each yi do not cross each other). We then represent the element

x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8 ⊗ y1 ⊗ y2 ⊗ y3 ⊗ γ

by the diagram
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y1 y2 y3

x1 x6 x2 x4 x7 x3 x8 x5 . (10)

Note that each xi is connected to the ith node on the top row. Note also that for each i = 1, 2, 3, the 
elements of Xi are attached to the strings associated to yi. We thus identify Θμ(X, Y ) with the k-vector 
space spanned by diagrams consisting of the permutation diagram of some element of Rμ where (as in (10)) 
for each i = 1, . . . , r, the (μ1 + · · · + μi−1 + 1)th to (μ1 + · · · + μi)th nodes are connected to form a single 
block which is labelled by an element of Yi, and where each node on the bottom row is replaced with an 
element of some Xj such that each top-row node in the ith block is connected to an element of Xi on the 
bottom row. We note that under this identification, the diagram in Θμ(X, Y ) whose top row has labels y1
to yr, whose bottom row has labels u1 to un, and whose underlying permutation diagram is that of γ ∈ Rμ

represents the pure tensor u(1)γ⊗· · ·⊗u(n)γ⊗y1⊗· · ·⊗yr⊗γ. Further note that the set of all such diagrams 
is not linearly independent in Θμ(X, Y ), and so they form a spanning set rather than a basis.

This diagram representation of Θμ(X, Y ) affords an intuitive realisation of the action of A�Sn, and we 
illustrate this by an example. Indeed, keeping n = 8, r = 3, μ = (3, 2, 3) as above, let us consider the 
diagram

y1 y2 y3

u1 u2 u3 u4 u5 u6 u7 u8 (11)

in Θμ(X, Y ); note that this diagram represents the pure tensor

u3 ⊗ u6 ⊗ u8 ⊗ u1 ⊗ u5 ⊗ u2 ⊗ u4 ⊗ u7 ⊗ y1 ⊗ y2 ⊗ y3 ⊗ (1, 3, 8, 7, 4)(2, 6). (12)

Now take the element (
(1, 2, 3)(4, 6, 8, 7, 5); a1, a2, a3, a4, a5, a6, a7, a8

)
(13)

of A�S8, which is represented by the diagram

a1 a2 a3 a4 a5 a6 a7 a8 . (14)

The action of the element (14) on (11) is calculated as follows: we connect the diagram (14) below the 
diagram (11) to get

y1 y2 y3

u1 u2 u3 u4 u5 u6 u7 u8

a1 a2 a3 a4 a5 a6 a7 a8 .

We slide each ui down its string and simplify the drawing of the resulting partition diagram, to obtain



826 R. Green / Journal of Pure and Applied Algebra 224 (2020) 819–835
y1 y2 y3

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8 . (15)

The permutation encoded in the strings of this diagram is (2, 8, 5, 4)(3, 7, 6), which has the factorisation 
(2, 8, 5, 4)(3, 7, 6) = (2, 3)(7, 8) · (2, 7, 5, 4)(3, 8, 6) where (2, 3)(7, 8) ∈ Sμ and (2, 7, 5, 4)(3, 8, 6) ∈ Rμ; we 
represent this factorisation by redrawing the diagram (15) as

y1 y2 y3

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8

and we note that in the lower part of this diagram, which represents the permutation (2, 7, 5, 4)(3, 8, 6), 
the strings associated to each yi do not cross each other, which demonstrates that (2, 7, 5, 4)(3, 8, 6) is in 
Rμ. Now in the upper part of the diagram, the arrangement of strings encodes the permutation (2, 3) ∈ S3
below both y1 and y3, while the strings below y2 encode the identity permutation in S2. We remove the 
upper part of the diagram and let these permutations act on their respective elements yi, yielding

y1(2, 3) y2 y3(2, 3)

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8 .

Under our mapping, this corresponds to the pure tensor

u3a1 ⊗ u8a7 ⊗ u6a8 ⊗ u1a2 ⊗ u5a4 ⊗ u2a3 ⊗ u7a5 ⊗ u4a6 ⊗ y1(2, 3) ⊗ y2 ⊗ y3(2, 3) ⊗ (2, 7, 5, 4)(3, 8, 6),

and by letting (x1, x2, x3, x4, x5, x6, x7, x8) = (u3, u6, u8, u1, u5, u2, u4, u7), σ = (1, 2, 3)(4, 6, 8, 7, 5) and γ =
(1, 3, 8, 7, 4)(2, 6), and noting as above that then γσ = (2, 8, 5, 4)(3, 7, 6) = (2, 3)(7, 8) · (2, 7, 5, 4)(3, 8, 6)
where (2, 3)(7, 8) ∈ Sμ and (2, 7, 5, 4)(3, 8, 6) ∈ Rμ, we may verify that this is indeed the image of (12)
under the action of (13) as given by (9). In the general case, for the A�Sn-module Θμ(X, Y ), let d be the 
diagram formed from the permutation diagram of γ ∈ Rμ with labels y1 to yr on the top row and labels 
u1 to un on the bottom row, and let a be the element (σ; a1, . . . , an) of A�Sn. Then we have γσ = θζ

where θ ∈ Sμ and ζ ∈ Rμ, and so θ corresponds to some element (θ1, . . . , θr) of Sμ1 × · · · × Sμr
under 

the canonical isomorphism. Then the image of d under the action of a is the diagram formed from the 
permutation diagram of ζ with top row labels y1θ1 to yrθr and bottom row labels u(1)σ−1a1 to u(n)σ−1an; 
we leave it to the reader to convince themselves that in this diagram the nodes of the ith block on the top 
row are connected to elements of Xi, and moreover that this diagram does indeed represent the action of a
on the pure tensor of Θμ(X, Y ) represented by d.

The following result will allow us to prove that the wreath product of a cyclic cellular algebra with Sn is 
again cyclic cellular, thus obtaining the result of Geetha and Goodman (albeit in a weaker form due to the 
different ordering on the set of cell indices, as mentioned above).

Proposition 2. If X1, . . . , Xr are cyclic A-modules, and for each i, Yi is a cyclic kSμi
-module, then Θμ(X, Y )

is a cyclic A�Sn-module for any r part composition μ of n. Indeed, if xi is a generator for Xi and yi is a 
generator for Yi, the diagram
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y1

x1 x1 · · · x1

y2

x2 x2 · · · x2

· · ·

yr

xr xr · · · xr

(where each xi appears μi times) generates Θμ(X, Y ).

Proof. Let d0 be the diagram in the proposition. It is easy to see that we may obtain any diagram in 
Θμ(X, Y ) by first applying an element (x; 1, . . . , 1) of A�Sn, where x ∈ kSμ, in order to replace each element 
yi in d0 with an arbitrary element of Yi, then applying (γ; 1, . . . , 1) for some γ ∈ Rμ to arrange the strings 
of the diagram, and finally applying an element (e; a1, . . . , an) to replace each element xi with an arbitrary 
element of Xi. Since Θμ(X, Y ) is spanned by diagrams, the proof is complete. �
4. The iterated inflation structure of the wreath product algebra

Remark 3. In this section, we work as in the rest of this article with a k-algebra A, where k is a field. 
In doing so, we are conforming to the set-up in the article [5] from which we obtain the crucial result on 
iterated inflations. However, it is straightforward to check that this result ([5, Theorem 1]) is still valid if 
we take k to be a commutative ring with 1. Further, the result on the cellularity of kSn from [10] which we 
are using is also valid over a commutative ring with 1, and so it follows that Theorem 6 below is valid over 
a commutative ring with 1. However, for consistency with [5], we shall formally retain the assumption that 
k is a field.

Now we turn to the case where our interest lies. Let A be a cellular algebra with anti-involution ∗ and 
cellular data (Λ, M, C). We let r = |Λ|, and we fix a numbering of the elements of Λ as λ1, λ2, . . . , λr, 
and moreover we choose this numbering such that λi > λj implies i < j, so that our numbering is in 
this sense compatible with the partial ordering on Λ. We write Δλ for the right cell module associated to 
λ ∈ Λ as noted above. For convenience we may omit the cell index superscript from elements of the cellular 
basis, so we write CS,T rather than Cλ

S,T . We have a basis of A�Sn consisting of all elements of the form 
(σ; CS1,T1 , . . . , CSn,Tn

) where σ ∈ Sn and each CSi,Ti
is some element of the cellular basis of A; note that 

we allow the elements CSi,Ti
to be associated to different cell indices. We shall denote this basis by A. Now 

elements of A are represented by diagrams like, for example,

CS1,T1 CS2,T2 CS3,T3 CS4,T4 CS5,T5 (16)

but we want a slightly different representation. Indeed, in the diagram (16), we replace each CSi,Ti
with the 

pair Si, Ti, and then move the Si up to the top of the associated string, to get

S3 S1 S5 S2 S4

T1 T2 T3 T4 T5 .

We thus obtain a different way of representing elements of A, as diagrams of the form

U1 U2 U3 U4 U5

W1 W2 W3 W4 W5 (17)
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consisting of a permutation diagram where the nodes on the top and bottom rows are replaced with elements 
Ui, Wi ∈ 
λ∈ΛM(λ), such that if Ui on the top row is connected to Wj on the bottom row, then we must 
have Ui, Wj ∈ M(λ) for some λ ∈ Λ (i.e. Ui and Wj lie in the same set M(λ)). Note that the diagram (17)
represents the element

(
(1, 3, 5, 4, 2); CU2,W1 , CU4,W2 , CU1,W3 , CU5,W4 , CU3,W5

)
∈ A�S5.

Now given any such diagram, for each i ∈ {1, . . . , r} we let μi be the number of elements Uj such that 
Uj ∈ M(λi). We thus obtain a composition μ = (μ1, . . . , μr) of n (note that some of the parts μi may be 
zero in general). We call this the layer index of the diagram, and also of the element of A which it represents. 
We let kAμ be the k-span of all elements of A with layer index μ, and we let I(n, r) be the set of all r-part 
compositions of n with non-negative integer entries. Then A�Sn =

⊕
μ∈I(n,r) kAμ. For a layer index μ, we 

define a half diagram of type μ to be a tuple (U1, . . . , Un) of n elements of 
λ∈ΛM(λ), such that there are 
exactly μi elements of M(λi) for each i. We define Vμ to be the set of all half diagrams of type μ. Now 
if (U1, . . . , Un) is a half diagram of type μ, then we may easily see that there is a unique element ε of Rμ

such that (U(1)ε, . . . , U(n)ε) lies in the set M(λ1)μ1× · · ·×M(λr)μr ; we shall call this ε the shape of the half 
diagram (U1, . . . , Un).

Let E be the diagram with top row U1 to Un, bottom row W1 to Wn (reading from left to right), and 
where σ ∈ Sn is the permutation such that Ui is connected to W(i)σ; then E represents the element

(
σ ; C[U(1)σ−1 ,W1], . . . , C[U(n)σ−1 ,Wn]

)
where to ease the notation we allow ourselves to write C[U, W ] for CU,W . Suppose E has layer index μ. 
We may decompose E into three pieces of data, namely the half diagrams (U1, . . . , Un), (W1, . . . , Wn) of 
type μ, formed from the top and bottom rows of E respectively, and the element (π1, . . . , πr) of the group 
Sμi

× · · · × Sμr
where πi ∈ Sμi

is such that (counting from left to right) the jth element of M(λi) on the 
top row is connected to the (j)πith element of M(λi) on the bottom row; thus πi records how the elements 
of M(λi) on the top row are connected to the elements of M(λi) on the bottom row. For example, suppose 
that r = 3 and that the diagram (17) has layer index (3, 0, 2) with U1, U2, U4 ∈ M(λ1) and U3, U5 ∈ M(λ3). 
Then (π1, π2, π3) =

(
(1, 3, 2), e, (1, 2)

)
(note that e here is the unique element of the trivial group Sμ2 = S0). 

It is easy to see that if ε, δ are the shapes of (U1, . . . , Un) and (W1, . . . , Wn) respectively, and further if π is 
the image of (π1, . . . , πr) under the natural identification of Sμi

× · · · × Sμr
with the Young subgroup Sμ of 

Sn, then σ = ε−1πδ. If we now let Vμ be the k-vector space with basis Vμ, then the above decomposition is 
easily seen to afford a k-linear bijection

Vμ ⊗ kSμ ⊗ Vμ −→ kAμ

given by mapping

(U1, . . . , Un) ⊗ π ⊗ (W1, . . . ,Wn),

to

(
ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]

)
where ε is the shape of (U1, . . . , Un) and δ is the shape of (W1, . . . , Wn). We thus have a decomposition 
A�Sn =

⊕
μ∈I(n,r) Vμ ⊗ kSμ ⊗ Vμ, and this decomposition will allow us to exhibit the desired iterated 

inflation structure. For this, we need to equip the set I(n, r) with an ordering. Indeed, if μ = (μ1, . . . , μr)
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and α = (α1, . . . , αr) are elements of I(n, r), then we define μ �Λ α to mean that for each q = 1, . . . , r we 
have

∑
i such that

λi≥λq

μi ≥
∑

i such that
λi≥λq

αi

(and of course we define �Λ to match); we call this (partial) order the Λ-dominance order.
Now take Vμ as above, Bμ to be kSμ and Bμ to be Sμ. We may easily see that our basis A is indeed 

the basis of A�Sn obtained from the bases Vμ and Bμ as in section 2.3, and we shall now prove that our 
decomposition exhibits A�Sn as an iterated inflation with respect to the anti-involution given by (7) and the 
cellular structure on the algebras kSμ as in Proposition 1. Thus, we must prove that the equations (3) and 
(4) hold. The fact that equation (3) holds follows easily from the description of the anti-involution on A�Sn

given after equation (7). To prove that (4) holds, we shall prove the slightly stronger result Proposition 5, 
below. First, we need a lemma, which will allow us to compare layer indices of elements of A � Sn.

Lemma 4. Suppose that we have s1, . . . , sn, t1, . . . , tn ∈ {1, . . . , r} such that λsj ≥ λtj in the poset Λ for each 
j. For each i = 1, . . . , r, let μi be the number of sj which are equal to i and αi be the number of tj which 
are equal to i. Let μ = (μ1, . . . , μr) and α = (α1, . . . , αr) so that α, μ ∈ I(n, r). Then μ �Λ α, and if at least 
one of the inequalities λsj ≥ λtj is strict then we have μ �Λ α.

Proof. This lemma is nothing more than simple combinatorics. We need to show that

∑
i such that

λi≥λq

μi ≥
∑

i such that
λi≥λq

αi.

But we have for each q = 1, . . . , r that

∑
i such that

λi≥λq

μi = |{j : λsj ≥ λq}|

and

∑
i such that

λi≥λq

αi = |{j : λtj ≥ λq}|

and since the set appearing in the right-hand side of the latter equation is a subset of the corresponding 
set in the first equation, we have the required inequality μ �Λ α. If there is a strict inequality λsj > λtj we 
clearly have μ �= α and hence μ �Λ α. �
Proposition 5. Let μ ∈ I(n, r), and let u = (U1, . . . , Un), w = (W1, . . . , Wn) be elements of Vμ and π =
(π1, . . . , πr) ∈ Sμ such that the element of A corresponding to the pure tensor u ⊗π⊗w has layer index μ. Fur-
ther, let a = (σ; a1, . . . , an) be a pure tensor in A�Sn. Then we have (u ⊗π⊗w) ·a ≡ u ⊗π θμ(w, a) ⊗φμ(w, a)
modulo elements of A of layer index strictly less (in the Λ-dominance order) than μ, where θμ(w, a) ∈ Sμ

and φμ(w, a) ∈ Vμ are independent of u and π.

Note that in the proposition we allow the a in θμ(w, a) and φμ(w, a) to be any pure tensor in A�Sn rather 
than just an element of A as required in (4).
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Proof. Let ε, δ ∈ Rμ be the shapes of u and w respectively, so that u ⊗ π ⊗ w corresponds to the element

(
ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]

)
.

Then

(u⊗ π ⊗ w)(σ; a1, . . . , an) =(
ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]

)(
σ; a1, . . . , an

)
=(

ε−1πδσ;C[U(1)(ε−1πδσ)−1 ,W(1)σ−1 ]a1, . . . , C[U(n)(ε−1πδσ)−1 ,W(n)σ−1 ]an
)
.

For each i = 1, . . . , n, let si ∈ {1, . . . , r} be such that U(i)(ε−1πδσ)−1 , W(i)σ−1 ∈ M(λsi). Then by (1) we have

C[U(i)(ε−1πδσ)−1 ,W(i)σ−1 ]ai ≡
∑

Xi∈M(λsi
)

Rai
(W(i)σ−1 , Xi)C[U(i)(ε−1πδσ)−1 , Xi]

modulo cellular basis elements of lower cell index. Using this, we see that (u ⊗ π ⊗ w)(σ; a1, . . . , an) is 
congruent to

∑
X1

· · ·
∑
Xn

(
n∏

i=1
Rai

(
W(i)σ−1 , Xi

)) (
ε−1πδσ ; C[U(1)(ε−1πδσ)−1 , X1], . . . , C[U(n)(ε−1πδσ)−1 , Xn]

)
(18)

modulo elements of A of the form

(
ε−1πδσ ;Cλt1 [S1, T1], . . . , Cλtn [Sn, Tn]

)
(19)

where for each i we have λsi ≥ λti and for at least one i this inequality is strict. Now let α = (α1, . . . , αr)
be the layer index of (19). By Lemma 4 we have μ �Λ α, so that (u ⊗ π ⊗ w)(σ; a1, . . . , an) is congruent to 
(18) modulo elements of lower layer index.

Now Xi lies in the same set M(λsi) as W(i)σ−1 , and from this we may easily see that the shape of 
(X1, . . . , Xn) is the unique element ζ of Rμ such that δσ = θζ for θ ∈ Sμ. Thus in (18) we have

(
ε−1πδσ ; C[U(1)(ε−1πδσ)−1 , X1], . . . , C[U(n)(ε−1πδσ)−1 , Xn]

)
=

(
ε−1πθζ ; C[U(1)(ε−1πθζ)−1 , X1], . . . , C[U(n)(ε−1πθζ)−1 , Xn]

)
which we now see corresponds to the pure tensor u ⊗ πθ ⊗ (X1, . . . , Xn), and hence (18) is equal to

u⊗ πθ ⊗
(∑

X1

· · ·
∑
Xn

(
n∏

i=1
Rai

(
W(i)σ−1 , Xi

))
(X1, . . . , Xn)

)
.

Thus, setting θμ(w, a) to be the unique element θ of Sμ such that δσ = θζ for ζ ∈ Rμ and φμ(w, a) to be

∑
X1

· · ·
∑
Xn

(
n∏

i=1
Rai

(
W(i)σ−1 , Xi

))
(X1, . . . , Xn), (20)

we see that (u ⊗π⊗w)(σ; a1, . . . , an) ≡ u ⊗πθμ(w, a) ⊗φμ(w, a) modulo lower layers, and furthermore these 
values depend only on w and a, as required. �
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By the results in Section 2.3, we now have that A�Sn is a cellular algebra; further, we may use Proposition 1
to see that the set indexing the cell modules of A�Sn is the set of all pairs 

(
μ, (ν1, . . . , νr)

)
where μ is an 

r-component composition (μ1, . . . , μr) of n (recalling that r = |Λ|), and νi is a partition of μi. Thus in 
any such pair we have μ = (|ν1|, . . . , |νr|), and so we lose no information if we omit the partition μ from 
these pairs. Hence we may identify the set of cell indices of A�Sn with the set of all r-tuples (ν1, . . . , νr) of 
partitions such that |ν1| + · · · + |νr| = n (with νi = () allowed); such tuples are called multipartitions of n
of length r. We now give a statement of the cellularity of A�Sn.

Theorem 6. Let A be a cellular algebra with anti-involution ∗ and poset Λ of cell indices. Let P̂r
n denote the 

set of all multipartitions of n of length r. Then A�Sn is a cellular algebra with respect to a tuple of cellular 
data including the anti-involution given for σ ∈ Sn and a1, . . . , an ∈ A by

(σ; a1, . . . , an)∗ =
(
σ−1 ; a∗(1)σ, . . . , a∗(n)σ

)
and also the poset consisting of P̂r

n with the following partial order: if (ν1, . . . , νr), (η1, . . . , ηr) ∈ P̂r
n then 

the relation (ν1, . . . , νr) � (η1, . . . , ηr) means that either (|ν1|, . . . , |νr|) �Λ (|η1|, . . . , |ηr|) or that |νi| =
|ηi| and νi � ηi for each i.

In the next section, we shall consider the cell modules which arise from this structure. In particular we 
shall follow the work of Geetha and Goodman by proving that if A is cyclic cellular, then so is A�Sn.

We conclude this section by remarking that the most natural partial order one might hope to have on 
the poset P̂r

n in Theorem 6 is the Λ-dominance order on multicompositions [3, Definition 3.1, (2)] (this 
is essentially an extension of the Λ-dominance order on compositions to multicompositions). We also note 
that, subject to the assumption that A is cyclic cellular, Geetha and Goodman obtained the Λ-dominance 
order in their cellularity result [3, Theorem 4.1]. The order which we have obtained on P̂r

n is somewhat 
crude compared to this more subtle dominance order, and thus provides less refined representation-theoretic 
information (we also note that the Λ-dominance order on multicompositions is not a refinement of the order 
we have obtained, due to the use of the reverse dominance order on partitions in the cellular structure for 
the group algebra of the symmetric group). This fact is a consequence of the use of the method of iterated 
inflations, and is due to the structure of the partial orders obtained via this method.

5. The cell and simple modules of the wreath product algebra

Recall that the cell modules Δλi of A are indexed by the cell indices λ1, λ2, . . . , λr. In the sequel we 
shall also allow ourselves to write Δλi as Δ(λi) when this makes our formulae more readable. We shall now 
consider the cell modules of A�Sn. We know that these are indexed by length r multipartitions of n; let 
(ν1, . . . , νr) be such a multipartition and μ the composition (|ν1|, . . . , |νr|), so that μi = |νi|. We shall show 
that the cell module Δ(ν1,...,νr) is isomorphic to the module Θμ

(
(Δλ1 , . . . , Δλr), (Sν1 , . . . , Sνr)

)
[3, Theorem 

4.27].
Now we know from Proposition 1 and the results in section 2.3 that, as a k-vector space, Δ(ν1,...,νr) may 

naturally be identified with

Sν1 ⊗ · · · ⊗ Sνr ⊗ Vμ, (21)

so let us consider the structure of the vector space Vμ. Indeed, let α1, . . . αn be elements of Λ such that

(α1, . . . , αn) = (λ1, λ1, . . . , λ1︸ ︷︷ ︸, λ2, . . . , λ2︸ ︷︷ ︸, λ3, . . . , λr, . . . , λr︸ ︷︷ ︸). (22)

μ1 places μ2 places μr places
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Let (X1, . . . , Xn) be a half diagram in Vμ. Then the shape of (X1, . . . , Xn) is the unique element γ of Rμ

such that (X1, . . . , Xn) lies in M(α(1)γ−1) × · · · ×M(α(n)γ−1). We now see that

Vμ = 

γ∈Rμ

M(α(1)γ−1) × · · · ×M(α(n)γ−1)

and hence if we identify the half diagram (X1, . . . , Xn) with the pure tensor CX1 ⊗ · · · ⊗ CXn
, we obtain a 

natural identification of k-vector spaces

Vμ =
⊕
γ∈Rμ

Δ(α(1)γ−1) ⊗ · · · ⊗ Δ(α(n)γ−1). (23)

We shall henceforth consider these two vector spaces to be thus identified; further, we shall abuse terminology 
and use the term pure tensor in Vμ to mean any pure tensor in any of the summands in the right hand side 
of (23). For example, using (2), we can show easily using (20) that under the identification (23) we have

φμ

(
CW1 ⊗ · · · ⊗ CWn

, (σ; a1, . . . , an)
)

= CW(1)σ−1 a1 ⊗ · · · ⊗ CW(n)σ−1 an. (24)

In light of (21), we shall further speak of a pure tensor in Δ(ν1,...,νr) to mean any pure tensor of the form

w1 ⊗ · · · ⊗ wr ⊗ u1 ⊗ · · · ⊗ un,

where wi ∈ Sνi and u1 ⊗ · · · ⊗ un is a pure tensor in Vμ. Using (24) and the expression for θμ(w, a) given 
near the end of the proof of Proposition 5, we may now verify that the map taking the pure tensor

x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ

in Θμ
(
(Δλ1 , . . . , Δλr), (Sν1 , . . . , Sνr)

)
(where γ ∈ Rμ) to the pure tensor

y1 ⊗ · · · ⊗ yr ⊗ x(1)γ−1 ⊗ · · · ⊗ x(n)γ−1

in Δ(ν1,...,νr) is an isomorphism of A�Sn-modules (but note that in order to apply the formula given in 
section 2.3 for the action of an iterated inflation on its cell modules, the arguments w and a in θμ(w, a) and 
φμ(w, a) must be elements of the bases A and Vμ, respectively). We may now use Proposition 2 and the 
fact that all Specht modules are cyclic to obtain the following result. Of course, this is a weaker result than 
the corresponding result in [3], since (as already mentioned) Geetha and Goodman obtain the Λ-dominance 
order on their cell indices.

Proposition 7. (compare [3, Theorem 4.1]) If A is cyclic cellular then so is A�Sn.

Now by equation (5), we know that the multiplication within each layer of A�Sn is determined by a 
bilinear form, ψμ. Let (U1, . . . , Un), (W1, . . . , Wn) be half diagrams in Vμ, so that u = CU1 ⊗ · · · ⊗CUn

and 
w = CW1 ⊗ · · · ⊗ CWn

are pure tensors in Vμ. Now by equation (5),

(u⊗ e⊗ u)(w ⊗ e⊗ w) ≡ u⊗ ψμ(u,w) ⊗ w (25)

modulo lower layers. The element u ⊗ e ⊗ u of A�Sn is represented by the diagram

U1 U2 · · · Un

U1 U2 · · · Un

=
· · ·

CU1,U1 CU2,U2 · · · CUn,Un
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and of course the element w ⊗ e ⊗ w is represented by a diagram which is the same except that each U
is replaced with a W . Thus we find by concatenating and simplifying these diagrams that the product 
(u ⊗ e ⊗ u)(w ⊗ e ⊗ w) corresponds to

· · ·

CU1,U1CW1,W1 CU2,U2CW2,W2 · · · CUn,Un
CWn,Wn . (26)

We may expand each of the products CUj ,Uj
CWj ,Wj

in terms of the cellular basis of A and use these 
expansions to write (26) as a linear combination of diagrams of the form

· · ·

CX1,Y1 CX2,Y2 · · · CXn,Yn .

Now for j = 1, . . . , n, let sj be such that Uj ∈ M(λsj ). We know that each product CUj ,Uj
CWj ,Wj

is a linear 
combination of cellular basis elements C

λtj

X,Y where λtj ≤ λsj . It follows by Lemma 4 that all such diagrams 
have layer index at most μ (in the Λ-dominance order). Moreover, Lemma 4 also tells us that, if for any j
the element Wj do not lie in M(λsj ) (so that CUj ,Uj

CWj ,Wj
is a linear combination of cellular basis elements 

C
λtj

X,Y where λtj < λsj ), then all of the diagrams in the expansion have layer index strictly less than μ, and 
hence by (25) we see that we must have ψμ(u, w) = 0 in this case. Suppose now that Wj ∈ M(λsj ) for each 
j. By (2.4.1) in [4], we know that CUj ,Uj

CWj ,Wj
is congruent to 〈CUj

, CWj
〉CUj ,Wj

modulo cellular basis 
elements of lower cell index, where 〈·, ·〉 is the appropriate cell form. Using Lemma 4 as above, we see that 
(26) is congruent modulo lower layers to

〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn
, CWn

〉
U1 U2 · · · Un

W1 W2 · · · Wn ,

which represents the element 〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn
, CWn

〉 u ⊗ e ⊗w, and hence we find that in this 
case

ψμ(u,w) = 〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn
, CWn

〉.

Note in particular that ψμ is thus in all cases k-valued. We can now use these values for ψμ, together with 
equation (6) and Proposition 1 to compute the values of the cell form on the cell module Δ(ν1,...,νr); indeed, 
if y1⊗· · ·⊗yr⊗u1⊗· · ·⊗un and z1⊗· · ·⊗zr⊗w1⊗· · ·⊗wn are pure tensors in the cell module Δ(ν1,...,νr), 
then we see that

〈y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un, z1 ⊗ · · · ⊗ zr ⊗ w1 ⊗ · · · ⊗ wn〉 = 〈y1, z1〉 · · · 〈yr, zr〉〈u1, w1〉 · · · 〈un, wn〉
(27)

if uj and wj lie in the same Δ(λ) for each i = 1, . . . , n, and

〈y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un, z1 ⊗ · · · ⊗ zr ⊗ w1 ⊗ · · · ⊗ wn〉 = 0 (28)

otherwise.
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Next we seek to describe the cell radical of Δ(ν1,...,νr). Using (21) and (23), we have isomorphisms of 
k-vector spaces

Δ(ν1,...,νr) ∼= Sν1 ⊗ · · · ⊗ Sνr ⊗ Vμ

∼=
⊕
γ∈Rμ

Sν1 ⊗ · · · ⊗ Sνr ⊗ Δ(α(1)γ−1) ⊗ · · · ⊗ Δ(α(n)γ−1). (29)

For γ ∈ Rμ, let Ωγ = Sν1 ⊗ · · · ⊗Sνr ⊗Δ(α(1)γ−1) ⊗ · · · ⊗Δ(α(n)γ−1). Now we see from (28) that if γ, β are 
distinct elements of Rμ and u ∈ Ωγ , w ∈ Ωβ then 〈u, w〉 = 0. It follows that, if we let Rγ be the radical of 
the restriction to Ωγ of 〈·, ·〉, then the cell radical of Δ(ν1,...,νr) is 

⊕
γ∈Rμ

Rγ .
Let us fix a basis in each Δλ and each Sν ; from these bases we obtain a basis of pure tensors in 

each Ωγ . Let Gνi
be the Gram matrix of the cell form of Sνi and Gαi

be the Gram matrix of the cell 
form of Δαi , with respect to our chosen bases. If we let Bγ be the Gram matrix of the restriction of the 
cell form to Ωγ with respect to our basis, then we see by (27) that Bγ is the matrix Kronecker product 
Gν1 ⊗ · · · ⊗ Gνr

⊗ Gα(1)γ−1 ⊗ · · · ⊗ Gα(n)γ−1 . By fixing some total order on the set Rγ and concatenating 

our bases of the Ωγ in this order, we obtain a basis of Δ(ν1,...,νr); using (28), we see that its Gram matrix 
with respect to this basis is of block diagonal form with diagonal blocks Bγ for γ ∈ Rμ. From this we see 
(using the fact that the rank of the Kronecker product of two matrices is the product of their ranks) that 
the rank of the cell form on Δ(ν1,...,νr) is |Rμ| times the product of the ranks of the cell forms of the cell 
modules Sν1 , . . . , Sνr , Δα1 , . . . , Δαn .

Now in constructing the basis of pure tensors for Δ(ν1,...,νr) as above, we may choose our basis of each 
cell module of A and kSn by taking a basis of the cell radical and extending this to a basis of the whole cell 
module. If we do this, then we see that an element y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un of the basis of pure tensors 
for Δ(ν1,...,νr) must lie in the cell radical if any yi or ui is an element of the cell radical of the cell module 
in which it lies. By the above calculation of the rank of the cell form on Δ(ν1,...,νr), we see that the number 
of such elements must be equal to the dimension of the cell radical, and so we have now found a basis of 
the cell radical inside a basis of the whole cell module.

We can now use the theory of cellular algebras from section 3 of [4] together with our basis of Δ(ν1,...,νr)

to deduce some results about the simple modules L(ν1,...,νr) and semisimplicity of A�Sn. These results are 
already known for wreath products A�Sn with A a general (i.e. not cellular) algebra given extra assumptions 
on the field (see for example [1, Lemma 3.4]), and in particular for the case k

(
G�Sn

) ∼= (kG)�Sn where G is 
a finite group (see for example Chapter 4 of [7] for the case where the field is algebraically closed). However, 
if A is cellular then our work shows that these results hold with no restriction on the field at all. Given 
the importance of cellular algebras in certain areas of representation theory we are confident that they will 
prove useful.

Recall that Λ0 indexes the simple modules of A. Let 
(
P̂r
n)0 denote the set of elements (ν1, . . . , νr) ∈ P̂r

n

such that the cell radical of Δ(ν1,...,νr) is a proper submodule of Δ(ν1,...,νr), so that 
(
P̂r
n

)
0 indexes the simple 

modules of A�Sn. Recall that our field k has characteristic p, which may be zero or a prime.

Theorem 8. The set 
(
P̂r
n

)
0 indexing the simple modules of A�Sn consists exactly of those (ν1, . . . , νr) ∈ P̂r

n

such that νi = () whenever λi ∈ Λ \ Λ0 and all νi are p-restricted (recall that () is p-restricted for any p).

In light of Theorem 8, we see that if we let s be the number of simple modules of A and we let 
λ̂1, ̂λ2, · · · , ̂λs be the subsequence of the sequence λ1, λ2, . . . , λr consisting of the elements of Λ0, then 
the simple A�Sn-modules may in fact be indexed by the set P̂s

n(p) consisting of all length s multipartitions 
of n with p-restricted entries. The main idea of the following theorem is well known: see [9, p.204] and also 
[1, Proposition 3.7] and [3, Theorem 4.25]. As mentioned above, the version presented here is notable for 
its lack of conditions on the field.
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Theorem 9. Let (ν1, . . . , νr) ∈
(
P̂r
n

)
0. Then corresponding to the isomorphism (29), we have an isomorphism 

of k-vector spaces

L(ν1,...,νr) ∼=
⊕
γ∈Rμ

Dν1 ⊗ · · · ⊗Dνr ⊗ Lα(1)γ−1 ⊗ · · · ⊗ Lα(n)γ−1

(where α1, . . . , αn are as in (22)). Moreover, L(ν1,...,νr) has a representation by diagrams of the form (11)
in exactly the same way as Δ(ν1,...,νr), by simply using elements of Dνi rather than Sνi and elements of 
Lαi rather than Δαi ; the action on such diagrams is exactly the same as described above. We thus see that 
L(ν1,...,νr) is isomorphic as an A�Sn-module to Θμ

(
(Lλ1

, . . . , Lλr), (Dν1 , . . . , Dνr )
)
, where μ = (|ν1|, . . . , |νr|)

(a composition of n), and for convenience we let Lλ = 0 for λ ∈ Λ \ Λ0.

We thus see that if we index the simple modules by P̂s
n(p) as above, then the simple indexed by (ν̂1, . . . , ̂νs)

(where each ν̂i is thus a p-restricted partition) is isomorphic to Θμ̂
(
(Lλ̂1

, . . . , Lλ̂s), (Dν̂1 , . . . , Dν̂s)
)
, where 

μ̂ = (|ν̂1|, . . . , |ν̂s|).

Theorem 10. Let (ν1, . . . , νr) ∈
(
P̂r
n

)
0. Then we have L(ν1,...,νr) ∼= Δ(ν1,...,νr) if and only if Dνi ∼= Sνi for 

each i = 1, . . . , r and whenever we have νi �= () we have Lλi ∼= Δλi .

Our final result is a criterion for semisimplicity; compare [1, Lemma 3.5].

Theorem 11. If A is a cellular algebra, then A�Sn is semisimple if and only if both kSn and A are semisimple.
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