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ABSTRACT 

The formation of a diverse range of amyloid structures from normally soluble proteins and 

peptides is a hallmark of devastating human disorders as well as biological functions. The 

current molecular understanding of the amyloid lifecycle reveals four processes central to 

their growth and propagation: primary nucleation, elongation, secondary nucleation and 

division. However, these processes result in a wide range of cross-β packing and filament 

arrangements, including diverse assemblies formed from identical monomeric precursors 

with the same amino acid sequences. Here, we review current structural and mechanistic 

understanding of amyloid self-assembly, and discuss how mesoscopic, i.e. micrometre to 

nanometre, organisation of amyloid give rise to suprastructural features that may be the key 

link between the polymorphic amyloid structures and the biological response they elicit. A 

greater understanding of the mechanisms governing suprastructure formation will guide 

future strategies to combat amyloid associated disorders and to use and control the amyloid 

quaternary structure in synthetic biology and materials applications. 
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Introduction 

 

Amyloid forming proteins are at the centre of various protein misfolding disorders as well as 

having normal physiological functions in a wide variety of organisms from bacteria to 

mammals. The main characteristic of amyloid forming proteins is their propensity to form 

ordered fibrils with a core made of tightly packed -sheets perpendicular to the fibril axis. 

The organisation of soluble peptides or proteins into insoluble amyloid fibrils has been 

identified in many human pathologies [1], including amyloid β (Aβ) and tau involved in 

Alzheimer’s disease (AD), α-synuclein (α-syn) in Parkinson’s disease, and huntingtin in 

Huntington’s disease. Other amyloid-associated disorders include type II diabetes and several 

types of systemic amyloidoses [2–4]. However, not all amyloid structures are disease 

associated. In fact, a range of non-disease associated amyloid structures participate in an 

array of normal physiological processes without any apparent harmful effects to their hosts 

[5,6]. Thus, it is difficult to establish direct causal relationships between amyloid protein 

precursors, the large range of structures they form, and the diseases they are associated with 

due to a lack of evidence linking structural and mechanistic understanding of 

neurodegenerative disease aetiology. 

 

The building blocks of amyloid fibrils are soluble monomeric proteins or peptides. Their 

primary sequences typically include amyloidogenic motifs containing amino acids with high 

propensity to assembly into amyloid fibrils, influenced by both the physiochemical properties 

of these amino acids, as well as their order in the sequence. These mo tifs tend to be 

hydrophobic, more rigid and have a tendency to form   secondary structures [7]. Despite 

differences in the primary sequence between amyloid-forming proteins, the monomeric 
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precursors form fibrils with a characteristic cross-β structure in all amyloid [8,9]. The cross-β 

architecture that defines the amyloid core is composed of β-strands packed perpendicularly to 

the fibril axis, and can be readily observed by X-ray fibre diffraction usually showing a 

characteristic 4.7 Å reflection on the meridian of the diffraction pattern that corresponds to 

the spacing between -strands and indicates that they are stacked perpendicular to the fibril 

axis. The β-sheets can be arranged in parallel or antiparallel arrangements, forming a stable 

cross-β configuration that resists degradation by proteases, detergents and heat. Pairs of β-

sheets usually intermesh with close side chain complementarity in a variety of possible steric 

zipper arrangements [10]. The ~10 Å equatorial reflection corresponds to the spacing 

between -sheets and indicates that there are usually two or more sheets in amyloid filaments 

[9]. The supramolecular fibril structure is supported by intermolecular hydrogen bonds 

parallel to the fibril axis, making amyloid fibrils strong fibrous materials [11]. Amyloid 

fibrils typically have diameters of approximately 5-20 nm and can be up to several 

micrometres long [12–14] .  

 

The structure of amyloid fibrils has been studied to high detail using atomic force microscopy 

(AFM), solid state NMR spectroscopy (ssNMR) and cryo-electron microscopy (cryo-EM), 

which provide information on β-strand content within a monomer, arrangements of β-sheets, 

specific interactions between residues and the conformation of non-β-strand segments. In 

particular, the advent of high resolution cryo-EM and ssNMR methods has led to the 

elucidation of a range of amyloid species at near-atomic resolution, including several formed 

from the same monomeric precursors (Fig. 1). In this case, differences in fibril forming 

conditions, such as pH, temperature and salt concentration affect the morphology of fibrils 

formed. In fact, identical monomers under the same conditions can often form a mix of 

highly polymorphic suprastructures, and the heterogeneity exhibited by amyloid samples 
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complicates structural and functional studies while their mechanistic origins and biological 

consequences are not understood.  

 

The aggregation pathway by which soluble monomers form oligomeric intermediates and 

eventually fibrils is thought to be similar for all amyloid, despite differences in primary 

sequences and pathological presentation. The aggregation process starts with protein 

misfolding events in which native state monomers adopt amyloidogenic states and aggregate 

into nuclei that grow into oligomeric intermediates of increasing size distributions. 

Monomers are then added to the oligomeric intermediates, forming larger, more flexible, 

often elongated oligomers, frequently called protofibrils. These intermediate species are then 

lengthened into ordered assemblies of cross-  filaments that can elongate further with the 

addition of monomers at their ends. At the same time, two or more filaments can associate to 

form fibrils. Amyloid fibrils can further cluster into a variety of suprastructures, which 

include extracellular plaques, as in the case of Aβ, or intracellular inclusions, as in the case of 

huntingtin and tau.  

 

Despite the shared core cross-β architecture, the detailed structures and surface features of 

oligomeric intermediates, fibrils and suprastructures depend on the specific precursor protein, 

and they elicit varied biological effects [15]. For example, polymorphs of in vitro formed 

Aβ40 can have different levels of toxicity on neuronal cell cultures [16] . Amyloid fibrils are 

then able to undergo division, for example by fragmentation through mechanical stress, 

catalysis by specific cellular components such as chaperones [17], or due to biochemical 

changes in the cellular environment, into shorter fibril particles that act as seeds. The seeds 

are further elongated by monomers, which are continuously produced by their host organism. 

Thus, rather than a linear process, amyloid assembly represents a molecular lifecycle in 
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which a ‘cloud’ of species and suprastructures in a heterogeneous mixture are continuously 

being produced, and the species populations in this cycle will evolve as a function of time in 

response to changes in the conditions.  

 

This review will discuss the molecular lifecycle of amyloid assembly in terms of the current 

understandings of the key molecular processes involved. It remains poorly understood how 

some amyloid aggregates are tolerated or even beneficial while others, despite having similar 

core structures are associated with debilitating neurodegenerative diseases. Moreover, 

identical monomer sequences can also form fibrils with different morphological and 

phenotypic consequences, adding complexity to finding the structural determinants behind 

amyloid aggregation, toxicity, and biological response. The wide degree of heterogeneity and 

structural polymorphism of amyloid fibrils will be discussed in this review to demonstrate 

that all species in the amyloid lifecycle are an integral part of the lifecycle and form a 

population that may contribute to the pathogenic potential of amyloid as a whole. Finally, this 

review will also address in what manner the suprastructural arrangement of amyloid 

assemblies may represent a fundamental link between amyloid structures and their functional 

variations in biological systems. This will be discussed in terms of how suprastructures may 

affect fibril division and propagation of the amyloid state in the amyloid lifecycle, as well as 

how they affect the infectious and cytotoxic potentials of amyloid. 

 

 

The amyloid lifecycle and its defining molecular processes 

 

The molecular details of amyloid fibril formation are debated, but the self-assembly reaction 

fundamentally consists of four key processes: nucleation, elongation, division [18] and 
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secondary nucleation [19] (Fig. 2). However, the current description of amyloid aggregation 

and the resulting fibril assembly pathway is influenced by in vitro kinetic studies where the 

reactions are limited by the amount of monomers present. This process is better represented 

as a lifecycle, considering that in vivo, monomer production, misfolding, nucleation, 

elongation, division and secondary nucleation all occur continuously and simultaneously, and 

it is their relative rates that change over time as defined by the microscopic rate constants 

associated with each step. It should also be noted that all of the steps along the amyloid 

lifecycle are dynamic and reversible, although some reverse reactions are associated with 

high kinetic barriers. 

 

In the initial stages of the amyloid lifecycle, partial unfolding and/or conformational changes 

are required to convert amyloidogenic proteins in their native states to misfolded states 

capable of further conversion into the amyloid state. The monomeric or small oligomeric 

amyloid precursors initially exist in a dynamic equilibrium of conformations with varying 

degrees of structural order and can aggregate to form small amyloid oligomers. These 

intermediate oligomers can be structurally similar to fibrils in their conformation and -sheet 

content as shown by binding of conformation-specific antibodies and analysis of secondary 

structure content. They can also be highly disordered, or indeed anywhere in-between [20]. 

Thus, at some point along these initial aggregation events, monomers or small oligomers 

adopt a conformation with a high -content. This process can be accelerated by specific 

mutations and environmental factors. This initial aggregation process of primary nucleation 

can be seen as a phase transition of the amyloidogenic protein from an aqueous solution 

phase to the ‘solid phase’ represented by amyloid fibrils. Primary nucleation can proceed as 

homogenous nucleation occurring in solution, or heterogeneous nucleation occurring on 

surfaces or interfaces. As biological environments are rich in surfaces, it is possible that 
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many spontaneous primary amyloid nucleation events occur as heterogeneous nucleation in 

vivo. Thus, surfaces may have profound effects on aggregation kinetics depending on their 

composition and properties [21]. Nucleation events generally occur after a “critical 

concentration” of monomers in solution has been reached and exceeded [22,23]; these 

solutions are called supersaturated solutions [24]. The smallest oligomeric aggregate on 

which further growth is more likely to occur than reduction in size is called the nucleus, 

although the generic nature of amyloid nuclei remains unresolved.  

 

Once formed, amyloid nuclei can grow by templated elongation, in which free monomers are 

converted to the amyloid state and added to growing filament ends. Although elongation is a 

reversible reaction, dissociation of monomers is usually negligible due to the highly stable 

fibril structure contributing to a slower relative detachment rate compared to the attachment 

rate during elongation. Nucleation and elongation are concentration-dependent processes [25], 

and their relative contributions to amyloid formation varies between different amyloid 

proteins and solution conditions [23,26,27]. Post-nucleation species capable of templating 

elongation growth are called seeds. Seeds can grow into protofilaments, which are elongated 

structures with monomeric units in the amyloid state. Protofilaments can subsequently twist 

around each other forming fibrils. Thus, fibril ends act as the growth active sites of amyloid 

fibrils. A fibril typically may consist of 2-6 protofilaments, and can be further elongated and 

adopt a more ordered fibril arrangement. Some fibrils are quite flexible and can circularise 

and grow into loops [28]. Adding to the ambiguity of amyloid formation terminology, there is 

no objective definition for “mature” fibrils. This term is typically used to refer to long and 

straight fibrils observed in an end-stage in vitro assembly reaction, but there is no formal 

length, width or twist definition for these. 
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In the in vivo amyloid lifecycle, the large and possibly biologically inert fibrillary aggregates 

will be part of a heterogeneous population of aggregates of a range of sizes and states, 

including small intermediate oligomeric species, often referred to simply as ‘oligomers’. 

There is currently no universal definition of what constitutes an amyloid oligomer, but 

common features include a ‘soluble’ (i.e. not true soluble in a physiochemical sense but small 

enough to be disperse and not sedimented by centrifugation), heterogeneous and transient 

nature. Such small oligomeric amyloid aggregates vary in subunit composition and 

morphology, for example, disordered, spherical and annular structures having been identified 

in vitro [29–31]. Major oligomer types include fibrillar oligomers, which structurally and 

immunochemically closely resemble short fibril particles, and prefibrillar oligomers, which 

are intermediate species having a distinct but not well characterised structure [32]. There is 

also a type of oligomer that is formed off-pathway from fibril formation that may be highly 

cytotoxic in vitro [33].  

Additional complexity arises from the fact that oligomer populations are inherently highly 

polymorphic. Oligomeric structures have been determined under different conditions using 

diverse techniques, and it is not always clear whether, or in what form, they exist in vivo. 

This raises the question of what the toxic physiochemical or structural properties of amyloid 

species might be. In addition to the formation of amyloid species, which represents a phase 

transition of protein precursors in aqueous solution to an insoluble solid phase, amorphous 

aggregates with no ordered cross-β core may instead result from transition to a liquid phase, 

forming liquid droplets through liquid- liquid phase separation (LLPS). It has been 

hypothesized that the LLPS process is utilised by cells to compartmentalise proteins and 

biochemical reactions and consequently has physiological roles in cell signalling and 

regulation of gene expression [34]. Such liquid phase separated structures include P granules, 

nucleoli and stress granules, and are typically made up of aggregates of nucleic acids and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

protein. Intrinsically disordered proteins are also often found in cellular liquid droplets as 

their exposed hydrophobic areas and structural freedom may facilitate aggregation. Similarly, 

amyloid liquid- liquid demixing could be promoted by molecular chaperones [35]. Demixing 

allows high local concentrations of specific proteins, and as the droplets stabilise and mature 

over time, they may provide a driving force to further phase transition to a solid phase, 

characterised by amyloid fibril formation.  

 

Lateral sides of protofilaments or fibrils are able to catalyse the formation of new amyloid 

nuclei and oligomeric species capable of growth by monomer addition in a process known as 

secondary nucleation [27,36]. Secondary nucleation is a special case of heterogeneous 

nucleation where the catalysing surface is specifically that of preformed amyloid instead of 

any surface. New nuclei formed through this secondary process then detach and can be 

further elongated. Indeed, it has been suggested that once a critical concentration of fibrils 

has been reached, fibril-catalysed secondary nucleation becomes the major source of toxic 

oligomeric species [27]. Despite secondary nucleation events occurring on pre-existing fibrils, 

amyloid fibrils are not considered to grow into branched suprastructures as each 

protofilament in a fibril remains unbranched.  

 

Finally, amyloid fibrils are capable of dividing into smaller fibril particles. The division of 

amyloid fibrils propagates the amyloid state and the conformation associated with the parent 

fibril assemblies [18]. Amyloid division can occur due to fibril fragmentation caused by 

thermal energy or mechanical forces, or be catalysed enzymatically by chaperone proteins 

[37]. Division increases the number of fibrils particles and, therefore, reactive fibril ends that 

can lead to further growth by elongation. For prions, which are amyloid that are transmissible 

between hosts, division of amyloid fibrils is required for infectivity and propagation of the 
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prion phenotype [38], which suggests a similar mechanism could occur in prion- like 

amyloids correlated with neurodegenerative disease. As a single prion or amyloid forming 

sequence can assemble into a wide range of fibril polymorphs, the differences in their ability 

to divide may result in the selection of specific prion strains under specific corresponding 

conditions. These properties will affect phenotype strength of the prions and will depend on 

the structural stability of the amyloid fibrils. Thus, fibril stability changes may alter its 

propensity for division which, in turn, affects amyloid toxicity and prion infectivity [39]. The 

biological implications of these structural differences could reveal a key element of the 

amyloid structure-function relationship. 

 

 

Mapping the kinetics mechanisms of amyloid assembly 

 

The complex nature of amyloid aggregation kinetics due to non- linear growth processes in 

the amyloid lifecycle, combined with their high sensitivity to environmental and 

experimental factors, has challenged the development of kinetic assays and derivation of rate 

laws. While the outline of the amyloid lifecycle as discussed above is generally well 

understood and documented based on in vitro assembly experiments, the specific structures 

of the species involved and the rates of their formation and exchange remain unclear.  

 

Amyloid assembly in vitro 

Currently, the kinetics of amyloid self-assembly is frequently assayed in vitro utilising the 

tinctorial property of amyloid following development of high-throughput microplate-based 

kinetic assays [25] using the dye thioflavin T (ThT). ThT shows enhanced fluorescence 

emission upon binding to in-register side-chains within the -sheets of amyloid fibrils, and a 
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kinetic assay with ThT as amyloid reporter is widely used as it is simple and relatively 

sensitive compared to turbidity and light scattering approaches [40]. ThT assays have allowed 

in-depth studies of amyloid formation kinetics and derivation of rate laws that have 

elucidated the molecular mechanisms of amyloid assembly and aid in determining the mode 

of action of fibril formation inhibitors [41]. Also, ThT fluorescence intensity may reflect 

fibril morphology, regardless of the -sheet content due to different accessibility to binding 

sites [42].  

 

Although ThT is a useful tool for quantifying the relative amounts of fibrillar cross-  content 

over time, it does have some limitations and shortcomings. For example, ThT cannot be used 

for specific identification of amyloid fibrils, as it is not sufficiently specific to amyloid 

aggregates and can for example, bind to DNA [43], nor can it be used to distinguish between 

amyloid fibrils and prefibrillar species [44]. Additionally, screening the effect of small 

molecule inhibitors on fibril formation using ThT is prone to false positives as the candidate 

inhibitors may interfere with the binding of the dye, rather than the fibrillation process [45]. 

The study of amyloid aggregation should always be complemented with various other 

biophysical techniques, including circular dichroism (CD) and Fourier transfer infrared 

spectroscopy (FTIR) for secondary structure characterisation, and AFM and EM for fibril 

imaging. Several derivatives of ThT have been developed for in vivo detection of amyloid 

fibrils in the organs and tissues of live patients [46,47]. Amyloid probes also include 

luminescent conjugated oligothiophenes, which are fluorescent amyloid ligands that can 

report on the fibrillar conformation, facilitating the in vitro and ex vivo analysis of 

polymorphism [48,49]. The continued development of novel reporters for use in animal 

models and in future clinical applications will contribute to a better understanding of the 

formation and spread of amyloid aggregates under in vivo conditions.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

The main distinctive characteristic of amyloid aggregation, as measured in vitro using ThT, 

which gives a fluorescent signal increase upon binding amyloid fibrils, is a sigmoidal growth 

curve (Fig. 3). The lag phase represents early reaction times where primary nucleation events 

that lead to nuclei and small intermediate oligomer formation dominates. Nucleation is 

initially thermodynamically unfavourable and kinetically rate limiting as the nucleation 

process is associated with a free-energy barrier, with pre-nucleation species in the reaction 

coordinate favouring dissociation compared to further growth by monomer association 

[25,50,51]. The lag phase can be eliminated by introducing preformed fibrillar amyloid seeds, 

enabling the conversion and addition of monomers directly to fibril ends in the amyloid state, 

thereby bypassing the rate- limiting nucleation process. At the end of the lag phase, while 

most of the protein is still monomeric, there is a transient population of intermediate 

oligomeric species, some of which are referred to as protofibrils because they are sufficiently 

and observably elongated species [52]. Small transient oligomers grow and fully convert into 

protofilaments with amyloid cross-  core that are then elongated by further addition of 

monomers to fibril ends. As fibrils form during lag phase, secondary processes such as 

secondary nucleation and fibril fragmentation become the major mechanism of amyloid 

formation, peaking during the exponential growth phase [25,27]. Fibril mass increases as 

protofilaments are elongated and twist around each other. Finally, growth plateaus as most 

monomers in solution have been added to fibril ends. The population in such a sample 

remains in dynamic exchange (Fig. 2). For example, monomers and oligomers may 

continuously break off and reattach to fibril ends [53]. Importantly, these key steps are part of 

the lifecycle of all amyloid fibril formation, but their rate constants and thermodynamic 

driving forces vary for different monomers [50].  
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Amyloid assembly in vivo 

While the fundamental kinetic principles governing the self-assembly of amyloid are the 

same in vitro as in vivo, the kinetics of the amyloid lifecycle under in vivo conditions would 

be expected to be significantly different from the well-characterised in vitro conditions. One 

of the main differences is the unlimited and continuous production of monomers in vivo. 

Other key differences include the added complexities associated with genetic variations of 

amyloid monomer or its precursor and other risk factors, components of the cellular and 

extracellular environment that affect amyloid aggregation kinetics, spatiotemporal variations 

in monomer production affecting local monomer concentrations, and amyloid clearance 

mechanisms. Using fluorescence lifetime imaging (FLIM), the kinetics of Aβ aggregation, as 

well as its cellular uptake and trafficking, have been studied in live neuronal cells [54]. The 

aggregation of Aβ in human APP-expressing mice was analysed using a fluorescent amyloid 

dye and a cranial window through which images were collected using two-photon imaging 

over a period of two years [55]. The plaque volume change was found to have a sigmoidal 

shape, with many small plaques forming initially, when the concentration of free Aβ is high, 

and growing in volume until they plateau when Aβ production becomes rate-limiting. 

However, while transgenic murine models of AD are useful research tools for familial AD, 

they fail to represent the most abundant type of AD in humans, which is sporadic. Amyloid 

positron emission tomography (PET), a method for visualizing amyloid deposition in the 

brain using radiopharmaceuticals that bind fibrillar amyloid, has also been used to collect and 

assemble Aβ load data from cognitively impaired patients to create a long-term disease model 

that showed a sigmoidal curve of increasing amyloid load in the brain over the course of 

more than 30 years [56]. Overall, few studies have been done on the in vivo aggregation 

kinetics of amyloid in animal models or humans in any molecular detail. 
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The rates governing the amyloid lifecycle and its kinetics are specific to protein sequence and 

environmental conditions. For example, aggregation propensity is affected by charge and 

exposed hydrophobic surfaces of the monomer. The lag phase can also be shortened by an 

increased fragmentation propensity. Although a key feature of many amyloid-forming 

proteins is being intrinsically disordered as monomers, or having significant stretch of 

unstructured regions due to extensive exposed hydrophobic areas, others can be folded, 

globular, and with low aggregation-propensity in their native states [57]. Such proteins, 

including β2 microglobulin associated with systemic dialysis related amyloidosis, require 

local unfolding to initiate aggregation [58]. In these cases, physiological thermal fluctuations 

may be sufficient for native conformation destabilisation [59] and hence enough for initiating 

assembly. Conditions such as temperature, pH, protein-denaturing agents, presence of other 

proteins, metal ions, surfaces and their composition and properties can have an impact on the 

aggregation of amyloid proteins [21,60–63]. Even many physiologically non-amyloidogenic 

proteins can be made to adopt the characteristic cross-β structure under specific 

environmental conditions [64,65]. Deviations from the typical kinetic characteristics of 

amyloid aggregation have been identified under varying environmental conditions, which has 

implications for the biomedical use of amyloid-prone proteins, and for developing drugs 

targeting amyloid assembly. For example, the human glucagon- like peptide 1, analogues of 

which are used for treatment of type II diabetes, exhibits kinetics consistent with the standard 

nucleation-polymerisation mechanism at pH 8.2, but at pH 7.5 the kinetics showed a highly 

unusual profile, with the lag phase becoming longer with increasing monome r concentration 

[66]. This was attributed to the formation of off-pathway oligomers, with unknown 

physiological effects. One plausible explanation is that metastable oligomers and protofibrils 

could be off-pathway competitors and inhibitors of fibril formation, instead of on-pathway 

precursors [67]. 
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Amyloid assembly polymorphism 

 

Amyloid fibrils, by definition, share a cross-β core arrangement. Their assembly, either from 

precursors of different or identical sequences, nevertheless result in fibrils with a varying 

degree of structural differences (Fig. 1, Fig. 4). Polymorphism of molecular crystals has been 

characterised in the context of small molecules and pharmaceuticals, for which the varying 

physiochemical properties including the stability and bioavailability of a substance with an 

identical molecular structure and dissimilar suprastructure has been documented [68,69]. 

Analogously, the fibrillar amyloid state can be viewed as a pseudo one dimensional “crystal-

like” form in which different polymorphs may also have varying biological properties. 

Variance in fibril structure, i.e. the polymorphic nature of amyloid fibrils, has been 

characterised for fibrils formed from synthetic or recombinant monomeric amyloid 

precursors, as well as those formed in vivo in tissue or by seeding with fibrils from brain 

tissue of patients with various neurodegenerative diseases  [70–72]. Amyloid assembly 

polymorphism resulting from assembly of precursors of identical sequence can be broadly 

divided into two classes: core polymorphism with differences in the arrangement of 

monomeric units in the cross-β core, or filament polymorphism with differences in the lateral 

arrangement of protofilaments in a fibril and the specific contacts they form (Fig. 4). In core 

polymorphism, the core structure can vary in β-sheet content, conformation of non-β-strand 

segments, steric zipper packing and specific contacts between residues. Core polymorphism 

can be further categorised into segment polymorphism where different segments of a 

polypeptide may form different cross-β cores, and packing polymorphism where the same 

segment of a polypeptide chain is involved in the cross-β core. For example, inter-sheet 
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contacts can be stabilised by steric zippers, as well as hydrophobic contacts and salt bridges. 

Eight potential classes of steric zipper packing arrangements were described by Eisenberg 

and colleagues [10] forming the basis for core and assembly polymorphisms. These steric 

zipper arrangements vary by whether -strands that make up -sheets are parallel or 

antiparallel, whether adjacent -sheets that form the steric zipper pack same or different 

surfaces together, or whether the -sheets themselves are oriented parallel or antiparallel 

relative to each other. In terms of filament polymorphism, the current confirmed examples 

include cryo-EM reconstructions of purified paired helical and straight tau filaments, which 

show indistinguishable cross-β and β-helical structures, surrounded by a fuzzy coat of 

disordered domains, but distinctive inter-protofilament arrangements [73] and 2-

microglobulin, for which several morphologies were identified using cryo-EM, although all 

shared the same core structure, as shown by NMR [74].  

 

Amyloid populations regularly contain heterogeneous mixtures of fibril polymorphs. Often, 

several subpopulations of amyloid fibril polymorphs can form under identical conditions, for 

example paired helical and straight fibrils of tau or striated ribbon and twisted fibrils of Aβ 

[73,75]. In studies in which a single fibril structure is reconstructed, the sample may have 

contained a broad range of morphologies, as in the case of the recent 2-microglobulin 

structure [74]. These individual fibril polymorphs can sometimes be distinguished by their 

width, as they may vary in the number of protofilaments (Fig. 4), or other morphological 

differences such as twist periodicity and persistence length in terms of curvature. 

Additionally, fibril polymorphs may vary in stability and dynamic behaviour which may, for 

example, affect their fragmentation rate and consequently cytotoxicity [76]. Fibrils differing 

in twist and length can also result in differences in their cytotoxic potential [16,39].  
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From fibril structures determined from patient brain tissue, it emerges that there may be 

disease-specific association with certain amyloid fibril polymorphs. For instance, tau fibrils 

from an Alzheimer’s patient and a Pick’s disease patient have remarkably different core 

arrangements [72,73]. Additionally, structural polymorphs of Aβ are thought to correlate with 

variations in AD pathological phenotypes [77]. For example, recent ssNMR analysis of Aβ 

fibrils seeded from AD patient brain tissue showed a link between clinical AD subtypes and 

specific features of fibril polymorphism. Aβ40 aggregates were shown to have a single major 

morphology in patients with typical prolonged-duration AD and posterior cortical atrophy 

variant (PCA-AD) and a higher proportion of alternative structures in the rapidly progressive 

form of AD. By contrast, Aβ42 aggregates were found as several polymorphs across both 

categories [77]. In another study, Aβ40 fibrils seeded from brain tissue of two AD patients 

with different clinical histories were relatively homogenous for the individual patients, 

although analysis of the predominant fibril structures by ssNMR between the two patients 

indicated significant differences in their cores [78].   

 

Due to amyloid and prions have structural and mechanistic similarities, and the 

morphological heterogeneity of amyloid populations potentially linked with disease 

progression, the idea of whether structural amyloid polymorphs propagate phenotypically as 

strains has been tested. For prions, the prion strains give rise to specific pathologies and 

disease phenotypes, which are maintained when the strains are introduced de novo into a 

genetically identical host where they continue to be stably propagated. Some studies have 

also suggested the spread of tau and -synuclein as distinct strains [79]. Thus, identifying the 

structure of distinct fibril polymorphs, the suprastructures they form, and characterising the 

environmental factors that drive structural changes, as well as their biological effects, could 

be the key link to elucidating the dramatic variations in amyloid disease pathological 
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presentation and provide a structural rationalisation of the strain phenomenon. The structural 

differences between amyloid polymorphs could also be mediated by changing the propensity 

to the various fibril associated pathology mechanisms, including interactions with membranes, 

ability to sequester proteins essential for the cell, differences in metal binding and creation of 

reactive oxygen species, or some as yet unknown mechanism of fibril toxicity. Thus, in terms 

of disease association, environmental changes may modulate amyloid structure and exert 

pressure to select for specific polymorphs, and the selected polymorphs in turn reinforce the 

disease-associated environmental changes. 

 

 

Amyloid suprastructures 

 

As amyloid fibrils are highly polymorphic, the heterogeneous populations of amyloid species 

that result from the amyloid lifecycle also show a variety of different mesoscopic 

arrangements on the micrometre to nanometre scale, forming a variety of possible 

suprastructures (Fig. 5). Amyloid fibrils vary in width, with some self-associating into thick 

bundles by protofilament interactions, whereas other fibrils may consist of a single 

protofilament only [80]. The length distribution of the fibrils in a population can similarly 

vary, depending on the mechanical properties of the fibrils, such as stiffness, and their 

fragmentation rate [18]. Each fibril population formed from the same amyloid sequence may 

contain varying proportions of fibril polymorphs, ranging from a uniform ensemble to almost 

continuous variation in twist [13,78]. While some fibrils self-associate into packed clusters or 

networks, others do not form such structures and remain separated, sometimes in a parallel 

alignment with directional order [81,82]. Although various suprastructures have been 

identified, little is known about their relative biological impact. At liquid interfaces amyloid 
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fibrils can exist in a liquid crystalline nematic phase in which the fibrils are aligned parallel 

to each other [83]. In vitro studies of entangled amyloid networks have also identified gel-

like behaviour at the mesoscopic scale. Interestingly, elastic properties appear as early as 

during nucleation events in the lag phase [84]. Electron tomography studies of Aβ 

suprastructures have revealed three main types of aggregates: amorphous meshwork, fibril 

bundle and amyloid star, all within the same overall deposit [85]. Interestingly in each case, 

the fibrils themselves were morphologically indistinguishable. Additionally amyloid fibrils 

have been observed to form spherulites which show a typical Maltese cross pattern when 

observed under polarised light in both in vitro and ex vivo [86,87]. Furthermore, between 

fibril networks, extracellular vesicles of various sizes are found [85] and lipid membrane 

components have been identified also within and around dense Aβ plaques in human brains 

of AD patients [88].  

 

Morphological differences observed in plaque deposits reflect the suprastructural assembly 

preferences and features of amyloid aggregates, and seeded fibrils from AD patient brains  

have been correlated to differences in clinical subtypes [77]. Thus, it is possible that the 

different suprastructures that differ in their mesoscopic arrangements also have different toxic 

or infectivity profiles. The suprastructural arrangements of fibrils can also be affected by the 

dominance of individual fibril polymorphs as they can have different surface properties 

which affect their interactions. Thus, aggregates with different suprastructural features will 

also have different surface properties and propensities to sequester other metastable essential 

constituents of the cellular proteome. Characterising the various suprastructural parameters 

such as length and width distribution, twist, stiffness, clustering and heterogeneity of amyloid 

assemblies and correlating these with biological activity could lead to essential insights into 

the amyloid structure-function relationship. 
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Regulation of functional and pathological amyloid structure and assembly 

 

Defining an amyloid suprastructure-toxicity relationship would help us elucidate why some 

amyloid formations are highly toxic whereas others are inert. Given the presence of amyloid 

aggregates in numerous neurodegenerative diseases, it is perhaps surprising that an increasing 

number of amyloid structures have been found to participate in an array of normal 

physiological processes without any observable harmful effects to their hosts [6]. In humans 

these include melanin biosynthesis, regulation of long-term potentiation (LTP) and peptide 

hormone storage [89–91]. Functional amyloid assemblies have also been discovered in 

numerous other organisms, including bacteria, fungi and metazoa. For instance, in some 

bacteria, fibrillar matrix of extracellular amyloid proteins such as curli and Fap are required 

for surface adhesion and colony formation [92–95]. In insects and fish, the eggshell is 

primarily made up of chorion proteins with a characteristic amyloid fibril structure [6]. The 

line between functional and pathogenic amyloids is also increasingly blurred, as subtle 

changes in processing or regulation may cause an amyloid with normal physiological roles to 

become pathogenic. For example, Aβ is produced from the amyloid precursor protein (APP) 

in neural and other cells throughout the human lifetime [96]. The precursor can be cleaved by 

α- and γ-secretases leading to production of non-amyloidogenic fragments or by β- and γ-

secretases, which produces several isoforms of Aβ correlated with AD. However, there is 

evidence that monomeric Aβ and other peptides resulting from precursor cleavage might 

have important roles in cellular signalling pathways, regulating synaptic activity and might 

even be essential for survival of neurons [97]. Moreover, fibrillar forms of Aβ have been 

suggested to have protective effects against fungal and bacterial infections in mouse, 
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nematode and cell culture models of Alzheimer’s disease, thus suggesting that they might 

have a role in innate immunity [98]. Recently, human neural cell culture models have also 

been used to investigate the role of a herpes simplex 1 virus infection on amyloid aggregation 

and it was reported that Aβ oligomers bind virus surface glycoproteins and mediate resistance 

to the virus [99]. This finding suggests that even small oligomeric amyloid species may have 

functional roles.  

 

Amyloidogenic proteins lack sequence homology and can have diverse structural and 

catalytic functions in their normal non-amyloid states. The ability to self-assemble into an 

amyloid state could be a generic structural feature of polypeptide chains [100]. Therefore, 

understanding the mechanistic and structural differences between functional and 

pathogenically-associated amyloid, which share the same cross-β core structure by definition, 

is a key requirement for treating amyloid-associated diseases as any potential treatment must 

be able to recognise essential functional features of amyloid and differentiate these from the 

pathogenically-associated features. A key aspect of functional amyloid may lie in their 

controlled and localised assembly initiation and termination in response to environmental 

cues, which is sometimes achieved with post-translational modifications. For example, the 

CPEB3 protein activates the transcription of mRNAs that promote long-term potentiation 

(LTP), but only when ubiquitylated and deSUMOylated, which promotes its assembly into 

the functional fibrillar form [90,101]. SUMOylation of CPEB3 makes it soluble and inactive, 

although in other amyloid proteins it can promote aggregation and toxicity [102]. 

Additionally, many peptide hormones that are stored within endocrine granules require both 

the compartmentalised acidic pH environment and the presence of glycosaminoglycans 

(GAGs) for fibril formation. GAGs accelerate fibril formation by abolishing the lag-phase 

and some can interfere with potentially harmful fibril-membrane interactions [103,104].  
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Another regulatory mechanism of controlling amyloid assembly involves chaperones. 

Recently chaperones DNAJB6 and Hsp70 were identified as part of a natural control 

mechanism to prevent the aggregation of α-synuclein, found as toxic aggregates in 

Parkinson’s Disease patients [105]. α-syn is expressed at high levels in healthy individuals in 

various tissues of the body and, in the monomeric state, has important synaptic functions 

related to neurotransmitter release and synaptic plasticity, although the exact mechanisms are 

not known [106]. Chaperone proteins such as Hsp70, Hsp40, and others are also involved 

degradation and refolding of amyloid aggregates. The chaperone Hsp104 is essential for 

propagation of [PSI+] prion phenotype in yeast that is associated with the functional amyloid 

state of Sup35; Hsp104 promotes division and propagation of Sup35 amyloid by catalysing 

fibril fragmentation in vivo [107,108].  

 

On the basis that amyloid associated with pathology may have roles in normal physiological 

processes, it has been suggested that it is a dysfunctional protein degradation machinery that 

leads to disruption in proteostasis and build-up of toxic amyloid aggregates [109]. Some 

functional amyloid systems, for example pre-melanosomal protein, aggregate into fibrils 

much more rapidly than non-functional amyloid, thus preventing accumulation of 

intermediate oligomeric species with potential for harmful effects [110].  

 

All the above-mentioned mechanisms may have evolved to ensure the normal ro les of 

functional and/or to prevent the pathogenic features of amyloid assemblies, which have 

important implications in numerous physiological processes involving amyloid or amyloid 

precursors with no deleterious effects. Safety mechanisms that control and regulate amyloid 

localisation, compartmentalisation, processing and degradation, as well as their assembly 
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kinetics and interactions with other cellular structures, may present some of the differences 

between functional and disease associated amyloid. 

 

 

Structural and molecular origins of amyloid toxicity 

 

Although the hallmark of neurodegenerative disease is deposits of amyloid fibrils, the 

neuropathological and clinical symptoms vary significantly. Therefore, the identity of the 

toxic species, and the molecular origin of the cytotoxic potential associated with amyloid is 

widely debated. For example, AD is characterised by progressive loss of synapses, neuronal 

death and atrophy of the affected areas, resulting in decline of memory and cognitive 

functions, whereas the main pathophysiological characteristic of Parkinson’s disease is 

degeneration of dopaminergic neurons in the substantia nigra resulting in loss of motor 

function leading to rigidity and tremors. Other neurodegenerative and prion diseases also 

involve progressive neuronal death in various areas of the brain and result in different 

symptoms. Severe cases of amyloid deposition has also been found in the brains of human 

subjects with no cognitive decline or symptoms of dementia upon post-mortem assessment of 

neuropathology [111]. Thus, several underlying toxicity mechanisms involving a range of 

amyloid species have been suggested for these symptoms, including disruption of cell 

membranes, dysregulation of calcium homeostasis, mitochondrial dysfunction and oxidative 

stress. 

 

Toxicity potential of small oligomeric amyloid species 

Amyloid toxicity is currently thought to result from pathological effects associated with small 

amyloid oligomers as they are ubiquitous in the brains of neurodegenerative amyloid disease 
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patients and their cytotoxicity has been well characterised in vitro. According to this 

hypothesis, large deposits such as amyloid plaques and inclusion bodies are thought to be 

relatively inert. Indeed, small oligomeric species from post-mortem human brains can disrupt 

long-term potentiation, synaptic plasticity and memory when injected into a mouse 

hippocampus [112]. This view is supported by evidence of neurodegeneration and cognitive 

defects preceding plaque formation in vivo [113,114]. In the case of mutant huntingtin, the 

formation of inclusion bodies was also found to reduce the risk of cell death from toxic 

mutant huntingtin aggregates [115]. Furthermore, the formation of prefibrillar oligomers is 

accelerated by mutations in α-syn causing a familial, early-onset form of Parkinson’s [116]. 

However, the precise molecular nature of the small oligomeric species that confers toxicity 

remains to be established and a large number of species of varied structures and 

suprastructures have been observed. For example, according to the ‘ion channel hypothesis’, 

oligomeric species with a ring- like structure insert into cell membranes and act as aberrant 

ion channels, disrupting the homeostasis of ions and leading to cell death [117]. Such 

oligomers have been suggested to form membrane-associated annular structures in vitro 

through interactions with specific lipids in the membrane, and possibly form a β-barrel pore 

[118–120]. However, specific structural features may be required for ion channel formation, 

as it has been suggested that oligomers of Aβ42 but not Aβ40 are capable of channel formation 

in membranes [121]. Disruption of calcium homeostasis has been observed in proximity of 

amyloid plaques, which may act as a reservoir of cytotoxic species [122]. Loss of calcium 

compartmentalisation leads to distortion of neuritic morphology and as calcium is essential 

for neural integration of signals, dysregulation of its homeostasis disrupts local neural 

networks [122]. Amyloid oligomer cytotoxicity has also been linked to the size and 

conformation of the oligomers, with smaller and more exposed hydrophobic surfaces with 

structural flexibility displaying the most toxic potential [123,124]. Thus, the dynamic and 
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hydrophobic nature of prefibrillar oligomers may provide a rationale to their propensity to 

aggregate and display cytotoxic properties though their interaction with membrane bilayers. 

 

The elucidation of the role of small oligomeric species in amyloid diseases is complicated not 

only due to their varied structures and heterogeneity, but also due to their transient nature. 

Thus, in terms of species formed during the amyloid lifecycle in vivo, due to experimental 

limitations it is only possible to study stable species secreted by in vitro cell cultures or those 

extracted from post-mortem patients’ brains. Furthermore, the population and the 

concentration of amyloid species in the brain is unknown. Attempts to quantify the 

concentration of Aβ in the brain has focused mostly on mouse models, with some studies on 

human brain tissue and cerebrospinal fluid [125–127]. However, results are inconclusive as 

there is currently no method for quantifying whole amyloid populations ranging from 

prefibrillar oligomeric species to fibrillar species in vivo without exposing them to non-native 

conditions that could affect their aggregation states, lead ing to unreliable estimates. 

Additionally, very little is known about how the local environment in the in vivo human brain 

affects amyloid structure and toxicity, especially as the amyloid population are likely to be 

highly heterogeneous and distinct oligomeric species can vary in toxicity.  

 

Toxicity potential of fibrillar amyloid species 

In addition to the cytotoxic effects displayed by prefibrillar oligomeric species, amyloid 

fibrils also have direct cytotoxic properties via disruptive effects on the phospholipid bilayer 

during fibril growth [128]. Localised neuronal damage, characterised by progressive neuronal 

dystrophy and microglial activation, has been correlated with plaque formation and shown to 

worsen over the clinical course of the disease [129,130]. Several indirect mechanisms of 

fibril toxicity have been proposed, including secondary nucleation events where fibrils 
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catalyse the formation of small oligomeric species through surface interactions, thereby 

contributing to the neurotoxic effects of amyloid [27]. Additionally, fibrils may act as a 

reservoir for toxic species, which may be released to generate a local pool of toxic species as 

a halo around fibrillar deposits [131]. Besides these indirect mechanisms, fibrils can also 

contribute directly to cell damage under conditions in which non-fibrillar aggregates are not 

detectable by spectroscopy or antibody-binding, thus suggesting a role as a direct contributor 

of cytotoxicity.  

 

Fibril fragmentation is key to amyloid cytotoxicity by increasing the number of termini 

through division of fibrils, which provides increased reactive growth competent surface, and 

also creates smaller fibrillar amyloid species that decrease cell viability and increase 

disruptive effects on membrane bilayers. The increase in the toxic potential cannot be solely 

attributed to the increased number of fibril ends, suggesting other yet unknown surface-

dependent mechanisms [39]. Furthermore, short fibril particles are also readily internalised 

by endocytosis, causing disruption within the cell by inhibiting the degradation of proteins 

within lysosomes and altering trafficking of lysosomal membrane proteins [132]. Disruptive 

interactions of fibrils with membranes have been visualised in 3D using electron tomography, 

surrounded by lipid inclusions of varying sizes [133]. Extraction and clustering of lipids 

around amyloid aggregates and their potential links to toxicity have also been previously 

characterised [134]. Fibril-membrane interactions also promote the shedding of oligomers 

from fibril ends that then diffuse rapidly through the brain and impair cognitive function in 

mice [135]. These oligomers formed through reverse assembly reactions were found to have 

a highly heterogeneous size distribution, but similar biochemical and physical properties to 

those formed by nucleation and forward assembly reactions [135]. Another potentially 

physiologically harmful effect of amyloid could arise from fibril interactions with metal ions 
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[136], as several co-localise with amyloid plaques in AD patient brains [137].  A42 fibril 

interactions with copper (Cu2+) enable retention of redox activity and generation of reactive 

oxygen species in vitro [138]. The presence of metal ions also affects fibril aggregation 

morphology, which may have additional consequences on biological and pathogenic 

properties [136,138,139]. 

 

Modulating factors of amyloid cytotoxicity  

In the complex, crowded environment of cells and nervous tissue, the cellular milieu plays an 

important role in affecting how the amyloid lifecycle progresses, and how amyloid species 

and populations form and interact with other cellular structures. Surfaces, such as those 

presented by membranes, can promote protein misfolding and aggregation, thus potentially 

speeding up nucleation events in the amyloid lifecycle, promoting the de novo formation of 

amyloid species [140]. This effect depends on the lipid composition of the membrane. 

Differing membrane composition could potentially explain the variable vulnerability of 

various cell types to toxic amyloid species. Phosphatidylserine and other acidic phospholipids 

could provide a local low-pH environment that promotes fibril formation [141]. Interestingly, 

functional amyloid assemblies are often compartmentalised into membrane-bound organelles 

without causing damage. A specific membrane composition could explain why this key 

toxicity target is not harmed by functional amyloid aggregates. Furthermore, hydrophobic 

surfaces and the air-water interface are also capable of inducing heterogeneous nucleation 

and formation of small amyloid oligomers, as well as leading to the formation of fibrils with 

a distinct morphology compared to fibrils formed by homologous nucleation away from 

surfaces [142,143]. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

The lack of clear correlation between amyloid  fibril aggregates with clinical symptoms in 

neurodegenerative diseases promoted the view that small oligomeric pre-fibrillar species are 

the main toxic species. While some oligomeric species display significant cytotoxic potential, 

not all oligomeric species share this potential. In the same manner, some amyloid fibril 

structures possess cytotoxic potential while others appear to be inert. Difficulties in studying 

the mechanisms and structures associated with amyloid toxicity under physiologically 

relevant conditions also add to the fact that the composition of the amyloid populations that 

are associated with disease as a whole, and their combined modes of action, have not been 

resolved. It is possible that the incoherence between the amyloid species and the 

neurodegenerative disease symptoms and progression they are associated with could be better 

explained not by individual amyloid structures but the sum of their presence in a population 

as a whole. The variation in the composition of the heterogeneous amyloid population 

resulting from the amyloid lifecycle may drive different characteristics and clinical symptoms 

associated with amyloid. 

 

 

The infectious potential of amyloid: prions and prion-like amyloid  

 

Prions are infectious amyloid particles with the self-propagating amyloid cross-β state. 

Mammalian prions are correlated with a number of currently untreatable neurodegenerative 

diseases termed transmissible spongiform encephalopathies (TSEs) which include kuru, 

Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, and scrapie in sheep. These 

diseases can arise spontaneously, be inherited, or acquired through an infection by prion 

particles. TSEs are caused by an amyloidogenic form of the mammalian prion protein (PrP) 

and can be transmitted between individuals and sometimes even across species [144,145]. 
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However, not all prion replication is disease-associated and in fungi in particular they can 

have neutral or beneficial effects. For example in yeast, prions confer phenotypic plasticity 

through evolutionary selective advantages [146]. For example, the Saccharomyces cerevisiae 

protein Sup35 is a subunit of the eukaryotic translation release factor, required for 

termination of mRNA translation. The amyloid form of Sup35 is associated with the [PSI+] 

prion phenotype [147]. Similarly, [URE3] is the prion phenotype associated with the S. 

cerevisiae Ure2 protein [147]. Both of these prion proteins can form several strain variants 

with different characteristics and have been studied extensively to elucidate the molecular 

mechanisms and structural determinants of amyloid proteins [148]. 

 

Prions have been be considered a subclass of amyloid that can be transmitted between cells 

and organisms  [149]. However, there is now increasing evidence to suggest that some 

pathogenic amyloid proteins can also be transmissible from cell-to-cell. For example, cross-

cell transmission has been demonstrated for Aβ [150], α-syn [151], huntingtin [152] and tau 

[153], blurring the distinction between ‘prions’ and ‘amyloid’. As the likelihood of 

transmissibility of these pathogenic amyloid proteins between individuals, an essential 

aspects of prion behaviour, is probably low, they are consequently typically classified as 

‘prion- like’ amyloid. Nevertheless, these proteins may be infectious to an extent, as shown 

for tau where injection of tau-containing brain extract of human origin can induce tau 

inclusions in transgenic mice expressing wild type human tau [154]. Recently, further 

evidence was found to support iatrogenic transmission of Aβ by identifying Aβ40 and Aβ42, 

along with tau, in archived vials of human cadaveric pituitary-derived growth hormone [155], 

which was used to treat patients until 1985 when some were diagnosed with Creutzfeldt-

Jacob-Disease (CJD) [156]. This raises concerns over accidental transmission of prion and 
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prion- like amyloid during medical procedures and through potentially amyloid-contaminated 

surgical equipment.  

 

How some amyloid can show a type of prion- like behaviour is not known, but fibril 

fragmentation seems to play a key role in facilitating infectivity [157], as in the case of prion 

particles, division and propagation through fibril fragmentation could also be a key 

determinant for infectivity and amyloid phenotype strength [38]. Fibril fragmentation could 

facilitate vesicular cell- to-cell transport, due to the smaller size of fragmented particles, as 

cell-to-cell spreading is thought to be mediated by intracellular amyloid particles weakening 

the lysosomal protein degradation pathway, leading to exocytosis of oligomeric species 

capable of propagating the amyloid state that are then taken up by recipient cells [158]. Thus, 

the stability of amyloid particles towards fibril fragmentation, which may be modulated by 

their suprastructure, could represent a link between amyloid structure and their infective 

potential as prions. 

 

 

Challenges in establishing amyloid structure-function relationships 

 

Many important aspects of amyloid toxicity, propagation, and their role in neurodegenerative 

diseases remain elusive. A significant gap in knowledge relates to the specific mechanisms of 

amyloid pathogenicity in terms of the structural properties associated with the toxic and 

infective potential displayed by amyloid structures. To effectively develop therapeutics that 

specifically target toxic or infective properties or species, it is first necessary to understand 

the mechanisms of toxicity, transmission and propagation in detail. However, for amyloid-

associated diseases it is not yet clear whether amyloid aggregates are a cause or a 
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consequence of the disease, and by which mechanisms they could exert toxic effects to the 

cells. Consequently, no safe and effective anti-amyloid treatments have yet been developed 

despite efforts by academia and pharmaceutical companies alike. Although aggregates of 

amyloid fibrils are an important hallmark for diagnosis of amyloid disease, their role in 

pathology is debated. It is thought that earlier species in the amyloid lifecycle, specifically 

the small intermediate, oligomeric, pre-fibrillary species, are responsible for some of the 

cytotoxic and neurodegenerative effects in amyloid associated pathologies [159]. However, 

there is also evidence of fibrils with a shorter length distribution having cytotoxic effects 

[160]. Additionally, they could have important roles in amyloid propagation and other 

indirect mechanisms of toxicity, as well as being involved in the infective activities 

associated with prions and prion- like amyloid. The problem is exacerbated by the lack of 

high-resolution structural information of intermediate species on or off the fibril formation 

pathway as they have remained largely elusive due to conformational heterogeneity and 

transient nature. 

 

Often, populations containing a heterogeneous mixture of amyloid polymorphs or amyloid 

species from different precursor sequences can be present in the brain of an affected 

individual, which might be part of the complex and varied nature of neurodegenerative 

diseases [71,161]. As discussed above, a plethora of amyloid fibril polymorphs may form and 

grow under the same conditions, but each individual polymorph may have different effects on 

cells. However, it is often necessary to achieve a homogenous sample of fibrils of a single 

morphology by progressive seeding or stabilising fibrils of a specific polymorph for 

structural characterisation and when assaying biological effects of amyloid fibrils. A nearly 

homogenous population can be achieved by repeated seeding because fibrils with different 

morphologies have different rates of self-assembly [75]. However, the species distribution as 
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a whole may have an impact on the pathological properties associated with amyloid. For 

example, in a population, some species may contribute directly to the accelerated propagation 

of the amyloid state in the amyloid lifecycle and only indirectly in the accumulation of toxic 

species, while other species may act as cytotoxic entities directly. Whole population effects 

could also rest in the varied concentrations of different species in the population as the toxic 

potential of the whole amyloid population will be a sum of the toxic potential displayed by 

individual species in the population, weighted by their concentrations. Just like for any toxic 

substances, the classic principle “sola dosis facit venenum” (the dose makes the poison) will 

also apply to amyloid species. Furthermore, the infectious and toxic potential of amyloid will 

be modulated by their suprastructural states, such as clustering and filament lateral assembly, 

at a mesoscopic scale. This information can be obtained using - for example - atomic force 

spectroscopy (AFM) and transmission electron microscopy (TEM) and will be highly 

complementary to higher resolution structural information on individual filament types 

obtainable by ssNMR and cryo-EM. 

 

Various anti-amyloid therapeutics targeting different processes in the amyloid lifecycle have 

reached clinical trials although so far none have been successful. Part of the problem lies with 

the fact that the holistic role of amyloid lifecycle in disease mechanisms has not been fully 

elucidated. Potential mechanisms to target amyloid formation include kinetic stabilisation of 

native and inert states, inhibitors of enzymes that process amyloid precursors, sequestering 

small toxic oligomeric species with antibodies, inhibition of amyloid-membrane interactions, 

prevention of elongation through blocking fibril ends, and potentially increasing elongation 

rates to force smaller, more toxic, states to form part of longer fibrils with less cytotoxic 

potential. For example, a molecular chaperone BRICHOS can effectively bind to the surface 

of Aβ fibrils, thus preventing secondary nucleation [162,163]. Engineered and enhanced 
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disaggregases, including Hsp104, are capable of clearing amyloid inclusions and could a lso 

potentially lead to development of therapeutics that upregulate amyloid aggregate clearance 

[164]. Immunotherapies targeting Aβ oligomers or fibrils have been thus far been 

unsuccessful, although results are yet to emerge for their ability to prevent disease in 

asymptomatic people with a genetic predisposition [165]. This highlights the fact that 

developing drugs for amyloid disease treatments is not as straightforward as designing an 

inhibitor for monomer production. A deeper holistic and systems understanding of the effects 

of pathogenic amyloid in the biological context is required for effective development of 

therapeutics. 

 

The potential for exploiting functional amyloid as natural bio-nanomaterials has inspired the 

development and rational design of artificial nanomaterials which use their unique materials 

properties for a variety of prospective applications in biotechnology and biomedicine. The 

self-assembly mechanism produces highly stable fibrils with a tensile strength comparable to 

that of steel [166]. These properties make them highly lucrative for novel biomaterial 

development. Additionally, amyloidogenic proteins are amenable to significant sequence and 

chemical modifications to alter their physio-chemical properties as the fibrils are able to 

maintain their structure under a wide range of conditions. Potential applications of synthetic 

amyloids include mechanisms of drug delivery as a reservoir for controlled release of drugs, 

and tissue repair as a molecular scaffold promoting cell adhesion, migration and 

differentiation. Another possible use of amyloid fibrils includes forming biosensors by 

entrapping proteins or other sensory molecules, depending on the desired application, or the 

formation of nanowires by forming long hollow tubes [167].  Amyloid-carbon hybrid 

membranes have also been developed for inexpensive water purification, efficiently 

removing heavy metal ions and radioactive waste [168]. Thus, if bespoke amyloid can be 
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designed and negatively selected against molecular features that are associated with toxic 

properties, amyloid fibrils will make excellent nanomaterials for biotechnology and 

biomedical purposes.  

 

 

Closing remarks 

 

Despite increasing research efforts, the specific role of amyloid structures in 

neurodegenerative disease remains elusive. There is still a lack of clear understanding of the 

identity of the toxic amyloid species, their mechanism of action and their infectious potential 

in relation to their structural properties. Indeed, high-resolution structural models of amyloid 

fibrils have now been resolved using emergent ssNMR and cryo-EM methodologies, and 

these advances confirm that despite sharing the same cross-β core characteristics, 

amyloidogenic proteins form fibrils with differences in the arrangements of the steric zipper 

core packing, β-sheet content, and the number and packing arrangement of protofilaments. 

The formation of different polymorphs and the heterogeneity of the amyloid populations can 

be affected by environmental conditions, and fibrils and small oligomeric species with 

different morphologies can form under the same conditions, including in vivo and in disease-

affected patients. There is also now increasing evidence to show that fibrils are not inert end-

stage structures, but are an integral member of the amyloid lifecycle. Through division, 

replication and propagation processes such as enzyme-catalysed fibril fragmentation, several 

potential pathways of toxicity can have key roles in the amyloid lifecycle and their 

pathological effects. Simultaneously, there is a large degree of variability in the biological 

roles of amyloid, ranging from those essential for physiological functions to those associated 

with debilitating neurodegenerative diseases.  
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Variability in fibril polymorphs and their suprastructures on the mesoscopic scale could 

rationalise the variations in functional and pathogenic consequences of amyloid. Thus, 

conflicting evidence regarding varied cytotoxicity of amyloid fibrils could be resolved by 

fibrils having different levels of stability, structural rigidity, surface properties, and 

suprastructural formations that affect cytotoxicity, aggregation, interactions with chaperones, 

propensity to shed oligomers or sequester essential cellular proteins. This could also 

rationalise why amyloid deposits in the brain do not always correlate well with clinical 

symptoms of neurodegenerative disease or how some amyloids can have important 

physiological roles without any harmful effects. Additionally, patients with the same 

neurodegenerative disease form different predominant types of polymorphs of the same 

amyloid protein that could influence disease progression and clinical symptoms. Thus, a key 

challenge is to establish a correlation between amyloid structure, specific mechanisms of 

toxicity, and variability in clinical symptoms. Fully understanding mechanisms of the 

amyloid lifecycle and the behaviour of heterogeneous and polymorphous amyloid 

populations and their suprastructural properties in the mesoscopic scale is essential to ensure 

the efficacy of future therapeutics targeting amyloid as well as biotechnological applications 

of amyloids.  
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Table 

 

Table 1: Glossary of commonly used terms relevant to the amyloid lifecycle  shown in 

Fig 1. 

Term Description 

Elongation  Growth of fibrils in a direction parallel to the fibril axis by 

templated monomer addition at fibril ends. 

Fibril ends Active sites where elongation by templated monomer addition 

occur. 

Fibril fragmentation Breakage or division of fibrils, which can be mediated by 

mechanical agitation, thermal stress, chemical perturbation or 

chaperone catalysis. 

Fibrils  Long filaments formed typically by two or more intertwined 

proto-filaments, sometimes loosely referred to as “mature” fibrils. 

Nuclei Smallest oligomeric aggregate on which further growth by 

attachment of a new monomers is faster than detachment of an 

existing monomer in the aggregate. 

Oligomers There is no universal definition but commonly sub-100-mer 

aggregates featuring a heterogeneous and transient nature, and 

small enough to be disperse and not sedimented by centrifugation. 

Primary nucleation De novo formation of the amyloid state through nucleated 

assembly of soluble monomers either in solution (primary 

homogeneous nucleation), or at surfaces or interfaces (primary 

heterogeneous nucleation). 

Proto-filaments  Single elongated amyloid filament with a cross-β core structure. 

Proto-fibrils Curve- linear or worm-like fibrils that are less ordered and 

elongated compared to fibrils, thought to be structurally 

comparable to some oligomers. 

Secondary nucleation Special case of heterogeneous nucleation in which nucleation 

events occur on the surface of already existing fibrils. 

Secondary processes Secondary nucleation and fibril fragmentation, which result in the 
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acceleration and exponential growth of amyloid, as opposed to 

primary processes of primary nucleation and elongation. 

Seeds Aggregates that are capable of accelerating amyloid assembly 

reactions, for example post-nucleation amyloid species capable of 

growth by elongation, or species capable of promoting secondary 

nucleation. 
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Figures  

Figure 1: Recent structural models of amyloid fibrils determined using ssNMR and 

cryo-EM. These structures illustrate the similarities in cross-β core structure despite distinct 

primary sequences, as well as the different polymorphic structures that identical monomeric 

precursors can assemble into. PDB structures are shown with a yellow or orange backbone, 

blue basic side chain residues, red acidic side chain residues, grey hydrophobic side chain 

residues and green polar side chain residues. The models are oriented so that the fibrils are 

viewed from their ends and two layers along the fibril axis are shown for each fibril model 

for clarity. From upper left to lower right, the structures are drawn in Pymol from PDB 

entries: 6A6B [169], 6H6B [170], 6CU7 [12], 6CU8 [12], 2N0A [171], 2MXU [172], 2NAO 

[173], 5OQV [174], 5KK3 [175], 6GK3 [74], 5O3L [73], 5O3T [73], and 6GX5 [72]. 

Figure 2: Schematic illustration of the amyloid lifecycle. Soluble monomeric proteins 

(circles) are continuously generated and can adopt the amyloid state with a cross-β 

conformation (parallelograms). Coloured arrows represent the four main processes in 

amyloid assembly: primary nucleation (red), which may occur as homogeneous nucleation in 

solution or heterogeneous nucleation at interfaces; secondary nucleation (purple), which may 

occur as heterogeneous nucleation on fibril surfaces; elongation, which is growth at fibril 

ends (blue); and fibril division, for example through spontaneous or catalysed fibril 

fragmentation (yellow). See Table 1 for glossary of terms associated with the amyloid 

lifecycle. The arrows represent dynamic and reversible steps along the lifecycle.  

Figure 3: Schematic illustration of the amyloid aggregation growth curve as measured 

in vitro with kinetic ThT assay. Coloured arrows represent the four main processes in 

amyloid assembly (Fig. 1). Primary nucleation (red) is the driver of de novo amyloid 

aggregation in the initial stages of the reaction, although primary nucleation will continue to 
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take place, at much lower rates, in the later stages as free monomer concentration drop. The 

rate of elongation growth at fibril ends (blue) peaks during the exponential growth phase of 

the fibrils. Elongation continues to occur once a plateau has been reached as the fibrils are in 

dynamic equilibrium with residual monomers and/or small oligomers, as well as other species 

along the fibril formation pathway. Secondary nucleation (purple), which requires both the 

presence of monomers and fibrils, dominates nuclei formation as soon as first fibrils have 

formed in the lag phase. Fibril division through fragmentation (yellow) occurs continuously 

after the formation of first fibrils and continues to have a significant role in the c apacity to 

increase fibril load. The relative magnitudes of the rates of these main processes (exemplified 

by the thickness of the arrows) also vary by the type of amyloid monomer, their 

concentration and environmental conditions.  

Figure 4: Hierarchical classification of amyloid polymorphism types with schematic 

illustrations exemplifying each type. Amyloid polymorphs can be classified into sequence 

polymorphs and assembly polymorphs. Assembly polymorphs can be further divided into 

core polymorphs and filament polymorphs, and core polymorphs can be divided in turn into 

segmental polymorphs and packing polymorphs. The different types of polymorphism are 

organised from top to bottom to indicate the hierarchical effects of polymorphism types. For 

example, sequence polymorphs where one polymorph contains a single amino acid residue 

change (top schematic, stars depict an amino acid sequence variation) would also affect 

which segment of the chain forms the amyloid core (segmental polymorphism), how the 

amyloid core is packed (packing polymorphism) and how the protofilaments are arranged 

(filament polymorphism). On the other hand, polymorphism based on the varied number and 

arrangement of the protofilaments (bottom schematic depicting filament polymorphism) may 

occur without changes in the sequence, the core segment or the packing of the core (all 

placed above filament polymorphism in the schematic). 
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Figure 5. Schematic illustration of possible variations in the suprastructural properties 

of amyloid at mesoscopic (micrometre to nanometre) length scales. a) Long-straight 

fibrils of varying length; b) highly heterogeneous population with filaments and bundles 

decorated with small oligomeric species. c) fibrils of tight twist properties d) highly 

fragmented fibril population with abundance of small particles; e) fibril cluster f) fibril 

network; g) aligned fibrils h) thick and bundled fibrils; i) flexible or curve-linear fibrils with 

low persistence length; j) crystalline- like fibril bundles. 
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