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Abstract

This thesis is comprised of three essays on the topics of financial econometrics and forecasting. In
the first essay we examine whether speculative bubbles are present in the US and UK commercial,
equity and residential real estate markets. The real estate indices are decomposed to fundamental
and non-fundamental components using a wide set of economic indicators and penalized
regressions. In order to determine whether the observed deviations of the actual price index from
its fundamental value are due to the presence of bubbles, we use two complementary
methodologies, the first based on right-side unit root tests for explosive behavior and the second
on regime switching models for bubbles. The models using the alternative fundamental
specifications are found to exhibit superior out-of-sample performance compared to the stylized

alternative models.

In the second essay we set out to evaluate the benefits of integrating return forecasts from
a variety of machine learning and forecast combination methods into an out-of-sample asset
allocation framework. The performance of the portfolios consisting of stock, bond and commodity
indices is evaluated for different levels of risk aversion and investment constraints, around
business cycles and for different rebalancing frequencies. The mean-variance allocations are based
on several estimates of the covariance matrix, while the effects of the return forecasts are also
investigated when using the Conditional Value-at-Risk as an alternative risk measure in
optimization. Comparing the multi-asset portfolios incorporating machine learning return
forecasts, we find evidence of added economic value relative to the equally-weighted or the
historical average benchmark portfolios.

In the final essay we propose a hew approach to pairs trading, which takes advantage of
the information in the conditional quantiles of the distribution of asset returns. In this framework
the pairs are sorted and selected based on cointegration tests and during trading the trading signal
is extracted using quantile regression. We apply the strategy to the S&P 100 constituents and
evaluate the performance of the pairs trading strategy using a variety of economic and risk-adjusted
metrics and under an asset pricing framework, in order to examine whether the profitability of the
new strategy can be explained by various risk factors. Our findings suggest that the quantile

regression pairs trading strategies based on the lower quantiles tend to outperform all other models.
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Chapter 1: Introduction

This thesis is comprised of three essays on financial econometrics and forecasting that cover the
following three topics: (1) the detection and date stamping of speculative bubbles in real estate
markets and forecasting the returns of real estate indices using models that take into account the
non-fundamental component of the asset price; (2) the return predictability of stock, bond and
commaodity indices using a variety of machine learning and forecast combination methods and the
benefits of integrating return forecasts into an out-of-sample asset allocation framework and (3)
an extension to the cointegration-based pairs trading framework that incorporates quantile

regression.

In Chapter 2 we examine whether the prices of the commercial, residential and equity real
estate sectors in the US and the UK are driven by market fundamentals or speculative bubbles. The
real estate indices are decomposed to fundamental and non-fundamental components using a wide
set of economic indicators and penalized regressions. To determine whether the observed
deviations of the actual price index from the fundamental value are due to the presence of bubbles
two complementary methodologies are used; the first is based on right-side unit root tests for
explosive behavior and the second on regime switching models for bubbles. The out-of-sample
performance of the bubble model is compared against the historical average and stylized
alternative models. The results for all indices indicate that the actual price diverges from the
respective fundamental value and the degree of over- or under-valuation could be explained by the
presence of rational bubbles. The right-side unit root tests showed significant evidence of the
presence of periodically collapsing bubbles in all indices. When comparing the regime switching

model for bubbles based on the proposed fundamental specifications to the alternative models, the



results showed that for the US and the UK equity and residential real estate the bubble model is

preferable to the benchmarks.

Chapter 3 sets out to explore whether portfolios consisting of stock, bond and commodity
indices, utilizing forecasts generated from a variety of machine learning and forecast combination
methods, can outperform simpler benchmarks, such as the equally-weighed portfolio and
portfolios using the historical average forecast. The analysis is conducted for different levels of
risk aversion and investment constraints, around business cycles and for monthly or quarterly
rebalancing. The mean-variance allocations are based on several different estimates of the
covariance matrix, while the effects of the return forecasts are also investigated when using the
Conditional Value-at-Risk as an alternative risk measure in optimization. Finally, to assess the
value of adding commodities to a traditional portfolio, stock-bond portfolios are constructed and

their performance is compared with that of commodity-augmented allocations.

The empirical results for the asset allocation show that the majority of the portfolios,
outperform the equally-weighted and historical average portfolio benchmarks. When comparing
portfolios across different combinations of weight constraints, the findings indicate that allocations
that allow short sales or leverage further improve the performance of portfolios based on machine
learning methods. The results persist for mean-variance allocations with different specifications of
the covariance matrix and for mean-CVaR portfolios. Additionally, when introducing transaction
costs to portfolios with monthly rebalancing the results tend to favor forecast combination
techniques, however, reducing the rebalancing frequency to quarterly, leads the portfolios of an
aggressive investor that are based on shrinkage and dimensionality reduction methods to generate
the highest performance. Finally, when comparing the results of stock-bond portfolios with those

that include commaodities for the full sample, commodities add value to a traditional portfolio when

2



short-selling is allowed, with portfolios belonging to an aggressive investor benefiting more from

the inclusion of commodities.

Pairs trading is a statistical arbitrage strategy which is based on the principle that the prices
of two assets co-move with each other. If the spread between the two prices widens, a long-short
position can be used to profit from the expected mean-reversion of the spread in the future. The
focus of Chapter 4 is to incorporate quantile regression in pairs trading. In this new approach the
pairs are formed based on cointegration tests and during trading the trading signal is estimated
using quantile regression. The new strategy is applied to a dataset consisting of all stocks in the
S&P 100. The performance of the new strategy is assessed using a variety of economic and risk-
adjusted metrics and compared against simpler alternatives that are prominent in the pairs trading
literature. Additionally, the performance of the pairs trading strategies is evaluated under an asset
pricing framework, in order to examine whether the returns of each strategy can be explained by
various risk factors. The findings suggest that the quantile regression pairs trading strategies based

on the lower quantiles tend to outperform all other models. Finally, Chapter 5 concludes.



Chapter 2: Detecting Bubbles in the US and UK Real Estate Markets

2.1. Introduction

Amongst the earliest bubble detection methods are the variance-bound tests proposed by
Shiller (1981) and LeRoy and Porter (1981), who check the validity of the fundamental asset
pricing equation by comparing the variance of the observed asset price with an upper bound limit
given by the ex post rational price. Another method, proposed by Diba and Grossman (1984) and
Hamilton and Whiteman (1985), uses stationarity tests to detect bubbles. Furthermore, Campbell
and Shiller (1987) apply unit root and cointegration tests to examine the behavior of the
fundamental and bubble component of present value models. However, Evans (1991) shows that
unit root and cointegration tests have limitations! because they are not capable of detecting the

explosive patterns of periodically collapsing bubbles.

Although it has been proven that bubbles cannot exist in finite horizon rational expectation
models (Tirole, (1982), Santos and Woodford (1997)), bubbles can appear in markets with some
particular characteristics that can be also attributed to real estate markets, such as (1) when some
particular traders behave myopically (Tirole (1982)), (2) in infinite horizon growing economies
with rational traders (Tirole (1985) and Weil (1990)), (3) when there are irrational traders (De
Long, Shleifer, Summers, and Waldmann (1990)), (4) in economies where rational traders have

differential beliefs and when arbitrageurs cannot synchronize trades (Abreu and Brunnermeier

! Recently, a number of econometric methods have been developed that deal with Evans’ critique and are capable of
distinguishing between pure unit root processes and periodically collapsing bubbles.



(2003)) or (5) when there are short sale/borrowing constraints (Scheinkman and Xiong (2003)).
Applying the martingale theory of asset price bubbles in continuous time and continuous trading
economies, Jarrow and Porter (2010) demonstrate that in the presence of bubbles, market price
indices and fundamental values diverge and lead to serious errors in decision making by investors,

financial institutions and regulators.

Debating the idea that the market cannot be efficient because it did not predict the 2008
subprime crisis, John Cochrane stated “crying ‘bubble’ is empty unless you have an operational
procedure for identifying bubbles, in real time and not just after the fact, distinguishing them from
rationally low-risk premiums, telling a ‘bubble’ from a justified ‘boom,” and crying wolf too many
years in a row”, see Buckner (2017). In this study we offer a procedure that can be used to timely
detect bubbles in the real estate markets and we highlight the usefulness of our approach using an

extended out-of-sample period 2009-2015.

The subprime mortgage crisis of 2007-2009 had its roots in a real estate bubble of gigantic
proportions. There were clear signals (Case and Shiller (2004), Belke and Wiedmann (2005) and
Zhou and Sornette (2006)) that something was wrong with the residential real estate prices in the
United States. There was evidence of real estate bubbles in the United Kingdom as well at the
beginning of the 2000s (Zhou and Sornette (2003), Black, Fraser and Hoesli (2006), Fraser, Hoesli
and McAlevey (2008)). Nneji, Brooks, and Ward (2013a, 2013b) examined the residential market
in the United States between 1960 and 2011 and found evidence of an intrinsic bubble pre-2000
and, based on a regime-switching model, evidence of periodically rational bubbles in the post-
2000 market. Even in real estate investment trusts (REITS) that behave more like an equity asset
class, there was evidence of speculative bubbles (Brooks, Katsaris, McGough and Tsolacos (2001),

Payne and Waters (2005, 2007) and Jirasakuldech, Campbell and Knight (2006)). It is therefore



highly desirable to have a mechanism for signalling the emergence of a bubble in the most valuable

asset class of all, real estate.

In this study, real estate price indices are decomposed into a fundamental and a non-
fundamental component using a rich dataset of 19 variables covering financial indicators, price
indicators, national income and business activity indicators, and employment and labour market
indicators. Our study tries to cover exhaustively the real estate markets in the United States and
the United Kingdom going back from the end of 2015 to the beginning of historical available data
for real estate indices and their drivers in commercial, residential and REIT markets. We employ
several subset selection and shrinkage procedures (stepwise regression, ridge regression, lasso,
bridge regression and the elastic net along with the commonly employed least squares regression).
In order to avoid model selection risk in extracting the fundamental value component of the real
estate indices, we propose averaging the fundamental components of all models employed. Our
findings suggest the existence of significant periods of overvaluation in real estate markets,
particularly in residential real estate, as well as economically significant periods of undervaluation,
particularly in equity real estate markets. The evolution of specific real estate indices in the United

States is like the evolution of the corresponding indices in the United Kingdom.

In order to determine whether the observed deviations of the actual prices from their
fundamental values are due to the presence of speculative bubbles, we use two complementary
methodologies, both taking into account the information contained in the non-fundamental
component of the asset price. To verify whether the deviation of the asset price from the
fundamental value is due to the presence of speculative bubbles we employ the right-side
augmented Dickey-Fuller test for explosive behavior developed by Phillips, Wu and Yu (2011)

and Phillips, Shi and Yu (2015) and the Van Norden and Schaller (1993, 1996) two-state regime



switching model. The first methodology can also be used to date-stamp the periods of
explosiveness in the real estate sectors. The second methodology is based on regime-switching
models with two regimes: one where the bubble survives and continues to grow and the other
where the bubble collapses. The findings from both methodologies provide significant in-sample
evidence that the observed deviations of the actual price from the fundamental value were due to
the presence of speculative bubbles. More importantly, our out-of-sample results show that in most
cases the proposed regime-switching model for bubbles (averaged across all models employed)

outperforms the historical average benchmark and the stylized alternative models.

The chapter is organised as follows. Section 2.2 provides a description of the econometric
methodology that we follow and Section 2.3 presents the data that are used. In Section 2.4 we
present the in-sample bubble detection results, while in Section 2.5 we discuss the out-of-sample

empirical results. Last section concludes the chapter.

2.2. How to Detect Bubbles in Asset Markets?

Starting from Campbell, Lo and McKinlay (1997) and Cochrane (2005), the fundamental price of

an asset is derived? as

T i

>, (rg) Do

i=1

T

P, = E; Pt+Tl (2.1)

| (rm)

where the first term of the right-hand side of equation (2.1) represents the fundamental component,

which is the expectation of all discounted cash flows, and the second term is the expectation of the

2 Lai and van Order (2017) investigate US house prices between 1980 and 2012 across 45 metropolitan areas,
employing a version of the Gordon dividend discount model.



discounted asset price T periods from time t, and P; is the asset price at time t and D, , is the next

period’s cash flow.

In the case of real estate markets, expected cash flow payments are not directly available.
One proxy widely used in the literature is the rent income stemming from holding the property,
which is also not available for the majority of indices. To this end, we develop alternative models
for the estimation of the fundamental component and consequently the bubble component of the
real estate price indices. Specifically, we propose extracting it using subset selection and shrinkage
procedures, such as stepwise regression, ridge regression, lasso, bridge regression and elastic net.
This is the first time these techniques have been employed in this context. The subsequent

description of these methods is largely based on Hastie, Tibshirani, and Friedman (2009).

2.2.1. Model Selection Procedures for the Fundamentals

The benchmark model in our study is the classic normal linear regression model
y=XB +¢

where X = (xl, ...,xp) isthe T X p matrix of predictors, B = (ﬁl, ...,ﬁp)’ is the coefficient vector

and e~N(0,021,) is the error vector. The ordinary least squares (OLS) estimator By.s =

(X'X) "Xy typically has poor predictive accuracy with low bias and high variance.

3 In a recent paper, Shi (2017) employs a vector autoregressive (VAR) model and variables reflecting aggregate
macroeconomic conditions in order to predict fundamental prices.



Ridge regression is a regression method estimating the coefficients subject to the [,

penalty:
M%NMW—XMF+MWW] (2.2)

where 4 > 0 is a parameter for the amount of shrinkage. The second term of the equation is called
the shrinkage penalty and in the case of the ridge regression it is based on [, regularization, where
AlBII? = /’125.;1 sz and is small when B, ..., B, are close to zero and has the effect of shrinking
the coefficient estimates towards zero. When A = 0 the penalty term has no effect and ridge
regression will produce similar estimates to OLS. However, as A — oo the impact of the ridge

penalty grows and the coefficient estimates will approach zero®.

The least absolute shrinkage and selection operator (lasso) has a penalty term based on
the [; norm, capable of yielding sparse models. The lasso coefficient estimates are obtained by

solving:
m%mMW—XMF+MWM] (2.3)

where 2 > 0 is the lasso tuning parameter. The regression penalty for the lasso is A||Bll; =
/125.’=1|,8j|. The difference between this and ridge regression is that the lasso method imposes a

penalty based on the [; norm instead of the [, norm, allowing for both shrinkage and variable

selection, by setting some of the coefficients equal to zero.

* A disadvantage of ridge regression is that the penalty A||B]|? will shrink all the coefficients towards zero, but it will
never set them to zero. Having a model which uses all p predictors can be a problem for model interpretation.



Bridge regression has a penalty term which is based on the [, norm and the coefficients

are estimated by minimizing:
arg‘rgnin[lly—XBII2 + AlBIIY] (2.4)

subject to the constraint A > 0 and y > 0 are the two tuning parameters. The penalty term in the
case of bridge regression is /’lllBlll’; = /’LZ?=1|ﬁj|y and it is a generalization of the lasso (y = 1)

and ridge regression (y = 2). The bridge regression (1 < y < 2) performs shrinkage by keeping

all predictors, similarly to ridge regression.

Finally, the elastic net (EN) method combines both [, and [, terms in the penalty, thus
simultaneously performing continuous shrinkage and automatic variable selection, but it can also
select groups of correlated variables. The elastic net coefficients are estimated by minimizing the

following penalized residual sum of squares function:
argénin[lly — XBII? + 2((1 — )IBll; + «lIBlI?)] (2.5)

where 1 is the tuning parameter, ||B]|; = Z;’=1|ﬁj| and [IBII*> = X¥_, B7. The term (1 — &) [IBll, +

a||Bl|? with « € [0,1] is called the elastic net penalty, which is a combination of the ridge
regression and the lasso penalties. When a = 1, the elastic net becomes a ridge regression; if a =

0 it is the lasso, while if « € (0,1) it has the properties of both methods.

2.2.2 Right-Side Unit Root Tests and Date Stamping Procedure

The tests for speculative bubbles we employ in this study are based on right-side unit root tests

implemented repeatedly on a forward expanding sample sequence to search for mildly explosive
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behavior in the data. Those are the supremum augmented Dickey-Fuller (SADF) test and the
generalized SADF (GSADF) test developed by Phillips, Wu and Yu (2011, PWY)?® and Phillips,
Shi and Yu (2015, PSY) respectively. The GSADF test has the advantage that it has an increased

capacity to detect multiple bubbles in the data.

The PWY and PSY tests are based on the assumption that asset prices follow a random

walk process with an asymptotically negligible drift:

Ye =dT™ " + 0y, + e, e,~iid N(0,02) (2.6)
where d is a constant, T is the sample size, n > 1/2 is a localizing coefficient that controls for
the magnitude of the drift as the sample size approaches infinity and e; is the error term. PWY sets
n — oo and PSY set d, n and 6 to unity. Strong upward departures from fundamental values lead

the asset price time series to follow an explosive process.

The econometric implementation is based on the ADF test and the use of recursive
regressions with variable window widths. This test is applied to each time series y, to test for a
unit root against the alternative of an explosive root. By defining the window’s start and end points

as r; and r, respectively, the empirical regression model is specified as:

k
Ayt = aT‘1.T‘2 + ﬁﬁﬂ"zyt—l + Z l‘11711'1:7'2 Ayt_i + & (27)

i=1

where y, can be either a price-to-income ratio or the non-fundamental component, a,. ., is the

intercept, k is the maximum number of lags and e,~iid N(0, o7, ). The sample interval is [0,1]

5Astill, Harvey, Leybourne and Taylor (2016), propose tests that improve upon the detection of an end-of-sample asset
price bubble of finite length and show that their tests detect several well-documented periods of exuberance earlier
than existing methods. Fabozzi and Xiao (2019) propose a new recursive algorithm to deal with the inconsistency
encountered when estimating the timeline of a bubble based on different samples. This method improves upon the
PWY procedure by identifying more consistent starting points and by implementing a two-direction searching process
for initialization.
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after normalizing the original sample by T and the number of observations in each recursive

regression is T,, = |Tr, |, where r,, = r, — ry is the fractional window size of the regression. The

ADF t-statistic that is used is: ADF,? = %, where B, .. and ADF,? are the regression
T2

coefficient and its corresponding ADF t-statistic over the sample [ry, 1], respectively.

The SADF test is based on calculating the ADF statistic in each recursive regression
performed on a forward expanding sample window. The starting point r; of the estimation window
remains fixed for all recursive regressions and is the first observation of the sample. The end point
r, of the first estimation window is set according to some choice of minimum window size r,
required for the adequate initial estimation of equation (2.7). Therefore, the first regression
involves T, = |Tr,] observations for a minimum fraction, r, of the total sample. Each subsequent
regression increments the initial fraction of the sample by one observation, giving a forward
expanding window size r, € [ry, 1]. The ADF statistic is calculated for each recursive regression

and is denoted by ADF,,. The SADF test statistic is defined as the supremum value of ADF,., for

T, € 1y, 1]:

SADF(ry) = sup ]{ADFrZ} (2.8)

Tze[ro,l
The GSADF test generalizes the SADF test by having more flexible estimation window
widths and by allowing the starting point r; to change within the range [0, 7, — 1] for each

regression. The GSADF test statistic is defined as the supremum value of ADFZ for r, €

[0, Tz - To] and rz € [ro, 1]

GSADF(ry) = su ADF!2
(0) rze[rloj,l] { rl} (29)

r1€[0,r5~1]
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The SADF and GSADF tests can also be used to date stamp the origination and collapse
of the bubbles in a time series. The date stamping procedure of the SADF test compares each
ADF,, statistic to each respective right-side critical value of the standard ADF statistic to identify
whether a bubble exists at time Tr,. The origination date of a bubble, Tr,, where r, is the fractional
estimate of the beginning of the bubble period, is determined as the time point when the ADF,,
sequence crosses its respective critical value sequence from below. The collapse date of the bubble,
Ty, where 75 is the fractional estimate of the end of the bubble period, is marked when the ADF,,
sequence crosses its respective critical value sequence from above. The fractional origin and

collapse points of the bubble for the SADF test are denoted as:

f, = inf {rz: ADF,, > cvr[iT}, (2.10)

12€[10,1]

fr=_inf {r: ADF,, <cvf'}

12 €[, 1
where cvf;T is the 100(1 — B1)% critical value of the limit distribution of the standard ADF

statistic based on |Tr,| sample observations and S is the size of the one sided test.

The date stamping procedure for the GSADF test is based on calculating a sup ADF statistic
on backward expanding samples, with fixed ending points at r, and varying starting points r; =

[0, 7, — 1p]. The backward SADF statistic is defined as:

BSADF,,(rp) = sup {ADF,?} (2.11)
]

T'1=[0,T2—T0
Similarly to the SADF date stamping procedure, the fractional origin and collapse points of the

bubble for the GSADF test are denoted as:

7, = inf {rz: BSADF,, (1) > cvsz}, (2.12)

12€[10,1]
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€ [rejl]

7r=_inf {r,: BSADF,,(r) < cvl'}

where cvr[iT is the 100(1 — B+)% critical value of the limit distribution of the standard ADF

statistic based on | Tr,] sample observations.

2.2.3. The Regime-Switching Bubble Model

Blanchard (1979) and Blanchard and Watson (1982) suggested a model for rational bubbles with
two possible bubble states; one state is that the bubble survives and the other state is that the bubble

collapses. The bubble process is then defined by:

1+R
Bii1]S = (T) B; + u;44, with probability g (2.13)

and

Bt+1|C = Ut4+1, with probablhty 1- q

A rational bubble that has the above form obeys the restriction: B, = E; E:;] as long as
the shock u;, satisfies E(u;4+,) = 0. Then
1+R
E;(Bi411S) = ( )Bt, with probability q (2.14)

and
E;(B:4+1|C) = 0, with probability 1 — q

where S indicates the state that the bubble survives and C the state that it collapses. If the bubble
survives in period t + 1, it will grow at a rate (%) — 1, which is faster than R, in order to

compensate the investors for the risk they take for the probability of a crash.
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The Blanchard and Watson model was generalized® by van Norden and Schaller (1993,
1999) in two ways. First, they allow the probability of the bubble being in the surviving state g to
depend on the relative size of the bubble g = q(b,) where b, = B;/P; is the relative size of the
bubble, which is the ratio of the non-fundamental component B; to the actual price P;. The absolute

value of b, is used since there can be positive or negative bubbles.

The second generalization allows for partial collapses, by permitting the expected value of
the bubble conditional on the collapsing state being non-zero. Van Norden and Schaller (1993,
1999) defined the expected size of a bubble in state C as u,P; and assumed that it depends on the

relative size of the bubble in a previous period:

E;(Bt+1|C) = u(by) Py (2.15)

b < 9 The

where u(-) is a continuous and differentiable function such that u(0) = 0and 0 < T
t

condition ensures that a collapsing bubble is smaller than the bubble in the previous period.

The two generalizations made by van Norden and Schaller lead to the following modified

bubble model:

A+R) . 1-qb)
q(be) ‘ q(be)

Et(B44|S) = u(b,)P,, with probability q(b,) (2.16)

and
Et (Bt+1 |C) == u(bt)Pt, Wlth probablllty 1 - q(bt)

The expected gross returns R* for each regime are:

8 Van Norden and Schaller (1993, 1999) and Brooks and Katsaris (2005a, 2005b) criticised the Blanchard and Watson
(1982) model because of the lack of theoretical support and empirical evidence.
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1—q(b)

E.(Rt44|S) = (1 +R) + W

[(1 + R)b, — u(b,)], with probability q(b;) (2.17)

and
E:(R{;1|C) = (1 + R)(1 — by) + u(b;), with probability 1 — q(b;)
Thus, the returns in time ¢t + 1 depend on the regime of the previous period t. To estimate the
model, the first-order Taylor series approximations of E;(R;,,|S) and E;(R;,,|C) with respect to

b; around some arbitrary value b, are taken, giving the linear regime switching model:

E (R{+1|S) = Bso + Bs1by, (2.18)

E(R{+11C) = Bco + Bc1b:

where
_ 1 dq(bo) 1 —q(by) du(by)
Bs1 = (— 7(bo)? db, [(1+ R)by — u(by)] + W 1+R-— db, > (2.19)
and

du(b
Bc1 = < IZ(th) -1+ R))-

The regime switching model can be rewritten as:

Rst41 = Bso + Bsibe + €541, &s,t+1~N(0,0¢) (2.20)
and
R¢tx1 = Beo + Beibe + €cev1 ece+1~N(0, 08
where as, o, are the standard deviations of the error terms of &5.,1 and ¢ ;44 respectively. The
parameters B, and B, represent the mean returns for the surviving and the collapsing state
respectively and the coefficients Ss; and B.; show how changes in the relative size of the bubble

affect the returns in each state.
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For the functional form of q(b,), van Norden and Schaller use a probit model:

P(Ri4418) = q(by) = ‘p(ﬁqo + ﬁq1|bt|) (2.21)
and
P(R{4110) =1 —q(b) = 1 — ®(Byo + Byalbel)
where @ is the standard normal cumulative density function and S, describes the effect that the
absolute value of the relative size of the bubble has on the probability of being in the surviving
state. Van Norden (1996) uses both b, and b? instead of |b.|, van Norden and Vigfusson (1998)
employ b,, while Schaller and van Norden (2002) use bZ. The model considers the restriction
Bq1 < 0, since as the deviation from the fundamentals grows, so does the probability of collapse.
Furthermore, assuming R > 0, then B.; < 0, because as the relative size of the bubble grows, it
leads to greater capital losses when the bubble collapses and Bs; > Bc1, Since a large relative size
of the bubble means that the difference between the returns of the surviving and collapsing state

will be greater.
The parameters estimates are found by maximizing the log-likelihood function:
T

z In [q(bt)w <R§,t+1 — Bso + ﬁs1bt> o+ (1 - q(b) (Ré,m —Beo + ﬁ61bt> Uc_l] (2.22)

o o
t=1 S ¢

where ¢ is the standard normal probability density function and the parameters to be estimated are

Bso, Bs1, Beor Be Baor Bq1, 95 and a. The probability of being in regime i = S, C in period ¢ + 1
depends on the relative size of the bubble b, and is given by the formula: & (l(i)(ﬁq0 + ﬁqllbtl)),

where [(i) = 1 in the surviving state and [(i) = —1 in the collapsing state.
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2.3. Data Description

2.3.1 Real Estate Data

We analyse the main real estate indices in each real estate market from each country. For
commercial, residential and equity real estate sectors, the indices for the United States are
NCREIF, S&P/Case-Shiller and US FTSE EPRA/NAREIT, while for the United Kingdom the
indices in this study are IPD UK All Property, UK House Price Index and UK FTSE

EPRA/NAREIT.

All real estate indices price levels are retrieved from Bloomberg. For the US, data on
quarterly frequency is available for the NCREIF from the fourth quarter of 1977 to the fourth
quarter of 2015, while commercial real estate data for the UK are available on a monthly frequency
for the IPD index for the period from December 1986 to December 2015, providing a total of 153
quarterly and 349 monthly observations respectively. For equity real estate monthly data on the
transactions-based FTSE EPRA/NAREIT indices for the US and the UK are available for the
period from December 1989 to December 2015, with a total number of 313 monthly observations
for each index. Finally, for the residential real estate market, monthly data is available on the
S&P/Case-Shiller home price index for the US from January 1987 to December 2015 and on the
UK House Price Index from January 1995 to December 2015, totalling 348 and 252 monthly
observations for each time series respectively. The real estate indices are adjusted for inflation

using the Consumer Price Index (CPI) for the US and the Retail Price Index (RPI) for the UK. The
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augmented Dickey-Fuller tests (ADF tests) for all indices indicate’ that the level series are non-

stationary.

2.3.2. Economic Data

We are guided by the extant literature in selecting the economic variables employed to
construct the fundamental value models for the real estate indices. Ghysels, Plazzi, Valkanov and
Torous (2013) provide an extensive review of the literature on real estate forecasting based on the
type of predictive information used. We extracted the potential drivers of the fundamental value

of real estate markets from previous studies.®

For both economies, we employ a set of 19 explanatory variables, which are classified into
four broad categories: financial indicators, price indicators, national income and business activity
indicators, and employment and labour market indicators. Specifically, the financial variables are
a stock price index, the US/UK exchange rate, the money supply M2, the central bank rate, the 5-
year and 10-year government bond yields and a mortgage rate. The price indicators include the
inflation rate, gold price, oil price and the rent price index. The national income and business
activity indicators are the real GDP, real personal disposable income, industrial production and
housing starts. Finally, the labour market indicators are the unemployment rate, labour cost and
labour productivity. VVariable definitions are presented in Table 2.1, while data sources are outlined

in Table A2.1 in the Appendix of this chapter.

7 All tests for stationarity are presented in Table A2.1 in the Appendix of Chapter 2.

8 See Case and Shiller (1990), Dobson and Goddard (1992), Liu and Mei (1992), Mei and Liu (1994), Ling and Naranjo
(1997), Ling, Naranjo and Ryngaert (2000), De Wit and Van Dijk (2003), Himmelberg, Mayer and Sinai (2005),
Clayton, Ling and Naranjo (2009), MacKinnon and Al Zaman (2009) and Plazzi, Torous and Valkanov (2010). The
list is by no means exhaustive and there is a very long list of articles in this area.
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[Insert Table 2.1 Here]

2.4. In-Sample Empirical Analysis

2.4.1. Results for the Fundamental VValue

In order to apply the right-side unit root tests and the regime switching model on the real
estate indices, the fundamental and bubble components must first be retrieved. This is usually done
by constructing a supply and demand model, through which the price index is regressed on various
economic variables using OLS. The fitted value of the regression model represents the
fundamental value of the index, which is determined by the economic variables. The error term of
the model is the part of the index that is not explained by the model predictors and represents the

non-fundamental or bubble component of the index price.

Due to the large number of predictors, we employ several shrinkage and model selection
procedures along with OLS to create alternative measures for the fundamental and bubble
component. The SADF and GSADF tests are applied to the non-fundamental component.
Furthermore, in order to estimate the regime switching model the relative size of the bubble is
required, which is constructed using the actual price and fundamental price. Specifically, to extract

the fundamental price from the regressions the following formula is used:

p[ =(1+ rtf)p{_l, where p(’; = Py (2.23)
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where p{ is the fundamental price at time t, rtf is the fitted value of the regression of the index
returns on the stationary predictors® at time t and p, is the actual price of the index at t = 0.

Subsequently, the relative size of the bubble is computed using the following formula:

_f
b, = PL Pt (2.24)
Pt

where b; is the relative size of the bubble and p; is the actual price of the index at time t.

Figure 2.1 plots the actual price, the average fundamental value and the average relative
size of the bubble, for all six real estate indices. The average fundamental value or bubble size is
simply computed by taking the average of the fundamental value or relative bubble size of all
fitting procedures for each market. In this way, we overcome the model risk associated with the
employment of one particular model for bubble estimation. The left-hand scale of Figure 2.1 plots
the actual index price against the average fundamental price and on the right-hand scale the extent
of under- or overvaluation is depicted. There have been periods of overvaluation and

undervaluation in all six markets across our sample.

For the US, the commercial real estate as reflected by the NCREIF index was often
undervalued, from the end of the 1980s right to the eruption of the subprime crisis in 2007. There
were short periods of overvaluation between 1982 and 1986 and between 2007 and 2008. A similar
picture is portrayed for the US FTSE EPRA/NAREIT Index with long periods of undervaluation

around the dot.com crisis of 2000-2002 and in the aftermath of the subprime crisis.

% The predictors are the 19 economic variables listed in Table 2.1. The OLS, stepwise regression, ridge regression, the
lasso, bridge regression and the elastic net were applied and the tuning parameters were selected using tenfold cross
validation. For the lambda tuning parameters, a grid of 100 values between 1072 and 102 was chosen. The bridge
regression tuning parameter, gamma, is given a grid of values between 1.1 and 1.9 with step 0.1, while for the elastic
net alpha tuning parameter a grid of values between 0 and 1 with step 0.1 is chosen.
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[Insert Figure 2.1 Here]

The residential real estate evolution in the United States paints a different picture, with a
long undervaluation period between 1991 and 2002, followed by an economically significant

overvaluation period ending in 2009 and followed by undervaluation that peaked in 2012.

The IPD index in the UK seems to be closer to the fundamental value. There are short
periods of overvaluation, the most notable one being the period before the start of the subprime
crisis, and likewise short periods of undervaluation, the only economically significant one being
the period 2009-2015. Similar to the US, the equity index for the UK indicates that this market
was generally characterised by undervaluation. Mei and Saunders (1997) found evidence of a
trend-chasing strategy of buying high and selling low followed by commercial banks and thrifts
on their real estate investments. Their conclusion is in line with our results on REITS markets in

the US and the UK reaching an overall judgement that undervaluation was omnipresent.

The residential real estate in the United Kingdom had a similar evolution with the
residential real estate in the United States, with the only difference being the period 2002-2003
indicating the start of a bubble in the United Kingdom that ended in 2012. In both countries there
has been a long period of significant overvaluation of house prices that started after 2002 and
ended in 2009 in the United States and in 2011 in the United Kingdom. Holly, Pesaran and
Yamagata (2011) argued that there is a direct link between London house prices and New York
house prices and also suggested that economic shocks to the metropolis prices propagated
contemporaneously and spatially to other regions in the same country. Their argument may explain

our evidence on the similarity of overvaluation and undervaluation periods in the two countries.
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2.4.2. Results of the Right-Side ADF Tests for Explosive Behavior

Table 2.2 summarizes the results for the SADF and GSADF tests on the real estate indices
for the US and the UK. In the interest of saving space, we report the tests based on the average of
the non-fundamental components derived from the alternative proposed models described in
Section 2.2. Following the rule suggested by PSY, the minimum window size is set to 0.01 +
1.8/+/T of the total sample size for each index. The finite sample critical value sequences are
obtained by Monte Carlo simulation with 2000 replications, while the ADF lag is chosen to

minimize the Schwarz Information Criterion.
[Insert Table 2.2 Here]

Overall, the SADF and GSADF tests provide evidence of bubble formation for all real
estate indices. Specifically, both tests find evidence of explosive behavior for all US real estate
indices at the 1% significance level. According to the SADF test, all UK real estate indices exhibit
explosive behavior at a 1% significance level, with the exception of the UK equity real estate
index, where the null hypothesis that there is a unit root is rejected at a 10% significance level.
The results of the GSADF tests for the UK and the US reveal evidence that multiple bubbles are

present in the commercial, equity and residential real estate indices of both countries.

Our tests point to strong evidence of exuberance in all real estate indices and we employ
the BSADF test in order to identify the origin and collapse date of the bubble periods for each
index. Similarly to the GSADF test, the minimum window is set to 0.01 + 1.8/+/T of the total

sample observations and the ADF lag is chosen to minimize the Schwarz Information Criterion.

Figure 2.2 illustrates that for the NCREIF Property Index the two major bubble periods
occur in the late 80s to early 90s and from 2005 to 2008, while the bubble period with the greatest
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duration for the IPD UK Property Index is from 2005 to 2008, with shorter periods appearing in
the late 90s and in 2013-2014. For the US and the UK real estate indices the bubbles with the
longer duration occur in the late 90s and early 2000s, with shorter bubble periods appearing
between 2006 and 2007. For the S&P/Case-Shiller Index the two major bubbles are observed for
the period 1990-1998 and another one for the period 2000 to 2007, while for the UK residential
real estate the bubble with the longest duration is between 2001 and 2007, with smaller bubble

periods after 2009.

[Insert Figure 2.2 Here]

2.4.3. Results for the Regime Switching Models for Bubbles

To determine whether the deviations of the actual prices from their fundamentals were due
to the presence of periodically collapsing bubbles, we apply the van Norden and Schaller (VNS)
regime switching model to the returns of the real estate indices. Tables 2.3-2.5 present the results
of the regime switching model based on both the average bubble size and the model specific ones
for the commercial, equity and residential real estate markets, respectively. The regime switching
model we apply has two regimes. In the first regime the bubble survives and continues to grow
yielding a positive return, while in the second regime the bubble collapses and prices fall.
According to the bubble theory, realised returns should be higher in the surviving regime, while
volatility should be higher in the collapsing regime. We first focus on the findings with respect to

the average bubble size and then we compare it to the individual model ones.

The coefficient of the bubble term for the surviving regime (fs,) is statistically significant

at the 5% level only for the S&P/Case-Shiller Home Price Index. In this case, all individual bubble
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models provide positive statistically significant results. For the IPD UK Index, Ss, is positive and
statistically significant for the average bubble size at the 10% level, while the results of individual
models is mixed with only bridge and elastic net pointing in the same direction. Furthermore, the
coefficient of the bubble term when the bubble collapses, B¢, is statistically significant for all
indices with the exception of the UK commercial and equity index. For these indices, only bridge
supports the theoretical negative coefficient. Overall, the coefficients in the surviving regime are
greater than those in the collapsing regime, which suggests that the bubble in the collapsing regime

leads to more negative returns than in the surviving regime.

The coefficient B,, is negative, in the case of the US residential and the UK equity and
residential indices, which indicates that the larger the bubble size, the higher the probability of the
bubble collapsing in the next period. The estimates for 5., are statistically significant at the 5%
level for the US and the UK equity and the UK residential real estate indices. For the equity indices,
both OLS and stepwise point to non-statistically significant coefficients, while for the UK

residential index, all models agree.

The estimates for the mean returns in the surviving regime are 1.75%, 0.40%, 0.44%,
0.70%, -0.29% and 0.57%, while in the collapsing regime they are -6.10%, -18.98%, -0.44%, -
0.20%, -25.93% and -0.06% for the commercial, equity and residential real estate markets for the
US and the UK respectively. These represent the expected yields when there is no bubble and are

quite similar across models.
[Insert Tables 2.3-2.5 Here]

Turning to coefficient restriction tests and the results based on the average bubble, we note

that the restriction Bgo # Bco holds for all sectors (at the 10% level) except for the UK equity real
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estate sectors (marginally), while the restriction S, # B¢, holds for all indices except for the IPD
UK Property Index and the UK FTSE EPRA/NAREIT index. It is interesting to note, though, that
we observe considerable heterogeneity among individual bubble specifications. More in detail, for
the NCREIF index, both restrictions are rejected when the bridge bubble is employed and for IPD
UK, the restriction S5, # B¢1 holds for the bridge and elastic net specification. In a similar vein,
OLS rejects both restrictions and stepwise only the second one for the US equity real estate index.
On the other hand, both restrictions hold based on the bridge bubble specification and the UK

FTSE index.

Finally, we perform likelihood ratio tests to determine whether the vNS bubble model can
explain returns better than alternative models such as volatility regimes, fads and mixture-normal
models. Our results, based on the average bubble specification, indicate that the vNS model is
more efficient in capturing return dynamics for all indices, except for the two commercial real
estate indices. For the NPI the volatility regimes and the mixture-normal models outperform the
bubble model, while for the IPD the mixture-normal model is better at describing the returns. For
these indices, all bubble specifications point to the same direction with the exception of the bridge
bubble that points to superiority of the VNS model over the mixture-normal model. With respect
to US FTSE index, contrary to the average bubble and the majority of fundamental models,
stepwise and OLS reject the superiority of the VNS models versus all alternative stylised models
(OLS at the 5% level for the fads model). On the other hand, for the UK FTSE index, only lasso
and bridge (along with the average) are in favor of the vNS model. Similarly to the coefficient
restriction tests, all fundamental model specifications agree on the superiority of the vNS model

for the US and UK residential indices.
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Figure 2.3 illustrates the evolution of the probability of collapse for each specific real estate
sector (based on the average bubble size) in both the US and the UK. The only indication of a
possible crash in the commercial real estate market in the US is for 1992-1993 and 2009. The
equity market in the US was close to a crash in 2004, 2009 and 2012. For the residential real estate
in the US as reflected by the Case-Shiller index, clear problems related to the collapse of the market
were in 1990-1991, 2006-2011, 2014 and 2015. The situation in the United Kingdom was slightly
different. The probability of collapse attached to the IPD index was very high between 1990-1994
and 2007-2010. The equity market in the United Kingdom was only ever close to a crash around
2009. The residential market as represented by the UK House Price index was close to a collapse

between 2008 and 2009 and the probability of collapse even reached zero in the period 2002-2008.
[Insert Figure 2.3 Here]

In the next section, we assess the out-of-sample forecasting ability of the VNS regime
switching model relative to the stylised bubble models and the historical average model (random
walk with drift). We also scrutinise the forecasting ability of the proposed fundamental models
employed for the relative bubble calculation and check whether employing the average relative

bubble offers a hedge against model uncertainty.

2.5. Out-of-Sample Empirical Analysis

This section examines whether the van Norden-Schaller regime-switching model can be used to
generate reliable out-of-sample forecasts. We consider 1-month, 3-month and 6-month forecasting
horizons (the analysis for the NCREIF Property Index is for only 1-quarter and 2-quarters ahead).
Given the total number of T observations of each index, the sample is split into an out-of-sample
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part, Q and an in-sample part, P = T — Q. In our experiment, the out-of-sample window is set to
eight years for all indices (32 observations for the NCREIF Property Index and 96 observations
for the rest of the indices). In this respect, the out-of-sample period starts at 2008 and coincides
with the global financial crisis, creating considerable challenges for our forecasting experiment.
The h-period ahead forecasts (h = 1, 3 and 6 months) of the regime switching model are generated
by estimating the van Norden-Schaller model recursively, increasing the initial window, P, by one
observation at a time. The average relative and individual fundamental bubble sizes, which are
used as an input in the model, are also constructed recursively from the estimates of all the

fundamental models at each iteration.

The forecasting performance of the van Norden-Schaller model and the alternative nested
regime switching specifications are evaluated using the mean square forecast error (MSFE)

criterion, which is given by:

Q
1
MSFE =5 ) (rese = fipss)’ (2.25)

t=1
where 7; ., denotes the forecast from model i. In order to evaluate the forecasting accuracy of the
regime switching models, we compare them with the historical average benchmark model (random
walk with drift). We compute the MSFE ratios of the regime switching models relative to the
benchmark and alternative nested regime specifications. A ratio below unity implies that the
regime switching model forecast is more accurate than the benchmark and alternative models in
terms of MSFE. Additionally, to test whether the improvement in MSFE for the regime switching
models against the historical average (and the nested regime switching specifications) is

statistically significant, we employ the Clark and West (2007) test that utilises the MSFE-adjusted
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statistic, which is approximately normally distributed when comparing forecasts from nested

models. The MSFE-adjusted statistic is computed by first defining:

fie = (pre = Tppe)® — (7"P+t - 7A”i,P+t)2 + (fP+t - 7A”i,P+t)2 (2.26)
where 75, is the forecast of rp,;, using the historical average benchmark. The Clark-West t-
statistic is compared to the critical value of 1.282 corresponding to the 10% significance level.
The null-hypothesis is that the MSFE of the benchmark is less or equal to the MSFE of model i,

while the alternative is that MSFE of the benchmark is greater than the MSFE of model i.

2.5.1. One-Month ahead Forecasts

Tables 2.6, 2.7 and 2.8 detail the MSFE ratios of the various models relative to the benchmark for
the 1-month ahead horizon, while the Clark-West t-statistics are reported below in parenthesis.
Overall, our 1-month out-of-sample findings suggest that the van Norden and Schaller model is
more accurate than the benchmark in all the indices considered while it beats the alternative regime

switching models in four of the indices under consideration.

More in detail, the top panel of Table 2.6 compares the performance of the forecasts with
the historical average for the UK commercial index, while the bottom panel compares the out-of-
sample performance of the van Norden and Schaller model with each of the stylized alternative
models. Our findings suggest that both the normal-mixture model and the bubble model have
statistically significant better out-of-sample performance compared to the historical average. The
fundamental bubble calculated via the bridge regression attains the lowest MSFE (0.7898) among

the alternative fundamental models and the average bubble. Comparing the performance of the
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VNS model to the stylized alternative models, we note that the vNS model beats both the volatility

regimes and the fads model (but not the normal-mixture one).

Turning to equity real estate indices, our findings, reported in Table 2.7, suggest that for
the US, the forecasts generated by the vNS model and the average bubble are the most accurate
(with an MSFE of 0.9069) albeit non-significant. However, stepwise VNS model forecasts are
statistically significantly lower that the historical average benchmark. We should also note that
the elastic net, the bridge and average bubble fads model attain superior forecasts. For the UK
equity index, all normal mixture and vNS models (with the exception of lasso) achieve lower
forecast errors than the historical average benchmark. Stepwise VNS delivers more accurate
forecasts among the alternative bubble models followed by the average bubble. With respect to the
residential real estate indices, the VNS model achieves superior forecasting performance
irrespective of the fundamental bubble employed for both the US and UK markets (Table 2.8).
Specifically, for the S&P/Case-Shiller Home Price Index, the average bubble delivers the lowest
MSFE (0.6079) followed by ridge (0.6176) and lasso (0.6354). As expected, the VNS model
outperforms all stylised nested specifications (Panel B) by a wide margin. Similar findings pertain
for the UK House Price Index. In this case, the lowest MSFE is achieved by lasso VNS (0.6852)
followed by the average bubble VNS (0.6958). As expected, Panel B of Table 2.8 verifies the
forecasting superiority of VNS relative to the volatility regimes, the fads and the mixture of normal

model.

[Insert Tables 2.6-2.8 Here]

To gain a visual understanding of the accuracy of our models, the cumulative difference
between forecast errors for the historical average against each of the alternative bubble vNS models

for all real estate markets are plotted in Figure 2.4. These graphs can be used to assess whether the
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alternative models consistently outperform the historical average benchmark for any particular
out-of-sample period. To determine this, the height of the curve at the beginning and end points of
the period of interest are compared. If the curve is higher at the end of the segment compared to
the beginning, then the forecast based on the regime switching model has a lower MSFE than the
historical average benchmark during that period. For a model to always outperform the historical

average, the slope should be positive for the whole out-of-sample period.

Overall, the path of the cumulative forecast error differences are quite diverse for the
indices considered. More specifically, for the IPD, we observe all fundamental bubble models
along with the average being in the positive territory for the whole out-of-sample period,
experiencing small losses in the aftermath of the financial crisis. They then stabilise and retain
their ranking position up to the end of the sample period. For the US FTSE real estate index, the
financial crisis period is marked with losses for all the models followed by a quick recovery in
2009. Beyond 2009, all models move similarly with the average ranking higher and on the other
hand, the bridge model deteriorating to rank lowest at the end of 2015. Turning to the UK FTSE
real estate index, all models behave similarly during the financial crisis showing divergent patterns
in the aftermath. Specifically, stepwise VNS followed by the average quickly gain ground and
retain their superiority up to the end of the sample, while lasso VNS is for the majority of the out-
of-sample period in negative territory showing worse forecasting performance than the historical
average. The superior forecasting performance of all fundamental models is apparent in the case
of the US house price index, as all models exhibit quick gains during the financial crisis which
they manage to retain and increase (upward sloping curve) up to the end of the sample period.
Although all models move close together, the average bubble ranks first while the bridge one takes

the lowest position. Finally, the UK house price index paints a different picture. Similarly, to the
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US house price index, the financial turmoil benefits all specifications, but soon after our
fundamental models form three groups. In the best performing one, associated with consistent
forecasting gains over the out-of-sample period, we see lasso and the average bubble vNs model,

while elastic net and bridge form the group of worst performing models.

[Insert Figure 2.4 Here]

2.5.2. Longer Forecasting Horizons

Since most investors except portfolio investors need more lead time than one month, we also
consider 3-month and 6-month forecasting horizons. Table 2.9 reports the related findings for all
the indices at hand. Overall, the majority of alternative vNS bubble models are superior to the
random walk in all cases. More in detail, for the commercial real estate indices, all fundamental
VNS models achieve superior forecasting ability relative to the historical average with the bridge
VNS achieving the lowest MSFE (0.7181 and 0.6347, for the US and UK respectively). This
performance is closely followed by the average fundamental vNS model, which ranks second for
the NCREIF index. The normal mixture model also outperforms the historical average, but is
associated with inferior forecasts relative to the vNS. Turning to equity real estate indices, we note
that the best model in terms of MSFE is the elastic net fads model for the US (0.9349) and the
bridge fads model for the UK (0.8378). The vNS model ranks second with the average bubble and
bridge bubble model performing best for the US and UK, respectively. Finally, for the residential
real estate indices, all vNS specifications rank first and succeed in reducing the random walk
MSFE by almost half both for the US and UK. For example, for the Case-Shiller index, the best

forecasting model is the elastic net vNS that achieves an MSFE of 0.5989 closely followed by all
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models with the average just a little over 0.6077. For the UK house price index, the best performing
model is the stepwise VNS model (with an MSFE of 0.6175) followed by ridge, lasso and the

average fundamental vNS model.

[Insert Table 2.9 Here]

Figure 2.5 plots the cumulative difference between forecast errors for the historical average
against each of the alternative bubble VNS models for all real estate markets and the 3-month
horizon. In both the US and UK commercial real estate indices, all vNS models appear successful
in improving forecasts in the aftermath of the financial crisis. However, for NCREIF all
specifications underperform in 2008 followed by sharp gains after 2009 and small losses
afterwards. These movements are rather muted for the elastic net bubble model. The best
performance is attained by the bridge vNS model followed by the average bubble one. For the
IPD, all specifications move quite similarly, experiencing sharp gains during the financial crisis
followed by stabilisation in the aftermath. In contrast, performance of the equity real estate indices
is quite diverse among fundamental specifications. Specifically, for the US only the average and
elastic net manage to retain gains at the end of the out-of-sample period with bridge showing the
worst performance. However, bridge and the average are consistently superior and rank first for
the UK FTSE index. Finally, all fundamental models move closely together in the case of the US
residential index, while for the UK fundamental models form two groups, with elastic net and

bridge belonging to the worst performing one.
[Insert Figure 2.5 Here]
Turning to the 6-month horizon, our findings reported in Table 2.10, suggest that the best

forecasting performance is attained for the Case-Shiller Index followed by the IPD UK index. For
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the Case Shiller index, all fads, normal mixture and vNs models appear significantly more accurate
than the random walk, with the vNS ranking first. In this set of models, the one with the lowest
MSFE is the stepwise (0.4951), while the average bubble model also proved accurate with a
statistically significant MSFE of 0.5488. In the case of the IPD, the most accurate model is the
bridge VNS (0.5689) followed by the elastic net (0.7132). The average bubble vNS fares well with
a statistically significant MSFE of 0.7658. On the other hand, all vNS specifications fail to
improve upon the historical average model for both the US and UK FTSE indices. In these cases,
the fads model beats the historical average model with the average bubble and the ridge bubble
fads model ranking first for the US and UK, respectively. Finally, the NCREIF and the UK house
price index provide mixed evidence. For the NCREIF, the bridge and elastic net fads model are
the best followed by stepwise OLS. For this index, all fundamental bubble vNS models (with the
exception of the OLS) offer improvements over the historical average as judged by the Clark-West

test.

[Insert Table 2.13 Here]

The pattern of the forecasting ability of the various bubble VNS models for the 6-month
horizon is graphically shown in Figure 2.6. For this forecasting horizon, overall we get diminished
forecasting power for the majority of indices and more divergent behavior across specifications
with the exception of the US residential index. For the US commercial index, all models experience
some gains in 2009, followed by sharp losses in 2010, which for the stepwise and lasso they are
smaller and lead to significant improvements over the out-of-sample period. For the UK IPD index,
bridge and average are the models benefiting more from the financial crisis compared to the
remaining specifications. Finally, two groups of forecasting models can be identified for the UK

residential index. In the group of best performing specifications are OLS, stepwise, ridge and lasso.
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This group experiences gains in 2008 that are mostly retained in the out-of-sample period, while
the worst performing group quickly loses any benefits and continues to underperform the historical

average model until the end of the out-of-sample period.

[Insert Figure 2.6 Here]

2.6. Conclusion

In this research we confirm the existence of bubbles in real estate markets in the United
States and the United Kingdom using shrinkage and variable selection models to extract the
fundamental component underpinning these markets. To investigate the bubble dynamics in real
estate markets, fundamental models were constructed using several fitting procedures and a wide
range of economic variables. The fundamental value underpinning commercial, residential and
equity real estate markets was extracted using stepwise regression, ridge regression, lasso, bridge
regression, elastic net and an average of those models. In all real estate markets, the actual price
diverges from the respective fundamental value. The right-side unit root tests showed significant
evidence of the presence of periodically collapsing bubbles in all indices. The regime switching
model for bubbles was compared to alternative models and the results showed that for the United
States and the United Kingdom equity and residential real estate, the bubble model is preferable
to the alternatives. The out-of-sample analysis reveals that for one period ahead, the van Norden
and Schaller model exhibits superior forecasting performance for residential real estate markets in

the United Kingdom and the United States.
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Chapter 2 Tables

Table 2.1: Economic Predictors

United States

United Kingdom

Financial indicators

S&P 500 Index

US/UK exchange rate

M2

Effective federal funds rate
3-month Treasury bill:
(secondary market rate)
5-year Treasury constant
maturity rate

10-year Treasury constant
maturity rate

30-year fixed rate mortgage
average

FTSE All-Share Index
US/UK exchange rate

Retail M4 (or M2)

Official bank rate

3-month Treasury bill
Generic government 5-year
yield

Generic government 10-year
yield

Mortgage rate

Price indicators

Inflation rate (CPI)
London Bullion Market
Association (LBMA) gold
price

WTI crude oil price

US rent price index

Inflation rate (RPI)
London Bullion Market
Association (LBMA) gold
price

IMF Brent crude oil price
UK rent price index

National income and business
activity indicators

Real GDP

Dallas Fed US real personal
disposable income index
Industrial production
Housing starts

Real GDP

Dallas Fed UK real personal
disposable income index
Industrial production
Housing starts

Employment and labour
market indicators

Unemployment rate
OECD Labour cost
OECD Labour productivity

Unemployment rate
OECD Labour cost
OECD Labour productivity

Notes: This table reports the set of predictors used to construct the fundamental models for the US and

UK real estate indices.
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Table 2.2: The SADF and GSADF Test Results on the Non-fundamental Component

NCREIF Property Index  US EPRA/NAREIT Index  S&P/Case-Shiller Index

SADF GSADF SADF GSADF SADF GSADF
Test statistic 5.3090 6.4302 2.9105 2.9986 2.7291 6.9542
90% Critical VValue 1.0845 1.7792 1.1439 1.9219 1.1442 1.9424
95% Critical Value 1.3843 2.0663 1.4257 2.1340 1.4350 2.1843
99% Critical Value 1.9300 2.7919 1.9585 2.6837 1.9417 2.8751

IPD UK Property Index UK EPRA/NAREIT Index UK House Price Index

SADF GSADF SADF GSADF SADF GSADF
Test statistic 3.1161 4.5725 1.2414 2.9815 3.9483 7.0706
90% Critical Value 1.1471 1.9431 1.1416 1.9179 1.1664 1.9113
95% Critical Value 1.4620 2.1877 1.4027 2.1460 1.4760 2.1935
99% Critical Value 2.0303 2.7542 2.0189 2.8789 2.0308 2.8802

Notes: The null hypothesis is that there is a unit root and the alternative that there is explosive behavior.
Figures in bold indicate the rejection of the null hypothesis at the respective significance level. The critical
values for the SADF and GSADF tests were computed from Monte Carlo simulations with 2000
replications, with the minimum window set to 0.01+1.8/\'T of the total sample observations. The ADF lag
is chosen to minimize the Schwarz Information Criterion with the maximum lag length set to 4 quarters for
the NCREIF Property Index and to 12 months for the remaining indices. Sample size: 151 for the NCREIF
Property Index, 311 for the US FTSE EPRA/NAREIT Index, 346 for the S&P/Case-Shiller Home Price
Index, 348 for the IPD UK Property Index, 312 for the UK FTSE EPRA/NAREIT Index and 251 for the
UK House Price Index.
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Table 2.3: Results from the van Norden and Schaller Speculative Bubble Model for the US and the UK Commercial Real Estate Indices

NCREIF Property Index

IPD UK Property Index

Parameters OLS Stepwise  Ridge Lasso Bridge Elastic Net Average OLS Stepwise  Ridge Lasso Bridge Elastic Net Average
Bso 1.0188 1.0185 1.0181 1.0182 1.0167 1.0165 1.0175 1.0069 1.0070 1.0069 1.0069 1.0068 1.0072 1.0070
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)  (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
Bs1 0.0089 0.0070 0.0027 0.0051 -0.0056 -0.0110 -0.0003 | -0.0026 -0.0029  0.0031 0.0052 0.0121 0.0148 0.0097
(0.3844) (0.4695) (0.7632) (0.5839) (0.4589) (0.3842)  (0.9800) | (0.7355) (0.6625) (0.6648) (0.4548) (0.0002)  (0.0043)  (0.0962)
Bco 0.9459 0.9449  0.9393 0.9433  0.9962 0.9340 0.9390 | 0.9982  0.9973 0.9981  0.9981  0.9986 0.9977 0.9980
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
Be1 -0.1604 -0.1622  -0.1611 -0.1586  0.0510 -0.1746 -0.1668 | 0.0321  0.0411  0.0136 0.0135 -0.0375 -0.0288 -0.0127
(0.0005) (0.0003) (0.0000) (0.0002) (0.5702) (0.0000)  (0.0000) | (0.2424) (0.1734) (0.5998) (0.6000) (0.0145) (0.1523)  (0.5815)
Bqo -2.8408 -2.8196 -2.9355 -2.8555 -1.0180 -3.4508 -3.0083 | -1.4803 1.1517  -1.4112  1.3888 1.2678 -1.2781 -1.2584
(0.0000) (0.0000) (0.0000) (0.0000) (0.2767)  (0.0001)  (0.0000) | (0.0003) (0.0051) (0.0004) (0.0006) (0.0017) (0.0007)  (0.0012)
Bar 3.4307 2.9801 3.8308 2.8063  -5.4348 6.5097 3.5989 7.2884  -0.9526 6.1666  -5.4300 -1.8742 3.1424 3.0181
(0.4451) (0.4902) (0.2954) (0.5233) (0.2249)  (0.2046)  (0.4573) | (0.0842) (0.8222) (0.1166) (0.1553) (0.4339) (0.3184)  (0.3781)
os 0.0150 0.0151 0.0151 0.0151 0.0140 0.0154 0.0152 0.0062 0.0061 0.0061 0.0061 0.0058 0.0059 0.0060
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)  (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
oc 0.0202 0.0196 0.0184 0.0194 0.0360 0.0124 0.0174 0.0173 0.0171 0.0174 0.0174 0.0162 0.0169 0.0173
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Tests of coefficient restrictions
Bso#Bco 37.0124 41.8808 51.0395 44.0316 1.8871 125.0816  56.3834 | 10.6412 11.6538 10.5023 10.3259 10.4075 12.3070 10.7871
(0.0000) (0.0000) (0.0000) (0.0000) (0.1695) (0.0000)  (0.0000) | (0.0011) (0.0006) (0.0012) (0.0013) (0.0013)  (0.0005)  (0.0010)
Bs1#Bc1 12.5608 13.4290 20.0220 13.3886 0.3955 455019  19.1911 | 1.3235 1.8596  0.1340 0.0856  10.1999 4.3316 0.8217
(0.0004) (0.0002) (0.0000) (0.0003) (0.5294) (0.0000)  (0.0000) | (0.2500) (0.1727) (0.7143) (0.7698) (0.0014)  (0.0374)  (0.3647)
Bubble model specification test against alternative models
?g;'i?;g“y 6.0245 58360 59050 53145 34929 59956 51383 | 13.1066 10.1463 11.1716 11.1679 28.2801  18.4964  11.3828
(0.1973) (0.2117) (0.2064) (0.2565) (0.4790)  (0.1995)  (0.2734) | (0.0108) (0.0380) (0.0247) (0.0247) (0.0000)  (0.0010)  (0.0226)
Fads 10.2856 10.4791 11.1973 10.2752 8.0119 11.3421 10.6333 | 20.6783 17.6434 18.4485 17.7409 29.6868 21.4947 17.0178
(0.0163) (0.0149) (0.0107) (0.0164) (0.0458)  (0.0100)  (0.0139) | (0.0001) (0.0005) (0.0004) (0.0005) (0.0000)  (0.0001)  (0.0007)
Mixture-normal 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 12.8417 3.0491 0.0100
(0.9997) (0.9997) (0.9997) (0.9997) (0.9997)  (0.9997)  (0.9997) | (0.9997) (0.9997) (0.9997) (0.9997) (0.0050) (0.3841)  (0.9997)

Notes: This table reports the in-sample results of the van Norden and Schaller model for each fundamental specification. The first panel reports the coefficient estimates of the bubble
model along with the respective p-values in parenthesis that are derived by taking the inverse of the Hessian matrix. The second panel reports the results of the likelihood ratio tests of the
two restrictions implied by the bubble model, while the third panel presents the results from tests that examine whether stylized alternative models can better explain the returns than the
regime-switching model for bubbles.
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Table 2.4: Results from the van Norden and Schaller Speculative Bubble Model for the US and the UK Equity Real Estate Indices

US FTSE EPRA/NAREIT Index

UK FTSE EPRA/NAREIT Index

Parameters OLS Stepwise  Ridge Lasso Bridge Elastic Net Average OLS Stepwise  Ridge Lasso Bridge Elastic Net Average
Bso 1.0064 1.0073  1.0051  1.0039  1.0026 1.0034 1.0040 0.9997 0.9998  0.9983  0.9969  0.9896 0.9971 0.9971
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
Bs1 -0.0049 -0.0018 -0.0073 -0.0114 -0.0177 -0.0128 -0.0115 | -0.0048 -0.0048 -0.0064 -0.0081 -0.0191 -0.0083 -0.0085
(0.6552) (0.8518) (0.4771) (0.2826) (0.0467) (0.2264)  (0.2977) | (0.5504) (0.5405) (0.4163) (0.3437) (0.0222) (0.3264) (0.3287)
Bco 0.8892 09129 0.8002 0.7968  0.8100 0.7900 0.8102 0.8582 0.8887  0.7326  0.7954  0.7540 0.7782 0.7407
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0014) (0.0000) (0.0000) (0.0000)  (0.0000)
Be1 -0.2197 -0.2032 -0.2710 -0.2910 -0.1464 -0.2864 -0.2705 | -0.1708  -0.1462 -0.2616 -0.1990 -0.1418 -0.2202 -0.2430
(0.1113) (0.1414) (0.0333) (0.0407) (0.0411) (0.0240) (0.0283) | (0.4181) (0.3583) (0.2344) (0.1370) (0.0078) (0.1518)  (0.0984)
Bqo 3.0088 25812 -4.2995 -4.3159 -6.6387 -4.6459 -4.4448 | 4.0527 3.5410 52037  4.5707 -7.2487 4.7347 5.2640
(0.0000) (0.0000) (0.0000) (0.0001) (0.0009) (0.0001) (0.0000) | (0.0201) (0.0112) (0.0014) (0.0010) (0.0000) (0.0011)  (0.0002)
Ba -1.8062 -0.5839  3.6171  3.7348  6.0346 4.2569 41916 | -2.1116  -1.5229 -3.0491 -2.6715 4.3614 -2.7937 -3.3972
(0.1128) (0.5938) (0.0038) (0.0077) (0.0095) (0.0047)  (0.0050) | (0.1663) (0.2075) (0.0473) (0.0341) (0.0006) (0.0367) (0.0163)
s 0.0407  0.0407 0.0418 0.0420  0.0427 0.0421 0.0419 0.0503 0.0499  0.0506 0.0493  0.0477 0.0498 0.0497
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)
oc 0.1247  0.1274 0.1196 0.1184  0.1355 0.1189 0.1199 0.1097 0.1091  0.1012  0.0934 0.0874 0.0956 0.0916
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Tests of coefficient restrictions
Bso#Bco 2.6195 2.8041 39578 3.2508  3.1973 3.9697 3.7989 0.6008 0.8302 1.3514 21014 5.8611 1.9121 2.5970
(0.1056) (0.0940) (0.0467) (0.0714) (0.0738) (0.0463) (0.0513) | (0.4383) (0.3622) (0.2450) (0.1472) (0.0155) (0.1667) (0.1071)
Bs1#Bc1 2.4327 21340 43270 3.9251  3.2147 4.7053 4.4589 0.6213 0.7927 1.3455  2.0333  5.0551 1.9103 2.5266
(0.1188) (0.1441) (0.0375) (0.0476) (0.0730) (0.0301) (0.0347) | (0.4306) (0.3733) (0.2461) (0.1539) (0.0246) (0.1669) (0.1119)
Bubble model specification test against alternative models
Volatility regime 45484 18080 11.6828 125982 30.1942 153703  14.7110 | 3.2372 2.9189 58300 8.4368 25.6241 7.6889 10.1248
(0.3368) (0.7710) (0.0199) (0.0134) (0.0000) (0.0040) (0.0053) | (0.5189) (0.5715) (0.2122) (0.0768) (0.0000) (0.1037)  (0.0384)
Fads 7.1879  5.0067 13.5061 13.6537 26.5998  15.8503  15.4786 | 4.0729 3.6249 6.2864  7.8439 22.9221 7.3379 9.8032
(0.0661) (0.1713) (0.0037) (0.0034) (0.0000) (0.0012) (0.0015) | (0.2537) (0.3049) (0.0985) (0.0494) (0.0000) (0.0619)  (0.0203)
Mixture-normal 35658  0.8254 10.7002 11.6156 29.2116  14.3877  13.7284 | 1.4639 1.1456  4.0567 6.6635 23.8508 5.9156 8.3515
(0.3123) (0.8434) (0.0135) (0.0088) (0.0000) (0.0024) (0.0033) | (0.6906) (0.7661) (0.2554) (0.0834) (0.0000) (0.1158)  (0.0393)

Notes: This table reports the in-sample results of the van Norden and Schaller model for each fundamental specification. The first panel reports the coefficient estimates of the bubble
model along with the respective p-values in parenthesis that are derived by taking the inverse of the Hessian matrix. The second panel reports the results of the likelihood ratio tests of
the two restrictions implied by the bubble model, while the third panel presents the results from tests that examine whether stylized alternative models can better explain the returns
than the regime-switching model for bubbles.
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Table 2.5: Results from the van Norden and Schaller Speculative Bubble Model for the US and the UK Residential Real Estate Indices

S&P/Case-Shiller Home Price Index UK House Price Index
Parameters OLS Stepwise Ridge Lasso Bridge Ek’}ztt'c Average OLS Stepwise  Ridge Lasso Bridge Elastic Net  Average
Bso 1.0042 1.0042 1.0042 1.0042 1.0038 1.0039 1.0044 1.0051 1.0055 1.0052 1.0053 1.0059 1.0056 1.0057
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Bs1 0.0106 0.0113 0.0118 0.0112 0.0166 0.0149 0.0139 | -0.0132 -0.0125 -0.0077 -0.0085 -0.0035 -0.0046 -0.0078
(0.0021) (0.0013) (0.0003) (0.0009) (0.0000) (0.0000) (0.0000) | (0.0379) (0.0686) (0.2019) (0.1813) (0.4841)  (0.4002) (0.2403)
Bco 0.9942 0.9942 0.9949 0.9944 0.9967 0.9960 0.9956 0.9991 0.9991 0.9996 0.9996 0.9975 0.9985 0.9994
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Bec1 -0.0346 -0.0349 -0.0318 -0.0322  -0.0228 -0.0243 -0.0275 | -0.1268 -0.1295 -0.1294 -0.1338 -0.0773 -0.1013 -0.1140
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Bgo -0.5549 -0.6088  -0.3381 -0.5343  -0.4052 -0.4632 -0.0426 | -0.7556 -0.1297  0.0777 0.0652 0.2084 0.0178 0.2309
(0.2096) (0.1710) (0.4430) (0.2403) (0.4049) (0.3317) (0.9331) | (0.2728) (0.8636) (0.9043) (0.9276) (0.7623)  (0.9793) (0.7339)
Bq 2.6717 2.7929 -0.1604 1.6158 0.0758 0.1247  -2.3939 | -12.1367 -14.9164 14.9327 15.2631 9.2006 12.1565 -14.7843
(0.5244) (0.5138) (0.9655) (0.6969) (0.9775) (0.9651) (0.5039) | (0.0152) (0.0051) (0.0011) (0.0015) (0.0036)  (0.0017) (0.0005)
os 0.0042 0.0042 0.0041 0.0042 0.0039 0.0040 0.0040 0.0091 0.0088 0.0089 0.0089 0.0088 0.0089 0.0090
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
oc 0.0042 0.0044 0.0046 0.0045 0.0056 0.0054 0.0050 0.0027 0.0045 0.0042 0.0042 0.0047 0.0049 0.0049

(0.0000)  (0.0000)  (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)  (0.0000)

Tests of coefficient restrictions

Bso#Bco 218.7708 190.0803 156.4087 170.2617 48.2574 64.2196 92.9463 | 21.0044 13.4726 10.7906 10.1537 16.5139 12.3667  9.6589
(0.0000)  (0.0000)  (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0002) (0.0010) (0.0014) (0.0000)  (0.0004)  (0.0019)
Bs:7Bc 769262 68.2720 64.0140 64.0555 50.8936 49.7649 53.3688 | 75.9723 257643 317482 26.4138 31.5721 29.3276  22.4570

(0.0000)  (0.0000)  (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) | (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)  (0.0000)  (0.0000)

Bubble model specification test against alternative models

Volatility regime  51.8753  47.9361  48.5529 454679 46.3767 445277 454770 | 21.7529 256001 25.1875 25.89014 185668 21.3688  25.3115
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0002) (0.0000) (0.0000) (0.0000) (0.0010)  (0.0003)  (0.0000)
Fads 58.6704 555599 56.1470 53.1805 60.1836 53.0791 53.7911 | 17.6257 215197 24.6443 22.5199 23.8871 253749  26.8535
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0005) (0.0001) (0.0000) (0.0001) (0.0000)  (0.0000)  (0.0000)
Mixture-normal ~ 38.0458  34.1067 34.7235 31.6385 325473 30.6983 31.6476 | 10.7870 14.6343 14.2216 14.9256 7.6009  10.4029  14.3457
(0.0000)  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) | (0.0129) (0.0022) (0.0026) (0.0019) (0.0550)  (0.0154)  (0.0025)

Notes: This table reports the in-sample results of the van Norden and Schaller model for each fundamental specification. The first panel reports the coefficient estimates of the bubble
model along with the respective p-values in parenthesis that are derived by taking the inverse of the Hessian matrix. The second panel reports the results of the likelihood ratio tests of
the two restrictions implied by the bubble model, while the third panel presents the results from tests that examine whether stylized alternative models can better explain the returns than
the regime-switching model for bubbles.
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Table 2.6: MSFE Ratios and Clark and West (2007) t-statistics for the IPD UK Property Index: 1 Month Horizon

A. Historical average set as the benchmark.

IPD UK Property Index

OLS Stepwise Ridge Lasso Elastic Net Bridge Average
Historical Average 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
Volatility regimes 1.0462 1.0462 1.0462 1.0462 1.0462 1.0462 1.0462
model (-1.2571) (-1.2571) (-1.2571) (-1.2571) (-1.2571) (-1.2571) (-1.2571)
Fads model 1.0321 0.9992 1.0324 1.0202 1.0493 1.0698 1.0319

(-1.7195)  (0.5254)  (-1.9392) (-1.5285)  (-2.6045)  (-3.2751) (-2.4887)
Normal-mixture model  0.7606 0.7606 0.7606 0.7606 0.7606 0.7606 0.7606
(4.1167)  (4.1167) (4.1167) (4.1167)  (4.1167)  (4.1167) (4.1167)
VNS bubble model 0.7984 0.7991 0.8382 0.8173 0.8401 0.7898 0.8672
(3.6898)  (3.5236)  (3.5104)  (3.4117)  (3.9675)  (4.2887)  (3.6808)

B. Van Norden and Schaller model set as the benchmark.

IPD UK Property Index

OLS Stepwise Ridge Lasso Elastic Net Bridge Average

VNS bubble model 0.0001 0.0001 0.0002 0.0002 0.0002 0.0001 0.0002
Volatility regimes 0.7632 0.7638 0.8012 0.7812 0.8031 0.7549 0.8289
model (3.4830)  (3.4269) (3.2986)  (3.3190)  (3.5447)  (3.9338)  (3.3448)
Fads model 0.7736 0.7997 0.8119 0.8010 0.8007 0.7383 0.8403
(3.5773)  (3.4211)  (3.4100) (3.3577)  (3.7697)  (4.0934)  (3.5798)

Normal-mixture model  1.0497 1.0506 1.1020 1.0744 1.1045 1.0383 1.1401

(-0.7878)  (-0.7175) (-2.3504) (-1.2532)  (-2.2685)  (-0.1573) (-2.8420)

Notes: The first panel reports the MSFE ratios between the historical average benchmark and the volatility regimes,
fads, mixture-normal and the vNS bubble models respectively. A below unity ratio indicates that the respective
model outperforms the historical average. The second panel reports the MSFE ratios between the van Norden and
Schaller model and the alternative regime switching models. A below unity ratio indicates that the bubble model
outperforms the respective regime switching model. The figures in parenthesis are the t-statistics from the Clark
and West (2007) test. Figures in bold indicate the rejection of the null hypothesis at the 10% significance level. The
out-of-sample period is set to eight years.
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Table 2.7: MSFE Ratios and Clark and West (2007) t-statistics for the Equity Real Estate Indices: 1 Month Horizon

A. Historical average set as the benchmark.

US FTSE EPRA/NAREIT Index

UK FTSE EPRA/NAREIT Index

OLS Stepwise  Ridge Lasso  Elastic Net Bridge Average OLS Stepwise  Ridge Lasso  Elastic Net  Bridge Average
Historical Average  0.0062  0.0062  0.0062  0.0062 0.0062 0.0062 0.0062 | 0.0044  0.0044  0.0044  0.0044 0.0044 0.0044  0.0044
Volatility regimes 1.0014  1.0014  1.0014  1.0014 1.0014 1.0014  1.0014 | 0.9998  0.9998  0.9998  0.9998 0.9998 0.9998  0.9998
model (-0.0590) (-0.0590) (-0.0590) (-0.0590) (-0.0590) (-0.0590) (-0.0590) | (0.1402) (0.1402) (0.1402) (0.1402) (0.1402)  (0.1402) (0.1402)
Fads model 0.9969  0.9953  0.9872  0.9879 0.9846 0.9557 0.9815 | 1.0015 0.9992  1.0032  0.9862 0.9883 0.9495  0.9917
(0.5345) (0.6754) (1.2187) (1.2597) (1.3823) (1.9051) (1.5898) [(-0.1741) (0.3484) (-0.5220) (2.0726) (1.6339)  (2.8627) (2.0140)
Normal-mixture 1.0239  1.0239 1.0239  1.0239 1.0239 1.0239  1.0239 | 0.9178  0.9178  0.9178  0.9178 0.9178 0.9178  0.9178
model (0.0182) (0.0182) (0.0182) (0.0182) (0.0182) (0.0182) (0.0182) | (1.3715) (1.3715) (1.3715) (1.3715) (1.3715)  (1.3715) (1.3715)
VNS bubble model ~ 0.9317  0.9176  0.9249  0.9291 0.9169 0.9426  0.9069 | 0.9825  0.9390  0.9814  1.0022 0.9931 0.9751  0.9669
(1.2486) (1.2919) (1.0732) (1.0534) (1.1150) (1.2132) (1.1902) | (1.5844) (1.4917) (1.6810) (0.2171) (2.0022)  (2.0128) (1.4041)

B. Van Norden and Schaller model set as the benchmark.

US FTSE EPRA/NAREIT Index UK FTSE EPRA/NAREIT Index

OLS Stepwise  Ridge Lasso  Elastic Net Bridge Average OLS Stepwise  Ridge Lasso  Elastic Net Bridge Average
vNS bubble model ~ 0.0058  0.0057  0.0058  0.0058 0.0057 0.0059 0.0056 | 0.0044  0.0042  0.0043  0.0044 0.0044 0.0043  0.0043
Volatility regimes 0.9305 09164 09236 0.9278 0.9156 0.9413 09057 | 0.9827 0.9392 0.9816  1.0024 0.9933 0.9753  0.9671
model (1.2705) (1.3299) (1.1204) (1.0976) (1.1547) (1.2088) (1.2334) | (1.4787) (1.4559) (1.6237) (0.2033) (1.7987)  (2.0614) (1.3528)
Fads model 09346  0.9220 0.9369  0.9404 0.9312 0.9864 09241 | 0.9809 0.9397 0.9782  1.0163 1.0049 1.0269  0.9750
(1.2320) (1.2828) (1.0307) (0.9984) (1.0619) (0.8839) (1.1217) | (1.4027) (1.4737) (1.7131) (-1.5630) (0.1118) (-1.5260) (1.1540)
Normal-mixture 0.9100 0.8963  0.9033  0.9074 0.8955 0.9206 0.8858 | 1.0705 1.0231  1.0693  1.0920 1.0821 1.0624  1.0535
model (1.1370) (1.1449) (0.9934) (0.9948) (1.0476) (1.1165) (1.0820) | (1.1895) (1.2049) (1.2184) (1.1077) (1.1574)  (1.2953) (1.1594)

Notes: The first panel reports the MSFE ratios between the historical average benchmark and the volatility regimes, fads, mixture-normal and the vNS bubble models respectively. A
below unity ratio indicates that the respective model outperforms the historical average. The second panel reports the MSFE ratios between the van Norden and Schaller model and the
alternative regime switching models. A below unity ratio indicates that the bubble model outperforms the respective regime switching model. The figures in parenthesis are the t-
statistics from the Clark and West (2007) test. Figures in bold indicate the rejection of the null hypothesis at the 10% significance level. The out-of-sample period is set to eight years.
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Table 2.8: MSFE Ratios and Clark and West (2007) t-statistics for the Residential Real Estate Indices: 1 Month Horizon

A. Historical average set as the benchmark.

S&P/Case-Shiller Home Price Index

UK House Price Index

OLS Stepwise  Ridge Lasso  Elastic Net Bridge Average OLS Stepwise  Ridge Lasso  Elastic Net Bridge Average
Historical Average  0.0001 0.0001  0.0001 0.0001 0.0001 0.0001  0.0001 | 0.0001  0.0001 0.0001 0.0001 0.0001 0.0001  0.0001
Volatility regimes 1.0205 1.0205  1.0205 1.0205 1.0205 1.0205 1.0205 | 0.9961 0.9961  0.9961  0.9961 0.9961 0.9961  0.9961
model (-2.2443) (-2.2443) (-2.2443) (-2.2443) (-2.2443) (-2.2443) (-2.2443) | (2.2354) (2.2354) (2.2354) (2.2354) (2.2354) (2.2354) (2.2354)
Fads model 1.0294 1.0215 1.0184 1.0184 1.0445 1.0569 1.0328 | 1.0156  1.0268 1.0311 1.0347 1.0129 1.0172  1.0387
(-3.4020) (-2.5539) (-2.4455) (-2.4782) (-3.1169) (-3.4699) (-3.0841) | (-0.5857) (-1.2351) (-1.9521) (-2.2302) (-1.2342) (-1.7342) (-2.4942)
Normal-mixture 0.8184  0.8184  0.8184 0.8184 0.8184 0.8184  0.8184 | 1.0050  1.0050 1.0050 1.0050 1.0050 1.0050 1.0050
model (3.3062) (3.3062) (3.3062) (3.3062) (3.3062) (3.3062) (3.3062) | (-0.9123) (-0.9123) (-0.9123) (-0.9123) (-0.9123) (-0.9123) (-0.9123)
VNS bubble model 0.6424  0.6409 0.6176 0.6354 0.6423 0.6626  0.6079 | 0.7416 0.7503  0.7312  0.6852 0.8540 0.8351  0.6958
(5.3701) (5.4697) (5.3216) (5.3637) (4.9644) (4.6450) (5.4104) | (4.2838) (3.8842) (4.0720) (4.5234) (2.8027) (2.6092) (3.8015)
B. Van Norden and Schaller model set as the benchmark.
S&P/Case-Shiller Home Price Index UK House Price Index
OLS Stepwise  Ridge Lasso Elastic Net Bridge Average OLS Stepwise  Ridge Lasso Elastic Net Bridge Average
VNS bubble model 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 | 0.0001 0.0001 0.0001  0.0001 0.0001 0.0001  0.0001
Volatility regimes  0.6295 0.6280 0.6052  0.6226 0.6294 0.6493  0.5957 | 0.7445 0.7532 0.7341  0.6879 0.8574 0.8384  0.6986
model (5.4441) (5.5419) (5.3984) (5.4359) (5.0473) (4.7386) (5.4824) | (4.2610) (3.8628) (4.0459) (4.5029) (2.7834) (2.5843) (3.7871)
Fads model 0.6241 0.6274 0.6065  0.6239 0.6149 0.6269  0.5885 | 0.7302 0.7306 0.7091  0.6623 0.8431 0.8210  0.6699
(5.3565) (5.3800) (5.3239) (5.3571) (5.1148) (4.9509) (5.4607) | (4.4499) (4.2550) (4.2805) (4.7128) (2.9297) (2.7303) (3.9995)
Normal-mixture 0.7850 0.7831 0.7547  0.7764 0.7848 0.8097  0.7428 | 0.7378 0.7465 0.7275  0.6818 0.8498 0.8309  0.6923
model (4.6070) (4.6536) (4.6515) (4.6372) (4.0624) (3.7924) (4.5175) | (4.2777) (3.8755) (4.0480) (4.4926) (2.8539) (2.6678) (3.8103)

Notes: The first panel reports the MSFE ratios between the historical average benchmark and the volatility regimes, fads, mixture-normal and the vNS bubble models respectively. A
below unity ratio indicates that the respective model outperforms the historical average. The second panel reports the MSFE ratios between the van Norden and Schaller model and the
alternative regime switching models. A below unity ratio indicates that the bubble model outperforms the respective regime switching model. The figures in parenthesis are the t-
statistics from the Clark and West (2007) test. Figures in bold indicate the rejection of the null hypothesis at the 10% significance level. The out-of-sample period is set to eight years.
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Table 2.9: MSFE Ratios and Clark and West (2007) t-statistics, with the Historical Average set as the Benchmark, for all Real Estate Indices: 3 Month Horizon

NCREIF Property Index

IPD UK Property Index

OLS  Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise  Ridge Lasso Elastic Net Bridge Average

Historical Average 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009  0.0009 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014  0.0014

Volatility regimes 0.9930  0.9930 0.9930  0.9930 0.9930 0.9930 0.9930 1.0635 1.0635 1.0635 1.0635 1.0635 1.0635 1.0635
model (0.5526) (0.5526) (0.5526) (0.5526) (0.5526) (0.5526) (0.5526) | (-1.2038) (-1.2038) (-1.2038) (-1.2038) (-1.2038) (-1.2038) (-1.2038)

Fads model 1.0264 1.0165 0.9966 1.0059 0.9845 0.9811  0.9993 1.0641 1.0488 1.0614  1.0581 1.0955 1.1330 1.0701
(-0.3252) (-0.1479) (0.3920) (0.0616) (1.1374) (1.2366) (0.2823) | (-1.3750) (-1.5190) (-1.7616) (-1.8475) (-2.8762) (-3.4383) (-2.6131)

Normal-mixture 09175 0.9175 0.9175 0.9175 0.9175 0.9175 0.9175 0.7675 0.7675 0.7675 0.7675 0.7675 0.7675 0.7675
model (1.5778) (1.5778) (1.5778) (1.5778) (1.5778) (1.5778) (1.5778)| (3.4933) (3.4933) (3.4933) (3.4933) (3.4933) (3.4933) (3.4933)

VNS bubble model 0.7414  0.7797 0.7674  0.7657 0.9209 0.7181  0.7259 0.6733 0.7420  0.7569  0.6983 0.7132 0.6347  0.7354
(1.7668) (1.7229) (1.7421) (1.7539) (1.6654) (1.7507) (1.8234) | (4.1215) (4.4968) (4.1575) (3.7781) (4.1421) (4.3549) (4.0974)

US FTSE EPRA/NAREIT Index UK FTSE EPRA/NAREIT Index

OLS  Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise  Ridge Lasso Elastic Net Bridge Average

Historical Average 0.0160 0.0160 0.0160 0.0160 0.0160 0.0160 0.0160 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139  0.0139

Volatility regimes 0.9974  0.9974 0.9974 0.9974 0.9974 0.9974 0.9974 0.9927 0.9927  0.9927  0.9927 0.9927 0.9927  0.9927
model (0.4594) (0.4594) (0.4594) (0.4594) (0.4594) (0.4594) (0.4594) | (1.2321) (1.2321) (1.2321) (1.2321) (1.2321) (1.2321) (1.2321)

Fads model 0.9834 0.9766 0.9605 0.9472 0.9349 0.9476  0.9424 0.9597 0.9514 0.9648 0.9436 0.9428 0.8378  0.9683
(1.4476) (1.9775) (2.3340) (2.8474) (2.7515) (2.6859) (2.6620) | (2.8172) (2.9397) (2.0129) (2.8863) (2.7143) (4.0156) (1.8745)

Normal-mixture 1.1394  1.1394 11394 1.139%4 1.1394 1.1394 1.139%4 0.9802 0.9802 0.9802  0.9802 0.9802 0.9802  0.9802
model (-0.3977) (-0.3977) (-0.3977) (-0.3977) (-0.3977) (-0.3977) (-0.3977)| (3.8694) (3.8694) (3.8694) (3.8694) (3.8694) (3.8694) (3.8694)

VNS bubble model 1.0052 1.0573 1.0244 1.0126 0.9886 1.2666  0.9820 0.9806 1.0320 1.1126 0.9104 0.9365 0.8758  0.9023
(1.2847) (1.0491) (1.2778) (1.2560) (1.4228) (1.1984) (1.4384)| (1.4512) (1.0737) (0.4425) (2.0172) (3.9340) (2.6308) (3.2333)

S&P/Case-Shiller Home Price Index UK House Price Index

OLS  Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise  Ridge Lasso Elastic Net Bridge Average

Historical Average 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0008 0.0008  0.0008 0.0008 0.0008 0.0008  0.0008

Volatility regimes 1.0343 1.0343 1.0343 1.0343 1.0343 1.0343  1.0343 1.0319 1.0319 1.0319 1.0319 1.0319 1.0319 1.0319
model (-3.1533) (-3.1533) (-3.1533) (-3.1533) (-3.1533) (-3.1533) (-3.1533)| (-3.3564) (-3.3564) (-3.3564) (-3.3564) (-3.3564) (-3.3564) (-3.3564)

Fads model 1.0303 1.0241 1.0156 1.0135 1.0566 1.0884  1.0307 1.0239 1.0363  1.0253  1.0407 1.0219 1.0193 1.0224
(-1.8896) (-1.4370) (-1.1528) (-0.8687) (-3.0618) (-3.6629) (-1.9311)| (-1.4583) (-2.1629) (-1.6776) (-2.9089) (-1.7182) (-1.9625) (-1.5865)

Normal-mixture 0.7397  0.7397  0.7397  0.7397 0.7397 0.7397  0.7397 1.0046 1.0046  1.0046  1.0046 1.0046 1.0046  1.0046
model (4.1302) (4.1302) (4.1302) (4.1302) (4.1302) (4.1302) (4.1302) | (-2.0022) (-2.0022) (-2.0022) (-2.0022) (-2.0022) (-2.0022) (-2.0022)

VNS bubble model 0.6025 0.6087 0.6048 0.6020 0.5989 0.6150 0.6077 0.7482 0.6175 0.6575 0.6761 0.9284 0.9996 0.7439
(5.6693) (5.5950) (5.3509) (5.4391) (5.2564) (5.2443) (5.3781) | (4.0465) (4.4968) (4.7331) (4.6012) (3.1015) (2.4182) (4.0023)

Notes: This table reports the MSFE ratios between the historical average benchmark and the volatility regimes, fads, mixture-normal and the vNS bubble models respectively. A
below unity ratio indicates that the respective model outperforms the historical average. The figures in parenthesis are the t-statistics from the Clark and West (2007) test. Figures
in bold indicate the rejection of the null hypothesis at the 10% significance level. The out-of-sample period is set to eight years.
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Table 2.10: MSFE Ratios and Clark and West (2007) t-statistics, with the Historical Average set as the Benchmark, for all Real Estate Indices: 6 Month Horizon

NCREIF Property Index

IPD UK Property Index

OLS Stepwise Ridge Lasso  Elastic Net Bridge  Average OLS Stepwise Ridge Lasso  Elastic Net Bridge  Average

Historical Average 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044

Volatility regimes  0.9927 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927 1.0551 1.0551 1.0551 1.0551 1.0551 1.0551 1.0551
model (0.5630) (0.5630) (0.5630) (0.5630) (0.5630) (0.5630) (0.5630) | (-0.7260) (-0.7260) (-0.7260) (-0.7260) (-0.7260) (-0.7260) (-0.7260)

Fads model 1.0268 1.0124 0.9989 1.0061 0.9422 0.9374 1.0000 1.0548 1.0414 1.0257 1.0452 1.0379 1.1543 1.0029
(-0.0856) (0.1530) (0.4131) (0.2148) (2.2199) (2.6104) (0.3692) | (-0.0457) (-0.2217) (0.1048) (-0.6090) (-0.3326) (-2.7337) (1.0107)

Normal-mixture 0.9609 0.9609 0.9609 0.9609 0.9609 0.9609 0.9609 0.9120 0.9120 0.9120 0.9120 0.9120 0.9120 0.9120
model (1.3390) (1.3390) (1.3390) (1.3390)  (1.3390)  (1.3390) (1.3390) | (2.2890)  (2.2890) (2.2890) (2.2890) (2.2890)  (2.2890) (2.2890)

VNS bubble model  1.0643 0.9550 1.0985 0.9805 1.1076 1.1186 1.0502 0.7840 0.7815 0.7530 0.7546 0.7132 0.5689 0.7658
(1.0718) (1.5859) (1.5097) (1.4848) (1.7334) (1.6191) (1.6353) | (2.9586)  (3.5745) (3.8847) (4.0102) (3.5106) (3.9689) (4.5953)

US FTSE EPRA/NAREIT Index UK FTSE EPRA/NAREIT Index

OLS Stepwise Ridge Lasso  Elastic Net Bridge  Average OLS Stepwise Ridge Lasso  Elastic Net Bridge  Average

Historical Average 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297

Volatility regimes ~ 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0011 1.0011 1.0011 1.0011 1.0011 1.0011 1.0011
model (0.0882) (0.0882) (0.0882) (0.0882) (0.0882) (0.0882) (0.0882) | (-0.1547) (-0.1547) (-0.1547) (-0.1547) (-0.1547) (-0.1547) (-0.1547)

Fads model 0.9907 0.9885 0.9762 0.9724 0.9709 1.1553 0.9660 0.9722 0.9731 0.9719 0.9817 0.9677 0.9490 0.9896
(1.2491) (1.5471) (2.1842) (2.3441) (2.3337) (2.7924) (2.4995) | (2.5971) (2.6878) (2.4150) (1.5209) (2.3381) (2.2633) (1.8501)

Normal-mixture 1.3093 1.3093 1.3093 1.3093 1.3093 1.3093 1.3093 0.9907 0.9907 0.9907 0.9907 0.9907 0.9907 0.9907
model (-1.5283) (-1.5283) (-1.5283) (-1.5283) (-1.5283) (-1.5283) (-1.5283) | (2.0716) (2.0716) (2.0716) (2.0716) (2.0716) (2.0716) (2.0716)

VNS bubble model  1.8717 1.7965 1.8768 1.7959 1.7922 1.8334 1.7534 1.0630 1.1848 1.0416 1.0188 1.0247 1.2123 1.1353
(-1.1075) (-0.9840) (-0.9747) (-0.6848) (-0.8389) (-0.5541) (-0.8372) | (0.6969)  (0.5675) (0.9367) (0.6848) (0.4449) (0.5747) (-0.7401)

S&P/Case-Shiller Home Price Index UK House Price Index

OLS Stepwise Ridge Lasso  Elastic Net Bridge  Average OLS Stepwise Ridge Lasso  Elastic Net Bridge  Average

Historical Average 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

Volatility regimes  1.0034 1.0034 1.0034 1.0034 1.0034 1.0034 1.0034 1.0366 1.0366 1.0366 1.0366 1.0366 1.0366 1.0366
model (0.2716) (0.2716) (0.2716) (0.2716) (0.2716)  (0.2716) (0.2716) | (-5.3407) (-5.3407) (-5.3407) (-5.3407) (-5.3407) (-5.3407) (-5.3407)

Fads model 0.9180 0.9101 0.8980 0.9096 0.9059 0.9683 0.9039 0.9866 0.9982 1.0084 1.0003 1.0172 1.0183 1.0124
(5.4353) (5.4666) (7.1082) (5.5138) (4.6663) (2.1240) (5.5595) | (1.7551) (0.6764) (-0.2153) (0.4340) (-0.7367) (-1.0012) (-0.3375)

Normal-mixture 0.7381 0.7381 0.7381 0.7381 0.7381 0.7381 0.7381 1.3690 1.3690 1.3690 1.3690 1.3690 1.3690 1.3690
model (4.2411) (4.2411) (4.2411) (4.2411) (4.2411) (4.2411) (4.2411) | (1.2160) (1.2160) (1.2160) (1.2160) (1.2160) (1.2160) (1.2160)

VNS bubble model  0.5036 0.4951 0.5388 0.5136 0.5506 0.5545 0.5488 0.5977 0.7013 0.7736 0.8164 1.3968 1.3352 1.1736
(7.5880) (7.1996) (7.0621) (7.2244)  (7.2499) (7.2342) (7.0663) | (4.2701)  (3.9288) (3.5832) (3.6796) (2.1236) (2.2183) (2.9174)

Notes: This table reports the MSFE ratios between the historical average benchmark and the volatility regimes, fads, mixture-normal and the vNS bubble models respectively. A below unity
ratio indicates that the respective model outperforms the historical average. The figures in parenthesis are the t-statistics from the Clark and West (2007) test. Figures in bold indicate the
rejection of the null hypothesis at the 10% significance level. The out-of-sample period is set to eight years.
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Chapter 2 Figures

Figure 2.1: Actual Price, Average Fundamental Value and Average Relative Bubble Size of the Real Estate Indices
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Notes: The shaded areas indicate the periods of under- or overvaluation, the dashed line is the fundamental price Q7 and
the full line is the actual price.
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Figure 2.2: Date Stamping the Periods of Explosiveness in the Non-fundamental Component of the Real

Estate indices
NCREIF Property Index IPD UK Property Index
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Notes: The shaded areas indicate the bubble periods, the dashed line is the 95% critical value sequence and
the full line is the BSADF test statistic sequence. The bubble periods are identified using the BSADF test
based on Monte Carlo simulations with 2000 replications, with the minimum window set to 0.01+1.8/NT of
the total sample observations. Sample size: 151 for the NCREIF Property Index, 311 for the US FTSE
EPRA/NAREIT Index, 346 for the S&P/Case-Shiller Home Price Index, 348 for the IPD UK Property Index,
312 for the UK FTSE EPRA/NAREIT Index and 251 for the UK House Price Index.
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Figure 2.3: Estimated Probability of Collapse for all Real Estate Sectors based on the Average Bubble Size
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Figure 2.4: The Cumulative Difference between Forecast Errors for the Historical Average against the VNS

Regime Switching Model based on Different Fundamental Specifications: 1 Month Horizon
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Figure 2.5: The Cumulative Difference between Forecast Errors for the Historical Average against the VNS

Regime Switching Model based on Different Fundamental Specifications: 3 months horizon
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Figure 2.6: The Cumulative Difference between Forecast Errors for the Historical Average against the VNS

Regime Switching Model based on Different Fundamental Specifications: 6 months horizon
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Chapter 2 Appendix

Table A2.1: The ADF Test Results for the log Real Price of the Real Estate Indices

NCREIF Property US EPRA/NAREIT S&P/Case-Shiller Home Price

Index Index Index
ADF statistic -0.0072 -2.2872 -0.8251
90% Critical Value -2.5771 -2.5717 -2.5712
95% Critical Value -2.8807 -2.8707 -2.8697
99% Critical Value -3.4743 -3.4514 -3.4491

IPD UK Property UK EPRA/NAREIT UK House Price

Index Index Index
ADF statistic -0.9260 -2.3257 -2.8640
90% Critical Value -2.5712 -2.5717 -2.5732
95% Critical Value -2.8697 -2.8706 -2.8734
99% Critical Value -3.4491 -3.4512 -3.4576

Notes: The null hypothesis is that there is a unit root and the alternative that the series are stationary. Figures
in bold indicate the rejection of the null hypothesis at the respective significance level. The ADF lag is chosen
to minimize the Schwarz Information Criterion with the maximum lag length set to 4 quarters for the NCREIF
Property Index and to 12 months for the US FTSE EPRA/NAREIT Index, the S&P/Case-Shiller Home Price
Index, the IPD UK Property Index, the UK FTSE EPRA/NAREIT Index and the UK House Price Index.
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Table A2.2: Source of the Potential Determinant Variables

Variable name

US variables

UK variables

Stock market index
Exchange rate

Money supply

Central bank rate
3-month Treasury Bill
5-year Govt bond yield
10-year Govt bond yield
Mortgage rate

Bloomberg (SPX Index)
FRED (EXUSUK)

FRED (M2SL)

FRED (FEDFUNDS)

FRED (TB3MS)

FRED (GS5)

FRED (GS10)

FRED (MORTGAGE30US)

Bloomberg (ASX Index)
BoE (XUMAGBD)

BoE (LPMVQWK)

BoE (IUMABEDR)
BoE (IUMAAJNB)

BoE (IUMASNZC)
BoE (IUMAMNZC)

BoE (CFMHSDE) and Three centuries of
data version 2.3 dataset.

Inflation rate
Gold price

Oil price

Rent price index

Bloomberg (CPURNSA% Index)
Bloomberg (GOLDLNAM Index)
FRED (OILPRICE and POILWTIUSDM)

OECD (2016), "Prices: Analytical house
price indicators".

Bloomberg (UKRPMOM Index)
Bloomberg (GOLDBPAM Index)
Bloomberg (WRCOBREN Index)

OECD (2016), "Prices: Analytical house
price indicators".

GDP

Disposable income
Industrial production
Housing starts

Bloomberg (GDP CHWG Index)
Bloomberg (DDIRUS Index)
Bloomberg (IP Index)

FRED (HOUST)

Bloomberg (UKGRABMI Index)
Bloomberg (DDIRGB Index)
Bloomberg (UKIPI Index)

Department for Communities and Local
Government

Unemployment rate
Labor cost
Labor productivity

Bloomberg (USURTOT Index)
Bloomberg (EOUSUOQ01 Index)
Bloomberg (EOUSDO007 Index)

Bloomberg (UKUEILOR Index)
Bloomberg (EOUKUOO1 Index)
Bloomberg (EOUKDO0O07 Index)

Notes: This table reports the name and sources of the predictors used in this study.
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Chapter 3: Does Model Complexity add Value to Asset Allocation?

Evidence from Machine Learning Forecasting Models

3.1. Introduction

The allocation of wealth among risky assets is one of the most important problems faced by
investors. The problem of constructing optimal portfolios depends on the objective of the investor,
the constraints and the estimation of expected returns. Since forecasting returns is quite
challenging, the historical average is often used as an input in portfolio optimization. However,
existing literature shows that out-of-sample return predictability adds economic value in asset
allocation. This study sets out to examine whether return forecasts generated by shrinkage, variable
selection and dimensionality reduction methods from the machine learning literature benefit
portfolios consisting of stock, bond and commodity indices, when compared to forecast

combination, the equal-weighted portfolio or portfolios based on the historical average.

Our study contributes primarily in three strands of literature. First, it contributes to the
growing literature that uses machine learning methodologies to forecast economic and financial
variables. The methodologies used in this study have mainly been applied in the context of
macroeconomic forecasting using a large number of predictors. Notable studies include Bai and
Ng (2008), De Mol, Giannone and Reichlin (2008) and Stock and Watson (2012), who use factor
models in conjunction with shrinkage methods to examine the predictability of key
macroeconomic indicators. The advantages of machine learning in the context of return

predictability and forecasting the equity premium have been explored among others by Rapach,
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Strauss and Zhou (2013), Kelly and Pruitt (2015), Kelly, Pruitt and Su (2018) and Rapach, Strauss,
Tu and Zhou (2018). A comprehensive review of the predictive accuracy of machine learning
methodologies has been performed by Gu, Kelly and Xiu (2018) in the context of forecasting the
equity premium, by Bianchi, Biichner and Tamoni (2018) who compare the ability of various
methods to forecast bond risk premia and by Kim and Swanson (2014) who use a large number of
models to predict key macroeconomic variables. Our contribution to this literature stems from
exploring the ability of a wide range of machine learning methods to predict stock, bond and

commodity returns using a different set of predictors for each index.

Second, our study adds to the literature of asset allocation and portfolio formation that
exploits the predictability of asset returns. There exists a rich literature in finance, such as
DeMiguel, Garlappi and Uppal (2009), Duchin and Levy (2009), Kritzman, Page and Turkington
(2010), Kirby and Ostdiek (2012), Bianchi and Guidolin (2014) and Gao and Nardari (2018), who
evaluate the out-of-sample performance of asset portfolios relative to simple benchmarks such as
the equal-weighted portfolio. Our contribution to this strand of literature arises from investigating
the benefits of integrating return forecasts from machine learning methodologies into an out-of-
sample asset allocation framework, by comparing the alternative portfolios to the widely used

benchmarks of the equal-weighted portfolio and portfolios based on the historical average forecast.

Third, it extends the literature of commodity return predictability and that of asset
allocation exercises that include commodities. Prominent studies that investigate the out-of-sample
predictability of commodities include Bessembinder and Chan (1992), Chen, Rogoff, and Rossi
(2010), Hong and Yogo (2012) and Gargano and Timmermann (2014). Asset allocation studies
that cover commodities include Erb and Harvey (2006), Jensen, Johnson and Mercer (2000),

Daskalaki and Skiadopoulos (2011), Belousova and Dorfleitner (2012), You and Daigler (2013),

55



Bessler and Wolff (2015). In a more recent study, Gao and Nardari (2018) assess the value of
incorporating commaodities in portfolios that exploit the predictability of asset return moments.
Our contribution to this literature stems from examining whether traditional portfolios would
benefit by the inclusion of commodities, when using forecasts generated by a wide range of

machine learning methodologies.

In the empirical analysis, we employ a variety of linear machine learning methods along
with forecast combination schemes to generate the return forecasts for each of the stock, bond and
commodity indices. In particular, we consider shrinkage and variable selection methods with a
wide range of convex and non-convex penalties, along with dimensionality reduction techniques
and methods that combine forecasts of single predictor models. The out-of-sample performance of
these methods is initially evaluated for each index separately against the historical average
benchmark. We conduct the statistical and economic evaluation of the forecasts for the full sample
and around NBER-dated recessions and expansions. To explore the potential benefits of using the
machine learning methods in an asset allocation setting, stock-bond-commodity portfolios are
constructed, each based on the return forecasts generated from a different multivariate prediction
model. We compare the performance of the portfolios with that of the equal-weighed portfolio
and a portfolio using the historical average forecast. The analysis is conducted for a conservative
and an aggressive investor and for different combinations of short-sale and leverage constraints.
Furthermore, we examine the performance of the portfolios for the full sample and around business
cycles incorporating transaction costs for monthly or quarterly rebalancing. We employ several
models for the covariance matrix in a mean-variance allocation framework along with employing

Conditional Value-at-Risk (CVaR) as an alternative risk measure in optimization. Finally, to assess
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the value of adding commodities to a traditional portfolio, mean-variance stock-bond portfolios

are constructed and their performance is compared with that of commodity-augmented allocations.

Overall, our study shows that using machine learning techniques can be beneficial for the
out-of-sample performance of multiasset portfolios. When, examining the predictive accuracy of
the alternative models to forecast the returns of each index individually, the majority of the
multivariate prediction models outperform the historical average benchmark and the bivariate
predictive regressions. In particular, shrinkage and variable selection methods generate the highest
performance for the stock and bond indices, while for the commodity index the results favor
dimensionality reduction methods. For the stock and commaodity indices the models perform better
during recessions, while for the bond index most of the models show increased predictability
during expansions, with the exception of shrinkage and variable selection methods that exhibit

high performance during recessions.

Our asset allocation results show that the majority of the portfolios outperform the equal-
weighted and historical average portfolio benchmarks. When comparing portfolios across different
combinations of weight constraints, our findings indicate that allocations that allow short sales or
leverage further improve the performance of portfolios based on machine learning methods.
Overall, the commodity-augmented portfolios of an aggressive investor outperform those of a
conservative investor. Additionally, when introducing transaction costs to portfolios with monthly
rebalancing the results tend to favor forecast combination techniques, however, reducing the
rebalancing frequency to quarterly leads the portfolios of an aggressive investor based on
shrinkage and dimensionality reduction methods to generate the highest performance. Mean-

variance portfolios across different specifications of the covariance matrix perform similarly.
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Using CVaR as an alternative measure in optimization, results in the vast majority of the mean-

CVaR portfolios outperforming the equal-weighted and historical average portfolios.

Our findings for the performance of the stock-bond-commodity portfolios during
recessions are mixed. The majority of the long-only allocations that yield positive values are based
on variable selection, shrinkage and dimensionality reduction methods. However, when short
selling is introduced the return and Sharpe ratio become positive for the majority of the models.
During expansions all portfolios result in positive returns and Sharpe ratios and the performance
between the proposed models varies less than in recessions. In recessionary periods, all portfolios
based on multivariate regression models outperform the equal weighted portfolios or those based
on the historical average forecast. In expansionary periods, portfolios with leverage or short selling

tend to yield higher performance.

Finally, when comparing the results of stock-bond portfolios with those that include
commodities for the full sample, commodities add value to a traditional portfolio when short
selling is allowed, with aggressive investors benefiting more from the inclusion of commaodities.
During recessions, the majority of the commodity-augmented portfolios outperform the traditional
portfolios across all weight constraints. In expansions, the long-only traditional portfolios
outperform those that include commodities. However, the difference in performance between
stock-bond and stock-bond-commodity allocations is greater in recessions, where commodity-

augmented portfolios perform best.

The remainder of this chapter is organized as follows. Section 3.2 presents the framework
and methods used to generate the out-of-sample return forecasts. Section 3.3 provides details on
the data and descriptive statistics, while Section 3.4 discusses the framework and results for the

statistical and economic evaluation. Section 3.5 describes the portfolio optimization framework.
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Finally, Section 3.6 presents the results of the optimal asset allocation strategies and Section 3.7

concludes.

3.2. Return Prediction Models

In this section, we discuss the general predictive regression model framework and the collection

of alternative models that we employ to generate asset returns forecasts.

3.2.1. Bivariate and Kitchen Sink Models

Let r be the T x 1 vector of asset returns, where r = (1,73, ...,77)". We denote by X the T X p

matrix of p predictors, with elements x; ,, where X = (x1, X3, ... X7_,)" denotes the p-dimentional
cross section of the predictors at time t and X = (xl,xz, ...,xp) denotes the T-dimentional time

series of the ith predictor.
The general approach we employ is based on the classic normal linear regression model:

r=a+Xp+e (3.2)
where a is the intercept, B = (,81,[?2, ...,ﬁp)' is the coefficient vector and € is the vector of

residuals. The most common method to fit the model is by ordinary least squares (OLS), where

the estimates of the parameters @ = (a, ) are obtained by minimizing the residual sum of squares:
argmin £(0) = argmin||r — (a + XpB)||? (3.2)
0 0

where L(-) indicates the least squares loss. Following the studies of stock return predictability (see
for example Goyal and Welch, 2008 and Rapach, Strauss and Zhou, 2010), we consider two
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approaches based on OLS. The first approach considers the simple bivariate prediction models of
asset returns, where each model is based on a single predictor x;, fori = 1, 2, ..., p. The individual

forecast, for t 4+ 1 using the ith predictor is given by:

Pieer = Qi+ x. By, fori =1,2,...,p. (3.3)
This type of models is often used to examine the predictive power of individual predictors
or as the preliminary step to generate forecast combinations based on bivariate prediction models.
The second is the kitchen sink (KS) approach, which is a multivariate prediction model utilizing

all p predictors. The forecast of a regression with p predictors is given by:

fryr = @ + X, (3.4)
It is well known that this model, namely the kitchen sink, has poor forecasting performance, as the
estimated parameters have low bias but high variance. This problem becomes more acute as the
number of predictors increases. To this end, we consider alternative models that belong to the

families of forecast combination, shrinkage and dimensionality reduction methods.

3.2.2. Sample Splitting and Cross-Validation

Prior to describing the alternative models for forecasting returns, we discuss how we split our total
sample to in- and out-of-sample periods, the forecasting scheme and provide an overview of the

concept of cross-validation.

We generate out-of-sample forecasts of asset returns by employing a recursive forecasting
scheme. The total sample, T, is divided into the in-sample part, R and the out-of-sample part, Q =

T — R. The expanding window is updated recursively, by increasing the estimation window by
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one observation at each step, with the parameters of each model being re-estimated at each
iteration. Proceeding this way through the end of the out-of-sample period, a series of Q forecasts
are generated for the asset returns. The first q, forecasts of the out-of-sample period, Q, serve as
the hold-out period for the forecast combination methods that require it, leaving a total of Q — q,

return forecasts for statistical and economic evaluation.

All of the shrinkage procedures and some of the dimensionality reduction methods
discussed below rely on hyperparameter tuning. The choice of hyperparameters controls the
amount of model complexity and is critical for the performance of the model. We use K-fold cross-
validation to select the hyperparameters. Cross-validation is performed in each iteration of the
recursive scheme, by using data only of the respective iteration’s in-sample period. We split the
in-sample data of each iteration into K blocks, with each block containing roughly the same
number of observations. The observations assigned to each block are randomly selected. For the
kth block we fit the model on the remaining K — 1 blocks and calculate the prediction error of the
fitted model when predicting the kth block of the data. After repeating this for k = 1,2, ..., K, the
K estimates of the prediction error are combined. This procedure is performed for each set of
hyperparamer values of the model for K = 10 folds. The optimal set of hyperparameters is the one
that minimizes the prediction error. After the optimal set of hyperparameters is chosen the model
is refitted using all data from the in-sample period and the estimates of the model parameters are
kept to construct the forecasts. For a detailed description of cross-validation see Friedman, Hastie

and Tibshirani (2009).

For the models based on principal component analysis and independent component

analysis the tuning parameters are chosen to minimize the Bayesian Information Criterion (BIC).
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3.2.3. Forecast Combination Methods

The forecast combination approach was originally proposed by Bates and Granger (1969) and can
be used as an alternative approach to individual forecasting methods (see Timmermann, 2006 for
a comprehensive review). Forecast combinations may be preferred over using forecasts based on
individual models, since the latter could suffer from model uncertainty and instability, while
combining different models can increase accuracy by including valuable information from each
model. Following, among others, Rapach, Strauss, and Zhou (2010), forecast combination
methods, using forecasts based on individual predictors, are employed to construct one-period

ahead expected return estimates.

The forecast combinations, denoted by 75, ,, are the weighted averages of the p individual

forecasts and can be expressed as:

~AC A
Tty1 = T 00 (3.5)
where f;,; = (fl,t+1.f‘z,t+1. ...,?pltﬂ) is the vector of p individual forecasts, based on bivariate

predictive regressions and w; = (wl,t' Wy ) e wp,t), are the combining weights of the individual
forecasts at time t. Several combining methods are considered and they all differ in the way that
w; is computed. The forecast combination methods used in this study include the mean, median,
trimmed mean, model rank based on mean squared forecast error (MSFE), discounted mean
squared forecast error and cluster. Some of the forecast combination methods require a holdout
period to estimate the weights. The first g, observations from the out-of-sample period Q are used

as the holdout period.

62



The first type of forecast combination methods are based on simple averaging schemes and
include the mean, median and trimmed mean. The mean combination (MC) sets the weight w; ; =
1/p fori =1,2,...,p and the median combination (MDC) is the median of f,,,. The trimmed
mean combination (TMC) sets w; . = 0 for the forecasts with the lowest and highest values and
w;; = 1/p — 2 for the remaining forecasts. These simple forecast averaging schemes do not

require a holdout period.

For the second type of forecasting methods, the combining weights are computed based on
the historical forecasting performance of the individual models over the holdout period. Aiolfi and
Timmermann (2006) consider a method based on the rank of each model according to the MSFE
(Rank). This weighing scheme lets the weights be inversely proportional to the forecast models’
rank, RANK;:

RANK;/

o (3.6)
§’=1 RANK;}

Wit =

where the model with the lowest MSFE value gets a rank of 1, the model with the second lowest
MSFE value gets a rank of 2 and so forth. Aiolfi and Timmermann (2006) also consider a clustering
approach to combine forecasts. The algorithm used is the C(L, PB). Specifically, the forecasts from
the individual models are grouped into L equal-sized clusters based on their past MSFE
performance, with the first cluster containing the models with the lowest MSFE. Each combination
forecast is the average of the individual forecasts contained in the first cluster. This procedure
starts with the initial holdout period g, and then goes through the end of the available OOS period
using a rolling window. We consider forecast combinations with two (C(2,PB)) and three

(C(3,PB)) clusters.
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The third type of combining methods considered is also based on past performance of the
individual models and uses time-varying combination weights. Stock and Watson (2004),

proposed the discounted mean square forecast error combining method, which uses the following

weights:
p
Wi = ml_tl/z mgf, (3.7)
i=1
t-1
where m;, = Z PYi1-do(rg,, — fl-,5+1)2 ,fort =R +qq,...,T
S=R

and y is a discount factor, with 0 < ¥ < 1. In the case of ¥ < 1 this method assigns greater
weights to recent individual predictive regression forecasts. When 1y = 1, then there is no
discounting and the equation above produces the optimal combination forecast derived by Bates
and Granger (1969) for the case where the individual forecasts are uncorrelated. The values for

considered are 1 and 0.9 (D (1) and D (0.9)).

3.2.4. Shrinkage Methods

In general, shrinkage methods regularize the coefficient estimates and involve fitting the model in
all p predictors. These procedures shrink the coefficients towards zero relative to the OLS
estimates and aim at significantly reducing the respective coefficient variances. Shrinkage methods
can also perform variable selection, since depending on the type of regularization, some

coefficients may actually be zero.

A shrinkage method is similar to the simple linear model, in that it considers only the

baseline, untransformed predictors, however, it modifies the least squares problem by adding one
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additional term in the loss function. In the most general form, a shrinkage method includes a

penalty term in the loss function:
argmin[£(0) + P(B; -)] (3.8)
0

There are several choices for the penalty function P(-)!. The inputs are standardized to have zero
mean and unit variance. We consider the shrinkage methods with the following penalties: ridge,
lasso, elastic net, adaptive lasso, bridge, smoothly clipped absolute deviation, minimax concave

penalty and smooth integration of counting and absolute deviation.

Ridge regression was introduced by Hoerl and Kennard (1970) and is the classical
penalized regression method. Coefficients are estimated by minimizing the residual sum of

squares subject to the [, penalty:

P(B; 1) = AlIBII? (3.9)
where 4 > 0 is a tuning parameter, which is determined separately and controls the amount of
shrinkage. The penalty in the case of the ridge regression, is based on [, regularization, where
AlBIIZ = 2 X, B?. When A = 0, the penalty term has no effect and ridge regression produces
similar estimates to OLS. However, as A — o the impact of the ridge penalty grows and the
coefficient estimates will approach zero. A disadvantage of the ridge regression is that while the

penalty A||B||? shrinks all the coefficients towards zero, it never sets them to zero.

! Note that the intercept, «, is not included in the penalty term. The penalty is applied to the coefficient vector g that
measures the association of each predictor with the asset returns and not the intercept, which is a measure of the mean
value of the asset returns when, x; = x, = -+ = x,, = 0. Penalization on the intercept is not typically considered,
since it would make the optimization procedure dependent on the origin chosen for the asset returns, r; i.e. adding a
constant to each observation of the asset returns, r;,would not simply result in a shift of the predictions by the same
amount (see Friedman, Hastie and Tibshirani (2009)).
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The least absolute shrinkage and selection operator (lasso) was introduced by Tibshirani
(1996) and has a penalty term based on the [; norm, which allows it to yield sparse models, the

penalty term for the lasso is:

P(B; 1) = AlIBll1 (3.10)
where A = 0 is the lasso tuning parameter and AlIBll, = A X1_,|B;]. The difference with ridge
regression is that lasso imposes a penalty based on the [; norm instead of the [, norm, which allows
for both shrinkage and variable selection, by setting some of the coefficients equal to zero. One of
the problems that lasso faces is that if there is a group of highly correlated variables, then lasso

will select arbitrarily only one of the variables in the group.

The elastic net (EN) was proposed by Zou and Hastie (2005) which combines both [, and
[, terms in the penalty, thus simultaneously performing continuous shrinkage, automatic variable

selection and can also select groups of correlated variables. The elastic net penalty is:

P(B; A; @) = A((1 = a)lIBll; + allBll®) (3.11)
where A is the tuning parameter and « € [0,1]. When a = 1 the elastic net becomes ridge

regression, if @ = 0 it is the lasso, while if a € (0,1) it has the properties of both methods.

The adaptive lasso (Alasso) was developed by Zou (2006) and solves the drawback of the
original lasso, which is that it does not necessarily satisfy the oracle properties (Fan and Li, 2001).
This is achieved by modifying the lasso to include adaptive weights that are used to penalize
different coefficients in the [, penalty. The adaptive lasso penalty is given by

14
1
P(B: A7) =Azwi|,8i|,withwi =W,for)/>0 (3.12)
i=1 i
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where W; is the weight corresponding to coefficient |B;], B; is the OLS estimate and y is a
hyperparameter which controls the strength of the weight. This leads to the adaptive lasso

penalizing individual coefficients less severely.

Bridge regression developed by Frank and Friedman (1993) and Friedman (2012), has a

penalty term based on the [, norm and is given by

P(B; A;v) = AllBII, (3.13)
where 4 >0 and y > 0 are the two tuning parameters and /1||B||’)ﬁ =AY, IB;|Y. The bridge
penalty term for 0 < y < 2 represents all the penalties between ridge regression and best subsets.
When using the squared error loss it includes ridge regression (y = 2), the lasso (y = 1) and best-
subsets regression (y = 0). Ridge regression produces dense solutions, while shrinking the
coefficient absolute values, while best-subsets regression produces the sparsest solutions by
forcing many coefficients to be equal to zero and applies no shrinkage to the non-zero coefficients,
with a large number of A producing fewer non-zero coefficients. For y > 1 all coefficients are
strictly non-zero and all penalties in the power family are convex, while for y < 1 the penalties

are non-convex.

The smoothly clipped absolute deviation (SCAD) is a non-convex penalty function, which

was proposed by Fan and Li (2001). The SCAD penalty is given by

p
P(B: V) = ) P(Bs &), (314)
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( ABil, if Bl <4
2yA|Bi| — |ﬁi|2 — A

if | <
where P('Bi;l; y) = 2y — 1) ’ ifA < Iﬁll <y
APy+1

for y > 2. SCAD coincides with the lasso until |8;| = 4, then smoothly transitions to a quadratic
function until |B;| = yA and then it remains constant for all |B;| > yA. For small coefficients, the
SCAD penalty has similar penalization rate as the lasso, but leaves large coefficients not

excessively penalized.

The minimax concave penalty (MCP) developed by Zhang (2010) is another non-convex

penalty function. The MCP is defined by

p
P(BiAY) = ) P(Bs i), (315)
i=1
1B:1* .
AlBil —2—1, if |B;| < Ay
where P(Bi;Ay) = 2 14
)4 .
= if || > Ay

for each value of 1 > 0 and y > 1, there is a continuum of penalties and threshold operators
varying from hard thresholding (y — 1 +) to soft thresholding (y — o). MCP starts with the same
rate of penalization as the lasso but smoothly relaxes the penalization rate to zero as the absolute
value of the coefficient increases. Furthermore, MCP relaxes the penalization rate immediately,

compared to SCAD, where the rate remains flat for a while before decreasing.

The smooth integration of counting and absolute deviation (SICA) penalty (Lv and Fan,

2009) takes the form
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p
P(Bi&iY) = ) P(Bi v, (316)
i=1

(v + DBl
Y + Bl

where PB;Ay) =2
ith A > 0 and a small shape parameter y > 0, such as 1072 or 10~%. SICA is another non-convex
regularization method which is a combination between the [, and [; penalties and therefore gives

sparse solutions. For smaller values of y, SICA yields results closer to the best-subsets regression,

while for larger values of y it is closer to the lasso.

3.2.5. Dimensionality Reduction Methods

The methods described in the previous section used shrinkage and variable selection to reduce the
dimensions of the predictors by forcing the coefficients to be close or equal to zero. The next set
of models incorporates the information of a large set of economic variables in a predictive
regression framework using latent factors, which are estimated either in a supervised way (using

information in both r and X) or an unsupervised way (using information only in X).

Partial least squares (PLS), introduced by Wold (1966), identifies the features in a
supervised way, by constructing linear combinations based on both r and X. Specifically, PLS
decomposes the matrix of standardized predictors X and the zero-mean vector of asset returns r
into the form: X =7ZP'+E and r =Zq' + e, where Z is a matrix that produces k linear
combinations or scores, the matrix P and the vector q are the loadings, while E and e are the

residuals. The score matrix is given by Z = XA. In order to find the matrix Z, the columns of A =
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(o1, ay, ..., ), Where k < p, need to be obtained through successive optimization problems. The

criterion to find the jth estimated direction vector «; is:
argmax cor?(r,Xa)var(Xa), s.t. a’'a =1, a'Xyya; =0, for j=1,..,k—1 (3.17)
o

where Xy is the covariance of X. PLS can be expressed as a multiple regression model: r;,; =
X:P + M1, Where the PLS-regression coefficients can be written as = Aq’ and 7 is the residual
vector. The version of PLS used is SIMPLS proposed by de Jong (1993). If k = p then PLS would

give a solution equivalent to the OLS estimates.

Kelly and Pruitt (2015), propose the three-pass regression filter (3PRF) which is a

generalization to PLS to include forecast proxies V. The first pass runs p time-series regressions:

Xit = Qo+ V' @+ & fori=12..,p (3.18)

The second pass runs T cross-sectional regressions:

xi,t = (po)t + (‘\),Ft + el',t, fOI‘ t = 1, 2, ...,T (319)
where @ is the coefficient estimate from the time-series regression from the first pass. In the third

pass a single time-series predictive regression is run:

Tev1 = Bo + F'B+ 1, (3.20)
where F are the estimated predictive factors from the second pass. All regressions are estimated
using OLS. To estimate 3PRF, the proxies do not necessarily need to be specified, instead we use
the automatic proxy selection algorithm, found in Kelly and Pruitt (2015), which constructs the
proxies using X and r. The 3PRF with automatic proxies becomes identical to PLS when the
predictors X have been standardized and the regressions in the first two passes do not include a

constant.
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Sparse partial least squares (SPLS) is an extension of PLS that imposes the [; penalty to
promote sparsity onto a surrogate direction vector c instead of the original direction vector o, while

keeping a and c close to each other (Chun and Keles, 2010). The first SPLS direction vector solves:

argmin —ko'Ma + (1 — k) (c — a) M(c — a) + A4 ]Ic|l; + 2;]Ic]|?, st da=1 (3.21)

ac
where M = X'rr'X, 4; and 1, are non-negative tuning parameters and 0 < k < 1, is a tuning
parameter to control the effect of the concavity of the objective function. To solve SPLS a large
A, value is usually required and setting A, = oo yields a solution that has the form of the soft
threshold estimator by Zou and Hastie (2005). Furthermore, since we use PLS to predict a
univariate response (the vector of asset returns r) the solution does not depend on the parameter
k. This reduces the number of tuning parameters to two, the tuning parameter A, and the number

of hidden components k.

In the dimensionality reduction methods described above the directions that best represent
the predictors X are derived in a supervised way since the vector of asset returns, r, is used to
determine the component directions. The next set of models derives the latent factors in an
unsupervised way, before using them in a predictive regression. The regression takes the following

form:

reg =a+ZB+g, (3.22)
where Z = (z,,2,, ...,Z;), With k < p, is the vector of latent factors or components that are
estimated through principal component analysis, sparse principal component analysis, independent
component analysis or reconstruction independent component analysis. The number of
components used to estimate the model varies for each iteration of the recursive scheme, with the

optimal number of components chosen to minimize the Bayesian Information Criterion (BIC).

71



Principal component analysis (PCA) is the most widely used method to obtain estimates
of the latent factors called principal components. Principal components are a sequence of
projections of the data mutually uncorrelated and ordered in variance. The first principal
component captures the maximum variation among all linear combinations of predictors, the
second principal component has the highest variation among all linear combinations in the
remaining orthogonal subspace, and so on, with the last principal component having minimum

variation.

PCA can be viewed as a regression-type problem where the goal is to find the first k

principal component loading vectors by minimizing:
argmin||X — XAA'||?, st A'A=1, (3.23)
A

where A is a p X k matrix. The solution to this problem is most often obtained via singular value
decomposition: X = UDV’, by setting A = V. The columns of V = (v,, v,, ..., v;) are the principal
components loadings. Each v; is used to derive the jth principal component, z; = Xv;, thus, ZV is
the dimension reduced version of the original predictors. The derived variable z, is the first
principal component of X and has the largest sample variance amongst all normalized linear

combinations of the columns of X.

Sparse principal component analysis (SPCA), developed by Zou, Hastie and Tibshirani
(2006), is similar to PCA as it is designed to uncover the linear combination of the original
predictors in a way that the derived variables capture the maximum variance. However, it produces
principal components with sparse loadings. PCA has the drawback that each principal component
is a linear combination of all the original predictors and the loadings are typically non-zero, which

leads to difficulties in the interpretability of the results. This issue is addressed by SPCA that
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produces modified principal components with sparse loadings, such that each principal component

is a linear combination of only a few of the original predictors.

The approach followed by Zou, Hastie and Tibshirani (2006) is based on the
regression/reconstruction property of PCA. They show how PCA can be viewed in terms of a ridge
regression problem and by adding the [; penalty, they convert it to an elastic net regression, which
allows for the estimation of sparse principal components. The following regression criterion is
proposed to derive the sparse principal component loadings:

T k k
argmin ) llx; ~ ACKi 12 + ) 2y llgll, + 4 ) llg*, st aa=1, (3.24)
AC 3 j=1 j=1

where A and C are both p X k. If 4, = A, = 0, T > p and restrict C = A, then the minimizer of
the objective function is exactly the first k loading vectors of ordinary PCA. When p > T, in order
to obtain a unique solution, A, > 0 is required. The [; penalty on c; induces sparseness of the
loadings, with larger values of A, leading to sparser solutions. The algorithm by Zou and Hastie

(2005) is used to compute the sparse approximations of each principal component.

Independent component analysis (ICA), developed by Comon (1994), aims at finding a
linear representation of non-Gaussian data so that the components are statistically independent.

The ICA objective is:

T
argminZHA'xi”l, st. A'A=1, (3.25)
A 4
=1

Solving the ICA problem amounts to finding an orthogonal A such that the components of
the vector random variable Z = XA are independent and non-Gaussian. More in detail, the

independent components are estimated by iterative estimation of the matrix A, systematically
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increasing the degree of independence of the components. However, since there is no direct
measure of independence, non-Gaussianity is used instead. Popular approaches for measuring
independence or non-Gaussianity in ICA are based on entropy. We use the FastICA algorithm

developed by Hyvirinen and Oja (2000), which uses negentropy as a measure of Non-Gaussianity.

Ordinary ICA has two drawbacks; it requires constrained optimization which can become
difficult in high dimensional settings and it is sensitive to whitening, a preprocessing step that
decorrelates the input data, which cannot always be computed exactly when p > T. Le, Karpenko,
Ngiam and Ng (2011), propose reconstruction independent component analysis (RICA), which
overcomes the drawbacks of ICA, by replacing ICA’s orthonormality constraint with a

reconstruction penalty. This produces the unconstrained problem:

T T
argminZIIA’xilll + AZIIAA’XL- —x|1? (3.26)
A . n
i=1 =1

where 4 > 0 is a regularization parameter. RICA is equivalent to ICA when k < p, data is

whitened and A approaches infinity.

3.3. Data and Descriptive Statistics

Our dataset consists of monthly closing prices of stock, bond and commodity total return indices,
denominated in US dollars. Stocks are proxied by the S&P 500 Total Return Index, bonds are
measured by the Bloomberg Barclays US Aggregate Bond Index and as a proxy for the commodity
class the S&P Goldman Sachs Commodity Total Return Index (GSCI) is used. A different set of
predictors is used to forecast the returns of each index. Details on the sources of the series used in
this study and the construction of the predictors are given in the appendix of this chapter (Table
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A3.1). Our sample period is from January 1977 to December 2016 for a total of 480 observations.
The initial estimation period, including the hold-out period, is from January 1977 to December
1996 (240 observations), while the out-of-sample period is from January 1997 to December 2016

(240 observations).

The majority of the predictor variables for the S&P 500 index are from Goyal and Welch
(2008). These are the dividend-price ratio (DP), dividend yield (DY), earnings-price ratio (EP),
dividend-payout ratio (DE), stock variance (SVAR), book-to-market ratio (BM), net equity
expansion (NTIS), Treasury bill rate (TBL), long-term yield (LTY), long-term return (LTR), term
spread (TMS), default yield spread (DFY), default return spread (DFR) and inflation (INFL) based
on the Consumers Price Index. Following Rapach, Wohar and Rangvid (2005), the industrial
production index (IP), the money stock M1 (M1) and the unemployment rate (UR) are also
included. Finally, we consider three additional variables, namely the Chicago Board Options
Exchange Volatility Index (VXO) and the macroeconomic and financial uncertainty indices
(Umacro and Ufin respectively), proposed by Jurado, Ludvigson and Ng (2015) and Ludvigson,

Ma and Ng (2015).

Following Ludvigson and Ng (2009), Lin, Wu and Zhou (2017) and Gao and Nardari
(2018), candidate predictors for the bond index returns are divided into three sets: interest rate
factors, stock market factors and other economic factors. Interest rate factors include the Treasury
bill rate, long-term yield, long-term return, term spread, default yield spread, default return spread
and the spread between the 6-month Treasury bill and 1- to 5-year government bonds (SP1 and
SP5 respectively). The stock market factors include the S&P 500 return, the dividend yield and

the VXO. The remaining variables are the Producers Price Index (PPI), capacity utilization
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(manufacturing, CAP), the inventories-sales ratio (IS), the money stock M1, the unemployment

rate and the two uncertainty indices.

The variables used to forecast the returns of the GSCI are primarily based on Gargano and
Timmermann (2014) and can be categorized into general economic factors and commodity specific
factors. The general factors include the dividend yield, Treasury bill rate, long-term return, term
spread, default return spread, inflation, the industrial production index, the money stock M1, the
unemployment rate, Kilian’s (2009) real economic activity index (REA), the Chicago Fed National
Activity Index (CFNAI), and the macroeconomic and financial uncertainty indices. The
commaodity specific factors are the price of crude oil (WTI) and four commodity currencies (Chen,
Rogoff and Rossi (2010)), the Australian dollar-US dollar (USDAUD), the Canadian dollar-US
dollar (USDCAD), the Indian rupee-US dollar (USDIND) and the New Zealand dollar-US dollar

(USDNZD).

Table 3.1 presents the descriptive statistics for the monthly returns of the three indices. The
stock index has the highest mean return (0.98%), a standard deviation of 4.3%, exhibits the most
negative skewness (-0.58) and has a kurtosis of 5.10. The bond index has a mean return of 0.61%,
the lowest standard deviation (1.57%), exhibits a positive skewness of 0.76 and has the highest
kurtosis (10). The commodity index has the lowest mean return (0.56%), the highest standard
deviation (5.59%), a skewness of -0.24 and the lowest kurtosis (5.06). The stock index is weakly
positively correlated with the bond and commodity indices (0.21 and 0.18 respectively), while the
bond and commodity indices are uncorrelated (-0.02). Figure 3.1 plots the prices and returns of the

three indices under consideration.

[Insert Table 3.1 Here]
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[Insert Figure 3.1 Here]

3.4. Out-of-Sample Performance

3.4.1. Statistical Evaluation

The benchmark against which the alternative forecasting models are compared is the historical
average forecast, given by: 7y .4, = (1/t) X5_, ;. As a measure of forecast accuracy we use the
Cambell and Thomson (2008) out-of-sample R? (R3). R3s measures the proportional reduction
in the mean squared forecast error (MSFE) of the individual model forecast relative to the historical

average. The R3 for the ith model is given by:

Q—-qo—1
ROS = 1 — MSFE; /MSFEO , where MSFE = ﬁz rt+1 — ft_l_l)z (3.27)
0—

A positive R3¢ implies that the alternative model outperforms the historical average in terms of
MSFE. The statistical significance of the R3 is assessed by the Clark and West (2007) MSFE-
adjusted statistic. The statistic tests the null hypothesis that the MSFE of the historical average
benchmark is equal or less than the MSFE of the alternative model, against the one-sided
alternative hypothesis that the historical average MSFE is greater than the MSFE of the alternative

model. Clark and West (2007) adjust the MSFE in the following way:

Q—qo—1 Q—qo—1

1
MSFE,q; = m Z (Tes1 — Fe41)? + 1 Z (T0t+1_7”t+1) (3.28)

The MSFE-adjusted statistic is equivalent to the t-statistic for the constant, obtained by regressing:
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~ 2 n R . 2
fe+1 = (rt+1 - rO,t+1) — (141 — rt+1)2 + (To,t+1 - 7't+1) (3.29)
on a constant. The null hypothesis of equal predictive ability is rejected when the t-statistic is

greater than 1.282, 1.645 and 2.326, for a one-sided 0.1, 0.05, and 0.01 test respectively.

3.4.2. Economic Evaluation

Following Campbell and Thompson (2008) and Ferreira and Santa-Clara (2011), the economic
value of the return forecasts is measured for an investor with moderate risk preferences. The
strategy involves a portfolio, with monthly rebalancing, consisting of a risky asset (the stock, bond
or commodity index) and a risk-free asset (Treasury bill). The optimal weight of the risky
asset, w; ¢, based on the return forecast of model i, under a mean-variance framework with a one-

month ahead horizon is:

Tit+1 — Trt+1

w, = LS (3.30)

A2
YOi+1
where 7; .4 is the return forecast based on model i, 75,4 is the risk-free rate of return, y is the
coefficient of relative risk aversion and 67, , is the forecast of the variance. The one-month ahead

portfolio return is given by:

Tpt+1 = Welppr + (L= We)Treqq (3.31)
The forecast of the variance, 62, is derived using a similar approach to Cambell and Thomson
(2008), where 62, ; is estimated as the rolling average of the variance of past monthly returns. The
length of the rolling window is set to ten years (120 observations). Following Neely, Rapach, Tu

and Zhou (2014) y is set equal to five.
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The portfolio performance is evaluated using the certainty equivalent return (CER), the

Sharpe Ratio (SR) and portfolio turnover. The certainty equivalent return is defined as:

CER = 7 — 0.5y5% (3.32)
where 7 and a2 are the mean and variance of the portfolio returns over the out-of-sample period.
The CER can be interpreted as the risk-free return that a mean-variance investor with coefficient
of relative risk aversion y is willing to accept instead of investing in the risky portfolio. The
difference in CER is reported (ACER), which is equivalent to the CER generated by the portfolio
utilizing the forecasts minus the portfolio based on the historical average benchmark. ACER can
be interpreted as the performance fee that the investor would be willing to pay to use the
information of each alternative model instead of the benchmark. The Sharpe ratio is defined as the

average excess return of the portfolio divided by the standard deviation of the portfolio.

The performance based on the R3 is presented in Table 3.2 for the bivariate prediction
models and in Table 3.3 for the multivariate prediction models. We also report the R3¢ during
NBER-dated recessions and expansions. Table 3.3 also includes the performance based the
annualized ACER and SR measures. All models are compared against the historical average

forecast.

From the first panel of Table 3.2, we observe that, even though six models yield positive
R for the stock index, the MSFEs of all variables are significantly less than the historical average
MSFE at conventional levels of significance according to the MSFE,q; statistic. Overall, the
bivariate prediction models for the stock index perform better during recessions than in
expansions, in terms of R3¢, however, the only case with a statistically significant R3¢ according

to the Clark-West test is the BM variable during recessions. The results for the bond index, as
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reported in the second panel, show eight variables with positive R3¢, of those five have significant
MSFE,q; statistic (PPI, IS and SP500 at the 5% level, while SP1 and SP5 at the 1% level).
Additionally, the MSFE,g; statistic for DY indicates that the MSFE of the alternative model is
significantly less than the MSFE of the historical average despite having R3¢ < 0. This result is
possible when comparing forecasts of nested models. The results during business cycles for the
bond index, according to the Clarke-West test, favor expansionary periods. Finally, for the
commodity index, there are twelve models with positive R3¢, but only those associated with DFR,
CFNAI and WTI are statistically significant. The majority of the models perform better during

recessionary periods.
[Insert Table 3.2 Here]

Table 3.3 reports the results of the forecasting performance based on multivariate models
for the stock, bond and commodity indices. For the stock index there are 18 models with positive
R3¢ (from 0.05% to 4.05%), with nine models having significant R3s statistics. The best
performing models among them are; SCAD, followed by the lasso, MCP, elastic net and ridge
regression. Surprisingly, the model estimated by OLS (KS) also has a positive R3 statistic, which,
along with SICA, is significant at the 5% level. However, this result is not so strange since several
of the original 14 predictors by Goyal and Welch (2008) have been adjusted to stationarity by
taking first differences (see the Appendix of Chapter 3) and there are six additional predictors
included in the dataset. In terms of R3, the models perform better in recessions, however, only
the KS and ICA models have significant MSFE,g; statistics. During expansions the KS and
penalized regression methods generate statistically significant but lower R3, compared to the

recession subperiod. This is consistent with studies such as Rapach, Strauss and Zhou (2010),
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which report that predictability of stock returns is concentrated in economic recessions. According
to the economic evaluation, 18 models generate CER values higher than the historical average
benchmark (from 0.03% to 4.63%), while the Sharpe ratios are between 0.26 and 0.70. The highest
ACER and SR values belong to the portfolio based on the KS model, followed by those based on
forecasts generated by SICA, adaptive lasso, 3PRF and lasso models. Overall, for the stock index
penalized regressions tend to outperform the majority of the models based on dimensionality
reduction and forecast combination methods, while the forecasts generated by the KS model are

both statistically significant and yield higher economic value than the other models.
[Insert Table 3.3 Here]

Our findings for the bond index indicate that there are 21 models with significant MSFE,;
statistics even though there are 15 models with a positive R3¢ (from 1.45% to 10.62%). The best
performing model is the elastic net, followed by ridge regression, the lasso, MCP and bridge
regression. During expansionary periods, all models except ICA and RICA have statistically
significant R3¢ while in recessions the lasso, SCAD and MCP are the only models with significant
R3s. The finding that the majority of the models for the bond index generate higher and statistically
significant R3 during expansions is the opposite from recent studies, such as Gargano, Pettenuzzo
and Timmermann (2017), which find that R3¢ values are generally higher during recessions. The
ACER values for the bond index are relatively low, with seven models yielding positive CER gains,
between 0.02 and 0.62. The models with positive ACER include ridge regression, the elastic net,
PLS, SPLS and KS, while the majority of the portfolios based on forecast combination methods
show similar performance to the HA benchmark. The Sharpe ratios are between 0.83 and 1.16,
with the highest ratio belonging to the KS model and ridge regression, elastic net, PLS and SPLS

having similar performance. Overall, the majority of penalized regressions outperform forecast
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combination methods, while the performance of all dimensionality reduction methods fails to
surpass that of the historical average benchmark in terms of MSFE. The economic evaluation
indicates moderate out-of-sample results, especially according to ACER, with the portfolios based

on forecast combinations having similar performance to the historical average.

Turning to the results for the commodity index, all models except KS and ICA deliver a
positive RSS statistic, while there are 18 models with significant MSFE,g; statistics. The positive
R3 range from 0.14% to 4.36%, with the highest value belonging to PCR, followed by SPCA,
RICA, PLS and the 3PRF. In recessionary periods, most of the models generate positive and
statistically significant R3s, compared to expansionary periods where only the lasso produces
statistically significant results. These results are consistent with Gargano and Timmermann (2014),
who find that the predictive accuracy of commaodity return forecasts tends to be higher during
recessions than expansions. The CER gains are positive for 19 of the portfolios based on
multivariate prediction models, with values between 1.24% and 3.01%. PLS generates the highest
ACER, followed by adaptive lasso, lasso and both cluster combinations. The Sharpe ratios of the
commaodity portfolios are low, with RICA generating the highest ratio, followed by SPLS, PCA,
adaptive lasso and lasso. The results for the commodity index favor dimensionality reduction

methods, with penalized regressions and forecast combinations yielding similar performance.

3.5. Optimal Asset Allocation

Consider an investor who allocates her wealth among N individual assets with portfolio weight
vector: w = (wy, wy, ..., wy). The initial wealth is normalized to 1. The benchmark strategy is the
naive diversification rule of an equal-weighted portfolio, where w; = 1/N, forj = 1,2,...,N. The
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objective of the main framework is to optimize the trade-off between risk and return. The

optimization problem is:

m“i’n[yd)P (w) —w'R] (3.33)
where @, is the portfolio risk function, R = (f, 141, f2 141, -, Eves1) IS the matrix of return
forecasts for each asset and y is the coefficient of relative risk aversion. As an alternative to the

1/N benchmark, portfolios using historical average forecasts are considered. The two benchmarks

are compared to portfolios based on forecasts generated by multivariate prediction models.

All portfolio models include short-selling and leverage constraints to avoid implausible
positions. The first constraint sets an upper bound to the sum of the portfolio weights, w'ly = h,
where Iy is an N-vector of ones and h denotes the maximum leverage, for example h = 1 ensures
that the portfolio weights sum up to one, while h = 1.5 indicates that the investor cannot borrow
more than 50% of total wealth. The second constraint, sets a lower bound to the weight of each
asset, w; > [, with j = 1, ..., N, where [ is the lower bound for each weight, w;. When [ = 0, then
all weights are positive and the resulting portfolios are long-only, while [ = —0.5 restricts short

sales to 50% of wealth. The portfolio return at t + 1 can then be computed as:

Tpe+1 = Wilppr + (1 — Wily)7pe4q (3.34)
where r is an N-vector of risky asset returns. In the case of h = 1, the portfolio return is equivalent
t0 7p 41 = Wilpyq. AS a basic measure of portfolio risk the standard deviation of the portfolio,
Markowitz (1952), is used. To construct mean-variance (MV) optimization framework, the risk

function of the portfolio, ®,(w), is set to

o(w) = Vw'Iw (3.35)

where X is the N X N covariance matrix.
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3.5.1. Covariance Matrix Estimation

For the mean-variance optimization framework, the forecast of the covariance matrix,

X, .1, Is estimated using four different approaches. In the first approach X, , forassetsi =1, ..., N
is estimated based on the sample covariance matrix: S;,; = %zgﬂ(rhs — 1) (rys —13)’, using

information up to time t.

The second method used to obtain the estimate of the covariance matrix is the dynamic
conditional correlation GARCH model, proposed by Engle (2002). The one-period ahead

covariance based on the DCC GARCH model evolves according to:

Zit1 = DeyaRey1Digq (3.36)
where D,;, is an N x N diagonal matrix with conditional standard deviation &; ., on the ith
diagonal element and R, is the N X N correlation matrix, with ones on the diagonal and
conditional correlations in the off-diagonal. The estimation of the DCC GARCH has two steps.
The first step involves estimating the diagonal elements of the conditional standard deviation
matrix, D, where the conditional standard deviation, &; ;,, of the ith asset is usually estimated
usinga GARCH(1,1) model. The second step involves the estimation of the conditional correlation
matriX, R,,;. Removing the conditional mean from the N series of asset returns yields the
residuals, €;,, and the standardized residuals, u;.,, can be obtained using the conditional standard

deviation matrix, D;,: u;,; = D!, €.,,. The conditional correlation structure then is:

Q;s1 = (1 —a—-b)Q + auu; + bQ; (3.37)

-1 -1
Ry = Q:+1Qt+1Q;+1
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where Q is the unconditional covariance of the standardized residuals and Q}_ , is a diagonal matrix

composed of the square root of the diagonal elements of Q; .

The third approach is based on the shrinkage estimator of the covariance matrix proposed
by Ledoit and Wolf (2004), which shrinks the sample covariance matrix towards a one-parameter
matrix, where all the variances are the same and all covariances are zero. The shrinkage estimator

of the covariance matrix, X*, can be written as:

X =6F+(1-9)S, (3.38)
where S is the sample covariance matrix with entries s; ;, F is the shrinkage target with entries f; ;

and ¢ is a shrinkage constant between 0 and 1. The shrinkage target in this case is set to:

F = vly, with v = tr(SIy)/N (3.39)
where Iy isthe N x N identity matrix. The optimal shrinkage constant (see Ledoit and Wolf (2003)

for details) is:

6" = max {O, min {;, 1}} , with k = % (3.40)

where  denotes the sum of the asymptotic variances of the entries of the sample covariance

matrix:

N N 1 T
. _ _ 2
™= Z Z iy, with ;= 72[(% =) (1 = 7) = si (3.41)
t=1

i=1 j=1

and y measures the misspecification of the shrinkage target, where y = Z?:lz?l:l(fi,j — si,j)z.

The final approach to estimate the covariance matrix is the graphical lasso algorithm,

proposed by Friedman, Hastie and Tibshirani (2008), which estimates the sparse precision matrix
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(inverse of the covariance matrix), using the [; (lasso) penalty to enforce sparsity. The graphical

lasso problem is to maximize the following penalized log likelihood:

log(det®) — tr(SO®) — p||0O]|; (3.42)
where p > 0 is a tuning parameter controlling the amount of regularization. Here, ® = £71, with

entries 0; ;, isthe N x N inverse of the covariance matrix and [|@®||; is the [; norm of ® — the sum

g
of the absolute value of the elements 6; ;. The penalty parameter p is chosen by 10-fold cross
validation, to make the value of —log(detX,) — tr(Z,Z71) large, where X, is the covariance

matrix estimated using the training set and X, is the covariance estimated over the validation set.

3.6. Portfolio Performance

In this section, we assess the economic value of using return forecasts to construct portfolios and
whether commodities add value to a traditional portfolio consisting of bonds and stocks. The
evaluation period is the same as the one used for the statistical and economic evaluation of the
forecasts. The portfolios are constructed recursively using the related return and covariance
forecasts in each iteration, starting in January 1997. The buy-and-hold portfolio returns are
calculated for the period of one month and the portfolio is rebalanced monthly until the end of the
evaluation period (December 2016). Each portfolio is computed for different combination of
weight constraints: unleveraged long-only portfolios (0 < w; < 1), leverage restricted to 50% of
wealth (0 < w; < 1.5), short selling restricted to 50% of wealth (—0.5 < w; < 1) and portfolios

with both leverage and short selling restricted to 50% of wealth (—0.5 < w; < 1.5). Two types of

investors are considered based on different values of the coefficient of risk aversion, y = 2 for an

aggressive investor and y = 10 for a conservative investor.
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The performance of the portfolios is evaluated over the out-of-sample period using the
certainty equivalent return of the portfolio and the out-of-sample Sharpe ratio. The Sharpe ratio
(SR) is calculated as the fraction of the out-of-sample excess return (average realized return less
the risk-free rate) divided by the standard deviation of the out-of-sample portfolio returns:

SR = M (3.43)
Op
where 7, = 1/(Q — q,) 2?;1"0 7p ¢ IS the average realized return of the portfolio over the out-of-
sample period, 7 is the risk free rate and 65 is the standard deviation of the portfolio excess returns

over the out-of-sample period.

3.6.1. Performance of Stock-Bond-Commodity Portfolios

Tables 3.4 and 3.5 report the performance of stock-bond-commodity portfolios for the full out-of-
sample period, based on the certainty equivalent return and Sharpe ratio respectively. Panels A
through D present the results based on one of the four different approaches to estimate the
covariance matrix. Within each panel the results for the two different types of investors and for

different weight constraints are compared.

The first row of Table 3.4 gives the certainty equivalent return of the 1/N portfolio, which
is 3.87% for an aggressive investor and -0.27% for a conservative investor across all panels, since
derivation of the weights for this strategy does not involve any optimization or estimation and
ignores the data. The second row of the table gives the certainty equivalent return of the mean-
variance portfolio based on the historical average, which varies based on the estimation approach

of the covariance matrix, the type of investor and weight constraints. For the sample covariance
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matrix, the certainty equivalent return of the HA portfolio for an aggressive investor (y = 2), is
5.65% for w; € [0,1], 5.34% for w; € [0,1.5], 5.29% for w; € [—0.5,1] and when both leverage
and short selling is introduced (w; € [—0.5,1.5]) the certainty equivalent return increases to 5.85%.
On the other hand, a conservative investor (y = 10), for weight constraints 0 < w; < 1 the
certainty equivalent return is 3.71%, for 0 < w; < 1.5 it is 4.54%, when —0.5 <w; <1 it is

3.93% and when weight constraints are set to —0.5 < w; < 1.5 the portfolio return is 4.71%.

[Insert Table 3.4 Here]

The certainty equivalent return of the mean-variance portfolios, for an aggressive investor,
based on the sample covariance matrix and return forecasts generated by multivariate predictive
regressions, is between 3.70% and 8.84% for the case when no short sales or leverage is allowed,
5.27% to 10.87% for a 50% leverage constraint, 4.28% to 13.07% for a 50% short-sales constraint,
while portfolios with both short sales and leverage allowed generate CER from 5.16% to 15.56%.
For leveraged portfolios with short selling all models except ICA yield higher return than the HA,
while the models that exhibit the highest performance across all weight constraints are the adaptive
lasso, SICA and SPLS. In the case of a conservative mean-variance investor, for weight constraints
0 < w; < 1 the certainty equivalent return is between 3.24% and 6.16%, when leverage is 50% of
wealth (0 < w; < 1.5) it is from 2.46% to 6.11%, when short selling is allowed (—0.5 < w; < 1)
it is from 2.07% to 6.31%, while the return for a less conservative investor with portfolio weights
—0.5 < w; < 1.5, has a range from 1.38% to 7.19%, depending on the model used to construct
the return forecasts. For an investor with y = 10 the majority of the models outperform the
portfolio based on the historical average forecast across the combinations of weight constraints,

with models based on PCA and DMSFE combination yielding the highest performance. The
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differences in CER, when comparing the results for the mean-variance optimization framework
across alternative covariance matrix estimates, are not as substantial as those between risk
preferences or combinations of weight constraints. For an aggressive investor, portfolios with
either short selling or leverage generate higher certainty equivalent return than the unleveraged
long-only allocations, while portfolios with both leverage and short selling allowed yield the
highest CER. Overall, the observation that can be made is that out-of-sample; the majority of the
models utilizing return (and covariance) forecasts outperform the 1/N benchmark in terms of

certainty equivalent returns.
[Insert Table 3.5 Here]

Table 3.5 reports the annualized Sharpe ratio for the full out-of-sample period. The findings
indicate that the majority of the models utilizing mean and covariance forecasts outperform the
equal-weighted portfolio benchmark with a ratio of 0.27 (the exception being SPCA for an
aggressive investor with no leverage or short selling). The Sharpe ratio for the HA portfolio with
y = 2 does not change drastically for different weight constraints, the ratio has a range between
0.36 when short selling or leverage is set to 50% of wealth and 0.39 for either w; € [0,1] or w; €
[—0.5,1.5]. For a conservative investor the Sharpe ratio is between 0.56 (w; € [0,1]) and 0.72
(w;j € [—0.5,1.5]). The Sharpe ratio for mean variance portfolios with relative risk aversion of 2,
is between 0.25 and 0.6 for unleveraged and long only portfolios, 0.36 to 0.64 for a 50% leverage
constraint, 0.31 to 0.69 for a 50% short-sales constraint and 0.36 to 0.75 when both leverage and
short selling are restricted to 50%. Some of the portfolios with the highest performance are those
with return forecasts generated by the adaptive lasso, SPLS and rank combination scheme. Based
on different weight constraints, the Sharpe ratios for a conservative investor are higher compared

to those of a more aggressive investor, with values from 0.57 to 0.9 when w; € [0,1], 0.65 to 0.92
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for w; € [0,1.5], 0.61 to 0.92 for w; € [—0.5,1] and 0.69 to 1.01 when w; € [—0.5,1.5]. Adaptive
lasso and PCA are among the models that yield the highest ratios across all weight constraints.
Overall, when leverage and short sales are allowed, the mean-variance portfolios yield higher
Sharpe ratios. Similarly to CER, there are no major changes when comparing the respective Sharpe
ratios across different specifications of the covariance matrix. Our findings differ from DeMiguel,
Garlappi and Uppal (2009), since we observe that portfolios based on alternative forecasting
models for the returns and the covariance matrix consistently outperform the 1/N portfolio for
different investment constraints and levels or risk aversion. However, in their study the portfolios
consist of a larger number of assets and also use sample moments, which may be the reasons for
this discrepancy. Additionally, the results are consistent with the recent study by Gao and Nardari
(2018) who construct stock-bond-commaodity portfolios and find that strategies that employ

forecasts of asset return moments outperform strategies with a fixed weighing scheme.

Performance of Stock-Bond-Commodity Portfolios during Business Cycles

To examine the contribution of return forecasts to stock-bond-commodity portfolios during
business cycles, the full out-of-sample period is divided into recessionary and expansionary
subperiods. Tables 3.6 and 3.7 present the portfolio performance during NBER-dated recessions
and expansions, based on the certainty equivalent return and the Sharpe ratio respectively. The

portfolios are based on the sample covariance matrix.
[Insert Table 3.6 Here]

[Insert Table 3.7 Here]

90



The CER and Sharpe ratio of the 1/N portfolio are negative during recessions (-17.02%
and -0.92 respectively) and positive during expansions (6.43% and 0.57 respectively). The HA
portfolio yields positive CER and Sharpe ratios during expansionary periods, with portfolios with
y = 2 generating higher returns but lower ratios than portfolios with y = 10. In recessionary
periods the returns and Sharpe ratios are negative, with the portfolios of the aggressive investor

significantly underperforming those of the conservative investor in terms of both measures.

For a mean-variance investor with relative risk aversion parameter of 2, the majority of the
long-only portfolios produce negative certainty equivalent returns and Sharpe ratios during
recessions, with the exception of some models, such as adaptive lasso, SICA, PLS, 3PRF and
SPLS, that generate positive values. The CER (Sharpe ratio) of those models is between 4.05%
and 12.28% (0.32-0.72) for w; € [0,1] and from 5.94% to 14.45% (0.45-0.73) when w; € [0,1.5].
Other models with positive returns include RICA and rank combination. On the other hand, when
short selling is allowed the certainty equivalent return and Sharpe ratio become positive for all
portfolios, except for those based on the median combination. For example, when a short selling
constraint of 50% is imposed, adaptive lasso, PLS, the 3PRF, SPLS and RICA generate returns
between 25.84% and 44.37% and ratios from 1.03 to 1.56. When both short selling and leverage
is allowed, the five portfolios with the highest performance yield CER from 23.01% to 45.23%
and Sharpe ratios from 0.97 to 1.49. During expansions all mean-variance portfolios with y = 2
generate positive CER and Sharpe ratios, with leverage and short selling having a greater (positive)
effect on the return of the portfolios. Specifically, the certainty equivalent returns range from
5.14% to 8.81% for unleveraged long-only portfolios, from 7.22% to 11.17% when 0 < w; < 1.5,
from 5.09% to 10.65% when —0.5 < w; < 1 and from 5.83% to 13.20% when both leverage and

short sales are restricted to 50% of wealth. On the other hand, the Sharpe ratio does not vary greatly
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among different sets of weight constraints during expansionary subperiods, with ratios ranging
between 0.35 and 0.68, across all models and weight combinations. In recessionary subperiods all
portfolios based on multivariate regression models outperform the equal-weighted portfolios or
those based on the historical average forecast, in terms of both measures. In expansionary
subperiods the majority of the portfolios outperform the 1/N benchmark in terms of CER, while
the results based on the Sharpe ratio appear mixed. There are no portfolios that outperform the HA

when w; € [0,1] and for the remaining weight combinations the results are not consistent.

For a conservative investor the pattern of the results during recessions, based on the
certainty equivalent return, is similar to that of an aggressive investor. Most of the models generate
positive CER when short-selling is allowed, while for long-only allocations the results are mixed.
Short sales again have a considerable impact on portfolios, with models based on adaptive lasso,
PLS, the 3PRF, rank and cluster combinations leading to a certainty equivalent return between
9.23% and 13.10% for —0.5 < w; < 1 and from 9.10% to 13.92% for weight constraint —0.5 <
w; < 1.5. Our findings for portfolios with y = 2 based on the Sharpe ratio (Table 3.7) paint a
similar picture to that based on the CER, with all models generating higher ratios when short
selling is allowed. For example, for a 50% short-sale constraint the ratios are from 0.05 to 1.61
and when a 50% constraint is imposed to both short sales and leverage the ratios range from 0.12
to 1.66. During expansionary periods all portfolios result in positive CER and Sharpe ratios,
yielding returns from 1.31% to 7.05% and ratios from 0.57 to 1.02, varying based on the weight
constraints, with leveraged portfolios exhibiting higher values in both measures. The models with
consistent high performance across all weight combinations are the elastic net for the certainty
equivalent return and PCA for the Sharpe ratio. In recessions all models, except KS, outperform

both the equal-weighed and the HA portfolios, however, in expansions the results appear mixed,
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with the exception that when short selling is allowed the majority of the models outperform the

naive portfolio.

3.6.2. Performance of Stock-Bond Portfolios

In this section, we focus on the performance of traditional portfolios consisting of only
stocks and bonds and compare it with that of the respective stock-bond-commodity portfolios, in
order to determine whether including commodities in the portfolio adds economic value. The
analysis is conducted for the full out-of-sample period and for the NBER-dated recession and

expansion subperiods.

[Insert Table 3.8 Here]

Table 3.8 presents the certainty equivalent return and Sharpe ratio for the stock-bond
portfolios for the full sample. For traditional portfolios that utilize forecasts from multivariate
predictive regressions, the results indicate that the majority of the models outperform the HA
portfolio in terms of both performance measures. When comparing the alternative portfolios
against the equal-weighted allocation, in terms of CER, most of the portfolios outperform the
benchmark, however, in terms of Sharpe ratio, the majority of the models for an aggressive investor
fail to produce higher ratios than the equal-weighted benchmark, but most of the portfolios with

relative risk aversion of 10 outperform the 1/N portfolio.

According to the 1/N strategy, reported in the first row of the table, an investor would be
reluctant to include commaodities in a portfolio of stocks and bonds, based on either performance
measure, which is consistent with the findings of Gao and Nardari (2018) that a fixed weight

allocation favors traditional portfolios. For a mean-variance allocation based on the historical
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average forecast, commodities would add value to traditional portfolio only for an aggressive
investor and for weight combinations that allow short selling. This result is consistent with the
findings in Daskalaki and Skiadopoulos (2011) and Gao and Nardari (2018), who find that using
sample moments to form the long-only portfolios leads to traditional strategies dominating the
commodity augmented allocations. When comparing mean-variance portfolios based on
alternative forecasts, our findings are not as conclusive and vary depending on the degree of risk
aversion, the weight constraints and the models used to generate the return forecasts. For an
aggressive investor, when no short selling or leverage is allowed 21 out of the 24 stock-bond
portfolios outperform those that include commodities, the exceptions being the portfolios based
on the 3PRF, SPLS and RICA, while with 50% leverage only SPLS yields better results when
commodities are included. For both weight combinations with a 50% short-sales constraint the
results are reversed with 19 and 18 portfolios that include commaodities outperforming their stock-
bond counterparts, for w; € [—0.5,1] and w; € [—0.5,1.5] respectively. The results based on the
Sharpe ratio follow a similar pattern, with most of the stock-bond portfolios producing higher
ratios when no short selling is allowed (23 models for both sets of weight constraints) and when a
50% short-sales constraint is imposed, the results favor the stock-bond-commodity portfolios, with

16 and 17 commodity-augmented portfolios having higher ratios for —0.5 < w; < 1 and —0.5 <
w; < 1.5 respectively. For arisk averse investor, the majority of the traditional portfolios, for w; €
[0,1] and w; € [0,1.5] respectively, outperform the portfolios that include commaodities in terms

of certainty equivalent return. When short selling is allowed, there are some portfolios that favor

a commodity-augmented allocation.

Performance of Stock-Bond Portfolios during Business Cycles
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Tables 3.9 and 3.10 report the performance, based on certainty equivalent return and
Sharpe ratio respectively, for the stock-bond portfolios during business cycles. For both
benchmark portfolios, the CER and Sharpe ratio are positive during expansions and negative in
recessions. For the mean-variance allocations utilizing forecasts from multivariate predictive
regressions, there are models that exhibit negative returns and Sharpe ratios during recessionary

periods, while in expansionary periods all models yield positive returns.

[Insert Table 3.9 Here]

[Insert Table 3.10 Here]

During recessions all commodity-augmented portfolios of an aggressive investor, except
most of those based on KS and ICA, median and C(3, PB) forecasts, outperform the traditional
portfolios across all weight constraints, according to both performance measures. For a
conservative investor, commodities add value to a portfolio when short-selling is allowed. In
expansionary subperiods, commodity augmented portfolios outperform traditional portfolios in the
case of an aggressive investor that utilizes machine learning forecasts and for weight combinations
with 50% short selling. However, the difference in return values between stock-bond and stock-
bond-commodity allocations is not as great in expansions as in recessions, where the commodity-
augmented allocations have better performance. In terms of Sharpe ratios, the majority of the
traditional portfolios perform better, with the exception of those belonging to an aggressive
investor based on forecast combinations that allow short selling. Overall, commodities benefit a
traditional portfolio, when short selling is allowed and during NBER-dated recessions. The
findings that commaodities add greater value to a stock-bond portfolio when short selling is allowed

and particularly for an aggressive investor are consistent with Bessler and Wolff (2015).
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3.6.3. The Effect of Transaction Costs on Stock-Bond-Commodity Portfolios

To examine the effect of transaction costs on the asset allocation strategies, we compute
the turnover as a measure of the amount of trading required to implement a particular strategy.
Following DeMiguel, Garlappi and Uppal (2009), the portfolio turnover is defined as the average
absolute change of the portfolio weights over the Q — g, rebalancing periods across the N assets,

given as follows:

1 Q—qo-1 N
PTp = ——— Z lej,t+1 - Wj,tl (3.44)
Q—qo—1 = L
= ]_1

where w; ., 1 is the weight in asset j at time ¢ + 1 and w; , is the weight in asset j at time before
rebalancing at t + 1. The transaction costs are set to 50 bps for each asset. When a portfolio is
rebalanced at t + 1, |Wj,t+1 - Wj,tl denotes the magnitude of trading asset j. Given a transaction
cost of ¢, the trading cost of the entire portfolio is c Z?’=1|Wj,t+1 — Wj,tl- The return of the portfolio

after transaction costs is as follows:

N
7”PT,§+1 = (1 + rP,t+1) Clej,t+1 - Wj,tl -1 (3.45)
j=1
We report results for portfolios including transaction costs for two rebalancing frequencies, namely
monthly and quarterly, in Tables 3.11 and 3.12, respectively.

Quite interestingly, our results for monthly-rebalanced portfolios favor forecast
combination schemes to more sophisticated methods as these lead to portfolios with high turnover.

However, when the rebalancing frequency is reduced to quarterly, the certainty equivalent return
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and Sharpe ratio of the majority of the portfolios improves, with portfolios of an aggressive
investor based on machine learning techniques yielding superior performance to the forecast
combination methods with monthly rebalancing. The result that a decrease in rebalancing
frequency can lead to better performance in a dynamic asset allocation setting with transaction

costs is also supported by Almadi, Rapach and Suri (2014).
[Insert Table 3.11 Here]

[Insert Table 3.12 Here]

3.6.4. Conditional Value-at-Risk Portfolios

As a robustness check, we consider an alternative measure of portfolio risk, namely the
Conditional Value-at-Risk (CVaR) of the portfolio. CVaR is defined as the conditionally expected
value losses greater or equal to the Value-at-Risk (VaR) at a specific confidence interval.
Following Rockafellar and Uryasev (2000, 2002), CVaR is estimated based on the following

approximation:

J
1
CVaR,(w,VaR,) = VaR, + —Z[—w'rj —VaR,]" (3.46)
Ja-a 4

where [t]* = max(0,t), a is a probability level, J is the number of scenarios and r; is the vector
of asset returns in the jth scenario. To estimate CVaR of the portfolio, 5000 scenarios are generated
using Monte Carlo simulation based on the multivariate normal distribution with mean varying
according to the return forecast and sample variance-covariance matrix. For the mean-CVaR

(MCVaR) optimization framework, we set @, (w) = CVaR,(w, VaR,).
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In order to investigate the ability of the proposed models to assess tail risk, we calculate
the CVaR measure of all portfolio strategies, in addition to the certainty equivalent return and

Sharpe ratios. The a Conditional Value-at-Risk of a portfolio is given by:

CVaR, = (1—a) Yf(F'(1-a))6 —7p (3.47)
where F is the cumulative standard normal distribution function and f is the probability density

function of the standard normal distribution. The CVaR is calculated at the 95% confidence level.

Table 3.13 reports the certainty equivalent return and Sharpe ratio for the mean-CVaR
optimization framework for the full sample. The mean-CVaR portfolios based on forecasts from
multivariate regression models outperform the equal-weighted and HA portfolios, in terms of
certainty equivalent return. Furthermore, our results indicate that the Sharpe ratio of all models,
except ICA and PLS, is higher than the 1/N and HA models. Weight combinations with a 50%
leverage constraint appear to lead to higher CER, however, Sharpe ratios do not vary greatly across
different weight constraints. Comparing the results of the CVaR portfolios for the CER and Sharpe
ratio (Table 3.13) with those of the mean-variance portfolios (Panel A of Tables 3.4 and 3.5), we
note that while mean-CVaR portfolios generate considerably lower returns than mean-variance

portfolios, the Sharpe ratios produced by the former optimization framework are higher.
[Insert Table 3.13 Here]

Table 3.14 compares the CVaR at the 95% confidence level measure of the portfolios that
use variance or CVaR as a risk measure. Overall, the CVaRq5 values of the mean-CVaR portfolios
are lower than those of the mean-variance portfolios and the degree of relative risk aversion has a
greater impact on mean-variance portfolios than on mean-CVaR portfolios, with the majority of

the portfolios of a conservative investor generating lower CVaRqs values than those of an
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aggressive investor. The mean-CVaR allocations consistently outperform the equal-weighted
portfolio for both types of investors, while the majority of the long-only mean-CVaR portfolios

tend to produce lower CVaRqs than the HA portfolio.

[Insert Table 3.14 Here]

3.7. Conclusion

This study examines whether return forecasts generated by shrinkage, variable selection and
dimensionality reduction methods from the machine learning literature add value in portfolios
consisting of stock, bond and commaodity indices. We first examine the benefits of forecasting the
returns for each individual index. Our results indicate that the majority of the proposed prediction
models outperform the historical average benchmark, with shrinkage and variable selection
methods yielding the highest performance for the stock and bond indices, while for the commodity
index the dimensionality reduction methods achieve superior performance. For the stock and
commodity indices, the proposed models perform better during recessions, while the results for

the bond index are mixed.

To examine whether return forecasts provide any benefits in an asset allocation setting,
stock-bond-commodity portfolios are constructed based on the proposed models and their
performance is compared to that of the equal-weighted portfolio and a mean-variance portfolio
based on the historical average. For commodity-augmented portfolios, the majority of the models
utilizing return forecasts outperform the 1/N benchmark in terms of certainty equivalent returns.
The models that tend to outperform the HA benchmark are those based on shrinkage and
dimensionality reduction for an aggressive investor, while portfolios of a conservative investor
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favor forecast combination methods. In terms of Sharpe ratios, the majority of the models
outperform the equal-weighted and HA portfolio benchmarks. Portfolios with either short selling
or leverage generate higher CER than the unleveraged long-only allocations, while portfolios with
both leverage and short selling yield the highest return. Sharpe ratios are higher for a conservative
investor and when leverage and short sales are allowed the ratios tend to increase. There are no
major changes when comparing either performance measure across different specifications of the
covariance matrix. When transaction costs are taken into account, the results for monthly-
rebalanced portfolios favor forecast combination methods, instead of methods that combine
information due to the latter methods leading to portfolios with higher turnover. When the
rebalancing frequency is reduced to quarterly, the models with the best performance for an
aggressive investor are those based on shrinkage and dimensionality reduction methods. When
CVaR is used as a risk measure, the vast majority of the mean-CVaR portfolios based on forecasts

from multivariate regression models outperform the equal-weighted and HA portfolios.

For an aggressive investor during recessionary periods, most of the long-only allocations
that yield positive values are based on variable selection, shrinkage and dimensionality reduction
methods. However, when short selling is allowed, CER and Sharpe ratios become positive for the
majority of the models. All portfolios based on multivariate regression models outperform both
benchmarks. During expansionary periods, all mean-variance portfolios generate positive certainty
equivalent returns and Sharpe ratios, with leverage and short-selling having a greater (positive)
effect on the return of the portfolios. The majority of the portfolios outperform the 1/N benchmark
in terms of CER, while the results based on the Sharpe ratio appear mixed. When comparing the
results to the HA average portfolio, only in combinations with leverage or short sales can we find

models with higher performance. For a conservative investor, the CER for the majority of the

100



models is positive during recessions, with short sales having a considerable impact on the returns
and Sharpe ratios of all portfolios. During expansions, all portfolios yield positive returns and
Sharpe ratios and the performance between the different models varies less than in recessions. In
recessions, all models based on alternative forecasts outperform both the equal-weighed and the
HA portfolios, however, in expansions the results appear mixed, except when short selling is

allowed in which case all models outperform the naive portfolio.

To examine whether commodities add value to a stock bond portfolio, our analysis is
replicated for traditional portfolios. For stock-bond portfolios that utilize forecasts from
multivariate predictive regressions, our results indicate that the majority of the models outperform
the HA portfolio. The portfolios that outperform the naive portfolio in terms of CER are those of
an aggressive investor, while the portfolios that yield better results than the 1/N portfolio in terms
of Sharpe ratio belong to a conservative investor. During expansions, stock-bond portfolios exhibit
positive returns and Sharpe ratios, however, in recessions the majority of the portfolios for y = 2
generate negative values in both measures, for y = 10 most returns and Sharpe ratios are positive
and improve as the weight constrains allow leverage or short selling. When comparing the results
of stock-bond portfolios with those that include commaodities for the full sample, commodities add
value to a traditional portfolio when short selling is allowed, with portfolios for y = 2 benefiting
more from the inclusion of commodities. During recessions, the majority of the commodity-
augmented portfolios outperform the traditional portfolios across all weight constraints, according
to both performance measures. In expansions, the long-only traditional portfolios outperform those
that include commodities, while short selling provides a greater benefit to commodity-augmented

portfolios. However, the difference in return values between stock-bond and stock-bond-
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commaodity allocations is greater in recessions, where the commodity-augmented allocations have

better performance, than in expansions.

Overall, the return forecasts from the majority of alternative multivariate prediction
methods outperform the historical average benchmark. When the forecasts are used to construct
optimal portfolios, most of the models outperform the 1/N and HA portfolio benchmarks, with
allocations that allow short sales or leverage further improving the performance of portfolios based
on machine learning methods. When introducing transaction costs to portfolios with monthly
rebalancing the results tend to favor forecast combination techniques, however, reducing the
rebalancing frequency to quarterly leads the portfolios of an aggressive investor based on
shrinkage and dimensionality reduction methods to generate the highest performance. Finally, our
findings indicate that commodities would benefit a traditional portfolio when short selling is

allowed and during recessionary periods.
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Chapter 3 Tables

Table 3.1: Descriptive Statistics

Index N Mean Median Min. Max. Std. Dev. Skew.  Kurt.
Stock 480 0.98 1.29 -21.58 13,52 4.30 -0.58 5.10
Bond 480 0.61 0.60 -6.08 11.34 1.57 0.76  10.00
Commodity 480 0.56 0.64 -28.20 2294 5.59 -0.24 5.06
Correlation matrix

Stock Bond Commodity
Stock 1.00
Bond 0.21 1.00
Commaodity 0.18 -0.02 1.00

Notes: The table reports the summary statistics for the returns of the three indices; the S&P 500 Total

Return Index (Stock), the Bloomberg Barclays US Aggregate Bond Index (Bond) and the S&P Goldman
Sachs Commodity Total Return Index (Commodity) and their sample correlation matrix. The sample

period is from January 1977 to December 2016. The mean, median, minimum, maximum and standard

deviation of returns are reported as percentages.
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Table 3.2: Out-of-Sample Forecasting Performance: Univariate Prediction Models

Stock Bond Commodity
R? R? R? R? R? R?

Model R3¢ RI(E)E: E)%TD Model R3¢ RI(E)E: E)(ZISD Model R3g RI(E)EZ E)%SP
DP -0.18 1.47 -0.79 DY -0.72* 3.15 -1.67 DY 0.06 2.28** -0.75
DY -0.16 0.4 -0.37 TBL -0.01 -0.27 0.05 TBL 0.01 0.36** -0.12
EP -0.76 -2.49 -0.12 LTY -0.5 0.32 -0.7 LTR 0.85 4.32* -0.43
DE -1.7 -4.49 -0.66 LTR -1.44 -1.26 -1.49 TMS -0.19 -0.33 -0.13
SVAR 1.69 6.84 -0.24 TMS -0.72 -0.55 -0.76 DFR 2.75% 10.55 -0.11
BM 0.63 3.58* -0.46 DFY -0.27 -11.39 2.45%** INFL -0.93 -0.5 -1.09
NTIS -0.55 0.75 -1.04 DFR -1.09 -4.48 -0.26 IP 1.46 7.3 -0.68
TBL -0.64 -1.08 -0.47 PPI 1.25%* 6.09 0.07** M1 0.65 3.49 -0.39
LTY -0.12 0.27 -0.27 CAP -4.38 -20.64 -0.41 UR -0.2 0.93 -0.62
LTR -0.21 0.21 -0.36 IS 3.61** 11.37 1.72** WTI 1.92** 5.04** 0.78
TMS -0.39 -0.38 -0.39 M1 -4.89 -21.49 -0.83 USDAUD 0.59 1.29 0.33
DFY -1.34 -3.93 -0.37 UR -2.13 -4 -1.68 USDCAD 0.51 0.85 0.38
DFR -1.97 -3.37 -1.45 SP1 1.41*** -3.41 2.59*** USDINR 0.64 35 -0.42
INFL 0.15 0.86 -0.12 SP5 1.77%** 1.1 1.93*** USDNZD -0.34 1.98 -1.18
IP 0.63 5.63 -1.23 SP500 1.74** 3.3 1.36%** REA -0.56 -1.03 -0.39
M1 -0.31 3.74 -1.82 VX0 0.19 -1.84 0.69** CFNAI 2.34* 9.34** -0.23
UR -0.99 -1.95 -0.63 Umacro 0.42 -6.09 2.01%** Umacro 0.52 5.09 -1.16
VX0 -1.26 -3.22 -0.53 Ufin 0.26 -5.48 1.66** Ufin -0.53 0.8 -1.01
Umacro 0.28 2.23 -0.45

Ufin 1.63 7.53 -0.57

Notes: The table reports the R as a percentage, for the alternative model against the historical average benchmark. Positive values indicate that the univariate
model outperforms the benchmark. The alternative model is a univariate return prediction model that includes a constant and the predictor variable listed in each
row. The out-of-sample period is from January 1997 to December 2016. The R3 is reported for the NBER-dated recessions and expansions. The hypothesis of
equal predictive ability is measured based on the Clark and West (2007) test. *, ** and *** indicate significance at the 10%, 5% and 1% levels.
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Table 3.3: Out-of-Sample Forecasting Performance: Multivariate Prediction Models

Stock Bond Commodity
d | 2 R(Z)S R(ZJS 2 Rés Rés 2 R(Z)S R(Z)S

Mode R3s REC EXP ACER SR R3s REC EXP ACER SR R REC EXP ACER SR

KS 2.23** 1514* -258** 463 0.70 | -6.95*** -16.44 -4.63*** 015 116 | -1.72*  7.61* -5.15 -3.66 0.00
MC 0.32 1.72 -0.21 0.16 041 | 3.34*** 1.36 3.82%** 0.00 090 | 1.11** 3.99**  0.06 2.25 0.03
MDC -0.08 -0.04 -0.10 -0.72 037 | 1.68** -1.53  2.47*** 0.00 090 | 047* 175**  0.00 157  -0.03
TMC 0.16 1.20 -0.23 -0.13  0.40 | 2.91*** 1.45 3.26*** 0.00 0.90 | 0.93** 3.36**  0.04 2.02 0.01
Rank 0.29 3.31 -0.83 090 046 1.45 1.71 1.39*** 0.00 090 | 0.99 4.43* -0.27 207 0.02
C(2,PB) 0.05 2.74 -0.95 0.03 041 | 242** 1.26 2.70%** 0.02 091 | 1.53** 558**  0.04 2.40 0.05
Cc@3,PB)  -0.11 3.37 -1.41 0.04 041 | 3.45%** 4,72 3.14***  -0.05 090 | 2.07** 7.28** 0.15 2.47 0.07
D(®1) 0.31 1.73 -0.22 0.16 041 | 3.29*** 1.35 3.77*** 0.00 090 | 1.12** 4.00**  0.06 2.25 0.03
D(0.9) 0.32 1.78 -0.23 0.19 041 | 3.34*** 0.99 3.91%** 0.00 090 | 1.11** 3.99**  0.06 2.26 0.03
Ridge 3.46*  11.99  0.28** 1.84 052 | 10.40*** 6.09 11.46*** 0.62 115 | 1.73** 533**  0.40 2.37 0.06
Lasso 3.96* 1217 091** 235 054 | 879*** 10.66* 834*** -0.34 0.96 | 0.57* -0.97 1.14* 256 0.10
EN 3.62* 1076 0.96** 226 054 | 10.62*** 993  10.78*** 021 1.07 | 0.14 0.34 0.07 1.97 0.03
Alasso 0.32* 8.77 -2.83* 3.37  0.61 | 3.68*** 7.49 2.75%** 057 093 | 1.93** 934*> -0.79 271 0.14
Bridge 1.35 9.44 -1.66* 091 045 | 8.06*** 1125 7.29***  -027 096 | 1.39* 579** -022 225 0.05
SCAD 4.05* 1457  0.13** 197 053 | 6.81*** 11.81* 559***  -046 096 | 0.17 -1.01 0.60 1.98 0.04
MCP 3.87* 1212 0.79** 206 052 | 831*** 10.67* 7.74*** 019 1.01 | 0.16 -1.01 0.59 1.97 0.04
SICA 1.49** 1280 -2.72** 404 0.66 | -4.55*** -1882 -1.06*** -0.84 0.87 | 0.13* 6.34** -215 -0.64 0.09
PLS 0.92 16.48 -4.89 2.02 052 | -1.13*** 2326  4.27*** 028 1.13 | 3.87** 21.74** -269 -0.68 0.05
3PRF 2.88* 2276 -4.53 259 056 | -1.57*** -11.28  0.79*** 013 1.08 | 3.12* 20.78** -336 -046 0.01
SPLS 0.64 12.12 -3.64 229 054 | -6.97%** -41.62  1.48*** 021 114 | 1.32* 9.24** -159 216 0.19
PCA -3.61  -10.17  -1.16 -2.88 026 | -0.27** -2411 5.55*** 0.01 092 | 436** 16.94** -0.27 3.01 0.14
SPCA -2.50 -5.74 -1.29 -263 026 | -6.39**  -41.90 2.27** -0.08 0.92 | 4.04** 16.83** -0.66 1.24 0.00
ICA -451  -7.65*  -3.33 -0.63 0.39 -21.10 -74.91 -7.96 -041 083 | -0.67 3.47* -2.18 -0.87 -0.14
RICA -0.09 1.38 -0.64 -0.52 0.38 -16.04 -29.40 -12.78 -0.38 0.86 | 3.24** 11.63** (.16 2.36 0.22

Notes: The table reports the R3¢

as a percentage, for the alternative model against the historical average benchmark. Positive values indicate that the alternative

model outperforms the benchmark. The alternative models are based on a range of multivariate estimation methods, using a different set of predictors for each
index. The out-of-sample period is from January 1997 to December 2016. The R3 is also reported for the NBER-dated recessions and expansions. The hypothesis
of equal predictive ability is measured based on the Clark and West (2007) test. *, ** and *** indicate significance at the 10%, 5% and 1% levels.
Additionally, the table reports the performance for mean-variance portfolios, with monthly rebalancing, for an investor with risk aversion coefficient of five.
The ACER is the gain in the percentage annualized certainty equivalent return (CER) and SR is the annualized Sharpe Ratio. A 0.00 indicates a number less
than 0.005 in absolute value.
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Table 3.4: Mean-Variance Portfolio Performance based on Certainty Equivalent Return: Stock-Bond-Commodity Portfolios

Sample Covariance

DCC-GARCH Covariance

y=2 y=10 y=2 v=10
o1 o015 -051 -0515| 01 o015 -051 -0515)01 015 -051 -0515] 01 015 -051 -0515
EW 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 | 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27
HA 565 534 529 5.85 3.71 454 393 471 528 5.67 5.88 6.46 436 518 452 5.32
KS 6.45 7.44  6.87 7.36 324 246 217 1.68 6.22 6.80 6.32 6.61 276 185 1.98 1.45
MC 722 839 1062 1131 439 537 517 6.03 6.78 830 1061 11.70 498 6.01 575 6.63
MDC 6.46 7.02 7.96 8.73 414 501 459 5.38 567 724 8.03 8.67 463 553 5.03 5.83
T™MC 7.03 806 975 10.41 433 528 5.02 5.86 6.61 8.13 9.82 10.77 494 590 557 6.42
Rank 710 945 1162 12.79 445 537 511 6.08 6.82 890 1152 13.07 5.08 6.21 6.18 7.19
C(2,PB) 6,53 7.49 9.85 11.06 399 502 510 6.01 6.27 7.53 9.92 11.03 460 567 578 6.74
C(3PB) 638 7.81 9.78 10.91 3.74 450 458 5.54 6.36 797 10.13 11.33 436 546 5.65 6.71
D(1) 719 837 1061 11.32 440 537 518 6.04 6.77 832 1062 11.73 499 6.02 576 6.64
D(0.9) 709 825 1053 11.30 445 543 524 6.10 6.69 836 1065 11.83 503 6.06 5.80 6.68
Ridge 5.58 7.29 7.71 9.33 457 487 457 5.50 486 6.65 7.72 9.70 468 532 4.87 5.54
Lasso 6.18 8.87 9.54 11.56 5.08 523 450 5.23 6.93 9.26 9.08 11.49 538 590 489 5.57
EN 6.47 885 944 11.12 499 542 484 5.83 6.41 874 9.06 11.32 537 597 4091 5.58
Alasso 8.68 10.76 12.82  15.56 6.16 599 4.99 5.07 851 1085 1284 16.46 599 554 511 5.11
Bridge 435 6.79 7.16 9.40 480 518 410 4.74 454 596 6.67 8.55 480 538 410 4.76
SCAD 573 803 915 10.70 485 490 393 4.88 586 7.38 7.50 9.39 483 579 475 5.41
MCP 579 850 9.28 11.37 522 561 473 5.68 594 8.02 8.15 10.76 544 648 532 6.39
SICA 776 9.88 1072 1231 479 333 237 2.01 793 965 1025 1238 445 391 338 3.23
PLS 764 929 11.08 1155 441 469 391 4.10 778 942 1039 1155 468 443 352 3.51
3PRF 884 977 1001 11.09 440 469 344 3.60 8.26 9.53 9.79 10.29 443 412 301 2.73
SPLS 8.55 10.87 13.07 14.90 460 324 207 1.38 8.25 10.88 13.08 14.49 473 384 264 241
PCA 500 7.74 897 11.38 520 6.11 631 7.19 535 6.84 783 9.36 512 581 594 6.73
SPCA 3.70 555 6.73 8.96 446 508 4.93 5.95 483 6.36 6.61 7.98 428 516 498 5.88
ICA 507 527 428 5.16 380 413 3.80 4.23 571 6.76 5.29 5.34 346 392 3.98 4.59
RICA 6.63 835 924 10.52 419 474 446 5.02 701 857 1019 11.79 509 594 548 6.32

106



Table 3.4 (continued): Mean-Variance Portfolio Performance based on Certainty Equivalent Return: Stock-Bond-Commaodity Portfolios

Ledoit-Wolf Shrinkage Covariance

Graphical Lasso Covariance

y=2 y=10 y=2 v=10
0,1 015 -051 -0515| 01 015 -051 -0515] 01 015 -051 -0515 0,1 015 -051 -0515
EW 3.87  3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 3.87 3.87 3.87 3.87 -0.27 -0.27  -0.27 -0.27
HA 565 5.45 5.11 5.69 3.60 4.10 3.73 4.17 538 551 4.96 5.65 410 5.00 4.23 5.10
KS 6.44  7.39 6.78 6.88 285 175 2.11 1.27 6.43 7.75 7.42 8.30 402  4.00 3.90 3.52
MC 727 857 10.45 11.22 444 513 5.06 5.62 729 849 10.25 10.90 480 5.85 541 6.34
MDC 6.49 7.13 7.84 8.59 409 464 4.43 4.90 6.64 7.19 7.70 8.47 453 548 4.83 5.70
TMC 7.08 821 9.52 10.24 437 5.04 4.90 5.44 7.18 8.05 9.29 9.97 477 578 5.26 6.18
Rank 7.08 941 11.38 12.63 457 532 5.35 6.06 739 957 1131 12.47 481 593 5.56 6.59
C(2,PB) 657 7.55 9.76 11.01 4.08 4.87 5.10 5.73 6.62 8.01 10.13 10.96 451 557 5.43 6.41
C(3PB) 638 7.74 9.66 10.82 3.84 447 4.80 5.48 6.52 8.15 9.93 10.99 417 5.28 517 6.19
D(1) 726 855 10.45 11.24 445 514 5.07 5.64 7.27 850 10.27 10.93 481 5.86 542 6.36
D(0.9) 716 842 10.39 11.23 450 521 5.13 5.70 719 846 10.27 10.93 486 592 5.48 6.41
Ridge 544 7.14 7.61 9.21 445 448 4.76 5.35 570 7.92 8.28 10.02 490 561 5.35 6.33
Lasso 6.01 8.46 9.16 11.02 476  4.60 4.54 491 6.39 9.38 10.09 12.28 529 592 5.30 6.28
EN 6.29 8.60 9.16 10.73 473 483 4.79 5.37 6.68 9.28 9.78 11.58 539 6.08 5.53 6.59
Alasso 853 1054 12.34 15.11 570 522 4.74 4.63 855 11.16 1331 16.69 6.47  6.58 5.81 6.18
Bridge 410 6.23 6.74 8.87 444 446 3.98 4.44 492 753 7.87 10.05 505 5.68 4.69 5.64
SCAD 558 7.58 8.79 10.29 454 428 3.99 4.46 592 885 9.58 11.20 514 5.76 4.90 5.92
MCP 562 8.08 8.98 10.95 490 4.96 4.81 5.29 6.01 917 9.95 1191 546  6.44 5.67 6.66
SICA 769 955 10.56 11.86 442 282 2.38 1.71 794 10.23 11.05 13.40 498  4.48 4.08 4.11
PLS 7.68 922 10.77 11.24 411  4.07 3.53 3.40 765 935 10.84 11.80 486 524 4.48 4.95
3PRF 8.89 9.80 9.77 10.66 405 3.96 2.99 2.88 851 9.26 9.76 11.03 475 5.04 4.05 4.38
SPLS 851 10.73 12.75 14.61 445 293 1.98 1.47 858 1099 1311 14.62 463 3.73 2.69 3.06
PCA 493 7.63 8.88 11.18 5.09 582 6.31 7.05 555 831 9.47 11.65 543 644 6.38 7.38
SPCA 353 525 6.43 8.61 435 4.86 5.13 5.94 418 6.28 7.24 9.33 473 579 5.45 6.53
ICA 497  5.03 3.88 4.72 350 3.66 3.69 3.95 512 568 4.87 5.94 3.93  4.46 4.06 4.65
RICA 6.56 8.19 9.04 10.38 395 418 4.57 4.99 6.76  8.57 9.11 10.40 462 5.28 5.01 5.72

Notes: This table reports the certainty equivalent return of the stock-bond-commodity mean-variance portfolios with monthly rebalancing. The out-of-sample
period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-variance portfolio based on the historical
average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. Each panel reports the certainty
equivalent return of portfolios relying on different estimates of the covariance matrix. The portfolio performance is reported for different levels of risk aversion
(v = 2,10) and portfolio weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [-0.5,1.5]). Figures in bold indicate the five models with the

best performance.
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Table 3.5: Mean-Variance Portfolio Performance based on Sharpe Ratio: Stock-Bond-Commodity Portfolios

Sample Covariance

DCC-GARCH Covariance

y=2 y=10 y=2 | y=10
01 015 -051 -0515] 01 015 -051 -0515] 01 015 -051 -0515] 01 015 -051 -0515
EW 027 027 027 027 [027 027 027 027 [027 027 027 027 |027 027 027 0.27
HA 039 036 0.36 039 | 056 069 0.60 072 | 037 038 0.39 042 | 068 079 071 0.81
KS 0.43 046 045 050 |[066 072 0.76 0.81 [ 041 043 043 047 |061 065 072 0.78
MC 053 054 0.64 065 | 068 082 0.80 090 | 050 055 0.66 068 | 079 092 092 1.00
MDC 0.46 046  0.50 053 | 064 076 071 0.81 | 040 047 052 053 | 073 084 080 0.88
T™C 051 052 0.60 061 | 067 080 0.78 0.88 | 049 054 0.62 064 | 079 090 0.89 0.98
Rank 054 063 0.69 072 | 068 081 0.77 089 | 053 059 0.70 073 | 080 093 094 1.05
C(2PB) 048 048 059 063 | 061 076 0.77 0.88 | 046 049 061 063 | 071 086 0.89 0.99
C(3PB) 046 050 058 062 | 057 069 0.70 0.82 | 047 052 061 064 | 067 082 084 0.97
D(1) 053 054 064 065 | 068 082 0.80 0.90 | 050 055 0.66 068 | 080 092 092 1.00
D(0.9) 052 053 0.64 065 | 069 083 081 091 | 050 055 0.66 069 | 080 093 093 1.01
Ridge 0.39 046 047 054 | 070 075 0.74 0.84 | 034 043 048 055 | 071 080 0.76 0.84
Lasso 043 054 055 062 | 077 081 0.75 0.84 | 049 056 0.54 062 | 080 087 0.77 0.86
EN 045 054 0.55 061 | 075 082 0.77 0.87 | 045 054 0.54 062 | 080 087 0.76 0.85
Alasso  0.60 0.63  0.67 075 | 090 092 0.89 093 | 059 063 0.67 078 | 088 086 085 0.89
Bridge  0.30 043 045 054 | 073 079 0.70 0.78 | 031 039 043 051 | 073 082 069 0.79
SCAD 039 049 053 059 |075 079 071 0.81 | 040 046 0.46 054 | 074 086 077 0.86
MCP 040 052 054 061 | 078 085 0.77 0.87 | 041 050 0.49 059 | 081 093 081 0.93
SICA 052 057 059 064 | 078 077 0.77 081 | 053 056 0.57 064 | 075 079 0.80 0.85
PLS 052 055 0.60 061 |071 080 081 086 | 054 056 0.8 061 | 074 077 0.78 0.82
3PRF 060 057 0.56 060 |071 079 0.77 0.82 | 056 056 0.55 057 |070 073 073 0.77
SPLS 0.60 064 0.69 073 | 074 071 068 070 | 058 064 0.70 072 | 075 075 0.70 0.74
PCA 036 051 0.55 065 | 082 092 092 1.01 | 039 046 0.49 055 | 080 0.87 0.87 0.96
SPCA 025 037 043 053 | 068 077 077 0.88 | 035 042 043 049 | 066 078 0.77 0.87
ICA 035 036 031 0.36 | 059 065 061 0.69 | 040 044 0.36 037 | 054 063 063 0.72
RICA 046 052 0.54 058 | 065 073 071 078 | 051 054 0.60 064 | 077 087 081 0.91
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Table 3.5 (continued): Mean-Variance Portfolio Performance based on Sharpe Ratio: Stock-Bond-Commodity Portfolios

Ledoit-Wolf Shrinkage Covariance

Graphical Lasso Covariance

y=2 y=10 y=2 v=10
01 015 -051 -0515| 01 015 -051 -0515} 01 015 -051 -0515] 01 015 -051 -0515
EW 0.27 0.27 0.27 0.27 027 0.27 0.27 0.27 027 0.27 0.27 0.27 027 027 0.27 0.27
HA 039 0.36 0.35 0.38 055 0.65 0.57 0.66 0.38 0.37 0.34 0.38 0.64 0.77 0.67 0.78
KS 0.43 0.46 0.45 0.48 0.63 0.70 0.76 0.80 043 047 0.47 0.52 0.70 0.78 0.81 0.85
MC 0.53 0.55 0.63 0.65 0.68 0.77 0.77 0.83 054 0.56 0.64 0.65 0.79  0.92 0.88 0.98
MDC 046 0.46 0.50 0.52 062 071 0.68 0.74 0.48 0.48 0.50 0.53 073 0.85 0.78 0.88
T™MC 051 0.53 0.59 0.60 0.67 0.76 0.75 0.81 053 0.53 0.60 0.61 079 0091 0.86 0.96
Rank 054 0.62 0.68 0.71 0.70 0.80 0.80 0.88 0.57 0.65 0.70 0.72 0.77  0.92 0.85 0.97
C(2,PpB) 048 049 0.59 0.63 062 0.74 0.77 0.84 049 052 0.62 0.64 0.71 0.86 0.84 0.96
C(3,PB) 046 049 0.57 0.61 059 0.70 0.73 0.82 048 0.53 0.60 0.63 0.64 0.80 0.78 0.90
D(1) 053 0.55 0.63 0.65 068 0.77 0.77 0.83 054 0.56 0.64 0.65 0.79 0.92 0.88 0.98
D(0.9) 052 054 0.63 0.65 069 0.78 0.78 0.84 0.53 0.56 0.65 0.65 0.80 0.93 0.89 0.99
Ridge 037 045 0.47 0.53 069 0.73 0.76 0.84 040 0.50 0.51 0.57 0.74 0.83 0.80 0.91
Lasso 042 0.52 0.54 0.60 0.74 0.77 0.75 0.82 045 057 0.58 0.65 0.79 087 0.80 0.91
EN 044 053 0.54 0.59 073 0.78 0.76 0.84 047 057 0.58 0.63 0.80 0.88 0.82 0.94
Alasso 058 0.61 0.65 0.73 0.86 0.87 0.87 0.91 059 0.65 0.70 0.80 093 0.95 0.91 0.96
Bridge 028 0.40 0.43 0.52 069 0.74 0.69 0.77 0.34 048 0.48 0.57 0.76 0.84 0.73 0.84
SCAD 0.38 047 0.52 0.57 072 0.75 0.71 0.79 041 0.54 0.56 0.61 0.77 0.85 0.76 0.87
MCP 039 0.50 0.53 0.60 0.75 0.80 0.77 0.85 042 0.56 0.58 0.64 081 0.92 0.84 0.94
SICA 051 0.55 0.58 0.63 076 0.75 0.77 0.80 0.53 0.59 0.60 0.67 0.78 0.80 0.81 0.86
PLS 052 0.55 0.59 0.60 069 0.77 0.79 0.83 053 0.56 0.60 0.62 0.75 081 0.81 0.87
3PRF 0.60 0.57 0.55 0.58 069 0.76 0.75 0.79 059 0.55 0.55 0.60 0.74 0.80 0.77 0.83
SPLS 059 0.63 0.68 0.72 0.73 0.70 0.67 0.71 0.60 0.65 0.70 0.73 073 071 0.66 0.73
PCA 035 0.50 0.54 0.63 0.78 0.86 0.91 0.99 041 0.55 0.59 0.67 089 0.98 0.93 1.03
SPCA 024 035 0.41 0.51 066 0.75 0.79 0.88 029 042 0.46 0.55 0.73 087 0.81 0.93
ICA 034 034 0.29 0.35 056 0.62 0.60 0.67 036 0.38 0.33 0.39 0.60 0.69 0.63 0.72
RICA 046 051 0.53 0.58 0.63 0.69 0.72 0.79 048 0.54 0.54 0.58 0.70 0.79 0.75 0.84

Notes: This table reports the Sharpe Ratio of the stock-bond-commodity mean-variance portfolios with monthly rebalancing. The out-of-sample period is from
January 1997 to December 2016. The benchmarks are the equal-weighted portfolio and the mean-variance portfolio based on the historical average forecast. The
alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. Each panel reports the Sharpe Ratio of portfolios
relying on different estimates of the covariance matrix. The portfolio performance is reported for different levels of risk aversion (y = 2, 10) and portfolio weight
constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [-0.5,1.5]). Figures in bold indicate the five models with the best performance.
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Table 3.6:

Mean-Variance Portfolio Performance based on Certainty Equivalent Return: Stock-Bond-Commodity Portfolios (Business Cycles)

y=2 y=10
Recession Expansion Recession Expansion
0,1 015 -051 -0515| 01 015 -051 -0515| 01 05 -051 -0515| 01 0,15 -051 -0515
EW -17.02 -17.02 -17.02 -17.02 | 6.43 6.43  6.43 6.43 -28.84 -28.84 -28.84 -28.84 | 3.34 334 3.34 3.34
HA -22.11 -31.34 -31.71 -3481 | 9.08 9.87 9.88 1090 | -6.03 -7.32 -6.03 -7.32 | 491 6.00 5.16 6.19
KS -6.73  -12.47 4.20 -147 | 805 984 7.12 8.32 -6.27  -9.09 2.93 -0.27 | 435 379 216 1.95
MC -243 540 1219 1092 | 8.39 10.07 1040 1132 1.01 0.84 4.72 3.95 480 591 521 6.26
MDC -12.71  -17.67 -10.32 -11.61 | 8.81 10.05 10.19 11.21 | -2.47 -3.45 -1.08 -238 | 495 6.04 527 6.31
TMC -3.60 -7.02 5.97 4.64 832 990 10.18 11.09 0.27 -0.11 3.22 2.30 483 593 523 6.27
Rank 0.75 251 2075 2055 | 7.87 10.29 1049 11.83 2.98 3.51 9.23 9.10 462 558 462 571
C(2,PB) -4.66 -4.76 14.01 15.13 7.89 8.98 9.32 10.53 1.74 2.04 8.23 7.80 426 5.37 471 5.78
c3,pPB) 519 -508 1525 1600 | 7.80 9.38 9.09 10.27 1.80 2.05 9.29 9.16 397 479 403 5.12
D(1) -245 541 1228 1125 | 836 10.05 1038 11.30 1.06 0.91 4.83 4.06 480 591 521 6.26
D(0.9) -264 -6.00 1196 1145 | 827 998 1033 11.25 1.13 1.00 4.92 4.15 485 596 527 6.32
Ridge -459  -9.25 6.97 2.91 6.81 9.29 7.76 10.05 | 449 -6.71 1.38 0.93 569 6.29 492 6.00
Lasso -0.50 -3.24 8.47 4.57 6.98 10.32 9.63 1235 | -366 622 -1.18 -0.73 | 6.15 6.64 5.15 5.90
EN 1.94 -1.47 1258 8.29 7.01 10.08 9.03 1141 | -3.19 -5.80 0.65 0.97 6.00 6.80 531 6.37
Alasso 7.85 707 3293 3507 | 876 11.17 1040 13.20 2.83 175 1021 1083 | 654 6.47 445 4.45
Bridge -482 -586 10.84 9.55 545 829  6.68 9.33 -3.94  -4.43 3.13 2.31 587 635 4.18 4.99
SCAD -209  -5.00 5.26 1.81 6.67 9.60 9.58 1173 | 418 -7.28 -3.80 -389 | 596 6.40 483 5.89
MCP -0.57 -2.98 9.47 6.55 6.54 987 922 1190 | -1.10 -152 2.69 2.63 598 6.47 4.94 6.01
SICA 4.05 594 2402 2253 | 819 1031 9.09 11.03 | -095 -3.84 7.98 6.96 544 414 176 1.47
PLS 1051 1445 4437 4523 | 7.28 864 7.15 7.57 2.88 1.82 1310 1392 | 457 501 304 3.16
3PRF 1228 1149 3948 4091 | 840 953 6.51 7.55 1.66 -0.03 1030 10.94 | 471 523 278 2.89
SPLS 7.62 975 3316 3320 | 865 1098 1065 12.68 1.18 -2.33 441 1.52 499 388 175 1.31
PCA -7.79  -7.91 6.41 7.69 6.57 9.66 9.25 11.79 1.02 0.78 8.60 8.50 571 6.75 6.07 7.05
SPCA -8.06  -8.09 8.00 1023 | 514 722 6.55 8.77 1.62 1.91 8.33 9.00 481 545 459 5.63
ICA -1254 -18.18 -2.63 -063 | 7.21 813 5.09 5.83 -166 -2.64 5.57 3.71 446 495 357 4.27
RICA 3.88 328 2584 2301 | 695 893 7.23 9.00 -0.51 -1.54 5.89 4.37 472 545 434 5.13

Notes: This table reports the certainty equivalent return of the stock-bond-commodity mean-variance portfolios with monthly rebalancing during NBER-dated
recessions and expansions. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-
variance portfolio based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction
models. All mean-variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk
aversion (y = 2,10) and portfolio weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [—0.5,1.5]). Figures in bold indicate the five models
with the best performance.
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Table 3.7: Mean-Variance Portfolio Performance based on Sharpe Ratio: Stock-Bond-Commaodity Portfolios (Business Cycles)

y=2 v=10
Recession Expansion Recession Expansion
0,1 015 -051 -0515| 01 015 -051 -0515| 0,1 015 -051 -0515| 01 015 -051 -0515
EW -0.92 -092 -0.92 -0.92 057 057 057 0.57 -0.92 -0.92 -0.92 -0.92 057 057 057 0.57
HA -0.90 -091 -0.98 -0.94 068 064 0.63 0.65 -0.53 -0.34 -0.53 -0.34 078 092 0.82 0.95
KS -0.19 -0.15 048 0.44 054 057 045 0.51 025 0.38 1.26 1.21 073 078 0.68 0.74
MC -0.14 -0.15 0.65 0.60 062 065 0.65 0.67 016 028 0.75 0.71 075 090 081 0.95
MDC -0.61 -0.64 -0.24 -0.25 065 065 0.64 0.66 -0.25 -0.09 0.05 0.12 078 093 084 0.96
TMC -0.23 -025 041 0.36 062 064 064 0.66 0.05 017 057 0.54 076 091 0.82 0.95
Rank 0.04 020 098 0.97 061 068 0.65 0.68 047  0.58 1.20 1.20 070 083 0.70 0.85
C(2pPB) -031 -015 0.72 0.75 059 057 057 0.61 026 041 1.12 1.09 065 081 071 0.86
C3,PB) -034 -0.16 0.76 0.78 058 059 055 0.59 028 041 1.21 1.21 060 072 061 0.76
D(1) -0.15 -0.15 0.65 0.61 062 065 0.65 0.66 017 029 0.76 0.72 075 090 081 0.95
D(0.9) -0.16 -0.20 0.64 0.62 062 064 0.65 0.66 017 029 0.77 0.73 076 091 0.82 0.96
Ridge -0.09 -0.15 047 0.38 049 058 0.48 0.57 -021 -0.13 0.82 0.85 084 090 0.75 0.87
Lasso 0.09 0.09 0.52 0.45 050 0.63 0.56 0.66 -0.05 -0.06 0.49 0.56 0.89 094 0.80 0.88
EN 020 0.12 0.66 0.53 050 061 054 0.62 -0.09 -0.07 0.62 0.69 0.87 096 0.80 0.91
Alasso 050 0.6 1.23 1.23 062 066 058 0.67 0.63 0.66 1.44 1.48 094 095 0.80 0.84
Bridge -0.07 0.06 0.60 0.58 038 052 043 0.54 -0.11 0.00 0.8 0.89 086 091 0.68 0.78
SCAD -0.01 -0.01 042 0.36 0.46 058 0.55 0.63 -0.10 -0.12 0.34 0.40 087 092 0.78 0.89
MCP 0.09 0.09 0.55 0.49 0.46 060 0.55 0.64 016 024 071 0.75 0.87 093 0.78 0.89
SICA 032 045 095 0.91 056 060 0.53 0.60 052 052 1.36 1.36 0.83 080 0.67 0.72
PLS 065 0.73 1.56 1.49 050 052 045 0.48 065 0.64 1.61 1.66 072 082 067 0.72
3PRF 072 0.63 1.43 1.39 058 057 042 0.48 051 047 1.48 1.52 0.74 084 0.65 0.71
SPLS 049 0.56 1.27 1.18 061 065 0.60 0.66 048 0.36 1.00 0.92 077 075 0.63 0.67
PCA -0.63 -043 044 0.49 048 062 0.8 0.67 0.17 0.29 1.23 1.25 090 101 092 1.02
SPCA -0.66 -0.45 0.50 0.58 036 047 042 0.52 026 0.40 1.26 1.31 073 081 0.70 0.83
ICA -0.47 -0.45  0.09 0.20 052 052 035 0.39 -0.05 0.01 0.88 0.79 068 075 057 0.68
RICA 030 0.33 1.03 0.92 050 056 045 0.53 055 0.63 1.14 1.11 0.72 081 0.66 0.76

Notes: This table reports the Sharpe Ratio of the stock-bond-commaodity mean-variance portfolios with monthly rebalancing during NBER-dated recessions and
expansions. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equal-weighted portfolio and the mean-variance portfolio
based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. All mean-
variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk aversion (y = 2,10)
and portfolio weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [—-0.5,1.5]). Figures in bold indicate the five models with the best
performance.
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Table 3.8: Mean-Variance Portfolio Performance based on Certainty Equivalent Return and Sharpe Ratio: Stock-Bond Portfolios

Certainty Equivalent Return

Sharpe Ratio

y=2 v=10 y=2 v=10
0,1 015 -051 -0515) 01 015 -051 -0515| 01 015 -051 -0515] 01 015 -051 -0515
EW 6.39 6.39 6.39 6.39 4.00 4.00 4.00 4.00 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
HA 5.86 6.36 4.85 5.70 447 544 4.47 5.44 041 042 0.33 0.38 071 0.84 0.71 0.84
KS 8.60 11.67 11.07 14.40 6.16 6.08 5.37 5.25 065 0.72 0.67 0.76 090 0.93 0.88 0.92
MC 17.77 8.62 7.58 8.42 503 6.09 5.07 6.10 057 0.55 0.49 0.52 082 0.96 0.83 0.96
MDC 6.81 7.54 6.03 7.07 478 578 4.75 5.75 0.49 049 0.40 0.45 0.78 0.90 0.77 0.90
T™MC 7.53 8.33 6.96 7.80 496 599 4.97 5.99 055 0.54 0.46 0.49 0.82 0.94 0.82 0.94
Rank 797 1006  8.98 10.22 498 6.12 5.16 6.26 0.61 0.66 0.58 0.61 0.79 0.94 0.80 0.95
c(2pPB) 721 8.29 7.26 8.22 455 567 4.74 5.79 053 0.53 0.47 0.50 0.71 0.87 0.74 0.88
C(3,PB) 7.08 8.50 7.22 8.53 413 526 4.37 5.45 052 0.54 0.46 0.52 0.63 0.80 0.67 0.82
D(1) 71.75 8.62 7.59 8.44 5.03 6.09 5.07 6.10 0.57 0.55 0.49 0.52 0.82 0.96 0.83 0.96
D(0.9) 7.68 8.59 7.57 8.52 506 6.13 511 6.14 056 0.55 0.49 0.52 083 0.96 0.84 0.96
Ridge 7.80 9.32 8.38 9.67 547 631 5.59 6.78 058 0.58 0.52 0.56 082 091 0.83 0.96
Lasso 7.71 9.91 8.54 10.10 544  6.07 5.13 6.40 057 061 0.53 0.57 081 0.89 0.79 0.92
EN 7.36 9.30 7.98 9.37 555 6.50 5.65 6.88 054 057 0.50 0.54 082 093 0.84 0.97
Alasso 10.15 13.20 11.73 14.41 6.50 6.29 4.93 5.25 082 0.84 0.73 0.78 093 094 0.82 0.89
Bridge 7.46 9.32 7.56 8.32 537 6.43 5.08 6.26 055 0.58 0.48 0.50 080 0.92 0.77 0.90
SCAD 7.75 9.45 8.05 9.56 523 6.13 4.90 6.13 0.57 0.58 0.50 0.55 0.79 0.90 0.77 0.90
MCP 7.66 9.85 8.41 10.23 566 6.97 5.82 7.01 0.57 0.60 0.52 0.58 0.84 0.98 0.86 0.98
SICA 895 1190 10.65 13.15 590 541 4.23 4.16 069 0.73 0.65 0.71 0.87 0.88 0.80 0.86
PLS 8.66 11.22 10.58 12.34 575 6.21 5.44 5.99 067 0.71 0.66 0.68 0.85 0.90 0.82 0.89
3PRF 8.62 1050 10.10 11.74 531 5.67 4.86 5.27 0.68 0.66 0.63 0.65 0.79 0.85 0.77 0.83
SPLS 7.70 9.66 8.26 9.66 404 441 2.95 3.23 059 061 0.52 0.56 066 0.74 0.62 0.70
PCA 6.30 8.24 6.42 8.84 543 6.44 5.30 6.31 047 054 0.43 0.54 091 1.01 0.85 0.97
SPCA 5.78 7.20 517 7.08 492 6.07 4.63 5.75 042 047 0.35 0.45 0.77 093 0.71 0.86
ICA 7.55 9.23 7.90 9.83 516 598 4.83 5.67 057 059 0.51 0.58 0.80 0.89 0.74 0.85
RICA 6.38 8.51 6.00 7.80 512 585 3.93 4.83 048 0.56 0.40 0.49 082 0.88 0.60 0.73

Notes: This table reports the certainty equivalent return and Sharpe Ratio of the stock-bond mean-variance portfolios with monthly rebalancing. The out-of-
sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-variance portfolio based on the
historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. All mean-variance
portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk aversion (y = 2,10) and
portfolio weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [—0.5,1.5]). Figures in bold indicate the five models with the best performance.
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Table 3.9: Mean-Variance Portfolio Performance based on Certainty Equivalent Return: Stock-Bond Portfolios (Business Cycles)

y=2 y=10
Recession Expansion Recession Expansion
0,1 015 -051 -0515]| 0,1 015 -051 -0515| 0,1 015 -051 -0515| 01 015 -051 -0515
EW -6.92 -692 -6.92 -6.92 8.02 802 802 8.02 | -12.88 -12.88 -12.88 -12.88 | 6.11 6.11 6.11 6.11
HA -20.12 -2283 -2358 -2351 | 9.06 9.96 8.36 9.31 -3.00 -371 -3.00 -3.71 | 539 656 539 6.56
KS 0.72 -0.35  6.53 6.72 955 1312 1161 1530 | -044  -1.97 3.33 4.88 6.96 7.04 557 5.24
MC -5.26  -7.88 -4.32 -3.44 9.36 10.63 9.02 9.86 1.39 1.41 1.75 1.52 547 6.65 5.47 6.65
MDC -12.11  -14.76 -1552 -1470 | 9.13 10.29 8.68 9.75 -1.03  -149 -1.26 -1.74 | 549 6.66 5.49 6.66
TMC -5.88 -795 -7.46 -6.63 9.17 1032 872 9.56 0.85 0.62 0.91 0.65 546 6.64 5.46 6.64
Rank -1.10 0.83 5.65 6.62 9.07 11.18 9.37 10.65 3.29 3.80 5.46 5.64 518 6.39 511 6.31
C(2,PB) -568 -523 -1.23 1.11 878 994 8.28 9.06 2.13 2.55 3.80 3.65 484 6.04 484 6.04
C(33,PB) -552 -454 -1.29 1.81 8.62 10.09 8.25 9.33 2.51 2.89 471 4.70 432 553 431 5.52
D(1) 525 774  -411 -3.21 9.34 10.62 9.00 9.85 1.43 1.46 1.82 1.58 546 6.64 5.46 6.64
D(0.9) -5.23  -7.48  -3.72 -2.64 9.25 1056 8.94 9.88 1.50 1.56 1.92 1.68 550 6.67 5.50 6.67
Ridge -5.20 -11.72 -630 -10.04 | 9.39 1191 1017 12.08 | -3.32 -497 -0.50 0.51 657 772 631 7.51
Lasso -245 657 -1.16 -4.39 895 1191 971 1184 | -272 -476 -0.49 0.80 6.45 741 5.78 7.05
EN -342 954  -4.09 -9.73 8.67 1161 9.44 1170 | -357 -5.61 -122 -0.13 | 6.70 8.02 6.46 7.70
Alasso -0.30 -2.73 2.93 1.56 1143 1514 12.78 15.95 0.37 0.90 5.29 6.90 7.23 6.93 4.85 5.01
Bridge -3.19  -768 -2.32 -7.62 8.76 1139 8.74 1025 | -289 -2.21 0.73 1.53 6.40 7.50 5.8 6.81
SCAD -4,04 -786 -3.88 -6.87 9.19 1156 9.49 1154 | -346 -595 -3.13 -232 | 632 764 586 7.13
MCP -4.04 -749 -3.30 -4.96 9.09 1196 9.82 12.05 | -0.30 0.11 3.25 3.97 6.40 7.82 6.11 7.35
SICA 0.26 -1.79 5.06 2.94 10.01 1356 1131 1436 | -0.05 -1.27 4.19 2.72 6.61 6.18 4.19 4.28
PLS 4.19 7.12 15.53 17.86 9.19 1171 9.97 11.65 3.35 2.79 8.71 10.12 6.03 6.61 5.03 5.47
3PRF 3.23 299 1097 1071 | 9.27 1141 9.97 11.84 1.52 0.25 5.20 6.44 576 6.33 4.80 5.10
SPLS -2.75 -3.20 0.23 0.22 8.98 11.24 923 1080 | -0.71 -3.17 -3.06 -470 | 463 534 365 4.17
PCA -8.08 -884 -10.35 -9.23 8.07 10.33 8.47 11.05 0.80 0.54 -1.24 -1.62 | 6.00 7.15 6.09 7.26
SPCA -823 -875 -7.65 -6.05 750 915 6.73 8.68 1.35 1.63 1.73 2.16 535 6.60 4.97 6.17
ICA -2.22  -245 3.57 7.26 8.73 10.64 8.40 10.12 2.83 2.82 7.38 7.19 544 6.35 451 5.47
RICA -3.74 482 -2.99 -4.41 761 1014 7.08 9.27 1.16 0.40 -2.24 -349 | 560 6.49 464 5.80

Notes: This table reports the certainty equivalent return of the stock-bond mean-variance portfolios with monthly rebalancing during NBER-dated recessions
and expansions. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-variance
portfolio based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models.
All mean-variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk aversion
(¥ = 2,10) and portfolio weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [—0.5,1.5]). Figures in bold are the five models with the best
performance.
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Table 3.10: Mean-Variance Portfolio Performance based on Sharpe Ratio: Stock-Bond Portfolios (Business Cycles)

y=2 v=10
Recession Expansion Recession Expansion
0,1 015 -051 -0515| 01 015 -051 -0515| 0,1 015 -051 -0515| 01 015 -051 -0515
EW -0.59 -059 -0.59 -0.59 091 091 091 0.91 -0.59 -0.59 -0.59 -0.59 091 091 091 0.91
HA -0.90 -0.78 -0.86 -0.78 067 064 054 0.56 -0.31 -0.11 -0.31 -0.11 091 105 091 1.05
KS 0.05 0.09 0.43 0.45 073 080 071 0.81 030 039 085 0.96 098 101 0389 0.91
MC -0.36 -0.32 -0.10 -0.05 070 0.68 0.58 0.59 019 033 029 0.36 091 106 091 1.06
MDC -0.71  -0.67 -0.72 -0.64 0.68 066 0.56 0.58 -0.15 0.03 -0.20 -0.01 093 107 093 1.07
TMC -040 -0.35 -0.30 -0.24 0.68 066 0.56 0.57 011 024 013 0.24 092 107 092 1.07
Rank -0.11  0.09 0.39 0.45 071 072 061 0.63 054 063 084 0.87 082 098 0.80 0.97
C(2,pB) -0.38 -0.19 0.05 0.18 066 063 0.53 0.54 033 047 064 0.66 0.76 093 0.76 0.93
c@3,pPB)  -037 -0.15 0.05 0.22 064 063 052 0.55 040 052 075 0.77 066 083 0.66 0.83
D(1) -0.36 -0.31 -0.09 -0.04 0.70 068 0.58 0.59 020 033 0.30 0.37 091 106 091 1.06
D(0.9) -0.36 -0.33  -0.09 -0.03 069 0.67 0.8 0.59 021 034 032 0.39 092 107 092 1.07
Ridge -040 -054 -0.19 -0.28 071 072 0.62 0.66 -0.34 -0.19 0.38 0.51 097 108 0.92 1.05
Lasso -0.14 -0.17 011 0.07 068 072 059 0.65 -0.15 -0.09 043 0.56 093 102 0.85 0.98
EN -0.23 -0.36 -0.06 -0.21 065 071 0.8 0.64 -0.34 -0.21 0.35 0.47 097 110 093 1.06
Alasso -0.01 -0.03 0.27 0.25 095 097 081 0.86 034 051 093 1.05 1.01 099 o081 0.87
Bridge -0.21 -0.23 0.05 -0.09 067 070 054 0.58 -0.24 0.00 044 0.55 093 104 0.82 0.96
SCAD -0.24 -0.21 0.00 0.00 069 070 0.58 0.63 -0.22 -0.17 0.24 0.35 091 105 0.86 0.99
MCP -0.24 -0.20 0.02 0.05 069 073 0.60 0.65 006 024 065 0.75 092 107 088 1.01
SICA 0.01 o0.01 0.36 0.31 0.79 083 0.69 0.76 036 051 0.9 0.98 094 094 0.78 0.84
PLS 0.32 0.49 0.96 0.98 072 073 062 0.65 058 0.58 1.16 1.28 088 094 0.77 0.84
3PRF 024 024 0.66 0.61 073 072 062 0.66 033 033 0.86 0.98 085 091 0.76 0.81
SPLS -0.37  -0.25 0.05 0.09 068 069 057 0.60 -0.02 0.00 0.25 0.26 072 083 0.68 0.77
PCA -0.65 -049 -0.50 -0.34 062 0.67 055 0.66 013 026 012 0.22 1.03 116 1.03 1.17
SPCA -0.67 -049 -0.34 -0.18 057 059 044 0.53 020 036 042 0.51 084 101 0.76 0.93
ICA -0.10 0.00 0.30 0.47 068 0.69 055 0.60 049 0.55 1.06 1.03 085 094 0.69 0.82
RICA -0.35 -0.23 -0.07 -0.05 059 067 047 0.57 031 044 0.26 0.28 093 101 0.73 0.90

Notes: This table reports the Sharpe Ratio of the stock-bond mean-variance portfolios with monthly rebalancing during NBER-dated recessions and expansions.
The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equal-weighted portfolio and the mean-variance portfolio based on
the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. All mean-variance
portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk aversion (y = 2,10) and
portfolio weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [-0.5,1.5]). Figures in bold are the five models with the best performance.
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Table 3.11: Mean-Variance Portfolio Performance based on Certainty Equivalent Return and Sharpe Ratio: Stock-Bond-Commaodity Portfolios (Transaction

Costs - Monthly Rebalancing)

Certainty Equivalent Return

Sharpe Ratio

y=2 y=10 y=2 v=10
0,1 015 -051 -0515 0,1 015 -051 -0515 0,1 015 -051 -0515| 01 015 -051 -0515
EW 3.87  3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 027  0.27 0.27 0.27 027 0.27 0.27 0.27
HA 546 494 4.84 5.38 354 437 3.76 4.53 038 034 0.33 0.36 053 0.67 0.57 0.69
KS 148 -0.11 534 -1.22 -143 -3.78 -6.39 -7.80 012 013 0.03 0.07 024 0.27 0.21 0.25
MC 597 6.5 7.61 7.84 3.53  4.47 414 5.00 043 041 0.48 0.48 0.53 0.68 0.63 0.75
MDC 578 573 6.14 6.74 3.63 4.49 3.98 4.76 041 0.38 0.40 0.43 0.55 0.68 0.60 0.72
T™MC 589 6.02 7.05 7.36 357 450 412 4.95 042 0.40 0.45 0.46 0.53 0.68 0.63 0.75
Rank 478 597 6.59 6.93 297 376 3.09 4.05 0.34 0.40 0.42 0.44 0.44 0.58 0.50 0.64
C(2,PB) 474 452 5.68 6.22 280 3.76 3.55 4.47 033 031 0.38 0.40 042 0.58 0.55 0.68
C(33,PB) 416  4.33 4.72 4.92 218 276 2.42 3.37 029 0.30 0.33 0.35 0.34 0.46 0.44 0.58
D(1) 594 6.11 7.58 7.82 353  4.47 4.14 5.00 043 0.40 0.48 0.48 053 0.68 0.63 0.75
D(0.9) 581 5.96 7.47 7.75 357 452 4.18 5.04 042  0.40 0.47 0.48 054 0.69 0.64 0.76
Ridge 1.71 146  -1.05 -1.37 121 084 -0.68 0.15 0.11 0.16 0.07 0.11 028 0.33 0.23 0.35
Lasso 258 352 1.26 1.67 1.85 1.20 -0.83 -0.32 0.17  0.27 0.19 0.25 040 043 0.27 0.37
EN 269 3.19 0.88 0.64 1.53 116 -0.76 0.04 0.18 0.25 0.16 0.20 034 0.39 0.24 0.35
Alasso 389 3.78 217 3.07 2.52 143  -1.29 -1.70 027 0.29 0.26 0.33 052 053 0.42 0.46
Bridge 037 085 -2.08 -1.45 124 077 -1.83 -1.47 0.02 013 0.04 0.12 030 0.34 0.16 0.25
SCAD 1.48 164 -0.80 -1.01 1.06 009 -229 -1.54 0.10 0.18 0.12 0.17 033 0.35 0.18 0.29
MCP 248 356 1.61 2.19 2.09 174 -0.53 0.22 0.17  0.27 0.20 0.26 042 047 0.30 0.41
SICA 2.03 129 -2.37 -2.84 038 -243 -5.69 -6.68 0.15 0.8 0.13 0.18 037 0.34 0.24 0.28
PLS 157 038 -2.82 -4.67 -049 -137 -4.76 -4.99 0.11 013 0.08 0.10 021 0.27 0.22 0.27
3PRF 269 077 -3.95 -5.34 -0.65 -1.65 -5.59 -5.95 019 015 0.04 0.07 019 025 0.15 0.20
SPLS 217 151 -1.18 -1.94 -0.64 -353 -7.28 -8.65 0.14 017 0.12 0.16 021 018 0.05 0.10
PCA 0.92 1.82 0.98 2.04 292 374 3.42 4.29 0.03 0.15 0.14 0.21 043 058 0.57 0.69
SPCA -061 -0.71 -1.86 -1.23 1.88 225 1.38 2.34 -0.09  0.00 0.00 0.07 029 041 0.40 0.52
ICA -0.34  -296 -7.75 -8.96 020 014 -1.56 -1.22 -0.02 -0.07 -0.26 -0.24 0.06 016 -0.05 0.09
RICA 055 -0.71 -4.06 -4.89 038 049 -1.05 -0.62 0.02 0.03 -0.07 -0.04 014 024 0.08 0.19

Notes: This table reports the certainty equivalent return and Sharpe Ratio of the stock-bond-commodity mean-variance portfolios with monthly rebalancing and
transaction costs set to 50 bps for each asset. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted
portfolio and the mean-variance portfolio based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated
by multivariate prediction models. All mean-variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported
for different levels of risk aversion (y = 2,10) and portfolio weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [—-0.5,1.5]). Figures in bold
indicate the five models with the best performance.
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Table 3.12: Mean-Variance Portfolio Performance based on Certainty Equivalent Return and Sharpe Ratio: Stock-Bond-Commaodity Portfolios (Transaction

Costs - Quarterly Rebalancing)

Certainty Equivalent Return

Sharpe Ratio

y=2 v=10 y=2 v=10
0,1 015 -051 -0515| 01 015 -051 -0515] 01 015 -051 -0515) 01 015 -051 -0515
EW 3.87 3.87 3.87 3.87 -0.27 -0.27  -0.27 -0.27 0.27 0.27 0.27 0.27 027 0.27 0.27 0.27
HA 4.73 451 3.80 4.39 3.92 484 4.04 4.93 035 0.30 0.29 0.32 051 0.64 0.54 0.66
KS 7.12 8.99 9.45 10.40 3.64 332 2.85 2.08 046 051 0.54 0.57 0.64 0.69 0.72 0.74
MC 6.61 7.34 7.53 8.34 463  5.67 4.95 5.94 0.48 0.49 0.50 0.52 0.65 0.78 0.72 0.84
MDC 5.12 5.43 4.32 5.21 424 518 4.36 5.30 035 0.36 0.32 0.35 058 071 0.61 0.73
TMC 6.52 7.26 6.66 7.58 460 5.60 481 5.79 0.46 0.48 0.46 0.49 0.64 0.77 0.70 0.81
Rank 5.70 6.87 5.97 6.36 417 519 4.33 5.39 040 045 0.41 0.42 058 0.72 0.60 0.73
C(2,pPB) 5.61 6.42 6.59 7.24 421 526 4.69 5.72 0.39 042 0.43 0.46 057 071 0.66 0.78
C(3,PB) 5.04 6.10 6.00 6.33 397 5.06 4.62 5.68 0.34 0.39 0.39 0.41 0.52 0.68 0.64 0.76
D(1) 6.59 7.34 7.54 8.34 462  5.67 4.95 5.94 048 0.49 0.50 0.52 0.65 0.78 0.72 0.84
D(0.9) 6.52 7.37 7.59 8.36 469 574 5.01 6.00 047 0.49 0.50 0.52 0.67 0.80 0.73 0.85
Ridge 5.34 7.22 5.32 7.17 412 463 3.73 4.87 035 042 0.31 0.41 059 0.63 0.53 0.65
Lasso 6.21 8.99 8.24 10.10 437 4.88 3.96 5.08 042 052 0.47 0.54 067 0.71 0.61 0.72
EN 6.26 8.96 7.53 8.83 439 495 4.01 5.14 044 053 0.42 0.50 065 0.70 0.61 0.72
Alasso 10.37 13.16 12.88 15.12 579 556 4.03 4.30 0.75 0.79 0.70 0.73 084 0.84 0.75 0.78
Bridge 4.29 6.24 3.60 5.28 3.57 3.95 2.93 4.01 0.24 0.37 0.21 0.32 0.55 0.58 0.48 0.59
SCAD 6.28 9.47 8.15 9.69 428 484 3.71 4.78 042 054 0.47 0.53 0.66 0.70 0.60 0.71
MCP 5.32 8.28 7.47 9.30 459 544 4.19 5.21 035 048 0.42 0.50 069 0.75 0.64 0.74
SICA 7.64 9.85 10.27 11.65 430 4.01 1.78 1.97 052 0.59 0.57 0.61 069 0.70 0.61 0.66
PLS 835 1048 9.76 11.31 409 3.86 2.13 2.49 0.62 0.66 0.55 0.60 0.66 0.64 0.62 0.65
3PRF 8.68 10.72 8.76 9.97 386  3.38 1.49 1.94 0.64 0.67 0.53 0.57 062 0.61 0.57 0.63
SPLS 6.14 8.38 6.41 8.47 413  3.39 1.56 2.24 042 052 0.40 0.48 0.67 0.61 0.52 0.58
PCA 4.24 5.34 4.76 5.70 3.67 476 3.80 4.89 027 034 0.31 0.37 052 0.68 0.60 0.72
SPCA 3.20 4.24 2.93 3.99 349 441 251 3.65 0.18 0.26 0.22 0.28 048 0.63 0.50 0.61
ICA 4.07 4.82 4.76 6.18 408 4.78 4.52 5.36 027 031 0.31 0.38 057 0.63 0.61 0.71
RICA 5.33 5.37 6.50 6.72 259 243 2.01 2.60 040 037 0.42 0.44 041 0.46 0.46 0.49

Notes: This table reports the certainty equivalent return and Sharpe Ratio of the stock-bond-commodity mean-variance portfolios with quarterly rebalancing and
transaction costs set to 50 bps for each asset. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted
portfolio and the mean-variance portfolio based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated
by multivariate prediction models. All mean-variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported
for different levels of risk aversion (y = 2,10) and portfolio weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [—-0.5,1.5]). Figures in bold
indicate the five models with the best performance.
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Table 3.13: Mean-CVaR Portfolio Performance based on Certainty Equivalent Return and Sharpe Ratio: Stock-Bond-Commodity Portfolios

Certainty Equivalent Return

Sharpe Ratio

y=2 y=10 y=2 v=10
01 015 -051 -0515 0,1 015 -051 -0515] 01 015 -051 -0515] 01 015 -051 -0515
EW 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
HA 496 6.29 4.96 6.29 4.49 5.23 4.47 5.19 0.86 0.86 0.85 0.85 0.86 0.86 0.85 0.85
KS 555 7.14 6.85 8.55 4.90 5.83 5.54 6.43 0.87 0.87 0.88 0.93 0.96 0.96 0.93 0.98
MC 502 6.38 5.04 6.42 454 531 4.53 5.29 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87
MDC 498 6.32 4.99 6.34 451 5.26 4.49 5.24 0.87 0.87 0.86 0.86 0.86 0.86 0.86 0.86
T™MC 501 6.36 5.03 6.39 4.53 5.30 4.52 5.27 0.88 0.88 0.88 0.88 0.87 0.87 0.86 0.86
Rank 509 6.48 5.12 6.53 4.59 5.40 4.59 5.38 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.89
C(2,pB) 5.03 6.39 5.07 6.45 4.56 5.35 4.57 5.36 0.88 0.88 0.89 0.89 0.88 0.88 0.88 0.88
C(3,PB) 505 6.43 511 6.51 4.56 5.35 4.56 5.35 0.89 0.89 0.90 0.90 0.88 0.88 0.88 0.88
D(1) 502 6.38 5.04 6.42 454 531 4.53 5.30 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87
D(0.9) 502 6.39 5.05 6.42 454 532 4.53 5.30 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87
Ridge 527 6.76 5.80 7.26 4.76 5.66 5.12 6.05 0.96 0.96 0.93 0.95 0.95 0.95 1.01 1.00
Lasso 542 6.98 5.75 7.36 4.87 5.82 5.13 6.07 1.00 1.00 0.99 1.02 0.98 0.98 1.03 1.02
EN 537 6.90 5.68 7.23 4.82 5.75 5.11 6.04 0.99 0.99 0.95 0.99 0.97  0.97 1.02 1.02
Alasso 544  7.00 6.13 7.81 4.89 5.86 5.14 6.19 0.98 0.98 0.95 0.99 0.99 0.99 0.98 1.02
Bridge 525 6.73 571 7.26 4.73 5.62 5.06 5.97 0.95 0.95 0.91 0.95 0.94 094 1.00 0.99
SCAD 540 6.95 5.90 7.46 4.83 5.77 5.20 6.19 0.99 0.99 1.04 1.04 0.97 0.97 1.06 1.05
MCP 543  6.99 5.75 7.31 4.85 5.79 5.12 6.05 1.00 1.00 0.96 1.00 0.97 0.97 1.02 1.01
SICA 568 7.36 6.16 8.08 5.04 6.07 5.33 6.37 1.00 1.00 0.98 1.06 1.02 1.02 1.06 1.07
PLS 541 6.97 6.58 8.22 4.86 5.81 5.36 6.28 0.98 0.98 0.85 0.94 0.97 0.97 0.90 0.97
3PRF 532 6.83 6.45 8.11 4.82 5.75 5.35 6.25 096 0.96 0.86 0.94 097 0.97 0.91 0.97
SPLS 525 6.72 5.94 7.37 4.79 5.69 5.14 6.05 0.90 0.90 0.86 0.90 0.95 0.95 1.00 1.00
PCA 518 6.62 5.50 7.09 464  5.48 4.78 5.65 0.93 0.93 0.96 0.96 091 0.91 0.93 0.93
SPCA 521 6.67 5.77 7.32 4.70 5.56 4.84 5.75 0.94 094 0.98 0.99 0.93 0.93 0.95 0.95
ICA 504 6.40 5.55 6.96 4.50 5.24 4.77 5.54 083 0.83 0.85 0.85 0.86 0.86 0.91 0.90
RICA 512 6.53 5.20 6.63 4.61 5.42 4.59 5.35 0.90 0.90 0.86 0.86 0.89 0.89 0.87 0.87

Notes: This table reports the certainty equivalent return and Sharpe Ratio of the stock-bond-commodity mean-CVaR portfolios with monthly rebalancing. The
out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-CVaR portfolio based on the
historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. The CVaR of all
portfolios is estimated by generating 5000 scenarios using Monte Carlo simulation based on the multivariate normal distribution, with mean varying according
to the return forecast and sample variance-covariance matrix. The portfolio performance is reported for different levels of risk aversion (y = 2, 10) and portfolio

weight constraints (w; € [0,1], w; € [0,1.5], w; € [-0.5,1] and w; € [—0.5,1.5]). Figures in bold indicate the five models with the best performance.
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Table 3.14: Mean-Variance and Mean-CVaR Portfolio Performance based on CVaR: Stock-Bond-Commodity Portfolios

y=2 y=10
Mean-Variance Mean-CVaR Mean-Variance Mean-CVaR
0,1 015 -051 -0515 0,1 015 -051 -0515 0,1 015 -051 -0515| 01 015 -051 -0515
EW 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5,65 5.65 5.65 5.65
HA 7.62 9.90 10.17 11.40 163 252 1.64 2.53 299 350 3.01 3.51 163 252 1.64 2.54
KS 8.73 12.62 16.02 18.90 197 3.05 2.77 3.65 5.86 7.29 7.92 8.65 163 253 2.36 3.11
MC 6.80 8.98 9.83 10.90 1.60 2.48 1.61 2.50 2.88 331 3.03 3.44 1.61 249 1.62 2.52
MDC 7.24 9.26 9.69 10.81 162 251 1.63 2.52 2.89 3.37 2.95 3.45 1.62 251 1.64 2.53
T™MC 6.81 8.94 9.59 10.66 1.61 249 1.62 251 282 3.27 2.94 3.39 1.61 249 1.63 2.52
Rank 6.23 8.25 9.84 10.85 159 247 1.60 2.49 3.13 356 3.79 4.05 1.60 247 1.61 2.50
C(2,PB) 6.79 9.24 10.33 11.39 1.60 2.48 1.61 2.50 3.18 355 3.54 3.85 160 248 1.62 2.51
C(3,PB) 6.84 9.40 10.73 11.88 1.60 2.48 1.60 2.49 3.44 390 4.17 4.39 1.60 248 1.62 2.51
D(1) 6.79 8.98 9.83 10.89 1.60 2.48 1.61 2.50 2.88 3.30 3.03 3.44 1.61 249 1.62 2.51
D(0.9) 6.79 8.96 9.81 10.84 1.60 2.48 1.61 2.50 2.86  3.29 3.02 3.43 1.61 249 1.62 2.51
Ridge 7.65 1034 11.44 13.26 157 243 1.96 2.77 401 4.72 5.14 5.39 156 243 1.63 2.49
Lasso 7.61 1052 12.07 14.16 155 241 1.77 2.56 439 526 5.49 5.80 155 240 1.59 2.41
EN 7.60 1037 1154 1351 155 241 1.81 2.59 419 495 5.16 5.40 155 241 1.60 2.42
Alasso 7.71 1097 13.58 15.63 162 251 2.10 2.93 482 6.02 6.86 7.35 154 2.39 1.75 2.54
Bridge 7.92 10.77 12.07 13.73 157 244 1.95 2.79 417 4.86 5.39 5.70 156 242 1.63 2.49
SCAD 8.00 1098 12.75 14.86 156 2.42 1.72 2.54 452 543 5.75 5.96 156 242 1.58 2.39
MCP 7.67 1046 11.88 13.96 157 2.44 1.85 2.61 433 519 5.48 5.76 156 243 1.63 2.47
SICA 8.34 12.03 15.49 18.11 1.69 2.62 2.01 2.82 553 7.04 7.84 8.47 155 241 1.64 2.44
PLS 786 11.33 14.16 16.70 159 247 2.75 3.42 496 5091 7.06 7.44 156 242 2.35 3.06
3PRF 7.89 1122 14.22 16.41 1.60 2.48 2.58 3.32 492 589 7.06 7.46 155 240 2.27 3.01
SPLS 7.49 10.68 13.04 15.49 1.70 2.63 2.24 3.05 498 6.47 7.19 7.94 158 2.46 1.67 2.54
PCA 6.79 8.92 10.23 11.40 159 2.46 1.69 2.62 291 347 4.13 4.48 159 246 1.64 2.55
SPCA 6.91 9.17 10.68 11.93 158 2.45 1.80 2.65 331 4.02 4.90 5.13 158 245 1.61 2.50
ICA 7.92 1057 11.61 12.94 1.75 271 2.03 3.02 354 422 4.21 4.77 1.64 254 1.70 2.61
RICA 753 1013 11.75 13.52 161 250 1.77 2.74 3.88 449 4,72 5.10 161 249 1.68 2.60

Notes: This table reports the CVaR calculated at the 95% confidence level of the stock-bond-commodity mean-variance and mean-CVaR portfolios with monthly
rebalancing. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equal-weighted portfolio and the mean-variance and
mean-CVaR portfolios based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate
prediction models. All mean-variance portfolios are constructed based on the sample covariance matrix. The CVaR of all portfolios is estimated by generating
5000 scenarios using Monte Carlo simulation based on the multivariate normal distribution, with mean varying according to the return forecast and sample
variance-covariance matrix. The portfolio performance is reported for different levels of risk aversion (y = 2,10) and portfolio weight constraints (w; € [0,1],

w; € [0,1.5], w; € [-0.5,1] and w; € [—0.5,1.5]). Figures in bold indicate the five models with the best performance.
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Chapter 3 Figures

Figure 3.1: Index Prices and Returns
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Notes: The figure plots the monthly prices and returns of the stock, bond and commodity indices. The indices are denominated in US dollars. The sample period
is from 1977 to 2016.
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Chapter 3 Appendix

This section provides a table with the sources of the series used in this study and detailed

description on the construction of the predictors.

Table A3.1 provides the sources of the time series used to construct the variables in this study.

[Insert Table A3.1 Here]

The predictor variables used to forecast the three indices were constructed in the following way:

1.

8.

9.

DP: Dividend-price ratio the difference between the log of dividends paid on the S&P 500
index and the log of the S&P 500 index price. The dividends are measured using a 12-
month moving sum.

DY: Dividend yield is the difference between the log of dividends and the log of lagged
stock prices.

EP: Earnings-price ratio is the difference between the log of earnings on the S&P 500 Index
minus the log of stock prices. The earnings are measured using a 12-month moving sum.
DE: Dividend-payout ratio is the difference between the log of dividends and the log of
earnings.

SVAR: Stock variance is the sum of squared daily returns on the S&P 500 Index.

BM: The book-to-market ratio for the Dow Jones Industrial Average.

NTIS: Net equity expansion is the ratio of a 12-month moving sum of net equity issues by
NY SE-listed stocks to the total end-of-year market capitalization of NYSE stocks.

TBL: Treasury bill rate is the interest rate on a three-month Treasury bill.

LTY: Long-term yield is the long-term government bond yield.

10. LTR: Long-term return is the return on long-term government bonds.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

TMS: Term spread is the difference between the long-term yield and the Treasury bill rate.
DFY: Default yield spread, difference between Moody’s BAA- and AAA-rated corporate
bond yields.

DFR: Default return spread is the difference between the long-term corporate bond return
and the long-term government bond return.

INFL: Inflation based on the CPI. To account for the delay in CPI releases, one period
lagged values of inflation are used.

IP: The first difference in the log-levels of the industrial production index.

MZ1: The first difference in the log-levels of the money stock M1.

UR: The change in civilian unemployment rate.

VXO: The Chicago Board Options Exchange S&P 100 Volatility Index.

Umacro: Macroeconomic uncertainty. An aggregate measure of macroeconomic
uncertainty proposed by Jurado, Ludvigson and Ng (2015) and Ludvigson, Ma and Ng
(2015), based on a large set of macroeconomic indicators.

Ufin: Financial Uncertainty. An aggregate measure of financial uncertainty proposed by
Jurado, Ludvigson and Ng (2015) and Ludvigson, Ma and Ng (2015), based on a large set
of financial indicators.

SP1: The yield spread between a 1-year government bond and the 6-month Treasury bill
SP5: The yield spread between a 5-year government bond and the 6-month Treasury bill.
PPI: The second difference in the log-levels of the Producers Price Index (Finished Goods).
CAP: The change in capacity utilization-manufacturing.

IS: The change in inventories-sales ratio (Total Business).

REA: The real economic activity index proposed by Kilian (2009).
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27. CENAI: The Chicago Fed national activity index.

28. WTI: The first difference in the log-levels of the spot crude oil price: West Texas
Intermediate.

29. USDAUD: The first difference in the log-levels of the Australian dollar-US dollar.

30. USDCAD: The first difference in the log-levels of the Canadian dollar-US dollar.

31. USDIND: The first difference in the log-levels of the Indian rupee-US dollar.

32. USDNZD: The first difference in the log-levels of the New Zealand dollar-US dollar.

The predictors DP, DY, EP, BM, NTIS, TBL, LTY and INFL are non-stationary based on

augmented Dickey-Fuller (ADF) tests and are adjusted to stationarity by taking first differences.
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Table A3.1: Data Source

Series Source

S&P 500 Total Return Index Amit Goyal's Website
Bloomberg Barclays US Aggregate Bond Index Bloomberg

S&P Goldman Sachs Commodity Total Return Index Bloomberg

12-Month Moving Sum of Dividends
12-Month Moving Sum of Earnings
AAA-Rated Corporate Bond Yield
BAA-Rated Corporate Bond Yield
Long-Term Corporate Bond Return
Stock Market Volatility
Book-to-Market Value Ratio

Total Net Issues of NYSE

3-Month Treasury Bill yield
Long-Term Government Bond Return
Long-Term Government Bond Yield
Inflation Rate

6-Month Treasury Bill yield

1-Year Treasury Rate

5-Year Treasury Rate

Chicago Board Options Exchange S&P 100 Volatility Index
Total Business: Inventories to Sales Ratio
Capacity Utilization: Manufacturing
Producer Price Index: Finished Goods
M1 Money Stock

Industrial Production Index

Civilian Unemployment Rate
Chicago Fed National Activity Index
Spot Crude Oil Price: West Texas Intermediate
Australian Dollar-US Dollar
Canadian Dollar-US Dollar

Indian Rupee-US Dollar

New Zealand Dollar-US Dollar
Macroeconomic Uncertainty
Financial Uncertainty

Real Economic Activity Index

Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website
Amit Goyal's Website

St.
St.
St.
St.
St.
St.
St.
St.
St.
St.
St.
St.
St.
St.
St.
St.

Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database
Louis Fed’s FRED database

Sydney C. Ludvigson's Website
Sydney C. Ludvigson's Website
Lutz Kilian's Website

Notes: This table reports the name and sources of the series used in this study.
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Chapter 4: Pairs Trading using Quantile Regression

4.1. Introduction

Pairs trading is a statistical arbitrage strategy which is based on the principle that the prices of two
assets co-move with each other. Pairs trading is a market-neutral strategy that matches a long
position with a short position through a pair of co-moving assets and it is also a mean-reverting
strategy that assumes that the spread will revert to its historical mean leading to profits through
relatively low risk positions. According to Gatev, Goetzmann and Rouwenhorst (2006), the
concept of pairs trading is comprised of two stages. In the formation period, a pair of assets whose
prices have moved together historically is identified. In the trading period, the spread between the
two asset prices is monitored and if the prices diverge and the spread widens, the higher priced
asset is sold and the lower priced asset is bought. If the two assets follow an equilibrium
relationship, the prices of the two assets will converge and the spread will revert to its historical

mean, resulting in profit.

There are many pairs trading methods in the literature, which, according to Krauss (2017),
can be categorized into five groups: the distance approach, the cointegration approach, the time-
series approach, the stochastic control approach, with the fifth group, entitled “other approaches”,
containing pairs trading methods unrelated to the aforementioned approaches and with limited
supporting literature. In the distance method (DM), introduced by Gatev, Goetzmann and
Rouwenhorst (2006), distance metrics are used to identify co-moving assets, while nonparametric
threshold rules are used as triggers to open or close a pair position. In contrast to the distance

method, the cointegration method is a model based approach that assumes a cointegrating
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relationship between the price series of two assets. A theoretical framework for pairs trading is
outlined by Vidyamurthy (2004), based on the error correction model representation of
cointegrated time series by Engle and Granger (1987). In the time series approach, the focus is on
the trading period and on generating optimal trading signals using different methods. The most
cited study using the time-series approach is by Elliott, Van Der Hoek and Malcolm (2005), who
model the mean reversion of the spread, defined as the difference between the two prices, in a
continuous time setting, by using a state-space representation of the spread estimated by Kalman
filter. Finally, the primary focus in the stochastic control approach is finding the optimal portfolio
holdings in the two legs of the pair when other assets are available. Jurek and Yang (2007) develop
amodel which allows non-myopic arbitrageurs to allocate capital between a mean-reverting spread
and a risk-free asset, while Liu and Timmermann (2013) derive optimal portfolio strategies for
convergence trades under recurring and nonrecurring arbitrage opportunities for an investor who

maximizes the expected value of a power utility function defined over terminal wealth.

We extend the literature of pairs trading by examining the performance of the cointegration
method, when the spread during the trading period is computed using quantile regressions. We use
daily data of the stocks in the S&P 100 to conduct a robust analysis of the new pairs trading
strategy, which takes advantage of the information in the conditional quantiles of the distribution

of asset returns, against the distance method and original cointegration method benchmarks.

The study by Gatev, Goetzmann and Rouwenhorst (2006) is the earliest comprehensive
study to examine pairs trading. In the formation period they rank each possible combination of
pairs according to the sum of squared differences (SSD) on normalized price series and trading is
triggered when the spread diverges more than two historical standard deviations (estimated during

the formation period) and closed upon mean reversion or at the end of the trading period,
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independent of the occurrence of any price convergence. Do and Faff (2010) examine the
profitability of the DM and find that it yields the highest performance during the 1970s and the
1980s, with declining performance in the 1990s. The exceptions to the declining performance of
the DM are the periods of the dot-com bubble and global financial crisis. Additionally, Do and
Faff (2012) examine the effects of transaction costs on the distance method, by accounting for
commissions, market impact, and short-selling fees. They find that the strategy becomes largely
unprofitable, with only refined portfolios, based on additional selection metrics, achieving a
positive excess return. More recently Rad, Low and Faff (2016), perform an extensive evaluation
of the DM and find that it generates positive returns and is less affected by transaction costs
compared to other methods. While the aforementioned studies focus on the US stock market, the
profitability of the distance method has also been examined in international stock markets. Other
applications of the distance method include Perlin (2009), who applies the DM to the Brazilian
stock market, Broussard and Vaihekoski (2012), who examine the profitability of pairs trading
under different weighting schemes and trade initiation conditions in the Finnish stock market and
Jacobs and Weber (2015), who analyse the performance of the DM for 34 countries and find that

the returns of the strategy depend on the investors’ reaction to news.

The framework for pairs trading based on cointegration was proposed by Vidyamurthy
(2004). During the formation period the tradability of the pairs is assessed using cointegration
tests. The most commonly used approach is the Engle-Granger test for cointegration that is based
on the error-correction representation of the relationship between two asset prices. In the trading
period entry and exit signals are generated using simple threshold rules, based on the normalized
spread between the prices of the two cointegrated assets. In a large scale application using US data,

Rad, Low and Faff (2016), compare the performance of three methods; the distance, cointegration
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and copula methods. They find that the cointegration performs similarly to the DM, with the former
generating better results than the other strategies before transaction costs are taken into account.
In a recent study, Farago and Hjalmarsson (2018) use data from the Stockholm stock exchange,
which contains “ordinary stocks” that are issued by different companies and dual-class firms that
issue A- and B-shares, whose prices are closely related and can act as a control group for series
that are likely cointegrated. They find that before transaction costs A-B pairs yield similar Sharpe
ratios to the theoretical model they developed, which are higher than those of the ordinary pairs.
Their findings suggest that cointegration is not the likely reason for the profitability of pairs trading
strategies based on ordinary stocks, since they do not satisfy the cointegrating restrictions,
compared to the A-B pairs. Other applications include those by Caldeira and Moura (2013), who
use a cointegration-based trading strategy on the Brazilian stock exchange and find statistically
significant excess returns after accounting for transaction costs, and by Huck and Afawubo (2015)
who develop pairs trading strategies using stocks listed on the S&P 500 and find that the

cointegration approach significantly outperforms the distance approach.

The contributions of this study are threefold. First, we combine aspects of the cointegration
method with quantile regression to produce a new approach to pairs trading. In the formation
period stock pairs are sorted and selected similarly to the cointegration method, while in the trading
period the trading signal is generated based on the spread of the stock prices in the pair, which has
been estimated by quantile regression. Our second contribution, stems from the extensive
evaluation of the new method along with the distance method and the original cointegration
method, using a dataset consisting of daily observations of all stocks in the S&P 100 from 2000 to
2017. Additionally, we use a variety of economic and risk-adjusted measures to evaluate the

performance of the new method, estimated for multiple quantiles, and compare it with the simpler
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alternatives. Our final contribution arises from evaluating the performance of the pairs trading
strategies under an asset pricing framework, in order to examine whether the returns of each

strategy can be explained by various risk factors.

The remainder of this chapter proceeds as follows; Section 4.2 provides a description of the data,
Section 4.3 describes the pairs trading strategies and Section 4.4 presents the results. Section 4.5

concludes.

4.2. Data

For the empirical application we focus on the S&P 100. The primary reasons being market
efficiency and computational feasibility. The S&P 100 consists of the 100 major, blue chip
companies across multiple industry sectors. This highly liquid subset of the US stock market serves
as a proving ground for any trading strategy, since investor scrutiny and analyst coverage is
especially high for these large capitalization stocks. Additionally, handling approximately 100
stocks per iteration of the backtest, renders even the most sophisticated strategies computationally
feasible, making the S&P 100 the ideal choice for the application of our strategy. First, we obtain
the month end constituent list for the S&P 100 from Bloomberg from December 2000 to December
2017%. Then, following Krauss and Stiibinger (2015), we consolidate those lists into a binary
matrix, with one indicating that the stock is a constituent of the index and zero otherwise.

Furthermore, we acquire the daily total return index of all stocks that were included in the S&P

1 The choice of sample period is due to data availability constraints, since information on the constituents list of the
S&P 100 starts on December 2000.
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100 for the same period. This leads to a dataset with 4296 daily observations (205 months), for a

total of 177 stocks.

4.3. Methodology

Pairs trading is a mean-reverting strategy that assumes a relationship between the prices of two
securities. Modelling this relationship could potentially allow us to take advantage of any short-
term deviations from the mean, by simultaneously buying the undervalued security and selling
short the overvalued security. When the prices revert to their mean, we close the position and
realize the profit. To examine the performance of the three pair trading strategies, based on daily
data of S&P 100 stocks from December 2000 to December 2017, we use a similar setting for our
backtest as Rad, Low and Faff (2016). The performance of the strategies is evaluated using a
rolling window of 18 (calendar) months that is updated by moving forward by one month in each
iteration. The rolling window in each iteration is divided in a formation period of 12 months, where
the pairs are selected and a trading period of six months, where the strategy is executed. Since we
do not wait six months for the current trading period to end, we end up with six overlapping
portfolios of pairs, with each portfolio having a different starting period, since it belongs to a
different iteration. There are a total of 188 backtest iterations (cycles of formation/trading periods)

and the number of pairs considered in each are approximately 4950.

The distance method, described in Section 4.3.1, is a popular pairs trading strategy that we
use as a benchmark to evaluate the cointegration and quantile regression methods. In the DM,
during the formation period, the pairs of stocks are sorted based on the sum of squared differences

(SSD) in their normalized prices and throughout the trading period their spreads are monitored for
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any deviations beyond a certain threshold that would trigger a long and short position. The
cointegration method for pairs trading (Section 4.3.2) is based on the property of cointegrated time
series, that they excibit a long-term equilibrium and any deviations from that equilibrium will be
corrected through time, when the series will mean-revert. In this approach the pairs are selected
based on the two-step Engle-Granger method (Engle and Granger (1987)) during the formation
period and in the course of the trading period, long and short positions are opened when there are
temporary deviations from the estimated stationary spread. The third approach combines the
cointegration method and quantile regression. Pairs of stocks are sorted and selected in the same
way as in the cointegration method, however, the spread is estimated for a range of quantiles using

quantile regression. We provide details of this approach in Section 4.3.3.

4.3.1. Distance Method

The first strategy is based on the distance method proposed by Gatev, Goetzmann and
Rouwenhorst (2006), and is similar to its in implementation as in Rad, Low and Faff (2016) and
Do and Faff (2010, 2012). In the DM potential pairs are sorted according the sum of squared
differences in their normalized prices during the formation period. Let p,, and p, . denote the
normalized price series of two stocks calculated by dividing the price series P, . and P, . with their
respective first observation, so that they are scaled to $1 at the beginning of the formation period.

The SSD of a pair is then computed using the following formula:

1 J
2
SSD;, = T_f Z(Pu - Pz,t) (4.1)
t=1
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where T denotes the number of daily observations in the formation period. During the 12-month
formation period the spread between the normalized prices of all possible pair combinations is
calculated. Then we select the 20 pairs with the least SSD that are going to be traded in the
subsequent 6-month trading period. The mean and standard deviation of the spread is kept since it
will be used to generate the trading signal. At the beginning of the trading period, the prices are
rescaled to begin at $1 and the spread of the 20 selected pairs is recalculated and monitored. When
the spread diverges by two or more historical standard deviations, a long and a short position is

simultaneously opened in the pair on the direction of the divergence.

4.3.2. Cointegration Method

The theoretical framework for the cointegration method for pairs trading was developed by
Vidyamurthy (2004). In the formation period the pairs are selected using the Engle-Granger two-
step approach (Engle and Granger (1987)). Let P, and P, . denote the I(1)-nonstationary price
processes of the two stocks. If a linear combination of the two series exists that is 1(0)-stationary
then the two price series are said to be cointegrated. If the two price series are cointegrated then

there exists a non-zero real number S such that:

Ujje = Pyt — PPjt fori,j = 1,2and i # j, (4.2)
where £ is the cointegration coefficient and the spread u;; . is a 1(0)-stationary series known as
cointegrating errors. To test whether the spread is cointegrated, the Engle and Granger (1987) Error
Correction Model (ECM) framework can be used. According to the ECM representation the

cointegrating series exhibit long-run equilibrium, even though short-run deviations from this
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equilibrium may occur. The ECM representation of the cointegration relationship between price

series Py, and P, ; is:

Augje = yUugje—q1 + 84w 1 + &, fori,j =1,2andi # j, (4.3)
where Au;; . denotes the first difference of the spread w;; .. The null hypothesis is that the spread
is a unit-root process (H,:y = 1), therefore the two price series are not cointegrated and the
alternative that the spread is stationary (H,:y # 1), which means that the two series are
cointegrated. This is equivalent to an Augmented Dickey-Fuller (ADF) test, for a model
specification without intercept, linear trend and with a lag of order one. It should be noted that in
the Engle-Granger procedure, the usual ADF tabulated critical values cannot be used, since we test
for the stationarity on a derived variable - the spread of the two price series estimated by OLS.
However, the selection of the pairs in the case of the cointegration method is done based on the ¢t-
statistic. Specifically, in the formation period we select the 20 pairs with the lowest t-statistics for
the estimate of y. Cointegrating series exhibit mean-reverting behavior and by going short (long)
P;, and long (short) P; . when the spread is positive (negative), then the strategy should generate

profits once the spread returns back to its long-term equilibrium.

Similar to the DM, the mean y,, and standard deviation o,, of the spread w;; , are computed

using data in the formation period. During the trading period the spread is calculated based on a

rolling window of 120 observations and is used to form the normalized spread:

u. .‘ —_— H
Z,=——= (4.4)
u

where w;;, = P; — fP; and B, is the is the cointegration coefficient estimated by OLS in a
rolling window of 120 observations. To estimate the normalized spread, observations from the

formation period need to be used. However, when estimating the trading entry and exit points of
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the strategy and the return of the pairs, the values of 3, and Z, used, correspond to the dates of the
trading period. Similarly to the DM method we simultaneously open and close long and short
positions when the normalized spread diverges beyond 2 and close all positions when the spread

returns to zero, which is equivalent to the spread returning to its long-run equilibrium.

4.3.3. Modelling the Spread using Quantile Regression

In the quantile regression method the pairs are selected in the same way as in the cointegration
method, during the formation period. However, the cointegrating coefficient, S, is estimated
throughout the trading period using quantile regression. The quantile regression estimator for each

quantile T € T is obtained through the following optimization problem:

T
B(1) = argminz pe (P — ,B(T)Pj_t), fori,j =1,2andi # j, (4.5)
Ber £

where p,(u) = u(r —Hu< 0)) is the asymmetric weights function as in Koenker and Bassett
(1978) and H (-) is a Heaviside step function. In the special case where T = 0.5 quantile regression
is equivalent to the Least Absolute Deviation (LAD) estimation of (7). The spread between the
prices of stocks i and j, for the th quantile, is then computed as u,; = P;; — B(T)Pj't which is
used to form the normalized spread and open simultaneously long and short positions in the same

way as in the cointegration method, where 8 was estimated using OLS.
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4.3.4. Return Calculation

The return of a nominated pair, 7, ., within each iteration of the backtest is calculated using the

following formula:

ot = Ip,t—l(ri,t - Bt—lrj,t) (4.6)
where r;, and 7; . are the percentage returns of stocks i and j respectively and I, is a dummy
variable which takes the value of 1 for a long position in the spread, value -1 for a short position
in the spread and O otherwise. The lagged values are used for both the trading signal dummy
variable, I,, ., and the cointegration coefficient, 5., when calculating the returns of each nominated
pair. In the case of the quantile regression method the return of a pair is calculated based on the

lagged estimates S (), for each value of :

rp,t(T) = Ip,t—l(ri,t - ﬁt—1(T)Tj,t) (4.7)
and for the DM long and short positions are valued equally, therefore the returns of each pair are

estimated by the following formula:

Tpe = Ipe-1(rie = 15¢) (4.8)
Following Gatev, Goetzmann and Rouwenhorst (2006) and Do and Faff (2010), the returns

of each strategy are calculated in two ways: return on employed capital and return on committed

capital.
n
n
Yp=1Tpt
cc _ Zr=17p 4.10
Tt 20 ( )
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Return on employed capital for day t, £, is calculated as the sum of the daily returns of all pairs
divided by the number of pairs that have traded during that day. Return on committed capital for
day t, r£¢, is calculated as the sum of daily returns of all pairs divided by the number of pairs that
were nominated to trade in that day (20), regardless of whether they actually traded or not. As we
do not wait for the six-month trading period of the iteration of the backtest to complete, each month
we have six overlapping portfolios. The return of each strategy is computed as the equally-
weighted average of the returns of these six portfolios. Furthermore, since trades do not necessarily
open at the beginning of the trading period or there are days when no trading has occurred and
interest is not accrued to the capital when it is not involved in a trade, the performance of the

strategies is underestimated.

4.4. Empirical Results

The performance of the pairs trading strategies, based on the return on employed capital and return

on committed capital, is estimated using various performance measures.

4.4.1. Pairs Trading Performance

The three simple measures used to evaluate the performance of the pairs trading strategies are the
average excess return (AV), the standard deviation (SD) and the end of period value (EPV), which
is the value at the end of the period of the backtest for a portfolio with starting wealth of 1 unit at

the beginning of the period of the backtest and is based on the cumulative sum of returns.
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When measuring portfolio performance the Sharpe ratio (SR) is the most popular metric
and is calculated as the fraction of the excess return (average realized return less the risk-free rate)

divided by the standard deviation of the excess returns.

T, — 1
SR=—7, (4.11)
0i

where 7; is the average realized return of a pairs trading strategy, ¢ is the risk free rate and o; is

the standard deviation of the strategy’s excess returns.

To investigate the capacity of the different strategies to assess tail risk we compute the
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for each strategy. VaR
describes the possible loss of an investment that is not exceeded with a given probability level of

1 — a in a certain period. The a Value-at-Risk of a portfolio is computed as:

VaRa = —F_l(l - a)O'i - (Ti - Tf), (412)
where F is the cumulative standard normal distribution function. The a Conditional VValue-at-Risk

of a portfolio is given by:

CVaR, = (1 —a) ' f(F'(1 — a)o; — (r; — 75), (4.13)
where f is the probability density function of the standard normal distribution. The VaR and CVaR
are calculated at the 95% confidence interval.

[Insert Table 4.1 Here]

Table 4.1 reports the main results for the performance of the three strategies, based on the
end-of-period value, average return, standard deviation, Sharpe ratio, VaR and CVaR metrics, for
the period from December 2001 to December 2017. The first panel reports the results before

transaction costs and the results after transaction costs are reported in the second panel. The table
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presents the results on return on committed capital and employed capital. The average excess
return and Sharpe ratio before transaction costs, based on the employed capital method, are
positive for all strategies except those based on quantile regression for T = 0.8 and 0.9. The
positive average returns range from 0.61% to 7.06%, while the ratios range from 0.056 to 0.1970,
with the strategies with T = 0.1 to 0.5 outperforming the DM and original cointegration method
benchmarks, in terms of both measures. The lowest standard deviation is produced by the distance
method, while the strategy with T = 0.1 and 0.2 yields the second lowest standard deviations.
These are also the two pairs trading strategies with the lowest VaR and CVaR values. After taking
into account transaction costs of 3 bps per share, the average return and Sharpe ratio for the
distance method and the strategies based on quantile regression for T = 0.6 and 0.7 become
negative. For the remaining strategies the average return has a range from 0.01% to 4.03% and the
Sharpe ratio is from 0.0001 to 0.1124, with all quantile regression methods outperforming the
cointegration method. Turning to the results for the return on committed capital before transaction
costs the rankings are similar to those based on return on employed capital, with strategies based
on quantile regression with T = 0.1 to 0.5 outperforming both benchmarks. Overall, the average
excess return and Sharpe ratios are lower, since this is a more conservative way of computing
returns. After transaction costs are taken into account the model with 7 = 0.1 is the only one

generating positive returns and Sharpe ratio.

[Insert Figures 4.1 and 4.2 Here]

Figures 4.1 and 4.2 present the cumulative excess return of all strategies based on the return
on committed capital and return on employed capital respectively. It can be seen that the pairs
trading strategies based on quantile regression with T = 0.1 to 0.4 outperform the two benchmarks

throughout the full sample period, while the strategy with ¢ = 0.5 has similar performance with
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that of the cointegration method. The methods for 7 = 0.6 to 0.9 perform poorly in terms of
cumulative excess return. The cumulative return series of all strategies fluctuate greatly,
experiencing downward trend around 2004 and 2011. After taking into account transaction costs
of 3 bps the (Figures 4.3 and 4.4) the performance of all strategies deteriorates, with the quantile

regression methods for T = 0.1 to 0.5 being the best performing models.
[Insert Figures 4.3 and 4.4 Here]

We further analyze the performance of the pairs trading strategies using measures that take
into account downside risk. The remaining performance measures can be divided into two

categories, according to whether they quantify risk based on lower partial moments or drawdown.

Lower partial moment measures take into account only the negative deviations of returns
from a minimal acceptable excess return. The four lower partial moment measures are the Omega
(OR, Shadwick and Keating (2002)), Sortino (SOR, Sortino and van der Meer (1991)), Kappa 3
(K3, Kaplan and Knowles (2004)) and Upside Potential (UP, Sortino, van der Meer and Plantinga
(1999)) ratios, which are based on the lower partial moments (LPM) and upper partial moments

(UPM), given by

T T
1 1
LPM,, = TZ max(0, Tre — ri’t)n and UPM,, = TZ max(0,7;; — rf_t)n. (4.14)
t=1 t=1

The choice of n determines the extent to which the deviation from the minimal acceptable return

is weighted. The ratios can then be defined as:

OR=1_" 41 s0R =17 g3 =L ,qup = o
= , = ) = an =
LPM; /LPM, 3/LPM, /LPM,

138



Note that while OR, SOR and K3 measure excess return as the difference between average return
and the risk-free rate, the UP ratio measures return using an upper partial moment, which measures
positive deviations from the minimal acceptable return. Because LPMs consider only negative
deviations of returns from a minimal acceptable return, they are more appropriate measures of
downside risk than the standard deviation, which considers equally both negative and positive

deviations from portfolio returns.

Drawdown performance metrics measure the magnitude of losses of an investment over a

certain period. The drawdown (DD) at time ¢, is given by

, where pppax = max p; (4.15)
pmax

1<jst '/

and p; is the current value of the portfolio. The most commonly used drawdown is the maximum
value of the DDs over a period of time. The maximum drawdown (MDD) broadly reflects the
maximum cumulative loss from a peak to a following bottom. The MDD of a portfolio within the

period studied is calculated as MDD = max DD;,.

The drawdown metrics are ratios of the excess return divided by risk measures based on drawdown.
The Calmar ratio (CR, Young (1991)), Sterling ratio (STE, Kestner (1996)), and Burke ratio (BR,
Burke (1994)) use the maximum drawdown, an average above the K largest drawdowns and the

square root of the sum of squares of the K largest drawdowns as risk measures:

; — T; T; — 7, T; — 7,
CR=-—-L STE = L andBR=——

MDD K-1YX_ DD, [SK_ DDZ

Following the literature, the K = 5 largest drawdowns are used, when computing the Sterling and

Burke ratios.
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[Insert Table 4.2 Here]

The performance of the pairs trading strategies based on downside measures is reported in
Table 4.2. The results for the returns on employed capital before transaction costs show that the
best performing strategy according to the Omega, Sortino and Kappa 3 ratios is the one based on
quantile regression for T = 0.2, while according to the Upside Potential measure the distance
method outperforms the rest. It is interesting to note that the model with T = 0.6 exhibits the best
performance based on the drawdown measures (Calmar ratio, Sterling ratio and Burke ratio). After
taking into account transaction costs, the four metrics using lower partial moments as a measure
for risk, select the quantile regression strategy with = = 0.2, while drawdown measures swift to
the one with 7 = 0.4. The worst performing pairs trading strategies in both cases are those with
T = 0.8 and 0.9. Turning to the results for the returns on committed capital, the best performing
model according to all measures except UP is based on quantile regression with 7 = 0.1. The
upside potential selects the distance method prior to transaction costs and the strategy with T =

0.2 after costs.

As both return measures achieve similar rankings for all strategies we use the return on
employed capital, referred to as return from this point forward, to conduct the analysis described

in the following section.

4.4.2. Risk Characteristics of Pairs Trading Strategies

To further investigate the performance of the pairs trading strategies we employ four factor models
that are widely used in the cross-sectional asset pricing literature. The first factor model is based
on the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) and is designed
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to adjust the excess returns of a portfolio for the effect of the overall market return. The one-factor

market model is

ri,t — rf,t = a; + blMKTt + el-‘t, (416)
where ;. — 17, is the excess return of the ith pairs trading strategy for period ¢, MKT, is the excess
return on the market factor for period t and e; , is the component of the return of strategy i during

period t that is not due to exposure to the factors included in the model.

The second model was originally proposed by Fama and French (1993) and incorporates
two additional risk factors to the first model as return proxies associated with size and value. The
size effect refers to the fact that stocks with small market capitalizations have outperformed stocks
with large market capitalizations, while the value effect refers to the fact that stocks with high
book-to-market ratios have historically outperformed stocks with low book-to-market ratios. The

Fama and French three-factor model is given by

where SMB; is the “small minus big” size factor and HML,; denotes the “high minus low” value

factor.

The third model we employ, proposed by Carhart (1997), augments the Fama and French
three-factor model with one additional factor that accounts for the momentum phenomenon. The
momentum factor, represents the returns of a portfolio that is long in stocks with the highest recent
performance and short in stocks with the lowest recent performance. The Carhart four-factor model

can be written as

it — rf,t = a; + blMKTt + SiSMBt + thMLt + miMOMt + €t (418)
where MOM; denotes the momentum factor.
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The fourth model we use was proposed by Fama and French (2015), who augment the
Fama and French three-factor model by adding a profitability and an investment factor. The
profitability factor is the difference between the returns on portfolios of stocks with robust and
weak profitability, while the investment factor is the difference between the returns on portfolios

of the stocks of low and high investment firms. The Fama and French five-factor model is given

by

ri,t - rf,t = a; + blMKTt + SiSMBt + thMLt + TiRMWt + CiCMAt + ei,t' (419)
where RMW, is the “robust minus weak” profitability factor and CMA; is the “conservative minus

aggressive” investment factor.

The intercept, a;, or Jensen (1968)’s alpha, can be interpreted as the average excess return
of the ith pairs trading strategy that is not due to the sensitivity to any of the factors included in
the regression. If the exposures to the combination of factors, b;, s;, h;, 13, ¢c; or m; depending on
the chosen model, capture all variation in expected excess returns, then the intercept is zero for the
ith strategy. To examine whether a strategy generates statistically significant average abnormal
returns, we use the p-value associated with the intercept coefficient. Each slope coefficient is an
estimate of the strategy’s sensitivity to the corresponding factor. We use the coefficients and their
respective p-values to determine whether a factor is related to the returns of a pairs trading strategy.
Since all factor models are time-series regressions they may exhibit autocorrelation and/or
heteroscedasticity in their error terms. To overcome this the Newey and West (1987) estimator is

used.

Tables 4.3 and 4.4 present the estimated alphas and factor sensitivities for each of the pair

trading strategies, before and after transaction costs of 3 bps per share respectively. When the
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returns are adjusted using the CAPM risk model (Panel A of Table 4.3), all strategies except those
based on T = 0.8 and 0.9, generate positive excess returns. However, the results indicate that only
the strategies based on quantile regression for T = 0.1, 0.2 and 0.3 generate abnormal returns that
are statistically indistinguishable from zero. This indicates that the excess returns of the remaining
strategies are due to the portfolio exposure to the market factor, therefore after controlling for the
effects of the market factor, the average abnormal return of each of the strategies is statistically
insignificant. Furthermore, the results indicate that all strategies except those based on quantile
regression for T = 0.7 have statistically significant sensitivity to the market portfolio, with all
strategies except those for T = 0.7,0.8 and 0.9 having a positive exposure to the market. When
transaction costs are taken into account (Panel A of Table 4.4), the only strategies with statistically
significant, but negative, abnormal excess returns are the DM and those based on quantile
regression for T = 0.8 and 0.9, while the sensitivity to the market factor remains significant for the

majority of the strategies.

Next, the results from Panel B of Table 4.3, show that the positive and statistically
significant alphas, after adjusting for the MKT, SMB and HML risk factors, belong to the strategies
based quantile regression for T = 0.1, 0.2 and 0.3. Moreover, for those three strategies the market
and value factor are both statistically significant, with MKT being positively and HML negatively
correlated with the excess returns. The remaining strategies do not yield statistically significant
abnormal excess returns according to the Fama and French three-factor model, with the majority
of the strategies exhibiting statistically significant sensitivity to the market portfolio and the value
factor. The DM is the only pairs trading strategy with significant exposure to the size factor. After
transaction costs (Panel B of Table 4.4) the DM and strategies based on quantile regression for

T = 0.8 and 0.9 generate significant negative alphas, while none of the other methods yield
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significant average excess return. The exposure to the market and value factors remains

statistically significant for most of the strategies.

Turning to the results from the Carhart four-factor model (Table 4.3, Panel C), all models
except those based on quantile regression for T = 0.8 and 0.9 generate a positive alpha, while the
strategies that yield statistically significant results are those with = = 0.1,0.2,0.3 and 0.4. For
these strategies the market factor has a significant positive impact, while the exposures to the value
and momentum factors are negative and statistically significant, with the size factor being positive
and statistically significant for the strategy with T = 0.1. The results for the majority of remaining
pairs trading strategies show that the excess returns are affected by the market and value factors,
while the slope estimate of the momentum factor is negative and significant for all models. After
transaction costs there are no strategies that yield statistically significant and positive alphas. The
results for the four factors are similar to those before transaction costs, with the momentum factor

being statistically significant and negative across all strategies.

Finally, the results of the Fama and French five factor model are reported in Panel D of
Tables 4.3 and 4.4. The models that generate significant positive excess returns belong to the pairs
trading strategies based on quantile regression with 7 = 0.1, 0.2, 0.3 and 0.4. These strategies have
positive and significant exposures to the market replicating portfolio and negative and significant
exposures to the value and profitability factors, with the size and investment factors being
statistically insignificant in the case of T = 0.4. The results for the rest of the models appear mixed,
with the exception of the DM where all factors are statistically significant. After transaction costs
are taken into account none of the pair trading strategies generate positive and significant average
excess returns, while the market, value, profitability and investment factors are statistically

significant for most strategies.
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4.5. Conclusion

In this study we propose a new approach to pairs trading that combines the cointegration method
and quantile regression. Using a sample consisting of daily observations of all stocks in the S&P
100 from 2000 to 2017, we evaluate the performance of the new strategy, along with the distance
method and original cointegration method, using a wide range of performance metrics and examine
the sensitivity of pairs trading returns to various risk factors. The results indicate that the quantile

regression pairs trading strategies based on the lower quantiles tend to outperform all other models.
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Chapter 4 Tables

Table 4.1: Pairs Trading Strategies Performance
Panel A: Before transaction costs

Return on committed capital Return on employed capital

EPV AR SD SR VaR CVaR EPV AR SD SR VaR CVaR
DM 1.2782 0.0017 0.0794 0.0216 0.0260 0.0327 1.9806 0.0061 0.1137 0.0533 0.0371 0.0466
mean 3.9213 0.0180 0.1946 0.0927 0.0633 0.0796 5.8749 0.0301 0.3952 0.0762 0.1288 0.1618
go.1 5.8991 0.0303 0.1640 0.1846 0.0527 0.0664 11.2477 0.0633 0.3514 0.1801 0.1131 0.1424
go.2 5.6343 0.0286 0.1720 0.1665 0.0554 0.0698 12.4328 0.0706 0.3585 0.1970 0.1151 0.1451
go.3 5.5505 0.0281 0.1797 0.1564 0.0580 0.0730 11.1337 0.0626 0.3883 0.1612 0.1252 0.1577
go.4 5.0144 0.0248 0.1894 0.1310 0.0613 0.0771 10.2198 0.0570 0.3930 0.1449 0.1270 0.1598
go.5 41735 0.0196 0.1915 0.1023 0.0622 0.0782 7.0241 0.0372 0.3801 0.0979 0.1236 0.1553
q0.6 2.5700 0.0097 0.1835 0.0529 0.0600 0.0753 4.1055 0.0192 0.3971 0.0483 0.1299 0.1630
go.7 1.5743 0.0035 0.1834 0.0193 0.0602 0.0755 1.3682 0.0023 0.4073 0.0056 0.1339 0.1679
q0.8 -0.5614 -0.0096 0.1826 -0.0528 0.0605 0.0757 -4.2022 -0.0321 0.3801 -0.0845 0.1263 0.1581
q0.9 -0.2749 -0.0079 0.1966 -0.0401 0.0650 0.0814 -4.5580 -0.0343 0.3880 -0.0885 0.1290 0.1614
Panel B: After transaction costs

Return on committed capital Return on employed capital

EPV AR SD SR VaR CVaR EPV AR SD SR VaR CVaR
DM -2.7760 -0.0233 0.0795 -0.2935 0.0271 0.0337 -2.0736 -0.0190 0.1138 -0.1669 0.0382 0.0477
mean -0.9453 -0.0120 0.1945 -0.0618 0.0645 0.0807 1.0083 0.0001 0.3952 0.0001 0.1300 0.1630
go.1 1.2749 0.0017 0.1640 0.0104 0.0539 0.0676 6.6235 0.0347 0.3514 0.0989 0.1142 0.1436
go.2 0.7233 -0.0017 0.1719 -0.0099 0.0566 0.0710 7.5218 0.0403 0.3585 0.1124 0.1163 0.1463
go.3 0.5609 -0.0027 0.1797 -0.0151 0.0592 0.0743 6.1441 0.0318 0.3883 0.0818 0.1265 0.1589
go.4 0.0314 -0.0060 0.1893 -0.0316 0.0625 0.0784 5.2368 0.0262 0.3931 0.0666 0.1283 0.1611
go.5 -0.8089 -0.0112 0.1914 -0.0584 0.0634 0.0794 2.0417 0.0064 0.3800 0.0169 0.1248 0.1565
go.6 -2.4418 -0.0213 0.1833 -0.1160 0.0612 0.0765 -0.9063 -0.0118 0.3970 -0.0297 0.1311 0.1643
qo.7 -3.5149 -0.0279 0.1833 -0.1521 0.0614 0.0768 -3.7210 -0.0292 0.4073 -0.0716 0.1351 0.1692
q0.8 -5.6080 -0.0408 0.1825 -0.2237 0.0617 0.0769 -9.2488 -0.0633 0.3801 -0.1666 0.1276 0.1593
q0.9 -5.2135 -0.0384 0.1965 -0.1954 0.0662 0.0826 -9.4966 -0.0648 0.3879 -0.1672 0.1302 0.1626

Notes: This table reports the end-of-period value, average return, standard deviation, Sharpe ratio, Value-at-Risk and Conditional Value-at-Risk, for the three
pairs trading strategies. The strategy based on quantile regression has been computed for 7 € [0.1,0.9]. All calculations are based on the excess returns of each
strategy, with the 3-month Treasury bill used as the risk-free asset. The formation period is set to 12 months and the trading period to 6 months. The period
considered is from December 2001 to December 2017.
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Table 4.2: Pairs Trading Strategies Performance based on Downside Measures

Panel A: Before transaction costs

Return on committed capital

Return on employed capital

OR SOR K3 UP CR STE BR OR SOR K3 UP CR STE BR
DM 1.0132 0.0063 0.0040 0.4817 0.0001 0.0001 0.0000 | 1.0315 0.0156 0.0103 0.5089 0.0003 0.0003 0.0001
mean  1.0661 0.0279  0.0155 0.4497 0.0007 0.0007 0.0003 | 1.0559 0.0228 0.0117 0.4306 0.0002 0.0002 0.0001
go.1 11348 0.0568 0.0318 0.4780 0.0014 0.0014 0.0006 | 1.1448 0.0527 0.0228 0.4166 0.0001 0.0001  0.0001
go.2 1.1214 0.0520 0.0290 0.4798 0.0013 0.0013 0.0006 | 1.1527 0.0644 0.0321 0.4859 0.0001 0.0001 0.0000
go.3 1.1141 0.0488 0.0270 0.4768 0.0012 0.0012 0.0005 | 1.1256 0.0502 0.0236 0.4501 0.0002 0.0002 0.0001
qo.4 1.0956 0.0405 0.0224 0.4640 0.0010 0.0010 0.0005 | 1.1102 0.0458 0.0243 0.4619 0.0004 0.0005 0.0002
go.5 1.0728 0.0310 0.0172 0.4570 0.0008 0.0008 0.0004 | 1.0698 0.0296 0.0158 0.4534 0.0006 0.0006  0.0003
go0.6 1.0351 0.0155 0.0093 0.4578 0.0004 0.0004 0.0002 | 1.0337 0.0143 0.0079 0.4383 0.0008 0.0008 0.0003
go.7 1.0127 0.0056 0.0034 0.4501 0.0001 0.0001 0.0001 | 1.0039 0.0016 0.0009 0.4222 0.0001 0.0001 0.0000
qo.8 0.9667 -0.0150 -0.0090 0.4352 -0.0004 -0.0004 -0.0002 | 0.9457 -0.0240 -0.0142 0.4192 -0.0013 -0.0013 -0.0006
go0.9 0.9741 -0.0113 -0.0066 0.4256 -0.0003 -0.0003 -0.0001 | 0.9423 -0.0246 -0.0144 0.4014 -0.0014 -0.0014 -0.0006
Panel B: After transaction costs
Return on committed capital Return on employed capital
OR SOR K3 UP CR STE BR OR SOR K3 UP CR STE BR

DM 0.8382 -0.0807 -0.0524 0.4181 -0.0009 -0.0009 -0.0004 | 0.9077 -0.0469 -0.0315 0.4614 -0.0008 -0.0008 -0.0003
mean  0.9583 -0.0181 -0.0102 0.4172 -0.0005 -0.0005 -0.0002 | 1.0001 0.0000 0.0000 0.4149 0.0000 0.0000  0.0000
go.1 1.0071 0.0031 0.0018 0.4391 0.0001 0.0001 0.0000 | 1.0770 0.0286  0.0125 0.4003 0.0001 0.0001 0.0001
go.2 0.9932 -0.0030 -0.0017 0.4404 -0.0001 -0.0001 0.0000 | 1.0843 0.0362 0.0182 0.4659 0.0001 0.0001  0.0000
go.3 0.9896 -0.0046 -0.0026 0.4381L -0.0001 -0.0001 0.0000 | 1.0619 0.0252 0.0119 0.4326 0.0001 0.0001 0.0001
qo.4 0.9783 -0.0095 -0.0053 0.4283 -0.0002 -0.0002 -0.0001 | 1.0491 0.0208 0.0111 0.4442 0.0002 0.0002 0.0001
go.5 0.9608 -0.0173 -0.0097 0.4233 -0.0004 -0.0004 -0.0002 | 1.0117 0.0051 0.0027 0.4364 0.0001 0.0001 0.0001
go0.6 0.9272 -0.0332 -0.0202 0.4232 -0.0009 -0.0009 -0.0004 | 0.9799 -0.0087 -0.0048 0.4226 -0.0005 -0.0005 -0.0002
qo.7 0.9058 -0.0432 -0.0260 0.4152 -0.0011 -0.0011 -0.0005 | 0.9512 -0.0209 -0.0115 0.4069 -0.0012 -0.0012 -0.0005
qo.8 0.8666 -0.0619 -0.0377 0.4020 -0.0016 -0.0016 -0.0007 | 0.8960 -0.0469 -0.0279 0.4036 -0.0025 -0.0025 -0.0011
go0.9 0.8802 -0.0539 -0.0320 0.3962 -0.0015 -0.0015 -0.0007 | 0.8939 -0.0460 -0.0270 0.3871 -0.0026 -0.0026 -0.0012

Notes: This table reports the performance metrics using lower partial moments and drawdown as measures of risk, for the three pairs trading strategies. The
strategy based on quantile regression has been computed for = € [0.1,0.9]. All calculations are based on the excess returns of each strategy, with the 3-month
Treasury bill used as the risk-free asset. The formation period is set to 12 months and the trading period to 6 months. The period considered is from December
2001 to December 2017.
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Table 4.3: Pairs Trading Strategies Risk Profile, before Transaction Costs

DM mean g0.1 0.2 g0.3 0.4 g0.5 0.6 0.7 g0.8 g0.9
Panel A: One-factor market model
Alpha 0.0030 0.0995 0.2067* 0.2428** 0.2124* 0.1994 0.1280 0.0687 0.0117 -0.1055 -0.0919
MKT 0.6219***  0.6145***  1.3615***  1.1640***  1.1142***  (0.8329***  0.6094***  (0.2363** -0.0765 -0.6761*** -1.3315***
Panel B: Fama and French three-factor model
Alpha 0.0041 0.0982 0.2102** 0.2443** 0.2132* 0.1982 0.1270 0.0655 0.0090 -0.1091 -0.0936
MKT 0.5998***  0.5660***  1,5981***  1.3257***  1.2147***  (0.8534*** (,5637*** 0.1560 -0.1793 -0.8809***  -1.5461***
SMB -0.1664*** 0.1049 -0.1779 -0.0120 0.0059 0.1717 0.0798 0.3044 0.2305 0.2338 -0.0156
HML 0.2626*** 0.2707 -1.5391***  -1,1232*** -0.7066*** -0.2551 0.2682 0.3642* 0.5695***  1.2806***  1.5102***
Panel C: Carhart four-factor model
Alpha 0.0191 0.1279 0.2226** 0.2660** 0.2402** 0.2272* 0.1561 0.1008 0.0452 -0.0820 -0.0685
MKT 0.4018*** 0.1722 1.4335%**  1.0377***  0.8569***  0.4684*** 0.1774 -0.3115***  -0.6596*** -1.2403*** -1.8787***
SMB -0.0550 0.3265 -0.0853 0.1500 0.2073 0.3883* 0.2972 0.5674** 0.5007** 0.4360** 0.1715
HML -0.2549***  -0,7584*** -1.9691*** -1.8756*** -1.6416*** -1.2612*** -0.7412*** -0.8572*** -0.6855*** 0.3415 0.6410***
MOM -0.8923***  -1.7744*** 0. 7414*** -1.2974*** -1.6122*** -1.7347*** -1.7404*** -2,1059*** -21638*** -1.6192*** -1 4985***
Panel D: Fama and French five-factor model
Alpha 0.0159 0.1432 0.2410**  0.2855***  (0.2587** 0.2471** 0.1734 0.1166 0.0609 -0.0854 -0.0730
MKT 0.5267***  (0.3128***  1.4683***  1.1272***  (0.9855***  (0.5916***  0.3031*** -0.1520 -0.4988***  -1.0694*** -1,7181***
SMB -0.2043*** -0.1662 -0.5780***  -0.4289** -0.4039* -0.1928 -0.2045 0.0968 0.0513 0.3636* 0.1398
HML 0.2898*** 0.1030 -2.1130***  -1.6366*** -1.1657*** -0.5859*** 0.0859 0.3885* 0.6626***  1,7758***  2,0311***
RMW -0.4083***  -2.0041*** -2.1289*** -2.4332*** -2 5079*** -24273*** -2.0847*** -19224*** -1.8416*** -0.0927 0.0709
CMA -0.5190*** -0.5272 2.0946***  14378***  1.0122** 0.2177 -0.4953 -1.7476%**  -2.1419***  -3.3970*** -3.4348***

Notes: This table reports the risk-adjusted alphas and factor sensitivities for each of the pairs trading strategies, using the one-factor market model (Panel A), Fama and
French three-factor model (Panel B), Carhart four-factor model (Panel C) and Fama and French five-factor model (Panel D). The statistical significance of each parameter

is based on t-statistics calculated using Newey-West standard errors.

*, ** and *** indicate significance at the 10%, 5% and 1% levels.
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Table 4.4: Pairs Trading Strategies Risk Profile, after Transaction Costs

DM mean g0.1 g0.2 g0.3 0.4 g0.5 0.6 0.7 g0.8 g0.9
Panel A: One-factor market model
Alpha -0.0973*** -0.0208 0.0924 0.1214 0.089 0.0762 0.0049 -0.0552 -0.1141 -0.2302* -0.2140*
MKT 0.6247***  0.6145***  1.3631***  1,1654***  1.1158*** 0.8338***  0.6090*** 0.2379** -0.0762 -0.6757***  -1,3301***
Panel B: Fama and French three-factor model
Alpha -0.0961*** -0.0220 0.0959 0.1228 0.0899 0.0750 0.0039 -0.0584 -0.1168 -0.2338** -0.2157*
MKT 0.6042***  (0,5694***  1.6016*** 1.3290***  1.2189***  (0.8565***  0.5663*** 0.1604 -0.1760 -0.8785***  -1,5433***
SMB -0.1716*** 0.1015 -0.1728 -0.0071 0.0040 0.1743 0.0797 0.3055 0.2304 0.2361 -0.0124
HML 0.2551*** 0.2492 -1.5555%**  -1,1393*** -0,7235*** -0.2724 0.2468 0.3432 0.5482**  1.2649***  1.4989***
Panel C: Carhart four-factor model
Alpha -0.0813** 0.0074 0.1080 0.1442 0.1165 0.1037 0.0327 -0.0234 -0.0809 -0.2070* -0.1909
MKT 0.4081*** 0.1802 1.4415%**  1.0453***  0.8659***  0.4758*** 0.1850*  -0.3023*** -0.6519*** -1.2341*** -1.8723***
SMB -0.0613 0.3205 -0.0827 0.1525 0.2026 0.3885* 0.2942 0.5659** 0.4982** 0.4362** 0.1727
HML -0.2573***  -0.7679*** -1.9740*** -1.8807*** -1.6460*** -1.2672*** -0.7496*** -0.8659*** -0.6952*** 0.3357 0.6392***
MOM -0.8835***  -1.7537*** -0,7215*** -1.2782*** -15907*** -1.7153*** -17180*** -2.0847*** -2.1440*** -1.6020*** -1.4824***
Panel D: Fama and French five-factor model
Alpha -0.0841** 0.0230 0.1266 0.1641 0.1354 0.1240 0.0502 -0.0074 -0.0649 -0.2103* -0.1952*
MKT 0.5299***  (0.3161***  1.4718***  1,1307*** 0.9899***  (0.5946***  (0.3067*** -0.1468 -0.4952***  -1.0663*** -1,7150***
SMB -0.2105*** -0.1687 -0.5724***  -0.4237** -0.4048* -0.1902 -0.2038 0.0995 0.0528 0.3669* 0.1437
HML 0.2817*** 0.0833 -2.1286***  -1.6524*** -1,1809*** -0.6031*** 0.0648 0.3696* 0.6437***  1.7609***  2.0209***
RMW -0.4166*** -2.0008*** -2,1269*** -2,4312*** -25027*** -2.4280*** -2.0783*** -1,9131*** -1.8340*** -0.0864 0.0754
CMA -0.5223*** -0.5368 2.0899***  14370***  1.0045** 0.2167 -0.4922 -1.7537*** -2,1518*** -3,3978*** -3.4385***

Notes: This table reports the risk-adjusted alphas and factor sensitivities for each of the pairs trading strategies, using the one-factor market model (Panel A), Fama and
French three-factor model (Panel B), Carhart four-factor model (Panel C) and Fama and French five-factor model (Panel D). The statistical significance of each parameter

is based on t-statistics calculated using Newey-West standard errors.

*, **and *** indicate significance at the 10%, 5% and 1% levels.
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Chapter 4 Figures

Figure 4.1: Cumulative Excess Return on Committed Capital, before Transaction Costs.
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Notes: This figure plots the cumulative return for the DM (dashed line), the cointegration method (solid line) and
the quantile regression method (grey lines), based on the return on committed capital.

Figure 4.2: Cumulative Excess Return on Employed Capital, before Transaction Costs.
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Notes: This figure plots the cumulative return for the DM (dashed line), the cointegration method (solid line) and
the quantile regression method (grey lines), based on the return on employed capital.
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Figure 4.3: Cumulative Excess Return on Committed Capital, after Transaction Costs.
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Notes: This figure plots the cumulative return for the DM (dashed line), the cointegration method (solid line) and
the quantile regression method (grey lines), based on the return on committed capital.

Figure 4.4: Cumulative Excess Return on Employed Capital, after Transaction Costs.
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Notes: This figure plots the cumulative return for the DM (dashed line), the cointegration method (solid line) and
the quantile regression method (grey lines), based on the return on employed capital.
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Chapter 5: Concluding Remarks and Future Research

This thesis is comprised of three essays with the following topics: (1) detection of speculative
bubbles in real estate and forecasting the returns of real estate indices using models that take into
account the bubble component of the asset price; (2) the benefits of integrating return forecasts
from machine learning and forecast combination methods to an out-of-sample asset allocation
framework and (3) the evaluation of a new approach to pairs trading that incorporates quantile

regression.

In the first essay of this thesis we examined whether speculative bubbles are present in the
US and UK commercial, equity and residential real estate sectors. First, the real estate price indices
are decomposed into a fundamental and a non-fundamental component using a wide range of
predictors and the models are estimated using penalized regressions. Our findings suggest the
existence of significant periods of overvaluation in real estate markets, particularly in residential
real estate, as well as economically significant periods of undervaluation, especially in equity real
estate markets. In order to determine whether the observed deviations of the actual prices from
their fundamental values are due to the presence of speculative bubbles, we use two
complementary methodologies that utilize the information contained in the non-fundamental
component of the asset price. The first is based on right-side augmented Dickey-Fuller tests for
explosive behavior and the second on a two-state regime switching model for bubbles. The
findings from both methodologies provide significant in-sample evidence that the observed
deviations of the actual price from the fundamental value were due to the presence of speculative
bubbles. The out-of-sample results show that in most cases the proposed regime-switching model

for bubbles outperforms the historical average benchmark and the stylized alternative models.

152



In the second essay we evaluate the benefits of integrating return forecasts from a variety
of machine learning and forecast combination methods into an out-of-sample asset allocation
framework. When examining the benefits of forecasting the returns for each individual index, the
results indicate that the majority of the proposed prediction models outperform the historical
average benchmark, with shrinkage and variable selection methods yielding the highest
performance for the stock and bond indices, while for the commodity index the dimensionality
reduction methods achieve superior performance. To examine whether return forecasts provide
any benefits in an asset allocation setting, we construct stock-bond-commodity portfolios and
compare their performance to that of the equally-weighted portfolio and a mean-variance portfolio
based on the historical average. For commodity-augmented portfolios, the majority of the models
outperform the two benchmarks, while the models with the highest performance are those based

on shrinkage and variable selection methods or PLS-type methods.

The performance of the portfolios is further evaluated for different levels of risk aversion
and investment constraints, around business cycles and for monthly or quarterly rebalancing.
Overall, the commodity-augmented portfolios of an aggressive investor outperform those of a
conservative investor. Portfolios with either short selling or leverage generate higher certainty
equivalent return than the unleveraged long-only allocations, while portfolios with both leverage
and short selling yield the highest return. When transaction costs are taken into account, the results
for monthly-rebalanced portfolios favor forecast combination methods, instead of methods that
combine information due to the latter methods leading to portfolios with higher turnover. When
the rebalancing frequency is reduced to quarterly, the models with the best performance for an
aggressive investor are those based on shrinkage and dimensionality reduction methods. In

recessionary periods, all portfolios based on multivariate regression models outperform the equal
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weighted portfolios or those based on the historical average forecast, while in expansionary
periods, portfolios with leverage or short selling tend to yield higher performance. When CVaR is
used as a risk measure, the vast majority of the mean-CVaR portfolios based on forecasts from
multivariate regression models outperform the equally-weighted and HA portfolios. Finally, when
comparing the results of stock-bond portfolios with those that include commaodities for the full
sample, commodities add value to a traditional portfolio when short selling is allowed, with

aggressive investors benefiting more from the inclusion of commodities.

In the final essay we propose a new approach to pairs trading, which takes advantage of
the information in the conditional quantiles of the distribution of asset returns. In the formation
period stock pairs are sorted and selected using cointegration tests, while in the trading period the
trading signal is generated based on the spread of the stock prices in the pair, which has been
estimated by quantile regression. We conduct an extensive evaluation of the new strategy by
applying it to the S&P 100 index constituents. The performance of the new strategy is compared
to the distance method and cointegration method benchmarks using a variety of economic and risk-
adjusted measures and under an asset pricing framework, in order to examine whether the returns
of each strategy can be explained by various risk factors. We find that pairs trading strategies based

on the lower quantiles generate the highest performance.

The contributions of this thesis can be expanded in several ways. Additional research
directions regarding Chapter 2 include the implementation of a greater variety of models to derive
the non-fundamental component of the asset price, modifying the states and probabilities of the
regime-switching model, investigating the cross-sectional migration of speculative bubbles,
economic evaluation of the models and the development of trading strategies that take into account

bubble dynamics. Based on Chapter 3, further research could be conducted in order to improve the
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way that the forecasts are integrated into the objective function, so that the impact of transaction
costs on portfolio returns would be reduced. Furthermore, a detailed investigation of the benefits
of using alternative estimates of the covariance matrix could be performed, especially for large
dimensional portfolios with cardinality constraints. Finally, additional research in regard to
Chapter 4 could further explore the source of the profitability of the pairs trading strategy based
on quantile regression, incorporate quantile regression to the formation stage of pairs trading and

extend the new strategy to a multivariate framework.
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