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Abstract 

This thesis is comprised of three essays on the topics of financial econometrics and forecasting. In 

the first essay we examine whether speculative bubbles are present in the US and UK commercial, 

equity and residential real estate markets. The real estate indices are decomposed to fundamental 

and non-fundamental components using a wide set of economic indicators and penalized 

regressions. In order to determine whether the observed deviations of the actual price index from 

its fundamental value are due to the presence of bubbles, we use two complementary 

methodologies, the first based on right-side unit root tests for explosive behavior and the second 

on regime switching models for bubbles. The models using the alternative fundamental 

specifications are found to exhibit superior out-of-sample performance compared to the stylized 

alternative models. 

In the second essay we set out to evaluate the benefits of integrating return forecasts from 

a variety of machine learning and forecast combination methods into an out-of-sample asset 

allocation framework. The performance of the portfolios consisting of stock, bond and commodity 

indices is evaluated for different levels of risk aversion and investment constraints, around 

business cycles and for different rebalancing frequencies. The mean-variance allocations are based 

on several estimates of the covariance matrix, while the effects of the return forecasts are also 

investigated when using the Conditional Value-at-Risk as an alternative risk measure in 

optimization. Comparing the multi-asset portfolios incorporating machine learning return 

forecasts, we find evidence of added economic value relative to the equally-weighted or the 

historical average benchmark portfolios.  

In the final essay we propose a new approach to pairs trading, which takes advantage of 

the information in the conditional quantiles of the distribution of asset returns. In this framework 

the pairs are sorted and selected based on cointegration tests and during trading the trading signal 

is extracted using quantile regression. We apply the strategy to the S&P 100 constituents and 

evaluate the performance of the pairs trading strategy using a variety of economic and risk-adjusted 

metrics and under an asset pricing framework, in order to examine whether the profitability of the 

new strategy can be explained by various risk factors. Our findings suggest that the quantile 

regression pairs trading strategies based on the lower quantiles tend to outperform all other models.  
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Chapter 1: Introduction 

This thesis is comprised of three essays on financial econometrics and forecasting that cover the 

following three topics: (1) the detection and date stamping of speculative bubbles in real estate 

markets and forecasting the returns of real estate indices using models that take into account the 

non-fundamental component of the asset price; (2) the return predictability of stock, bond and 

commodity indices using a variety of machine learning and forecast combination methods and the 

benefits of integrating return forecasts into an out-of-sample asset allocation framework and (3) 

an extension to the cointegration-based pairs trading framework that incorporates quantile 

regression. 

In Chapter 2 we examine whether the prices of the commercial, residential and equity real 

estate sectors in the US and the UK are driven by market fundamentals or speculative bubbles. The 

real estate indices are decomposed to fundamental and non-fundamental components using a wide 

set of economic indicators and penalized regressions. To determine whether the observed 

deviations of the actual price index from the fundamental value are due to the presence of bubbles 

two complementary methodologies are used; the first is based on right-side unit root tests for 

explosive behavior and the second on regime switching models for bubbles. The out-of-sample 

performance of the bubble model is compared against the historical average and stylized 

alternative models. The results for all indices indicate that the actual price diverges from the 

respective fundamental value and the degree of over- or under-valuation could be explained by the 

presence of rational bubbles. The right-side unit root tests showed significant evidence of the 

presence of periodically collapsing bubbles in all indices. When comparing the regime switching 

model for bubbles based on the proposed fundamental specifications to the alternative models, the 
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results showed that for the US and the UK equity and residential real estate the bubble model is 

preferable to the benchmarks.  

Chapter 3 sets out to explore whether portfolios consisting of stock, bond and commodity 

indices, utilizing forecasts generated from a variety of machine learning and forecast combination 

methods, can outperform simpler benchmarks, such as the equally-weighed portfolio and 

portfolios using the historical average forecast. The analysis is conducted for different levels of 

risk aversion and investment constraints, around business cycles and for monthly or quarterly 

rebalancing. The mean-variance allocations are based on several different estimates of the 

covariance matrix, while the effects of the return forecasts are also investigated when using the 

Conditional Value-at-Risk as an alternative risk measure in optimization. Finally, to assess the 

value of adding commodities to a traditional portfolio, stock-bond portfolios are constructed and 

their performance is compared with that of commodity-augmented allocations.  

The empirical results for the asset allocation show that the majority of the portfolios, 

outperform the equally-weighted and historical average portfolio benchmarks. When comparing 

portfolios across different combinations of weight constraints, the findings indicate that allocations 

that allow short sales or leverage further improve the performance of portfolios based on machine 

learning methods. The results persist for mean-variance allocations with different specifications of 

the covariance matrix and for mean-CVaR portfolios. Additionally, when introducing transaction 

costs to portfolios with monthly rebalancing the results tend to favor forecast combination 

techniques, however, reducing the rebalancing frequency to quarterly, leads the portfolios of an 

aggressive investor that are based on shrinkage and dimensionality reduction methods to generate 

the highest performance. Finally, when comparing the results of stock-bond portfolios with those 

that include commodities for the full sample, commodities add value to a traditional portfolio when 
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short-selling is allowed, with portfolios belonging to an aggressive investor benefiting more from 

the inclusion of commodities. 

Pairs trading is a statistical arbitrage strategy which is based on the principle that the prices 

of two assets co-move with each other. If the spread between the two prices widens, a long-short 

position can be used to profit from the expected mean-reversion of the spread in the future. The 

focus of Chapter 4 is to incorporate quantile regression in pairs trading. In this new approach the 

pairs are formed based on cointegration tests and during trading the trading signal is estimated 

using quantile regression. The new strategy is applied to a dataset consisting of all stocks in the 

S&P 100. The performance of the new strategy is assessed using a variety of economic and risk-

adjusted metrics and compared against simpler alternatives that are prominent in the pairs trading 

literature. Additionally, the performance of the pairs trading strategies is evaluated under an asset 

pricing framework, in order to examine whether the returns of each strategy can be explained by 

various risk factors. The findings suggest that the quantile regression pairs trading strategies based 

on the lower quantiles tend to outperform all other models. Finally, Chapter 5 concludes. 
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Chapter 2: Detecting Bubbles in the US and UK Real Estate Markets 

 

2.1. Introduction 

Amongst the earliest bubble detection methods are the variance-bound tests proposed by 

Shiller (1981) and LeRoy and Porter (1981), who check the validity of the fundamental asset 

pricing equation by comparing the variance of the observed asset price with an upper bound limit 

given by the ex post rational price. Another method, proposed by Diba and Grossman (1984) and 

Hamilton and Whiteman (1985), uses stationarity tests to detect bubbles. Furthermore, Campbell 

and Shiller (1987) apply unit root and cointegration tests to examine the behavior of the 

fundamental and bubble component of present value models. However, Evans (1991) shows that 

unit root and cointegration tests have limitations1  because they are not capable of detecting the 

explosive patterns of periodically collapsing bubbles.  

Although it has been proven that bubbles cannot exist in finite horizon rational expectation 

models (Tirole, (1982), Santos and Woodford (1997)), bubbles can appear in markets with some 

particular characteristics that can be also attributed to real estate markets, such as (1) when some 

particular traders behave myopically (Tirole (1982)), (2) in infinite horizon growing economies 

with rational traders (Tirole (1985) and Weil (1990)), (3) when there are irrational traders (De 

Long, Shleifer, Summers, and Waldmann (1990)), (4) in economies where rational traders have 

differential beliefs and when arbitrageurs cannot synchronize trades (Abreu and Brunnermeier 

                                                           
1 Recently, a number of econometric methods have been developed that deal with Evans’ critique and are capable of 

distinguishing between pure unit root processes and periodically collapsing bubbles. 
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(2003)) or (5) when there are short sale/borrowing constraints (Scheinkman and Xiong (2003)). 

Applying the martingale theory of asset price bubbles in continuous time and continuous trading 

economies, Jarrow and Porter (2010) demonstrate that in the presence of bubbles, market price 

indices and fundamental values diverge and lead to serious errors in decision making by investors, 

financial institutions and regulators.  

Debating the idea that the market cannot be efficient because it did not predict the 2008 

subprime crisis, John Cochrane stated “crying ‘bubble’ is empty unless you have an operational 

procedure for identifying bubbles, in real time and not just after the fact, distinguishing them from 

rationally low-risk premiums, telling a ‘bubble’ from a justified ‘boom,’ and crying wolf too many 

years in a row”, see Buckner (2017). In this study we offer a procedure that can be used to timely 

detect bubbles in the real estate markets and we highlight the usefulness of our approach using an 

extended out-of-sample period 2009-2015.   

The subprime mortgage crisis of 2007-2009 had its roots in a real estate bubble of gigantic 

proportions. There were clear signals (Case and Shiller (2004), Belke and Wiedmann (2005) and 

Zhou and Sornette (2006)) that something was wrong with the residential real estate prices in the 

United States. There was evidence of real estate bubbles in the United Kingdom as well at the 

beginning of the 2000s (Zhou and Sornette (2003), Black, Fraser and Hoesli (2006), Fraser, Hoesli 

and McAlevey (2008)). Nneji, Brooks, and Ward (2013a, 2013b) examined the residential market 

in the United States between 1960 and 2011 and found evidence of an intrinsic bubble pre-2000 

and, based on a regime-switching model, evidence of periodically rational bubbles in the post-

2000 market. Even in real estate investment trusts (REITS) that behave more like an equity asset 

class, there was evidence of speculative bubbles (Brooks, Katsaris, McGough and Tsolacos (2001), 

Payne and Waters (2005, 2007) and Jirasakuldech, Campbell and Knight (2006)). It is therefore 
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highly desirable to have a mechanism for signalling the emergence of a bubble in the most valuable 

asset class of all, real estate.  

In this study, real estate price indices are decomposed into a fundamental and a non-

fundamental component using a rich dataset of 19 variables covering financial indicators, price 

indicators, national income and business activity indicators, and employment and labour market 

indicators. Our study tries to cover exhaustively the real estate markets in the United States and 

the United Kingdom going back from the end of 2015 to the beginning of historical available data 

for real estate indices and their drivers in commercial, residential and REIT markets. We employ 

several subset selection and shrinkage procedures (stepwise regression, ridge regression, lasso, 

bridge regression and the elastic net along with the commonly employed least squares regression). 

In order to avoid model selection risk in extracting the fundamental value component of the real 

estate indices, we propose averaging the fundamental components of all models employed.  Our 

findings suggest the existence of significant periods of overvaluation in real estate markets, 

particularly in residential real estate, as well as economically significant periods of undervaluation, 

particularly in equity real estate markets. The evolution of specific real estate indices in the United 

States is like the evolution of the corresponding indices in the United Kingdom.  

In order to determine whether the observed deviations of the actual prices from their 

fundamental values are due to the presence of speculative bubbles, we use two complementary 

methodologies, both taking into account the information contained in the non-fundamental 

component of the asset price. To verify whether the deviation of the asset price from the 

fundamental value is due to the presence of speculative bubbles we employ the right-side 

augmented Dickey-Fuller test for explosive behavior developed by Phillips, Wu and Yu (2011) 

and Phillips, Shi and Yu (2015) and the Van Norden and Schaller (1993, 1996) two-state regime 
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switching model. The first methodology can also be used to date-stamp the periods of 

explosiveness in the real estate sectors. The second methodology is based on regime-switching 

models with two regimes: one where the bubble survives and continues to grow and the other 

where the bubble collapses. The findings from both methodologies provide significant in-sample 

evidence that the observed deviations of the actual price from the fundamental value were due to 

the presence of speculative bubbles. More importantly, our out-of-sample results show that in most 

cases the proposed regime-switching model for bubbles (averaged across all models employed) 

outperforms the historical average benchmark and the stylized alternative models. 

The chapter is organised as follows. Section 2.2 provides a description of the econometric 

methodology that we follow and Section 2.3 presents the data that are used. In Section 2.4 we 

present the in-sample bubble detection results, while in Section 2.5 we discuss the out-of-sample 

empirical results. Last section concludes the chapter.  

 

2.2. How to Detect Bubbles in Asset Markets? 

Starting from Campbell, Lo and McKinlay (1997) and Cochrane (2005), the fundamental price of 

an asset is derived2 as 

𝑃𝑡 = 𝐸𝑡 [∑(
1

1 + 𝑅
)
𝑖𝑇

𝑖=1

𝐷𝑡+𝑖] + 𝐸𝑡 [(
1

1 + 𝑅
)
𝑇

𝑃𝑡+𝑇] (2.1) 

where the first term of the right-hand side of equation (2.1) represents the fundamental component, 

which is the expectation of all discounted cash flows, and the second term is the expectation of the 

                                                           
2 Lai and van Order (2017) investigate US house prices between 1980 and 2012 across 45 metropolitan areas, 

employing a version of the Gordon dividend discount model.  
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discounted asset price 𝑇 periods from time 𝑡, and 𝑃𝑡 is the asset price at time 𝑡 and 𝐷𝑡+1 is the next 

period’s cash flow.  

In the case of real estate markets, expected cash flow payments are not directly available. 

One proxy widely used in the literature is the rent income stemming from holding the property, 

which is also not available for the majority of indices. To this end, we develop alternative models 

for the estimation of the fundamental component and consequently the bubble component of the 

real estate price indices.  Specifically, we propose extracting it using subset selection and shrinkage 

procedures, such as stepwise regression, ridge regression, lasso, bridge regression and elastic net.3 

This is the first time these techniques have been employed in this context. The subsequent 

description of these methods is largely based on Hastie, Tibshirani, and Friedman (2009). 

 

2.2.1. Model Selection Procedures for the Fundamentals 

The benchmark model in our study is the classic normal linear regression model 

𝐲 = 𝐗𝛃 + 𝛜, 

where  𝐗 = (𝐱1, … , 𝐱𝑝) is the 𝑇 × 𝑝 matrix of predictors, 𝛃 = (𝛽1, … , 𝛽𝑝)′ is the coefficient vector 

and 𝛜~𝑁(𝟎, 𝜎2𝐈𝑛) is the error vector. The ordinary least squares (OLS) estimator �̂�𝑂𝐿𝑆 =

(𝐗′𝐗)−1𝐗′𝐲 typically has poor predictive accuracy with low bias and high variance.  

                                                           
3 In a recent paper, Shi (2017) employs a vector autoregressive (VAR) model and variables reflecting aggregate 

macroeconomic conditions in order to predict fundamental prices. 
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Ridge regression is a regression method estimating the coefficients subject to the 𝑙2 

penalty: 

argmin
𝛃

[‖𝐲 − 𝐗𝛃‖2 + 𝜆‖𝛃‖2] (2.2) 

where 𝜆 ≥ 0 is a parameter for the amount of shrinkage. The second term of the equation is called 

the shrinkage penalty and in the case of the ridge regression it is based on 𝑙2 regularization, where 

𝜆‖𝛃‖2 = 𝜆∑ 𝛽𝑗
2𝑝

𝑗=1  and is small when 𝛽1, … , 𝛽𝑝 are close to zero and has the effect of shrinking 

the coefficient estimates towards zero. When 𝜆 = 0 the penalty term has no effect and ridge 

regression will produce similar estimates to OLS. However, as 𝜆 → ∞ the impact of the ridge 

penalty grows and the coefficient estimates will approach zero4.  

The least absolute shrinkage and selection operator (lasso) has a penalty term based on 

the 𝑙1 norm, capable of yielding sparse models. The lasso coefficient estimates are obtained by 

solving: 

argmin
𝛃

[‖𝐲 − 𝐗𝛃‖2 + 𝜆‖𝛃‖1] (2.3) 

where 𝜆 ≥ 0 is the lasso tuning parameter. The regression penalty for the lasso is 𝜆‖𝛃‖1 =

𝜆∑ |𝛽𝑗|
𝑝
𝑗=1 . The difference between this and ridge regression is that the lasso method imposes a 

penalty based on the 𝑙1 norm instead of the 𝑙2 norm, allowing for both shrinkage and variable 

selection, by setting some of the coefficients equal to zero.  

                                                           
4 A disadvantage of ridge regression is that the penalty 𝜆‖𝛃‖2 will shrink all the coefficients towards zero, but it will 

never set them to zero. Having a model which uses all 𝑝 predictors can be a problem for model interpretation.  
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Bridge regression has a penalty term which is based on the 𝑙𝛾  norm and the coefficients 

are estimated by minimizing: 

argmin
𝛃

[‖𝐲 − 𝐗𝛃‖2 + 𝜆‖𝛃‖𝛾
𝛾
] (2.4) 

subject to the constraint  𝜆 ≥ 0 and 𝛾 > 0 are the two tuning parameters. The penalty term in the 

case of bridge regression is 𝜆‖𝛃‖𝛾
𝛾
= 𝜆∑ |𝛽𝑗|

𝛾𝑝
𝑗=1  and it is a generalization of the lasso (𝛾 = 1) 

and ridge regression (𝛾 = 2). The bridge regression (1 < 𝛾 < 2) performs shrinkage by keeping 

all predictors, similarly to ridge regression. 

Finally, the elastic net (EN) method combines both 𝑙1 and 𝑙2 terms in the penalty, thus 

simultaneously performing continuous shrinkage and automatic variable selection, but it can also 

select groups of correlated variables. The elastic net coefficients are estimated by minimizing the 

following penalized residual sum of squares function: 

argmin
𝛃

[‖𝐲 − 𝐗𝛃‖2 + 𝜆((1 − 𝛼)‖𝛃‖1 + 𝛼‖𝛃‖
2)] (2.5) 

where 𝜆 is the tuning parameter, ‖𝛃‖1 = ∑ |𝛽𝑗|
𝑝
𝑗=1  and ‖𝛃‖2 = ∑ 𝛽𝑗

2𝑝
𝑗=1 . The term (1 − 𝛼)‖𝛃‖1 +

𝛼‖𝛃‖2 with 𝛼 ∈ [0,1] is called the elastic net penalty, which is a combination of the ridge 

regression and the lasso penalties. When 𝛼 = 1, the elastic net becomes a ridge regression; if 𝛼 =

0 it is the lasso, while if 𝛼 ∈ (0,1) it has the properties of both methods.  

 

2.2.2 Right-Side Unit Root Tests and Date Stamping Procedure 

The tests for speculative bubbles we employ in this study are based on right-side unit root tests 

implemented repeatedly on a forward expanding sample sequence to search for mildly explosive 
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behavior in the data. Those are the supremum augmented Dickey-Fuller (SADF) test and the 

generalized SADF (GSADF) test developed by Phillips, Wu and Yu (2011, PWY)5 and Phillips, 

Shi and Yu (2015, PSY) respectively. The GSADF test has the advantage that it has an increased 

capacity to detect multiple bubbles in the data.  

The PWY and PSY tests are based on the assumption that asset prices follow a random 

walk process with an asymptotically negligible drift: 

𝑦𝑡 = 𝑑𝑇−𝜂 + 𝜃𝑦𝑡−1 + 𝑒𝑡, 𝑒𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎
2) (2.6) 

where 𝑑 is a constant, 𝑇 is the sample size,  𝜂 > 1/2 is a localizing coefficient that controls for 

the magnitude of the drift as the sample size approaches infinity and 𝑒𝑡 is the error term. PWY sets 

𝜂 → ∞ and PSY set 𝑑, 𝜂 and 𝜃 to unity. Strong upward departures from fundamental values lead 

the asset price time series to follow an explosive process. 

The econometric implementation is based on the ADF test and the use of recursive 

regressions with variable window widths. This test is applied to each time series 𝑦𝑡 to test for a 

unit root against the alternative of an explosive root. By defining the window’s start and end points 

as 𝑟1 and 𝑟2 respectively, the empirical regression model is specified as: 

𝛥𝑦𝑡 = 𝑎𝑟1,𝑟2 + 𝛽𝑟1,𝑟2𝑦𝑡−1 +∑𝜓𝑟1,𝑟2
𝑖

𝑘

𝑖=1

𝛥𝑦𝑡−𝑖 + 𝜀𝑡 (2.7) 

where 𝑦𝑡  can be either a price-to-income ratio or the non-fundamental component, 𝑎𝑟1,𝑟2 is the 

intercept, 𝑘 is the maximum number of lags and 𝜀𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎𝑟1,𝑟2
2 ). The sample interval is [0,1] 

                                                           
5Astill, Harvey, Leybourne and Taylor (2016), propose tests that improve upon the detection of an end-of-sample asset 

price bubble of finite length and show that their tests detect several well-documented periods of exuberance earlier 

than existing methods. Fabozzi and Xiao (2019) propose a new recursive algorithm to deal with the inconsistency 

encountered when estimating the timeline of a bubble based on different samples. This method improves upon the 

PWY procedure by identifying more consistent starting points and by implementing a two-direction searching process 

for initialization. 
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after normalizing the original sample by 𝑇 and the number of observations in each recursive 

regression is 𝑇𝑤 = ⌊𝑇𝑟𝑤⌋, where 𝑟𝑤 = 𝑟2 − 𝑟1 is the fractional window size of the regression. The 

ADF 𝑡-statistic that is used is: ADF𝑟1
𝑟2 =

𝛽𝑟1,𝑟2

𝑆𝐸(𝛽𝑟1,𝑟2)
, where 𝛽𝑟1,𝑟2 and ADF𝑟1

𝑟2 are the regression 

coefficient and its corresponding ADF 𝑡-statistic over the sample [𝑟1, 𝑟2], respectively. 

The SADF test is based on calculating the ADF statistic in each recursive regression 

performed on a forward expanding sample window. The starting point 𝑟1 of the estimation window 

remains fixed for all recursive regressions and is the first observation of the sample. The end point 

𝑟2 of the first estimation window is set according to some choice of minimum window size 𝑟0 

required for the adequate initial estimation of equation (2.7). Therefore, the first regression 

involves 𝑇0 = ⌊𝑇𝑟0⌋ observations for a minimum fraction, 𝑟0, of the total sample. Each subsequent 

regression increments the initial fraction of the sample by one observation, giving a forward 

expanding window size 𝑟2 ∈ [𝑟0, 1]. The ADF statistic is calculated for each recursive regression 

and is denoted by 𝐴𝐷𝐹𝑟2. The SADF test statistic is defined as the supremum value of ADF𝑟2 for 

𝑟2 ∈ [𝑟0, 1]: 

SADF(𝑟0) = sup
𝑟2∈[𝑟0,1]

{ADF𝑟2} (2.8) 

The GSADF test generalizes the SADF test by having more flexible estimation window 

widths and by allowing the starting point 𝑟1 to change within the range [0, 𝑟2 − 𝑟0] for each 

regression. The GSADF test statistic is defined as the supremum value of ADF𝑟1
𝑟2 for 𝑟1 ∈

[0, 𝑟2 − 𝑟0] and 𝑟2 ∈ [𝑟0, 1]: 

GSADF(𝑟0) = sup
𝑟2∈[𝑟0,1]

𝑟1∈[0,𝑟2−𝑟0]

{ADF𝑟1
𝑟2} 

(2.9) 
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The SADF and GSADF tests can also be used to date stamp the origination and collapse 

of the bubbles in a time series. The date stamping procedure of the SADF test compares each 

ADF𝑟2 statistic to each respective right-side critical value of the standard ADF statistic to identify 

whether a bubble exists at time 𝑇𝑟2. The origination date of a bubble, 𝑇𝑟𝑒, where 𝑟𝑒 is the fractional 

estimate of the beginning of the bubble period, is determined as the time point when the ADF𝑟2 

sequence crosses its respective critical value sequence from below. The collapse date of the bubble, 

𝑇𝑟𝑓, where 𝑟𝑓 is the fractional estimate of the end of the bubble period, is marked when the ADF𝑟2 

sequence crosses its respective critical value sequence from above. The fractional origin and 

collapse points of the bubble for the SADF test are denoted as: 

�̂�𝑒 = inf
𝑟2∈[𝑟0,1]

{𝑟2: ADF𝑟2 > 𝑐𝑣𝑟2
𝛽𝑇}, (2.10) 

�̂�𝑓 = inf
𝑟2∈[�̂�𝑒,1]

{𝑟2: ADF𝑟2 < 𝑐𝑣𝑟2
𝛽𝑇}  

where 𝑐𝑣𝑟2
𝛽𝑇 is the 100(1 − 𝛽𝑇)% critical value of the limit distribution of the standard ADF 

statistic based on ⌊𝑇𝑟2⌋ sample observations and 𝛽𝑇 is the size of the one sided test. 

The date stamping procedure for the GSADF test is based on calculating a sup ADF statistic 

on backward expanding samples, with fixed ending points at 𝑟2 and varying starting points 𝑟1 =

[0, 𝑟2 − 𝑟0]. The backward SADF statistic is defined as: 

BSADF𝑟2(𝑟0) = sup
𝑟1=[0,𝑟2−𝑟0]

{ADF𝑟1
𝑟2} (2.11) 

Similarly to the SADF date stamping procedure, the fractional origin and collapse points of the 

bubble for the GSADF test are denoted as: 

�̂�𝑒 = inf
𝑟2∈[𝑟0,1]

{𝑟2: BSADF𝑟2(𝑟0) > 𝑐𝑣𝑟2
𝛽𝑇}, (2.12) 
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�̂�𝑓 = inf
𝑟2∈[�̂�𝑒,1]

{𝑟2: BSADF𝑟2(𝑟0) < 𝑐𝑣𝑟2
𝛽𝑇} 

where 𝑐𝑣𝑟2
𝛽𝑇 is the 100(1 − 𝛽𝑇)% critical value of the limit distribution of the standard ADF 

statistic based on ⌊𝑇𝑟2⌋ sample observations. 

 

2.2.3. The Regime-Switching Bubble Model 

Blanchard (1979) and Blanchard and Watson (1982) suggested a model for rational bubbles with 

two possible bubble states; one state is that the bubble survives and the other state is that the bubble 

collapses. The bubble process is then defined by: 

𝐵𝑡+1|𝑆 = (
1 + 𝑅

𝑞
)𝐵𝑡 + 𝑢𝑡+1,  with probability 𝑞 (2.13) 

and  

𝐵𝑡+1|𝐶 = 𝑢𝑡+1,  with probability 1 − 𝑞  

A rational bubble that has the above form obeys the restriction: 𝐵𝑡 = 𝐸𝑡 [
𝐵𝑡+1

1+𝑅
], as long as 

the shock 𝑢𝑡+1 satisfies 𝐸(𝑢𝑡+1) = 0. Then  

𝐸𝑡(𝐵𝑡+1|𝑆) =
(1 + 𝑅)

𝑞
𝐵𝑡,  with probability 𝑞 (2.14) 

and  

𝐸𝑡(𝐵𝑡+1|𝐶) = 0,  with probability 1 − 𝑞  

where 𝑆 indicates the state that the bubble survives and 𝐶 the state that it collapses. If the bubble 

survives in period 𝑡 + 1, it will grow at a rate (
1+𝑅

𝑞
) − 1, which is faster than 𝑅, in order to 

compensate the investors for the risk they take for the probability of a crash.  
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The Blanchard and Watson model was generalized6 by van Norden and Schaller (1993, 

1999) in two ways. First, they allow the probability of the bubble being in the surviving state 𝑞 to 

depend on the relative size of the bubble  𝑞 = 𝑞(𝑏𝑡)   where 𝑏𝑡 = 𝐵𝑡/𝑃𝑡  is the relative size of the 

bubble, which is the ratio of the non-fundamental component 𝐵𝑡 to the actual price 𝑃𝑡. The absolute 

value of 𝑏𝑡 is used since there can be positive or negative bubbles. 

The second generalization allows for partial collapses, by permitting the expected value of 

the bubble conditional on the collapsing state being non-zero. Van Norden and Schaller (1993, 

1999) defined the expected size of a bubble in state 𝐶 as 𝑢𝑡𝑃𝑡 and assumed that it depends on the 

relative size of the bubble in a previous period: 

𝐸𝑡(𝐵𝑡+1|𝐶) = 𝑢(𝑏𝑡)𝑃𝑡 (2.15) 

where 𝑢(⋅) is a continuous and differentiable function such that 𝑢(0) = 0 and 0 ≤
𝑑𝑢(𝑏𝑡)

𝑑𝑏𝑡
≤ 1. The 

condition ensures that a collapsing bubble is smaller than the bubble in the previous period.  

The two generalizations made by van Norden and Schaller lead to the following modified 

bubble model: 

𝐸𝑡(𝐵𝑡+1|𝑆) =
(1 + 𝑅)

𝑞(𝑏𝑡)
𝐵𝑡 −

1 − 𝑞(𝑏𝑡)

𝑞(𝑏𝑡)
 𝑢(𝑏𝑡)𝑃𝑡,  with probability 𝑞(𝑏𝑡) (2.16) 

and  

𝐸𝑡(𝐵𝑡+1|𝐶) = 𝑢(𝑏𝑡)𝑃𝑡,  with probability 1 − 𝑞(𝑏𝑡)  

The expected gross returns 𝑅∗ for each regime are:  

                                                           
6 Van Norden and Schaller (1993, 1999) and Brooks and Katsaris (2005a, 2005b) criticised the Blanchard and Watson 

(1982) model because of the lack of theoretical support and empirical evidence.  
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𝐸𝑡(𝑅𝑡+1
∗ |𝑆) = (1 + 𝑅) +

1 − 𝑞(𝑏𝑡)

𝑞(𝑏𝑡)
[(1 + 𝑅)𝑏𝑡 − 𝑢(𝑏𝑡)],  with probability 𝑞(𝑏𝑡) (2.17) 

and  

𝐸𝑡(𝑅𝑡+1
∗ |𝐶) = (1 + 𝑅)(1 − 𝑏𝑡) + 𝑢(𝑏𝑡),  with probability 1 − 𝑞(𝑏𝑡)  

Thus, the returns in time 𝑡 + 1 depend on the regime of the previous period 𝑡. To estimate the 

model, the first-order Taylor series approximations of 𝐸𝑡(𝑅𝑡+1
∗ |𝑆) and 𝐸𝑡(𝑅𝑡+1

∗ |𝐶) with respect to 

𝑏𝑡 around some arbitrary value 𝑏0 are taken, giving the linear regime switching model: 

𝐸𝑡(𝑅𝑡+1
∗ |𝑆) = 𝛽𝑆0 + 𝛽𝑆1𝑏𝑡, (2.18) 

𝐸𝑡(𝑅𝑡+1
∗ |𝐶) = 𝛽𝐶0 + 𝛽𝐶1𝑏𝑡  

where 

𝛽𝑆1 = (−
1

𝑞(𝑏0)2
𝑑𝑞(𝑏0)

𝑑𝑏𝑡
[(1 + 𝑅)𝑏0 − 𝑢(𝑏0)] +

1 − 𝑞(𝑏0)

𝑞(𝑏0)
[1 + 𝑅 −

𝑑𝑢(𝑏0)

𝑑𝑏𝑡
]) (2.19) 

and  

𝛽𝐶1 = (
𝑑𝑢(𝑏0)

𝑑𝑏𝑡
− (1 + 𝑅)).  

The regime switching model can be rewritten as: 

𝑅𝑆,𝑡+1
∗ = 𝛽𝑆0 + 𝛽𝑆1𝑏𝑡 + 𝜀𝑆,𝑡+1, 𝜀𝑆,𝑡+1~𝑁(0, 𝜎𝑆

2) (2.20) 

and  

𝑅𝐶,𝑡+1
∗ = 𝛽𝐶0 + 𝛽𝐶1𝑏𝑡 + 𝜀𝐶,𝑡+1, 𝜀𝐶,𝑡+1~𝑁(0, 𝜎𝐶

2)  

where 𝜎𝑆, 𝜎𝐶 are the standard deviations of the error terms of 𝜀𝑆,𝑡+1 and 𝜀𝐶,𝑡+1 respectively. The 

parameters 𝛽𝑆0 and 𝛽𝐶0 represent the mean returns for the surviving and the collapsing state 

respectively and the coefficients 𝛽𝑆1 and 𝛽𝐶1 show how changes in the relative size of the bubble 

affect the returns in each state.  
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For the functional form of 𝑞(𝑏𝑡), van Norden and Schaller use a probit model: 

𝑃(𝑅𝑡+1
∗ |𝑆) = 𝑞(𝑏𝑡) = 𝛷(𝛽𝑞0 + 𝛽𝑞1|𝑏𝑡|) (2.21) 

and  

𝑃(𝑅𝑡+1
∗ |𝐶) = 1 − 𝑞(𝑏𝑡) = 1 − 𝛷(𝛽𝑞0 + 𝛽𝑞1|𝑏𝑡|)  

where 𝛷 is the standard normal cumulative density function and 𝛽𝑞1 describes the effect that the 

absolute value of the relative size of the bubble has on the probability of being in the surviving 

state. Van Norden (1996) uses both 𝑏𝑡 and 𝑏𝑡
2 instead of |𝑏𝑡|, van Norden and Vigfusson (1998) 

employ 𝑏𝑡, while Schaller and van Norden (2002) use 𝑏𝑡
2. The model considers the restriction 

𝛽𝑞1 < 0, since as the deviation from the fundamentals grows, so does the probability of collapse. 

Furthermore, assuming 𝑅 > 0, then 𝛽𝐶1 < 0, because as the relative size of the bubble grows, it 

leads to greater capital losses when the bubble collapses and 𝛽𝑆1 > 𝛽𝐶1, since a large relative size 

of the bubble means that the difference between the returns of the surviving and collapsing state 

will be greater. 

The parameters estimates are found by maximizing the log-likelihood function: 

∑ln [𝑞(𝑏𝑡)𝜑 (
𝑅𝑆,𝑡+1
∗ − 𝛽𝑆0 + 𝛽𝑆1𝑏𝑡

𝜎𝑆
) 𝜎𝑆

−1 + (1 − 𝑞(𝑏𝑡))𝜑 (
𝑅𝐶,𝑡+1
∗ − 𝛽𝐶0 + 𝛽𝐶1𝑏𝑡

𝜎𝐶
)𝜎𝐶

−1]

𝑇

𝑡=1

 (2.22) 

where 𝜑 is the standard normal probability density function and the parameters to be estimated are 

𝛽𝑆0, 𝛽𝑆1, 𝛽𝐶0, 𝛽𝐶1, 𝛽𝑞0, 𝛽𝑞1, 𝜎𝑆 and 𝜎𝐶. The probability of being in regime 𝑖 = 𝑆, 𝐶 in period  𝑡 + 1 

depends on the relative size of the bubble 𝑏𝑡 and is given by the formula: 𝛷 (𝑙(𝑖)(𝛽𝑞0 + 𝛽𝑞1|𝑏𝑡|)), 

where 𝑙(𝑖) = 1 in the surviving state and 𝑙(𝑖) = −1 in the collapsing state. 
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2.3. Data Description 

 

2.3.1 Real Estate Data 

We analyse the main real estate indices in each real estate market from each country. For 

commercial, residential and equity real estate sectors, the indices for the United States are 

NCREIF, S&P/Case-Shiller and US FTSE EPRA/NAREIT, while for the United Kingdom the 

indices in this study are IPD UK All Property, UK House Price Index and UK FTSE 

EPRA/NAREIT. 

All real estate indices price levels are retrieved from Bloomberg. For the US, data on 

quarterly frequency is available for the NCREIF from the fourth quarter of 1977 to the fourth 

quarter of 2015, while commercial real estate data for the UK are available on a monthly frequency 

for the IPD index for the period from December 1986 to December 2015, providing a total of 153 

quarterly and 349 monthly observations respectively. For equity real estate monthly data on the 

transactions-based FTSE EPRA/NAREIT indices for the US and the UK are available for the 

period from December 1989 to December 2015, with a total number of 313 monthly observations 

for each index. Finally, for the residential real estate market, monthly data is available on the 

S&P/Case-Shiller home price index for the US from January 1987 to December 2015 and on the 

UK House Price Index from January 1995 to December 2015, totalling 348 and 252 monthly 

observations for each time series respectively. The real estate indices are adjusted for inflation 

using the Consumer Price Index (CPI) for the US and the Retail Price Index (RPI) for the UK. The 
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augmented Dickey-Fuller tests (ADF tests) for all indices indicate7 that the level series are non-

stationary.  

 

2.3.2. Economic Data 

We are guided by the extant literature in selecting the economic variables employed to 

construct the fundamental value models for the real estate indices. Ghysels, Plazzi, Valkanov and 

Torous (2013) provide an extensive review of the literature on real estate forecasting based on the 

type of predictive information used. We extracted the potential drivers of the fundamental value 

of real estate markets from previous studies.8  

For both economies, we employ a set of 19 explanatory variables, which are classified into 

four broad categories: financial indicators, price indicators, national income and business activity 

indicators, and employment and labour market indicators.  Specifically, the financial variables are 

a stock price index, the US/UK exchange rate, the money supply M2, the central bank rate, the 5-

year and 10-year government bond yields and a mortgage rate. The price indicators include the 

inflation rate, gold price, oil price and the rent price index. The national income and business 

activity indicators are the real GDP, real personal disposable income, industrial production and 

housing starts. Finally, the labour market indicators are the unemployment rate, labour cost and 

labour productivity. Variable definitions are presented in Table 2.1, while data sources are outlined 

in Table A2.1 in the Appendix of this chapter. 

                                                           
7 All tests for stationarity are presented in Table A2.1 in the Appendix of Chapter 2. 
8 See Case and Shiller (1990), Dobson and Goddard (1992), Liu and Mei (1992), Mei and Liu (1994), Ling and Naranjo 

(1997), Ling, Naranjo and Ryngaert (2000), De Wit and Van Dijk (2003), Himmelberg, Mayer and Sinai (2005), 

Clayton, Ling and Naranjo (2009), MacKinnon and Al Zaman (2009) and Plazzi, Torous and Valkanov (2010). The 

list is by no means exhaustive and there is a very long list of articles in this area. 



20 
 

[Insert Table 2.1 Here] 

 

2.4. In-Sample Empirical Analysis 

 

2.4.1. Results for the Fundamental Value 

In order to apply the right-side unit root tests and the regime switching model on the real 

estate indices, the fundamental and bubble components must first be retrieved. This is usually done 

by constructing a supply and demand model, through which the price index is regressed on various 

economic variables using OLS. The fitted value of the regression model represents the 

fundamental value of the index, which is determined by the economic variables. The error term of 

the model is the part of the index that is not explained by the model predictors and represents the 

non-fundamental or bubble component of the index price.  

Due to the large number of predictors, we employ several shrinkage and model selection 

procedures along with OLS to create alternative measures for the fundamental and bubble 

component. The SADF and GSADF tests are applied to the non-fundamental component. 

Furthermore, in order to estimate the regime switching model the relative size of the bubble is 

required, which is constructed using the actual price and fundamental price. Specifically, to extract 

the fundamental price from the regressions the following formula is used: 

𝑝𝑡
𝑓
= (1 + 𝑟𝑡

𝑓
)𝑝𝑡−1

𝑓
,  where 𝑝0

𝑓
= 𝑝0 (2.23) 
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where 𝑝𝑡
𝑓
 is the fundamental price at time 𝑡, 𝑟𝑡

𝑓
 is the fitted value of the regression of the index 

returns on the stationary predictors9 at time 𝑡 and 𝑝0 is the actual price of the index at 𝑡 = 0. 

Subsequently, the relative size of the bubble is computed using the following formula: 

𝑏𝑡 =
𝑝𝑡 − 𝑝𝑡

𝑓

𝑝𝑡
 (2.24) 

where 𝑏𝑡 is the relative size of the bubble and 𝑝𝑡 is the actual price of the index at time 𝑡. 

Figure 2.1 plots the actual price, the average fundamental value and the average relative 

size of the bubble, for all six real estate indices. The average fundamental value or bubble size is 

simply computed by taking the average of the fundamental value or relative bubble size of all 

fitting procedures for each market. In this way, we overcome the model risk associated with the 

employment of one particular model for bubble estimation. The left-hand scale of Figure 2.1 plots 

the actual index price against the average fundamental price and on the right-hand scale the extent 

of under- or overvaluation is depicted. There have been periods of overvaluation and 

undervaluation in all six markets across our sample.  

For the US, the commercial real estate as reflected by the NCREIF index was often 

undervalued, from the end of the 1980s right to the eruption of the subprime crisis in 2007. There 

were short periods of overvaluation between 1982 and 1986 and between 2007 and 2008. A similar 

picture is portrayed for the US FTSE EPRA/NAREIT Index with long periods of undervaluation 

around the dot.com crisis of 2000-2002 and in the aftermath of the subprime crisis. 

                                                           
9 The predictors are the 19 economic variables listed in Table 2.1. The OLS, stepwise regression, ridge regression, the 

lasso, bridge regression and the elastic net were applied and the tuning parameters were selected using tenfold cross 

validation. For the lambda tuning parameters, a grid of 100 values between 10−2 and 102 was chosen. The bridge 

regression tuning parameter, gamma, is given a grid of values between 1.1 and 1.9 with step 0.1, while for the elastic 

net alpha tuning parameter a grid of values between 0 and 1 with step 0.1 is chosen.  



22 
 

[Insert Figure 2.1 Here] 

The residential real estate evolution in the United States paints a different picture, with a 

long undervaluation period between 1991 and 2002, followed by an economically significant 

overvaluation period ending in 2009 and followed by undervaluation that peaked in 2012. 

The IPD index in the UK seems to be closer to the fundamental value. There are short 

periods of overvaluation, the most notable one being the period before the start of the subprime 

crisis, and likewise short periods of undervaluation, the only economically significant one being 

the period 2009-2015. Similar to the US, the equity index for the UK indicates that this market 

was generally characterised by undervaluation. Mei and Saunders (1997) found evidence of a 

trend-chasing strategy of buying high and selling low followed by commercial banks and thrifts 

on their real estate investments. Their conclusion is in line with our results on REITS markets in 

the US and the UK reaching an overall judgement that undervaluation was omnipresent.  

The residential real estate in the United Kingdom had a similar evolution with the 

residential real estate in the United States, with the only difference being the period 2002-2003 

indicating the start of a bubble in the United Kingdom that ended in 2012. In both countries there 

has been a long period of significant overvaluation of house prices that started after 2002 and 

ended in 2009 in the United States and in 2011 in the United Kingdom. Holly, Pesaran and 

Yamagata (2011) argued that there is a direct link between London house prices and New York 

house prices and also suggested that economic shocks to the metropolis prices propagated 

contemporaneously and spatially to other regions in the same country. Their argument may explain 

our evidence on the similarity of overvaluation and undervaluation periods in the two countries. 
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2.4.2. Results of the Right-Side ADF Tests for Explosive Behavior 

Table 2.2 summarizes the results for the SADF and GSADF tests on the real estate indices 

for the US and the UK. In the interest of saving space, we report the tests based on the average of 

the non-fundamental components derived from the alternative proposed models described in 

Section 2.2.  Following the rule suggested by PSY, the minimum window size is set to 0.01 +

1.8/√𝑇 of the total sample size for each index. The finite sample critical value sequences are 

obtained by Monte Carlo simulation with 2000 replications, while the ADF lag is chosen to 

minimize the Schwarz Information Criterion. 

[Insert Table 2.2 Here] 

Overall, the SADF and GSADF tests provide evidence of bubble formation for all real 

estate indices. Specifically, both tests find evidence of explosive behavior for all US real estate 

indices at the 1% significance level. According to the SADF test, all UK real estate indices exhibit 

explosive behavior at a 1% significance level, with the exception of the UK equity real estate 

index, where the null hypothesis that there is a unit root is rejected at a 10% significance level. 

The results of the GSADF tests for the UK and the US reveal evidence that multiple bubbles are 

present in the commercial, equity and residential real estate indices of both countries.  

Our tests point to strong evidence of exuberance in all real estate indices and we employ 

the BSADF test in order to identify the origin and collapse date of the bubble periods for each 

index. Similarly to the GSADF test, the minimum window is set to 0.01 + 1.8/√𝑇 of the total 

sample observations and the ADF lag is chosen to minimize the Schwarz Information Criterion.  

Figure 2.2 illustrates that for the NCREIF Property Index the two major bubble periods 

occur in the late 80s to early 90s and from 2005 to 2008, while the bubble period with the greatest 
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duration for the IPD UK Property Index is from 2005 to 2008, with shorter periods appearing in 

the late 90s and in 2013-2014. For the US and the UK real estate indices the bubbles with the 

longer duration occur in the late 90s and early 2000s, with shorter bubble periods appearing 

between 2006 and 2007. For the S&P/Case-Shiller Index the two major bubbles are observed for 

the period 1990-1998 and another one for the period 2000 to 2007, while for the UK residential 

real estate the bubble with the longest duration is between 2001 and 2007, with smaller bubble 

periods after 2009. 

[Insert Figure 2.2 Here] 

 

2.4.3. Results for the Regime Switching Models for Bubbles 

To determine whether the deviations of the actual prices from their fundamentals were due 

to the presence of periodically collapsing bubbles, we apply the van Norden and Schaller (vNS) 

regime switching model to the returns of the real estate indices. Tables 2.3-2.5 present the results 

of the regime switching model based on both the average bubble size and the model specific ones 

for the commercial, equity and residential real estate markets, respectively. The regime switching 

model we apply has two regimes. In the first regime the bubble survives and continues to grow 

yielding a positive return, while in the second regime the bubble collapses and prices fall. 

According to the bubble theory, realised returns should be higher in the surviving regime, while 

volatility should be higher in the collapsing regime. We first focus on the findings with respect to 

the average bubble size and then we compare it to the individual model ones. 

The coefficient of the bubble term for the surviving regime (𝛽𝑆1) is statistically significant 

at the 5% level only for the S&P/Case-Shiller Home Price Index. In this case, all individual bubble 
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models provide positive statistically significant results. For the IPD UK Index, 𝛽𝑆1 is positive and 

statistically significant for the average bubble size at the 10% level, while the results of individual 

models is mixed with only bridge and elastic net pointing in the same direction. Furthermore, the 

coefficient of the bubble term when the bubble collapses, 𝛽𝐶1, is statistically significant for all 

indices with the exception of the UK commercial and equity index. For these indices, only bridge 

supports the theoretical negative coefficient. Overall, the coefficients in the surviving regime are 

greater than those in the collapsing regime, which suggests that the bubble in the collapsing regime 

leads to more negative returns than in the surviving regime. 

The coefficient 𝛽𝑞1 is negative, in the case of the US residential and the UK equity and 

residential indices, which indicates that the larger the bubble size, the higher the probability of the 

bubble collapsing in the next period. The estimates for 𝛽𝑞1 are statistically significant at the 5% 

level for the US and the UK equity and the UK residential real estate indices. For the equity indices, 

both OLS and stepwise point to non-statistically significant coefficients, while for the UK 

residential index, all models agree.  

The estimates for the mean returns in the surviving regime are 1.75%, 0.40%, 0.44%, 

0.70%, -0.29% and 0.57%, while in the collapsing regime they are -6.10%, -18.98%, -0.44%, -

0.20%, -25.93% and -0.06% for the commercial, equity and residential real estate markets for the 

US and the UK respectively. These represent the expected yields when there is no bubble and are 

quite similar across models. 

[Insert Tables 2.3-2.5 Here] 

Turning to coefficient restriction tests and the results based on the average bubble, we note 

that the restriction 𝛽𝑆0 ≠ 𝛽𝐶0 holds for all sectors (at the 10% level) except for the UK equity real 
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estate sectors (marginally), while the restriction 𝛽𝑆1 ≠ 𝛽𝐶1 holds for all indices except for the IPD 

UK Property Index and the UK FTSE EPRA/NAREIT index. It is interesting to note, though, that 

we observe considerable heterogeneity among individual bubble specifications. More in detail, for 

the NCREIF index, both restrictions are rejected when the bridge bubble is employed and for IPD 

UK, the restriction 𝛽𝑆1 ≠ 𝛽𝐶1  holds for the bridge and elastic net specification. In a similar vein, 

OLS rejects both restrictions and stepwise only the second one for the US equity real estate index. 

On the other hand, both restrictions hold based on the bridge bubble specification and the UK 

FTSE index.  

Finally, we perform likelihood ratio tests to determine whether the vNS bubble model can 

explain returns better than alternative models such as volatility regimes, fads and mixture-normal 

models. Our results, based on the average bubble specification, indicate that the vNS model is 

more efficient in capturing return dynamics for all indices, except for the two commercial real 

estate indices. For the NPI the volatility regimes and the mixture-normal models outperform the 

bubble model, while for the IPD the mixture-normal model is better at describing the returns. For 

these indices, all bubble specifications point to the same direction with the exception of the bridge 

bubble that points to superiority of the vNS model over the mixture-normal model. With respect 

to US FTSE index, contrary to the average bubble and the majority of fundamental models, 

stepwise and OLS reject the superiority of the vNS models versus all alternative stylised models 

(OLS at the 5% level for the fads model). On the other hand, for the UK FTSE index, only lasso 

and bridge (along with the average) are in favor of the vNS model. Similarly to the coefficient 

restriction tests, all fundamental model specifications agree on the superiority of the vNS model 

for the US and UK residential indices. 
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Figure 2.3 illustrates the evolution of the probability of collapse for each specific real estate 

sector (based on the average bubble size) in both the US and the UK. The only indication of a 

possible crash in the commercial real estate market in the US is for 1992-1993 and 2009. The 

equity market in the US was close to a crash in 2004, 2009 and 2012. For the residential real estate 

in the US as reflected by the Case-Shiller index, clear problems related to the collapse of the market 

were in 1990-1991, 2006-2011, 2014 and 2015. The situation in the United Kingdom was slightly 

different. The probability of collapse attached to the IPD index was very high between 1990-1994 

and 2007-2010. The equity market in the United Kingdom was only ever close to a crash around 

2009. The residential market as represented by the UK House Price index was close to a collapse 

between 2008 and 2009 and the probability of collapse even reached zero in the period 2002-2008. 

[Insert Figure 2.3 Here] 

In the next section, we assess the out-of-sample forecasting ability of the vNS regime 

switching model relative to the stylised bubble models and the historical average model (random 

walk with drift). We also scrutinise the forecasting ability of the proposed fundamental models 

employed for the relative bubble calculation and check whether employing the average relative 

bubble offers a hedge against model uncertainty. 

 

2.5. Out-of-Sample Empirical Analysis 

This section examines whether the van Norden-Schaller regime-switching model can be used to 

generate reliable out-of-sample forecasts. We consider 1-month, 3-month and 6-month forecasting 

horizons (the analysis for the NCREIF Property Index is for only 1-quarter and 2-quarters ahead). 

Given the total number of 𝑇 observations of each index, the sample is split into an out-of-sample 
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part, 𝑄 and an in-sample part, 𝑃 = 𝑇 − 𝑄. In our experiment, the out-of-sample window is set to 

eight years for all indices (32 observations for the NCREIF Property Index and 96 observations 

for the rest of the indices). In this respect, the out-of-sample period starts at 2008 and coincides 

with the global financial crisis, creating considerable challenges for our forecasting experiment. 

The ℎ-period ahead forecasts (ℎ = 1, 3 and 6 months) of the regime switching model are generated 

by estimating the van Norden-Schaller model recursively, increasing the initial window, 𝑃, by one 

observation at a time. The average relative and individual fundamental bubble sizes, which are 

used as an input in the model, are also constructed recursively from the estimates of all the 

fundamental models at each iteration. 

The forecasting performance of the van Norden-Schaller model and the alternative nested 

regime switching specifications are evaluated using the mean square forecast error (MSFE) 

criterion, which is given by: 

𝑀𝑆𝐹𝐸𝑖 =
1

𝑄
∑(𝑟𝑃+𝑡 − �̂�𝑖,𝑃+𝑡)

2

𝑄

𝑡=1

 (2.25) 

where �̂�𝑖,𝑃+𝑡 denotes the forecast from model 𝑖. In order to evaluate the forecasting accuracy of the 

regime switching models, we compare them with the historical average benchmark model (random 

walk with drift). We compute the MSFE ratios of the regime switching models relative to the 

benchmark and alternative nested regime specifications. A ratio below unity implies that the 

regime switching model forecast is more accurate than the benchmark and alternative models in 

terms of MSFE. Additionally, to test whether the improvement in MSFE for the regime switching 

models against the historical average (and the nested regime switching specifications) is 

statistically significant, we employ the Clark and West (2007) test that utilises the MSFE-adjusted 
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statistic, which is approximately normally distributed when comparing forecasts from nested 

models. The MSFE-adjusted statistic is computed by first defining: 

𝑓𝑖,𝑡 = (𝑟𝑃+𝑡 − �̅�𝑃+𝑡)
2 − (𝑟𝑃+𝑡 − �̂�𝑖,𝑃+𝑡)

2
+ (�̅�𝑃+𝑡 − �̂�𝑖,𝑃+𝑡)

2
 (2.26) 

where �̅�𝑃+𝑡, is the forecast of 𝑟𝑃+𝑡, using the historical average benchmark. The Clark-West 𝑡-

statistic is compared to the critical value of 1.282 corresponding to the 10% significance level. 

The null-hypothesis is that the MSFE of the benchmark is less or equal to the MSFE of model 𝑖, 

while the alternative is that MSFE of the benchmark is greater than the MSFE of model 𝑖.  

 

2.5.1. One-Month ahead Forecasts 

Tables 2.6, 2.7 and 2.8 detail the MSFE ratios of the various models relative to the benchmark for 

the 1-month ahead horizon, while the Clark-West 𝑡-statistics are reported below in parenthesis. 

Overall, our 1-month out-of-sample findings suggest that the van Norden and Schaller model is 

more accurate than the benchmark in all the indices considered while it beats the alternative regime 

switching models in four of the indices under consideration.  

More in detail, the top panel of Table 2.6 compares the performance of the forecasts with 

the historical average for the UK commercial index, while the bottom panel compares the out-of-

sample performance of the van Norden and Schaller model with each of the stylized alternative 

models. Our findings suggest that both the normal-mixture model and the bubble model have 

statistically significant better out-of-sample performance compared to the historical average. The 

fundamental bubble calculated via the bridge regression attains the lowest MSFE (0.7898) among 

the alternative fundamental models and the average bubble. Comparing the performance of the 
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vNS model to the stylized alternative models, we note that the vNS model beats both the volatility 

regimes and the fads model (but not the normal-mixture one).  

Turning to equity real estate indices, our findings, reported in Table 2.7, suggest that for 

the US, the forecasts generated by the vNS model and the average bubble are the most accurate 

(with an MSFE of 0.9069) albeit non-significant. However, stepwise vNS model forecasts are 

statistically significantly lower that the historical average benchmark.  We should also note that 

the elastic net, the bridge and average bubble fads model attain superior forecasts. For the UK 

equity index, all normal mixture and vNS models (with the exception of lasso) achieve lower 

forecast errors than the historical average benchmark. Stepwise vNS delivers more accurate 

forecasts among the alternative bubble models followed by the average bubble. With respect to the 

residential real estate indices, the vNS model achieves superior forecasting performance 

irrespective of the fundamental bubble employed for both the US and UK markets (Table 2.8). 

Specifically, for the S&P/Case-Shiller Home Price Index, the average bubble delivers the lowest 

MSFE (0.6079) followed by ridge (0.6176) and lasso (0.6354). As expected, the vNS model 

outperforms all stylised nested specifications (Panel B) by a wide margin. Similar findings pertain 

for the UK House Price Index. In this case, the lowest MSFE is achieved by lasso vNS (0.6852) 

followed by the average bubble vNS (0.6958). As expected, Panel B of Table 2.8 verifies the 

forecasting superiority of vNS relative to the volatility regimes, the fads and the mixture of normal 

model.  

[Insert Tables 2.6-2.8 Here] 

To gain a visual understanding of the accuracy of our models, the cumulative difference 

between forecast errors for the historical average against each of the alternative bubble vNS models 

for all real estate markets are plotted in Figure 2.4. These graphs can be used to assess whether the 
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alternative models consistently outperform the historical average benchmark for any particular 

out-of-sample period. To determine this, the height of the curve at the beginning and end points of 

the period of interest are compared. If the curve is higher at the end of the segment compared to 

the beginning, then the forecast based on the regime switching model has a lower MSFE than the 

historical average benchmark during that period. For a model to always outperform the historical 

average, the slope should be positive for the whole out-of-sample period. 

Overall, the path of the cumulative forecast error differences are quite diverse for the 

indices considered. More specifically, for the IPD, we observe all fundamental bubble models 

along with the average being in the positive territory for the whole out-of-sample period, 

experiencing small losses in the aftermath of the financial crisis. They then stabilise and retain 

their ranking position up to the end of the sample period. For the US FTSE real estate index, the 

financial crisis period is marked with losses for all the models followed by a quick recovery in 

2009. Beyond 2009, all models move similarly with the average ranking higher and on the other 

hand, the bridge model deteriorating to rank lowest at the end of 2015. Turning to the UK FTSE 

real estate index, all models behave similarly during the financial crisis showing divergent patterns 

in the aftermath. Specifically, stepwise vNS followed by the average quickly gain ground and 

retain their superiority up to the end of the sample, while lasso vNS is for the majority of the out-

of-sample period in negative territory showing worse forecasting performance than the historical 

average. The superior forecasting performance of all fundamental models is apparent in the case 

of the US house price index, as all models exhibit quick gains during the financial crisis which 

they manage to retain and increase (upward sloping curve) up to the end of the sample period. 

Although all models move close together, the average bubble ranks first while the bridge one takes 

the lowest position. Finally, the UK house price index paints a different picture. Similarly, to the 
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US house price index, the financial turmoil benefits all specifications, but soon after our 

fundamental models form three groups. In the best performing one, associated with consistent 

forecasting gains over the out-of-sample period, we see lasso and the average bubble vNs model, 

while elastic net and bridge form the group of worst performing models.  

[Insert Figure 2.4 Here] 

 

2.5.2. Longer Forecasting Horizons 

Since most investors except portfolio investors need more lead time than one month, we also 

consider 3-month and 6-month forecasting horizons. Table 2.9 reports the related findings for all 

the indices at hand. Overall, the majority of alternative vNS bubble models are superior to the 

random walk in all cases. More in detail, for the commercial real estate indices, all fundamental 

vNS models achieve superior forecasting ability relative to the historical average with the bridge 

vNS achieving the lowest MSFE (0.7181 and 0.6347, for the US and UK respectively). This 

performance is closely followed by the average fundamental vNS model, which ranks second for 

the NCREIF index. The normal mixture model also outperforms the historical average, but is 

associated with inferior forecasts relative to the vNS. Turning to equity real estate indices, we note 

that the best model in terms of MSFE is the elastic net fads model for the US (0.9349) and the 

bridge fads model for the UK (0.8378). The vNS model ranks second with the average bubble and 

bridge bubble model performing best for the US and UK, respectively. Finally, for the residential 

real estate indices, all vNS specifications rank first and succeed in reducing the random walk 

MSFE by almost half both for the US and UK. For example, for the Case-Shiller index, the best 

forecasting model is the elastic net vNS that achieves an MSFE of 0.5989 closely followed by all 
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models with the average just a little over 0.6077. For the UK house price index, the best performing 

model is the stepwise vNS model (with an MSFE of 0.6175) followed by ridge, lasso and the 

average fundamental vNS model. 

[Insert Table 2.9 Here] 

Figure 2.5 plots the cumulative difference between forecast errors for the historical average 

against each of the alternative bubble vNS models for all real estate markets and the 3-month 

horizon. In both the US and UK commercial real estate indices, all vNS models appear successful 

in improving forecasts in the aftermath of the financial crisis. However, for NCREIF all 

specifications underperform in 2008 followed by sharp gains after 2009 and small losses 

afterwards. These movements are rather muted for the elastic net bubble model. The best 

performance is attained by the bridge vNS model followed by the average bubble one.  For the 

IPD, all specifications move quite similarly, experiencing sharp gains during the financial crisis 

followed by stabilisation in the aftermath. In contrast, performance of the equity real estate indices 

is quite diverse among fundamental specifications. Specifically, for the US only the average and 

elastic net manage to retain gains at the end of the out-of-sample period with bridge showing the 

worst performance. However, bridge and the average are consistently superior and rank first for 

the UK FTSE index. Finally, all fundamental models move closely together in the case of the US 

residential index, while for the UK fundamental models form two groups, with elastic net and 

bridge belonging to the worst performing one.    

[Insert Figure 2.5 Here] 

Turning to the 6-month horizon, our findings reported in Table 2.10, suggest that the best 

forecasting performance is attained for the Case-Shiller Index followed by the IPD UK index. For 
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the Case Shiller index, all fads, normal mixture and vNs models appear significantly more accurate 

than the random walk, with the vNS ranking first. In this set of models, the one with the lowest 

MSFE is the stepwise (0.4951), while the average bubble model also proved accurate with a 

statistically significant MSFE of 0.5488. In the case of the IPD, the most accurate model is the 

bridge vNS (0.5689) followed by the elastic net (0.7132). The average bubble vNS fares well with 

a statistically significant MSFE of 0.7658.  On the other hand, all vNS specifications fail to 

improve upon the historical average model for both the US and UK FTSE indices. In these cases, 

the fads model beats the historical average model with the average bubble and the ridge bubble 

fads model ranking first for the US and UK, respectively.  Finally, the NCREIF and the UK house 

price index provide mixed evidence. For the NCREIF, the bridge and elastic net fads model are 

the best followed by stepwise OLS. For this index, all fundamental bubble vNS models (with the 

exception of the OLS) offer improvements over the historical average as judged by the Clark-West 

test.  

[Insert Table 2.13 Here] 

The pattern of the forecasting ability of the various bubble vNS models for the 6-month 

horizon is graphically shown in Figure 2.6. For this forecasting horizon, overall we get diminished 

forecasting power for the majority of indices and more divergent behavior across specifications 

with the exception of the US residential index. For the US commercial index, all models experience 

some gains in 2009, followed by sharp losses in 2010, which for the stepwise and lasso they are 

smaller and lead to significant improvements over the out-of-sample period. For the UK IPD index, 

bridge and average are the models benefiting more from the financial crisis compared to the 

remaining specifications. Finally, two groups of forecasting models can be identified for the UK 

residential index. In the group of best performing specifications are OLS, stepwise, ridge and lasso. 
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This group experiences gains in 2008 that are mostly retained in the out-of-sample period, while 

the worst performing group quickly loses any benefits and continues to underperform the historical 

average model until the end of the out-of-sample period. 

[Insert Figure 2.6 Here] 

 

2.6. Conclusion 

In this research we confirm the existence of bubbles in real estate markets in the United 

States and the United Kingdom using shrinkage and variable selection models to extract the 

fundamental component underpinning these markets. To investigate the bubble dynamics in real 

estate markets, fundamental models were constructed using several fitting procedures and a wide 

range of economic variables. The fundamental value underpinning commercial, residential and 

equity real estate markets was extracted using stepwise regression, ridge regression, lasso, bridge 

regression, elastic net and an average of those models. In all real estate markets, the actual price 

diverges from the respective fundamental value. The right-side unit root tests showed significant 

evidence of the presence of periodically collapsing bubbles in all indices. The regime switching 

model for bubbles was compared to alternative models and the results showed that for the United 

States and the United Kingdom equity and residential real estate, the bubble model is preferable 

to the alternatives. The out-of-sample analysis reveals that for one period ahead, the van Norden 

and Schaller model exhibits superior forecasting performance for residential real estate markets in 

the United Kingdom and the United States. 
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Chapter 2 Tables 

Table 2.1: Economic Predictors 

  United States United Kingdom 

Financial indicators  S&P 500 Index  

 US/UK exchange rate 

 M2 

 Effective federal funds rate 

 3-month Treasury bill: 

(secondary market rate)  

 5-year Treasury constant 

maturity rate 

 10-year Treasury constant 

maturity rate 

 30-year fixed rate mortgage 

average 

 FTSE All-Share Index 

 US/UK exchange rate 

 Retail M4 (or M2) 

 Official bank rate 

 3-month Treasury bill 

 Generic government 5-year 

yield 

 Generic government 10-year 

yield 

 Mortgage rate 

Price indicators  Inflation rate (CPI) 

 London Bullion Market 

Association (LBMA) gold 

price 

 WTI crude oil price 

 US rent price index 

 Inflation rate (RPI) 

 London Bullion Market 

Association (LBMA) gold 

price 

 IMF Brent crude oil price 

 UK rent price index 

National income and business 

activity indicators 

 Real GDP 

 Dallas Fed US real personal 

disposable income index 

 Industrial production 

 Housing starts 

 Real GDP 

 Dallas Fed UK real personal 

disposable income index 

 Industrial production 

 Housing starts 

Employment and labour 

market indicators 

 Unemployment rate 

 OECD Labour cost 

 OECD Labour productivity 

 Unemployment rate 

 OECD Labour cost 

 OECD Labour productivity 

Notes: This table reports the set of predictors used to construct the fundamental models for the US and 

UK real estate indices. 
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Table 2.2: The SADF and GSADF Test Results on the Non-fundamental Component 

 NCREIF Property Index US EPRA/NAREIT Index S&P/Case-Shiller Index 

 SADF GSADF SADF GSADF SADF GSADF 

Test statistic 5.3090 6.4302 2.9105 2.9986 2.7291 6.9542 

90% Critical Value 1.0845 1.7792 1.1439 1.9219 1.1442 1.9424 

95% Critical Value 1.3843 2.0663 1.4257 2.1340 1.4350 2.1843 

99% Critical Value 1.9300 2.7919 1.9585 2.6837 1.9417 2.8751 

 IPD UK Property Index UK EPRA/NAREIT Index UK House Price Index 

 SADF GSADF SADF GSADF SADF GSADF 

Test statistic 3.1161 4.5725 1.2414 2.9815 3.9483 7.0706 

90% Critical Value 1.1471 1.9431 1.1416 1.9179 1.1664 1.9113 

95% Critical Value 1.4620 2.1877 1.4027 2.1460 1.4760 2.1935 

99% Critical Value 2.0303 2.7542 2.0189 2.8789 2.0308 2.8802 

Notes: The null hypothesis is that there is a unit root and the alternative that there is explosive behavior. 

Figures in bold indicate the rejection of the null hypothesis at the respective significance level. The critical 

values for the SADF and GSADF tests were computed from Monte Carlo simulations with 2000 

replications, with the minimum window set to 0.01+1.8/√T of the total sample observations. The ADF lag 

is chosen to minimize the Schwarz Information Criterion with the maximum lag length set to 4 quarters for 

the NCREIF Property Index and to 12 months for the remaining indices. Sample size: 151 for the NCREIF 

Property Index, 311 for the US FTSE EPRA/NAREIT Index, 346 for the S&P/Case-Shiller Home Price 

Index, 348 for the IPD UK Property Index, 312 for the UK FTSE EPRA/NAREIT Index and 251 for the 

UK House Price Index. 
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Table 2.3: Results from the van Norden and Schaller Speculative Bubble Model for the US and the UK Commercial Real Estate Indices 

  NCREIF Property Index IPD UK Property Index 

Parameters OLS Stepwise Ridge Lasso Bridge Elastic Net Average OLS Stepwise Ridge Lasso Bridge Elastic Net Average 

βS0 1.0188 1.0185 1.0181 1.0182 1.0167 1.0165 1.0175 1.0069 1.0070 1.0069 1.0069 1.0068 1.0072 1.0070 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

βS1 0.0089 0.0070 0.0027 0.0051 -0.0056 -0.0110 -0.0003 -0.0026 -0.0029 0.0031 0.0052 0.0121 0.0148 0.0097 

 (0.3844) (0.4695) (0.7632) (0.5839) (0.4589) (0.3842) (0.9800) (0.7355) (0.6625) (0.6648) (0.4548) (0.0002) (0.0043) (0.0962) 

βC0 0.9459 0.9449 0.9393 0.9433 0.9962 0.9340 0.9390 0.9982 0.9973 0.9981 0.9981 0.9986 0.9977 0.9980 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

βC1 -0.1604 -0.1622 -0.1611 -0.1586 0.0510 -0.1746 -0.1668 0.0321 0.0411 0.0136 0.0135 -0.0375 -0.0288 -0.0127 

 (0.0005) (0.0003) (0.0000) (0.0002) (0.5702) (0.0000) (0.0000) (0.2424) (0.1734) (0.5998) (0.6000) (0.0145) (0.1523) (0.5815) 

βq0 -2.8408 -2.8196 -2.9355 -2.8555 -1.0180 -3.4508 -3.0083 -1.4803 1.1517 -1.4112 1.3888 1.2678 -1.2781 -1.2584 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.2767) (0.0001) (0.0000) (0.0003) (0.0051) (0.0004) (0.0006) (0.0017) (0.0007) (0.0012) 

βq1 3.4307 2.9801 3.8308 2.8063 -5.4348 6.5097 3.5989 7.2884 -0.9526 6.1666 -5.4300 -1.8742 3.1424 3.0181 

 (0.4451) (0.4902) (0.2954) (0.5233) (0.2249) (0.2046) (0.4573) (0.0842) (0.8222) (0.1166) (0.1553) (0.4339) (0.3184) (0.3781) 

σS 0.0150 0.0151 0.0151 0.0151 0.0140 0.0154 0.0152 0.0062 0.0061 0.0061 0.0061 0.0058 0.0059 0.0060 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

σC 0.0202 0.0196 0.0184 0.0194 0.0360 0.0124 0.0174 0.0173 0.0171 0.0174 0.0174 0.0162 0.0169 0.0173 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Τests of coefficient restrictions 

βS0≠βC0 37.0124 41.8808 51.0395 44.0316 1.8871 125.0816 56.3834 10.6412 11.6538 10.5023 10.3259 10.4075 12.3070 10.7871 
 (0.0000) (0.0000) (0.0000) (0.0000) (0.1695) (0.0000) (0.0000) (0.0011) (0.0006) (0.0012) (0.0013) (0.0013) (0.0005) (0.0010) 

βS1≠βC1 12.5608 13.4290 20.0220 13.3886 0.3955 45.5019 19.1911 1.3235 1.8596 0.1340 0.0856 10.1999 4.3316 0.8217 

  (0.0004) (0.0002) (0.0000) (0.0003) (0.5294) (0.0000) (0.0000) (0.2500) (0.1727) (0.7143) (0.7698) (0.0014) (0.0374) (0.3647) 

Bubble model specification test against alternative models 

Volatility 

regime 
6.0245 5.8360 5.9050 5.3145 3.4929 5.9956 5.1383 13.1066 10.1463 11.1716 11.1679 28.2891 18.4964 11.3828 

 (0.1973) (0.2117) (0.2064) (0.2565) (0.4790) (0.1995) (0.2734) (0.0108) (0.0380) (0.0247) (0.0247) (0.0000) (0.0010) (0.0226) 

Fads 10.2856 10.4791 11.1973 10.2752 8.0119 11.3421 10.6333 20.6783 17.6434 18.4485 17.7409 29.6868 21.4947 17.0178 

 (0.0163) (0.0149) (0.0107) (0.0164) (0.0458) (0.0100) (0.0139) (0.0001) (0.0005) (0.0004) (0.0005) (0.0000) (0.0001) (0.0007) 

Mixture-normal 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 12.8417 3.0491 0.0100 

  (0.9997) (0.9997) (0.9997) (0.9997) (0.9997) (0.9997) (0.9997) (0.9997) (0.9997) (0.9997) (0.9997) (0.0050) (0.3841) (0.9997) 

Notes: This table reports the in-sample results of the van Norden and Schaller model for each fundamental specification. The first panel reports the coefficient estimates of the bubble 

model along with the respective p-values in parenthesis that are derived by taking the inverse of the Hessian matrix. The second panel reports the results of the likelihood ratio tests of the 

two restrictions implied by the bubble model, while the third panel presents the results from tests that examine whether stylized alternative models can better explain the returns than the 

regime-switching model for bubbles. 
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Table 2.4: Results from the van Norden and Schaller Speculative Bubble Model for the US and the UK Equity Real Estate Indices 

  US FTSE EPRA/NAREIT Index UK FTSE EPRA/NAREIT Index 

Parameters OLS Stepwise Ridge Lasso Bridge Elastic Net Average OLS Stepwise Ridge Lasso Bridge Elastic Net Average 

βS0 1.0064 1.0073 1.0051 1.0039 1.0026 1.0034 1.0040 0.9997 0.9998 0.9983 0.9969 0.9896 0.9971 0.9971 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

βS1 -0.0049 -0.0018 -0.0073 -0.0114 -0.0177 -0.0128 -0.0115 -0.0048 -0.0048 -0.0064 -0.0081 -0.0191 -0.0083 -0.0085 

 (0.6552) (0.8518) (0.4771) (0.2826) (0.0467) (0.2264) (0.2977) (0.5504) (0.5405) (0.4163) (0.3437) (0.0222) (0.3264) (0.3287) 

βC0 0.8892 0.9129 0.8002 0.7968 0.8100 0.7900 0.8102 0.8582 0.8887 0.7326 0.7954 0.7540 0.7782 0.7407 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0014) (0.0000) (0.0000) (0.0000) (0.0000) 

βC1 -0.2197 -0.2032 -0.2710 -0.2910 -0.1464 -0.2864 -0.2705 -0.1708 -0.1462 -0.2616 -0.1990 -0.1418 -0.2202 -0.2430 

 (0.1113) (0.1414) (0.0333) (0.0407) (0.0411) (0.0240) (0.0283) (0.4181) (0.3583) (0.2344) (0.1370) (0.0078) (0.1518) (0.0984) 

βq0 3.0088 2.5812 -4.2995 -4.3159 -6.6387 -4.6459 -4.4448 4.0527 3.5410 5.2037 4.5707 -7.2487 4.7347 5.2640 

 (0.0000) (0.0000) (0.0000) (0.0001) (0.0009) (0.0001) (0.0000) (0.0201) (0.0112) (0.0014) (0.0010) (0.0000) (0.0011) (0.0002) 

βq1 -1.8062 -0.5839 3.6171 3.7348 6.0346 4.2569 4.1916 -2.1116 -1.5229 -3.0491 -2.6715 4.3614 -2.7937 -3.3972 

 (0.1128) (0.5938) (0.0038) (0.0077) (0.0095) (0.0047) (0.0050) (0.1663) (0.2075) (0.0473) (0.0341) (0.0006) (0.0367) (0.0163) 

σS 0.0407 0.0407 0.0418 0.0420 0.0427 0.0421 0.0419 0.0503 0.0499 0.0506 0.0493 0.0477 0.0498 0.0497 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

σC 0.1247 0.1274 0.1196 0.1184 0.1355 0.1189 0.1199 0.1097 0.1091 0.1012 0.0934 0.0874 0.0956 0.0916 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Τests of coefficient restrictions 

βS0≠βC0 2.6195 2.8041 3.9578 3.2508 3.1973 3.9697 3.7989 0.6008 0.8302 1.3514 2.1014 5.8611 1.9121 2.5970 
 (0.1056) (0.0940) (0.0467) (0.0714) (0.0738) (0.0463) (0.0513) (0.4383) (0.3622) (0.2450) (0.1472) (0.0155) (0.1667) (0.1071) 

βS1≠βC1 2.4327 2.1340 4.3270 3.9251 3.2147 4.7053 4.4589 0.6213 0.7927 1.3455 2.0333 5.0551 1.9103 2.5266 
 (0.1188) (0.1441) (0.0375) (0.0476) (0.0730) (0.0301) (0.0347) (0.4306) (0.3733) (0.2461) (0.1539) (0.0246) (0.1669) (0.1119) 

Bubble model specification test against alternative models 

Volatility regime 4.5484 1.8080 11.6828 12.5982 30.1942 15.3703 14.7110 3.2372 2.9189 5.8300 8.4368 25.6241 7.6889 10.1248 

 (0.3368) (0.7710) (0.0199) (0.0134) (0.0000) (0.0040) (0.0053) (0.5189) (0.5715) (0.2122) (0.0768) (0.0000) (0.1037) (0.0384) 

Fads 7.1879 5.0067 13.5061 13.6537 26.5998 15.8503 15.4786 4.0729 3.6249 6.2864 7.8439 22.9221 7.3379 9.8032 

 (0.0661) (0.1713) (0.0037) (0.0034) (0.0000) (0.0012) (0.0015) (0.2537) (0.3049) (0.0985) (0.0494) (0.0000) (0.0619) (0.0203) 

Mixture-normal 3.5658 0.8254 10.7002 11.6156 29.2116 14.3877 13.7284 1.4639 1.1456 4.0567 6.6635 23.8508 5.9156 8.3515 

  (0.3123) (0.8434) (0.0135) (0.0088) (0.0000) (0.0024) (0.0033) (0.6906) (0.7661) (0.2554) (0.0834) (0.0000) (0.1158) (0.0393) 

Notes: This table reports the in-sample results of the van Norden and Schaller model for each fundamental specification. The first panel reports the coefficient estimates of the bubble 

model along with the respective p-values in parenthesis that are derived by taking the inverse of the Hessian matrix. The second panel reports the results of the likelihood ratio tests of 

the two restrictions implied by the bubble model, while the third panel presents the results from tests that examine whether stylized alternative models can better explain the returns 

than the regime-switching model for bubbles. 

  



40 
 

Table 2.5: Results from the van Norden and Schaller Speculative Bubble Model for the US and the UK Residential Real Estate Indices 

 S&P/Case-Shiller Home Price Index UK House Price Index 

Parameters 
OLS Stepwise Ridge Lasso Bridge 

Elastic 

Net 
Average OLS Stepwise Ridge Lasso Bridge Elastic Net Average 

βS0 1.0042 1.0042 1.0042 1.0042 1.0038 1.0039 1.0044 1.0051 1.0055 1.0052 1.0053 1.0059 1.0056 1.0057 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

βS1 0.0106 0.0113 0.0118 0.0112 0.0166 0.0149 0.0139 -0.0132 -0.0125 -0.0077 -0.0085 -0.0035 -0.0046 -0.0078 

 (0.0021) (0.0013) (0.0003) (0.0009) (0.0000) (0.0000) (0.0000) (0.0379) (0.0686) (0.2019) (0.1813) (0.4841) (0.4002) (0.2403) 

βC0 0.9942 0.9942 0.9949 0.9944 0.9967 0.9960 0.9956 0.9991 0.9991 0.9996 0.9996 0.9975 0.9985 0.9994 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

βC1 -0.0346 -0.0349 -0.0318 -0.0322 -0.0228 -0.0243 -0.0275 -0.1268 -0.1295 -0.1294 -0.1338 -0.0773 -0.1013 -0.1140 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

βq0 -0.5549 -0.6088 -0.3381 -0.5343 -0.4052 -0.4632 -0.0426 -0.7556 -0.1297 0.0777 0.0652 0.2084 0.0178 0.2309 

 (0.2096) (0.1710) (0.4430) (0.2403) (0.4049) (0.3317) (0.9331) (0.2728) (0.8636) (0.9043) (0.9276) (0.7623) (0.9793) (0.7339) 

βq1 2.6717 2.7929 -0.1604 1.6158 0.0758 0.1247 -2.3939 -12.1367 -14.9164 14.9327 15.2631 9.2006 12.1565 -14.7843 

 (0.5244) (0.5138) (0.9655) (0.6969) (0.9775) (0.9651) (0.5039) (0.0152) (0.0051) (0.0011) (0.0015) (0.0036) (0.0017) (0.0005) 

σS 0.0042 0.0042 0.0041 0.0042 0.0039 0.0040 0.0040 0.0091 0.0088 0.0089 0.0089 0.0088 0.0089 0.0090 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

σC 0.0042 0.0044 0.0046 0.0045 0.0056 0.0054 0.0050 0.0027 0.0045 0.0042 0.0042 0.0047 0.0049 0.0049 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Τests of coefficient restrictions 

βS0≠βC0 218.7708 190.0803 156.4087 170.2617 48.2574 64.2196 92.9463 21.0044 13.4726 10.7906 10.1537 16.5139 12.3667 9.6589 
 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0002) (0.0010) (0.0014) (0.0000) (0.0004) (0.0019) 

βS1≠βC1 76.9262 68.2720 64.0140 64.0555 50.8936 49.7649 53.3688 75.9723 25.7643 31.7482 26.4138 31.5721 29.3276 22.4570 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Bubble model specification test against alternative models 

Volatility regime 51.8753 47.9361 48.5529 45.4679 46.3767 44.5277 45.4770 21.7529 25.6001 25.1875 25.8914 18.5668 21.3688 25.3115 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0002) (0.0000) (0.0000) (0.0000) (0.0010) (0.0003) (0.0000) 

Fads 58.6704 55.5599 56.1470 53.1805 60.1836 53.0791 53.7911 17.6257 21.5197 24.6443 22.5199 23.8871 25.3749 26.8535 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0005) (0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) 

Mixture-normal 38.0458 34.1067 34.7235 31.6385 32.5473 30.6983 31.6476 10.7870 14.6343 14.2216 14.9256 7.6009 10.4029 14.3457 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0129) (0.0022) (0.0026) (0.0019) (0.0550) (0.0154) (0.0025) 

Notes: This table reports the in-sample results of the van Norden and Schaller model for each fundamental specification. The first panel reports the coefficient estimates of the bubble 

model along with the respective p-values in parenthesis that are derived by taking the inverse of the Hessian matrix. The second panel reports the results of the likelihood ratio tests of 

the two restrictions implied by the bubble model, while the third panel presents the results from tests that examine whether stylized alternative models can better explain the returns than 

the regime-switching model for bubbles. 
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Table 2.6: MSFE Ratios and Clark and West (2007) 𝑡-statistics for the IPD UK Property Index: 1 Month Horizon 

A. Historical average set as the benchmark. 

 IPD UK Property Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

Volatility regimes 

model 
1.0462 1.0462 1.0462 1.0462 1.0462 1.0462 1.0462 

(-1.2571) (-1.2571) (-1.2571) (-1.2571) (-1.2571) (-1.2571) (-1.2571) 

Fads model 1.0321 0.9992 1.0324 1.0202 1.0493 1.0698 1.0319 

(-1.7195) (0.5254) (-1.9392) (-1.5285) (-2.6045) (-3.2751) (-2.4887) 

Normal-mixture model 0.7606 0.7606 0.7606 0.7606 0.7606 0.7606 0.7606 

(4.1167) (4.1167) (4.1167) (4.1167) (4.1167) (4.1167) (4.1167) 

vNS bubble model 0.7984 0.7991 0.8382 0.8173 0.8401 0.7898 0.8672 

(3.6898) (3.5236) (3.5104) (3.4117) (3.9675) (4.2887) (3.6808) 

B. Van Norden and Schaller model set as the benchmark. 

 IPD UK Property Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

vNS bubble model 0.0001 0.0001 0.0002 0.0002 0.0002 0.0001 0.0002 

Volatility regimes 

model 
0.7632 0.7638 0.8012 0.7812 0.8031 0.7549 0.8289 

(3.4830) (3.4269) (3.2986) (3.3190) (3.5447) (3.9338) (3.3448) 

Fads model 0.7736 0.7997 0.8119 0.8010 0.8007 0.7383 0.8403 

(3.5773) (3.4211) (3.4100) (3.3577) (3.7697) (4.0934) (3.5798) 

Normal-mixture model 1.0497 1.0506 1.1020 1.0744 1.1045 1.0383 1.1401 

(-0.7878) (-0.7175) (-2.3504) (-1.2532) (-2.2685) (-0.1573) (-2.8420) 

Notes: The first panel reports the MSFE ratios between the historical average benchmark and the volatility regimes, 

fads, mixture-normal and the vNS bubble models respectively. A below unity ratio indicates that the respective 

model outperforms the historical average. The second panel reports the MSFE ratios between the van Norden and 

Schaller model and the alternative regime switching models. A below unity ratio indicates that the bubble model 

outperforms the respective regime switching model. The figures in parenthesis are the 𝑡-statistics from the Clark 

and West (2007) test. Figures in bold indicate the rejection of the null hypothesis at the 10% significance level. The 

out-of-sample period is set to eight years. 

 

 



42 
 

Table 2.7: MSFE Ratios and Clark and West (2007) 𝑡-statistics for the Equity Real Estate Indices: 1 Month Horizon 

A. Historical average set as the benchmark. 

  US FTSE EPRA/NAREIT Index UK FTSE EPRA/NAREIT Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 

Volatility regimes 

model 

1.0014 1.0014 1.0014 1.0014 1.0014 1.0014 1.0014 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

(-0.0590) (-0.0590) (-0.0590) (-0.0590) (-0.0590) (-0.0590) (-0.0590) (0.1402) (0.1402) (0.1402) (0.1402) (0.1402) (0.1402) (0.1402) 

Fads model 0.9969 0.9953 0.9872 0.9879 0.9846 0.9557 0.9815 1.0015 0.9992 1.0032 0.9862 0.9883 0.9495 0.9917 

(0.5345) (0.6754) (1.2187) (1.2597) (1.3823) (1.9051) (1.5898) (-0.1741) (0.3484) (-0.5220) (2.0726) (1.6339) (2.8627) (2.0140) 

Normal-mixture 

model 

1.0239 1.0239 1.0239 1.0239 1.0239 1.0239 1.0239 0.9178 0.9178 0.9178 0.9178 0.9178 0.9178 0.9178 

(0.0182) (0.0182) (0.0182) (0.0182) (0.0182) (0.0182) (0.0182) (1.3715) (1.3715) (1.3715) (1.3715) (1.3715) (1.3715) (1.3715) 

vNS bubble model 0.9317 0.9176 0.9249 0.9291 0.9169 0.9426 0.9069 0.9825 0.9390 0.9814 1.0022 0.9931 0.9751 0.9669 

(1.2486) (1.2919) (1.0732) (1.0534) (1.1150) (1.2132) (1.1902) (1.5844) (1.4917) (1.6810) (0.2171) (2.0022) (2.0128) (1.4041) 

B. Van Norden and Schaller model set as the benchmark. 

  US FTSE EPRA/NAREIT Index UK FTSE EPRA/NAREIT Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

vNS bubble model 0.0058 0.0057 0.0058 0.0058 0.0057 0.0059 0.0056 0.0044 0.0042 0.0043 0.0044 0.0044 0.0043 0.0043 

Volatility regimes 

model 

0.9305 0.9164 0.9236 0.9278 0.9156 0.9413 0.9057 0.9827 0.9392 0.9816 1.0024 0.9933 0.9753 0.9671 

(1.2705) (1.3299) (1.1204) (1.0976) (1.1547) (1.2088) (1.2334) (1.4787) (1.4559) (1.6237) (0.2033) (1.7987) (2.0614) (1.3528) 

Fads model 0.9346 0.9220 0.9369 0.9404 0.9312 0.9864 0.9241 0.9809 0.9397 0.9782 1.0163 1.0049 1.0269 0.9750 

(1.2320) (1.2828) (1.0307) (0.9984) (1.0619) (0.8839) (1.1217) (1.4027) (1.4737) (1.7131) (-1.5630) (0.1118) (-1.5260) (1.1540) 

Normal-mixture 

model 

0.9100 0.8963 0.9033 0.9074 0.8955 0.9206 0.8858 1.0705 1.0231 1.0693 1.0920 1.0821 1.0624 1.0535 

(1.1370) (1.1449) (0.9934) (0.9948) (1.0476) (1.1165) (1.0820) (1.1895) (1.2049) (1.2184) (1.1077) (1.1574) (1.2953) (1.1594) 

Notes: The first panel reports the MSFE ratios between the historical average benchmark and the volatility regimes, fads, mixture-normal and the vNS bubble models respectively. A 

below unity ratio indicates that the respective model outperforms the historical average. The second panel reports the MSFE ratios between the van Norden and Schaller model and the 

alternative regime switching models. A below unity ratio indicates that the bubble model outperforms the respective regime switching model. The figures in parenthesis are the 𝑡-
statistics from the Clark and West (2007) test. Figures in bold indicate the rejection of the null hypothesis at the 10% significance level. The out-of-sample period is set to eight years. 
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Table 2.8: MSFE Ratios and Clark and West (2007) 𝑡-statistics for the Residential Real Estate Indices: 1 Month Horizon 

A. Historical average set as the benchmark. 

  S&P/Case-Shiller Home Price Index UK House Price Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Volatility regimes 

model 

1.0205 1.0205 1.0205 1.0205 1.0205 1.0205 1.0205 0.9961 0.9961 0.9961 0.9961 0.9961 0.9961 0.9961 

(-2.2443) (-2.2443) (-2.2443) (-2.2443) (-2.2443) (-2.2443) (-2.2443) (2.2354) (2.2354) (2.2354) (2.2354) (2.2354) (2.2354) (2.2354) 

Fads model 1.0294 1.0215 1.0184 1.0184 1.0445 1.0569 1.0328 1.0156 1.0268 1.0311 1.0347 1.0129 1.0172 1.0387 

(-3.4020) (-2.5539) (-2.4455) (-2.4782) (-3.1169) (-3.4699) (-3.0841) (-0.5857) (-1.2351) (-1.9521) (-2.2302) (-1.2342) (-1.7342) (-2.4942) 

Normal-mixture 

model 
0.8184 0.8184 0.8184 0.8184 0.8184 0.8184 0.8184 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 

(3.3062) (3.3062) (3.3062) (3.3062) (3.3062) (3.3062) (3.3062) (-0.9123) (-0.9123) (-0.9123) (-0.9123) (-0.9123) (-0.9123) (-0.9123) 

vNS bubble model 0.6424 0.6409 0.6176 0.6354 0.6423 0.6626 0.6079 0.7416 0.7503 0.7312 0.6852 0.8540 0.8351 0.6958 

(5.3701) (5.4697) (5.3216) (5.3637) (4.9644) (4.6450) (5.4104) (4.2838) (3.8842) (4.0720) (4.5234) (2.8027) (2.6092) (3.8015) 

B. Van Norden and Schaller model set as the benchmark. 

  S&P/Case-Shiller Home Price Index UK House Price Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

vNS bubble model 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Volatility regimes 

model 
0.6295 0.6280 0.6052 0.6226 0.6294 0.6493 0.5957 0.7445 0.7532 0.7341 0.6879 0.8574 0.8384 0.6986 

(5.4441) (5.5419) (5.3984) (5.4359) (5.0473) (4.7386) (5.4824) (4.2610) (3.8628) (4.0459) (4.5029) (2.7834) (2.5843) (3.7871) 

Fads model 0.6241 0.6274 0.6065 0.6239 0.6149 0.6269 0.5885 0.7302 0.7306 0.7091 0.6623 0.8431 0.8210 0.6699 

(5.3565) (5.3800) (5.3239) (5.3571) (5.1148) (4.9509) (5.4607) (4.4499) (4.2550) (4.2805) (4.7128) (2.9297) (2.7303) (3.9995) 

Normal-mixture 

model 
0.7850 0.7831 0.7547 0.7764 0.7848 0.8097 0.7428 0.7378 0.7465 0.7275 0.6818 0.8498 0.8309 0.6923 

(4.6070) (4.6536) (4.6515) (4.6372) (4.0624) (3.7924) (4.5175) (4.2777) (3.8755) (4.0480) (4.4926) (2.8539) (2.6678) (3.8103) 

Notes: The first panel reports the MSFE ratios between the historical average benchmark and the volatility regimes, fads, mixture-normal and the vNS bubble models respectively. A 

below unity ratio indicates that the respective model outperforms the historical average. The second panel reports the MSFE ratios between the van Norden and Schaller model and the 

alternative regime switching models. A below unity ratio indicates that the bubble model outperforms the respective regime switching model. The figures in parenthesis are the 𝑡-
statistics from the Clark and West (2007) test. Figures in bold indicate the rejection of the null hypothesis at the 10% significance level. The out-of-sample period is set to eight years. 
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Table 2.9: MSFE Ratios and Clark and West (2007) 𝑡-statistics, with the Historical Average set as the Benchmark, for all Real Estate Indices: 3 Month Horizon  
NCREIF Property Index IPD UK Property Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 

Volatility regimes 

model 

0.9930 0.9930 0.9930 0.9930 0.9930 0.9930 0.9930 1.0635 1.0635 1.0635 1.0635 1.0635 1.0635 1.0635 

(0.5526) (0.5526) (0.5526) (0.5526) (0.5526) (0.5526) (0.5526) (-1.2038) (-1.2038) (-1.2038) (-1.2038) (-1.2038) (-1.2038) (-1.2038) 

Fads model 1.0264 1.0165 0.9966 1.0059 0.9845 0.9811 0.9993 1.0641 1.0488 1.0614 1.0581 1.0955 1.1330 1.0701 

(-0.3252) (-0.1479) (0.3920) (0.0616) (1.1374) (1.2366) (0.2823) (-1.3750) (-1.5190) (-1.7616) (-1.8475) (-2.8762) (-3.4383) (-2.6131) 

Normal-mixture 

model 
0.9175 0.9175 0.9175 0.9175 0.9175 0.9175 0.9175 0.7675 0.7675 0.7675 0.7675 0.7675 0.7675 0.7675 

(1.5778) (1.5778) (1.5778) (1.5778) (1.5778) (1.5778) (1.5778) (3.4933) (3.4933) (3.4933) (3.4933) (3.4933) (3.4933) (3.4933) 

vNS bubble model 0.7414 0.7797 0.7674 0.7657 0.9209 0.7181 0.7259 0.6733 0.7420 0.7569 0.6983 0.7132 0.6347 0.7354 

(1.7668) (1.7229) (1.7421) (1.7539) (1.6654) (1.7507) (1.8234) (4.1215) (4.4968) (4.1575) (3.7781) (4.1421) (4.3549) (4.0974)  
US FTSE EPRA/NAREIT Index UK FTSE EPRA/NAREIT Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0160 0.0160 0.0160 0.0160 0.0160 0.0160 0.0160 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 

Volatility regimes 

model 

0.9974 0.9974 0.9974 0.9974 0.9974 0.9974 0.9974 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927 

(0.4594) (0.4594) (0.4594) (0.4594) (0.4594) (0.4594) (0.4594) (1.2321) (1.2321) (1.2321) (1.2321) (1.2321) (1.2321) (1.2321) 

Fads model 0.9834 0.9766 0.9605 0.9472 0.9349 0.9476 0.9424 0.9597 0.9514 0.9648 0.9436 0.9428 0.8378 0.9683 

(1.4476) (1.9775) (2.3340) (2.8474) (2.7515) (2.6859) (2.6620) (2.8172) (2.9397) (2.0129) (2.8863) (2.7143) (4.0156) (1.8745) 

Normal-mixture 

model 

1.1394 1.1394 1.1394 1.1394 1.1394 1.1394 1.1394 0.9802 0.9802 0.9802 0.9802 0.9802 0.9802 0.9802 

(-0.3977) (-0.3977) (-0.3977) (-0.3977) (-0.3977) (-0.3977) (-0.3977) (3.8694) (3.8694) (3.8694) (3.8694) (3.8694) (3.8694) (3.8694) 

vNS bubble model 1.0052 1.0573 1.0244 1.0126 0.9886 1.2666 0.9820 0.9806 1.0320 1.1126 0.9104 0.9365 0.8758 0.9023 

(1.2847) (1.0491) (1.2778) (1.2560) (1.4228) (1.1984) (1.4384) (1.4512) (1.0737) (0.4425) (2.0172) (3.9340) (2.6308) (3.2333) 
 

S&P/Case-Shiller Home Price Index UK House Price Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 

Volatility regimes 

model 

1.0343 1.0343 1.0343 1.0343 1.0343 1.0343 1.0343 1.0319 1.0319 1.0319 1.0319 1.0319 1.0319 1.0319 

(-3.1533) (-3.1533) (-3.1533) (-3.1533) (-3.1533) (-3.1533) (-3.1533) (-3.3564) (-3.3564) (-3.3564) (-3.3564) (-3.3564) (-3.3564) (-3.3564) 

Fads model 1.0303 1.0241 1.0156 1.0135 1.0566 1.0884 1.0307 1.0239 1.0363 1.0253 1.0407 1.0219 1.0193 1.0224 

(-1.8896) (-1.4370) (-1.1528) (-0.8687) (-3.0618) (-3.6629) (-1.9311) (-1.4583) (-2.1629) (-1.6776) (-2.9089) (-1.7182) (-1.9625) (-1.5865) 

Normal-mixture 

model 
0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 1.0046 1.0046 1.0046 1.0046 1.0046 1.0046 1.0046 

(4.1302) (4.1302) (4.1302) (4.1302) (4.1302) (4.1302) (4.1302) (-2.0022) (-2.0022) (-2.0022) (-2.0022) (-2.0022) (-2.0022) (-2.0022) 

vNS bubble model 0.6025 0.6087 0.6048 0.6020 0.5989 0.6150 0.6077 0.7482 0.6175 0.6575 0.6761 0.9284 0.9996 0.7439 

(5.6693) (5.5950) (5.3509) (5.4391) (5.2564) (5.2443) (5.3781) (4.0465) (4.4968) (4.7331) (4.6012) (3.1015) (2.4182) (4.0023) 

Notes: This table reports the MSFE ratios between the historical average benchmark and the volatility regimes, fads, mixture-normal and the vNS bubble models respectively. A 

below unity ratio indicates that the respective model outperforms the historical average. The figures in parenthesis are the 𝑡-statistics from the Clark and West (2007) test. Figures 

in bold indicate the rejection of the null hypothesis at the 10% significance level. The out-of-sample period is set to eight years. 
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Table 2.10: MSFE Ratios and Clark and West (2007) 𝑡-statistics, with the Historical Average set as the Benchmark, for all Real Estate Indices: 6 Month Horizon 

  NCREIF Property Index IPD UK Property Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 

Volatility regimes 

model 

0.9927 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927 1.0551 1.0551 1.0551 1.0551 1.0551 1.0551 1.0551 

(0.5630) (0.5630) (0.5630) (0.5630) (0.5630) (0.5630) (0.5630) (-0.7260) (-0.7260) (-0.7260) (-0.7260) (-0.7260) (-0.7260) (-0.7260) 

Fads model 1.0268 1.0124 0.9989 1.0061 0.9422 0.9374 1.0000 1.0548 1.0414 1.0257 1.0452 1.0379 1.1543 1.0029 

(-0.0856) (0.1530) (0.4131) (0.2148) (2.2199) (2.6104) (0.3692) (-0.0457) (-0.2217) (0.1048) (-0.6090) (-0.3326) (-2.7337) (1.0107) 

Normal-mixture 

model 
0.9609 0.9609 0.9609 0.9609 0.9609 0.9609 0.9609 0.9120 0.9120 0.9120 0.9120 0.9120 0.9120 0.9120 

(1.3390) (1.3390) (1.3390) (1.3390) (1.3390) (1.3390) (1.3390) (2.2890) (2.2890) (2.2890) (2.2890) (2.2890) (2.2890) (2.2890) 

vNS bubble model 1.0643 0.9550 1.0985 0.9805 1.1076 1.1186 1.0502 0.7840 0.7815 0.7530 0.7546 0.7132 0.5689 0.7658 

(1.0718) (1.5859) (1.5097) (1.4848) (1.7334) (1.6191) (1.6353) (2.9586) (3.5745) (3.8847) (4.0102) (3.5106) (3.9689) (4.5953) 

  US FTSE EPRA/NAREIT Index UK FTSE EPRA/NAREIT Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 0.0297 

Volatility regimes 

model 

1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 1.0011 1.0011 1.0011 1.0011 1.0011 1.0011 1.0011 

(0.0882) (0.0882) (0.0882) (0.0882) (0.0882) (0.0882) (0.0882) (-0.1547) (-0.1547) (-0.1547) (-0.1547) (-0.1547) (-0.1547) (-0.1547) 

Fads model 0.9907 0.9885 0.9762 0.9724 0.9709 1.1553 0.9660 0.9722 0.9731 0.9719 0.9817 0.9677 0.9490 0.9896 

(1.2491) (1.5471) (2.1842) (2.3441) (2.3337) (2.7924) (2.4995) (2.5971) (2.6878) (2.4150) (1.5209) (2.3381) (2.2633) (1.8501) 

Normal-mixture 

model 

1.3093 1.3093 1.3093 1.3093 1.3093 1.3093 1.3093 0.9907 0.9907 0.9907 0.9907 0.9907 0.9907 0.9907 

(-1.5283) (-1.5283) (-1.5283) (-1.5283) (-1.5283) (-1.5283) (-1.5283) (2.0716) (2.0716) (2.0716) (2.0716) (2.0716) (2.0716) (2.0716) 

vNS bubble model 1.8717 1.7965 1.8768 1.7959 1.7922 1.8334 1.7534 1.0630 1.1848 1.0416 1.0188 1.0247 1.2123 1.1353 

(-1.1075) (-0.9840) (-0.9747) (-0.6848) (-0.8389) (-0.5541) (-0.8372) (0.6969) (0.5675) (0.9367) (0.6848) (0.4449) (0.5747) (-0.7401) 

  S&P/Case-Shiller Home Price Index UK House Price Index 

  OLS Stepwise Ridge Lasso Elastic Net Bridge Average OLS Stepwise Ridge Lasso Elastic Net Bridge Average 

Historical Average 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 

Volatility regimes 

model 

1.0034 1.0034 1.0034 1.0034 1.0034 1.0034 1.0034 1.0366 1.0366 1.0366 1.0366 1.0366 1.0366 1.0366 

(0.2716) (0.2716) (0.2716) (0.2716) (0.2716) (0.2716) (0.2716) (-5.3407) (-5.3407) (-5.3407) (-5.3407) (-5.3407) (-5.3407) (-5.3407) 

Fads model 0.9180 0.9101 0.8980 0.9096 0.9059 0.9683 0.9039 0.9866 0.9982 1.0084 1.0003 1.0172 1.0183 1.0124 

(5.4353) (5.4666) (7.1082) (5.5138) (4.6663) (2.1240) (5.5595) (1.7551) (0.6764) (-0.2153) (0.4340) (-0.7367) (-1.0012) (-0.3375) 

Normal-mixture 

model 
0.7381 0.7381 0.7381 0.7381 0.7381 0.7381 0.7381 1.3690 1.3690 1.3690 1.3690 1.3690 1.3690 1.3690 

(4.2411) (4.2411) (4.2411) (4.2411) (4.2411) (4.2411) (4.2411) (1.2160) (1.2160) (1.2160) (1.2160) (1.2160) (1.2160) (1.2160) 

vNS bubble model 0.5036 0.4951 0.5388 0.5136 0.5506 0.5545 0.5488 0.5977 0.7013 0.7736 0.8164 1.3968 1.3352 1.1736 

(7.5880) (7.1996) (7.0621) (7.2244) (7.2499) (7.2342) (7.0663) (4.2701) (3.9288) (3.5832) (3.6796) (2.1236) (2.2183) (2.9174) 

Notes: This table reports the MSFE ratios between the historical average benchmark and the volatility regimes, fads, mixture-normal and the vNS bubble models respectively. A below unity 

ratio indicates that the respective model outperforms the historical average. The figures in parenthesis are the 𝑡-statistics from the Clark and West (2007) test. Figures in bold indicate the 

rejection of the null hypothesis at the 10% significance level. The out-of-sample period is set to eight years. 
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Chapter 2 Figures 

Figure 2.1: Actual Price, Average Fundamental Value and Average Relative Bubble Size of the Real Estate Indices 
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Notes: The shaded areas indicate the periods of under- or overvaluation, the dashed line is the fundamental price Q7 and 

the full line is the actual price. 
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Figure 2.2: Date Stamping the Periods of Explosiveness in the Non-fundamental Component of the Real 

Estate indices 
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Notes: The shaded areas indicate the bubble periods, the dashed line is the 95% critical value sequence and 

the full line is the BSADF test statistic sequence. The bubble periods are identified using the BSADF test 

based on Monte Carlo simulations with 2000 replications, with the minimum window set to 0.01+1.8/√T of 

the total sample observations. Sample size: 151 for the NCREIF Property Index, 311 for the US FTSE 

EPRA/NAREIT Index, 346 for the S&P/Case-Shiller Home Price Index, 348 for the IPD UK Property Index, 

312 for the UK FTSE EPRA/NAREIT Index and 251 for the UK House Price Index. 
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Figure 2.3: Estimated Probability of Collapse for all Real Estate Sectors based on the Average Bubble Size 
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Figure 2.4: The Cumulative Difference between Forecast Errors for the Historical Average against the vNS 

Regime Switching Model based on Different Fundamental Specifications: 1 Month Horizon 
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Figure 2.5: The Cumulative Difference between Forecast Errors for the Historical Average against the vNS 

Regime Switching Model based on Different Fundamental Specifications: 3 months horizon 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

08 09 10 11 12 13 14 15

NCREIF Property Index

0

1

2

3

4

5

08 09 10 11 12 13 14 15

IPD UK Property Index

-50

-40

-30

-20

-10

0

10

20

30

08 09 10 11 12 13 14 15

US FTSE EPRA/NAREIT Index

-30

-20

-10

0

10

20

30

08 09 10 11 12 13 14 15

UK FTSE EPRA/NAREIT Index

0.0

0.4

0.8

1.2

1.6

2.0

2.4

08 09 10 11 12 13 14 15

S&P/Case-Shiller Home Price Index

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

08 09 10 11 12 13 14 15

ols stepwise ridge lasso

elastic net bridge average

UK House Price Index

 
 

  



51 
 

Figure 2.6: The Cumulative Difference between Forecast Errors for the Historical Average against the vNS 

Regime Switching Model based on Different Fundamental Specifications: 6 months horizon 
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Chapter 2 Appendix 

Table A2.1: The ADF Test Results for the log Real Price of the Real Estate Indices 

  

NCREIF Property 

Index 

US EPRA/NAREIT 

Index 

S&P/Case-Shiller Home Price 

Index 

ADF statistic -0.0072 -2.2872 -0.8251 

90% Critical Value -2.5771 -2.5717 -2.5712 

95% Critical Value -2.8807 -2.8707 -2.8697 

99% Critical Value -3.4743 -3.4514 -3.4491 

  

IPD UK Property 

Index 

UK EPRA/NAREIT 

Index 

UK House Price  

Index 

ADF statistic -0.9260 -2.3257 -2.8640 

90% Critical Value -2.5712 -2.5717 -2.5732 

95% Critical Value -2.8697 -2.8706 -2.8734 

99% Critical Value -3.4491 -3.4512 -3.4576 

Notes: The null hypothesis is that there is a unit root and the alternative that the series are stationary. Figures 

in bold indicate the rejection of the null hypothesis at the respective significance level. The ADF lag is chosen 

to minimize the Schwarz Information Criterion with the maximum lag length set to 4 quarters for the NCREIF 

Property Index and to 12 months for the US FTSE EPRA/NAREIT Index, the S&P/Case-Shiller Home Price 

Index, the IPD UK Property Index, the UK FTSE EPRA/NAREIT Index and the UK House Price Index. 
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Table A2.2: Source of the Potential Determinant Variables 

Variable name US variables UK variables 

Stock market index Bloomberg (SPX Index) Bloomberg (ASX Index) 

Exchange rate FRED (EXUSUK) BoE (XUMAGBD) 

Money supply FRED (M2SL) BoE (LPMVQWK) 

Central bank rate FRED (FEDFUNDS) BoE (IUMABEDR) 

3-month Treasury Bill FRED (TB3MS) BoE (IUMAAJNB) 

5-year Govt bond yield FRED (GS5) BoE (IUMASNZC) 

10-year Govt bond yield FRED (GS10) BoE (IUMAMNZC) 

Mortgage rate FRED (MORTGAGE30US) BoE (CFMHSDE) and Three centuries of 

data version 2.3 dataset. 

Inflation rate Bloomberg (CPURNSA% Index) Bloomberg (UKRPMOM Index) 

Gold price Bloomberg (GOLDLNAM Index) Bloomberg (GOLDBPAM  Index) 

Oil price FRED (OILPRICE and POILWTIUSDM) Bloomberg (WRCOBREN Index) 

Rent price index OECD (2016), "Prices: Analytical house 

price indicators". 

OECD (2016), "Prices: Analytical house 

price indicators". 

GDP Bloomberg (GDP CHWG Index) Bloomberg (UKGRABMI Index) 

Disposable income Bloomberg (DDIRUS Index) Bloomberg (DDIRGB Index) 

Industrial production Bloomberg (IP Index) Bloomberg (UKIPI Index) 

Housing starts FRED (HOUST) Department for Communities and Local 

Government  

Unemployment rate Bloomberg (USURTOT Index) Bloomberg (UKUEILOR Index) 

Labor cost Bloomberg (EOUSU001 Index) Bloomberg (EOUKU001 Index) 

Labor productivity Bloomberg (EOUSD007 Index) Bloomberg (EOUKD007 Index) 

Notes: This table reports the name and sources of the predictors used in this study. 
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Chapter 3: Does Model Complexity add Value to Asset Allocation? 

Evidence from Machine Learning Forecasting Models 

 

3.1.   Introduction 

The allocation of wealth among risky assets is one of the most important problems faced by 

investors. The problem of constructing optimal portfolios depends on the objective of the investor, 

the constraints and the estimation of expected returns. Since forecasting returns is quite 

challenging, the historical average is often used as an input in portfolio optimization. However, 

existing literature shows that out-of-sample return predictability adds economic value in asset 

allocation. This study sets out to examine whether return forecasts generated by shrinkage, variable 

selection and dimensionality reduction methods from the machine learning literature benefit 

portfolios consisting of stock, bond and commodity indices, when compared to forecast 

combination, the equal-weighted portfolio or portfolios based on the historical average. 

Our study contributes primarily in three strands of literature. First, it contributes to the 

growing literature that uses machine learning methodologies to forecast economic and financial 

variables. The methodologies used in this study have mainly been applied in the context of 

macroeconomic forecasting using a large number of predictors. Notable studies include Bai and 

Ng (2008), De Mol, Giannone and Reichlin (2008) and Stock and Watson (2012), who use factor 

models in conjunction with shrinkage methods to examine the predictability of key 

macroeconomic indicators. The advantages of machine learning in the context of return 

predictability and forecasting the equity premium have been explored among others by Rapach, 
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Strauss and Zhou (2013), Kelly and Pruitt (2015), Kelly, Pruitt and Su (2018) and Rapach, Strauss, 

Tu and Zhou (2018). A comprehensive review of the predictive accuracy of machine learning 

methodologies has been performed by Gu, Kelly and Xiu (2018) in the context of forecasting the 

equity premium, by Bianchi, Büchner and Tamoni (2018) who compare the ability of various 

methods to forecast bond risk premia and by Kim and Swanson (2014) who use a large number of 

models to predict key macroeconomic variables. Our contribution to this literature stems from 

exploring the ability of a wide range of machine learning methods to predict stock, bond and 

commodity returns using a different set of predictors for each index. 

Second, our study adds to the literature of asset allocation and portfolio formation that 

exploits the predictability of asset returns. There exists a rich literature in finance, such as 

DeMiguel, Garlappi and Uppal (2009), Duchin and Levy (2009), Kritzman, Page and Turkington 

(2010), Kirby and Ostdiek (2012), Bianchi and Guidolin (2014) and Gao and Nardari (2018), who 

evaluate the out-of-sample performance of asset portfolios relative to simple benchmarks such as 

the equal-weighted portfolio. Our contribution to this strand of literature arises from investigating 

the benefits of integrating return forecasts from machine learning methodologies into an out-of-

sample asset allocation framework, by comparing the alternative portfolios to the widely used 

benchmarks of the equal-weighted portfolio and portfolios based on the historical average forecast.  

Third, it extends the literature of commodity return predictability and that of asset 

allocation exercises that include commodities. Prominent studies that investigate the out-of-sample 

predictability of commodities include Bessembinder and Chan (1992), Chen, Rogoff, and Rossi 

(2010), Hong and Yogo (2012) and Gargano and Timmermann (2014). Asset allocation studies 

that cover commodities include Erb and Harvey (2006), Jensen, Johnson and Mercer (2000), 

Daskalaki and Skiadopoulos (2011), Belousova and Dorfleitner (2012), You and Daigler (2013), 
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Bessler and Wolff (2015). In a more recent study, Gao and Nardari (2018) assess the value of 

incorporating commodities in portfolios that exploit the predictability of asset return moments. 

Our contribution to this literature stems from examining whether traditional portfolios would 

benefit by the inclusion of commodities, when using forecasts generated by a wide range of 

machine learning methodologies. 

In the empirical analysis, we employ a variety of linear machine learning methods along 

with forecast combination schemes to generate the return forecasts for each of the stock, bond and 

commodity indices. In particular, we consider shrinkage and variable selection methods with a 

wide range of convex and non-convex penalties, along with dimensionality reduction techniques 

and methods that combine forecasts of single predictor models. The out-of-sample performance of 

these methods is initially evaluated for each index separately against the historical average 

benchmark. We conduct the statistical and economic evaluation of the forecasts for the full sample 

and around NBER-dated recessions and expansions. To explore the potential benefits of using the 

machine learning methods in an asset allocation setting, stock-bond-commodity portfolios are 

constructed, each based on the return forecasts generated from a different multivariate prediction 

model.  We compare the performance of the portfolios with that of the equal-weighed portfolio 

and a portfolio using the historical average forecast. The analysis is conducted for a conservative 

and an aggressive investor and for different combinations of short-sale and leverage constraints. 

Furthermore, we examine the performance of the portfolios for the full sample and around business 

cycles incorporating transaction costs for monthly or quarterly rebalancing. We employ several 

models for the covariance matrix in a mean-variance allocation framework along with employing 

Conditional Value-at-Risk (CVaR) as an alternative risk measure in optimization. Finally, to assess 
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the value of adding commodities to a traditional portfolio, mean-variance stock-bond portfolios 

are constructed and their performance is compared with that of commodity-augmented allocations. 

Overall, our study shows that using machine learning techniques can be beneficial for the 

out-of-sample performance of multiasset portfolios. When, examining the predictive accuracy of 

the alternative models to forecast the returns of each index individually, the majority of the 

multivariate prediction models outperform the historical average benchmark and the bivariate 

predictive regressions. In particular, shrinkage and variable selection methods generate the highest 

performance for the stock and bond indices, while for the commodity index the results favor 

dimensionality reduction methods. For the stock and commodity indices the models perform better 

during recessions, while for the bond index most of the models show increased predictability 

during expansions, with the exception of shrinkage and variable selection methods that exhibit 

high performance during recessions. 

Our asset allocation results show that the majority of the portfolios outperform the equal-

weighted and historical average portfolio benchmarks. When comparing portfolios across different 

combinations of weight constraints, our findings indicate that allocations that allow short sales or 

leverage further improve the performance of portfolios based on machine learning methods. 

Overall, the commodity-augmented portfolios of an aggressive investor outperform those of a 

conservative investor. Additionally, when introducing transaction costs to portfolios with monthly 

rebalancing the results tend to favor forecast combination techniques, however, reducing the 

rebalancing frequency to quarterly leads the portfolios of an aggressive investor based on 

shrinkage and dimensionality reduction methods to generate the highest performance. Mean-

variance portfolios across different specifications of the covariance matrix perform similarly. 
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Using CVaR as an alternative measure in optimization, results in the vast majority of the mean-

CVaR portfolios outperforming the equal-weighted and historical average portfolios. 

Our findings for the performance of the stock-bond-commodity portfolios during 

recessions are mixed. The majority of the long-only allocations that yield positive values are based 

on variable selection, shrinkage and dimensionality reduction methods. However, when short 

selling is introduced the return and Sharpe ratio become positive for the majority of the models. 

During expansions all portfolios result in positive returns and Sharpe ratios and the performance 

between the proposed models varies less than in recessions. In recessionary periods, all portfolios 

based on multivariate regression models outperform the equal weighted portfolios or those based 

on the historical average forecast. In expansionary periods, portfolios with leverage or short selling 

tend to yield higher performance. 

Finally, when comparing the results of stock-bond portfolios with those that include 

commodities for the full sample, commodities add value to a traditional portfolio when short 

selling is allowed, with aggressive investors benefiting more from the inclusion of commodities. 

During recessions, the majority of the commodity-augmented portfolios outperform the traditional 

portfolios across all weight constraints. In expansions, the long-only traditional portfolios 

outperform those that include commodities. However, the difference in performance between 

stock-bond and stock-bond-commodity allocations is greater in recessions, where commodity-

augmented portfolios perform best. 

The remainder of this chapter is organized as follows. Section 3.2 presents the framework 

and methods used to generate the out-of-sample return forecasts. Section 3.3 provides details on 

the data and descriptive statistics, while Section 3.4 discusses the framework and results for the 

statistical and economic evaluation. Section 3.5 describes the portfolio optimization framework. 
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Finally, Section 3.6 presents the results of the optimal asset allocation strategies and Section 3.7 

concludes. 

 

3.2.   Return Prediction Models 

In this section, we discuss the general predictive regression model framework and the collection 

of alternative models that we employ to generate asset returns forecasts. 

 

3.2.1.   Bivariate and Kitchen Sink Models 

Let 𝐫 be the 𝑇 × 1 vector of asset returns, where 𝐫 = (𝑟2, 𝑟3, … , 𝑟𝑇)
′. We denote by 𝐗 the 𝑇 × 𝑝 

matrix of 𝑝 predictors, with elements 𝑥𝑖,𝑡, where 𝐗 = (𝐱1
′ , 𝐱2

′ , … 𝐱𝑇−1
′ )′ denotes the 𝑝-dimentional 

cross section of the predictors at time 𝑡 and 𝐗 = (𝐱1, 𝐱2, … , 𝐱𝑝) denotes the 𝑇-dimentional time 

series of the 𝑖th predictor. 

The general approach we employ is based on the classic normal linear regression model: 

𝐫 = 𝛼 + 𝐗𝛃 + 𝛆 (3.1) 

where 𝛼 is the intercept, 𝛃 = (𝛽1, 𝛽2, … , 𝛽𝑝)
′
 is the coefficient vector and 𝛆 is the vector of 

residuals. The most common method to fit the model is by ordinary least squares (OLS), where 

the estimates of the parameters 𝛉 = (𝛼, 𝛃) are obtained by minimizing the residual sum of squares: 

argmin
𝛉

ℒ(𝛉) = argmin
𝛉

‖𝐫 − (𝛼 + 𝐗𝛃)‖2 (3.2) 

where ℒ(⋅) indicates the least squares loss. Following the studies of stock return predictability (see 

for example Goyal and Welch, 2008 and Rapach, Strauss and Zhou, 2010), we consider two 



60 
 

approaches based on OLS. The first approach considers the simple bivariate prediction models of 

asset returns, where each model is based on a single predictor 𝐱𝑖, for 𝑖 = 1, 2, … , 𝑝. The individual 

forecast, for 𝑡 + 1 using the 𝑖th predictor is given by: 

�̂�𝑖,𝑡+1 = �̂�𝑖 + 𝑥𝑖,𝑡�̂�𝑖, for 𝑖 = 1, 2, … , 𝑝. (3.3) 

This type of models is often used to examine the predictive power of individual predictors 

or as the preliminary step to generate forecast combinations based on bivariate prediction models. 

The second is the kitchen sink (KS) approach, which is a multivariate prediction model utilizing 

all 𝑝 predictors. The forecast of a regression with 𝑝 predictors is given by: 

�̂�𝑡+1 = �̂� + 𝐱𝑡�̂� (3.4) 

It is well known that this model, namely the kitchen sink, has poor forecasting performance, as the 

estimated parameters have low bias but high variance. This problem becomes more acute as the 

number of predictors increases. To this end, we consider alternative models that belong to the 

families of forecast combination, shrinkage and dimensionality reduction methods. 

 

3.2.2.   Sample Splitting and Cross-Validation 

Prior to describing the alternative models for forecasting returns, we discuss how we split our total 

sample to in- and out-of-sample periods, the forecasting scheme and provide an overview of the 

concept of cross-validation. 

We generate out-of-sample forecasts of asset returns by employing a recursive forecasting 

scheme. The total sample, 𝑇, is divided into the in-sample part, 𝑅 and the out-of-sample part, 𝑄 =

𝑇 − 𝑅. The expanding window is updated recursively, by increasing the estimation window by 



61 
 

one observation at each step, with the parameters of each model being re-estimated at each 

iteration. Proceeding this way through the end of the out-of-sample period, a series of 𝑄 forecasts 

are generated for the asset returns. The first 𝑞0 forecasts of the out-of-sample period, 𝑄, serve as 

the hold-out period for the forecast combination methods that require it, leaving a total of 𝑄 − 𝑞0 

return forecasts for statistical and economic evaluation.  

All of the shrinkage procedures and some of the dimensionality reduction methods 

discussed below rely on hyperparameter tuning. The choice of hyperparameters controls the 

amount of model complexity and is critical for the performance of the model. We use 𝐾-fold cross-

validation to select the hyperparameters. Cross-validation is performed in each iteration of the 

recursive scheme, by using data only of the respective iteration’s in-sample period. We split the 

in-sample data of each iteration into 𝐾 blocks, with each block containing roughly the same 

number of observations. The observations assigned to each block are randomly selected. For the 

𝑘th block we fit the model on the remaining 𝐾 − 1 blocks and calculate the prediction error of the 

fitted model when predicting the 𝑘th block of the data. After repeating this for 𝑘 = 1,2, … , 𝐾, the 

𝐾 estimates of the prediction error are combined. This procedure is performed for each set of 

hyperparamer values of the model for 𝐾 = 10 folds. The optimal set of hyperparameters is the one 

that minimizes the prediction error. After the optimal set of hyperparameters is chosen the model 

is refitted using all data from the in-sample period and the estimates of the model parameters are 

kept to construct the forecasts. For a detailed description of cross-validation see Friedman, Hastie 

and Tibshirani (2009). 

For the models based on principal component analysis and independent component 

analysis the tuning parameters are chosen to minimize the Bayesian Information Criterion (BIC). 
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3.2.3.   Forecast Combination Methods 

The forecast combination approach was originally proposed by Bates and Granger (1969) and can 

be used as an alternative approach to individual forecasting methods (see Timmermann, 2006 for 

a comprehensive review). Forecast combinations may be preferred over using forecasts based on 

individual models, since the latter could suffer from model uncertainty and instability, while 

combining different models can increase accuracy by including valuable information from each 

model. Following, among others, Rapach, Strauss, and Zhou (2010), forecast combination 

methods, using forecasts based on individual predictors, are employed to construct one-period 

ahead expected return estimates.  

The forecast combinations, denoted by �̂�𝑡+1
𝐶 , are the weighted averages of the 𝑝 individual 

forecasts and can be expressed as: 

�̂�𝑡+1
𝐶 = �̂�𝑡+1𝛚𝑡 (3.5) 

where �̂�𝑡+1 = (�̂�1,𝑡+1, �̂�2,𝑡+1, … , �̂�𝑝,𝑡+1) is the vector of 𝑝 individual forecasts, based on bivariate 

predictive regressions and 𝛚𝑡 = (𝜔1,𝑡, 𝜔2,𝑡, … , 𝜔𝑝,𝑡)
′
 are the combining weights of the individual 

forecasts at time 𝑡. Several combining methods are considered and they all differ in the way that 

𝛚𝑡 is computed. The forecast combination methods used in this study include the mean, median, 

trimmed mean, model rank based on mean squared forecast error (MSFE), discounted mean 

squared forecast error and cluster. Some of the forecast combination methods require a holdout 

period to estimate the weights. The first 𝑞0 observations from the out-of-sample period 𝑄 are used 

as the holdout period. 
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The first type of forecast combination methods are based on simple averaging schemes and 

include the mean, median and trimmed mean. The mean combination (MC) sets the weight 𝜔𝑖,𝑡 =

1/𝑝 for 𝑖 = 1, 2, … , 𝑝 and the median combination (MDC) is the median of �̂�𝑡+1. The trimmed 

mean combination (TMC) sets 𝜔𝑖,𝑡 = 0 for the forecasts with the lowest and highest values and 

𝜔𝑖,𝑡 = 1 𝑝 − 2⁄  for the remaining forecasts. These simple forecast averaging schemes do not 

require a holdout period. 

For the second type of forecasting methods, the combining weights are computed based on 

the historical forecasting performance of the individual models over the holdout period. Aiolfi and 

Timmermann (2006) consider a method based on the rank of each model according to the MSFE 

(Rank).  This weighing scheme lets the weights be inversely proportional to the forecast models’ 

rank, RANK𝑖: 

𝜔𝑖,𝑡 =
RANK𝑖,𝑡

−1

∑ RANK𝑖,𝑡
−1𝑝

𝑖=1

 (3.6) 

where the model with the lowest MSFE value gets a rank of 1, the model with the second lowest 

MSFE value gets a rank of 2 and so forth. Aiolfi and Timmermann (2006) also consider a clustering 

approach to combine forecasts. The algorithm used is the C(𝐿, PB). Specifically, the forecasts from 

the individual models are grouped into 𝐿 equal-sized clusters based on their past MSFE 

performance, with the first cluster containing the models with the lowest MSFE. Each combination 

forecast is the average of the individual forecasts contained in the first cluster. This procedure 

starts with the initial holdout period 𝑞0 and then goes through the end of the available OOS period 

using a rolling window. We consider forecast combinations with two (C(2, PB)) and three 

(C(3, PB)) clusters. 
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The third type of combining methods considered is also based on past performance of the 

individual models and uses time-varying combination weights. Stock and Watson (2004), 

proposed the discounted mean square forecast error combining method, which uses the following 

weights: 

𝜔𝑖,𝑡 = 𝑚𝑖,𝑡
−1 ∑𝑚𝑖,𝑡

−1

𝑝

𝑖=1

⁄ , (3.7) 

where               𝑚𝑖,𝑡 =∑𝜓𝑡−1−𝑞0(𝑟𝑠+1 − �̂�𝑖,𝑠+1)
2

𝑡−1

𝑠=𝑅

, for 𝑡 = 𝑅 + 𝑞0, … , 𝑇 

 

and 𝜓 is a discount factor, with 0 < 𝜓 ≤ 1. In the case of 𝜓 < 1 this method assigns greater 

weights to recent individual predictive regression forecasts. When 𝜓 = 1, then there is no 

discounting and the equation above produces the optimal combination forecast derived by Bates 

and Granger (1969) for the case where the individual forecasts are uncorrelated. The values for 𝜓 

considered are 1 and 0.9 (D (1) and D (0.9)). 

 

3.2.4.   Shrinkage Methods 

In general, shrinkage methods regularize the coefficient estimates and involve fitting the model in 

all 𝑝 predictors. These procedures shrink the coefficients towards zero relative to the OLS 

estimates and aim at significantly reducing the respective coefficient variances. Shrinkage methods 

can also perform variable selection, since depending on the type of regularization, some 

coefficients may actually be zero.  

A shrinkage method is similar to the simple linear model, in that it considers only the 

baseline, untransformed predictors, however, it modifies the least squares problem by adding one 



65 
 

additional term in the loss function. In the most general form, a shrinkage method includes a 

penalty term in the loss function: 

argmin
𝛉

[ℒ(𝛉) + 𝑃(𝛃; ⋅)] (3.8) 

There are several choices for the penalty function 𝑃(⋅)1. The inputs are standardized to have zero 

mean and unit variance. We consider the shrinkage methods with the following penalties: ridge, 

lasso, elastic net, adaptive lasso, bridge, smoothly clipped absolute deviation, minimax concave 

penalty and smooth integration of counting and absolute deviation. 

Ridge regression was introduced by Hoerl and Kennard (1970) and is the classical 

penalized regression method. Coefficients are estimated by minimizing the residual sum of 

squares subject to the 𝑙2 penalty: 

𝑃(𝛃; 𝜆) = 𝜆‖𝛃‖2 (3.9) 

where 𝜆 ≥ 0 is a tuning parameter, which is determined separately and controls the amount of 

shrinkage. The penalty in the case of the ridge regression, is based on 𝑙2 regularization, where 

𝜆‖𝛃‖2 = 𝜆∑ 𝛽𝑖
2𝑝

𝑖=1 . When 𝜆 = 0, the penalty term has no effect and ridge regression produces 

similar estimates to OLS. However, as 𝜆 → ∞ the impact of the ridge penalty grows and the 

coefficient estimates will approach zero. A disadvantage of the ridge regression is that while the 

penalty 𝜆‖𝛃‖2 shrinks all the coefficients towards zero, it never sets them to zero.  

                                                           
1 Note that the intercept, 𝛼, is not included in the penalty term. The penalty is applied to the coefficient vector 𝛃 that 

measures the association of each predictor with the asset returns and not the intercept, which is a measure of the mean 

value of the asset returns when, 𝐱1 = 𝐱2 = ⋯ = 𝐱𝑝 = 0. Penalization on the intercept is not typically considered, 

since it would make the optimization procedure dependent on the origin chosen for the asset returns, 𝐫; i.e. adding a 

constant to each observation of the asset returns, 𝑟𝑡,would not simply result in a shift of the predictions by the same 

amount (see Friedman, Hastie and Tibshirani (2009)). 
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The least absolute shrinkage and selection operator (lasso) was introduced by Tibshirani 

(1996) and has a penalty term based on the 𝑙1 norm, which allows it to yield sparse models, the 

penalty term for the lasso is: 

𝑃(𝛃; 𝜆) = 𝜆‖𝛃‖1 (3.10) 

where 𝜆 ≥ 0 is the lasso tuning parameter and 𝜆‖𝛃‖1 = 𝜆∑ |𝛽𝑖|
𝑝
𝑖=1 . The difference with ridge 

regression is that lasso imposes a penalty based on the 𝑙1 norm instead of the 𝑙2 norm, which allows 

for both shrinkage and variable selection, by setting some of the coefficients equal to zero. One of 

the problems that lasso faces is that if there is a group of highly correlated variables, then lasso 

will select arbitrarily only one of the variables in the group.  

The elastic net (EN) was proposed by Zou and Hastie (2005) which combines both 𝑙1 and 

𝑙2 terms in the penalty, thus simultaneously performing continuous shrinkage, automatic variable 

selection and can also select groups of correlated variables. The elastic net penalty is: 

𝑃(𝛃; 𝜆; 𝛼) = 𝜆((1 − 𝛼)‖𝛃‖1 + 𝛼‖𝛃‖
2) (3.11) 

where 𝜆 is the tuning parameter and 𝛼 ∈ [0,1]. When 𝛼 = 1 the elastic net becomes ridge 

regression, if 𝛼 = 0 it is the lasso, while if 𝛼 ∈ (0,1) it has the properties of both methods.  

The adaptive lasso (Alasso) was developed by Zou (2006) and solves the drawback of the 

original lasso, which is that it does not necessarily satisfy the oracle properties (Fan and Li, 2001). 

This is achieved by modifying the lasso to include adaptive weights that are used to penalize 

different coefficients in the 𝑙1 penalty. The adaptive lasso penalty is given by 

𝑃(𝛃; 𝜆; 𝛾) = 𝜆∑�̂�𝑖|𝛽𝑖|

𝑝

𝑖=1

, with �̂�𝑖 =
1

|�̂�𝑖|
𝛾 , for 𝛾 > 0 (3.12) 
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where �̂�𝑖 is the weight corresponding to coefficient |𝛽𝑖|, �̂�𝑖 is the OLS estimate and 𝛾 is a 

hyperparameter which controls the strength of the weight. This leads to the adaptive lasso 

penalizing individual coefficients less severely.  

Bridge regression developed by Frank and Friedman (1993) and Friedman (2012), has a 

penalty term based on the 𝑙𝛾 norm and is given by 

𝑃(𝛃; 𝜆; 𝛾) = 𝜆‖𝛃‖𝛾
𝛾
 (3.13) 

where 𝜆 ≥ 0 and 𝛾 > 0 are the two tuning parameters and 𝜆‖𝛃‖𝛾
𝛾
= 𝜆∑ |𝛽𝑖|

𝛾𝑝
𝑖=1 . The bridge 

penalty term for 0 ≤ 𝛾 ≤ 2 represents all the penalties between ridge regression and best subsets. 

When using the squared error loss it includes ridge regression (𝛾 = 2), the lasso (𝛾 = 1) and best-

subsets regression (𝛾 = 0). Ridge regression produces dense solutions, while shrinking the 

coefficient absolute values, while best-subsets regression produces the sparsest solutions by 

forcing many coefficients to be equal to zero and applies no shrinkage to the non-zero coefficients, 

with a large number of 𝜆 producing fewer non-zero coefficients. For 𝛾 > 1 all coefficients are 

strictly non-zero and all penalties in the power family are convex, while for 𝛾 < 1 the penalties 

are non-convex. 

The smoothly clipped absolute deviation (SCAD) is a non-convex penalty function, which 

was proposed by Fan and Li (2001). The SCAD penalty is given by 

𝑃(𝛃; 𝜆; 𝛾) =∑𝑃(𝛽𝑖; 𝜆; 𝛾)

𝑝

𝑖=1

, (3.14) 
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where                𝑃(𝛽𝑖; 𝜆; 𝛾) =

{
 
 

 
 

𝜆|𝛽𝑖|,                               if |𝛽𝑖| ≤ 𝜆

2𝛾𝜆|𝛽𝑖| − |𝛽𝑖|
2 − 𝜆2

2(𝛾 − 1)
,             if 𝜆 < |𝛽𝑖| ≤ 𝛾𝜆

𝜆2(𝛾 + 1)

2
,                         if |𝛽𝑖| > 𝛾𝜆

  

for 𝛾 > 2. SCAD coincides with the lasso until |𝛽𝑖| = 𝜆, then smoothly transitions to a quadratic 

function until |𝛽𝑖| = 𝛾𝜆 and then it remains constant for all |𝛽𝑖| > 𝛾𝜆. For small coefficients, the 

SCAD penalty has similar penalization rate as the lasso, but leaves large coefficients not 

excessively penalized.  

The minimax concave penalty (MCP) developed by Zhang (2010) is another non-convex 

penalty function. The MCP is defined by 

𝑃(𝛃; 𝜆; 𝛾) =∑𝑃(𝛽𝑖; 𝜆; 𝛾)

𝑝

𝑖=1

, (3.15) 

where               𝑃(𝛽𝑖; 𝜆; 𝛾) =

{
 

 𝜆|𝛽𝑖| −
|𝛽𝑖|

2

2𝛾
,   if |𝛽𝑖| ≤ 𝜆𝛾

𝛾𝜆2

2
,                    if |𝛽𝑖| > 𝜆𝛾

  

for each value of 𝜆 > 0 and 𝛾 > 1, there is a continuum of penalties and threshold operators 

varying from hard thresholding (𝛾 → 1 +) to soft thresholding (𝛾 → ∞). MCP starts with the same 

rate of penalization as the lasso but smoothly relaxes the penalization rate to zero as the absolute 

value of the coefficient increases. Furthermore, MCP relaxes the penalization rate immediately, 

compared to SCAD, where the rate remains flat for a while before decreasing. 

The smooth integration of counting and absolute deviation (SICA) penalty (Lv and Fan, 

2009) takes the form 
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𝑃(𝛃; 𝜆; 𝛾) =∑𝑃(𝛽𝑖; 𝜆; 𝛾)

𝑝

𝑖=1

, (3.16) 

where               𝑃(𝛽𝑖; 𝜆; 𝛾) = 𝜆
(𝛾 + 1)|𝛽𝑖|

𝛾 + |𝛽𝑖|
  

ith 𝜆 > 0  and a small shape parameter 𝛾 > 0, such as 10−2 or 10−4. SICA is another non-convex 

regularization method which is a combination between the 𝑙0 and 𝑙1 penalties and therefore gives 

sparse solutions. For smaller values of 𝛾, SICA yields results closer to the best-subsets regression, 

while for larger values of 𝛾 it is closer to the lasso.  

 

3.2.5.   Dimensionality Reduction Methods 

The methods described in the previous section used shrinkage and variable selection to reduce the 

dimensions of the predictors by forcing the coefficients to be close or equal to zero. The next set 

of models incorporates the information of a large set of economic variables in a predictive 

regression framework using latent factors, which are estimated either in a supervised way (using 

information in both 𝐫 and 𝐗) or an unsupervised way (using information only in 𝐗). 

Partial least squares (PLS), introduced by Wold (1966), identifies the features in a 

supervised way, by constructing linear combinations based on both 𝐫 and 𝐗. Specifically, PLS 

decomposes the matrix of standardized predictors 𝐗 and the zero-mean vector of asset returns 𝐫 

into the form: 𝐗 = 𝐙𝐏′ + 𝐄 and 𝐫 = 𝐙𝐪′ + 𝐞, where 𝐙 is a matrix that produces 𝑘 linear 

combinations or scores, the matrix 𝐏 and the vector 𝐪 are the loadings, while 𝐄 and 𝐞 are the 

residuals. The score matrix is given by 𝐙 = 𝐗𝐀. In order to find the matrix 𝐙, the columns of 𝐀 =
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(𝛂1, 𝛂2, … , 𝛂𝑘), where 𝑘 < 𝑝, need to be obtained through successive optimization problems. The 

criterion to find the 𝑗th estimated direction vector 𝛂𝑗 is: 

argmax
𝛂

cor2(𝐫, 𝐗𝛂)var(𝐗𝛂) ,  s.t.  𝛂′𝛂 = 1,   𝛂′𝚺𝑋𝑋𝜶𝑗  = 0,  for  𝑗 = 1,… , 𝑘 − 1 (3.17) 

where 𝚺𝑋𝑋 is the covariance of 𝐗. PLS can be expressed as a multiple regression model: 𝐫𝑡+1 =

𝑿𝑡𝜷 + 𝛈𝑡+1, where the PLS-regression coefficients can be written as 𝛃 = 𝐀𝐪′ and 𝛈 is the residual 

vector. The version of PLS used is SIMPLS proposed by de Jong (1993). If 𝑘 = 𝑝 then PLS would 

give a solution equivalent to the OLS estimates.  

Kelly and Pruitt (2015), propose the three-pass regression filter (3PRF) which is a 

generalization to PLS to include forecast proxies 𝐕. The first pass runs 𝑝 time-series regressions: 

𝑥𝑖,𝑡 = 𝜑0,𝑖 + 𝐯
′𝛗𝑖 + 𝜀𝑖,𝑡,  for  𝑖 = 1, 2, … , 𝑝 (3.18) 

The second pass runs 𝑇 cross-sectional regressions: 

𝑥𝑖,𝑡 = 𝜑0,𝑡 + �̂�
′𝐅𝑡 + 𝑒𝑖,𝑡,  for  𝑡 = 1, 2, … , 𝑇 (3.19) 

where �̂� is the coefficient estimate from the time-series regression from the first pass. In the third 

pass a single time-series predictive regression is run: 

𝑟𝑡+1 = 𝛽0 + �̂�
′𝛃 + 𝜂𝑖,𝑡, (3.20) 

where �̂� are the estimated predictive factors from the second pass. All regressions are estimated 

using OLS. To estimate 3PRF, the proxies do not necessarily need to be specified, instead we use 

the automatic proxy selection algorithm, found in Kelly and Pruitt (2015), which constructs the 

proxies using 𝐗 and 𝐫. The 3PRF with automatic proxies becomes identical to PLS when the 

predictors 𝐗 have been standardized and the regressions in the first two passes do not include a 

constant.  
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Sparse partial least squares (SPLS) is an extension of PLS that imposes the 𝑙1 penalty to 

promote sparsity onto a surrogate direction vector 𝐜 instead of the original direction vector 𝛂, while 

keeping 𝛂 and 𝐜 close to each other (Chun and Keles, 2010). The first SPLS direction vector solves: 

argmin
𝛂,𝐜

−𝜅𝛂′𝚳𝛂+ (1 − 𝜅)(𝐜 − 𝛂)′𝐌(𝐜 − 𝛂) + 𝜆1‖𝐜‖1 +𝜆2‖𝐜‖
2,   s.t.  𝛂′𝛂 = 1 (3.21) 

where 𝚳 = 𝐗′𝐫𝐫′𝐗, 𝜆1 and 𝜆2 are non-negative tuning parameters and 0 < 𝜅 < 1, is a tuning 

parameter to control the effect of the concavity of the objective function. To solve SPLS a large 

𝜆2 value is usually required and setting 𝜆2 = ∞ yields a solution that has the form of the soft 

threshold estimator by Zou and Hastie (2005). Furthermore, since we use PLS to predict a 

univariate response (the vector of asset returns 𝐫) the solution does not depend on the parameter 

𝜅. This reduces the number of tuning parameters to two, the tuning parameter 𝜆1 and the number 

of hidden components 𝑘. 

In the dimensionality reduction methods described above the directions that best represent 

the predictors 𝐗 are derived in a supervised way since the vector of asset returns, 𝐫, is used to 

determine the component directions. The next set of models derives the latent factors in an 

unsupervised way, before using them in a predictive regression. The regression takes the following 

form: 

𝐫𝑡+1 = 𝛼 + �̂�𝑡𝛃 + 𝛆𝑡+1 (3.22) 

where 𝐙 = (𝐳1, 𝐳2, … , 𝐳𝑘), with 𝑘 < 𝑝, is the vector of latent factors or components that are 

estimated through principal component analysis, sparse principal component analysis, independent 

component analysis or reconstruction independent component analysis. The number of 

components used to estimate the model varies for each iteration of the recursive scheme, with the 

optimal number of components chosen to minimize the Bayesian Information Criterion (BIC). 
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Principal component analysis (PCA) is the most widely used method to obtain estimates 

of the latent factors called principal components. Principal components are a sequence of 

projections of the data mutually uncorrelated and ordered in variance. The first principal 

component captures the maximum variation among all linear combinations of predictors, the 

second principal component has the highest variation among all linear combinations in the 

remaining orthogonal subspace, and so on, with the last principal component having minimum 

variation.  

PCA can be viewed as a regression-type problem where the goal is to find the first 𝑘 

principal component loading vectors by minimizing: 

argmin
𝐀

‖𝐗 − 𝐗𝐀𝐀′‖2 ,     s.t.     𝐀′𝐀 = 𝐈𝑘 (3.23) 

where 𝐀 is a 𝑝 × 𝑘 matrix. The solution to this problem is most often obtained via singular value 

decomposition: 𝐗 = 𝐔𝐃𝐕′, by setting 𝐀 = 𝐕. The columns of 𝐕 = (𝐯1, 𝐯2, … , 𝐯𝑘) are the principal 

components loadings. Each 𝐯𝑗 is used to derive the 𝑗th principal component, 𝐳𝑗 = 𝐗𝐯𝑗, thus, 𝐙𝐕 is 

the dimension reduced version of the original predictors. The derived variable 𝐳1 is the first 

principal component of 𝐗 and has the largest sample variance amongst all normalized linear 

combinations of the columns of  𝐗. 

Sparse principal component analysis (SPCA), developed by Zou, Hastie and Tibshirani 

(2006), is similar to PCA as it is designed to uncover the linear combination of the original 

predictors in a way that the derived variables capture the maximum variance. However, it produces 

principal components with sparse loadings. PCA has the drawback that each principal component 

is a linear combination of all the original predictors and the loadings are typically non-zero, which 

leads to difficulties in the interpretability of the results. This issue is addressed by SPCA that 
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produces modified principal components with sparse loadings, such that each principal component 

is a linear combination of only a few of the original predictors.  

The approach followed by Zou, Hastie and Tibshirani (2006) is based on the 

regression/reconstruction property of PCA. They show how PCA can be viewed in terms of a ridge 

regression problem and by adding the 𝑙1 penalty, they convert it to an elastic net regression, which 

allows for the estimation of sparse principal components. The following regression criterion is 

proposed to derive the sparse principal component loadings: 

argmin
𝚨,𝐂

∑‖𝐱𝑖 − 𝐀𝐂
′𝐱𝑖‖

2

𝑇

𝑖=1

+∑𝜆1,𝑗‖𝑐𝑗‖1

𝑘

𝑗=1

+ 𝜆2∑‖𝑐𝑗‖
2

𝑘

𝑗=1

,     s.t.     𝐀′𝐀 = 𝐈𝑘 (3.24) 

where 𝐀 and 𝐂 are both 𝑝 × 𝑘. If 𝜆1 = 𝜆2 = 0, 𝑇 > 𝑝 and restrict 𝐂 = 𝐀, then the minimizer of 

the objective function is exactly the first 𝑘 loading vectors of ordinary PCA. When 𝑝 ≫ 𝑇, in order 

to obtain a unique solution, 𝜆2 > 0 is required. The 𝑙1 penalty on 𝑐𝑗 induces sparseness of the 

loadings, with larger values of 𝜆1 leading to sparser solutions. The algorithm by Zou and Hastie 

(2005) is used to compute the sparse approximations of each principal component. 

Independent component analysis (ICA), developed by Comon (1994), aims at finding a 

linear representation of non-Gaussian data so that the components are statistically independent. 

The ICA objective is: 

argmin
𝐀

∑‖𝐀′𝐱𝑖‖1

𝑇

𝑖=1

,     s.t.     𝐀′𝐀 = 𝐈𝑘 (3.25) 

Solving the ICA problem amounts to finding an orthogonal 𝐀 such that the components of 

the vector random variable 𝐙 = 𝐗𝐀 are independent and non-Gaussian. More in detail, the 

independent components are estimated by iterative estimation of the matrix 𝐀, systematically 
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increasing the degree of independence of the components. However, since there is no direct 

measure of independence, non-Gaussianity is used instead. Popular approaches for measuring 

independence or non-Gaussianity in ICA are based on entropy. We use the FastICA algorithm 

developed by Hyvärinen and Oja (2000), which uses negentropy as a measure of Non-Gaussianity. 

Ordinary ICA has two drawbacks; it requires constrained optimization which can become 

difficult in high dimensional settings and it is sensitive to whitening, a preprocessing step that 

decorrelates the input data, which cannot always be computed exactly when 𝑝 ≫ 𝑇. Le, Karpenko, 

Ngiam and Ng (2011), propose reconstruction independent component analysis (RICA), which 

overcomes the drawbacks of ICA, by replacing ICA’s orthonormality constraint with a 

reconstruction penalty. This produces the unconstrained problem: 

argmin
𝐀

∑‖𝐀′𝐱𝑖‖1

𝑇

𝑖=1

+𝜆∑‖𝐀𝐀′𝐱𝑖 − 𝐱𝑖‖
2

𝑇

𝑖=1

 (3.26) 

where 𝜆 > 0 is a regularization parameter. RICA is equivalent to ICA when 𝑘 < 𝑝, data is 

whitened and 𝜆 approaches infinity. 

 

3.3.   Data and Descriptive Statistics 

Our dataset consists of monthly closing prices of stock, bond and commodity total return indices, 

denominated in US dollars. Stocks are proxied by the S&P 500 Total Return Index, bonds are 

measured by the Bloomberg Barclays US Aggregate Bond Index and as a proxy for the commodity 

class the S&P Goldman Sachs Commodity Total Return Index (GSCI) is used. A different set of 

predictors is used to forecast the returns of each index. Details on the sources of the series used in 

this study and the construction of the predictors are given in the appendix of this chapter (Table 
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A3.1). Our sample period is from January 1977 to December 2016 for a total of 480 observations. 

The initial estimation period, including the hold-out period, is from January 1977 to December 

1996 (240 observations), while the out-of-sample period is from January 1997 to December 2016 

(240 observations). 

The majority of the predictor variables for the S&P 500 index are from Goyal and Welch 

(2008). These are the dividend-price ratio (DP), dividend yield (DY), earnings-price ratio (EP), 

dividend-payout ratio (DE), stock variance (SVAR), book-to-market ratio (BM), net equity 

expansion (NTIS), Treasury bill rate (TBL), long-term yield (LTY), long-term return (LTR), term 

spread (TMS), default yield spread (DFY), default return spread (DFR) and inflation (INFL) based 

on the Consumers Price Index. Following Rapach, Wohar and Rangvid (2005), the industrial 

production index (IP), the money stock M1 (M1) and the unemployment rate (UR) are also 

included. Finally, we consider three additional variables, namely the Chicago Board Options 

Exchange Volatility Index (VXO) and the macroeconomic and financial uncertainty indices 

(Umacro and Ufin respectively), proposed by Jurado, Ludvigson and Ng (2015) and Ludvigson, 

Ma and Ng (2015). 

Following Ludvigson and Ng (2009), Lin, Wu and Zhou (2017) and Gao and Nardari 

(2018), candidate predictors for the bond index returns are divided into three sets: interest rate 

factors, stock market factors and other economic factors. Interest rate factors include the Treasury 

bill rate, long-term yield, long-term return, term spread, default yield spread, default return spread 

and the spread between the 6-month Treasury bill and 1- to 5-year government bonds (SP1 and 

SP5 respectively). The stock market factors include the S&P 500 return, the dividend yield and 

the VXO. The remaining variables are the Producers Price Index (PPI), capacity utilization 
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(manufacturing, CAP), the inventories-sales ratio (IS), the money stock M1, the unemployment 

rate and the two uncertainty indices. 

The variables used to forecast the returns of the GSCI are primarily based on Gargano and 

Timmermann (2014) and can be categorized into general economic factors and commodity specific 

factors. The general factors include the dividend yield, Treasury bill rate, long-term return, term 

spread, default return spread, inflation, the industrial production index, the money stock M1, the 

unemployment rate, Kilian’s (2009) real economic activity index (REA), the Chicago Fed National 

Activity Index (CFNAI), and the macroeconomic and financial uncertainty indices. The 

commodity specific factors are the price of crude oil (WTI) and four commodity currencies (Chen, 

Rogoff and Rossi (2010)), the Australian dollar-US dollar (USDAUD), the Canadian dollar-US 

dollar (USDCAD), the Indian rupee-US dollar (USDIND) and the New Zealand dollar-US dollar 

(USDNZD). 

Table 3.1 presents the descriptive statistics for the monthly returns of the three indices. The 

stock index has the highest mean return (0.98%), a standard deviation of 4.3%, exhibits the most 

negative skewness (-0.58) and has a kurtosis of 5.10. The bond index has a mean return of 0.61%, 

the lowest standard deviation (1.57%), exhibits a positive skewness of 0.76 and has the highest 

kurtosis (10). The commodity index has the lowest mean return (0.56%), the highest standard 

deviation (5.59%), a skewness of -0.24 and the lowest kurtosis (5.06). The stock index is weakly 

positively correlated with the bond and commodity indices (0.21 and 0.18 respectively), while the 

bond and commodity indices are uncorrelated (-0.02). Figure 3.1 plots the prices and returns of the 

three indices under consideration. 

[Insert Table 3.1 Here] 
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[Insert Figure 3.1 Here] 

 

3.4.   Out-of-Sample Performance 

 

3.4.1.   Statistical Evaluation 

The benchmark against which the alternative forecasting models are compared is the historical 

average forecast, given by: �̂�0,𝑡+1 = (1 𝑡⁄ )∑ 𝑟𝑠
𝑡
𝑠=1 . As a measure of forecast accuracy we use the 

Cambell and Thomson (2008) out-of-sample 𝑅2 (𝑅𝑂𝑆
2 ). 𝑅𝑂𝑆

2  measures the proportional reduction 

in the mean squared forecast error (MSFE) of the individual model forecast relative to the historical 

average. The 𝑅𝑂𝑆
2  for the 𝑖th model is given by: 

𝑅𝑂𝑆
2 = 1 −MSFEi MSFE0⁄ , where MSFE =  

1

𝑄 − 𝑞0 − 1
∑ (𝑟𝑡+1 − �̂�𝑡+1)

2
𝑄−𝑞0−1

𝑡=1
 (3.27) 

A positive 𝑅𝑂𝑆
2  implies that the alternative model outperforms the historical average in terms of 

MSFE. The statistical significance of the 𝑅𝑂𝑆
2  is assessed by the Clark and West (2007) MSFE-

adjusted statistic. The statistic tests the null hypothesis that the MSFE of the historical average 

benchmark is equal or less than the MSFE of the alternative model, against the one-sided 

alternative hypothesis that the historical average MSFE is greater than the MSFE of the alternative 

model. Clark and West (2007) adjust the MSFE in the following way: 

MSFEadj =
1

𝑄 − 𝑞0 − 1
∑ (𝑟𝑡+1 − �̂�𝑡+1)

2

𝑄−𝑞0−1

𝑡=1

+
1

𝑄 − 𝑞0 − 1
∑ (�̂�0,𝑡+1 − �̂�𝑡+1)

2

𝑄−𝑞0−1

𝑡=1

 (3.28) 

The MSFE-adjusted statistic is equivalent to the 𝑡-statistic for the constant, obtained by regressing: 
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𝑓𝑡+1 = (𝑟𝑡+1 − �̂�0,𝑡+1)
2
− (𝑟𝑡+1 − �̂�𝑡+1)

2 + (�̂�0,𝑡+1 − �̂�𝑡+1)
2
 (3.29) 

on a constant. The null hypothesis of equal predictive ability is rejected when the 𝑡-statistic is 

greater than 1.282, 1.645 and 2.326, for a one-sided 0.1, 0.05, and 0.01 test respectively. 

 

3.4.2.   Economic Evaluation 

Following Campbell and Thompson (2008) and Ferreira and Santa-Clara (2011), the economic 

value of the return forecasts is measured for an investor with moderate risk preferences. The 

strategy involves a portfolio, with monthly rebalancing, consisting of a risky asset (the stock, bond 

or commodity index) and a risk-free asset (Treasury bill). The optimal weight of the risky 

asset, 𝑤𝑖,𝑡, based on the return forecast of model 𝑖, under a mean-variance framework with a one-

month ahead horizon is: 

𝑤𝑖,𝑡 =
�̂�𝑖,𝑡+1 − 𝑟𝑓,𝑡+1

𝛾�̂�𝑡+1
2  (3.30) 

where �̂�𝑖,𝑡+1 is the return forecast based on model 𝑖, 𝑟𝑓,𝑡+1 is the risk-free rate of return, 𝛾 is the 

coefficient of relative risk aversion and �̂�𝑡+1
2  is the forecast of the variance. The one-month ahead 

portfolio return is given by: 

𝑟𝑃,𝑡+1 = 𝑤𝑡𝑟𝑡+1 + (1 − 𝑤𝑡)𝑟𝑓,𝑡+1 (3.31) 

The forecast of the variance, �̂�𝑡+1
2 , is derived using a similar approach to Cambell and Thomson 

(2008), where �̂�𝑡+1
2  is estimated as the rolling average of the variance of past monthly returns. The 

length of the rolling window is set to ten years (120 observations). Following Neely, Rapach, Tu 

and Zhou (2014) 𝛾 is set equal to five.  



79 
 

The portfolio performance is evaluated using the certainty equivalent return (CER), the 

Sharpe Ratio (SR) and portfolio turnover. The certainty equivalent return is defined as: 

CER = �̅�𝑃 − 0.5𝛾𝜎𝑃
2 (3.32) 

where �̅�𝑃 and 𝜎𝑃
2 are the mean and variance of the portfolio returns over the out-of-sample period. 

The CER can be interpreted as the risk-free return that a mean-variance investor with coefficient 

of relative risk aversion 𝛾 is willing to accept instead of investing in the risky portfolio. The 

difference in CER is reported (ΔCER), which is equivalent to the CER generated by the portfolio 

utilizing the forecasts minus the portfolio based on the historical average benchmark. ΔCER can 

be interpreted as the performance fee that the investor would be willing to pay to use the 

information of each alternative model instead of the benchmark. The Sharpe ratio is defined as the 

average excess return of the portfolio divided by the standard deviation of the portfolio.  

The performance based on the 𝑅𝑂𝑆
2  is presented in Table 3.2 for the bivariate prediction 

models and in Table 3.3 for the multivariate prediction models. We also report the 𝑅𝑂𝑆
2  during 

NBER-dated recessions and expansions. Table 3.3 also includes the performance based the 

annualized ΔCER and SR measures. All models are compared against the historical average 

forecast.  

From the first panel of Table 3.2, we observe that, even though six models yield positive 

𝑅𝑂𝑆
2  for the stock index, the MSFEs of all variables are significantly less than the historical average 

MSFE at conventional levels of significance according to the MSFEadj statistic. Overall, the 

bivariate prediction models for the stock index perform better during recessions than in 

expansions, in terms of 𝑅𝑂𝑆
2 , however, the only case with a statistically significant 𝑅𝑂𝑆

2  according 

to the Clark-West test is the BM variable during recessions. The results for the bond index, as 
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reported in the second panel, show eight variables with positive 𝑅𝑂𝑆
2 , of those five have significant 

MSFEadj statistic (PPI, IS and SP500 at the 5% level, while SP1 and SP5 at the 1% level). 

Additionally, the MSFEadj statistic for DY indicates that the MSFE of the alternative model is 

significantly less than the MSFE of the historical average despite having 𝑅𝑂𝑆
2 < 0. This result is 

possible when comparing forecasts of nested models. The results during business cycles for the 

bond index, according to the Clarke-West test, favor expansionary periods. Finally, for the 

commodity index, there are twelve models with positive 𝑅𝑂𝑆
2 , but only those associated with DFR, 

CFNAI and WTI are statistically significant. The majority of the models perform better during 

recessionary periods.  

[Insert Table 3.2 Here] 

Table 3.3 reports the results of the forecasting performance based on multivariate models 

for the stock, bond and commodity indices. For the stock index there are 18 models with positive 

𝑅𝑂𝑆
2  (from 0.05% to 4.05%), with nine models having significant 𝑅𝑂𝑆

2  statistics. The best 

performing models among them are; SCAD, followed by the lasso, MCP, elastic net and ridge 

regression. Surprisingly, the model estimated by OLS (KS) also has a positive 𝑅𝑂𝑆
2  statistic, which, 

along with SICA, is significant at the 5% level. However, this result is not so strange since several 

of the original 14 predictors by Goyal and Welch (2008) have been adjusted to stationarity by 

taking first differences (see the Appendix of Chapter 3) and there are six additional predictors 

included in the dataset. In terms of 𝑅𝑂𝑆
2 , the models perform better in recessions, however, only 

the KS and ICA models have significant MSFEadj statistics. During expansions the KS and 

penalized regression methods generate statistically significant but lower 𝑅𝑂𝑆
2 , compared to the 

recession subperiod. This is consistent with studies such as Rapach, Strauss and Zhou (2010), 
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which report that predictability of stock returns is concentrated in economic recessions. According 

to the economic evaluation, 18 models generate CER values higher than the historical average 

benchmark (from 0.03% to 4.63%), while the Sharpe ratios are between 0.26 and 0.70. The highest 

ΔCER and SR values belong to the portfolio based on the KS model, followed by those based on 

forecasts generated by SICA, adaptive lasso, 3PRF and lasso models. Overall, for the stock index 

penalized regressions tend to outperform the majority of the models based on dimensionality 

reduction and forecast combination methods, while the forecasts generated by the KS model are 

both statistically significant and yield higher economic value than the other models.   

[Insert Table 3.3 Here] 

Our findings for the bond index indicate that there are 21 models with significant MSFEadj 

statistics even though there are 15 models with a positive 𝑅𝑂𝑆
2  (from 1.45% to 10.62%). The best 

performing model is the elastic net, followed by ridge regression, the lasso, MCP and bridge 

regression. During expansionary periods, all models except ICA and RICA have statistically 

significant 𝑅𝑂𝑆
2  while in recessions the lasso, SCAD and MCP are the only models with significant 

𝑅𝑂𝑆
2 . The finding that the majority of the models for the bond index generate higher and statistically 

significant 𝑅𝑂𝑆
2  during expansions is the opposite from recent studies, such as Gargano, Pettenuzzo 

and Timmermann (2017), which find that 𝑅𝑂𝑆
2  values are generally higher during recessions. The 

ΔCER values for the bond index are relatively low, with seven models yielding positive 𝐶𝐸𝑅 gains, 

between 0.02 and 0.62. The models with positive ΔCER include ridge regression, the elastic net, 

PLS, SPLS and KS, while the majority of the portfolios based on forecast combination methods 

show similar performance to the HA benchmark. The Sharpe ratios are between 0.83 and 1.16, 

with the highest ratio belonging to the KS model and ridge regression, elastic net, PLS and SPLS 

having similar performance. Overall, the majority of penalized regressions outperform forecast 
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combination methods, while the performance of all dimensionality reduction methods fails to 

surpass that of the historical average benchmark in terms of MSFE. The economic evaluation 

indicates moderate out-of-sample results, especially according to ΔCER, with the portfolios based 

on forecast combinations having similar performance to the historical average. 

Turning to the results for the commodity index, all models except KS and ICA deliver a 

positive 𝑅𝑂𝑆
2  statistic, while there are 18 models with significant MSFEadj statistics. The positive 

𝑅𝑂𝑆
2  range from 0.14% to 4.36%, with the highest value belonging to PCR, followed by SPCA, 

RICA, PLS and the 3PRF. In recessionary periods, most of the models generate positive and 

statistically significant 𝑅𝑂𝑆
2 , compared to expansionary periods where only the lasso produces 

statistically significant results. These results are consistent with Gargano and Timmermann (2014), 

who find that the predictive accuracy of commodity return forecasts tends to be higher during 

recessions than expansions. The CER gains are positive for 19 of the portfolios based on 

multivariate prediction models, with values between 1.24% and 3.01%. PLS generates the highest 

ΔCER, followed by adaptive lasso, lasso and both cluster combinations. The Sharpe ratios of the 

commodity portfolios are low, with RICA generating the highest ratio, followed by SPLS, PCA, 

adaptive lasso and lasso. The results for the commodity index favor dimensionality reduction 

methods, with penalized regressions and forecast combinations yielding similar performance. 

 

3.5.   Optimal Asset Allocation 

Consider an investor who allocates her wealth among 𝑁 individual assets with portfolio weight 

vector: 𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑁). The initial wealth is normalized to 1. The benchmark strategy is the 

naive diversification rule of an equal-weighted portfolio, where 𝑤𝑗 = 1/𝑁, for 𝑗 = 1, 2, … , 𝑁. The 
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objective of the main framework is to optimize the trade-off between risk and return. The 

optimization problem is: 

min
𝐰
[𝛾𝛷𝑃(𝐰) −𝐰

′�̂�]  (3.33) 

where 𝛷𝑃 is the portfolio risk function, �̂� = (�̂�1,𝑡+1, �̂�2,𝑡+1, … , �̂�𝑁,𝑡+1) is the matrix of return 

forecasts for each asset and 𝛾 is the coefficient of relative risk aversion. As an alternative to the 

1/𝑁 benchmark, portfolios using historical average forecasts are considered. The two benchmarks 

are compared to portfolios based on forecasts generated by multivariate prediction models. 

All portfolio models include short-selling and leverage constraints to avoid implausible 

positions. The first constraint sets an upper bound to the sum of the portfolio weights, 𝐰′𝐈𝑁 = ℎ, 

where 𝐈𝑁 is an 𝑁-vector of ones and ℎ denotes the maximum leverage, for example ℎ = 1 ensures 

that the portfolio weights sum up to one, while ℎ = 1.5 indicates that the investor cannot borrow 

more than 50% of total wealth. The second constraint, sets a lower bound to the weight of each 

asset, 𝑤𝑗 ≥ 𝑙, with 𝑗 = 1, … , 𝑁, where 𝑙 is the lower bound for each weight, 𝑤𝑗. When 𝑙 = 0, then 

all weights are positive and the resulting portfolios are long-only, while 𝑙 = −0.5 restricts short 

sales to 50% of wealth. The portfolio return at 𝑡 + 1 can then be computed as: 

𝑟𝑃,𝑡+1 = �̂�𝑡
′𝐫𝑡+1 + (1 − �̂�𝑡

′𝟏𝑁)𝑟𝑓,𝑡+1 (3.34) 

where 𝐫 is an 𝑁-vector of risky asset returns. In the case of ℎ = 1, the portfolio return is equivalent 

to 𝑟𝑃,𝑡+1 = �̂�𝑡
′𝐫𝑡+1. As a basic measure of portfolio risk the standard deviation of the portfolio, 

Markowitz (1952), is used. To construct mean-variance (MV) optimization framework, the risk 

function of the portfolio, 𝛷𝑃(𝐰), is set to 

𝜎(𝐰) = √𝐰′𝚺𝐰 (3.35) 

where 𝚺 is the 𝑁 × 𝑁 covariance matrix. 
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3.5.1.   Covariance Matrix Estimation 

For the mean-variance optimization framework, the forecast of the covariance matrix, 

𝚺𝑡+1, is estimated using four different approaches. In the first approach 𝚺𝑡+1 for assets 𝑖 = 1,… ,𝑁 

is estimated based on the sample covariance matrix: 𝐒𝑡+1 =
1

𝑡
∑ (𝑟𝑖,𝑠 − �̅�𝑖)(𝑟𝑖,𝑠 − �̅�𝑖)′
𝑡
𝑠=1 , using 

information up to time 𝑡. 

The second method used to obtain the estimate of the covariance matrix is the dynamic 

conditional correlation GARCH model, proposed by Engle (2002). The one-period ahead 

covariance based on the DCC GARCH model evolves according to: 

𝚺𝑡+1 = 𝐃𝑡+1𝐑𝑡+1𝐃𝑡+1 (3.36) 

where 𝐃𝑡+1 is an 𝑁 × 𝑁 diagonal matrix with conditional standard deviation �̂�𝑖,𝑡+1 on the 𝑖th 

diagonal element and 𝐑𝑡+1 is the 𝑁 ×𝑁 correlation matrix, with ones on the diagonal and 

conditional correlations in the off-diagonal. The estimation of the DCC GARCH has two steps. 

The first step involves estimating the diagonal elements of the conditional standard deviation 

matrix, 𝐃𝑡+1, where the conditional standard deviation, �̂�𝑖,𝑡+1, of the 𝑖th asset is usually estimated 

using a GARCH(1,1) model. The second step involves the estimation of the conditional correlation 

matrix, 𝐑𝑡+1. Removing the conditional mean from the 𝑁 series of asset returns yields the 

residuals, 𝛆𝑡+1 and the standardized residuals, 𝐮𝑡+1, can be obtained using the conditional standard 

deviation matrix, 𝐃𝑡+1: 𝐮𝑡+1 = 𝐃𝑡+1
−1 𝛆𝑡+1. The conditional correlation structure then is: 

𝐐𝑡+1 = (1 − 𝑎 − 𝑏)�̅� + 𝑎𝐮𝑡𝐮𝑡
′ + 𝑏𝐐𝑡 (3.37) 

𝐑𝑡+1 = 𝐐𝑡+1
∗−1𝐐𝑡+1𝐐𝑡+1

∗−1   
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where �̅� is the unconditional covariance of the standardized residuals and 𝐐𝑡+1
∗  is a diagonal matrix 

composed of the square root of the diagonal elements of 𝐐𝑡+1. 

The third approach is based on the shrinkage estimator of the covariance matrix proposed 

by Ledoit and Wolf (2004), which shrinks the sample covariance matrix towards a one-parameter 

matrix, where all the variances are the same and all covariances are zero. The shrinkage estimator 

of the covariance matrix, 𝚺∗, can be written as: 

𝚺∗ = 𝛿𝐅 + (1 − 𝛿)𝐒, (3.38) 

where 𝐒 is the sample covariance matrix with entries 𝑠𝑖,𝑗, 𝐅 is the shrinkage target with entries 𝑓𝑖,𝑗 

and 𝛿 is a shrinkage constant between 0 and 1. The shrinkage target in this case is set to: 

𝐅 = 𝜈𝐈𝑁,  with  𝜈 = tr(𝐒𝐈𝑁)/𝑁 (3.39) 

where 𝐈𝑁 is the 𝑁 ×𝑁 identity matrix. The optimal shrinkage constant (see Ledoit and Wolf (2003) 

for details) is: 

𝛿∗ = max {0,min {
𝜅

𝑇
, 1}} ,  with  𝜅 =

𝜋

𝛾
 (3.40) 

where 𝜋 denotes the sum of the asymptotic variances of the entries of the sample covariance 

matrix: 

𝜋 =∑∑𝜋𝑖,𝑗

𝑁

𝑗=1

𝑁

𝑖=1

,  with  𝜋𝑖,𝑗 =
1

𝑇
∑[(𝑟𝑖,𝑡 − �̅�)(𝑟𝑗,𝑡 − �̅�) − 𝑠𝑖,𝑗]

2
𝑇

𝑡=1

 (3.41) 

and 𝛾 measures the misspecification of the shrinkage target, where 𝛾 = ∑ ∑ (𝑓𝑖,𝑗 − 𝑠𝑖,𝑗)
2𝑁

𝑗=1
𝑁
𝑖=1 . 

The final approach to estimate the covariance matrix is the graphical lasso algorithm, 

proposed by Friedman, Hastie and Tibshirani (2008), which estimates the sparse precision matrix 



86 
 

(inverse of the covariance matrix), using the 𝑙1 (lasso) penalty to enforce sparsity. The graphical 

lasso problem is to maximize the following penalized log likelihood: 

log(det𝚯) − tr(𝐒𝚯) − 𝜌‖𝚯‖1 (3.42) 

where 𝜌 ≥ 0 is a tuning parameter controlling the amount of regularization. Here, 𝚯 = 𝚺−1, with 

entries 𝜃𝑖,𝑗, is the 𝑁 ×𝑁 inverse of the covariance matrix and ‖𝚯‖1 is the 𝑙1 norm of 𝚯 – the sum 

of the absolute value of the elements 𝜃𝑖,𝑗. The penalty parameter 𝜌 is chosen by 10-fold cross 

validation, to make the value of −log(𝑑𝑒𝑡𝚺1) − 𝑡𝑟(𝚺2𝚺1
−1) large, where 𝚺1 is the covariance 

matrix estimated using the training set and 𝚺2 is the covariance estimated over the validation set. 

 

3.6.   Portfolio Performance 

In this section, we assess the economic value of using return forecasts to construct portfolios and 

whether commodities add value to a traditional portfolio consisting of bonds and stocks. The 

evaluation period is the same as the one used for the statistical and economic evaluation of the 

forecasts. The portfolios are constructed recursively using the related return and covariance 

forecasts in each iteration, starting in January 1997. The buy-and-hold portfolio returns are 

calculated for the period of one month and the portfolio is rebalanced monthly until the end of the 

evaluation period (December 2016). Each portfolio is computed for different combination of 

weight constraints: unleveraged long-only portfolios (0 ≤ 𝑤𝑗 ≤ 1), leverage restricted to 50% of 

wealth (0 ≤ 𝑤𝑗 ≤ 1.5), short selling restricted to 50% of wealth (−0.5 ≤ 𝑤𝑗 ≤ 1) and portfolios 

with both leverage and short selling restricted to 50% of wealth (−0.5 ≤ 𝑤𝑗 ≤ 1.5). Two types of 

investors are considered based on different values of the coefficient of risk aversion, 𝛾 = 2 for an 

aggressive investor and 𝛾 = 10 for a conservative investor. 
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The performance of the portfolios is evaluated over the out-of-sample period using the 

certainty equivalent return of the portfolio and the out-of-sample Sharpe ratio. The Sharpe ratio 

(SR) is calculated as the fraction of the out-of-sample excess return (average realized return less 

the risk-free rate) divided by the standard deviation of the out-of-sample portfolio returns:  

SR =
(�̅�𝑃 − 𝑟𝑓)

�̂�𝑃
2  (3.43) 

where �̅�𝑃 = 1 (𝑄 − 𝑞0)⁄ ∑ 𝑟𝑃,𝑡
𝑄−𝑞0
𝑡=1  is the average realized return of the portfolio over the out-of-

sample period, 𝑟𝑓 is the risk free rate and �̂�𝑃 is the standard deviation of the portfolio excess returns 

over the out-of-sample period. 

 

3.6.1.   Performance of Stock-Bond-Commodity Portfolios 

Tables 3.4 and 3.5 report the performance of stock-bond-commodity portfolios for the full out-of-

sample period, based on the certainty equivalent return and Sharpe ratio respectively. Panels A 

through D present the results based on one of the four different approaches to estimate the 

covariance matrix. Within each panel the results for the two different types of investors and for 

different weight constraints are compared.  

The first row of Table 3.4 gives the certainty equivalent return of the 1/𝑁 portfolio, which 

is 3.87% for an aggressive investor and -0.27% for a conservative investor across all panels, since 

derivation of the weights for this strategy does not involve any optimization or estimation and 

ignores the data. The second row of the table gives the certainty equivalent return of the mean-

variance portfolio based on the historical average, which varies based on the estimation approach 

of the covariance matrix, the type of investor and weight constraints. For the sample covariance 
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matrix, the certainty equivalent return of the HA portfolio for an aggressive investor (𝛾 = 2), is 

5.65% for 𝑤𝑗 ∈ [0,1], 5.34% for 𝑤𝑗 ∈ [0,1.5], 5.29% for 𝑤𝑗 ∈ [−0.5,1] and when both leverage 

and short selling is introduced (𝑤𝑗 ∈ [−0.5,1.5]) the certainty equivalent return increases to 5.85%. 

On the other hand, a conservative investor (𝛾 = 10), for weight constraints 0 ≤ 𝑤𝑗 ≤ 1 the 

certainty equivalent return is 3.71%, for 0 ≤ 𝑤𝑗 ≤ 1.5 it is 4.54%, when −0.5 ≤ 𝑤𝑗 ≤ 1 it is 

3.93% and when weight constraints are set to −0.5 ≤ 𝑤𝑗 ≤ 1.5 the portfolio return is 4.71%.  

[Insert Table 3.4 Here] 

The certainty equivalent return of the mean-variance portfolios, for an aggressive investor, 

based on the sample covariance matrix and return forecasts generated by multivariate predictive 

regressions, is between 3.70% and 8.84% for the case when no short sales or leverage is allowed, 

5.27% to 10.87% for a 50% leverage constraint, 4.28% to 13.07% for a 50% short-sales constraint, 

while portfolios with both short sales and leverage allowed generate CER from 5.16% to 15.56%. 

For leveraged portfolios with short selling all models except ICA yield higher return than the HA, 

while the models that exhibit the highest performance across all weight constraints are the adaptive 

lasso, SICA and SPLS. In the case of a conservative mean-variance investor, for weight constraints 

0 ≤ 𝑤𝑗 ≤ 1 the certainty equivalent return is between 3.24% and 6.16%, when leverage is 50% of 

wealth (0 ≤ 𝑤𝑗 ≤ 1.5) it is from 2.46% to 6.11%, when short selling is allowed (−0.5 ≤ 𝑤𝑗 ≤ 1) 

it is from 2.07% to 6.31%, while the return for a less conservative investor with portfolio weights 

−0.5 ≤ 𝑤𝑗 ≤ 1.5, has a range from 1.38% to 7.19%, depending on the model used to construct 

the return forecasts. For an investor with 𝛾 = 10 the majority of the models outperform the 

portfolio based on the historical average forecast across the combinations of weight constraints, 

with models based on PCA and DMSFE combination yielding the highest performance. The 
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differences in CER, when comparing the results for the mean-variance optimization framework 

across alternative covariance matrix estimates, are not as substantial as those between risk 

preferences or combinations of weight constraints. For an aggressive investor, portfolios with 

either short selling or leverage generate higher certainty equivalent return than the unleveraged 

long-only allocations, while portfolios with both leverage and short selling allowed yield the 

highest CER. Overall, the observation that can be made is that out-of-sample; the majority of the 

models utilizing return (and covariance) forecasts outperform the 1/𝑁 benchmark in terms of 

certainty equivalent returns. 

[Insert Table 3.5 Here] 

Table 3.5 reports the annualized Sharpe ratio for the full out-of-sample period. The findings 

indicate that the majority of the models utilizing mean and covariance forecasts outperform the 

equal-weighted portfolio benchmark with a ratio of 0.27 (the exception being SPCA for an 

aggressive investor with no leverage or short selling). The Sharpe ratio for the HA portfolio with 

𝛾 = 2 does not change drastically for different weight constraints, the ratio has a range between 

0.36 when short selling or leverage is set to 50% of wealth and 0.39 for either 𝑤𝑗 ∈ [0,1] or 𝑤𝑗 ∈

[−0.5,1.5]. For a conservative investor the Sharpe ratio is between 0.56 (𝑤𝑗 ∈ [0,1]) and 0.72 

(𝑤𝑗 ∈ [−0.5,1.5]). The Sharpe ratio for mean variance portfolios with relative risk aversion of 2, 

is between 0.25 and 0.6 for unleveraged and long only portfolios, 0.36 to 0.64 for a 50% leverage 

constraint, 0.31 to 0.69 for a 50% short-sales constraint and 0.36 to 0.75 when both leverage and 

short selling are restricted to 50%. Some of the portfolios with the highest performance are those 

with return forecasts generated by the adaptive lasso, SPLS and rank combination scheme. Based 

on different weight constraints, the Sharpe ratios for a conservative investor are higher compared 

to those of a more aggressive investor, with values from 0.57 to 0.9 when 𝑤𝑗 ∈ [0,1], 0.65 to 0.92 
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for 𝑤𝑗 ∈ [0,1.5], 0.61 to 0.92 for 𝑤𝑗 ∈ [−0.5,1] and 0.69 to 1.01 when 𝑤𝑗 ∈ [−0.5,1.5]. Adaptive 

lasso and PCA are among the models that yield the highest ratios across all weight constraints. 

Overall, when leverage and short sales are allowed, the mean-variance portfolios yield higher 

Sharpe ratios. Similarly to CER, there are no major changes when comparing the respective Sharpe 

ratios across different specifications of the covariance matrix. Our findings differ from DeMiguel, 

Garlappi and Uppal (2009), since we observe that portfolios based on alternative forecasting 

models for the returns and the covariance matrix consistently outperform the 1/𝑁 portfolio for 

different investment constraints and levels or risk aversion. However, in their study the portfolios 

consist of a larger number of assets and also use sample moments, which may be the reasons for 

this discrepancy. Additionally, the results are consistent with the recent study by Gao and Nardari 

(2018) who construct stock-bond-commodity portfolios and find that strategies that employ 

forecasts of asset return moments outperform strategies with a fixed weighing scheme.  

 

Performance of Stock-Bond-Commodity Portfolios during Business Cycles 

To examine the contribution of return forecasts to stock-bond-commodity portfolios during 

business cycles, the full out-of-sample period is divided into recessionary and expansionary 

subperiods. Tables 3.6 and 3.7 present the portfolio performance during NBER-dated recessions 

and expansions, based on the certainty equivalent return and the Sharpe ratio respectively. The 

portfolios are based on the sample covariance matrix. 

[Insert Table 3.6 Here] 

[Insert Table 3.7 Here] 
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The CER and Sharpe ratio of the 1/𝑁 portfolio are negative during recessions (-17.02% 

and -0.92 respectively) and positive during expansions (6.43% and 0.57 respectively). The HA 

portfolio yields positive CER and Sharpe ratios during expansionary periods, with portfolios with 

𝛾 = 2 generating higher returns but lower ratios than portfolios with 𝛾 = 10. In recessionary 

periods the returns and Sharpe ratios are negative, with the portfolios of the aggressive investor 

significantly underperforming those of the conservative investor in terms of both measures. 

For a mean-variance investor with relative risk aversion parameter of 2, the majority of the 

long-only portfolios produce negative certainty equivalent returns and Sharpe ratios during 

recessions, with the exception of some models, such as adaptive lasso, SICA, PLS, 3PRF and 

SPLS, that generate positive values. The CER (Sharpe ratio) of those models is between 4.05% 

and 12.28% (0.32-0.72) for 𝑤𝑗 ∈ [0,1] and from 5.94% to 14.45% (0.45-0.73) when 𝑤𝑗 ∈ [0,1.5]. 

Other models with positive returns include RICA and rank combination. On the other hand, when 

short selling is allowed the certainty equivalent return and Sharpe ratio become positive for all 

portfolios, except for those based on the median combination. For example, when a short selling 

constraint of 50% is imposed, adaptive lasso, PLS, the 3PRF, SPLS and RICA generate returns 

between 25.84% and 44.37% and ratios from 1.03 to 1.56. When both short selling and leverage 

is allowed, the five portfolios with the highest performance yield CER from 23.01% to 45.23% 

and Sharpe ratios from 0.97 to 1.49. During expansions all mean-variance portfolios with 𝛾 = 2 

generate positive CER and Sharpe ratios, with leverage and short selling having a greater (positive) 

effect on the return of the portfolios. Specifically, the certainty equivalent returns range from 

5.14% to 8.81% for unleveraged long-only portfolios, from 7.22% to 11.17% when 0 ≤ 𝑤𝑗 ≤ 1.5, 

from 5.09% to 10.65% when −0.5 ≤ 𝑤𝑗 ≤ 1 and from 5.83% to 13.20% when both leverage and 

short sales are restricted to 50% of wealth. On the other hand, the Sharpe ratio does not vary greatly 
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among different sets of weight constraints during expansionary subperiods, with ratios ranging 

between 0.35 and 0.68, across all models and weight combinations. In recessionary subperiods all 

portfolios based on multivariate regression models outperform the equal-weighted portfolios or 

those based on the historical average forecast, in terms of both measures. In expansionary 

subperiods the majority of the portfolios outperform the 1/𝑁 benchmark in terms of CER, while 

the results based on the Sharpe ratio appear mixed. There are no portfolios that outperform the HA 

when 𝑤𝑗 ∈ [0,1] and for the remaining weight combinations the results are not consistent.  

For a conservative investor the pattern of the results during recessions, based on the 

certainty equivalent return, is similar to that of an aggressive investor. Most of the models generate 

positive CER when short-selling is allowed, while for long-only allocations the results are mixed. 

Short sales again have a considerable impact on portfolios, with models based on adaptive lasso, 

PLS, the 3PRF, rank and cluster combinations leading to a certainty equivalent return between 

9.23% and 13.10% for −0.5 ≤ 𝑤𝑗 ≤ 1 and from 9.10% to 13.92% for weight constraint −0.5 ≤

𝑤𝑗 ≤ 1.5. Our findings for portfolios with 𝛾 = 2 based on the Sharpe ratio (Table 3.7) paint a 

similar picture to that based on the CER, with all models generating higher ratios when short 

selling is allowed. For example, for a 50% short-sale constraint the ratios are from 0.05 to 1.61 

and when a 50% constraint is imposed to both short sales and leverage the ratios range from 0.12 

to 1.66. During expansionary periods all portfolios result in positive CER and Sharpe ratios, 

yielding returns from 1.31% to 7.05% and ratios from 0.57 to 1.02, varying based on the weight 

constraints, with leveraged portfolios exhibiting higher values in both measures. The models with 

consistent high performance across all weight combinations are the elastic net for the certainty 

equivalent return and PCA for the Sharpe ratio. In recessions all models, except KS, outperform 

both the equal-weighed and the HA portfolios, however, in expansions the results appear mixed, 
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with the exception that when short selling is allowed the majority of the models outperform the 

naïve portfolio. 

  

3.6.2.   Performance of Stock-Bond Portfolios 

In this section, we focus on the performance of traditional portfolios consisting of only 

stocks and bonds and compare it with that of the respective stock-bond-commodity portfolios, in 

order to determine whether including commodities in the portfolio adds economic value. The 

analysis is conducted for the full out-of-sample period and for the NBER-dated recession and 

expansion subperiods. 

[Insert Table 3.8 Here] 

Table 3.8 presents the certainty equivalent return and Sharpe ratio for the stock-bond 

portfolios for the full sample. For traditional portfolios that utilize forecasts from multivariate 

predictive regressions, the results indicate that the majority of the models outperform the HA 

portfolio in terms of both performance measures. When comparing the alternative portfolios 

against the equal-weighted allocation, in terms of CER, most of the portfolios outperform the 

benchmark, however, in terms of Sharpe ratio, the majority of the models for an aggressive investor 

fail to produce higher ratios than the equal-weighted benchmark, but most of the portfolios with 

relative risk aversion of 10 outperform the 1/𝑁 portfolio. 

According to the 1/𝑁 strategy, reported in the first row of the table, an investor would be 

reluctant to include commodities in a portfolio of stocks and bonds, based on either performance 

measure, which is consistent with the findings of Gao and Nardari (2018) that a fixed weight 

allocation favors traditional portfolios. For a mean-variance allocation based on the historical 
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average forecast, commodities would add value to traditional portfolio only for an aggressive 

investor and for weight combinations that allow short selling. This result is consistent with the 

findings in Daskalaki and Skiadopoulos (2011) and Gao and Nardari (2018), who find that using 

sample moments to form the long-only portfolios leads to traditional strategies dominating the 

commodity augmented allocations. When comparing mean-variance portfolios based on 

alternative forecasts, our findings are not as conclusive and vary depending on the degree of risk 

aversion, the weight constraints and the models used to generate the return forecasts. For an 

aggressive investor, when no short selling or leverage is allowed 21 out of the 24 stock-bond 

portfolios outperform those that include commodities, the exceptions being the portfolios based 

on the 3PRF, SPLS and RICA, while with 50% leverage only SPLS yields better results when 

commodities are included. For both weight combinations with a 50% short-sales constraint the 

results are reversed with 19 and 18 portfolios that include commodities outperforming their stock-

bond counterparts, for 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5] respectively. The results based on the 

Sharpe ratio follow a similar pattern, with most of the stock-bond portfolios producing higher 

ratios when no short selling is allowed (23 models for both sets of weight constraints) and when a 

50% short-sales constraint is imposed, the results favor the stock-bond-commodity portfolios, with 

16 and 17 commodity-augmented portfolios having higher ratios for −0.5 ≤ 𝑤𝑗 ≤ 1 and −0.5 ≤

𝑤𝑗 ≤ 1.5 respectively. For a risk averse investor, the majority of the traditional portfolios, for 𝑤𝑗 ∈

[0,1] and 𝑤𝑗 ∈ [0,1.5] respectively, outperform the portfolios that include commodities in terms 

of certainty equivalent return. When short selling is allowed, there are some portfolios that favor 

a commodity-augmented allocation.  

 

Performance of Stock-Bond Portfolios during Business Cycles 
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Tables 3.9 and 3.10 report the performance, based on certainty equivalent return and 

Sharpe ratio respectively, for the stock-bond portfolios during business cycles. For both 

benchmark portfolios, the CER and Sharpe ratio are positive during expansions and negative in 

recessions. For the mean-variance allocations utilizing forecasts from multivariate predictive 

regressions, there are models that exhibit negative returns and Sharpe ratios during recessionary 

periods, while in expansionary periods all models yield positive returns.  

[Insert Table 3.9 Here] 

[Insert Table 3.10 Here] 

During recessions all commodity-augmented portfolios of an aggressive investor, except 

most of those based on KS and ICA, median and C(3, PB) forecasts, outperform the traditional 

portfolios across all weight constraints, according to both performance measures. For a 

conservative investor, commodities add value to a portfolio when short-selling is allowed. In 

expansionary subperiods, commodity augmented portfolios outperform traditional portfolios in the 

case of an aggressive investor that utilizes machine learning forecasts and for weight combinations 

with 50% short selling. However, the difference in return values between stock-bond and stock-

bond-commodity allocations is not as great in expansions as in recessions, where the commodity-

augmented allocations have better performance. In terms of Sharpe ratios, the majority of the 

traditional portfolios perform better, with the exception of those belonging to an aggressive 

investor based on forecast combinations that allow short selling. Overall, commodities benefit a 

traditional portfolio, when short selling is allowed and during NBER-dated recessions. The 

findings that commodities add greater value to a stock-bond portfolio when short selling is allowed 

and particularly for an aggressive investor are consistent with Bessler and Wolff (2015). 
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3.6.3.   The Effect of Transaction Costs on Stock-Bond-Commodity Portfolios 

To examine the effect of transaction costs on the asset allocation strategies, we compute 

the turnover as a measure of the amount of trading required to implement a particular strategy. 

Following DeMiguel, Garlappi and Uppal (2009), the portfolio turnover is defined as the average 

absolute change of the portfolio weights over the 𝑄 − 𝑞0 rebalancing periods across the 𝑁 assets, 

given as follows: 

PTP =
1

𝑄 − 𝑞0 − 1
∑ ∑|𝑤𝑗,𝑡+1 − 𝑤𝑗,𝑡|

𝑁

𝑗=1

𝑄−𝑞0−1

𝑡=1

 (3.44) 

where 𝑤𝑗,𝑡+1 is the weight in asset 𝑗 at time 𝑡 + 1 and 𝑤𝑗,𝑡 is the weight in asset 𝑗 at time before 

rebalancing at 𝑡 + 1. The transaction costs are set to 50 bps for each asset. When a portfolio is 

rebalanced at 𝑡 + 1, |𝑤𝑗,𝑡+1 − 𝑤𝑗,𝑡| denotes the magnitude of trading asset 𝑗. Given a transaction 

cost of 𝑐, the trading cost of the entire portfolio is 𝑐 ∑ |𝑤𝑗,𝑡+1 − 𝑤𝑗,𝑡|
𝑁
𝑗=1 . The return of the portfolio 

after transaction costs is as follows: 

𝑟𝑃,𝑡+1
𝑇𝐶 = (1 + 𝑟𝑃,𝑡+1) (𝑐∑|𝑤𝑗,𝑡+1 − 𝑤𝑗,𝑡|

𝑁

𝑗=1

) − 1 (3.45) 

We report results for portfolios including transaction costs for two rebalancing frequencies, namely 

monthly and quarterly, in Tables 3.11 and 3.12, respectively. 

Quite interestingly, our results for monthly-rebalanced portfolios favor forecast 

combination schemes to more sophisticated methods as these lead to portfolios with high turnover. 

However, when the rebalancing frequency is reduced to quarterly, the certainty equivalent return 
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and Sharpe ratio of the majority of the portfolios improves, with portfolios of an aggressive 

investor based on machine learning techniques yielding superior performance to the forecast 

combination methods with monthly rebalancing. The result that a decrease in rebalancing 

frequency can lead to better performance in a dynamic asset allocation setting with transaction 

costs is also supported by Almadi, Rapach and Suri (2014). 

[Insert Table 3.11 Here] 

[Insert Table 3.12 Here] 

 

3.6.4.   Conditional Value-at-Risk Portfolios 

As a robustness check, we consider an alternative measure of portfolio risk, namely the 

Conditional Value-at-Risk (CVaR) of the portfolio. CVaR is defined as the conditionally expected 

value losses greater or equal to the Value-at-Risk (VaR) at a specific confidence interval. 

Following Rockafellar and Uryasev (2000, 2002), CVaR is estimated based on the following 

approximation: 

CVaR𝑎(𝐰, VaR𝑎) = VaR𝑎 +
1

𝐽(1 − 𝑎)
∑[−𝐰′𝐫𝑗 − 𝑉𝑎𝑅𝑎]

+

𝐽

𝑗=1

 (3.46) 

where [𝑡]+ = max (0, 𝑡), 𝑎 is a probability level, 𝐽 is the number of scenarios and 𝐫𝑗 is the vector 

of asset returns in the 𝑗th scenario. To estimate CVaR of the portfolio, 5000 scenarios are generated 

using Monte Carlo simulation based on the multivariate normal distribution with mean varying 

according to the return forecast and sample variance-covariance matrix. For the mean-CVaR 

(MCVaR) optimization framework, we set 𝛷𝑃(𝐰) = CVaR𝑎(𝐰, VaR𝑎). 



98 
 

In order to investigate the ability of the proposed models to assess tail risk, we calculate 

the CVaR measure of all portfolio strategies, in addition to the certainty equivalent return and 

Sharpe ratios. The 𝑎 Conditional Value-at-Risk of a portfolio is given by: 

CVaR𝑎 = (1 − 𝑎)
−1𝑓(𝐹−1(1 − 𝑎))�̂� − �̅�𝑃 (3.47) 

where 𝐹 is the cumulative standard normal distribution function and 𝑓 is the probability density 

function of the standard normal distribution. The CVaR is calculated at the 95% confidence level. 

Table 3.13 reports the certainty equivalent return and Sharpe ratio for the mean-CVaR 

optimization framework for the full sample. The mean-CVaR portfolios based on forecasts from 

multivariate regression models outperform the equal-weighted and HA portfolios, in terms of 

certainty equivalent return. Furthermore, our results indicate that the Sharpe ratio of all models, 

except ICA and PLS, is higher than the 1 𝑁⁄  and HA models. Weight combinations with a 50% 

leverage constraint appear to lead to higher CER, however, Sharpe ratios do not vary greatly across 

different weight constraints. Comparing the results of the CVaR portfolios for the CER and Sharpe 

ratio (Table 3.13) with those of the mean-variance portfolios (Panel A of Tables 3.4 and 3.5), we 

note that while mean-CVaR portfolios generate considerably lower returns than mean-variance 

portfolios, the Sharpe ratios produced by the former optimization framework are higher.  

[Insert Table 3.13 Here] 

Table 3.14 compares the CVaR at the 95% confidence level measure of the portfolios that 

use variance or CVaR as a risk measure. Overall, the 𝐶𝑉𝑎𝑅95 values of the mean-CVaR portfolios 

are lower than those of the mean-variance portfolios and the degree of relative risk aversion has a 

greater impact on mean-variance portfolios than on mean-CVaR portfolios, with the majority of 

the portfolios of a conservative investor generating lower 𝐶𝑉𝑎𝑅95 values than those of an 
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aggressive investor. The mean-CVaR allocations consistently outperform the equal-weighted 

portfolio for both types of investors, while the majority of the long-only mean-CVaR portfolios 

tend to produce lower 𝐶𝑉𝑎𝑅95 than the HA portfolio. 

[Insert Table 3.14 Here] 

 

3.7.   Conclusion  

This study examines whether return forecasts generated by shrinkage, variable selection and 

dimensionality reduction methods from the machine learning literature add value in portfolios 

consisting of stock, bond and commodity indices. We first examine the benefits of forecasting the 

returns for each individual index. Our results indicate that the majority of the proposed prediction 

models outperform the historical average benchmark, with shrinkage and variable selection 

methods yielding the highest performance for the stock and bond indices, while for the commodity 

index the dimensionality reduction methods achieve superior performance. For the stock and 

commodity indices, the proposed models perform better during recessions, while the results for 

the bond index are mixed. 

To examine whether return forecasts provide any benefits in an asset allocation setting, 

stock-bond-commodity portfolios are constructed based on the proposed models and their 

performance is compared to that of the equal-weighted portfolio and a mean-variance portfolio 

based on the historical average. For commodity-augmented portfolios, the majority of the models 

utilizing return forecasts outperform the 1/𝑁 benchmark in terms of certainty equivalent returns. 

The models that tend to outperform the HA benchmark are those based on shrinkage and 

dimensionality reduction for an aggressive investor, while portfolios of a conservative investor 
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favor forecast combination methods. In terms of Sharpe ratios, the majority of the models 

outperform the equal-weighted and HA portfolio benchmarks. Portfolios with either short selling 

or leverage generate higher CER than the unleveraged long-only allocations, while portfolios with 

both leverage and short selling yield the highest return. Sharpe ratios are higher for a conservative 

investor and when leverage and short sales are allowed the ratios tend to increase. There are no 

major changes when comparing either performance measure across different specifications of the 

covariance matrix. When transaction costs are taken into account, the results for monthly-

rebalanced portfolios favor forecast combination methods, instead of methods that combine 

information due to the latter methods leading to portfolios with higher turnover. When the 

rebalancing frequency is reduced to quarterly, the models with the best performance for an 

aggressive investor are those based on shrinkage and dimensionality reduction methods. When 

CVaR is used as a risk measure, the vast majority of the mean-CVaR portfolios based on forecasts 

from multivariate regression models outperform the equal-weighted and HA portfolios.  

For an aggressive investor during recessionary periods, most of the long-only allocations 

that yield positive values are based on variable selection, shrinkage and dimensionality reduction 

methods. However, when short selling is allowed, CER and Sharpe ratios become positive for the 

majority of the models. All portfolios based on multivariate regression models outperform both 

benchmarks. During expansionary periods, all mean-variance portfolios generate positive certainty 

equivalent returns and Sharpe ratios, with leverage and short-selling having a greater (positive) 

effect on the return of the portfolios. The majority of the portfolios outperform the 1/𝑁 benchmark 

in terms of CER, while the results based on the Sharpe ratio appear mixed. When comparing the 

results to the HA average portfolio, only in combinations with leverage or short sales can we find 

models with higher performance. For a conservative investor, the CER for the majority of the 
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models is positive during recessions, with short sales having a considerable impact on the returns 

and Sharpe ratios of all portfolios. During expansions, all portfolios yield positive returns and 

Sharpe ratios and the performance between the different models varies less than in recessions. In 

recessions, all models based on alternative forecasts outperform both the equal-weighed and the 

HA portfolios, however, in expansions the results appear mixed, except when short selling is 

allowed in which case all models outperform the naive portfolio. 

To examine whether commodities add value to a stock bond portfolio, our analysis is 

replicated for traditional portfolios. For stock-bond portfolios that utilize forecasts from 

multivariate predictive regressions, our results indicate that the majority of the models outperform 

the HA portfolio. The portfolios that outperform the naive portfolio in terms of CER are those of 

an aggressive investor, while the portfolios that yield better results than the 1/𝑁 portfolio in terms 

of Sharpe ratio belong to a conservative investor. During expansions, stock-bond portfolios exhibit 

positive returns and Sharpe ratios, however, in recessions the majority of the portfolios for 𝛾 = 2 

generate negative values in both measures, for 𝛾 = 10 most returns and Sharpe ratios are positive 

and improve as the weight constrains allow leverage or short selling. When comparing the results 

of stock-bond portfolios with those that include commodities for the full sample, commodities add 

value to a traditional portfolio when short selling is allowed, with portfolios for 𝛾 = 2 benefiting 

more from the inclusion of commodities. During recessions, the majority of the commodity-

augmented portfolios outperform the traditional portfolios across all weight constraints, according 

to both performance measures. In expansions, the long-only traditional portfolios outperform those 

that include commodities, while short selling provides a greater benefit to commodity-augmented 

portfolios. However, the difference in return values between stock-bond and stock-bond-
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commodity allocations is greater in recessions, where the commodity-augmented allocations have 

better performance, than in expansions. 

Overall, the return forecasts from the majority of alternative multivariate prediction 

methods outperform the historical average benchmark. When the forecasts are used to construct 

optimal portfolios, most of the models outperform the 1/𝑁 and HA portfolio benchmarks, with 

allocations that allow short sales or leverage further improving the performance of portfolios based 

on machine learning methods. When introducing transaction costs to portfolios with monthly 

rebalancing the results tend to favor forecast combination techniques, however, reducing the 

rebalancing frequency to quarterly leads the portfolios of an aggressive investor based on 

shrinkage and dimensionality reduction methods to generate the highest performance. Finally, our 

findings indicate that commodities would benefit a traditional portfolio when short selling is 

allowed and during recessionary periods. 
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Chapter 3 Tables 

Table 3.1: Descriptive Statistics 

Index N Mean Median Min. Max. Std. Dev. Skew. Kurt. 

Stock 480 0.98 1.29 -21.58 13.52 4.30 -0.58 5.10 

Bond 480 0.61 0.60 -6.08 11.34 1.57 0.76 10.00 

Commodity 480 0.56 0.64 -28.20 22.94 5.59 -0.24 5.06 

         

Correlation matrix      
 Stock Bond Commodity      
Stock 1.00   

     
Bond 0.21 1.00  

     
Commodity 0.18 -0.02 1.00           

Notes: The table reports the summary statistics for the returns of the three indices; the S&P 500 Total 

Return Index (Stock), the Bloomberg Barclays US Aggregate Bond Index (Bond) and the S&P Goldman 

Sachs Commodity Total Return Index (Commodity) and their sample correlation matrix. The sample 

period is from January 1977 to December 2016. The mean, median, minimum, maximum and standard 

deviation of returns are reported as percentages. 
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Table 3.2: Out-of-Sample Forecasting Performance: Univariate Prediction Models 

Stock Bond Commodity 

Model 𝑅𝑂𝑆
2  

𝑅𝑂𝑆
2   

REC 
𝑅𝑂𝑆
2   

EXP 
Model 𝑅𝑂𝑆

2  
𝑅𝑂𝑆
2   

REC 
𝑅𝑂𝑆
2   

EXP 
Model 𝑅𝑂𝑆

2  
𝑅𝑂𝑆
2   

REC 
𝑅𝑂𝑆
2   

EXP 

DP -0.18 1.47 -0.79 DY -0.72* 3.15 -1.67 DY 0.06 2.28** -0.75 

DY -0.16 0.4 -0.37 TBL -0.01 -0.27 0.05 TBL 0.01 0.36** -0.12 

EP -0.76 -2.49 -0.12 LTY -0.5 0.32 -0.7 LTR 0.85 4.32* -0.43 

DE -1.7 -4.49 -0.66 LTR -1.44 -1.26 -1.49 TMS -0.19 -0.33 -0.13 

SVAR 1.69 6.84 -0.24 TMS -0.72 -0.55 -0.76 DFR 2.75* 10.55 -0.11 

BM 0.63 3.58* -0.46 DFY -0.27 -11.39 2.45*** INFL -0.93 -0.5 -1.09 

NTIS -0.55 0.75 -1.04 DFR -1.09 -4.48 -0.26 IP 1.46 7.3 -0.68 

TBL -0.64 -1.08 -0.47 PPI 1.25** 6.09 0.07** M1 0.65 3.49 -0.39 

LTY -0.12 0.27 -0.27 CAP -4.38 -20.64 -0.41 UR -0.2 0.93 -0.62 

LTR -0.21 0.21 -0.36 IS 3.61** 11.37 1.72** WTI 1.92** 5.04** 0.78 

TMS -0.39 -0.38 -0.39 M1 -4.89 -21.49 -0.83 USDAUD 0.59 1.29 0.33 

DFY -1.34 -3.93 -0.37 UR -2.13 -4 -1.68 USDCAD 0.51 0.85 0.38 

DFR -1.97 -3.37 -1.45 SP1 1.41*** -3.41 2.59*** USDINR 0.64 3.5 -0.42 

INFL 0.15 0.86 -0.12 SP5 1.77*** 1.1 1.93*** USDNZD -0.34 1.98 -1.18 

IP 0.63 5.63 -1.23 SP500 1.74** 3.3 1.36*** REA -0.56 -1.03 -0.39 

M1 -0.31 3.74 -1.82 VXO 0.19 -1.84 0.69** CFNAI 2.34* 9.34** -0.23 

UR -0.99 -1.95 -0.63 Umacro 0.42 -6.09 2.01*** Umacro 0.52 5.09 -1.16 

VXO -1.26 -3.22 -0.53 Ufin 0.26 -5.48 1.66** Ufin -0.53 0.8 -1.01 

Umacro 0.28 2.23 -0.45         
Ufin 1.63 7.53 -0.57                 

Notes: The table reports the 𝑅𝑂𝑆
2  as a percentage, for the alternative model against the historical average benchmark. Positive values indicate that the univariate 

model outperforms the benchmark. The alternative model is a univariate return prediction model that includes a constant and the predictor variable listed in each 

row. The out-of-sample period is from January 1997 to December 2016. The 𝑅𝑂𝑆
2  is reported for the NBER-dated recessions and expansions. The hypothesis of 

equal predictive ability is measured based on the Clark and West (2007) test. *, ** and *** indicate significance at the 10%, 5% and 1% levels. 
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Table 3.3: Out-of-Sample Forecasting Performance: Multivariate Prediction Models 

  Stock Bond Commodity 

Model 𝑅𝑂𝑆
2  

𝑅𝑂𝑆
2   

REC 
𝑅𝑂𝑆
2   

EXP 
ΔCER SR 𝑅𝑂𝑆

2  
𝑅𝑂𝑆
2   

REC 
𝑅𝑂𝑆
2   

EXP 
ΔCER SR 𝑅𝑂𝑆

2  
𝑅𝑂𝑆
2   

REC 
𝑅𝑂𝑆
2   

EXP 
ΔCER SR 

KS 2.23** 15.14* -2.58** 4.63 0.70 -6.95*** -16.44 -4.63*** 0.15 1.16 -1.72* 7.61* -5.15 -3.66 0.00 

MC 0.32 1.72 -0.21 0.16 0.41 3.34*** 1.36 3.82*** 0.00 0.90 1.11** 3.99** 0.06 2.25 0.03 

MDC -0.08 -0.04 -0.10 -0.72 0.37 1.68** -1.53 2.47*** 0.00 0.90 0.47* 1.75** 0.00 1.57 -0.03 

TMC 0.16 1.20 -0.23 -0.13 0.40 2.91*** 1.45 3.26*** 0.00 0.90 0.93** 3.36** 0.04 2.02 0.01 

Rank 0.29 3.31 -0.83 0.90 0.46 1.45 1.71 1.39*** 0.00 0.90 0.99 4.43* -0.27 2.07 0.02 

C(2,PB) 0.05 2.74 -0.95 0.03 0.41 2.42** 1.26 2.70*** 0.02 0.91 1.53** 5.58** 0.04 2.40 0.05 

C(3,PB) -0.11 3.37 -1.41 0.04 0.41 3.45*** 4.72 3.14*** -0.05 0.90 2.07** 7.28** 0.15 2.47 0.07 

D(1) 0.31 1.73 -0.22 0.16 0.41 3.29*** 1.35 3.77*** 0.00 0.90 1.12** 4.00** 0.06 2.25 0.03 

D(0.9) 0.32 1.78 -0.23 0.19 0.41 3.34*** 0.99 3.91*** 0.00 0.90 1.11** 3.99** 0.06 2.26 0.03 

Ridge 3.46* 11.99 0.28** 1.84 0.52 10.40*** 6.09 11.46*** 0.62 1.15 1.73** 5.33** 0.40 2.37 0.06 

Lasso 3.96* 12.17 0.91** 2.35 0.54 8.79*** 10.66* 8.34*** -0.34 0.96 0.57* -0.97 1.14* 2.56 0.10 

EN 3.62* 10.76 0.96** 2.26 0.54 10.62*** 9.93 10.78*** 0.21 1.07 0.14 0.34 0.07 1.97 0.03 

Alasso 0.32* 8.77 -2.83* 3.37 0.61 3.68*** 7.49 2.75*** -0.57 0.93 1.93** 9.34** -0.79 2.71 0.14 

Bridge 1.35 9.44 -1.66* 0.91 0.45 8.06*** 11.25 7.29*** -0.27 0.96 1.39* 5.79** -0.22 2.25 0.05 

SCAD 4.05* 14.57 0.13** 1.97 0.53 6.81*** 11.81* 5.59*** -0.46 0.96 0.17 -1.01 0.60 1.98 0.04 

MCP 3.87* 12.12 0.79** 2.06 0.52 8.31*** 10.67* 7.74*** -0.19 1.01 0.16 -1.01 0.59 1.97 0.04 

SICA 1.49** 12.80 -2.72** 4.04 0.66 -4.55*** -18.82 -1.06*** -0.84 0.87 0.13* 6.34** -2.15 -0.64 0.09 

PLS 0.92 16.48 -4.89 2.02 0.52 -1.13*** -23.26 4.27*** 0.28 1.13 3.87** 21.74** -2.69 -0.68 0.05 

3PRF 2.88* 22.76 -4.53 2.59 0.56 -1.57*** -11.28 0.79*** 0.13 1.08 3.12* 20.78** -3.36 -0.46 0.01 

SPLS 0.64 12.12 -3.64 2.29 0.54 -6.97*** -41.62 1.48*** 0.21 1.14 1.32* 9.24** -1.59 2.16 0.19 

PCA -3.61 -10.17 -1.16 -2.88 0.26 -0.27** -24.11 5.55*** 0.01 0.92 4.36** 16.94** -0.27 3.01 0.14 

SPCA -2.50 -5.74 -1.29 -2.63 0.26 -6.39** -41.90 2.27*** -0.08 0.92 4.04** 16.83** -0.66 1.24 0.00 

ICA -4.51 -7.65* -3.33 -0.63 0.39 -21.10 -74.91 -7.96 -0.41 0.83 -0.67 3.47* -2.18 -0.87 -0.14 

RICA -0.09 1.38 -0.64 -0.52 0.38 -16.04 -29.40 -12.78 -0.38 0.86 3.24** 11.63** 0.16 2.36 0.22 

Notes: The table reports the 𝑅𝑂𝑆
2  as a percentage, for the alternative model against the historical average benchmark. Positive values indicate that the alternative 

model outperforms the benchmark. The alternative models are based on a range of multivariate estimation methods, using a different set of predictors for each 

index. The out-of-sample period is from January 1997 to December 2016. The 𝑅𝑂𝑆
2  is also reported for the NBER-dated recessions and expansions. The hypothesis 

of equal predictive ability is measured based on the Clark and West (2007) test. *, ** and *** indicate significance at the 10%, 5% and 1% levels.  

Additionally, the table reports the performance for mean-variance portfolios, with monthly rebalancing, for an investor with risk aversion coefficient of five. 

The ΔCER is the gain in the percentage annualized certainty equivalent return (CER) and SR is the annualized Sharpe Ratio. A 0.00 indicates a number less 

than 0.005 in absolute value. 
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Table 3.4: Mean-Variance Portfolio Performance based on Certainty Equivalent Return: Stock-Bond-Commodity Portfolios 

 Sample Covariance DCC-GARCH Covariance 

 γ=2 γ=10 γ=2 γ=10 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 

HA 5.65 5.34 5.29 5.85 3.71 4.54 3.93 4.71 5.28 5.67 5.88 6.46 4.36 5.18 4.52 5.32 

KS 6.45 7.44 6.87 7.36 3.24 2.46 2.17 1.68 6.22 6.80 6.32 6.61 2.76 1.85 1.98 1.45 

MC 7.22 8.39 10.62 11.31 4.39 5.37 5.17 6.03 6.78 8.30 10.61 11.70 4.98 6.01 5.75 6.63 

MDC 6.46 7.02 7.96 8.73 4.14 5.01 4.59 5.38 5.67 7.24 8.03 8.67 4.63 5.53 5.03 5.83 

TMC 7.03 8.06 9.75 10.41 4.33 5.28 5.02 5.86 6.61 8.13 9.82 10.77 4.94 5.90 5.57 6.42 

Rank 7.10 9.45 11.62 12.79 4.45 5.37 5.11 6.08 6.82 8.90 11.52 13.07 5.08 6.21 6.18 7.19 

C(2,PB) 6.53 7.49 9.85 11.06 3.99 5.02 5.10 6.01 6.27 7.53 9.92 11.03 4.60 5.67 5.78 6.74 

C(3,PB) 6.38 7.81 9.78 10.91 3.74 4.50 4.58 5.54 6.36 7.97 10.13 11.33 4.36 5.46 5.65 6.71 

D(1) 7.19 8.37 10.61 11.32 4.40 5.37 5.18 6.04 6.77 8.32 10.62 11.73 4.99 6.02 5.76 6.64 

D(0.9) 7.09 8.25 10.53 11.30 4.45 5.43 5.24 6.10 6.69 8.36 10.65 11.83 5.03 6.06 5.80 6.68 

Ridge 5.58 7.29 7.71 9.33 4.57 4.87 4.57 5.50 4.86 6.65 7.72 9.70 4.68 5.32 4.87 5.54 

Lasso 6.18 8.87 9.54 11.56 5.08 5.23 4.50 5.23 6.93 9.26 9.08 11.49 5.38 5.90 4.89 5.57 

EN 6.47 8.85 9.44 11.12 4.99 5.42 4.84 5.83 6.41 8.74 9.06 11.32 5.37 5.97 4.91 5.58 

Alasso 8.68 10.76 12.82 15.56 6.16 5.99 4.99 5.07 8.51 10.85 12.84 16.46 5.99 5.54 5.11 5.11 

Bridge 4.35 6.79 7.16 9.40 4.80 5.18 4.10 4.74 4.54 5.96 6.67 8.55 4.80 5.38 4.10 4.76 

SCAD 5.73 8.03 9.15 10.70 4.85 4.90 3.93 4.88 5.86 7.38 7.50 9.39 4.83 5.79 4.75 5.41 

MCP 5.79 8.50 9.28 11.37 5.22 5.61 4.73 5.68 5.94 8.02 8.15 10.76 5.44 6.48 5.32 6.39 

SICA 7.76 9.88 10.72 12.31 4.79 3.33 2.37 2.01 7.93 9.65 10.25 12.38 4.45 3.91 3.38 3.23 

PLS 7.64 9.29 11.08 11.55 4.41 4.69 3.91 4.10 7.78 9.42 10.39 11.55 4.68 4.43 3.52 3.51 

3PRF 8.84 9.77 10.01 11.09 4.40 4.69 3.44 3.60 8.26 9.53 9.79 10.29 4.43 4.12 3.01 2.73 

SPLS 8.55 10.87 13.07 14.90 4.60 3.24 2.07 1.38 8.25 10.88 13.08 14.49 4.73 3.84 2.64 2.41 

PCA 5.00 7.74 8.97 11.38 5.20 6.11 6.31 7.19 5.35 6.84 7.83 9.36 5.12 5.81 5.94 6.73 

SPCA 3.70 5.55 6.73 8.96 4.46 5.08 4.93 5.95 4.83 6.36 6.61 7.98 4.28 5.16 4.98 5.88 

ICA 5.07 5.27 4.28 5.16 3.80 4.13 3.80 4.23 5.71 6.76 5.29 5.34 3.46 3.92 3.98 4.59 

RICA 6.63 8.35 9.24 10.52 4.19 4.74 4.46 5.02 7.01 8.57 10.19 11.79 5.09 5.94 5.48 6.32 
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Table 3.4 (continued): Mean-Variance Portfolio Performance based on Certainty Equivalent Return: Stock-Bond-Commodity Portfolios 

 Ledoit-Wolf Shrinkage Covariance Graphical Lasso Covariance 

 γ=2 γ=10 γ=2 γ=10 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 

HA 5.65 5.45 5.11 5.69 3.60 4.10 3.73 4.17 5.38 5.51 4.96 5.65 4.10 5.00 4.23 5.10 

KS 6.44 7.39 6.78 6.88 2.85 1.75 2.11 1.27 6.43 7.75 7.42 8.30 4.02 4.00 3.90 3.52 

MC 7.27 8.57 10.45 11.22 4.44 5.13 5.06 5.62 7.29 8.49 10.25 10.90 4.80 5.85 5.41 6.34 

MDC 6.49 7.13 7.84 8.59 4.09 4.64 4.43 4.90 6.64 7.19 7.70 8.47 4.53 5.48 4.83 5.70 

TMC 7.08 8.21 9.52 10.24 4.37 5.04 4.90 5.44 7.18 8.05 9.29 9.97 4.77 5.78 5.26 6.18 

Rank 7.08 9.41 11.38 12.63 4.57 5.32 5.35 6.06 7.39 9.57 11.31 12.47 4.81 5.93 5.56 6.59 

C(2,PB) 6.57 7.55 9.76 11.01 4.08 4.87 5.10 5.73 6.62 8.01 10.13 10.96 4.51 5.57 5.43 6.41 

C(3,PB) 6.38 7.74 9.66 10.82 3.84 4.47 4.80 5.48 6.52 8.15 9.93 10.99 4.17 5.28 5.17 6.19 

D(1) 7.26 8.55 10.45 11.24 4.45 5.14 5.07 5.64 7.27 8.50 10.27 10.93 4.81 5.86 5.42 6.36 

D(0.9) 7.16 8.42 10.39 11.23 4.50 5.21 5.13 5.70 7.19 8.46 10.27 10.93 4.86 5.92 5.48 6.41 

Ridge 5.44 7.14 7.61 9.21 4.45 4.48 4.76 5.35 5.70 7.92 8.28 10.02 4.90 5.61 5.35 6.33 

Lasso 6.01 8.46 9.16 11.02 4.76 4.60 4.54 4.91 6.39 9.38 10.09 12.28 5.29 5.92 5.30 6.28 

EN 6.29 8.60 9.16 10.73 4.73 4.83 4.79 5.37 6.68 9.28 9.78 11.58 5.39 6.08 5.53 6.59 

Alasso 8.53 10.54 12.34 15.11 5.70 5.22 4.74 4.63 8.55 11.16 13.31 16.69 6.47 6.58 5.81 6.18 

Bridge 4.10 6.23 6.74 8.87 4.44 4.46 3.98 4.44 4.92 7.53 7.87 10.05 5.05 5.68 4.69 5.64 

SCAD 5.58 7.58 8.79 10.29 4.54 4.28 3.99 4.46 5.92 8.85 9.58 11.20 5.14 5.76 4.90 5.92 

MCP 5.62 8.08 8.98 10.95 4.90 4.96 4.81 5.29 6.01 9.17 9.95 11.91 5.46 6.44 5.67 6.66 

SICA 7.69 9.55 10.56 11.86 4.42 2.82 2.38 1.71 7.94 10.23 11.05 13.40 4.98 4.48 4.08 4.11 

PLS 7.68 9.22 10.77 11.24 4.11 4.07 3.53 3.40 7.65 9.35 10.84 11.80 4.86 5.24 4.48 4.95 

3PRF 8.89 9.80 9.77 10.66 4.05 3.96 2.99 2.88 8.51 9.26 9.76 11.03 4.75 5.04 4.05 4.38 

SPLS 8.51 10.73 12.75 14.61 4.45 2.93 1.98 1.47 8.58 10.99 13.11 14.62 4.63 3.73 2.69 3.06 

PCA 4.93 7.63 8.88 11.18 5.09 5.82 6.31 7.05 5.55 8.31 9.47 11.65 5.43 6.44 6.38 7.38 

SPCA 3.53 5.25 6.43 8.61 4.35 4.86 5.13 5.94 4.18 6.28 7.24 9.33 4.73 5.79 5.45 6.53 

ICA 4.97 5.03 3.88 4.72 3.50 3.66 3.69 3.95 5.12 5.68 4.87 5.94 3.93 4.46 4.06 4.65 

RICA 6.56 8.19 9.04 10.38 3.95 4.18 4.57 4.99 6.76 8.57 9.11 10.40 4.62 5.28 5.01 5.72 

Notes: This table reports the certainty equivalent return of the stock-bond-commodity mean-variance portfolios with monthly rebalancing. The out-of-sample 

period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-variance portfolio based on the historical 

average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. Each panel reports the certainty 

equivalent return of portfolios relying on different estimates of the covariance matrix. The portfolio performance is reported for different levels of risk aversion 

(𝛾 = 2, 10) and portfolio weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold indicate the five models with the 

best performance. 
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Table 3.5: Mean-Variance Portfolio Performance based on Sharpe Ratio: Stock-Bond-Commodity Portfolios 

 Sample Covariance DCC-GARCH Covariance 

 γ=2 γ=10 γ=2 γ=10 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

HA 0.39 0.36 0.36 0.39 0.56 0.69 0.60 0.72 0.37 0.38 0.39 0.42 0.68 0.79 0.71 0.81 

KS 0.43 0.46 0.45 0.50 0.66 0.72 0.76 0.81 0.41 0.43 0.43 0.47 0.61 0.65 0.72 0.78 

MC 0.53 0.54 0.64 0.65 0.68 0.82 0.80 0.90 0.50 0.55 0.66 0.68 0.79 0.92 0.92 1.00 

MDC 0.46 0.46 0.50 0.53 0.64 0.76 0.71 0.81 0.40 0.47 0.52 0.53 0.73 0.84 0.80 0.88 

TMC 0.51 0.52 0.60 0.61 0.67 0.80 0.78 0.88 0.49 0.54 0.62 0.64 0.79 0.90 0.89 0.98 

Rank 0.54 0.63 0.69 0.72 0.68 0.81 0.77 0.89 0.53 0.59 0.70 0.73 0.80 0.93 0.94 1.05 

C(2,PB) 0.48 0.48 0.59 0.63 0.61 0.76 0.77 0.88 0.46 0.49 0.61 0.63 0.71 0.86 0.89 0.99 

C(3,PB) 0.46 0.50 0.58 0.62 0.57 0.69 0.70 0.82 0.47 0.52 0.61 0.64 0.67 0.82 0.84 0.97 

D(1) 0.53 0.54 0.64 0.65 0.68 0.82 0.80 0.90 0.50 0.55 0.66 0.68 0.80 0.92 0.92 1.00 

D(0.9) 0.52 0.53 0.64 0.65 0.69 0.83 0.81 0.91 0.50 0.55 0.66 0.69 0.80 0.93 0.93 1.01 

Ridge 0.39 0.46 0.47 0.54 0.70 0.75 0.74 0.84 0.34 0.43 0.48 0.55 0.71 0.80 0.76 0.84 

Lasso 0.43 0.54 0.55 0.62 0.77 0.81 0.75 0.84 0.49 0.56 0.54 0.62 0.80 0.87 0.77 0.86 

EN 0.45 0.54 0.55 0.61 0.75 0.82 0.77 0.87 0.45 0.54 0.54 0.62 0.80 0.87 0.76 0.85 

Alasso 0.60 0.63 0.67 0.75 0.90 0.92 0.89 0.93 0.59 0.63 0.67 0.78 0.88 0.86 0.85 0.89 

Bridge 0.30 0.43 0.45 0.54 0.73 0.79 0.70 0.78 0.31 0.39 0.43 0.51 0.73 0.82 0.69 0.79 

SCAD 0.39 0.49 0.53 0.59 0.75 0.79 0.71 0.81 0.40 0.46 0.46 0.54 0.74 0.86 0.77 0.86 

MCP 0.40 0.52 0.54 0.61 0.78 0.85 0.77 0.87 0.41 0.50 0.49 0.59 0.81 0.93 0.81 0.93 

SICA 0.52 0.57 0.59 0.64 0.78 0.77 0.77 0.81 0.53 0.56 0.57 0.64 0.75 0.79 0.80 0.85 

PLS 0.52 0.55 0.60 0.61 0.71 0.80 0.81 0.86 0.54 0.56 0.58 0.61 0.74 0.77 0.78 0.82 

3PRF 0.60 0.57 0.56 0.60 0.71 0.79 0.77 0.82 0.56 0.56 0.55 0.57 0.70 0.73 0.73 0.77 

SPLS 0.60 0.64 0.69 0.73 0.74 0.71 0.68 0.70 0.58 0.64 0.70 0.72 0.75 0.75 0.70 0.74 

PCA 0.36 0.51 0.55 0.65 0.82 0.92 0.92 1.01 0.39 0.46 0.49 0.55 0.80 0.87 0.87 0.96 

SPCA 0.25 0.37 0.43 0.53 0.68 0.77 0.77 0.88 0.35 0.42 0.43 0.49 0.66 0.78 0.77 0.87 

ICA 0.35 0.36 0.31 0.36 0.59 0.65 0.61 0.69 0.40 0.44 0.36 0.37 0.54 0.63 0.63 0.72 

RICA 0.46 0.52 0.54 0.58 0.65 0.73 0.71 0.78 0.51 0.54 0.60 0.64 0.77 0.87 0.81 0.91 
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Table 3.5 (continued): Mean-Variance Portfolio Performance based on Sharpe Ratio: Stock-Bond-Commodity Portfolios 

 Ledoit-Wolf Shrinkage Covariance Graphical Lasso Covariance 

 γ=2 γ=10 γ=2 γ=10 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

HA 0.39 0.36 0.35 0.38 0.55 0.65 0.57 0.66 0.38 0.37 0.34 0.38 0.64 0.77 0.67 0.78 

KS 0.43 0.46 0.45 0.48 0.63 0.70 0.76 0.80 0.43 0.47 0.47 0.52 0.70 0.78 0.81 0.85 

MC 0.53 0.55 0.63 0.65 0.68 0.77 0.77 0.83 0.54 0.56 0.64 0.65 0.79 0.92 0.88 0.98 

MDC 0.46 0.46 0.50 0.52 0.62 0.71 0.68 0.74 0.48 0.48 0.50 0.53 0.73 0.85 0.78 0.88 

TMC 0.51 0.53 0.59 0.60 0.67 0.76 0.75 0.81 0.53 0.53 0.60 0.61 0.79 0.91 0.86 0.96 

Rank 0.54 0.62 0.68 0.71 0.70 0.80 0.80 0.88 0.57 0.65 0.70 0.72 0.77 0.92 0.85 0.97 

C(2,PB) 0.48 0.49 0.59 0.63 0.62 0.74 0.77 0.84 0.49 0.52 0.62 0.64 0.71 0.86 0.84 0.96 

C(3,PB) 0.46 0.49 0.57 0.61 0.59 0.70 0.73 0.82 0.48 0.53 0.60 0.63 0.64 0.80 0.78 0.90 

D(1) 0.53 0.55 0.63 0.65 0.68 0.77 0.77 0.83 0.54 0.56 0.64 0.65 0.79 0.92 0.88 0.98 

D(0.9) 0.52 0.54 0.63 0.65 0.69 0.78 0.78 0.84 0.53 0.56 0.65 0.65 0.80 0.93 0.89 0.99 

Ridge 0.37 0.45 0.47 0.53 0.69 0.73 0.76 0.84 0.40 0.50 0.51 0.57 0.74 0.83 0.80 0.91 

Lasso 0.42 0.52 0.54 0.60 0.74 0.77 0.75 0.82 0.45 0.57 0.58 0.65 0.79 0.87 0.80 0.91 

EN 0.44 0.53 0.54 0.59 0.73 0.78 0.76 0.84 0.47 0.57 0.58 0.63 0.80 0.88 0.82 0.94 

Alasso 0.58 0.61 0.65 0.73 0.86 0.87 0.87 0.91 0.59 0.65 0.70 0.80 0.93 0.95 0.91 0.96 

Bridge 0.28 0.40 0.43 0.52 0.69 0.74 0.69 0.77 0.34 0.48 0.48 0.57 0.76 0.84 0.73 0.84 

SCAD 0.38 0.47 0.52 0.57 0.72 0.75 0.71 0.79 0.41 0.54 0.56 0.61 0.77 0.85 0.76 0.87 

MCP 0.39 0.50 0.53 0.60 0.75 0.80 0.77 0.85 0.42 0.56 0.58 0.64 0.81 0.92 0.84 0.94 

SICA 0.51 0.55 0.58 0.63 0.76 0.75 0.77 0.80 0.53 0.59 0.60 0.67 0.78 0.80 0.81 0.86 

PLS 0.52 0.55 0.59 0.60 0.69 0.77 0.79 0.83 0.53 0.56 0.60 0.62 0.75 0.81 0.81 0.87 

3PRF 0.60 0.57 0.55 0.58 0.69 0.76 0.75 0.79 0.59 0.55 0.55 0.60 0.74 0.80 0.77 0.83 

SPLS 0.59 0.63 0.68 0.72 0.73 0.70 0.67 0.71 0.60 0.65 0.70 0.73 0.73 0.71 0.66 0.73 

PCA 0.35 0.50 0.54 0.63 0.78 0.86 0.91 0.99 0.41 0.55 0.59 0.67 0.89 0.98 0.93 1.03 

SPCA 0.24 0.35 0.41 0.51 0.66 0.75 0.79 0.88 0.29 0.42 0.46 0.55 0.73 0.87 0.81 0.93 

ICA 0.34 0.34 0.29 0.35 0.56 0.62 0.60 0.67 0.36 0.38 0.33 0.39 0.60 0.69 0.63 0.72 

RICA 0.46 0.51 0.53 0.58 0.63 0.69 0.72 0.79 0.48 0.54 0.54 0.58 0.70 0.79 0.75 0.84 

Notes: This table reports the Sharpe Ratio of the stock-bond-commodity mean-variance portfolios with monthly rebalancing. The out-of-sample period is from 

January 1997 to December 2016. The benchmarks are the equal-weighted portfolio and the mean-variance portfolio based on the historical average forecast. The 

alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. Each panel reports the Sharpe Ratio of portfolios 

relying on different estimates of the covariance matrix. The portfolio performance is reported for different levels of risk aversion (𝛾 = 2, 10) and portfolio weight 

constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold indicate the five models with the best performance. 
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Table 3.6: Mean-Variance Portfolio Performance based on Certainty Equivalent Return: Stock-Bond-Commodity Portfolios (Business Cycles) 

 γ=2 γ=10 

 Recession Expansion Recession Expansion 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW -17.02 -17.02 -17.02 -17.02 6.43 6.43 6.43 6.43 -28.84 -28.84 -28.84 -28.84 3.34 3.34 3.34 3.34 

HA -22.11 -31.34 -31.71 -34.81 9.08 9.87 9.88 10.90 -6.03 -7.32 -6.03 -7.32 4.91 6.00 5.16 6.19 

KS -6.73 -12.47 4.20 -1.47 8.05 9.84 7.12 8.32 -6.27 -9.09 2.93 -0.27 4.35 3.79 2.16 1.95 

MC -2.43 -5.40 12.19 10.92 8.39 10.07 10.40 11.32 1.01 0.84 4.72 3.95 4.80 5.91 5.21 6.26 

MDC -12.71 -17.67 -10.32 -11.61 8.81 10.05 10.19 11.21 -2.47 -3.45 -1.08 -2.38 4.95 6.04 5.27 6.31 

TMC -3.60 -7.02 5.97 4.64 8.32 9.90 10.18 11.09 0.27 -0.11 3.22 2.30 4.83 5.93 5.23 6.27 

Rank 0.75 2.51 20.75 20.55 7.87 10.29 10.49 11.83 2.98 3.51 9.23 9.10 4.62 5.58 4.62 5.71 

C(2,PB) -4.66 -4.76 14.01 15.13 7.89 8.98 9.32 10.53 1.74 2.04 8.23 7.80 4.26 5.37 4.71 5.78 

C(3,PB) -5.19 -5.08 15.25 16.00 7.80 9.38 9.09 10.27 1.80 2.05 9.29 9.16 3.97 4.79 4.03 5.12 

D(1) -2.45 -5.41 12.28 11.25 8.36 10.05 10.38 11.30 1.06 0.91 4.83 4.06 4.80 5.91 5.21 6.26 

D(0.9) -2.64 -6.00 11.96 11.45 8.27 9.98 10.33 11.25 1.13 1.00 4.92 4.15 4.85 5.96 5.27 6.32 

Ridge -4.59 -9.25 6.97 2.91 6.81 9.29 7.76 10.05 -4.49 -6.71 1.38 0.93 5.69 6.29 4.92 6.00 

Lasso -0.50 -3.24 8.47 4.57 6.98 10.32 9.63 12.35 -3.66 -6.22 -1.18 -0.73 6.15 6.64 5.15 5.90 

EN 1.94 -1.47 12.58 8.29 7.01 10.08 9.03 11.41 -3.19 -5.80 0.65 0.97 6.00 6.80 5.31 6.37 

Alasso 7.85 7.07 32.93 35.07 8.76 11.17 10.40 13.20 2.83 1.75 10.21 10.83 6.54 6.47 4.45 4.45 

Bridge -4.82 -5.86 10.84 9.55 5.45 8.29 6.68 9.33 -3.94 -4.43 3.13 2.31 5.87 6.35 4.18 4.99 

SCAD -2.09 -5.00 5.26 1.81 6.67 9.60 9.58 11.73 -4.18 -7.28 -3.80 -3.89 5.96 6.40 4.83 5.89 

MCP -0.57 -2.98 9.47 6.55 6.54 9.87 9.22 11.90 -1.10 -1.52 2.69 2.63 5.98 6.47 4.94 6.01 

SICA 4.05 5.94 24.02 22.53 8.19 10.31 9.09 11.03 -0.95 -3.84 7.98 6.96 5.44 4.14 1.76 1.47 

PLS 10.51 14.45 44.37 45.23 7.28 8.64 7.15 7.57 2.88 1.82 13.10 13.92 4.57 5.01 3.04 3.16 

3PRF 12.28 11.49 39.48 40.91 8.40 9.53 6.51 7.55 1.66 -0.03 10.30 10.94 4.71 5.23 2.78 2.89 

SPLS 7.62 9.75 33.16 33.20 8.65 10.98 10.65 12.68 1.18 -2.33 4.41 1.52 4.99 3.88 1.75 1.31 

PCA -7.79 -7.91 6.41 7.69 6.57 9.66 9.25 11.79 1.02 0.78 8.60 8.50 5.71 6.75 6.07 7.05 

SPCA -8.06 -8.09 8.00 10.23 5.14 7.22 6.55 8.77 1.62 1.91 8.33 9.00 4.81 5.45 4.59 5.63 

ICA -12.54 -18.18 -2.63 -0.63 7.21 8.13 5.09 5.83 -1.66 -2.64 5.57 3.71 4.46 4.95 3.57 4.27 

RICA 3.88 3.28 25.84 23.01 6.95 8.93 7.23 9.00 -0.51 -1.54 5.89 4.37 4.72 5.45 4.34 5.13 

Notes: This table reports the certainty equivalent return of the stock-bond-commodity mean-variance portfolios with monthly rebalancing during NBER-dated 

recessions and expansions. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-

variance portfolio based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction 

models. All mean-variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk 

aversion (𝛾 = 2, 10) and portfolio weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold indicate the five models 

with the best performance. 
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Table 3.7: Mean-Variance Portfolio Performance based on Sharpe Ratio: Stock-Bond-Commodity Portfolios (Business Cycles) 

 γ=2 γ=10 

 Recession Expansion Recession Expansion 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW -0.92 -0.92 -0.92 -0.92 0.57 0.57 0.57 0.57 -0.92 -0.92 -0.92 -0.92 0.57 0.57 0.57 0.57 

HA -0.90 -0.91 -0.98 -0.94 0.68 0.64 0.63 0.65 -0.53 -0.34 -0.53 -0.34 0.78 0.92 0.82 0.95 

KS -0.19 -0.15 0.48 0.44 0.54 0.57 0.45 0.51 0.25 0.38 1.26 1.21 0.73 0.78 0.68 0.74 

MC -0.14 -0.15 0.65 0.60 0.62 0.65 0.65 0.67 0.16 0.28 0.75 0.71 0.75 0.90 0.81 0.95 

MDC -0.61 -0.64 -0.24 -0.25 0.65 0.65 0.64 0.66 -0.25 -0.09 0.05 0.12 0.78 0.93 0.84 0.96 

TMC -0.23 -0.25 0.41 0.36 0.62 0.64 0.64 0.66 0.05 0.17 0.57 0.54 0.76 0.91 0.82 0.95 

Rank 0.04 0.20 0.98 0.97 0.61 0.68 0.65 0.68 0.47 0.58 1.20 1.20 0.70 0.83 0.70 0.85 

C(2,PB) -0.31 -0.15 0.72 0.75 0.59 0.57 0.57 0.61 0.26 0.41 1.12 1.09 0.65 0.81 0.71 0.86 

C(3,PB) -0.34 -0.16 0.76 0.78 0.58 0.59 0.55 0.59 0.28 0.41 1.21 1.21 0.60 0.72 0.61 0.76 

D(1) -0.15 -0.15 0.65 0.61 0.62 0.65 0.65 0.66 0.17 0.29 0.76 0.72 0.75 0.90 0.81 0.95 

D(0.9) -0.16 -0.20 0.64 0.62 0.62 0.64 0.65 0.66 0.17 0.29 0.77 0.73 0.76 0.91 0.82 0.96 

Ridge -0.09 -0.15 0.47 0.38 0.49 0.58 0.48 0.57 -0.21 -0.13 0.82 0.85 0.84 0.90 0.75 0.87 

Lasso 0.09 0.09 0.52 0.45 0.50 0.63 0.56 0.66 -0.05 -0.06 0.49 0.56 0.89 0.94 0.80 0.88 

EN 0.20 0.12 0.66 0.53 0.50 0.61 0.54 0.62 -0.09 -0.07 0.62 0.69 0.87 0.96 0.80 0.91 

Alasso 0.50 0.46 1.23 1.23 0.62 0.66 0.58 0.67 0.63 0.66 1.44 1.48 0.94 0.95 0.80 0.84 

Bridge -0.07 0.06 0.60 0.58 0.38 0.52 0.43 0.54 -0.11 0.00 0.88 0.89 0.86 0.91 0.68 0.78 

SCAD -0.01 -0.01 0.42 0.36 0.46 0.58 0.55 0.63 -0.10 -0.12 0.34 0.40 0.87 0.92 0.78 0.89 

MCP 0.09 0.09 0.55 0.49 0.46 0.60 0.55 0.64 0.16 0.24 0.71 0.75 0.87 0.93 0.78 0.89 

SICA 0.32 0.45 0.95 0.91 0.56 0.60 0.53 0.60 0.52 0.52 1.36 1.36 0.83 0.80 0.67 0.72 

PLS 0.65 0.73 1.56 1.49 0.50 0.52 0.45 0.48 0.65 0.64 1.61 1.66 0.72 0.82 0.67 0.72 

3PRF 0.72 0.63 1.43 1.39 0.58 0.57 0.42 0.48 0.51 0.47 1.48 1.52 0.74 0.84 0.65 0.71 

SPLS 0.49 0.56 1.27 1.18 0.61 0.65 0.60 0.66 0.48 0.36 1.00 0.92 0.77 0.75 0.63 0.67 

PCA -0.63 -0.43 0.44 0.49 0.48 0.62 0.58 0.67 0.17 0.29 1.23 1.25 0.90 1.01 0.92 1.02 

SPCA -0.66 -0.45 0.50 0.58 0.36 0.47 0.42 0.52 0.26 0.40 1.26 1.31 0.73 0.81 0.70 0.83 

ICA -0.47 -0.45 0.09 0.20 0.52 0.52 0.35 0.39 -0.05 0.01 0.88 0.79 0.68 0.75 0.57 0.68 

RICA 0.30 0.33 1.03 0.92 0.50 0.56 0.45 0.53 0.55 0.63 1.14 1.11 0.72 0.81 0.66 0.76 

Notes: This table reports the Sharpe Ratio of the stock-bond-commodity mean-variance portfolios with monthly rebalancing during NBER-dated recessions and 

expansions. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equal-weighted portfolio and the mean-variance portfolio 

based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. All mean-

variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk aversion (𝛾 = 2, 10) 

and portfolio weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold indicate the five models with the best 

performance. 
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Table 3.8: Mean-Variance Portfolio Performance based on Certainty Equivalent Return and Sharpe Ratio: Stock-Bond Portfolios 

 Certainty Equivalent Return Sharpe Ratio 

 γ=2 γ=10 γ=2 γ=10 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 6.39 6.39 6.39 6.39 4.00 4.00 4.00 4.00 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 

HA 5.86 6.36 4.85 5.70 4.47 5.44 4.47 5.44 0.41 0.42 0.33 0.38 0.71 0.84 0.71 0.84 

KS 8.60 11.67 11.07 14.40 6.16 6.08 5.37 5.25 0.65 0.72 0.67 0.76 0.90 0.93 0.88 0.92 

MC 7.77 8.62 7.58 8.42 5.03 6.09 5.07 6.10 0.57 0.55 0.49 0.52 0.82 0.96 0.83 0.96 

MDC 6.81 7.54 6.03 7.07 4.78 5.78 4.75 5.75 0.49 0.49 0.40 0.45 0.78 0.90 0.77 0.90 

TMC 7.53 8.33 6.96 7.80 4.96 5.99 4.97 5.99 0.55 0.54 0.46 0.49 0.82 0.94 0.82 0.94 

Rank 7.97 10.06 8.98 10.22 4.98 6.12 5.16 6.26 0.61 0.66 0.58 0.61 0.79 0.94 0.80 0.95 

C(2,PB) 7.21 8.29 7.26 8.22 4.55 5.67 4.74 5.79 0.53 0.53 0.47 0.50 0.71 0.87 0.74 0.88 

C(3,PB) 7.08 8.50 7.22 8.53 4.13 5.26 4.37 5.45 0.52 0.54 0.46 0.52 0.63 0.80 0.67 0.82 

D(1) 7.75 8.62 7.59 8.44 5.03 6.09 5.07 6.10 0.57 0.55 0.49 0.52 0.82 0.96 0.83 0.96 

D(0.9) 7.68 8.59 7.57 8.52 5.06 6.13 5.11 6.14 0.56 0.55 0.49 0.52 0.83 0.96 0.84 0.96 

Ridge 7.80 9.32 8.38 9.67 5.47 6.31 5.59 6.78 0.58 0.58 0.52 0.56 0.82 0.91 0.83 0.96 

Lasso 7.71 9.91 8.54 10.10 5.44 6.07 5.13 6.40 0.57 0.61 0.53 0.57 0.81 0.89 0.79 0.92 

EN 7.36 9.30 7.98 9.37 5.55 6.50 5.65 6.88 0.54 0.57 0.50 0.54 0.82 0.93 0.84 0.97 

Alasso 10.15 13.20 11.73 14.41 6.50 6.29 4.93 5.25 0.82 0.84 0.73 0.78 0.93 0.94 0.82 0.89 

Bridge 7.46 9.32 7.56 8.32 5.37 6.43 5.08 6.26 0.55 0.58 0.48 0.50 0.80 0.92 0.77 0.90 

SCAD 7.75 9.45 8.05 9.56 5.23 6.13 4.90 6.13 0.57 0.58 0.50 0.55 0.79 0.90 0.77 0.90 

MCP 7.66 9.85 8.41 10.23 5.66 6.97 5.82 7.01 0.57 0.60 0.52 0.58 0.84 0.98 0.86 0.98 

SICA 8.95 11.90 10.65 13.15 5.90 5.41 4.23 4.16 0.69 0.73 0.65 0.71 0.87 0.88 0.80 0.86 

PLS 8.66 11.22 10.58 12.34 5.75 6.21 5.44 5.99 0.67 0.71 0.66 0.68 0.85 0.90 0.82 0.89 

3PRF 8.62 10.50 10.10 11.74 5.31 5.67 4.86 5.27 0.68 0.66 0.63 0.65 0.79 0.85 0.77 0.83 

SPLS 7.70 9.66 8.26 9.66 4.04 4.41 2.95 3.23 0.59 0.61 0.52 0.56 0.66 0.74 0.62 0.70 

PCA 6.30 8.24 6.42 8.84 5.43 6.44 5.30 6.31 0.47 0.54 0.43 0.54 0.91 1.01 0.85 0.97 

SPCA 5.78 7.20 5.17 7.08 4.92 6.07 4.63 5.75 0.42 0.47 0.35 0.45 0.77 0.93 0.71 0.86 

ICA 7.55 9.23 7.90 9.83 5.16 5.98 4.83 5.67 0.57 0.59 0.51 0.58 0.80 0.89 0.74 0.85 

RICA 6.38 8.51 6.00 7.80 5.12 5.85 3.93 4.83 0.48 0.56 0.40 0.49 0.82 0.88 0.60 0.73 

Notes: This table reports the certainty equivalent return and Sharpe Ratio of the stock-bond mean-variance portfolios with monthly rebalancing. The out-of-

sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-variance portfolio based on the 

historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. All mean-variance 

portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk aversion (𝛾 = 2, 10) and 

portfolio weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold indicate the five models with the best performance. 
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Table 3.9: Mean-Variance Portfolio Performance based on Certainty Equivalent Return: Stock-Bond Portfolios (Business Cycles) 

 γ=2 γ=10 

 Recession Expansion Recession Expansion 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW -6.92 -6.92 -6.92 -6.92 8.02 8.02 8.02 8.02 -12.88 -12.88 -12.88 -12.88 6.11 6.11 6.11 6.11 

HA -20.12 -22.83 -23.58 -23.51 9.06 9.96 8.36 9.31 -3.00 -3.71 -3.00 -3.71 5.39 6.56 5.39 6.56 

KS 0.72 -0.35 6.53 6.72 9.55 13.12 11.61 15.30 -0.44 -1.97 3.33 4.88 6.96 7.04 5.57 5.24 

MC -5.26 -7.88 -4.32 -3.44 9.36 10.63 9.02 9.86 1.39 1.41 1.75 1.52 5.47 6.65 5.47 6.65 

MDC -12.11 -14.76 -15.52 -14.70 9.13 10.29 8.68 9.75 -1.03 -1.49 -1.26 -1.74 5.49 6.66 5.49 6.66 

TMC -5.88 -7.95 -7.46 -6.63 9.17 10.32 8.72 9.56 0.85 0.62 0.91 0.65 5.46 6.64 5.46 6.64 

Rank -1.10 0.83 5.65 6.62 9.07 11.18 9.37 10.65 3.29 3.80 5.46 5.64 5.18 6.39 5.11 6.31 

C(2,PB) -5.68 -5.23 -1.23 1.11 8.78 9.94 8.28 9.06 2.13 2.55 3.80 3.65 4.84 6.04 4.84 6.04 

C(3,PB) -5.52 -4.54 -1.29 1.81 8.62 10.09 8.25 9.33 2.51 2.89 4.71 4.70 4.32 5.53 4.31 5.52 

D(1) -5.25 -7.74 -4.11 -3.21 9.34 10.62 9.00 9.85 1.43 1.46 1.82 1.58 5.46 6.64 5.46 6.64 

D(0.9) -5.23 -7.48 -3.72 -2.64 9.25 10.56 8.94 9.88 1.50 1.56 1.92 1.68 5.50 6.67 5.50 6.67 

Ridge -5.20 -11.72 -6.30 -10.04 9.39 11.91 10.17 12.08 -3.32 -4.97 -0.50 0.51 6.57 7.72 6.31 7.51 

Lasso -2.45 -6.57 -1.16 -4.39 8.95 11.91 9.71 11.84 -2.72 -4.76 -0.49 0.80 6.45 7.41 5.78 7.05 

EN -3.42 -9.54 -4.09 -9.73 8.67 11.61 9.44 11.70 -3.57 -5.61 -1.22 -0.13 6.70 8.02 6.46 7.70 

Alasso -0.30 -2.73 2.93 1.56 11.43 15.14 12.78 15.95 0.37 0.90 5.29 6.90 7.23 6.93 4.85 5.01 

Bridge -3.19 -7.68 -2.32 -7.62 8.76 11.39 8.74 10.25 -2.89 -2.21 0.73 1.53 6.40 7.50 5.58 6.81 

SCAD -4.04 -7.86 -3.88 -6.87 9.19 11.56 9.49 11.54 -3.46 -5.95 -3.13 -2.32 6.32 7.64 5.86 7.13 

MCP -4.04 -7.49 -3.30 -4.96 9.09 11.96 9.82 12.05 -0.30 0.11 3.25 3.97 6.40 7.82 6.11 7.35 

SICA 0.26 -1.79 5.06 2.94 10.01 13.56 11.31 14.36 -0.05 -1.27 4.19 2.72 6.61 6.18 4.19 4.28 

PLS 4.19 7.12 15.53 17.86 9.19 11.71 9.97 11.65 3.35 2.79 8.71 10.12 6.03 6.61 5.03 5.47 

3PRF 3.23 2.99 10.97 10.71 9.27 11.41 9.97 11.84 1.52 0.25 5.20 6.44 5.76 6.33 4.80 5.10 

SPLS -2.75 -3.20 0.23 0.22 8.98 11.24 9.23 10.80 -0.71 -3.17 -3.06 -4.70 4.63 5.34 3.65 4.17 

PCA -8.08 -8.84 -10.35 -9.23 8.07 10.33 8.47 11.05 0.80 0.54 -1.24 -1.62 6.00 7.15 6.09 7.26 

SPCA -8.23 -8.75 -7.65 -6.05 7.50 9.15 6.73 8.68 1.35 1.63 1.73 2.16 5.35 6.60 4.97 6.17 

ICA -2.22 -2.45 3.57 7.26 8.73 10.64 8.40 10.12 2.83 2.82 7.38 7.19 5.44 6.35 4.51 5.47 

RICA -3.74 -4.82 -2.99 -4.41 7.61 10.14 7.08 9.27 1.16 0.40 -2.24 -3.49 5.60 6.49 4.64 5.80 

Notes: This table reports the certainty equivalent return of the stock-bond mean-variance portfolios with monthly rebalancing during NBER-dated recessions 

and expansions. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-variance 

portfolio based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. 

All mean-variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk aversion 

(𝛾 = 2, 10) and portfolio weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold are the five models with the best 

performance. 
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Table 3.10: Mean-Variance Portfolio Performance based on Sharpe Ratio: Stock-Bond Portfolios (Business Cycles) 

 γ=2 γ=10 

 Recession Expansion Recession Expansion 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW -0.59 -0.59 -0.59 -0.59 0.91 0.91 0.91 0.91 -0.59 -0.59 -0.59 -0.59 0.91 0.91 0.91 0.91 

HA -0.90 -0.78 -0.86 -0.78 0.67 0.64 0.54 0.56 -0.31 -0.11 -0.31 -0.11 0.91 1.05 0.91 1.05 

KS 0.05 0.09 0.43 0.45 0.73 0.80 0.71 0.81 0.30 0.39 0.85 0.96 0.98 1.01 0.89 0.91 

MC -0.36 -0.32 -0.10 -0.05 0.70 0.68 0.58 0.59 0.19 0.33 0.29 0.36 0.91 1.06 0.91 1.06 

MDC -0.71 -0.67 -0.72 -0.64 0.68 0.66 0.56 0.58 -0.15 0.03 -0.20 -0.01 0.93 1.07 0.93 1.07 

TMC -0.40 -0.35 -0.30 -0.24 0.68 0.66 0.56 0.57 0.11 0.24 0.13 0.24 0.92 1.07 0.92 1.07 

Rank -0.11 0.09 0.39 0.45 0.71 0.72 0.61 0.63 0.54 0.63 0.84 0.87 0.82 0.98 0.80 0.97 

C(2,PB) -0.38 -0.19 0.05 0.18 0.66 0.63 0.53 0.54 0.33 0.47 0.64 0.66 0.76 0.93 0.76 0.93 

C(3,PB) -0.37 -0.15 0.05 0.22 0.64 0.63 0.52 0.55 0.40 0.52 0.75 0.77 0.66 0.83 0.66 0.83 

D(1) -0.36 -0.31 -0.09 -0.04 0.70 0.68 0.58 0.59 0.20 0.33 0.30 0.37 0.91 1.06 0.91 1.06 

D(0.9) -0.36 -0.33 -0.09 -0.03 0.69 0.67 0.58 0.59 0.21 0.34 0.32 0.39 0.92 1.07 0.92 1.07 

Ridge -0.40 -0.54 -0.19 -0.28 0.71 0.72 0.62 0.66 -0.34 -0.19 0.38 0.51 0.97 1.08 0.92 1.05 

Lasso -0.14 -0.17 0.11 0.07 0.68 0.72 0.59 0.65 -0.15 -0.09 0.43 0.56 0.93 1.02 0.85 0.98 

EN -0.23 -0.36 -0.06 -0.21 0.65 0.71 0.58 0.64 -0.34 -0.21 0.35 0.47 0.97 1.10 0.93 1.06 

Alasso -0.01 -0.03 0.27 0.25 0.95 0.97 0.81 0.86 0.34 0.51 0.93 1.05 1.01 0.99 0.81 0.87 

Bridge -0.21 -0.23 0.05 -0.09 0.67 0.70 0.54 0.58 -0.24 0.00 0.44 0.55 0.93 1.04 0.82 0.96 

SCAD -0.24 -0.21 0.00 0.00 0.69 0.70 0.58 0.63 -0.22 -0.17 0.24 0.35 0.91 1.05 0.86 0.99 

MCP -0.24 -0.20 0.02 0.05 0.69 0.73 0.60 0.65 0.06 0.24 0.65 0.75 0.92 1.07 0.88 1.01 

SICA 0.01 0.01 0.36 0.31 0.79 0.83 0.69 0.76 0.36 0.51 0.95 0.98 0.94 0.94 0.78 0.84 

PLS 0.32 0.49 0.96 0.98 0.72 0.73 0.62 0.65 0.58 0.58 1.16 1.28 0.88 0.94 0.77 0.84 

3PRF 0.24 0.24 0.66 0.61 0.73 0.72 0.62 0.66 0.33 0.33 0.86 0.98 0.85 0.91 0.76 0.81 

SPLS -0.37 -0.25 0.05 0.09 0.68 0.69 0.57 0.60 -0.02 0.00 0.25 0.26 0.72 0.83 0.68 0.77 

PCA -0.65 -0.49 -0.50 -0.34 0.62 0.67 0.55 0.66 0.13 0.26 0.12 0.22 1.03 1.16 1.03 1.17 

SPCA -0.67 -0.49 -0.34 -0.18 0.57 0.59 0.44 0.53 0.20 0.36 0.42 0.51 0.84 1.01 0.76 0.93 

ICA -0.10 0.00 0.30 0.47 0.68 0.69 0.55 0.60 0.49 0.55 1.06 1.03 0.85 0.94 0.69 0.82 

RICA -0.35 -0.23 -0.07 -0.05 0.59 0.67 0.47 0.57 0.31 0.44 0.26 0.28 0.93 1.01 0.73 0.90 

Notes: This table reports the Sharpe Ratio of the stock-bond mean-variance portfolios with monthly rebalancing during NBER-dated recessions and expansions. 

The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equal-weighted portfolio and the mean-variance portfolio based on 

the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. All mean-variance 

portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported for different levels of risk aversion (𝛾 = 2, 10) and 

portfolio weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold are the five models with the best performance. 
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Table 3.11: Mean-Variance Portfolio Performance based on Certainty Equivalent Return and Sharpe Ratio: Stock-Bond-Commodity Portfolios (Transaction 

Costs - Monthly Rebalancing) 

 Certainty Equivalent Return Sharpe Ratio 

 γ=2 γ=10 γ=2 γ=10 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

HA 5.46 4.94 4.84 5.38 3.54 4.37 3.76 4.53 0.38 0.34 0.33 0.36 0.53 0.67 0.57 0.69 

KS 1.48 -0.11 -5.34 -7.22 -1.43 -3.78 -6.39 -7.80 0.12 0.13 0.03 0.07 0.24 0.27 0.21 0.25 

MC 5.97 6.15 7.61 7.84 3.53 4.47 4.14 5.00 0.43 0.41 0.48 0.48 0.53 0.68 0.63 0.75 

MDC 5.78 5.73 6.14 6.74 3.63 4.49 3.98 4.76 0.41 0.38 0.40 0.43 0.55 0.68 0.60 0.72 

TMC 5.89 6.02 7.05 7.36 3.57 4.50 4.12 4.95 0.42 0.40 0.45 0.46 0.53 0.68 0.63 0.75 

Rank 4.78 5.97 6.59 6.93 2.97 3.76 3.09 4.05 0.34 0.40 0.42 0.44 0.44 0.58 0.50 0.64 

C(2,PB) 4.74 4.52 5.68 6.22 2.80 3.76 3.55 4.47 0.33 0.31 0.38 0.40 0.42 0.58 0.55 0.68 

C(3,PB) 4.16 4.33 4.72 4.92 2.18 2.76 2.42 3.37 0.29 0.30 0.33 0.35 0.34 0.46 0.44 0.58 

D(1) 5.94 6.11 7.58 7.82 3.53 4.47 4.14 5.00 0.43 0.40 0.48 0.48 0.53 0.68 0.63 0.75 

D(0.9) 5.81 5.96 7.47 7.75 3.57 4.52 4.18 5.04 0.42 0.40 0.47 0.48 0.54 0.69 0.64 0.76 

Ridge 1.71 1.46 -1.05 -1.37 1.21 0.84 -0.68 0.15 0.11 0.16 0.07 0.11 0.28 0.33 0.23 0.35 

Lasso 2.58 3.52 1.26 1.67 1.85 1.20 -0.83 -0.32 0.17 0.27 0.19 0.25 0.40 0.43 0.27 0.37 

EN 2.69 3.19 0.88 0.64 1.53 1.16 -0.76 0.04 0.18 0.25 0.16 0.20 0.34 0.39 0.24 0.35 

Alasso 3.89 3.78 2.17 3.07 2.52 1.43 -1.29 -1.70 0.27 0.29 0.26 0.33 0.52 0.53 0.42 0.46 

Bridge 0.37 0.85 -2.08 -1.45 1.24 0.77 -1.83 -1.47 0.02 0.13 0.04 0.12 0.30 0.34 0.16 0.25 

SCAD 1.48 1.64 -0.80 -1.01 1.06 0.09 -2.29 -1.54 0.10 0.18 0.12 0.17 0.33 0.35 0.18 0.29 

MCP 2.48 3.56 1.61 2.19 2.09 1.74 -0.53 0.22 0.17 0.27 0.20 0.26 0.42 0.47 0.30 0.41 

SICA 2.03 1.29 -2.37 -2.84 0.38 -2.43 -5.69 -6.68 0.15 0.18 0.13 0.18 0.37 0.34 0.24 0.28 

PLS 1.57 0.38 -2.82 -4.67 -0.49 -1.37 -4.76 -4.99 0.11 0.13 0.08 0.10 0.21 0.27 0.22 0.27 

3PRF 2.69 0.77 -3.95 -5.34 -0.65 -1.65 -5.59 -5.95 0.19 0.15 0.04 0.07 0.19 0.25 0.15 0.20 

SPLS 2.17 1.51 -1.18 -1.94 -0.64 -3.53 -7.28 -8.65 0.14 0.17 0.12 0.16 0.21 0.18 0.05 0.10 

PCA 0.92 1.82 0.98 2.04 2.92 3.74 3.42 4.29 0.03 0.15 0.14 0.21 0.43 0.58 0.57 0.69 

SPCA -0.61 -0.71 -1.86 -1.23 1.88 2.25 1.38 2.34 -0.09 0.00 0.00 0.07 0.29 0.41 0.40 0.52 

ICA -0.34 -2.96 -7.75 -8.96 0.20 0.14 -1.56 -1.22 -0.02 -0.07 -0.26 -0.24 0.06 0.16 -0.05 0.09 

RICA 0.55 -0.71 -4.06 -4.89 0.38 0.49 -1.05 -0.62 0.02 0.03 -0.07 -0.04 0.14 0.24 0.08 0.19 

Notes: This table reports the certainty equivalent return and Sharpe Ratio of the stock-bond-commodity mean-variance portfolios with monthly rebalancing and 

transaction costs set to 50 bps for each asset. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted 

portfolio and the mean-variance portfolio based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated 

by multivariate prediction models. All mean-variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported 

for different levels of risk aversion (𝛾 = 2, 10) and portfolio weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold 

indicate the five models with the best performance. 
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Table 3.12: Mean-Variance Portfolio Performance based on Certainty Equivalent Return and Sharpe Ratio: Stock-Bond-Commodity Portfolios (Transaction 

Costs - Quarterly Rebalancing) 

 Certainty Equivalent Return Sharpe Ratio 

 γ=2 γ=10 γ=2 γ=10 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

HA 4.73 4.51 3.80 4.39 3.92 4.84 4.04 4.93 0.35 0.30 0.29 0.32 0.51 0.64 0.54 0.66 

KS 7.12 8.99 9.45 10.40 3.64 3.32 2.85 2.08 0.46 0.51 0.54 0.57 0.64 0.69 0.72 0.74 

MC 6.61 7.34 7.53 8.34 4.63 5.67 4.95 5.94 0.48 0.49 0.50 0.52 0.65 0.78 0.72 0.84 

MDC 5.12 5.43 4.32 5.21 4.24 5.18 4.36 5.30 0.35 0.36 0.32 0.35 0.58 0.71 0.61 0.73 

TMC 6.52 7.26 6.66 7.58 4.60 5.60 4.81 5.79 0.46 0.48 0.46 0.49 0.64 0.77 0.70 0.81 

Rank 5.70 6.87 5.97 6.36 4.17 5.19 4.33 5.39 0.40 0.45 0.41 0.42 0.58 0.72 0.60 0.73 

C(2,PB) 5.61 6.42 6.59 7.24 4.21 5.26 4.69 5.72 0.39 0.42 0.43 0.46 0.57 0.71 0.66 0.78 

C(3,PB) 5.04 6.10 6.00 6.33 3.97 5.06 4.62 5.68 0.34 0.39 0.39 0.41 0.52 0.68 0.64 0.76 

D(1) 6.59 7.34 7.54 8.34 4.62 5.67 4.95 5.94 0.48 0.49 0.50 0.52 0.65 0.78 0.72 0.84 

D(0.9) 6.52 7.37 7.59 8.36 4.69 5.74 5.01 6.00 0.47 0.49 0.50 0.52 0.67 0.80 0.73 0.85 

Ridge 5.34 7.22 5.32 7.17 4.12 4.63 3.73 4.87 0.35 0.42 0.31 0.41 0.59 0.63 0.53 0.65 

Lasso 6.21 8.99 8.24 10.10 4.37 4.88 3.96 5.08 0.42 0.52 0.47 0.54 0.67 0.71 0.61 0.72 

EN 6.26 8.96 7.53 8.83 4.39 4.95 4.01 5.14 0.44 0.53 0.42 0.50 0.65 0.70 0.61 0.72 

Alasso 10.37 13.16 12.88 15.12 5.79 5.56 4.03 4.30 0.75 0.79 0.70 0.73 0.84 0.84 0.75 0.78 

Bridge 4.29 6.24 3.60 5.28 3.57 3.95 2.93 4.01 0.24 0.37 0.21 0.32 0.55 0.58 0.48 0.59 

SCAD 6.28 9.47 8.15 9.69 4.28 4.84 3.71 4.78 0.42 0.54 0.47 0.53 0.66 0.70 0.60 0.71 

MCP 5.32 8.28 7.47 9.30 4.59 5.44 4.19 5.21 0.35 0.48 0.42 0.50 0.69 0.75 0.64 0.74 

SICA 7.64 9.85 10.27 11.65 4.30 4.01 1.78 1.97 0.52 0.59 0.57 0.61 0.69 0.70 0.61 0.66 

PLS 8.35 10.48 9.76 11.31 4.09 3.86 2.13 2.49 0.62 0.66 0.55 0.60 0.66 0.64 0.62 0.65 

3PRF 8.68 10.72 8.76 9.97 3.86 3.38 1.49 1.94 0.64 0.67 0.53 0.57 0.62 0.61 0.57 0.63 

SPLS 6.14 8.38 6.41 8.47 4.13 3.39 1.56 2.24 0.42 0.52 0.40 0.48 0.67 0.61 0.52 0.58 

PCA 4.24 5.34 4.76 5.70 3.67 4.76 3.80 4.89 0.27 0.34 0.31 0.37 0.52 0.68 0.60 0.72 

SPCA 3.20 4.24 2.93 3.99 3.49 4.41 2.51 3.65 0.18 0.26 0.22 0.28 0.48 0.63 0.50 0.61 

ICA 4.07 4.82 4.76 6.18 4.08 4.78 4.52 5.36 0.27 0.31 0.31 0.38 0.57 0.63 0.61 0.71 

RICA 5.33 5.37 6.50 6.72 2.59 2.43 2.01 2.60 0.40 0.37 0.42 0.44 0.41 0.46 0.46 0.49 

Notes: This table reports the certainty equivalent return and Sharpe Ratio of the stock-bond-commodity mean-variance portfolios with quarterly rebalancing and 

transaction costs set to 50 bps for each asset. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted 

portfolio and the mean-variance portfolio based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated 

by multivariate prediction models. All mean-variance portfolios are constructed based on the sample covariance matrix. The portfolio performance is reported 

for different levels of risk aversion (𝛾 = 2, 10) and portfolio weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold 

indicate the five models with the best performance. 

  



117 
 

Table 3.13: Mean-CVaR Portfolio Performance based on Certainty Equivalent Return and Sharpe Ratio: Stock-Bond-Commodity Portfolios 

 Certainty Equivalent Return Sharpe Ratio 

 γ=2 γ=10 γ=2 γ=10 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 3.87 3.87 3.87 3.87 -0.27 -0.27 -0.27 -0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

HA 4.96 6.29 4.96 6.29 4.49 5.23 4.47 5.19 0.86 0.86 0.85 0.85 0.86 0.86 0.85 0.85 

KS 5.55 7.14 6.85 8.55 4.90 5.83 5.54 6.43 0.87 0.87 0.88 0.93 0.96 0.96 0.93 0.98 

MC 5.02 6.38 5.04 6.42 4.54 5.31 4.53 5.29 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 

MDC 4.98 6.32 4.99 6.34 4.51 5.26 4.49 5.24 0.87 0.87 0.86 0.86 0.86 0.86 0.86 0.86 

TMC 5.01 6.36 5.03 6.39 4.53 5.30 4.52 5.27 0.88 0.88 0.88 0.88 0.87 0.87 0.86 0.86 

Rank 5.09 6.48 5.12 6.53 4.59 5.40 4.59 5.38 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.89 

C(2,PB) 5.03 6.39 5.07 6.45 4.56 5.35 4.57 5.36 0.88 0.88 0.89 0.89 0.88 0.88 0.88 0.88 

C(3,PB) 5.05 6.43 5.11 6.51 4.56 5.35 4.56 5.35 0.89 0.89 0.90 0.90 0.88 0.88 0.88 0.88 

D(1) 5.02 6.38 5.04 6.42 4.54 5.31 4.53 5.30 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 

D(0.9) 5.02 6.39 5.05 6.42 4.54 5.32 4.53 5.30 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 

Ridge 5.27 6.76 5.80 7.26 4.76 5.66 5.12 6.05 0.96 0.96 0.93 0.95 0.95 0.95 1.01 1.00 

Lasso 5.42 6.98 5.75 7.36 4.87 5.82 5.13 6.07 1.00 1.00 0.99 1.02 0.98 0.98 1.03 1.02 

EN 5.37 6.90 5.68 7.23 4.82 5.75 5.11 6.04 0.99 0.99 0.95 0.99 0.97 0.97 1.02 1.02 

Alasso 5.44 7.00 6.13 7.81 4.89 5.86 5.14 6.19 0.98 0.98 0.95 0.99 0.99 0.99 0.98 1.02 

Bridge 5.25 6.73 5.71 7.26 4.73 5.62 5.06 5.97 0.95 0.95 0.91 0.95 0.94 0.94 1.00 0.99 

SCAD 5.40 6.95 5.90 7.46 4.83 5.77 5.20 6.19 0.99 0.99 1.04 1.04 0.97 0.97 1.06 1.05 

MCP 5.43 6.99 5.75 7.31 4.85 5.79 5.12 6.05 1.00 1.00 0.96 1.00 0.97 0.97 1.02 1.01 

SICA 5.68 7.36 6.16 8.08 5.04 6.07 5.33 6.37 1.00 1.00 0.98 1.06 1.02 1.02 1.06 1.07 

PLS 5.41 6.97 6.58 8.22 4.86 5.81 5.36 6.28 0.98 0.98 0.85 0.94 0.97 0.97 0.90 0.97 

3PRF 5.32 6.83 6.45 8.11 4.82 5.75 5.35 6.25 0.96 0.96 0.86 0.94 0.97 0.97 0.91 0.97 

SPLS 5.25 6.72 5.94 7.37 4.79 5.69 5.14 6.05 0.90 0.90 0.86 0.90 0.95 0.95 1.00 1.00 

PCA 5.18 6.62 5.50 7.09 4.64 5.48 4.78 5.65 0.93 0.93 0.96 0.96 0.91 0.91 0.93 0.93 

SPCA 5.21 6.67 5.77 7.32 4.70 5.56 4.84 5.75 0.94 0.94 0.98 0.99 0.93 0.93 0.95 0.95 

ICA 5.04 6.40 5.55 6.96 4.50 5.24 4.77 5.54 0.83 0.83 0.85 0.85 0.86 0.86 0.91 0.90 

RICA 5.12 6.53 5.20 6.63 4.61 5.42 4.59 5.35 0.90 0.90 0.86 0.86 0.89 0.89 0.87 0.87 

Notes: This table reports the certainty equivalent return and Sharpe Ratio of the stock-bond-commodity mean-CVaR portfolios with monthly rebalancing. The 

out-of-sample period is from January 1997 to December 2016. The benchmarks are the equally-weighted portfolio and the mean-CVaR portfolio based on the 

historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate prediction models. The CVaR of all 

portfolios is estimated by generating 5000 scenarios using Monte Carlo simulation based on the multivariate normal distribution, with mean varying according 

to the return forecast and sample variance-covariance matrix. The portfolio performance is reported for different levels of risk aversion (𝛾 = 2, 10) and portfolio 

weight constraints (𝑤𝑗 ∈ [0,1], 𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold indicate the five models with the best performance. 
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Table 3.14: Mean-Variance and Mean-CVaR Portfolio Performance based on CVaR: Stock-Bond-Commodity Portfolios 

 γ=2 γ=10 

 Mean-Variance Mean-CVaR Mean-Variance Mean-CVaR 

  0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 0,1 0,1.5 -0.5,1 -0.5,1.5 

EW 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 

HA 7.62 9.90 10.17 11.40 1.63 2.52 1.64 2.53 2.99 3.50 3.01 3.51 1.63 2.52 1.64 2.54 

KS 8.73 12.62 16.02 18.90 1.97 3.05 2.77 3.65 5.86 7.29 7.92 8.65 1.63 2.53 2.36 3.11 

MC 6.80 8.98 9.83 10.90 1.60 2.48 1.61 2.50 2.88 3.31 3.03 3.44 1.61 2.49 1.62 2.52 

MDC 7.24 9.26 9.69 10.81 1.62 2.51 1.63 2.52 2.89 3.37 2.95 3.45 1.62 2.51 1.64 2.53 

TMC 6.81 8.94 9.59 10.66 1.61 2.49 1.62 2.51 2.82 3.27 2.94 3.39 1.61 2.49 1.63 2.52 

Rank 6.23 8.25 9.84 10.85 1.59 2.47 1.60 2.49 3.13 3.56 3.79 4.05 1.60 2.47 1.61 2.50 

C(2,PB) 6.79 9.24 10.33 11.39 1.60 2.48 1.61 2.50 3.18 3.55 3.54 3.85 1.60 2.48 1.62 2.51 

C(3,PB) 6.84 9.40 10.73 11.88 1.60 2.48 1.60 2.49 3.44 3.90 4.17 4.39 1.60 2.48 1.62 2.51 

D(1) 6.79 8.98 9.83 10.89 1.60 2.48 1.61 2.50 2.88 3.30 3.03 3.44 1.61 2.49 1.62 2.51 

D(0.9) 6.79 8.96 9.81 10.84 1.60 2.48 1.61 2.50 2.86 3.29 3.02 3.43 1.61 2.49 1.62 2.51 

Ridge 7.65 10.34 11.44 13.26 1.57 2.43 1.96 2.77 4.01 4.72 5.14 5.39 1.56 2.43 1.63 2.49 

Lasso 7.61 10.52 12.07 14.16 1.55 2.41 1.77 2.56 4.39 5.26 5.49 5.80 1.55 2.40 1.59 2.41 

EN 7.60 10.37 11.54 13.51 1.55 2.41 1.81 2.59 4.19 4.95 5.16 5.40 1.55 2.41 1.60 2.42 

Alasso 7.71 10.97 13.58 15.63 1.62 2.51 2.10 2.93 4.82 6.02 6.86 7.35 1.54 2.39 1.75 2.54 

Bridge 7.92 10.77 12.07 13.73 1.57 2.44 1.95 2.79 4.17 4.86 5.39 5.70 1.56 2.42 1.63 2.49 

SCAD 8.00 10.98 12.75 14.86 1.56 2.42 1.72 2.54 4.52 5.43 5.75 5.96 1.56 2.42 1.58 2.39 

MCP 7.67 10.46 11.88 13.96 1.57 2.44 1.85 2.61 4.33 5.19 5.48 5.76 1.56 2.43 1.63 2.47 

SICA 8.34 12.03 15.49 18.11 1.69 2.62 2.01 2.82 5.53 7.04 7.84 8.47 1.55 2.41 1.64 2.44 

PLS 7.86 11.33 14.16 16.70 1.59 2.47 2.75 3.42 4.96 5.91 7.06 7.44 1.56 2.42 2.35 3.06 

3PRF 7.89 11.22 14.22 16.41 1.60 2.48 2.58 3.32 4.92 5.89 7.06 7.46 1.55 2.40 2.27 3.01 

SPLS 7.49 10.68 13.04 15.49 1.70 2.63 2.24 3.05 4.98 6.47 7.19 7.94 1.58 2.46 1.67 2.54 

PCA 6.79 8.92 10.23 11.40 1.59 2.46 1.69 2.62 2.91 3.47 4.13 4.48 1.59 2.46 1.64 2.55 

SPCA 6.91 9.17 10.68 11.93 1.58 2.45 1.80 2.65 3.31 4.02 4.90 5.13 1.58 2.45 1.61 2.50 

ICA 7.92 10.57 11.61 12.94 1.75 2.71 2.03 3.02 3.54 4.22 4.21 4.77 1.64 2.54 1.70 2.61 

RICA 7.53 10.13 11.75 13.52 1.61 2.50 1.77 2.74 3.88 4.49 4.72 5.10 1.61 2.49 1.68 2.60 

Notes: This table reports the CVaR calculated at the 95% confidence level of the stock-bond-commodity mean-variance and mean-CVaR portfolios with monthly 

rebalancing. The out-of-sample period is from January 1997 to December 2016. The benchmarks are the equal-weighted portfolio and the mean-variance and 

mean-CVaR portfolios based on the historical average forecast. The alternative mean-variance allocations utilize return forecasts generated by multivariate 

prediction models. All mean-variance portfolios are constructed based on the sample covariance matrix. The CVaR of all portfolios is estimated by generating 

5000 scenarios using Monte Carlo simulation based on the multivariate normal distribution, with mean varying according to the return forecast and sample 

variance-covariance matrix. The portfolio performance is reported for different levels of risk aversion (𝛾 = 2, 10) and portfolio weight constraints (𝑤𝑗 ∈ [0,1], 

𝑤𝑗 ∈ [0,1.5], 𝑤𝑗 ∈ [−0.5,1] and 𝑤𝑗 ∈ [−0.5,1.5]). Figures in bold indicate the five models with the best performance. 
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Chapter 3 Figures 

Figure 3.1: Index Prices and Returns 

 
Notes: The figure plots the monthly prices and returns of the stock, bond and commodity indices. The indices are denominated in US dollars. The sample period 

is from 1977 to 2016. 
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Chapter 3 Appendix 

This section provides a table with the sources of the series used in this study and detailed 

description on the construction of the predictors. 

Table A3.1 provides the sources of the time series used to construct the variables in this study. 

[Insert Table A3.1 Here] 

The predictor variables used to forecast the three indices were constructed in the following way: 

1. DP: Dividend-price ratio the difference between the log of dividends paid on the S&P 500 

index and the log of the S&P 500 index price. The dividends are measured using a 12-

month moving sum. 

2. DY: Dividend yield is the difference between the log of dividends and the log of lagged 

stock prices. 

3. EP: Earnings-price ratio is the difference between the log of earnings on the S&P 500 Index 

minus the log of stock prices. The earnings are measured using a 12-month moving sum. 

4. DE: Dividend-payout ratio is the difference between the log of dividends and the log of 

earnings.  

5. SVAR: Stock variance is the sum of squared daily returns on the S&P 500 Index.  

6. BM: The book-to-market ratio for the Dow Jones Industrial Average. 

7. NTIS: Net equity expansion is the ratio of a 12-month moving sum of net equity issues by 

NYSE-listed stocks to the total end-of-year market capitalization of NYSE stocks. 

8. TBL: Treasury bill rate is the interest rate on a three-month Treasury bill. 

9. LTY: Long-term yield is the long-term government bond yield. 

10. LTR: Long-term return is the return on long-term government bonds. 
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11. TMS: Term spread is the difference between the long-term yield and the Treasury bill rate. 

12. DFY: Default yield spread, difference between Moody’s BAA- and AAA-rated corporate 

bond yields. 

13. DFR: Default return spread is the difference between the long-term corporate bond return 

and the long-term government bond return. 

14. INFL: Inflation based on the CPI. To account for the delay in CPI releases, one period 

lagged values of inflation are used. 

15. IP: The first difference in the log-levels of the industrial production index. 

16. M1: The first difference in the log-levels of the money stock M1. 

17. UR: The change in civilian unemployment rate. 

18. VXO: The Chicago Board Options Exchange S&P 100 Volatility Index. 

19. Umacro: Macroeconomic uncertainty. An aggregate measure of macroeconomic 

uncertainty proposed by Jurado, Ludvigson and Ng (2015) and Ludvigson, Ma and Ng 

(2015), based on a large set of macroeconomic indicators. 

20. Ufin: Financial Uncertainty. An aggregate measure of financial uncertainty proposed by 

Jurado, Ludvigson and Ng (2015) and Ludvigson, Ma and Ng (2015), based on a large set 

of financial indicators. 

21. SP1: The yield spread between a 1-year government bond and the 6-month Treasury bill 

22. SP5: The yield spread between a 5-year government bond and the 6-month Treasury bill. 

23. PPI: The second difference in the log-levels of the Producers Price Index (Finished Goods). 

24. CAP: The change in capacity utilization-manufacturing. 

25. IS: The change in inventories-sales ratio (Total Business). 

26. REA: The real economic activity index proposed by Kilian (2009). 
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27. CFNAI: The Chicago Fed national activity index. 

28. WTI: The first difference in the log-levels of the spot crude oil price: West Texas 

Intermediate. 

29. USDAUD: The first difference in the log-levels of the Australian dollar-US dollar. 

30. USDCAD: The first difference in the log-levels of the Canadian dollar-US dollar. 

31. USDIND: The first difference in the log-levels of the Indian rupee-US dollar. 

32. USDNZD: The first difference in the log-levels of the New Zealand dollar-US dollar. 

The predictors DP, DY, EP, BM, NTIS, TBL, LTY and INFL are non-stationary based on 

augmented Dickey-Fuller (ADF) tests and are adjusted to stationarity by taking first differences. 
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Table A3.1: Data Source 

Series Source 

S&P 500 Total Return Index Amit Goyal's Website 

Bloomberg Barclays US Aggregate Bond Index  Bloomberg 

S&P Goldman Sachs Commodity Total Return Index  Bloomberg 

12-Month Moving Sum of Dividends Amit Goyal's Website 

12-Month Moving Sum of Earnings Amit Goyal's Website 

AAA-Rated Corporate Bond Yield Amit Goyal's Website 

BAA-Rated Corporate Bond Yield Amit Goyal's Website 

Long-Term Corporate Bond Return Amit Goyal's Website 

Stock Market Volatility Amit Goyal's Website 

Book-to-Market Value Ratio Amit Goyal's Website 

Total Net Issues of NYSE Amit Goyal's Website 

3-Month Treasury Bill yield Amit Goyal's Website 

Long-Term Government Bond Return Amit Goyal's Website 

Long-Term Government Bond Yield Amit Goyal's Website 

Inflation Rate Amit Goyal's Website 

6-Month Treasury Bill yield St. Louis Fed’s FRED database 

1-Year Treasury Rate St. Louis Fed’s FRED database 

5-Year Treasury Rate St. Louis Fed’s FRED database 

Chicago Board Options Exchange S&P 100 Volatility Index St. Louis Fed’s FRED database 

Total Business: Inventories to Sales Ratio St. Louis Fed’s FRED database 

Capacity Utilization: Manufacturing St. Louis Fed’s FRED database 

Producer Price Index: Finished Goods St. Louis Fed’s FRED database 

M1 Money Stock St. Louis Fed’s FRED database 

Industrial Production Index St. Louis Fed’s FRED database 

Civilian Unemployment Rate St. Louis Fed’s FRED database 

Chicago Fed National Activity Index  St. Louis Fed’s FRED database 

Spot Crude Oil Price: West Texas Intermediate St. Louis Fed’s FRED database 

Australian Dollar-US Dollar St. Louis Fed’s FRED database 

Canadian Dollar-US Dollar  St. Louis Fed’s FRED database 

Indian Rupee-US Dollar  St. Louis Fed’s FRED database 

New Zealand Dollar-US Dollar  St. Louis Fed’s FRED database 

Macroeconomic Uncertainty  Sydney C. Ludvigson's Website 

Financial Uncertainty  Sydney C. Ludvigson's Website 

Real Economic Activity Index Lutz Kilian's Website 

Notes: This table reports the name and sources of the series used in this study. 
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Chapter 4: Pairs Trading using Quantile Regression 

 

4.1. Introduction 

Pairs trading is a statistical arbitrage strategy which is based on the principle that the prices of two 

assets co-move with each other. Pairs trading is a market-neutral strategy that matches a long 

position with a short position through a pair of co-moving assets and it is also a mean-reverting 

strategy that assumes that the spread will revert to its historical mean leading to profits through 

relatively low risk positions. According to Gatev, Goetzmann and Rouwenhorst (2006), the 

concept of pairs trading is comprised of two stages. In the formation period, a pair of assets whose 

prices have moved together historically is identified. In the trading period, the spread between the 

two asset prices is monitored and if the prices diverge and the spread widens, the higher priced 

asset is sold and the lower priced asset is bought. If the two assets follow an equilibrium 

relationship, the prices of the two assets will converge and the spread will revert to its historical 

mean, resulting in profit.  

There are many pairs trading methods in the literature, which, according to Krauss (2017), 

can be categorized into five groups: the distance approach, the cointegration approach, the time-

series approach, the stochastic control approach, with the fifth group, entitled “other approaches”, 

containing pairs trading methods unrelated to the aforementioned approaches and with limited 

supporting literature. In the distance method (DM), introduced by Gatev, Goetzmann and 

Rouwenhorst (2006), distance metrics are used to identify co-moving assets, while nonparametric 

threshold rules are used as triggers to open or close a pair position. In contrast to the distance 

method, the cointegration method is a model based approach that assumes a cointegrating 
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relationship between the price series of two assets. A theoretical framework for pairs trading is 

outlined by Vidyamurthy (2004), based on the error correction model representation of 

cointegrated time series by Engle and Granger (1987). In the time series approach, the focus is on 

the trading period and on generating optimal trading signals using different methods. The most 

cited study using the time-series approach is by Elliott, Van Der Hoek and Malcolm (2005), who 

model the mean reversion of the spread, defined as the difference between the two prices, in a 

continuous time setting, by using a state-space representation of the spread estimated by Kalman 

filter. Finally, the primary focus in the stochastic control approach is finding the optimal portfolio 

holdings in the two legs of the pair when other assets are available. Jurek and Yang (2007) develop 

a model which allows non-myopic arbitrageurs to allocate capital between a mean-reverting spread 

and a risk-free asset, while Liu and Timmermann (2013) derive optimal portfolio strategies for 

convergence trades under recurring and nonrecurring arbitrage opportunities for an investor who 

maximizes the expected value of a power utility function defined over terminal wealth.  

We extend the literature of pairs trading by examining the performance of the cointegration 

method, when the spread during the trading period is computed using quantile regressions. We use 

daily data of the stocks in the S&P 100 to conduct a robust analysis of the new pairs trading 

strategy, which takes advantage of the information in the conditional quantiles of the distribution 

of asset returns, against the distance method and original cointegration method benchmarks. 

The study by Gatev, Goetzmann and Rouwenhorst (2006) is the earliest comprehensive 

study to examine pairs trading. In the formation period they rank each possible combination of 

pairs according to the sum of squared differences (SSD) on normalized price series and trading is 

triggered when the spread diverges more than two historical standard deviations (estimated during 

the formation period) and closed upon mean reversion or at the end of the trading period, 
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independent of the occurrence of any price convergence. Do and Faff (2010) examine the 

profitability of the DM and find that it yields the highest performance during the 1970s and the 

1980s, with declining performance in the 1990s. The exceptions to the declining performance of 

the DM are the periods of the dot-com bubble and global financial crisis. Additionally, Do and 

Faff (2012) examine the effects of transaction costs on the distance method, by accounting for 

commissions, market impact, and short-selling fees. They find that the strategy becomes largely 

unprofitable, with only refined portfolios, based on additional selection metrics, achieving a 

positive excess return. More recently Rad, Low and Faff (2016), perform an extensive evaluation 

of the DM and find that it generates positive returns and is less affected by transaction costs 

compared to other methods. While the aforementioned studies focus on the US stock market, the 

profitability of the distance method has also been examined in international stock markets. Other 

applications of the distance method include Perlin (2009), who applies the DM to the Brazilian 

stock market, Broussard and Vaihekoski (2012), who examine the profitability of pairs trading 

under different weighting schemes and trade initiation conditions in the Finnish stock market and 

Jacobs and Weber (2015), who analyse the performance of the DM for 34 countries and find that 

the returns of the strategy depend on the investors’ reaction to news.  

The framework for pairs trading based on cointegration was proposed by Vidyamurthy 

(2004). During the formation period the tradability of the pairs is assessed using cointegration 

tests. The most commonly used approach is the Engle-Granger test for cointegration that is based 

on the error-correction representation of the relationship between two asset prices. In the trading 

period entry and exit signals are generated using simple threshold rules, based on the normalized 

spread between the prices of the two cointegrated assets. In a large scale application using US data, 

Rad, Low and Faff (2016), compare the performance of three methods; the distance, cointegration 
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and copula methods. They find that the cointegration performs similarly to the DM, with the former 

generating better results than the other strategies before transaction costs are taken into account. 

In a recent study, Farago and Hjalmarsson (2018) use data from the Stockholm stock exchange, 

which contains “ordinary stocks” that are issued by different companies and dual-class firms that 

issue A- and B-shares, whose prices are closely related and can act as a control group for series 

that are likely cointegrated. They find that before transaction costs A-B pairs yield similar Sharpe 

ratios to the theoretical model they developed, which are higher than those of the ordinary pairs. 

Their findings suggest that cointegration is not the likely reason for the profitability of pairs trading 

strategies based on ordinary stocks, since they do not satisfy the cointegrating restrictions, 

compared to the A-B pairs. Other applications include those by Caldeira and Moura (2013), who 

use a cointegration-based trading strategy on the Brazilian stock exchange and find statistically 

significant excess returns after accounting for transaction costs, and by Huck and Afawubo (2015) 

who develop pairs trading strategies using stocks listed on the S&P 500 and find that the 

cointegration approach significantly outperforms the distance approach. 

The contributions of this study are threefold. First, we combine aspects of the cointegration 

method with quantile regression to produce a new approach to pairs trading. In the formation 

period stock pairs are sorted and selected similarly to the cointegration method, while in the trading 

period the trading signal is generated based on the spread of the stock prices in the pair, which has 

been estimated by quantile regression. Our second contribution, stems from the extensive 

evaluation of the new method along with the distance method and the original cointegration 

method, using a dataset consisting of daily observations of all stocks in the S&P 100 from 2000 to 

2017. Additionally, we use a variety of economic and risk-adjusted measures to evaluate the 

performance of the new method, estimated for multiple quantiles, and compare it with the simpler 
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alternatives. Our final contribution arises from evaluating the performance of the pairs trading 

strategies under an asset pricing framework, in order to examine whether the returns of each 

strategy can be explained by various risk factors. 

The remainder of this chapter proceeds as follows; Section 4.2 provides a description of the data, 

Section 4.3 describes the pairs trading strategies and Section 4.4 presents the results. Section 4.5 

concludes. 

 

4.2. Data 

For the empirical application we focus on the S&P 100. The primary reasons being market 

efficiency and computational feasibility. The S&P 100 consists of the 100 major, blue chip 

companies across multiple industry sectors. This highly liquid subset of the US stock market serves 

as a proving ground for any trading strategy, since investor scrutiny and analyst coverage is 

especially high for these large capitalization stocks. Additionally, handling approximately 100 

stocks per iteration of the backtest, renders even the most sophisticated strategies computationally 

feasible, making the S&P 100 the ideal choice for the application of our strategy. First, we obtain 

the month end constituent list for the S&P 100 from Bloomberg from December 2000 to December 

20171. Then, following Krauss and Stübinger (2015), we consolidate those lists into a binary 

matrix, with one indicating that the stock is a constituent of the index and zero otherwise. 

Furthermore, we acquire the daily total return index of all stocks that were included in the S&P 

                                                           
1 The choice of sample period is due to data availability constraints, since information on the constituents list of the 

S&P 100 starts on December 2000. 
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100 for the same period. This leads to a dataset with 4296 daily observations (205 months), for a 

total of 177 stocks.  

 

4.3. Methodology 

Pairs trading is a mean-reverting strategy that assumes a relationship between the prices of two 

securities. Modelling this relationship could potentially allow us to take advantage of any short-

term deviations from the mean, by simultaneously buying the undervalued security and selling 

short the overvalued security. When the prices revert to their mean, we close the position and 

realize the profit. To examine the performance of the three pair trading strategies, based on daily 

data of S&P 100 stocks from December 2000 to December 2017, we use a similar setting for our 

backtest as Rad, Low and Faff (2016). The performance of the strategies is evaluated using a 

rolling window of 18 (calendar) months that is updated by moving forward by one month in each 

iteration. The rolling window in each iteration is divided in a formation period of 12 months, where 

the pairs are selected and a trading period of six months, where the strategy is executed. Since we 

do not wait six months for the current trading period to end, we end up with six overlapping 

portfolios of pairs, with each portfolio having a different starting period, since it belongs to a 

different iteration. There are a total of 188 backtest iterations (cycles of formation/trading periods) 

and the number of pairs considered in each are approximately 4950. 

The distance method, described in Section 4.3.1, is a popular pairs trading strategy that we 

use as a benchmark to evaluate the cointegration and quantile regression methods. In the DM, 

during the formation period, the pairs of stocks are sorted based on the sum of squared differences 

(SSD) in their normalized prices and throughout the trading period their spreads are monitored for 
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any deviations beyond a certain threshold that would trigger a long and short position. The 

cointegration method for pairs trading (Section 4.3.2) is based on the property of cointegrated time 

series, that they excibit a long-term equilibrium and any deviations from that equilibrium will be 

corrected through time, when the series will mean-revert. In this approach the pairs are selected 

based on the two-step Engle-Granger method (Engle and Granger (1987)) during the formation 

period and in the course of the trading period, long and short positions are opened when there are 

temporary deviations from the estimated stationary spread. The third approach combines the 

cointegration method and quantile regression. Pairs of stocks are sorted and selected in the same 

way as in the cointegration method, however, the spread is estimated for a range of quantiles using 

quantile regression. We provide details of this approach in Section 4.3.3.  

 

4.3.1. Distance Method 

The first strategy is based on the distance method proposed by Gatev, Goetzmann and 

Rouwenhorst (2006), and is similar to its in implementation as in Rad, Low and Faff (2016) and 

Do and Faff (2010, 2012). In the DM potential pairs are sorted according the sum of squared 

differences in their normalized prices during the formation period. Let 𝑝1,𝑡 and 𝑝2,𝑡 denote the 

normalized price series of two stocks calculated by dividing the price series 𝑃1,𝑡 and 𝑃2,𝑡 with their 

respective first observation, so that they are scaled to $1 at the beginning of the formation period. 

The SSD of a pair is then computed using the following formula: 

SSD1,2 =
1

𝑇𝑓
 ∑(𝑝1,𝑡 − 𝑝2,𝑡)

2

𝑇𝑓

𝑡=1

 (4.1) 
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where 𝑇𝑓 denotes the number of daily observations in the formation period. During the 12-month 

formation period the spread between the normalized prices of all possible pair combinations is 

calculated. Then we select the 20 pairs with the least SSD that are going to be traded in the 

subsequent 6-month trading period. The mean and standard deviation of the spread is kept since it 

will be used to generate the trading signal. At the beginning of the trading period, the prices are 

rescaled to begin at $1 and the spread of the 20 selected pairs is recalculated and monitored. When 

the spread diverges by two or more historical standard deviations, a long and a short position is 

simultaneously opened in the pair on the direction of the divergence.  

 

4.3.2. Cointegration Method 

The theoretical framework for the cointegration method for pairs trading was developed by 

Vidyamurthy (2004). In the formation period the pairs are selected using the Engle-Granger two-

step approach (Engle and Granger (1987)). Let 𝑃1,𝑡 and 𝑃2,𝑡 denote the 𝐼(1)-nonstationary price 

processes of the two stocks. If a linear combination of the two series exists that is 𝐼(0)-stationary 

then the two price series are said to be cointegrated. If the two price series are cointegrated then 

there exists a non-zero real number 𝛽 such that: 

𝑢𝑖𝑗,𝑡 = 𝑃𝑖,𝑡 − 𝛽𝑃𝑗,𝑡, for 𝑖, 𝑗 = 1,2 and 𝑖 ≠ 𝑗, (4.2) 

where 𝛽 is the cointegration coefficient and the spread 𝑢𝑖𝑗,𝑡 is a 𝐼(0)-stationary series known as 

cointegrating errors. To test whether the spread is cointegrated, the Engle and Granger (1987) Error 

Correction Model (ECM) framework can be used. According to the ECM representation the 

cointegrating series exhibit long-run equilibrium, even though short-run deviations from this 



132 
 

equilibrium may occur. The ECM representation of the cointegration relationship between price 

series 𝑃1,𝑡 and 𝑃2,𝑡 is:  

𝛥𝑢𝑖𝑗,𝑡 = 𝛾𝑢𝑖𝑗,𝑡−1 + 𝛿𝛥𝑢𝑖𝑗,𝑡−1 + 𝜀𝑡, for 𝑖, 𝑗 = 1,2 and 𝑖 ≠ 𝑗, (4.3) 

where 𝛥𝑢𝑖𝑗,𝑡 denotes the first difference of the spread 𝑢𝑖𝑗,𝑡. The null hypothesis is that the spread 

is a unit-root process (𝐻0: 𝛾 = 1), therefore the two price series are not cointegrated and the 

alternative that the spread is stationary (𝐻0: 𝛾 ≠ 1), which means that the two series are 

cointegrated. This is equivalent to an Augmented Dickey-Fuller (ADF) test, for a model 

specification without intercept, linear trend and with a lag of order one. It should be noted that in 

the Engle-Granger procedure, the usual ADF tabulated critical values cannot be used, since we test 

for the stationarity on a derived variable - the spread of the two price series estimated by OLS. 

However, the selection of the pairs in the case of the cointegration method is done based on the 𝑡-

statistic. Specifically, in the formation period we select the 20 pairs with the lowest 𝑡-statistics for 

the estimate of 𝛾. Cointegrating series exhibit mean-reverting behavior and by going short (long) 

𝑃𝑖,𝑡 and long (short) 𝑃𝑗,𝑡 when the spread is positive (negative), then the strategy should generate 

profits once the spread returns back to its long-term equilibrium. 

Similar to the DM, the mean 𝜇𝑢 and standard deviation 𝜎𝑢 of the spread 𝑢𝑖𝑗,𝑡 are computed 

using data in the formation period. During the trading period the spread is calculated based on a 

rolling window of 120 observations and is used to form the normalized spread: 

𝑍𝑡 =
𝑢𝑖𝑗,𝑡 − 𝜇𝑢

𝜎𝑢
 (4.4) 

where 𝑢𝑖𝑗,𝑡 = 𝑃𝑖,𝑡 − 𝛽𝑡𝑃𝑗,𝑡 and 𝛽𝑡 is the is the cointegration coefficient estimated by OLS in a 

rolling window of 120 observations. To estimate the normalized spread, observations from the 

formation period need to be used. However, when estimating the trading entry and exit points of 
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the strategy and the return of the pairs, the values of 𝛽𝑡 and 𝑍𝑡 used, correspond to the dates of the 

trading period. Similarly to the DM method we simultaneously open and close long and short 

positions when the normalized spread diverges beyond 2 and close all positions when the spread 

returns to zero, which is equivalent to the spread returning to its long-run equilibrium. 

 

4.3.3. Modelling the Spread using Quantile Regression 

In the quantile regression method the pairs are selected in the same way as in the cointegration 

method, during the formation period. However, the cointegrating coefficient, 𝛽, is estimated 

throughout the trading period using quantile regression. The quantile regression estimator for each 

quantile 𝜏 ∈ 𝒯 is obtained through the following optimization problem: 

�̂�(𝜏) = argmin
𝛽∈ℝ

∑𝜌𝜏(𝑃𝑖,𝑡 − 𝛽(𝜏)𝑃𝑗,𝑡)

𝑇

𝑡=1

,  for 𝑖, 𝑗 = 1, 2 and 𝑖 ≠ 𝑗, (4.5) 

where 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐻(𝑢 < 0)) is the asymmetric weights function as in Koenker and Bassett 

(1978) and 𝐻(⋅) is a Heaviside step function. In the special case where 𝜏 = 0.5 quantile regression 

is equivalent to the Least Absolute Deviation (LAD) estimation of 𝛽(𝜏). The spread between the 

prices of stocks 𝑖 and 𝑗, for the 𝜏th quantile, is then computed as 𝑢𝜏,𝑡 = 𝑃𝑖,𝑡 − �̂�(𝜏)𝑃𝑗,𝑡 which is 

used to form the normalized spread and open simultaneously long and short positions in the same 

way as in the cointegration method, where 𝛽 was estimated using OLS.  
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4.3.4. Return Calculation 

The return of a nominated pair, 𝑟𝑝,𝑡, within each iteration of the backtest is calculated using the 

following formula: 

𝑟𝑝,𝑡 = 𝐼𝑝,𝑡−1(𝑟𝑖,𝑡 − 𝛽𝑡−1𝑟𝑗,𝑡) (4.6) 

where 𝑟𝑖,𝑡 and 𝑟𝑗,𝑡 are the percentage returns of stocks 𝑖 and 𝑗 respectively and 𝐼𝑝,𝑡 is a dummy 

variable which takes the value of 1 for a long position in the spread, value -1 for a short position 

in the spread and 0 otherwise. The lagged values are used for both the trading signal dummy 

variable, 𝐼𝑝,𝑡, and the cointegration coefficient, 𝛽𝑡, when calculating the returns of each nominated 

pair. In the case of the quantile regression method the return of a pair is calculated based on the 

lagged estimates 𝛽(𝜏), for each value of 𝜏: 

𝑟𝑝,𝑡(𝜏) = 𝐼𝑝,𝑡−1(𝑟𝑖,𝑡 − 𝛽𝑡−1(𝜏)𝑟𝑗,𝑡) (4.7) 

and for the DM long and short positions are valued equally, therefore the returns of each pair are 

estimated by the following formula: 

𝑟𝑝,𝑡 = 𝐼𝑝,𝑡−1(𝑟𝑖,𝑡 − 𝑟𝑗,𝑡) (4.8) 

Following Gatev, Goetzmann and Rouwenhorst (2006) and Do and Faff (2010), the returns 

of each strategy are calculated in two ways: return on employed capital and return on committed 

capital.  

𝑟𝑡
𝐸𝐶 =

∑ 𝑟𝑝,𝑡
𝑛
𝑝=1

𝑛
 (4.9) 

𝑟𝑡
𝐶𝐶 =

∑ 𝑟𝑝,𝑡
𝑛
𝑝=1

20
 (4.10) 



135 
 

Return on employed capital for day 𝑡, 𝑟𝑡
𝐸𝐶, is calculated as the sum of the daily returns of all pairs 

divided by the number of pairs that have traded during that day. Return on committed capital for 

day 𝑡, 𝑟𝑡
𝐶𝐶, is calculated as the sum of daily returns of all pairs divided by the number of pairs that 

were nominated to trade in that day (20), regardless of whether they actually traded or not. As we 

do not wait for the six-month trading period of the iteration of the backtest to complete, each month 

we have six overlapping portfolios. The return of each strategy is computed as the equally-

weighted average of the returns of these six portfolios. Furthermore, since trades do not necessarily 

open at the beginning of the trading period or there are days when no trading has occurred and 

interest is not accrued to the capital when it is not involved in a trade, the performance of the 

strategies is underestimated. 

 

4.4. Empirical Results 

The performance of the pairs trading strategies, based on the return on employed capital and return 

on committed capital, is estimated using various performance measures. 

 

4.4.1. Pairs Trading Performance 

The three simple measures used to evaluate the performance of the pairs trading strategies are the 

average excess return (AV), the standard deviation (SD) and the end of period value (EPV), which 

is the value at the end of the period of the backtest for a portfolio with starting wealth of 1 unit at 

the beginning of the period of the backtest and is based on the cumulative sum of returns. 
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When measuring portfolio performance the Sharpe ratio (SR) is the most popular metric 

and is calculated as the fraction of the excess return (average realized return less the risk-free rate) 

divided by the standard deviation of the excess returns. 

SR =
𝑟𝑖 − 𝑟𝑓

𝜎𝑖
, (4.11) 

where 𝑟𝑖 is the average realized return of a pairs trading strategy, 𝑟𝑓 is the risk free rate and 𝜎𝑖 is 

the standard deviation of the strategy’s excess returns. 

To investigate the capacity of the different strategies to assess tail risk we compute the 

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for each strategy. VaR 

describes the possible loss of an investment that is not exceeded with a given probability level of 

1 − 𝑎 in a certain period. The 𝑎 Value-at-Risk of a portfolio is computed as: 

VaR𝑎 = −𝐹
−1(1 − 𝑎)𝜎𝑖 − (𝑟𝑖 − 𝑟𝑓), (4.12) 

where 𝐹 is the cumulative standard normal distribution function. The 𝑎 Conditional Value-at-Risk 

of a portfolio is given by: 

CVaR𝑎 = (1 − 𝑎)−1𝑓(𝐹−1(1 − 𝑎))𝜎𝑖 − (𝑟𝑖 − 𝑟𝑓), (4.13) 

where 𝑓 is the probability density function of the standard normal distribution. The VaR and CVaR 

are calculated at the 95% confidence interval. 

[Insert Table 4.1 Here] 

Table 4.1 reports the main results for the performance of the three strategies, based on the 

end-of-period value, average return, standard deviation, Sharpe ratio, VaR and CVaR metrics, for 

the period from December 2001 to December 2017. The first panel reports the results before 

transaction costs and the results after transaction costs are reported in the second panel. The table 
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presents the results on return on committed capital and employed capital. The average excess 

return and Sharpe ratio before transaction costs, based on the employed capital method, are 

positive for all strategies except those based on quantile regression for 𝜏 = 0.8 and 0.9. The 

positive average returns range from 0.61% to 7.06%, while the ratios range from 0.056 to 0.1970, 

with the strategies with 𝜏 = 0.1 to 0.5 outperforming the DM and original cointegration method 

benchmarks, in terms of both measures. The lowest standard deviation is produced by the distance 

method, while the strategy with 𝜏 = 0.1 and 0.2 yields the second lowest standard deviations. 

These are also the two pairs trading strategies with the lowest VaR and CVaR values. After taking 

into account transaction costs of 3 bps per share, the average return and Sharpe ratio for the 

distance method and the strategies based on quantile regression for 𝜏 = 0.6 and 0.7 become 

negative. For the remaining strategies the average return has a range from 0.01% to 4.03% and the 

Sharpe ratio is from 0.0001 to 0.1124, with all quantile regression methods outperforming the 

cointegration method. Turning to the results for the return on committed capital before transaction 

costs the rankings are similar to those based on return on employed capital, with strategies based 

on quantile regression with 𝜏 = 0.1 to 0.5 outperforming both benchmarks. Overall, the average 

excess return and Sharpe ratios are lower, since this is a more conservative way of computing 

returns. After transaction costs are taken into account the model with 𝜏 = 0.1 is the only one 

generating positive returns and Sharpe ratio. 

[Insert Figures 4.1 and 4.2 Here] 

Figures 4.1 and 4.2 present the cumulative excess return of all strategies based on the return 

on committed capital and return on employed capital respectively. It can be seen that the pairs 

trading strategies based on quantile regression with 𝜏 = 0.1 to 0.4 outperform the two benchmarks 

throughout the full sample period, while the strategy with 𝜏 = 0.5 has similar performance with 
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that of the cointegration method. The methods for 𝜏 = 0.6 to 0.9 perform poorly in terms of 

cumulative excess return. The cumulative return series of all strategies fluctuate greatly, 

experiencing downward trend around 2004 and 2011. After taking into account transaction costs 

of 3 bps the (Figures 4.3 and 4.4) the performance of all strategies deteriorates, with the quantile 

regression methods for 𝜏 = 0.1 to 0.5 being the best performing models. 

[Insert Figures 4.3 and 4.4 Here] 

We further analyze the performance of the pairs trading strategies using measures that take 

into account downside risk. The remaining performance measures can be divided into two 

categories, according to whether they quantify risk based on lower partial moments or drawdown. 

Lower partial moment measures take into account only the negative deviations of returns 

from a minimal acceptable excess return. The four lower partial moment measures are the Omega 

(OR, Shadwick and Keating (2002)), Sortino (SOR, Sortino and van der Meer (1991)), Kappa 3 

(K3, Kaplan and Knowles (2004)) and Upside Potential (UP, Sortino, van der Meer and Plantinga 

(1999)) ratios, which are based on the lower partial moments (LPM) and upper partial moments 

(UPM), given by 

LPM𝑛 =
1

𝑇
∑max(0, 𝑟𝑓,𝑡 − 𝑟𝑖,𝑡)

𝑛
𝑇

𝑡=1

 and UPM𝑛 =
1

𝑇
∑max(0, 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡)

𝑛
𝑇

𝑡=1

. (4.14) 

The choice of 𝑛 determines the extent to which the deviation from the minimal acceptable return 

is weighted. The ratios can then be defined as:  

OR =
𝑟𝑖 − 𝑟𝑓

LPM1
+ 1, SOR =

𝑟𝑖 − 𝑟𝑓

√LPM2

, K3 =
𝑟𝑖 − 𝑟𝑓

√LPM3
3

 and UP =
UPM1

√LPM2

. 
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Note that while OR, SOR and K3 measure excess return as the difference between average return 

and the risk-free rate, the UP ratio measures return using an upper partial moment, which measures 

positive deviations from the minimal acceptable return. Because LPMs consider only negative 

deviations of returns from a minimal acceptable return, they are more appropriate measures of 

downside risk than the standard deviation, which considers equally both negative and positive 

deviations from portfolio returns. 

Drawdown performance metrics measure the magnitude of losses of an investment over a 

certain period. The drawdown (DD) at time 𝑡, is given by 

DD𝑡 = min (
𝑝𝑡 − 𝑝max
𝑝max

, 0) , where 𝑝max = max
1≤𝑗≤𝑡

𝑝𝑗 (4.15) 

and 𝑝𝑡 is the current value of the portfolio. The most commonly used drawdown is the maximum 

value of the DDs over a period of time. The maximum drawdown (MDD) broadly reflects the 

maximum cumulative loss from a peak to a following bottom. The MDD of a portfolio within the 

period studied is calculated as MDD = max
1≤𝑡≤𝑇

DD𝑡. 

The drawdown metrics are ratios of the excess return divided by risk measures based on drawdown. 

The Calmar ratio (CR, Young (1991)), Sterling ratio (STE, Kestner (1996)), and Burke ratio (BR, 

Burke (1994)) use the maximum drawdown, an average above the 𝐾 largest drawdowns and the 

square root of the sum of squares of the 𝐾 largest drawdowns as risk measures: 

CR =
𝑟𝑖 − 𝑟𝑓

MDD
, STE =

𝑟𝑖 − 𝑟𝑓

𝐾−1∑ DD𝑘
𝐾
𝑘=1

 and BR =
𝑟𝑖 − 𝑟𝑓

√∑ DD𝑘
2𝐾

𝑘=1

. 

Following the literature, the 𝐾 = 5 largest drawdowns are used, when computing the Sterling and 

Burke ratios. 
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[Insert Table 4.2 Here] 

The performance of the pairs trading strategies based on downside measures is reported in 

Table 4.2. The results for the returns on employed capital before transaction costs show that the 

best performing strategy according to the Omega, Sortino and Kappa 3 ratios is the one based on 

quantile regression for 𝜏 = 0.2, while according to the Upside Potential measure the distance 

method outperforms the rest. It is interesting to note that the model with 𝜏 = 0.6 exhibits the best 

performance based on the drawdown measures (Calmar ratio, Sterling ratio and Burke ratio). After 

taking into account transaction costs, the four metrics using lower partial moments as a measure 

for risk, select the quantile regression strategy with 𝜏 = 0.2, while drawdown measures swift to 

the one with 𝜏 = 0.4. The worst performing pairs trading strategies in both cases are those with 

𝜏 = 0.8 and 0.9. Turning to the results for the returns on committed capital, the best performing 

model according to all measures except UP is based on quantile regression with 𝜏 = 0.1. The 

upside potential selects the distance method prior to transaction costs and the strategy with 𝜏 =

0.2 after costs. 

As both return measures achieve similar rankings for all strategies we use the return on 

employed capital, referred to as return from this point forward, to conduct the analysis described 

in the following section. 

 

4.4.2. Risk Characteristics of Pairs Trading Strategies 

To further investigate the performance of the pairs trading strategies we employ four factor models 

that are widely used in the cross-sectional asset pricing literature. The first factor model is based 

on the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) and is designed 
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to adjust the excess returns of a portfolio for the effect of the overall market return. The one-factor 

market model is 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝑎𝑖 + 𝑏𝑖MKT𝑡 + 𝑒𝑖,𝑡, (4.16) 

where 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 is the excess return of the 𝑖th pairs trading strategy for period 𝑡, MKT𝑡 is the excess 

return on the market factor for period 𝑡 and 𝑒𝑖,𝑡 is the component of the return of strategy 𝑖 during 

period 𝑡 that is not due to exposure to the factors included in the model. 

The second model was originally proposed by Fama and French (1993) and incorporates 

two additional risk factors to the first model as return proxies associated with size and value. The 

size effect refers to the fact that stocks with small market capitalizations have outperformed stocks 

with large market capitalizations, while the value effect refers to the fact that stocks with high 

book-to-market ratios have historically outperformed stocks with low book-to-market ratios. The 

Fama and French three-factor model is given by 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝑎𝑖 + 𝑏𝑖MKT𝑡 + 𝑠𝑖SMB𝑡 + ℎ𝑖HML𝑡 + 𝑒𝑖,𝑡, (4.17) 

where SMB𝑡 is the “small minus big” size factor and HML𝑡 denotes the “high minus low” value 

factor. 

The third model we employ, proposed by Carhart (1997), augments the Fama and French 

three-factor model with one additional factor that accounts for the momentum phenomenon. The 

momentum factor, represents the returns of a portfolio that is long in stocks with the highest recent 

performance and short in stocks with the lowest recent performance. The Carhart four-factor model 

can be written as 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝑎𝑖 + 𝑏𝑖MKT𝑡 + 𝑠𝑖SMB𝑡 + ℎ𝑖HML𝑡 +𝑚𝑖MOM𝑡 + 𝑒𝑖,𝑡, (4.18) 

where MOM𝑡 denotes the momentum factor. 
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The fourth model we use was proposed by Fama and French (2015), who augment the 

Fama and French three-factor model by adding a profitability and an investment factor. The 

profitability factor is the difference between the returns on portfolios of stocks with robust and 

weak profitability, while the investment factor is the difference between the returns on portfolios 

of the stocks of low and high investment firms. The Fama and French five-factor model is given 

by 

𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝑎𝑖 + 𝑏𝑖MKT𝑡 + 𝑠𝑖SMB𝑡 + ℎ𝑖HML𝑡 + 𝑟𝑖RMW𝑡 + 𝑐𝑖CMA𝑡 + 𝑒𝑖,𝑡, (4.19) 

where RMW𝑡 is the “robust minus weak” profitability factor and CMA𝑡 is the “conservative minus 

aggressive” investment factor. 

The intercept, 𝑎𝑖, or Jensen (1968)’s alpha, can be interpreted as the average excess return 

of the 𝑖th pairs trading strategy that is not due to the sensitivity to any of the factors included in 

the regression. If the exposures to the combination of factors, 𝑏𝑖, 𝑠𝑖 , ℎ𝑖 , 𝑟𝑖, 𝑐𝑖 or 𝑚𝑖 depending on 

the chosen model, capture all variation in expected excess returns, then the intercept is zero for the 

𝑖th strategy. To examine whether a strategy generates statistically significant average abnormal 

returns, we use the 𝑝-value associated with the intercept coefficient. Each slope coefficient is an 

estimate of the strategy’s sensitivity to the corresponding factor. We use the coefficients and their 

respective 𝑝-values to determine whether a factor is related to the returns of a pairs trading strategy. 

Since all factor models are time-series regressions they may exhibit autocorrelation and/or 

heteroscedasticity in their error terms. To overcome this the Newey and West (1987) estimator is 

used. 

Tables 4.3 and 4.4 present the estimated alphas and factor sensitivities for each of the pair 

trading strategies, before and after transaction costs of 3 bps per share respectively. When the 
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returns are adjusted using the CAPM risk model (Panel A of Table 4.3), all strategies except those 

based on 𝜏 = 0.8 and 0.9, generate positive excess returns. However, the results indicate that only 

the strategies based on quantile regression for 𝜏 = 0.1, 0.2 and 0.3 generate abnormal returns that 

are statistically indistinguishable from zero. This indicates that the excess returns of the remaining 

strategies are due to the portfolio exposure to the market factor, therefore after controlling for the 

effects of the market factor, the average abnormal return of each of the strategies is statistically 

insignificant. Furthermore, the results indicate that all strategies except those based on quantile 

regression for 𝜏 = 0.7 have statistically significant sensitivity to the market portfolio, with all 

strategies except those for 𝜏 = 0.7, 0.8 and 0.9 having a positive exposure to the market. When 

transaction costs are taken into account (Panel A of Table 4.4), the only strategies with statistically 

significant, but negative, abnormal excess returns are the DM and those based on quantile 

regression for 𝜏 = 0.8 and 0.9, while the sensitivity to the market factor remains significant for the 

majority of the strategies. 

Next, the results from Panel B of Table 4.3, show that the positive and statistically 

significant alphas, after adjusting for the MKT, SMB and HML risk factors, belong to the strategies 

based quantile regression for 𝜏 = 0.1, 0.2 and 0.3. Moreover, for those three strategies the market 

and value factor are both statistically significant, with MKT being positively and HML negatively 

correlated with the excess returns. The remaining strategies do not yield statistically significant 

abnormal excess returns according to the Fama and French three-factor model, with the majority 

of the strategies exhibiting statistically significant sensitivity to the market portfolio and the value 

factor. The DM is the only pairs trading strategy with significant exposure to the size factor. After 

transaction costs (Panel B of Table 4.4) the DM and strategies based on quantile regression for 

𝜏 = 0.8 and 0.9 generate significant negative alphas, while none of the other methods yield 
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significant average excess return. The exposure to the market and value factors remains 

statistically significant for most of the strategies. 

Turning to the results from the Carhart four-factor model (Table 4.3, Panel C), all models 

except those based on quantile regression for 𝜏 = 0.8 and 0.9 generate a positive alpha, while the 

strategies that yield statistically significant results are those with 𝜏 = 0.1, 0.2, 0.3 and 0.4. For 

these strategies the market factor has a significant positive impact, while the exposures to the value 

and momentum factors are negative and statistically significant, with the size factor being positive 

and statistically significant for the strategy with 𝜏 = 0.1. The results for the majority of remaining 

pairs trading strategies show that the excess returns are affected by the market and value factors, 

while the slope estimate of the momentum factor is negative and significant for all models. After 

transaction costs there are no strategies that yield statistically significant and positive alphas. The 

results for the four factors are similar to those before transaction costs, with the momentum factor 

being statistically significant and negative across all strategies. 

Finally, the results of the Fama and French five factor model are reported in Panel D of 

Tables 4.3 and 4.4. The models that generate significant positive excess returns belong to the pairs 

trading strategies based on quantile regression with 𝜏 = 0.1, 0.2, 0.3 and 0.4. These strategies have 

positive and significant exposures to the market replicating portfolio and negative and significant 

exposures to the value and profitability factors, with the size and investment factors being 

statistically insignificant in the case of 𝜏 = 0.4. The results for the rest of the models appear mixed, 

with the exception of the DM where all factors are statistically significant. After transaction costs 

are taken into account none of the pair trading strategies generate positive and significant average 

excess returns, while the market, value, profitability and investment factors are statistically 

significant for most strategies. 
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4.5. Conclusion 

In this study we propose a new approach to pairs trading that combines the cointegration method 

and quantile regression. Using a sample consisting of daily observations of all stocks in the S&P 

100 from 2000 to 2017, we evaluate the performance of the new strategy, along with the distance 

method and original cointegration method, using a wide range of performance metrics and examine 

the sensitivity of pairs trading returns to various risk factors. The results indicate that the quantile 

regression pairs trading strategies based on the lower quantiles tend to outperform all other models.  
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Chapter 4 Tables 

Table 4.1: Pairs Trading Strategies Performance 

Panel A: Before transaction costs 

 Return on committed capital Return on employed capital 

  EPV AR SD SR VaR CVaR EPV AR SD SR VaR CVaR 

DM 1.2782 0.0017 0.0794 0.0216 0.0260 0.0327 1.9806 0.0061 0.1137 0.0533 0.0371 0.0466 

mean 3.9213 0.0180 0.1946 0.0927 0.0633 0.0796 5.8749 0.0301 0.3952 0.0762 0.1288 0.1618 

q0.1 5.8991 0.0303 0.1640 0.1846 0.0527 0.0664 11.2477 0.0633 0.3514 0.1801 0.1131 0.1424 

q0.2 5.6343 0.0286 0.1720 0.1665 0.0554 0.0698 12.4328 0.0706 0.3585 0.1970 0.1151 0.1451 

q0.3 5.5505 0.0281 0.1797 0.1564 0.0580 0.0730 11.1337 0.0626 0.3883 0.1612 0.1252 0.1577 

q0.4 5.0144 0.0248 0.1894 0.1310 0.0613 0.0771 10.2198 0.0570 0.3930 0.1449 0.1270 0.1598 

q0.5 4.1735 0.0196 0.1915 0.1023 0.0622 0.0782 7.0241 0.0372 0.3801 0.0979 0.1236 0.1553 

q0.6 2.5700 0.0097 0.1835 0.0529 0.0600 0.0753 4.1055 0.0192 0.3971 0.0483 0.1299 0.1630 

q0.7 1.5743 0.0035 0.1834 0.0193 0.0602 0.0755 1.3682 0.0023 0.4073 0.0056 0.1339 0.1679 

q0.8 -0.5614 -0.0096 0.1826 -0.0528 0.0605 0.0757 -4.2022 -0.0321 0.3801 -0.0845 0.1263 0.1581 

q0.9 -0.2749 -0.0079 0.1966 -0.0401 0.0650 0.0814 -4.5580 -0.0343 0.3880 -0.0885 0.1290 0.1614 

Panel B: After transaction costs 

 Return on committed capital Return on employed capital 

  EPV AR SD SR VaR CVaR EPV AR SD SR VaR CVaR 

DM -2.7760 -0.0233 0.0795 -0.2935 0.0271 0.0337 -2.0736 -0.0190 0.1138 -0.1669 0.0382 0.0477 

mean -0.9453 -0.0120 0.1945 -0.0618 0.0645 0.0807 1.0083 0.0001 0.3952 0.0001 0.1300 0.1630 

q0.1 1.2749 0.0017 0.1640 0.0104 0.0539 0.0676 6.6235 0.0347 0.3514 0.0989 0.1142 0.1436 

q0.2 0.7233 -0.0017 0.1719 -0.0099 0.0566 0.0710 7.5218 0.0403 0.3585 0.1124 0.1163 0.1463 

q0.3 0.5609 -0.0027 0.1797 -0.0151 0.0592 0.0743 6.1441 0.0318 0.3883 0.0818 0.1265 0.1589 

q0.4 0.0314 -0.0060 0.1893 -0.0316 0.0625 0.0784 5.2368 0.0262 0.3931 0.0666 0.1283 0.1611 

q0.5 -0.8089 -0.0112 0.1914 -0.0584 0.0634 0.0794 2.0417 0.0064 0.3800 0.0169 0.1248 0.1565 

q0.6 -2.4418 -0.0213 0.1833 -0.1160 0.0612 0.0765 -0.9063 -0.0118 0.3970 -0.0297 0.1311 0.1643 

q0.7 -3.5149 -0.0279 0.1833 -0.1521 0.0614 0.0768 -3.7210 -0.0292 0.4073 -0.0716 0.1351 0.1692 

q0.8 -5.6080 -0.0408 0.1825 -0.2237 0.0617 0.0769 -9.2488 -0.0633 0.3801 -0.1666 0.1276 0.1593 

q0.9 -5.2135 -0.0384 0.1965 -0.1954 0.0662 0.0826 -9.4966 -0.0648 0.3879 -0.1672 0.1302 0.1626 

Notes: This table reports the end-of-period value, average return, standard deviation, Sharpe ratio, Value-at-Risk and Conditional Value-at-Risk, for the three 

pairs trading strategies. The strategy based on quantile regression has been computed for 𝜏 ∈ [0.1,0.9]. All calculations are based on the excess returns of each 

strategy, with the 3-month Treasury bill used as the risk-free asset. The formation period is set to 12 months and the trading period to 6 months. The period 

considered is from December 2001 to December 2017. 

  



147 
 

Table 4.2: Pairs Trading Strategies Performance based on Downside Measures 

Panel A: Before transaction costs 

 Return on committed capital Return on employed capital 

  OR SOR K3 UP CR STE BR OR SOR K3 UP CR STE BR 

DM 1.0132 0.0063 0.0040 0.4817 0.0001 0.0001 0.0000 1.0315 0.0156 0.0103 0.5089 0.0003 0.0003 0.0001 

mean 1.0661 0.0279 0.0155 0.4497 0.0007 0.0007 0.0003 1.0559 0.0228 0.0117 0.4306 0.0002 0.0002 0.0001 

q0.1 1.1348 0.0568 0.0318 0.4780 0.0014 0.0014 0.0006 1.1448 0.0527 0.0228 0.4166 0.0001 0.0001 0.0001 

q0.2 1.1214 0.0520 0.0290 0.4798 0.0013 0.0013 0.0006 1.1527 0.0644 0.0321 0.4859 0.0001 0.0001 0.0000 

q0.3 1.1141 0.0488 0.0270 0.4768 0.0012 0.0012 0.0005 1.1256 0.0502 0.0236 0.4501 0.0002 0.0002 0.0001 

q0.4 1.0956 0.0405 0.0224 0.4640 0.0010 0.0010 0.0005 1.1102 0.0458 0.0243 0.4619 0.0004 0.0005 0.0002 

q0.5 1.0728 0.0310 0.0172 0.4570 0.0008 0.0008 0.0004 1.0698 0.0296 0.0158 0.4534 0.0006 0.0006 0.0003 

q0.6 1.0351 0.0155 0.0093 0.4578 0.0004 0.0004 0.0002 1.0337 0.0143 0.0079 0.4383 0.0008 0.0008 0.0003 

q0.7 1.0127 0.0056 0.0034 0.4501 0.0001 0.0001 0.0001 1.0039 0.0016 0.0009 0.4222 0.0001 0.0001 0.0000 

q0.8 0.9667 -0.0150 -0.0090 0.4352 -0.0004 -0.0004 -0.0002 0.9457 -0.0240 -0.0142 0.4192 -0.0013 -0.0013 -0.0006 

q0.9 0.9741 -0.0113 -0.0066 0.4256 -0.0003 -0.0003 -0.0001 0.9423 -0.0246 -0.0144 0.4014 -0.0014 -0.0014 -0.0006 

Panel B: After transaction costs 

 Return on committed capital Return on employed capital 

  OR SOR K3 UP CR STE BR OR SOR K3 UP CR STE BR 

DM 0.8382 -0.0807 -0.0524 0.4181 -0.0009 -0.0009 -0.0004 0.9077 -0.0469 -0.0315 0.4614 -0.0008 -0.0008 -0.0003 

mean 0.9583 -0.0181 -0.0102 0.4172 -0.0005 -0.0005 -0.0002 1.0001 0.0000 0.0000 0.4149 0.0000 0.0000 0.0000 

q0.1 1.0071 0.0031 0.0018 0.4391 0.0001 0.0001 0.0000 1.0770 0.0286 0.0125 0.4003 0.0001 0.0001 0.0001 

q0.2 0.9932 -0.0030 -0.0017 0.4404 -0.0001 -0.0001 0.0000 1.0843 0.0362 0.0182 0.4659 0.0001 0.0001 0.0000 

q0.3 0.9896 -0.0046 -0.0026 0.4381 -0.0001 -0.0001 0.0000 1.0619 0.0252 0.0119 0.4326 0.0001 0.0001 0.0001 

q0.4 0.9783 -0.0095 -0.0053 0.4283 -0.0002 -0.0002 -0.0001 1.0491 0.0208 0.0111 0.4442 0.0002 0.0002 0.0001 

q0.5 0.9608 -0.0173 -0.0097 0.4233 -0.0004 -0.0004 -0.0002 1.0117 0.0051 0.0027 0.4364 0.0001 0.0001 0.0001 

q0.6 0.9272 -0.0332 -0.0202 0.4232 -0.0009 -0.0009 -0.0004 0.9799 -0.0087 -0.0048 0.4226 -0.0005 -0.0005 -0.0002 

q0.7 0.9058 -0.0432 -0.0260 0.4152 -0.0011 -0.0011 -0.0005 0.9512 -0.0209 -0.0115 0.4069 -0.0012 -0.0012 -0.0005 

q0.8 0.8666 -0.0619 -0.0377 0.4020 -0.0016 -0.0016 -0.0007 0.8960 -0.0469 -0.0279 0.4036 -0.0025 -0.0025 -0.0011 

q0.9 0.8802 -0.0539 -0.0320 0.3962 -0.0015 -0.0015 -0.0007 0.8939 -0.0460 -0.0270 0.3871 -0.0026 -0.0026 -0.0012 

Notes: This table reports the performance metrics using lower partial moments and drawdown as measures of risk, for the three pairs trading strategies. The 

strategy based on quantile regression has been computed for 𝜏 ∈ [0.1,0.9]. All calculations are based on the excess returns of each strategy, with the 3-month 

Treasury bill used as the risk-free asset. The formation period is set to 12 months and the trading period to 6 months. The period considered is from December 

2001 to December 2017. 
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Table 4.3: Pairs Trading Strategies Risk Profile, before Transaction Costs 

  DM mean q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 

Panel A: One-factor market model 

Alpha 0.0030 0.0995 0.2067* 0.2428** 0.2124* 0.1994 0.1280 0.0687 0.0117 -0.1055 -0.0919 

MKT 0.6219*** 0.6145*** 1.3615*** 1.1640*** 1.1142*** 0.8329*** 0.6094*** 0.2363** -0.0765 -0.6761*** -1.3315*** 

Panel B: Fama and French three-factor model 

Alpha 0.0041 0.0982  0.2102**  0.2443**  0.2132* 0.1982 0.1270 0.0655 0.0090 -0.1091 -0.0936 

MKT  0.5998*** 0.5660***  1.5981***  1.3257***  1.2147***  0.8534*** 0.5637*** 0.1560 -0.1793 -0.8809*** -1.5461*** 

SMB -0.1664*** 0.1049 -0.1779 -0.0120 0.0059 0.1717 0.0798 0.3044 0.2305 0.2338 -0.0156 

HML  0.2626*** 0.2707 -1.5391*** -1.1232*** -0.7066*** -0.2551 0.2682 0.3642*  0.5695***  1.2806***  1.5102*** 

Panel C: Carhart four-factor model 

Alpha 0.0191 0.1279  0.2226**  0.2660**  0.2402**  0.2272* 0.1561 0.1008 0.0452 -0.0820 -0.0685 

MKT  0.4018*** 0.1722  1.4335***  1.0377***  0.8569***  0.4684*** 0.1774 -0.3115*** -0.6596*** -1.2403*** -1.8787*** 

SMB -0.0550 0.3265 -0.0853 0.1500 0.2073  0.3883* 0.2972  0.5674**  0.5007**  0.4360** 0.1715 

HML -0.2549*** -0.7584*** -1.9691*** -1.8756*** -1.6416*** -1.2612*** -0.7412*** -0.8572*** -0.6855*** 0.3415  0.6410*** 

MOM -0.8923*** -1.7744*** -0.7414*** -1.2974*** -1.6122*** -1.7347*** -1.7404*** -2.1059*** -2.1638*** -1.6192*** -1.4985*** 

Panel D: Fama and French five-factor model 

Alpha 0.0159 0.1432  0.2410**  0.2855***  0.2587**  0.2471** 0.1734 0.1166 0.0609 -0.0854 -0.0730 

MKT  0.5267***  0.3128***  1.4683***  1.1272***  0.9855***  0.5916***  0.3031*** -0.1520 -0.4988*** -1.0694*** -1.7181*** 

SMB -0.2043*** -0.1662 -0.5780*** -0.4289** -0.4039* -0.1928 -0.2045 0.0968 0.0513  0.3636* 0.1398 

HML  0.2898*** 0.1030 -2.1130*** -1.6366*** -1.1657*** -0.5859*** 0.0859  0.3885*  0.6626***  1.7758***  2.0311*** 

RMW -0.4083*** -2.0041*** -2.1289*** -2.4332*** -2.5079*** -2.4273*** -2.0847*** -1.9224*** -1.8416*** -0.0927 0.0709 

CMA -0.5190*** -0.5272  2.0946***  1.4378***  1.0122** 0.2177 -0.4953 -1.7476*** -2.1419*** -3.3970*** -3.4348*** 

Notes: This table reports the risk-adjusted alphas and factor sensitivities for each of the pairs trading strategies, using the one-factor market model (Panel A), Fama and 

French three-factor model (Panel B), Carhart four-factor model (Panel C) and Fama and French five-factor model (Panel D). The statistical significance of each parameter 

is based on 𝑡-statistics calculated using Newey-West standard errors.  

*, ** and *** indicate significance at the 10%, 5% and 1% levels. 
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Table 4.4: Pairs Trading Strategies Risk Profile, after Transaction Costs 

  DM mean q0.1 q0.2 q0.3 q0.4 q0.5 q0.6 q0.7 q0.8 q0.9 

Panel A: One-factor market model 

Alpha -0.0973*** -0.0208 0.0924 0.1214 0.089 0.0762 0.0049 -0.0552 -0.1141 -0.2302* -0.2140* 

MKT  0.6247***  0.6145*** 1.3631*** 1.1654*** 1.1158*** 0.8338*** 0.6090***  0.2379** -0.0762 -0.6757*** -1.3301*** 

Panel B: Fama and French three-factor model 

Alpha -0.0961*** -0.0220 0.0959 0.1228 0.0899 0.0750 0.0039 -0.0584 -0.1168 -0.2338** -0.2157* 

MKT  0.6042***  0.5694***  1.6016***  1.3290***  1.2189***  0.8565*** 0.5663*** 0.1604 -0.1760 -0.8785*** -1.5433*** 

SMB -0.1716*** 0.1015 -0.1728 -0.0071 0.0040 0.1743 0.0797 0.3055 0.2304 0.2361 -0.0124 

HML  0.2551*** 0.2492 -1.5555*** -1.1393*** -0.7235*** -0.2724 0.2468 0.3432  0.5482**  1.2649***  1.4989*** 

Panel C: Carhart four-factor model 

Alpha -0.0813** 0.0074 0.1080 0.1442 0.1165 0.1037 0.0327 -0.0234 -0.0809 -0.2070* -0.1909 

MKT  0.4081*** 0.1802  1.4415***  1.0453***  0.8659***  0.4758***  0.1850* -0.3023*** -0.6519*** -1.2341*** -1.8723*** 

SMB -0.0613 0.3205 -0.0827 0.1525 0.2026  0.3885* 0.2942  0.5659**  0.4982**  0.4362** 0.1727 

HML -0.2573*** -0.7679*** -1.9740*** -1.8807*** -1.6460*** -1.2672*** -0.7496*** -0.8659*** -0.6952*** 0.3357  0.6392*** 

MOM -0.8835*** -1.7537*** -0.7215*** -1.2782*** -1.5907*** -1.7153*** -1.7180*** -2.0847*** -2.1440*** -1.6020*** -1.4824*** 

Panel D: Fama and French five-factor model 

Alpha -0.0841** 0.0230 0.1266 0.1641 0.1354 0.1240 0.0502 -0.0074 -0.0649 -0.2103* -0.1952* 

MKT  0.5299***  0.3161***  1.4718***  1.1307***  0.9899***  0.5946***  0.3067*** -0.1468 -0.4952*** -1.0663*** -1.7150*** 

SMB -0.2105*** -0.1687 -0.5724*** -0.4237** -0.4048* -0.1902 -0.2038 0.0995 0.0528  0.3669* 0.1437 

HML  0.2817*** 0.0833 -2.1286*** -1.6524*** -1.1809*** -0.6031*** 0.0648  0.3696*  0.6437***  1.7609***  2.0209*** 

RMW -0.4166*** -2.0008*** -2.1269*** -2.4312*** -2.5027*** -2.4280*** -2.0783*** -1.9131*** -1.8340*** -0.0864 0.0754 

CMA -0.5223*** -0.5368  2.0899***  1.4370***  1.0045** 0.2167 -0.4922 -1.7537*** -2.1518*** -3.3978*** -3.4385*** 

Notes: This table reports the risk-adjusted alphas and factor sensitivities for each of the pairs trading strategies, using the one-factor market model (Panel A), Fama and 

French three-factor model (Panel B), Carhart four-factor model (Panel C) and Fama and French five-factor model (Panel D). The statistical significance of each parameter 

is based on 𝑡-statistics calculated using Newey-West standard errors.  

*, ** and *** indicate significance at the 10%, 5% and 1% levels. 
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Chapter 4 Figures 

Figure 4.1: Cumulative Excess Return on Committed Capital, before Transaction Costs. 

 
Notes: This figure plots the cumulative return for the DM (dashed line), the cointegration method (solid line) and 

the quantile regression method (grey lines), based on the return on committed capital. 

 

 

Figure 4.2: Cumulative Excess Return on Employed Capital, before Transaction Costs. 

 
Notes: This figure plots the cumulative return for the DM (dashed line), the cointegration method (solid line) and 

the quantile regression method (grey lines), based on the return on employed capital. 
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Figure 4.3: Cumulative Excess Return on Committed Capital, after Transaction Costs. 

 
Notes: This figure plots the cumulative return for the DM (dashed line), the cointegration method (solid line) and 

the quantile regression method (grey lines), based on the return on committed capital. 

 

 

Figure 4.4: Cumulative Excess Return on Employed Capital, after Transaction Costs. 

 
Notes: This figure plots the cumulative return for the DM (dashed line), the cointegration method (solid line) and 

the quantile regression method (grey lines), based on the return on employed capital. 
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Chapter 5: Concluding Remarks and Future Research 

This thesis is comprised of three essays with the following topics: (1) detection of speculative 

bubbles in real estate and forecasting the returns of real estate indices using models that take into 

account the bubble component of the asset price; (2) the benefits of integrating return forecasts 

from machine learning and forecast combination methods to an out-of-sample asset allocation 

framework and (3) the evaluation of a new approach to pairs trading that incorporates quantile 

regression. 

In the first essay of this thesis we examined whether speculative bubbles are present in the 

US and UK commercial, equity and residential real estate sectors. First, the real estate price indices 

are decomposed into a fundamental and a non-fundamental component using a wide range of 

predictors and the models are estimated using penalized regressions. Our findings suggest the 

existence of significant periods of overvaluation in real estate markets, particularly in residential 

real estate, as well as economically significant periods of undervaluation, especially in equity real 

estate markets. In order to determine whether the observed deviations of the actual prices from 

their fundamental values are due to the presence of speculative bubbles, we use two 

complementary methodologies that utilize the information contained in the non-fundamental 

component of the asset price. The first is based on right-side augmented Dickey-Fuller tests for 

explosive behavior and the second on a two-state regime switching model for bubbles. The 

findings from both methodologies provide significant in-sample evidence that the observed 

deviations of the actual price from the fundamental value were due to the presence of speculative 

bubbles. The out-of-sample results show that in most cases the proposed regime-switching model 

for bubbles outperforms the historical average benchmark and the stylized alternative models. 
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In the second essay we evaluate the benefits of integrating return forecasts from a variety 

of machine learning and forecast combination methods into an out-of-sample asset allocation 

framework. When examining the benefits of forecasting the returns for each individual index, the 

results indicate that the majority of the proposed prediction models outperform the historical 

average benchmark, with shrinkage and variable selection methods yielding the highest 

performance for the stock and bond indices, while for the commodity index the dimensionality 

reduction methods achieve superior performance. To examine whether return forecasts provide 

any benefits in an asset allocation setting, we construct stock-bond-commodity portfolios and 

compare their performance to that of the equally-weighted portfolio and a mean-variance portfolio 

based on the historical average. For commodity-augmented portfolios, the majority of the models 

outperform the two benchmarks, while the models with the highest performance are those based 

on shrinkage and variable selection methods or PLS-type methods.  

The performance of the portfolios is further evaluated for different levels of risk aversion 

and investment constraints, around business cycles and for monthly or quarterly rebalancing. 

Overall, the commodity-augmented portfolios of an aggressive investor outperform those of a 

conservative investor. Portfolios with either short selling or leverage generate higher certainty 

equivalent return than the unleveraged long-only allocations, while portfolios with both leverage 

and short selling yield the highest return. When transaction costs are taken into account, the results 

for monthly-rebalanced portfolios favor forecast combination methods, instead of methods that 

combine information due to the latter methods leading to portfolios with higher turnover. When 

the rebalancing frequency is reduced to quarterly, the models with the best performance for an 

aggressive investor are those based on shrinkage and dimensionality reduction methods. In 

recessionary periods, all portfolios based on multivariate regression models outperform the equal 
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weighted portfolios or those based on the historical average forecast, while in expansionary 

periods, portfolios with leverage or short selling tend to yield higher performance. When CVaR is 

used as a risk measure, the vast majority of the mean-CVaR portfolios based on forecasts from 

multivariate regression models outperform the equally-weighted and HA portfolios. Finally, when 

comparing the results of stock-bond portfolios with those that include commodities for the full 

sample, commodities add value to a traditional portfolio when short selling is allowed, with 

aggressive investors benefiting more from the inclusion of commodities. 

In the final essay we propose a new approach to pairs trading, which takes advantage of 

the information in the conditional quantiles of the distribution of asset returns. In the formation 

period stock pairs are sorted and selected using cointegration tests, while in the trading period the 

trading signal is generated based on the spread of the stock prices in the pair, which has been 

estimated by quantile regression. We conduct an extensive evaluation of the new strategy by 

applying it to the S&P 100 index constituents. The performance of the new strategy is compared 

to the distance method and cointegration method benchmarks using a variety of economic and risk-

adjusted measures and under an asset pricing framework, in order to examine whether the returns 

of each strategy can be explained by various risk factors. We find that pairs trading strategies based 

on the lower quantiles generate the highest performance. 

The contributions of this thesis can be expanded in several ways. Additional research 

directions regarding Chapter 2 include the implementation of a greater variety of models to derive 

the non-fundamental component of the asset price, modifying the states and probabilities of the 

regime-switching model, investigating the cross-sectional migration of speculative bubbles, 

economic evaluation of the models and the development of trading strategies that take into account 

bubble dynamics. Based on Chapter 3, further research could be conducted in order to improve the 
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way that the forecasts are integrated into the objective function, so that the impact of transaction 

costs on portfolio returns would be reduced. Furthermore, a detailed investigation of the benefits 

of using alternative estimates of the covariance matrix could be performed, especially for large 

dimensional portfolios with cardinality constraints. Finally, additional research in regard to 

Chapter 4 could further explore the source of the profitability of the pairs trading strategy based 

on quantile regression, incorporate quantile regression to the formation stage of pairs trading and 

extend the new strategy to a multivariate framework. 
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