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Abstract. A version of Kirillov’s orbit method states that the primitive spectrum of a generic
quantisation A of a Poisson algebra Z should correspond bijectively to the symplectic leaves of
SpecpZq. In this article we consider a Poisson order A over a complex affine Poisson algebra
Z. We stratify the primitive spectrum PrimpAq into symplectic cores, which should be thought
of as families of non-commutative symplectic leaves. We then introduce a category A -P-Mod of
A-modules adapted to the Poisson structure on Z, and we show that when SpecpZq is smooth
with locally closed symplectic leaves, there is a natural homeomorphism from the spectrum of
annihilators of simple objects in A -P-Mod to the set of symplectic cores in PrimpAq with its
quotient topology. Several application are given to Poisson representation theory. Our main tool is
the Poisson enveloping algebra Ae of a Poisson order A, which captures the Poisson representation
theory of A. For Z regular and affine we prove a PBW theorem for Ae and use this to characterise
the annihilators of simple Poisson modules: they coincide with the Poisson weakly locally closed,
the Poisson primitive and the Poisson rational ideals. We view this as a generalised weak Poisson
Dixmier–Mœglin equivalence.

1. Introduction

1.1. The orbit method. Kirillov’s orbit method appears in a wide variety of contexts in rep-
resentation theory and Lie theory, and is occasionally referred to as a philosophy rather than a
theory, on account of the fact that it serves as a guiding principle in many cases where it can-
not be formulated as a precise statement. The original manifestation of the orbit method states
that characters of simple modules for Lie groups can be expressed as normalisations of Fourier
transforms of certain functions on coadjoint orbits [27], but perhaps the most concrete algebraic
expressions of the orbit method is a well-known theorem of Dixmier which asserts that when G is
a complex solvable algebraic group and g “ LiepGq the primitive ideals of the enveloping algebra
Upgq lie in natural one-to-one correspondence with the set-theoretic coadjoint orbit space g˚{G; see
[8, Theorem 6.5.12]. Dixmier’s theorem fails for complex simple Lie algebras [16, Remark 9.2(c)],
however progress has been made recently by Losev [29] using techniques from deformation theory
to show that g˚{G canonically maps to PrimUpgq, and the map is an embedding in classical types.
The image consists of a certain completely prime ideals and conjecturally it is always injective.

The Kirillov–Kostant–Souriau theorem asserts that the coadjoint orbits are actually the symplec-
tic leaves of the Poisson variety g˚, and so a broad interpretation of the orbit method philosophy
is the following: suppose that Z is a Poisson algebra and A is a quantisation of Z, then the
primitive spectrum PrimpAq should correspond closely to the set of symplectic leaves of SpecpZq,
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indeed a slightly more general principle was suggested by Goodearl in [16, §4.4]. There are several
examples of quantum groups and quantum algebras where the correspondence we allude to here
actually manifests itself as a bijection, or better yet a homeomorphism, once the set of leaves is
endowed with a suitable topology; the reader should refer to [16] where numerous correspondences
of this type are surveyed.

1.2. Poisson orders and their modules. In deformation theory, Poisson algebras arise as the
semi-classical limits of quantisations, as we briefly recall. If A is a torsion-free Crqs-algebra where
q is a parameter, such that A0 :“ A{qA is commutative then A0 is equipped with a Poisson bracket
by setting

tπpa1q, πpa2qu :“ πpq´1
ra1, a2sq (1.1)

where π : A Ñ A0 is the natural projection and a1, a2 P A. Of course we do not need to assume
that A0 is commutative to obtain a Poisson algebra since formula (1.1) endows the centre ZpA0q

with the structure of a Poisson algebra regardless. In fact, something stronger is true: by choosing
πpa1q P ZpA0q and πpa2q P A0 formula (1.1) endows A0 with a biderivation

t¨, ¨u : ZpA0q ˆ A0 Ñ A0 (1.2)

which restricts to a Poisson bracket t¨, ¨u : ZpA0q ˆ ZpA0q Ñ ZpA0q. In [6] Brown and Gordon
axiomatised this structure in cases where A0 is a ZpA0q-module of finite type by saying that A0

is a Poisson order over ZpA0q. The precise definition will be recalled in §2.2, and a slightly more
general approach to constructing Poisson orders in deformation theory will be explained in §2.3.
The bracket (1.2) induces a map H : ZpA0q Ñ DerCpA0q and the image is referred to as the set
of Hamiltonian derivations of A0. In op. cit. they proved some very attractive general results
with the ultimate goal of better understanding the representation theory of symplectic reflection
algebras. In this paper we pursue the themes of the orbit method in the abstract setting of Poisson
orders.

When Z is a Poisson algebra and A is a Poisson order over Z we define a Poisson A-module to
be an A-module with a compatible action for the Hamiltonian derivations HpZq; see §2.2. In the
case where A “ Z these modules are closely related to D-modules over the affine variety SpecpZq
(see Remark 2.4), and they have appeared in the literature many times (see [1, 10, 19, 28, 33] for
example). In the setting of Poisson orders a similar category of modules was studied in [36]. For
a Poisson A-module M we define the singular support of M to be the subset

VpMq :“ tI P PrimpAq | AnnApMq Ď Iu. (1.3)

The set of annihilators of simple Poisson A-modules will always be equipped with its Jacobson
topology.

1.3. Symplectic cores vs. annihilators of simple Poisson modules. A primitive ideal of
A is the annihilator of a simple A-module and the set of such ideals equipped with their Jacob-
son topology is called the primitive spectrum, denoted PrimpAq. It is often the case that simple
A-modules cannot be classified but PrimpAq can be described completely, which offers good mo-
tivation for studying primitive spectra. The Poisson core of an ideal I Ď A is the largest ideal
PpIq of A contained in I which is stable under the Hamiltonian derivations, and we define an
equivalence relation on the set PrimpAq by saying I „ J if PpIq “ PpJq. The equivalence classes
are called the symplectic cores of PrimpAq, the set of symplectic cores is denoted PrimCpAq and the
symplectic core of PrimpAq containing I is denoted CpIq. We view PrimCpAq as topological space
endowed with the quotient topology. In case Z is an affine Poisson algebra such that SpecpZq
has Zariski locally closed symplectic leaves, [6, Proposition 3.6] shows that the symplectic leaves
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coincide with the symplectic cores of SpecpZq; see also Proposition 2.7. Thus the cores of PrimpAq
can occasionally be regarded as non-commutative analogues of symplectic leaves.

First Theorem. Suppose that SpecpZq is a smooth complex affine Poisson variety with Zariski
locally closed symplectic leaves, and A is a Poisson order over Z. For every simple Poisson A-
module M , there is a unique symplectic core of PrimpAq which is dense in VpMq in the Jacobson
topology. Sending AnnApMq to this symplectic core sets up a homeomorphism between the space
of annihilators of simple Poisson A-modules and the space PrimCpAq.

The hypothesis that the symplectic leaves of SpecpZq are algebraic can be replaced with some-
thing strictly weaker; see Remark 6.2. Our theorem has obvious parallels with Joseph’s irreducibil-
ity theorem [24], which states that for g a complex semisimple Lie algebra and M a simple g-module
the variety tχ P g˚ | χpgr AnnUpgqpMqq “ 0u contains a unique dense nilpotent orbit. Other closely
related results can be found in [13, 30], although all of the papers we cite here apply to Poisson
structures which have finitely many symplectic leaves - this is a hypothesis we do not require. It
is natural to wonder whether our first theorem might serve as a starting point for a new proof of
the irreducibility theorem.

In order to illustrate in what sense our theorem is an expression of the orbit method philosophy
we record the following special case where A “ Z “ Crg˚s is the natural Poisson structure arising
on the dual of an algebraic Lie algebra.

Corollary. Let G be a connected complex linear algebraic group and g “ LiepGq its Lie algebra.
Then the set of annihilators of simple Poisson Crg˚s-modules lies in natural bijection with the set
g˚{G of coadjoint orbits.

Remark. When G is a complex solvable algebraic group and g “ LiepGq we may apply Dixmier’s
theorem (Cf. §1.1) and the previous corollary to deduce that the annihilators of simple Poisson
Crg˚s-modules lie in one-to-one correspondence with annihilators of simple Upgq-modules. In §6.3
we will make a detailed study of these parameterisations and show that they are dual to each other
in a precise sense.

Another interesting class of Poisson algebras to which the theorem can be applied are the classical
finite W -algebras. Let G be a connected complex reductive algebraic group, e P g “ LiepGq a
nilpotent element and pe, h, fq and sl2-triple. If gf denotes the centraliser of f in g, then the slice
e` gf is transversal to the orbit G ¨ e and it inherits a natural Poisson structure from g – g˚ via
Hamiltonian reduction; see [14] for more detail.

Corollary. The annihilators of simple Poisson Cre` gf s-modules lie in natural one-to-one corre-
spondence with the connected components of the sets pG ¨ xq X pe` gf q where x P e` gf .

Proof. Thanks to [37, Theorem 3.1] we know that the symplectic leaves of e`gf are the connected
components of the sets pG ¨ xq X pe` gf q, x P g, in particular they are Zariski locally closed. �

We now briefly describe the proof of the first theorem. Showing that the bijection is a homeo-
morphism is easy, and only requires us to make a comparison between the topologies of the two
spaces involved, which is carried out in §6.2. The hard work lies in proving that the support of
a simple module contains a dense core, and that this sets up a bijection. Conceptually this is
achieved in three steps. Firstly we we show that whenever the leaves of SpecpZq are locally closed,
the closures of the symplectic cores of PrimpAq are determined by the Poisson primitive ideals,
which we define to be P-PrimpAq :“ tPpIq | I P PrimpAqu. Secondly we show that P-PrimpAq is
equal to the set of annihilators of simple Poisson A-modules. Finally, we observe in Lemma 6.1 that
there is a unique symplectic core in each closure CpIq, and it follows that there exists a bijection
P-PrimpAq Ø PrimCpAq. The first and second steps are really consequences of our second main
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theorem, which gives a detailed comparison of different types of HpZq-stable ideals in Poisson
orders, as we now explain.

1.4. The Poisson Dixmier–Mœglin equivalence for Poisson orders. Let k be any field,
Z be an affine Poisson k-algebra and A a Poisson order over Z. As usual SpecpAq denotes the
set of prime two-sided ideals, and we have PrimpAq Ď SpecpAq. The Poisson ideals of A are the
two-sided ideals which are stable under the Hamiltonian derivations HpZq. We write P-SpecpAq
for the set of all Poisson ideals of A which are also prime. The set P-SpecpAq endowed with its
Jacobson topology is referred to as the Poisson spectrum of A, and the elements are known as
Poisson prime ideals of A. If A is prime and Z is an integral domain then we can form the field of
fractions QpZq, and since A is a Z-module of finite type the tensor product AbZQpZq is isomorphic
to QpAq the division ring of fractions of A; in particular QpAq exists. When I P SpecpAq we have
I X Z P SpecpZq (see [31, Theorem 10.2.4], for example) and so we can form the division ring
QpA{Iq. If I is a Poisson ideal then the set of derivations HpZq acts naturally on A{I, and the
action extends to an action on QpA{Iq by the Leibniz rule

δpab´1
q “ δpaqb´1

` ab´1δpbqb´1, (1.4)

where δ P HpZq and a, b P A{I with b ‰ 0. The centre of QpA{Iq will be written CQpA{Iq and we
define the Poisson centre of QpA{Iq to be the subalgebra

CPQpA{Iq :“ tz P CQpA{Iq | HpZqz “ 0u. (1.5)

Let I P P-SpecpAq be a Poisson prime ideal. We say that:

‚ I is Poisson locally closed if tIu is a locally closed subset of P-SpecpAq;
‚ I is Poisson weakly locally closed if there are only finitely many Poisson prime ideals in
A{I of height one;

‚ I is Poisson primitive if I “ PpJq for some J P PrimpIq;
‚ I is Poisson rational if CPQpA{Iq is a finite extension of k;
‚ I is the annihilator of a simple Poisson module if

I “ ta P A | aM “ 0u

for some simple Poisson A-module M .

Second Theorem. Let A be a Poisson order over an affine Poisson C-algebra Z. The following
hold:

(a) every Poisson locally closed ideal in P-SpecpAq is Poisson primitive;
(b) every annihilator of a simple Poisson A-module is is Poisson rational;
(c) when Z is regular, every Poisson primitive ideal of A is the annihilator of some simple

Poisson A-module.

Furthermore the following families of ideals in P-SpecpAq coincide:

(i) Poisson weakly locally closed ideals;
(ii) Poisson primitive ideals;

(iii) Poisson rational ideals.

Finally, the following are equivalent:

(I) the Poisson primitive ideals of A are Poisson locally closed on P-SpecpAq;
(II) the symplectic cores of PrimpAq are locally closed sets cut out by the Poisson primitive

ideals

When the symplectic leaves of Z are locally closed in the Zariski topology conditions (I) and (II)
hold for Z as a Poisson order over itself. If these equivalent conditions hold for Z then they also
hold for A.
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The equivalence of (i), (ii), (iii) is known as the weak Poisson Dixmier–Mœglin equivalence.
It has recently been proven for Poisson algebras by the first named author et al. in [3], and our
approach is to lift the theorem to the setting of Poisson orders using the close relationships between
prime and primitive ideals in finite centralising extensions. Part (a) is similarly a well-known fact
in the setting of Poisson algebras, and the same proof works here. When the Poisson primitive
ideals of a Poisson algebra Z are Poisson locally closed we say that the Poisson Dixmier–Mœglin
equivalence (PDME) holds for Z. Generalising this rubric, we shall say that the PDME holds for
A when conditions (I) and (II) hold for A. It was an open question from [6] as to whether every
affine Poisson algebra satisfies the PDME, however recently counterexamples have been discovered
[3]. We may now rephrase the last sentence of the second theorem: we have shown that if the
PDME holds for a complex affine Poisson algebra Z then it holds for every Poisson order A over
Z.

1.5. The universal enveloping algebra of a Poisson order. To conclude our statement of
results it remains to offer some commentary on (b) and (c) of the second main theorem. Statement
(c) was proposed in the case A “ Z in [33] although the proof contains an error 1. The converse
was conjectured at the same time and proven in case Z is a polynomial algebra in [34]. Since our
results are stated in the setting of Poisson modules over Poisson orders, we require new tools and
new methods. Our main technique is to define and study the (universal) enveloping algebra of a
Poisson order. This is an associative algebra Ae generated by symbols tmpaq, δpzq | a P A, z P Zu
subject to certain relations (3.2)-(3.5) such that category Ae -Mod of left modules is equivalent
to the category of Poisson A-modules. Using this construction we are able to define localisation
of Poisson modules over Poisson orders, which is our main tool in proving part (b) of the second
main theorem. In order to prove part (c) we show that when Z is regular, Ae is a free (hence
faithfully flat) A-module (Corollary 3.14), which implies that the ideals of Ae are closely related
to the ideals of A (Cf. Lemma 4.1). The fact that Ae is A-free follows quickly from our last main
theorem of this paper, which we view as a PBW theorem for the enveloping algebras of Poisson
orders. There is a natural filtration Ae “

Ť

iě0 FiA
e, defined by placing generators tmpaq | a P Au

in degree 0 and tδpzq | z P Zu in degree 1, which we call the PBW filtration of Ae. The associated
graded algebra is denoted grAe. The statement and proof of our third and final main theorem are
quite similar to Rinehart’s PBW theorem for Lie algebroids [35].

Third Theorem. Suppose that Z is affine and regular over a field. Then the natural surjection

AbZ SZpΩZ{kq� grAe

induced by multiplication in grAe is an isomorphism.

1.6. Structure of the paper. We now describe the structure of the current paper. In §2 we state
the definition of a Poisson order: our definition is very slightly different to the one originally given
in [6], although a careful comparison is provided in Remark 2.1. Poisson modules over Poisson
orders are also defined, and in §2.3 we go on to to give examples of elementary constructions of
Poisson orders and their modules, as well as reviewing the common construction of examples in
deformation theory. In §2.4 we study the symplectic cores of PrimpAq, and prove the equivalence
of (I) and (II), as well as the subsequent two assertions of second main theorem. In §3 we introduce
the enveloping algebra of a Poisson order. We state the universal property in §3.1 and prove a
criterion for Ae to be noetherian. In §3.2 we use Ae to define and study localisations of Poisson
A-modules, whilst in §3.3 we prove the PBW theorem and state some useful consequences. In §4
we prove (b) and (c) of the second theorem using the tools developed in of §3. In §5 we prove

1We thank Professor Oh for his clarifications and assistance here, and for allowing us to reproduce the example
in Remark 4.5.
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(a) and the equivalence of (i), (ii), (iii) in the second main theorem. Following [15] we observe
that results, such as the PDME, can be studied in the slightly more general context of finitely
generated algebras equipped with a set of distinguished derivations, and it is in this setting that
we prove the results of §5. Finally, in §6 we show that the second theorem implies the first. In §6.3
we make a careful comparison between Dixmier’s bijection g˚{G Ñ PrimUpgq and our bijection
tannihilators of simple Poisson Crg˚s-modulesu Ñ g˚{G in the case where g is a solvable, and
finally in §6.4 we discuss some famous examples of Poisson orders arising in deformation theory to
which our first main theorem can be applied. We conclude the article by posing some questions
about their Poisson representation theory.

1.7. A discussion of related results and new directions. It is worth mentioning that our first
main theorem is very close in spirit to a conjecture of Hodges and Levasseur [21, §2.8, Conjecture 1]
which seeks to relate the primitive spectrum of the quantised coordinate ring of a complex simple
algebra group OqpGq in the case where q is a generic parameter, to the Poisson spectrum of the
classical limit OpGq; see [16, §4.4] for a survey of results. Although the spectra are always known
to lie in natural bijection, this bijection is only known to be a homeomorphism in case G “ SL2pCq
and SL3pCq [12]. By contrast, our bijection is always a homeomorphism, however our results only
apply to these families of algebras when the parameter is a root of unity. It would be natural to
attempt to strengthen this comparison.

Although our results are fairly comprehensive we expect that part (c) of the second main theorem
should hold without the hypothesis that Z is regular, and so the first main theorem should hold true
without assuming SpecpZq is smooth. Note that the symplectic leaves of a singular Poisson variety
can be defined, thanks to [6, §3.5]. This would constitute an extremely worthwhile development,
as there are important examples of Poisson orders over singular Poisson varieties, eg. rational
Cherednik algebras. At least this should be achievable for Poisson orders over isolated surface
singularities using the methods of [28, §3.4] along with our proof of Theorem 4.2, which only
depends upon the PBW theorem for Ae.

Another motivation for this work is the following: there appear to be deep connections between
the dimensions of simple modules of a Poisson order A over Z and the dimensions of its symplectic
leaves of Z. We expect that the Poisson representation theory of A will be closely related to the
representation theory of A, and so the current paper will lay the groundwork for such relationships
to be understood in a broader context.

Ackowledgements: The authors would like to thanks Ken Brown, Francesco Esposito, Baohua
Fu, Iain Gordon, David Jordan and Sei-Qwon Oh for useful discussions and correspondence on the
subject of this paper. We would also like to thank the referee for making useful comments and
for suggesting freeness, and its proof, in Corollary 3.14(iv). This research was funded in part by
EPSRC grant EP/N034449/1.

2. Preliminaries

2.1. Notations and conventions. For the first and second sections we let k be any field whilst
in subsequent sections we shall work over C. When the ground field is fixed all vector spaces,
algebras and unadorned tensor products will be defined over this choice of field.

When we say that A is a algebra, we mean a not necessarily commutative unital k-algebra.
When we say that A is affine we mean that it is semiprime and finitely generated. By an A-
module we mean a left module, unless otherwise stated. By a primitive ideal we always mean the
annihilator of a simple left A-module. The category of all A-modules is denoted A -Mod and the
subcategory of finitely generated A-modules is denoted A -mod.
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When we say that A is filtered we mean that there is a non-negative Z-filtration F0A Ď F1A Ď
F2A Ď ¨ ¨ ¨ Ĺ A satisfying F´1A “ 0, F0A “ k, A “

Ť

iě0 FiA and pFiAqpFjAq Ď Fi`jA for all
i, j ě 0. As usual the associated graded algebra of a filtered algebra is grA :“

À

iě0 FiA{Fi´1A,
and if a P FiA then we refer to the image of a in FiA{Fi´1A Ď grA as the top graded component
of a. Furthermore, A is said to be almost commutative if grA is commutative.

2.2. Poisson orders and their modules. A Poisson algebra is a commutative algebra Z en-
dowed with a skewsymmetric k-bilinear biderivation t¨, ¨u : Z ˆ Z Ñ Z which makes Z into a Lie
algebra. Let A be a Z-algebra which is a module of finite type over Z. We say that A is a Poisson
order (over Z) if the Poisson bracket on Z extends to a map

t¨, ¨u : Z ˆ A ÝÑ A. (2.1)

such that the map Hpxq :“ tx, ¨u : AÑ A satisfies the following for all x, y P Z and a P A:

(i) Hpxq P DerkpAq;
(ii) Hpxyqa “ xHpyqa` yHpxqa.

In other words, t¨, ¨u is a biderivation. Note that Hpxqy “ ´Hpyqx and HpxqZ Ď Z for all
x, y P Z, since Z is a Poisson algebra and (2.1) extends the Poisson bracket on Z. When the choice
of Poisson algebra Z is clear we usually refer to A simply as a Poisson order. We refer to HpZq as
the set of Hamiltonian derivations of A. In most cases of interest A will be a faithful Z-module
and in these cases we view Z as an HpZq-stable subalgebra of A via the algebra homomorphism
Z Ñ A; z ÞÑ z1A.

Remark 2.1. The definition of a Poisson order in [6] is slightly weaker than the one given here, as
they only assume property (ii) of H in the case where x, y, a P Z. Our justification for choosing this
definition is twofold: firstly the most interesting examples which arise in deformation theory satisfy
these slightly stronger properties; see §2.3. Secondly the stronger definition suggests a stronger
definition for a Poisson A-module, and the enveloping algebra for this category of modules satisfies
the PBW theorem of §3, which is fundamental to all of our results.

When Z is a fixed Poisson algebra and A is a Poisson order over Z, we define a Poisson A-module
to be an A-module M together with a linear map

∇ : Z Ñ EndkpMq

such that for all x, y P Z, all a P A and all m PM we have

(i) ∇pxyqm “ x∇pyqm` y∇pxqm;

(ii) tx, aum “ r∇pxq, asm;

(iii) ∇ptx, yuqm “ r∇pxq,∇pyqsm.

The morphisms of Poisson A-modules are defined in the obvious manner, and the category of all
Poisson A-modules will be denoted A -P-Mod. Since Poisson A-modules are Poisson Z-modules
by restriction, we are considering a special class of flat Poisson connections.

Remark 2.2. It is not true that simple Poisson A-modules are necessarily finitely generated over A.
For example when A “ Z “ Crg˚s and g is a simple Lie algebra, it is not hard to see that simple
Poisson A-modules annihilated by the augmentation ideal pgq�A are the same as simple g-modules,
and these are often infinite dimensional. We thank Ben Webster for this useful observation.

2.3. Examples of Poisson orders and their modules. Every Poisson algebra is a Poisson order
over itself. Furthermore, for Z fixed there are several constructions which allow us to construct
new Poisson orders over Z from old ones. Let A be a Poisson order over Z. Then:
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(1) MatnpAq is a Poisson order for any n ą 0, with

Hpzqpai,jq1ďi,jďn :“ pHpzqai,jq1ďi,jďn.

(2) the opposite algebra Aopp is a Poisson order;
(3) the tensor product AbZ B of two Poisson orders is again a Poisson order with

Hpzqpab bq :“ tz, au b b` ab tz, bu.

(4) when M is a Poisson A-module the endomorphism ring EndZpMq is a Poisson order and
the subalgebra EndApMq is a sub-Poisson order, with

pHpzqeqm :“ r∇pzq, esm
for any z P Z, m PM and e P EndZpMq.

The above constructions are very suggestive of a theory of a Brauer group over Z adapted to the
theory of Poisson orders. This is a theme we hope to pursue in future work.

All other examples of Poisson orders which we will be interested in arise in the context of
deformation theory. We follow [25] closely. Let R be a commutative associative algebra and let
pεq Ď R be a principal prime ideal, and write k “ R{pεq. Consider the k-algebra Aε :“ A{εA with
centre Zε and write Nε for the preimage of Zε in A under the natural projection π : A � Aε. For
a P Nε and b P A we have ra, bs P εA and so we may define

tπpaq, πpbqu :“ πpε´1
ra, bsq (2.2)

generalising (1.1). When Aε is finite over Zε the bracket (2.2) makes Zε into a Poisson algebra.
If Z Ď Zε is any Poisson subalgebra such that Aε is a Z-module of finite type then Aε becomes a
Poisson order over Z. Notable examples include:

(1) when R “ Z, ε “ p P Z is any prime number and gZ is the Lie algebra of a Z-group scheme
then UpgZq{pUpgZq – Upgpq where gp :“ gZ bZ Fp and Fp :“ Z{ppq. It is well known that
gp is a restricted Lie algebra and the calculations of [25] show that the p-centre Zppgq is
a Poisson subalgebra of the centre of Upgpq, naturally isomorphic to Fprg˚ps with its Lie–
Poisson structure. Since Upgpq is finite over the p-centre we see that Upgpq is a Poisson
order over Zppgq.

(2) let R “ Crt˘1s, ε “ pt´ q0q for some primitive `th root of unity q0 P C, and A is any of the
following: a quantised enveloping algebra of a complex semisimple Lie algebra, a quantised
coordinate ring of a complex algebraic group, any quantum affine space. It is well known
that the `th powers of the standard generators of Aε generate a central subalgebra Z0 over
which Aε is a finite module, and (2.2) equips Z0 with the structure of a complex affine
Poisson algebra, so Aε is a Poisson order over Z0.

We continue with A a Poisson order over Z and we list some elementary examples of Poisson
modules. The first example of a Poisson A-module is A, with map ∇ defined by ∇pzqa :“ tz, au. If
I�A is any left ideal which is also Poisson, then both I and the quotient A{I admit the structure
of a Poisson A-module. One obvious source of such ideals are those of the form AI where I �Z is
any Poisson ideal. A method for constructing Poisson A-modules from Poisson Z-modules occurs
as a special case of the following crucial lemma.

Lemma 2.3. Suppose that B Ď A are Poisson orders over a Poisson algebra Z and that M is
a Poisson B-module with structure map ∇B. Then AbB M is naturally an A-module, and is
additionally a Poisson A-module with structure map ∇A defined by ∇Apxqpabmq :“ tx, au bm`
ab∇Bpxqm.



9

Proof. To see that ∇A is well-defined we must check that the kernel of the natural map AbkM �
AbB M is preserved by ∇ApZq. Let x P Z, a P A, b P B, m PM and write abm :“ abk m. We
see that ∇Apxqpabbm´ ab bmq is equal to

tx, abu bm` abb∇Bpxqm´ tx, au b bm´ ab∇Bpbmq

“ ptx, aubbm´ tx, au b bmq ` patx, bu bm´ ab tx, bumq

`pabb∇Bpxqm´ ab b∇Bpxqmq.

This confirms that ∇ApZq is well-defined on A bB M . For the rest of the proof tensor products
abm will be taken over B. The first axiom of a Poisson A-module follows from the calculation

∇Apxyqpabmq “ txy, au bm` ab∇Bpxyqm

“ ptx, auy ` xty, auq bm` ab px∇Bpyqm` y∇Bpxqmq

“ xpty, au bm` ab∇Bpxqmq ` yptx, au bm` ab∇Bpxqmq

“ x∇Apyqpabmq ` y∇Apxqpabmq

where x, y P Z, a P A and m PM . The second axiom of a Poisson module is a consequence of the
next calculation, in which a, b P A and x,m are as before

r∇Apxq, aspbbmq “ ∇Apxqpabbmq ´ aptx, bu bm` bb∇Bpxqmq

“ tx, abu bm` abb∇Bpxqm´ atx, bu bm´ abb∇Bpxqm

“ tx, aubbm “ tx, aupbbmq.

The third axiom of a Poisson module only regards the Lie algebra structure and so follows from
the Hopf algebra structure on the universal enveloping algebra of the Lie algebra Z, since A and
M are Poisson Z-modules. �

Remark 2.4. It was observed in [10, Proposition 1.1] that when Z is a symplectic affine Poisson
algebra over C every Poisson Z-module arises from a unique D-module on SpecpZq.

2.4. Symplectic cores in primitive spectra. We continue with an affine Poisson k-algebra Z
and a Poisson order A over Z. If S is any collection of ideals of A then we can endow S with
the Jacobson topology by declaring the sets tI P S |

Ş

JPS J Ď Iu to be closed, where S Ď S is
any subset. We will refer to such a set S as a space of ideals to suggest that we are equipping
it with the Jacobson topology. The space of prime ideals and primitive ideals of A are denoted
SpecpAq and PrimpAq respectively. A ring is Jacobson if every prime ideal is an intersection of
primitive ideals; clearly this property is equivalent to the statement that PrimpAq is a topological
subspace of SpecpAq, not just a subset. It is well known that Z is Jacobson, since it is affine and
commutative, and so it follows from [31, 9.1.3] that A is a Jacobson ring.

The HpZq-stable ideals of Z and A are called Poisson ideals and the space of prime Poisson
ideals is called the Poisson spectrum, denoted P-SpecpZq and P-SpecpAq respectively. Recall that
for any ideal I Ď A the Poisson core PpIq is the largest Poisson ideal contained in I; by [8, 3.3.2]
we have PpIq prime whenever I is prime, and the same holds for Z.

Lemma 2.5. Let A be a Poisson order over Z and I Ď J Ď A are any ideals with I Poisson.
Denote the quotient map π : AÑ A{I. We have:

(i) PpJq X Z “ PpJ X Zq;
(ii) πPpJq “ PpπJq.

Proof. To prove (i) it suffices to observe that PpJ X Zq Ď PpJq X Z Ď J X Z, by the definition of
P whilst (ii) follows from the fact that π defines an inclusion preserving bijection between the set
of Poisson ideals of A{I and the set of Poisson ideals of A which contain I. �
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Remark 2.6. It is not hard to see that the topology on P-SpecpAq is the subspace topology from
the embedding P-SpecpAq Ď SpecpAq: if I Ď A is any ideal then the set tJ P P-SpecpAq | I Ď Ju
is equal to tJ P P-SpecpAq |

Ş

iPS Ii Ď Ju where tIi | i P Su is the set of minimal Poisson ideals
over I.

Our purpose now is to define the symplectic stratification of the primitive spectrum PrimpAq used
in the statement of the first main theorem. Consider the following diagram, which is commutative
by part (i) of Lemma 2.5:

PrimpAq P-SpecpAq

PrimpZq P-SpecpZq

P

P

(2.3)

The vertical arrows denote contraction of ideals I ÞÑ I X Z. The fibres of the map PrimpZq Ñ
P-SpecpZq are called the symplectic cores of PrimpZq, and they were first studied by Brown and
Gordon in [6]. We define the symplectic cores of PrimpAq to be the fibres of the map PrimpAq Ñ
P-SpecpAq. For m P PrimpZq we write Cpmq for the symplectic core of m and for I P PrimpAq we
write CpIq for the symplectic core of I. The following result shows that the symplectic cores of
PrimpZq are closely related to the symplectic leaves; the first part was proven in [6, Proposition 3.6],
and the second statement in [16, Theorem 7.4(c)].

Proposition 2.7. Let Z be a complex affine Poisson algebra. For m P PrimpZq, write Lpmq for
the symplectic leaf of m. We have Lpmq Ď Cpmq with equality if the symplectic leaves of PrimpZq
are algebraic. More generally

Cpmq “ Lpmqz
ď

Lpnq

where the union is taken over all n P PrimpZq such that Lpnq Ĺ Cpmq.

Thus we think of the symplectic cores of PrimpAq as being something similar to the symplectic
leaves of the primitive spectrum. If the Poisson primitive ideals of A are Poisson locally closed
then we say that the Poisson Dixmier–Mœglin equivalence (PDME) holds for A. Later on in the
paper (Lemma 5.3) we will show that Poisson locally closed ideals are always Poisson primitive.
The following result is an extension of [6, Lemma 3.3].

Lemma 2.8. Let A be a Poisson order over a complex affine Poisson algebra Z. Write NI :“
Ş

PpKq where the intersection is taken over all K P PrimpAq with PpIq Ĺ PpKq. The following
are equivalent:

(i) the PDME holds for A;
(ii) the symplectic cores of PrimpAq are locally closed subsets defined by the Poisson cores. In

other words, for all I P PrimpAq we have

CpIq “ tJ P PrimpAq | PpIq Ď J and NI Ć Ju; (2.4)

(iii) the inclusion PpIq Ď NI is proper.

Furthermore, if the PDME holds for Z as a Poisson order over itself, then it also holds for A.

Proof. If I P PrimpAq then, using Lemma 5.2, tPpIqu is a locally closed subset of P-PrimpAq if and
only if the intersection NI properly contains PpIq, so (i) ô (ii). We point out that the lemma just
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cited does not depend on any of the results of this article which precede it, and follows straight
from the definitions. It is not hard to see that for I P PrimpAq we have

CpIq “ V pPpIqqzV pNIq

if and only if NI ‰ PpIq, from which the equivalence of (ii) and (iii) follows.
Now suppose that PpIXZq Ĺ

Ş

Ppmq where the intersection is taken over all ideals m P PrimpZq
such that PpI X Zq Ĺ Ppmq. Using Lemma 2.5, we deduce that PpIq X Z “ PpI X Zq Ĺ
Ş

Ppmq, where the intersection is taken over all m P PrimpZq such that I X Z Ĺ Ppmq. By the
incomparability property over essential extensions [11, Theorem 6.3.8] we see that PpIq Ĺ PpJq
implies PpI X Zq Ĺ PpJ X Zq and so from

Ş

Ppmq Ď NI X Z we deduce that PpIq Ĺ NI . We
conclude from (iii) ñ (i) that the PDME holds for A.

�

3. The universal enveloping algebra of a Poisson order

Throughout this entire section we work over an arbitrary field k. Let Z be a Poisson k-algebra
and let A be a Poisson order over Z.

3.1. Definition and first properties of the enveloping algebra. Poisson A-modules can be
thought of as modules over a non-associative algebra due to the action of the derivations ∇pZq, and
one encounters elementary technical problems with dealing with such modules. For example, if M
is a simple Poisson A-module then it is not necessarily finitely generated over A (Cf. Remark 2.2);
this contrasts with the situation for simple A-modules where any such module is generated by
any nonzero element. To remedy this problem we take a viewpoint which is common in universal
algebra: we write down an associative algebra whose module category is equivalent to A -P-Mod
and we use this new algebra to study simple Poisson A-modules and their annihilators.

The Poisson enveloping algebra Ae of the Poisson order A over Z is the k-algebra with generators

tαpaq | a P Au Y tδpzq | z P Zu (3.1)

and relations

α : AÑ Ae is a unital algebra homomorphism; (3.2)

δ : Z Ñ Ae is a Lie algebra homomorphism; (3.3)

αptx, auq “ rδpxq, αpaqs; (3.4)

δpxyq “ αpxqδpyq ` αpyqδpxq, (3.5)

for all x, y P Z and all a P A. Recall that the Poisson algebra Z is a Poisson order over itself
and we write Ze for the enveloping algebra of Z. The algebra Ze has been extensively studied in
the mathematical literature, although the first results appeared in [35], since Poisson algebras are
examples of Lie–Rinehart algebras. Our next observation follows straight from the relations.

Lemma 3.1. There is a natural homomorphism Ze Ñ Ae which sends the elements tαpzq, δpzq |
z P Zu of Ze to the elements of Ae with the same names.

Next we record some criteria for Ae to satisfy the ascending chain condition on ideals.

Lemma 3.2. If Z is noetherian or A is finitely generated then both A and Ae are noetherian.

Proof. The Artin–Tate lemma shows that when A is finitely generated so too is Z, and so Z is
noetherian. It suffices to prove that when Z is noetherian so too are A and Ae. The extension
Z Ď A is centralizing in the sense of [31, 10.1.3] and so Corollary 10.1.11 of that book shows that
A is noetherian. Now by the relations the map of rings α : A Ñ Ae is almost normalizing in the
sense of [31, 1.6.10] and so the lemma follows from Theorem 1.6.14 of the same book. �
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When a P Ae we write adpaq for the derivation of Ae given by b ÞÑ ab ´ ba. The following two
statements can be proven by induction on (3.4) and (3.5) respectively.

Lemma 3.3. For x1, ..., xn P Z and a P A we have:

(i) αpHpx1q ¨ ¨ ¨Hpxnqaq “ adpδpx1qq ¨ ¨ ¨ adpδpxnqqa;
(ii) δpx1 ¨ ¨ ¨ xnq “

řn
i“1 x1 ¨ ¨ ¨ xi´1x̂ixi`1 ¨ ¨ ¨ xnδpxiq.

We define a filtration on Ae by placing A in degree 0 and δpzq in degree 1 for all z P Z. We call
the resulting filtration the PBW filtration on Ae

Ae “
ď

iě0

FiA
e (3.6)

and as usual we denote the associated graded algebra by grAe. One of our main tools in this paper
is a precise description of grAe, which we give in Theorem 3.12. For now we record a precursor to
that result which will be needed when describing localisations of Poisson modules.

Lemma 3.4. If tai | i P Iu generates A and txi | i P Ju generates Z as k-algebras, where I and J
are index sets and J is totally ordered, then Ae is spanned by the monomials

αpai1q ¨ ¨ ¨αpainqδpxj1q ¨ ¨ ¨ δpxjmq

where i1, ..., in P I and j1 ď ¨ ¨ ¨ ď jm lie in J . The same statement holds with the elements αpaq
occurring after the elements δpxq.

Proof. It follows from relations (3.2) and part (ii) of Lemma 3.3 that the algebra Ae is generated
by the set tαpaiq, δpxjq | i P I, j P Ju. Therefore the lemma will follow from the claim that grZe

is central in grAe. This is clear upon examining the top graded components of relations (3.3) and
(3.4). �

We now record the universal property of Ae which allows us to view Poisson A-modules as Ae-
modules. Consider the category U whose objects are triples pB,α1, δ1q where B is an associative
algebra with unital algebra homomorphism α1 : AÑ B and Lie algebra homomorphism δ1 : Z Ñ B
satisfying (3.4) and (3.5), and where the morphisms pB,α1, δ1q Ñ pC, α2, δ2q between two objects
in U are the algebra homomorphisms β : B Ñ C making the diagrams below commute.

A B

C

Z B

C

α1

α2 β

δ1

δ2 β

Lemma 3.5. Let A be a Poisson Z-order.

(1) pAe, α, δq is an initial object in the category U ;
(2) There is a category equivalence

A -P-Mod – Ae -Mod .

If pM,∇q is a Poisson A-module then it becomes a Ae-module by defining

αpaqm :“ am; (3.7)

δpxqm :“ ∇pxqm, (3.8)

for x P Z, a P A and m P M . Conversely if M is a Ae-module then (3.7), (3.8) make M
in to a Poisson A-module. Consequently the Ae-module homomorphisms are precisely the
Poisson A-module homomorphisms.
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Proof. Part (1) is an immediate consequence of the definition of a Poisson A-module, whilst part
(2) follows directly from part (1). �

Remark 3.6. We may now define the category A -P-mod, of finitely generated Poisson A-modules,
to be the essential image of Ae -mod in A -P-Mod under the above equivalence.

Corollary 3.7. The map α : AÑ Ae is injective.

Proof. Recall from Example 2.3 that A is a Poisson A-module, hence an Ae-module. This induces
a homomorphism ρ : Ae Ñ EndkpAq. Now it suffices to notice that the map ρ1 : Ae Ñ A given by
ρ1pxq :“ ρpxq1A is a left inverse to α. �

Remark 3.8. Thanks to the lemma we may (and shall) identify A with a subalgebra of Ae. Thus
we view Ae as the algebra generated by A and δpZq subject to relations (3.3), (3.4), (3.5) with
every instance of αpaq replaced by a.

3.2. Localisation of Poisson A-modules. It is well known that if S Ď Z is any multiplicative
subset containing no zero divisors then the localisation ZS :“ ZrS´1s carries a unique Poisson
algebra structure such that the natural map Z Ñ ZS is a Poisson algebra homomorphism. Briefly,
this structure is defined by extending the Hamiltonian derivations to ZS via (1.4). The reader
may refer to the proof of [26, Lemma 1.3] for the precise formula. In the same manner, when a
multiplicative set S Ď Z consists of non-zero divisors of A the algebra AS :“ A bZ ZS carries a
unique structure of a ZS-Poisson order and AS is a faithful ZS-module. Let AeS denote the Poisson
enveloping algebra of AS.

Lemma 3.9. If S Ď Z is any multiplicative subset then the natural map ZS bZ A
e Ñ AeS induced

by multiplication is surjective.

Proof. By relation (3.5), for a P A and s P S we have δpaq “ δpas´1sq “ as´1δpsq ` sδpas´1q

which can be rewritten as δpas´1q “ s´1δpaq´ as´2δpsq. Applying Lemma 3.4, this shows that the
desired map surjects. �

From the generators and relations of Ae we see there is a natural map Ae Ñ AeS sending
generators of Ae to the elements in AeS with the same name. Now if M is any Poisson A-module
and S Ď Z is a multiplicative subset then we can define the localisation MS by viewing M as an
Ae-module, and then defining

MS :“ AeS bAe M. (3.9)

This is an AeS-module and thus it is a Poisson AS-module, via the equivalence described in
Lemma 3.5, (2). The torsion subset of M is defined by

T pMq :“ tz P Z | zm “ 0 for some m PMu. (3.10)

Proposition 3.10. If M is a simple Poisson A-module then MS is either zero or a simple Poisson
AS-module. Furthermore MS is zero if and only if

S X T pMq ‰ H.

Proof. Since M is a Poisson A-submodule of MS it follows that the kernel of M ÑMS is a Poisson
A-submodule. Since M is simple we have MS ‰ 0 if and only if KerpM ÑMSq “ 0, and it follows
from [4, Ch. II, § 2, No. 4, Proposition 10(ii)] the natural map M Ñ MS is injective if and only
if S X T pMq “ H. Suppose that S X T pMq “ H so that MS ‰ 0. Then according to Lemma 3.9
we have a surjection ZS bZ A

e bAe M �MS. In other words MS is spanned by expressions s´1m
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with s P S and m PM . The following calculation shows that every element of MS can be written
in the form s´1m: for s1, ..., sn P S and m1, ...,ms PM we have

n
ÿ

i“1

s´1
i mi “ p

n
ź

i“1

siq
´1

n
ÿ

i“1

s1 ¨ ¨ ¨ ŝi ¨ ¨ ¨ snmi.

Now we use the following characterisation of simple Ae-modules: they are precisely the modules
which are generated by any non-zero element. Pick 0 ‰ s´1m P MS and let t´1n be any other
element. Since M is a simple Ae-module there is a P Ae such that am “ n, and it follows that
t´1asps´1mq “ t´1n. Hence MS is generated as an AeS-module by any nonzero element, and so MS

is a simple Poisson AS-module as required. �

Remark 3.11. When p P SpecpZq we adopt the usual convention of writing Ap and Zp for the local-
isations ASzp and ZSzp. When z P Zzt0u is not nilpotent we write Az and Zz for the localisations
at the multiplicative set tzi | i ě 0u.

3.3. A Poincaré–Birkhoff–Witt theorem for the enveloping algebra. Our present goal is
to describe the associated graded algebra grAe with respect to the PBW filtration (3.6) in the
case where Z is a regular Poisson algebra, i.e. when SpecpZq is a smooth affine variety. Let
Ω :“ ΩZ{k denote the Z-module of Kähler differentials for Z; see [20, Ch. II, §8] for an overview.
The relations in the enveloping algebra imply that there is a natural map A bZ SZpΩq Ñ grAe

which is surjective. The PBW theorem for Poisson orders takes the following form.

Theorem 3.12. Suppose that Z is a regular, affine Poisson algebra over an algebraically closed
field k. The following hold:

(1) The natural surjective algebra homomorphism

AbZ SZpΩq ÝÝ� grAe

is an isomorphism;
(2) There is an isomorphism of pA,Zeq-bimodules

AbZ Z
e „
ÝÑ Ae;

(3) There is an isomorphism of pZe, Aq-bimodules

Ze
bZ A

„
ÝÑ Ae.

The proof will occupy the rest of the current subsection. The approach is modelled on that of [35]
where a similar result was proven for enveloping algebras of Lie–Rinehardt algebras. We first prove
the theorem in the case where Ω is a finitely generated free Z-module and then use localisation of
Poisson orders to deduce the theorem in the case where Ω is locally free, i.e. projective. By [20,
Theorem 8.15] we know that Ω is a projective Z-module if and only if Z is regular, from which we
will conclude the theorem.

Suppose that Ω is a free Z-module of finite type, so there exist z1, ..., zn P Z such that
dpz1q, ..., dpznq is a basis for Ω. Therefore the symmetric algebra SZpΩq is free over Z and the
ordered products dpzIq :“ dpzi1q ¨ ¨ ¨ dpzimq with i1 ď ¨ ¨ ¨ ď im provide a basis. When I is a
sequence 1 ď i1 ď ¨ ¨ ¨ ď im ď n we write |I| “ m and write j ď I if j ď i1.

Lemma 3.13. Let Ω be a free Z-module with a finite basis. There is a Poisson A-module structure
on AbZ SZpΩq such that

δpzjqp1b dpzIqq “ 1b dpzjqdpzIq (3.11)

whenever j ď I.
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Proof. It was first observed by Huebschmann that when Z is a Poisson algebra Ω carries a natural
Lie algebra structure and that pZ,Ωq is a Lie–Rinehardt algebra; see [22, Theorem 3.11]. Therefore
we may apply the first part of the proof of [35, Theorem 3.1] to deduce that SZpΩq carries a Poisson
Z-module structure satisfying (3.11) provided Ω is free. Using Lemma 2.3 we see that AbZ SZpΩq
carries the required Poisson A-module structure.

�

Proof of Theorem 3.12. We start by proving the statement of part (1) of the Theorem, however
for the moment we replace the hypothesis that Z is regular with the assumption that Ω is a free
Z-module of finite rank. We adopt the notation introduced preceding Lemma 3.13 so that z1, ..., zn
is a basis for Ω over Z, and we write

δpzIq :“ δpz1q
i1 ¨ ¨ ¨ δpznq

in ` Fř

ij´1A
e
P grAe.

We have A “ F0A
e – F0A

e{F´1A
e Ď grAe and so grAe is a left A-module. We need to show that

the set

tδpzIq | I P Zně0u (3.12)

spans a free left A-submodule of grAe. Observe that the Poisson Ae-module structure defined in
Lemma 3.13 makes T :“ A bZ SZpΩq into a filtered Ae-module, and so grpT q – T is a graded
grAe-module. We denote the operation grAe bk T Ñ T by u b a ÞÑ u ¨ a. Thanks to (3.11) the
map ψ : grAe Ñ T defined by u ÞÑ u ¨ p1b1q sends δpzIq to 1bdpz1q

i1 ¨ ¨ ¨ dpznq
in for I “ pi1, ..., inq.

Since ψ is A-equivariant and the image of (3.12) is A-linearly independent we deduce that (3.12)
is A-linearly independent, as claimed. This proves part (1) in the case where Ω is a free Z-module.

Now we suppose that Z is regular. Then it follows from [20, Theorem 8.15] that Ω is a locally
free Z-module in the sense that there is a function r : SpecZ Ñ N0 such that

ΩZp{k – Zp bZ ΩZ{k – Z
rppq
p

as Z-modules, for all p P SpecZ. By the previous paragraph we deduce that the natural map
Ap bZp SZppΩZp{kq Ñ grpAepq is an isomorphism. This shows that there is a commutative diagram
of algebra homomorphisms:

AbZ SZpΩq grAe

ś

pPSpecZpAp bZp SZppΩZp{kqq
ś

pPSpecZ grpAepq
„

We point out that the natural map A bZ SZpΩq Ñ
ś

pPSpecZ Ap bZp SZppΩZp{kq is injective: this
is a special case of the very general statement that a Z-module M embeds in the product of the
localisations over SpecZ. We deduce from the diagram that the natural map AbZSZpΩq ÝÝ� grAe

is an injection, hence an isomorphism as required.
We now prove (2). There is a surjective homomorphism of pA,Zeq-bimodules

φ : AbZ Z
e
ÝÑ Ae;

ab u ÝÑ au.

Here we view A as a subalgebra of Ae as explained in Remark 3.8 and Ze Ñ Ae is the map described
in Lemma 3.1. The kernel of φ is an A-linear dependence between the ordered monomials δpzIq in
Ae but by part (1) we know that all such dependences are trivial, whence (2). Part (3) follows by
a symmetrical argument. �

We now list some results which follow easily from Theorem 3.12. We thank the referee for
pointing out the proof of freeness in part (iv) of the following result.
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Corollary 3.14. Suppose that Z is regular and affine. Then the following hold:

(i) The natural map Ze Ñ Ae from Lemma 3.1 is an inclusion.
(ii) If A is a free Z-module then Ae is a free (left and right) Ze-module.

(iii) If A is a projective Z-module then Ae is a projective (left and right) Ze-module.
(iv) Ae is a free (left and right) A-module, hence Ae is projective and faithfully flat over A.

Proof. The PBW theorems for Ze and Ae show that the map Ze Ñ Ae is injective on the level
of associated graded algebras, proving (i). Part (ii) follows from parts (2) and (3) of the PBW
theorem, whilst (iii) is an application of Hom-tensor duality. Part (iv) requires slightly more
work, and we begin by showing that Ae is a countable direct sum of projective A-module. As
we noted many times previously, when Z is regular and affine we have Ω finitely generated and
projective. Write SZpΩq “

À

kě0 S
k
ZpΩq for the Z-module decomposition into symmetric powers.

Since projective modules of finite type are retracts of finite rank free modules, and since symmetric
powers SkZ preserve retracts and free modules of finite rank, we see that SkZpΩq is projective of finite
type for all k ě 0. If SkZpΩq‘Qk “ Znpkq for Z-modules tQk | k ě 0u and integers tnpkq P N | k ě 0u
then we see Anpkq – A bZ Z

npkq – pA bZ S
k
ZpΩqq ‘ pA bZ Qkq and so A bZ S

k
ZpΩq is a projective

A-module. It follows that the exact sequence

0 Ñ Fk´1A
e
Ñ FkA

e
Ñ AbZ S

k
ZpΩq Ñ 0

splits for all k ě 0, which implies that Ae is a direct sum of projective (left) A-modules, hence
projective. In this last deduction we have used the fact that F0A

e – A is a projective A-module.
A symmetrical argument shows that Ae is projective also as a right A-module.

We have actually shown that Ae is a direct sum of countably many projective A-modules. It
follows that if I Ď A is a two sided ideal then Ae{IAe is not finitely generated as an A-module. In
the language of [2] we have that Ae is an ℵ0-big projective A-module. By Lemma 3.2 we know that
A is noetherian so Ae satisfies the hypotheses of [2, Corollary 3.2] and Ae is a free left A-module;
by symmetry it is also free as a right A-module. Faithful flatness follows immediately. �

4. Poisson primitive ideals vs. annihilators of simple Poisson A-modules

In this section we shall prove parts (b) and (c) of the second main theorem which relate the
Poisson primitive ideals of a Poisson order to the annihilators of simple modules. For the rest of
the paper the ground field will be the complex numbers C.

4.1. Poisson primitive ideals are annihilators. Let Z be a complex affine Poisson algebra
and let A be a Poisson order over Z. We write

IpAq :“ tideals of Au;

IPpAq :“ tPoisson ideals of Au;

IlpAeq :“ tleft ideals of Aeu;

IpAeq :“ t2-sided ideals of Aeu.

We will consider extension and contraction of ideals over the inclusion of C-algebras A Ď Ae

φ : IpAq ÝÑ IlpAeq;
I ÞÝÑ AeI;

ψ : IlpAeq ÝÑ IpAq;
J ÞÝÑ J X A.

Lemma 4.1. If Z is a regular affine Poisson algebra then:

(i) ψ is the left inverse to φ;
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(ii) φ : IPpAq Ñ IpAeq and ψ : IpAeq Ñ IPpAq.

Proof. The first part follows from part (iv) of Corollary 3.14 and [4, Chapter I, §3, No. 5, Propo-
sition 8]. For I P IPpAq we have φpIq :“ IZe “ ZeI P IpAeq, thanks to relation (3.4) in Ae.
Furthermore, when J P IpAeq we see that the derivation adpδpzqq stabilises ψpJq :“ Z X J Ď Ae

for all z P Z. Using (3.4) again, the latter assertion is equivalent to saying that ψpJq P IPpAq. �

We now prove part (c) of the second main theorem.

Theorem 4.2. If Z is regular and I P PrimpAq is a primitive ideal then there exists a simple
Ae-module M such that

AnnApMq “ PpIq.

Proof. Since I is primitive there is a maximal left ideal L1 Ď A such that I “ AnnApA{L
1q. We

consider the left ideal AeL1 P IlpAeq containing AeI and observe that, by Zorn’s lemma there is a
maximal left ideal L P IlpAeq containing AeL1 and the quotient Ae{L is a simple left Ae-module.
Since L is a proper ideal of Ae it follows that L X A is a proper left ideal of A. By part (ii) of
Lemma 4.1 we have L1 “ AeL1 X A Ď LX A and so the maximality of L1 implies that

L1 “ LX A. (4.1)

The annihilator AnnAepAe{Lq is the largest two sided ideal contained in L, and we claim that
AnnAepAe{Lq X A “ PpIq. If we can show that

PpIq
p1q
Ď AnnApA

e
{Lq

p2q
Ď I

then the claim will follow, since we know that PpIq is the largest Poisson ideal contained in I,
whilst AnnApA

e{Lq is a Poisson ideal by part (ii) of Lemma 4.1.
Observe that if J Ď I is any Poisson ideal of A then AeJ Ď AeI Ď L and so AeJ Ď AnnAepAe{Lq

by part (ii) of Lemma 4.1, since AnnAepAe{Lq is the largest two sided ideal of Ae in L. By part
(i) of the same lemma it follows that J “ AeJ X A Ď AnnApA

e{Lq and so inclusion (1) follows,
taking J “ PpIq.

Now (4.1) and Corolary 3.7 together imply that A{L1 ãÑ Ae{L embeds as an A-submodule, and
it follows that AnnApA

e{Lq Ď AnnApA{L
1q “ I, which confirms inclusion (2). The proof is now

complete. �

4.2. Annihilators are Poisson rational. In order to prove part (b) of the second main theorem
we make a more detailed study of the torsion subset of a simple module. For a Poisson A-module
M recall that we define the torsion subset by

T pMq :“ tz P Z | zm “ 0 for some non-zero m PMu. (4.2)

The next result is one of the key steps in proving part (b) of the second main theorem. Part (ii) is
rather surprising at first glance, since in general there is no reason to expect T pMq to be an ideal.

Lemma 4.3. Let Z be any complex affine Poisson algebra, A a Poisson order over Z and M a
simple Poisson A-module. The following hold:

(i) AnnApMq is a prime ideal of A;
(ii) There exists an element m0 PM such that

T pMq “ tz P Z | zm0 “ 0u

is a prime ideal of Z;
(iii) PpT pMqq “ AnnZpMq.
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Proof. If J,K Ď A are Poisson ideals with J,K Ę AnnApMq then KM is a nonzero Poisson
submodule of M hence equal to M , and JKM “ M similarly, hence JK Ę AnnApMq. Now the
argument of [15, Lemma 1.1(d)] shows that I is prime. Note that the minimal primes of A are
Poisson thanks to paragraphs 3.1.10 and 3.3.3 of [8], since A is noetherian. This proves (i).

We suppose M is simple. Recall that the associated primes AssZpMq of M as a Z-module are
those prime ideals p P SpecpZq of the form AnnZpmq :“ tz P Z | zm “ 0u for some m PMzt0u. It
is well known that those ideals AnnZpm0q which are maximal in the set tAnnZpmq | m P Mzt0uu
are prime, and hence lie in AssZpMq; see [9, Proposition 3.4] for example. Since Z is noetherian
every annihilator AnnZpmq is contained in a maximal annihilator and this implies

T pMq “
ď

pPAssZpMq

p. (4.3)

Choose m0 ‰ 0 such that AnnZpm0q P AssZpMq is maximal amongst the annihilators. We claim
that T pMq “ AnnZpm0q. Observe that Aem0 “ M since m0 ‰ 0 and M is simple. Define a
filtration M “

Ť

iě0 FiM where FiM :“ pFiA
eqm0 “ AFiZ

em0 by Lemma 3.4. Using relations
(3.2), (3.4) and induction on i we see that zi`1FiM “ 0 for every z P AnnZpm0q. Pick some
z P AnnZpm0q and note that if m P M has a prime annihilator in Z then m P FiM for some i, so
zi`1m “ 0. This implies z P AnnZpmq by primality. We have deduced the inclusion AnnZpm0q Ď

AnnZpmq, which is actually an equality by the maximality of AnnZpm0q. Using (4.3) we conclude

T pMq “ AnnZpm0q (4.4)

as desired, proving (ii).
Set I :“ AnnZpMq. We have I Ď PpT pMqq and we now prove that this is an equality. According

to [8, 3.3.2] we have

PpT pMqq “
"

z P T pMq |
Hpx1q ¨ ¨ ¨Hpxnqz P T pMq

for all n ě 0 and x1, ..., xn P Z

*

. (4.5)

According to (4.4) this set is equal to

tz P Z | pHpx1q ¨ ¨ ¨Hpxnqzqm0 “ 0 for all x1, ...., xn P Z, n ě 0u (4.6)

We claim that (4.6) is equal to

tz P Z | z∇px1q ¨ ¨ ¨∇pxnqm0 “ 0 for all x1, ..., xn P Z, n ě 0u (4.7)

where ∇ : Z Ñ EndCpMq is the structure map of the module M . To prove they are equal we
define

Ik :“ tz P Z | pHpx1q ¨ ¨ ¨Hpxnqzqm0 “ 0 for all x1, ...., xn P Z, k ě n ě 0u;

Jk :“ tz P Z | z∇px1q ¨ ¨ ¨∇pxnqm0 “ 0 for all x1, ..., xn P Z, k ě n ě 0u,

and we show that Ik “ Jk for all k ě 0. The case k “ 0 is trivial and so we prove the case k ą 0
by induction. By part (i) of Lemma 3.3 and part (iii) of Lemma 3.5 we have

pHpx1q ¨ ¨ ¨Hpxnqzqm0 “ padp∇px1qq ¨ ¨ ¨ adp∇pxnqqzqm0. (4.8)

The right hand side of (4.8) is a sum of expressions of the form

˘∇pxj1q ¨ ¨ ¨∇pxjpqz∇pxjp`1q ¨ ¨ ¨∇pxjnqm0 (4.9)

where tj1, ..., jnu “ t1, ..., nu and 0 ď p ď n, and there is a unique summand in (4.8) with p “ 0, in
which case pj1, ..., jnq “ pn, n´ 1, ..., 1q. If z∇px1q ¨ ¨ ¨∇pxnqm0 “ 0 for all x1, ..., xn P Z, k ě n ě 0
then it follows immediately that (4.8) vanishes, whence Jk Ď Ik. Conversely, if z P Ik then z P Jk´1

by the inductive hypothesis, and so we deduce z∇pxkq ¨ ¨ ¨∇px1qm0 “ 0 for all x1, ..., xk P Z from
our description of the summands occuring in (4.8). This shows that Ik Ď Jk.
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Since (4.6) is equal to
Ş

kě0 Ik and (4.7) is equal to
Ş

kě0 Jk we have proven that PpT pMqq
is given by (4.7). It follows that this ideal annihilates Zem0. By Lemma 3.4 we see that M “

Aem0 “ AZem0. If z P PpT pMqq then since z is central in A we have zM “ ApzZem0q “ 0 and
we have shown that PpT pMqq “ I. This proves (iii). �

We are ready to prove part (b) of the second main theorem.

Theorem 4.4. Let Z be a complex affine Poisson algebra and A a Poisson order over Z. If M is
a simple Poisson A-module then AnnApMq is Poisson rational.

Proof. Write I :“ AnnApMq and observe that the quotient A{I is prime thanks to part (i) of
Lemma 4.3. The image of the torsion subset T pMq in A{I is denoted T pMq. Since A{I is a finite
module over the central subalgebra Z{Z X I it follows that QpA{Iq – A{I bZ{ZXI QpZ{Iq. In
other words, when considering elements ab´1 P QpA{Iq we may choose a representative such that
b P Z{Z X I. Notice that M is a Poisson Z-module and so Z X I “ AnnZpMq is a Poisson ideal of
Z, and consequently Z{Z X I is a Poisson algebra.

Let ab´1 P CPQpA{Iq (defined in (1.5)) with b P Z{ZXI. We claim that ab´1 has a representative
such that b R T pMq. To see this, suppose that b P T pMq and consider the ideal

J :“ tz P Z{Z X I | zxab´1, tz, xab´1
u P A{I for all x P Au.

It is not hard to see that:

(i) J is a Poisson ideal of Z{Z X I so AJ{I is an HpZ{Z X Iq-stable ideal of A{I;
(ii) b2 P J so that J ‰ 0.

If J Ď T pMq then we would have PpT pMqq ‰ 0. By Lemma 2.5 this would contradict the fact
that PpT pMqq “ I X Z, as demonstrated in Lemma 4.3. It follows that there exists a1 P A and
b1 P pZ{Z X IqzT pMq such that b1ab

´1 “ a1, which implies that ab´1 “ a1b
´1
1 and this confirms

our claim.
We proceed with ab´1 P CPQpA{Iq and b P pZ{Z X IqzT pMq. We can choose c P A and d P

ZzT pMq such that c ÞÑ a, d ÞÑ b under the natural homomorphism AÑ A{I, and this allows us to
define the localisation Md :“ AedbAe M . Write φ : Ad Ñ EndkpMdq for the representation induced
by the Ad-module structure. Since ab´1 P CPQpA{Iq we have HpZqcd´1 Ď I and adpAqcd´1 Ď I,
and so by relations (ii) and (iii) of a Poisson Ad-module cd´1 is sent to EndAe

d
pMdq under φ. Since

M is a simple Poisson A-module and d R T pMq we have that, Md is a non-zero simple Poisson Ad-
module by Proposition 3.10. Since M ÑMd is a Poisson A-module homomorphism it is necessarily
injective. By Lemma 3.4 we have that Aed is a finitely generated C-algebra and so we may apply
Dixmier’s lemma to deduce that EndAe

d
pMdq “ C. It follows that φpcd´1 ´ λq “ 0 for some λ P C,

which implies φpc ´ λdq “ 0. Since M ãÑ Md we deduce that c ´ λd P I and so a “ λb in A{I.
Finally we deduce that ab´1 “ λ in QpA{Iq. This shows that I is rational and completes the
proof. �

Remark 4.5. (i) It seems credible that the hypothesis Z is regular can be removed from The-
orem 4.2; see the remarks in §1.7 for a suggested approach in some special cases.

(ii) The hypothesis that Z is affine is necessary in the statement of Theorem 4.4, as the following
example shows. We are grateful to Sei-Qwon Oh for explaining this to us, and permitting us
to reproduce it here. Let Z “ Crrxss be the ring of formal power series in one variable, and
let M “ Cppxqq “ Zrx´1s be the ring of formal Laurent series. Since Z is local it is not hard
to see that the Z-submodules of M are all of the form Mk :“ t

ř

iěk aix
i | ak, ak`1, ... P Cu

for k P Z. Now equip Z with the trivial Poisson structure and make M a Poisson Z-module
by setting Hpxq “ tx, ¨u :“ x´1 B

Bx
. It is not hard to see that Hpxq : Mk Ñ Mk´1 for all

k P Z and so M is a simple Poisson Z-module. It follows that p0q is the annihilator of a
simple Poisson Z-module, however it is clearly not Poisson rational since CPpQpZqq “M .
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5. The weak Poisson Dixmier Moeglin equivalence

Once again the ground field is C. In this section we prove (a) and the equivalence of (i), (ii),
(iii) from the second main theorem.

5.1. ∆-ideals in ∆-algebras. It will be convenient to work in a slightly more general context than
the setting of Poisson orders over affine algebras: we do not need to assume that the derivations
HpZq arise from a Poisson structure in order to state and prove that Poisson weakly locally closed,
Poisson primitive and Poisson rational ideals all coincide. We proceed by stating all of the notations
needed, which shall remain fixed throughout the current section.

Let A be a finitely generated semiprime noetherian C-algebra which is a finite module over some
central subalgebra Z. By the Artin–Tate lemma it follows immediately that Z is an affine algebra.
The centre of A will be written CpAq for the current section. We continue to denote the primitive
and prime spectra of A by PrimpAq and SpecpAq, endowed with their Jacobson topologies (Cf.
§2.4).

We fix for the entire section an arbitrary subset ∆ Ď DerCpAq such that ∆pZq Ď Z, and we
remark that we do not need to assume that ∆ is a Lie algebra, or even a vector space in what
follows. When I is any subset of A we write ∆pIq Ď I whenever δpIq Ď I for all δ P ∆. We say
that an ideal I of A is a ∆-ideal if ∆pIq Ď I. For every ideal I Ď A we consider the ∆-core of I,
denoted P∆pIq, which is the unique maximal two-sided ∆-ideal of A contained in I. It is is easy to
see that such an ideal exists and is unique since it coincides with the sum of all ∆-ideals contained
in I. The ∆-primitive ideals of A are the ideals

Prim∆pAq :“ tP∆pIq | I P PrimpAqu.

An ideal is called ∆-prime if whenever J,K are ∆-ideals satisfying JK Ď I we have J Ď I
or K Ď I. The ∆-spectrum of A is the space of all ∆-prime ideals, equipped with the Jacobson
topology, denoted Spec∆pAq.

Lemma 5.1. The following hold:

(1) If I P SpecpAq then P∆pIq P SpecpIq;
(2) If I is a ∆-ideal and I1, ..., In are the minimal prime ideals over I then I1, ..., In are ∆-ideals;
(3) Spec∆pAq “ tI P SpecpAq | ∆pIq Ď Iu;
(4) If tIs | s P Su is any collection of ideals of A then

č

sPS

P∆pIsq “ P∆p
č

sPS

Isq

and
P∆pIq X Z “ P∆pI X Zq

for all I P SpecpAq.

Proof. Part (1) and (2) are [8, 3.3.2]. It is clear that the ∆-ideals in SpecpAq all lie in Spec∆pAq.
Note that if I P Spec∆pAq with minimal primes I “

Şn
i“1 Ii then part (2) implies that I “ Ii

for some i and so I P SpecpAq, which gives the reverse inclusion, proving (3). Part (4) is a short
calculation which we leave to the reader. �

An ideal I in Spec∆pAq is called ∆-locally closed if tIu is a locally closed subset of Spec∆pAq.
The following lemma is immediate from the definition.

Lemma 5.2. An ideal I P Spec∆pAq is ∆-locally closed if and only if I is properly contained in
the intersection of all ∆-ideals strictly containing it. �
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Since A is noetherian and Spec∆pAq Ď SpecpAq we see that A{I is a prime noetherian ring for
all I P Spec∆pAq. By Goldie’s theorem the set of nonzero elements of A{I satisfies the right Ore
condition and so we can consider the full ring of fractions QpA{Iq which is a simple artinian ring.
The set of derivations ∆ acts naturally on A{I, and the action extends to an action on QpA{Iq by
the Leibniz rule (1.4). We define the ∆-centre of QpA{Iq to be the set

C∆pQpA{Iqq :“ tz P CpQpA{Iqq | ∆pzq “ 0u

and we say that an ideal I P Spec∆pAq is ∆-rational if C∆pQpA{Iqq “ C.

Lemma 5.3. (1) Every ∆-locally closed ideal of A is ∆-primitive;
(2) Every ∆-primitive ideal of A is ∆-rational.

Proof. Let I be ∆-locally closed. By Lemma 9.1.2(ii) and Corollary 9.1.8(i) of [31] we know that
A is a Jacobson ring, and so I “

Ş

sPS Is for some index set S where each Is is a primitive ideal of
A. From part (4) of Lemma 5.1 we deduce that I “

Ş

sPS P∆pIsq. Now by Lemma 5.2 it follows
that I “ Is for some s P S, hence I is ∆-primitive.

We now prove (2), so suppose that I “ P∆pJq is ∆-primitive, and that J Ď A is primitive. We
shall show that C∆pQpA{Iqq ãÑ A{J0A where J0 “ J X Z. Since J is primitive Dixmier’s lemma
tells us that J0 is a maximal ideal of Z. Since A is a finite module over Z it follows that A{J0A
is finite dimensional over C, thus C is the only subfield of A{J0A. Hence once we have proven the
existence of such an embedding the lemma will be complete.

After replacing A by A{I we can assume that P∆pJq “ 0 and show that C∆pQpAqq ãÑ A{J0A.
Since A is prime and finite over its centre we have QpAq – A bZ QpZq (Cf. §1.4) and this
isomorphism is ∆-equivariant. Now if ab z´1 P C∆pAbZ QpZqqq then by (1.4) we have ab z´1 “

δpaq b δpzq´1 for all δ P ∆. Since J contains no nonzero ∆-ideals, we can use this observation
repeatedly to find a representative a1 b z´1

1 of a b z´1 such that z1 R J . In other words we have
ab z´1 P AbZ ZJ0 where ZJ0 denotes the localisation of Z at the prime J0 � Z. We have

AbZ ZJ0{J0ZJ0 – AbZ Z{J0 – A{J0A

and so there is a map
C∆pQpAqq ãÑ AbZ ZJ0 � A{J0A.

The composition is necessarily an embedding since C∆pQpAqq is a field. �

5.2. The ∆-rational ideals are the ∆-primitive ideals. Now we suppose that S Ď Z is
a multiplicative subset, so that the localisation ZS´1 may be defined. Notice that S is also a
multiplicative subset of A and the ring AS´1 :“ AbZ ZS

´1 satisfies the universal property of the
localisation of A at S. In the following we identify ZS´1 with a subalgebra of AS´1 and, for the
sake of economy, we view A and S´1 as subsets of AS´1. Notice that the derivations ∆ extend
uniquely to a set of derivations of AS´1 via the Leibniz rule (1.4).

There are natural operations which send ideals of A to ideals of AS´1 and vice versa, as follows.
For each ideal I Ď A we define the extension Ie :“ I bZ ZS

´1 which is an ideal of AS´1, and for
each ideal I Ď AS´1 we define the contraction Ic :“ I X A. The following classical fact can be
found in [18, Theorem 10.20], for instance.

Lemma 5.4. The following hold:

(i) Ice “ I for every ideal I of AS´1;
(ii) Iec “ I for each ideal I of A such that A{I is S-torsion free;

(iii) Every ideal in the set SpecSpAq :“ tI P SpecpAq | I X S “ Hu is S-torsion free.

The lemma leads directly to a crucial proposition, which is probably well known.

Proposition 5.5. The following hold:
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(1) Extension and contraction of ideals define inverse bijections between the sets SpecSpAq and
SpecpAS´1q;

(2) These bijections preserve the subsets of ∆-ideals;
(3) When AS´1 is countably generated these bijections also preserve the set of all primitive

ideals.

Proof. It is a fact, easily checked using part (i) of the previous lemma, that contraction through
a central extension of rings preserves prime ideals. For the reader’s convenience, we check that
extension sends SpecSpAq to SpecpAS´1q. Pick P P SpecSpAq and suppose that IJ Ď P e. Then
IcJ c Ď P ec “ P by part (ii) and (iii) of the previous lemma, and so we may assume Ic Ď P by
primality. Using part (i) of that same lemma once again I “ Ice Ď P e and so ideals in SpecSpAq
extend to SpecpAS´1q as claimed. Now apply all three parts of the previous lemma to deduce
that extension and contraction are inverse bijections on prime ideals, proving (1) of the current
Proposition. The fact that the ∆-ideals are preserved is an immediate consequence of the Leibniz
rule for derivations. The statement regarding primitive ideals requires slightly more work, as we
now explain.

Suppose that M is a simple A-module with I “ AnnApMq satisfying I XS “ H. We claim that
MS´1 :“MbZ ZS

´1 is a simple nonzero AS´1-module. The kernel of map M ÑM rS´1s consists
of m PM such that sm “ 0 for some s P S. If such an m ‰ 0 exists then M “ Am and so sM “ 0,
meaning s P I X S. Since this is not the case, MS´1 is non-zero and we conclude it is also simple
over AS´1, by essentially the same argument as we used in the proof of Proposition 3.10. What is
more, the reader can easily verify that AnnApMq “ A X AnnAS´1pMS´1q. This shows that every
primitive ideal in SpecSpAq is equal to J X A for some J P PrimpAS´1q.

We claim that whenever M is a simple AS´1-module there exists a simple A-submodule N ĎM .
To show that such a simple A-submodule N Ď M exists, we observe that AS´1 is a countably
generated C-algebra hence it satisfies the endomorphism property [31, Proposition 9.1.7]. Since A
is a finite module over Z it follows that AS´1 is a finite ZS´1-module, say AS´1 “

řt
i“1 ZS

´1ai
for certain elements a1, ..., at P AS´1. Therefore, for any 0 ‰ m P M , we have M “ Am “
řt
i“1 ZS

´1aim “
řt
i“1 Caim. It follows that M is a finite dimensional C-vector space and so

by an elementary inductive argument M contains a simple A-submodule N Ď M . Observe that
we have a map NS´1 Ñ M given by n b zs´1 ÞÑ zs´1n. The kernel must be trivial since
NS´1 is simple, and the image must be all of M since M is simple and the image contains
N ‰ 0, so NS´1 – M . We deduce that AnnAS´1pMq X A “ AnnApNq P PrimpAq X SpecSpAq.
It follows that contraction of ideals SpecpAS´1q Ñ SpecSpAq restricts to a surjective map of sets
PrimpAS´1q Ñ PrimpAqXSpecSpAq. It is actually bijective since it is the restriction of an injective
map by (1), which proves (3). �

Recall that we say A is an essential extension of Z provided every non-zero ideal of A intersects
Z non-trivially.

Lemma 5.6. [11, Theorem 6.3.8] If A is a prime C-algebra and a finite extension of a central
subalgebra Z then A is an essential extension of Z.

Theorem 5.7. Every ∆-rational ideal in Spec∆pAq is ∆-primitive.

Proof. We suppose that J is a ∆-prime ideal, that C∆pQpA{Jqq “ C and we aim to find a primitive
ideal I Ď A with P∆pIq “ J . After replacing A by A{J and replacing Z by Z{ZXJ we see that it
is sufficient to suppose that C∆pQpAqq “ C and find a primitive ideal I Ď A with P∆pIq “ p0q. By
part (3) of Lemma 5.1 we may adopt the hypothesis that A is prime. Since C∆pQpZqq ãÑ C∆pQpAqq
it follows that C∆pQpZqq “ C.

Let M be the set of a minimal non-zero ∆-prime ideals of A. We claim that M is countable.
First of all notice that, since A is a finite extension of Z there are finitely many prime ideals
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of A lying over each prime ideal of Z. For the reader’s convenience we sketch the proof of this
fact. If p P SpecpZq is any prime ideal then the ideal pA is not necessarily prime, but since A
is a noetherian ring there are finitely many prime ideals P1, ..., Pm of A over pA. Suppose that
Q P SpecpAq is any ideal with Q X Z “ p. Then it follows that Q contains one of the minimal
primes P1, ..., Pm. We may suppose P1 Ď Q. Since A{P1 is an essential extension of Z{P1 X Z
we conclude from Lemma 5.6 that either Q “ P1 or the image of Q in A{P1 intersects Z{P1 X Z
non-trivially. By assumption QX Z “ p “ P1 X Z and so the latter does not hold, hence we may
conclude Q “ P1. This proves that there are finitely many primes of A lying over p. Now in order
to prove that M is countable, it suffices to show that Z contains only countably many minimal
nonzero ∆-prime ideals. This follows from the argument given in [3, Theorem 3.2], using the fact
that C∆pQpZqq “ C.

Now we may enumerate M “ tP1, P2, P3, ...u and write pi :“ Pi X Z for all i “ 1, 2, 3, .... By
assumption A is prime and so thanks to Lemma 5.6 we see that A is an essential extension of Z. In
particular tp1, p2, p3, ...u are all non-zero. Choose non-zero elements ts1, s2, s3, ...u with si P pi and
let S be the multiplicative subset of S generated by ts1, s2, s3, ...u. Note that AS´1 is countably
generated, so we are in a position to apply every conclusion of Proposition 5.5.

Let I P SpecpAS´1q be any primitive ideal. Suppose for a moment that I contains some non-
zero ∆-prime ideal. Then it must contain a minimal non-zero ∆-prime ideal, which we may denote
by K. It follows from Proposition 5.5 that K X A is a non-zero ∆-prime ideal which intersects
S trivially. This is impossible, since S contains a non-zero element of every non-zero ∆-prime
ideal of A. We may conclude that P∆pIq “ p0q. Now apply part (4) of Lemma 5.1 to see that
P∆pI X Aq “ P∆pIq X A “ p0q. Thanks to the last part of Proposition 5.5 we see that I X A is a
primitive ideal of A and so we have shown that p0q is ∆-primitive, as required. �

5.3. The ∆-weakly locally closed ideals are the ∆-rational ideals. We now go on to prove
that ∆-rational ideals of A enjoy a property which is strictly weaker than being ∆-locally closed.
We say that an ideal I Ď A is ∆-weakly locally closed if the following set is finite

tJ P Spec∆pAq | I Ď J, htpJq “ htpIq ` 1u.

Theorem 5.8. The ∆-rational ideals of A are precisely the ∆-weakly locally closed ideals.

Proof. After replacing A with A{I we may show that p0q is ∆-rational if and only if it is ∆-weakly
locally closed. We begin by supposing p0q is not ∆-rational and show that it is not ∆-weakly locally
closed. Recall that we identify QpAq with AbZQpZq, and we identify A and pZzt0uq´1 with subsets
of QpAq. Suppose that there exists some non-constant az´1 P C∆pQpAqq with 0 ‰ z P Z. We
consider the localisation Zz :“ Zrz´1s and Az :“ A bZ Zz Ď QpAq. For all c P C we observe that
az´1 ´ c is central in Az and we consider the ideals Ic :“ paz´1 ´ cqAz.

We claim that tIc | c P Cu are generically proper ideals. If az´1 ´ c is invertible in Az then for
b P Az

bpaz´1
´ cq´1

paz´1
´ cq “ b “ paz´1

´ cq´1
paz´1

´ cqb “ paz´1
´ cq´1bpaz´1

´ cq.

Combined with the fact that az´1 ´ c is not a zero divisor we conclude that paz´1 ´ cq´1 is
central in Az. Writing CpAzq for the centre of Az we conclude that Ic is proper if and only if
Jc :“ paz´1 ´ cqCpAzq is proper. The Artin–Tate lemma implies that CpAzq is an affine algebra
and so the ideals tJc | c P Cu are generically proper, which confirms the claim at the beginning of
this paragraph.

Since A is a noetherian ring so is Az and so by [31, 4.1.11] there are finitely many minimal
prime ideals over Ic each of which has height one. If some prime ideal contains both Ic and Ic1
for some c, c1 P C then it contains c ´ c1 and so these prime ideals are all distinct. Now we have
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found infinitely many ∆-prime ideals of Az, all of height one. Finally we apply parts (1) and (2)
of Proposition 5.5 to see that p0q is not ∆-weakly locally closed, as desired.

Now we show that if p0q is ∆-rational it is ∆-weakly locally closed. First of all we observe that
p0q is a ∆-rational ideal of Z, thanks to the identification QpAq “ A bZ QpZq. Thanks to [3,
Theorem 7.1] we know that p0q is ∆-weakly locally closed in SpecpZq. Suppose that p1, ..., pl are
the set of those minimal non-zero prime ideals of Z which are ∆-stable. Since there are finitely
many prime ideals of A lying above each ideal p1, ..., pl it suffices to show that each one of the
minimal non-zero prime ideals of A which is ∆-stable lies over one of p1, ..., pl. Let P be a minimal
non-zero prime of A which is ∆-stable and observe that P X Z is a ∆-prime ideal. We must show
that P X Z is minimal amongst non-zero primes of Z. If not then there exists a prime q with
q Ĺ P X Z. It then follows from the going down theorem [31, 13.8.14(iv)] that there is a prime
Q of A with Q X Z “ q and Q Ĺ P ; this contradicts the minimality of P and so we deduce that
P X Z is a minimal non-zero prime, as required. �

6. Proof of the first theorem and some applications

In this section we continue to take all vector spaces over C.

6.1. Existence of the bijection. We begin with some topological observations about the space
PrimpAq when A is finite over its centre.

Lemma 6.1. Let A be a non-commutative ring which is finite over its affine centre Z. Then

(1) If A is prime, then every two open subsets of PrimpAq have a nonzero intersection.
(2) If PrimpAq is stratified by irreducible locally closed sets then each stratum is determined by

its closure.

Proof. Let O1,O2 Ď PrimpAq be two open subsets and suppose that O1 “ tJ P PrimpAq |
I1, ..., Is Ć Ju and O2 “ tJ P PrimpAq | J1, ..., Jt Ć Ju for certain ideals I1, ..., Is, J1, ..., Jt. Since A
is prime and finite over the centre Z we have that Z Ď A is an essential extension by Lemma 5.6,
and so we can choose nonzero element ik P Ik X Z for k “ 1, ..., s and jk P Jk X Z for k “ 1, ..., t.
Since A is prime, not one of these elements is nilpotent, and we may form the multiplicative subset
S Ď Zzt0u which they generate. The set O1 X O2 “ tJ P PrimpAq | I1, ..., Is, J1, ..., Jt Ć Ju
contains the set tJ P PrimpAq | J X S “ 0u and according to Proposition 5.5 the latter is in
bijection with PrimpAS´1q. Note that the hypotheses of that proposition are satisfied because A
is a finite module over a finitely generated algebra, hence finitely generated. We know PrimpAS´1q

is nonempty by Zorn’s lemma, which proves (1).
Suppose that

PrimpAq “
ğ

kPK

Lk (6.1)

decomposes as a disjoint union of locally closed subsets and L1, L2 are two of these sets such that
L1 “ L2 “ V pIq for some prime I. Then applying part (1) to the open subsets L1, L2 of PrimpA{Iq
we see that L1 X L2 ‰ H, and so L1 “ L2 since the decomposition (6.1) is disjoint. �

Suppose that Z is a regular complex affine Poisson algebra, so that Z :“ SpecpZq is smooth,
and that the symplectic leaves of Z are locally closed in the Zariski topology. Thanks to the last
part of the second main theorem we know that the PDME holds for A. By the equivalence of (I)
and (II) in the second main theorem we know that the closures of the symplectic cores of PrimpAq
are the sets of the form V pPpIqq “ tJ P PrimpAq | PpIq Ď Ju. Combining parts (b), (c) and the
equivalence of (ii), (iii) from the second main theorem we deduce that the closures of the symplectic
cores are precisely the sets tVpMq | M simple Poisson A-moduleu. Applying Lemma 6.1 we see
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that each symplectic core CpIq Ď PrimpAq is uniquely determined as the open core in its closure,
which shows that the map from the first main theorem is a bijection, as claimed.

Remark 6.2. The same proof works if we replace the assumption that the leaves are algebraic with
the assumption that the PDME holds for Z, which is a strictly weaker hypothesis, as may be seen
upon comparing [17, Example 3.10(v)] and [15]. Another example of a Poisson algebra Z with
non-algebraic symplectic leaves for which the PDME holds is the polynomial ring Crx1, x2, x3s

with brackets tx, yu “ ax, ty, zu “ ´y, tx, yu “ 0. According to [16, Example 3.8] the leaves are
non-algebraic but the PDME holds [3] since the GK dimension is 3.

6.2. The bijection is a homeomorphism. Retain the hypotheses of the previous subsection.
Now that we have shown that the Poisson primitive ideals of A are the annihilators of simple
modules we may denote the set of of such ideals P-PrimpAq. Denote the bijection described in the
first main theorem by φ : P-PrimpAq Ñ PrimCpAq. It remains to prove that φ is a homeomorphism.
We must give a precise description of the topology on each of these two spaces and observe that φ
sets up a bijection between closed subsets of its domain and codomain.

The space PrimCpAq is endowed with the quotient topology, meaning that for S Ď PrimpAq the
set tCpIq | I P Su Ď PrimCpAq is closed if and only if

Ť

IĎS CpIq is closed. Since A is noetherian
the closed sets of PrimpAq have finitely many irreducible components and so the closed sets of the
form

Ť

IĎS CpIq can be labelled as follows: for each finite set S “ tI1, ..., Inu Ď P-PrimpAq the set

CS :“ tCpIq | Ij Ď I for some j “ 1, ..., nu (6.2)

is a closed subset of PrimCpAq and all closed sets are obtained in this manner. This statement uses
the fact that P-PrimpAq are the defining ideals of the closures of the symplectic cores, and this is
a consequence of the second main theorem.

The space P-PrimpAq is endowed with its Jacobson topology (see [8, 3.2.2]) and so closed
subsets of P-PrimpAq are constructed as follows, for each subset T Ď P-PrimpAq there is a closed
set DT “ tI P P-PrimpAq |

Ş

JPT J Ď Iu and all closed sets occur in this way. For T Ď P-PrimpAq
we let S be the set of primes of A which are minimal over

Ş

JPT J . Thanks to Proposition 3.1.10
and Lemma 3.3.3 of [8] this set is finite and consists of Poisson ideals of A. It is easy to see that
DT “ DS and we conclude that the closed sets of both P-PrimpAq and PrimCpAq can be labelled
(non-uniquely) by finite subsets of P-PrimpAq.

It is clear that under the assumptions of our first theorem, when J P P-PrimpAq the map φ sends
the closed setDtJu to the closed set CtJu. It is also not hard to see that φpDSYDT q “ φpDSqYφpDT q

for finite subsets S, T Ď P-PrimpAq and that DS YDT “ DSYT and CSYT “ CS Y CT . It follows
that φDS “ CS for any finite set S Ď P-PrimpAq. We conclude that φ sends closed sets of
P-PrimpAq bijectively to those of PrimCpAq, and so φ is a homeomorphism.

6.3. Solvable Lie–Poisson algebras. As we mentioned in Remark following the first Corollary
in §1.3 we can combine Dixmier’s theorem and our main theorem to deduce that both PrimUpgq
and P-PrimCrg˚s are parameterised by g˚{G in the case where g “ LiepGq is the Lie algebra of
a complex solvable algebraic group. Our purpose here is to explain this correspondence in more
detail, and show that these parameterisations are dual to one another in a sense.

First of all let g be any finite dimensional Lie algebra (over C, although this remark holds
over any field) and let D :“ Crεs{pε2q be the ring of double numbers. Define the double Lie
algebra by gD :“ g bC D. We claim that Crg˚se is naturally isomorphic to UpgDq. Define a map
i : gD Ñ Crg˚se by ipx ` εyq :“ δpxq ` αpyq where pα, δq are the structure maps of Crg˚se and
x, y P g. By the defining relations of Crg˚se it follows that irx, ys “ ipxqipyq ´ ipyqipxq for every
x, y P gD and so by the universal property of UpgDq there is a homomorphism UpgDq Ñ Crg˚se
which is surjective because the image of i generates Crg˚se and injective by the PBW theorems for
UpgDq and Crg˚se respectively.
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When g “ LiepGq is solvable, Dixmier’s theorem states that there exists a bijection Ig : g˚{GÑ
PrimUpgq which we briefly recall. When χ P g˚ there always exists a polarisation p Ď g of χ:
this is a Lie subalgebra such that dim p “ pdim g` dim gχq{2 where gχ denotes the stabiliser, and
χrp, ps “ 0. The latter condition means that χ defines a one dimensional p-module Cχ. Dixmier’s
map is defined for χ P g˚ by

Igpχq :“ AnnUpgq Ind
Upgq
UppqCχ.

According to [8, §6] it is well defined and descends to the required bijection.
When g is solvable and algebraic it easily seen that gD is solvable and algebraic too. Viewing

g as a G-module we can define GD :“ G ˙ g with 1 ˙ g an abelian unipotent subgroup, and
gD – LiepGDq. We embed g˚ inside g˚D by setting χpx ` εyq “ χpxq for x, y P g and χ P g˚. It is
readily seen that g˚ is a GD-submodule with 1 ˙ g acting trivially on g˚ and on g˚D{g

˚. We may
view both the submodule and the quotient as G-modules via the identification GD{1˙ g – G, and
the short exact sequence g˚ ãÑ g˚D � g˚D{g

˚ allows us to identify g˚{G naturally with a subset and
a quotient set (i.e. a set of equivalence classes) of g˚D{GD.

Since εg is an ideal of gD it generates an ideal of UpgDq and we have Upgq – UpgDq{pεgq. This
induces an embedding PrimUpgq ãÑ PrimUpgDq. Under the isomorphism UpgDq – Crg˚se the
natural map α : Crg˚s ãÑ Crg˚se identifies with Crg˚s – Spgq – Upεgq ãÑ UpgDq and so there is a
natural map PrimUpgDq Ñ P-PrimCrg˚s given by I ÞÑ I X Upεgq. Now the relationship between
the parameterisations of PrimUpgq and P-PrimCrg˚s can be explained.

Proposition 6.3. There is a commutative diagram

PrimUpgq PrimUpgDq P-PrimCrg˚s

g˚{G g˚D{GD pg˚D{g
˚q{GD – g˚{G

Ig IgD (6.3)

where the right hand vertical arrow is constructed in our first main theorem, and all other arrows
are defined above. The composition of the horizontal maps are the constant maps respectively
sending PrimUpgq to the annihilator of the trivial Poisson Crg˚s-module, and sending g˚{G to the
zero orbit.

6.4. Quantum groups and open problems. In the introduction we proposed two applications
of the first main theorem: a description of the annihilators of simple Poisson Crg˚s-modules when
g is a complex algebraic group, and also annihilators of simple modules over the classical finite
W -algebra. Both of these examples are Poisson algebras and so they do not use the full force of
the first main theorem. We conclude by mentioning some famous examples where A is a Poisson
order over a proper Poisson subalgebra Z, satisfying the hypotheses of the main theorem.

Let q be a variable and consider the affine Crqs-algebra A generated by X1, ..., Xn subject to
relations XiXj´qXjXi for i ă j. This is the single parameter generic quantum affine space. When
we specialise q Ñ ε where ε is a primitive `th root of unity for some ` ą 1, we obtain a Poisson
order. To be precise, the subalgebra Z0 of Aε :“ A{pq ´ εqA generated by tX`

i | i “ 1, ..., nu
is central, known as the `-centre. Following the observations of §2.3 we see that Z0 is a Poisson
algebra and Aε is a Poisson order over Z0. There is a pkˆqn-action on Aε rescaling the generators
and it is not hard to see that there are only finitely many pkˆqn-stable Poisson prime ideals.
It follows from the results of [15] that the PDME holds for Z0 and so by Remark 6.2 our first
main theorem applies to Aε. In particular, the space P-PrimpAεq of annihilators of simple Poisson
Aε-modules is homeomorphic to the set PrimCpAεq.
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Two other natural examples to consider are the quantised enveloping algebras Uqpgq where g is
a complex semisimple Lie algebra, and their restricted Hopf duals OqpGq; see [5] for more detail.
Once again, after specialising the deformation parameter q to ε an `th root of unity we denote one
of these algebras by Aε. Just as for quantum affine space the `th powers of the standard generators
in either of these examples generate a central subalgebra Z0. In these cases the symplectic leaves
are actually locally closed and so our main theorem applies here too.

Problem. For all of the families of algebras discussed above:

(1) describe the symplectic cores of PrimpAεq explicitly by computing the fibres of the contraction
P-PrimpAεq Ñ P-PrimpZ0q;

(2) for each symplectic core CpIq Ď PrimpAεq construct an explicit example of a simple Poisson

A-module M such that VpMq “ CpIq.

Of course Theorem 4.2 shows that such a module exists but the proof is non-constructive. We
hope that by constructing modules more explicitly (for example, by generators and relations) as per
Problem (2) it will become more apparent how we could hope to deform a simple Aε{mAε-module

over the closure of the symplectic core Cpmq, where m P PrimpZ0q.

References

[1] T. Arakawa Rationality of W -algebras: principal nilpotent case, Ann. of Math. (2) 182 (2015), no. 2, pp.
565–604.

[2] H. Bass Big projective modules are free, Illinois J. Math. 7 (1963) pp. 24–31.
[3] J. Bell, S. Launois, O. Leon Sanchez & R. Moosa Poisson algebras via model theory and differential-

algebraic geometry. J. Eur. Math. Soc. (JEMS) 19 (2017), pp. 2019–2049.
[4] N. Bourbaki “Elements of mathematics. Commutative algebra. Chapter I”. Reprint of the 1998 original.

Springer-Verlag, Berlin, 2007.
[5] K. Brown & K. Goodearl Lectures on algebraic quantum groups. Adv. Courses in Math., Birkhäuser,
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