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Abstract
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thyla-
koidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it 
accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for 
transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. 
Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component 
TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In 
particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into 
different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning 
of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current 
state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead 
for future investigations.
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1  Introduction

To function correctly and efficiently, every cell needs to be 
highly organised, tightly regulated and compartmentalised. 
Proteins are essential macromolecules synthesised by ribo-
somes in the cytoplasm that often require localisation to a 
particular subcellular compartment before they can carry out 
their respective functions. Their proper formation, targeting 
and activity are imperative to the survival of the cell. This 
requirement for correct localisation particularly applies to 
proteins that take part in the acquisition of nutrients, energy 

transduction, cell-to-cell communication and cellular loco-
motion. On average, 20–30% of proteins synthesised in 
the bacterial cytoplasm are destined for extra-cytoplasmic 
locations [1]. They therefore have to pass a cell membrane 
composed of a tightly sealed lipid bilayer intent on keep-
ing the cell structurally sound and impenetrable. Therefore, 
specialised transport systems have evolved within the cell 
membrane to allow proteins to cross this barrier. Each sys-
tem made up of critical components is as specialised as the 
protein cargo it will transport. However common features 
tie protein transport systems together, which guarantee cell 
regulation and safety. These include a gated pore, an energy 
requirement to drive cargo proteins through the membrane, 
and the use of signal peptides that direct the cargo protein to 
the correct translocase and the correct location.

Two major transport systems exist for protein transloca-
tion across the bacterial cytoplasmic membrane, namely 
the general secretory (Sec) pathway and the twin-arginine 
translocation (Tat) pathway (Fig. 1). The Sec pathway facili-
tates export of the majority of bacterial proteins, whereas 
the Tat pathway is quite restricted. For instance, it trans-
ports ~ 30 proteins in Escherichia coli and only four in Bacil-
lus subtilis [2]. Further, each protein is fully folded in the 
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cytoplasm prior to export via Tat, whereas Sec can only 
export unfolded proteins.

2 � Protein Targeting Via the Twin‑Arginine 
Signal Peptide

To ensure proteins are appropriately directed into the Sec 
or Tat pathways and to initiate the translocation process, 
specific signal peptides are present on the N-terminus of 
each protein. On the trans side of the membrane the signal 
peptide is cleaved by a signal peptidase to liberate just the 
mature protein [3–7]. The amino acid sequences of signal 
peptides differ substantially, but they are all composed of 
a positively charged N-terminal N-domain, a hydrophobic 
H-domain and a C-terminal C-domain with an Ala-x-Ala 
signal peptidase cleavage site [3, 8] (Fig. 2). Further, the 
N-regions of Tat signal peptides contain the canonical twin-
arginine motif S-R-R-x-F-L-K (where x is a polar amino 
acid) [9]. The importance of additional conserved amino 

acids in the Tat-motif depends on the cargo protein and var-
ies in different bacteria [10]. However, RR-residues are close 
to invariant and key to efficient protein export. In particu-
lar, the charge-neutral substitution of RR to KK blocks Tat 
export completely [11]. Yet, a single Arg to Lys mutation 
only slows down the rate of translocation in most bacteria 
[12]. In chloroplast thylakoids where the Tat pathway also 
exists, an RR to KR substitution is tolerated, while a RR to 
RK substitution precludes transport [12–14]. A single substi-
tution of Arg to Glu has been reported as tolerated too [15]. 
Of note, the TtrB subunit of the tetrathionate reductase in 
Enterobacteriaceae is the only known native Tat cargo to 
have a KR-motif [16]. Aside from the RR-motif, other resi-
dues within the larger twin-arginine signal peptide are also 
important. In particular, the Phe residue is present in 80% of 
Tat-motifs, and substitutions showed a highly hydrophobic 
residue is essential at this position [11]. 

Tat signal peptides comprise about 30 residues in most 
organisms. Hence they are longer than Sec signal peptides, 
which comprise about 17 to 24 residues [17]. Tat signal 
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Fig. 1   The Sec- and Tat-dependent protein transport pathways. The 
Sec pathway is the dominant pathway for protein export from the 
bacterial cytoplasm. It accepts and translocates cargo proteins across 
the plasma membrane in a loosely folded or unfolded state, here 
exemplified with the precursor of the outer membrane protein A of 
E. coli (OmpA). Targeting and folding control of the cargo protein 
is supported by cytoplasmic targeting factors, such as SecB. The Sec 
machinery itself is composed of the SecYEG channel and the trans-
location ATPase SecA, which converts chemical energy in the form 
of ATP into a driving force that pushes the cargo protein through the 
membrane. Additionally, translocation may be powered by the trans-

membrane proton gradient. At the trans-side of the membrane, the 
translocated protein folds into its active and protease-resistant final 
conformation. In contrast to the Sec pathway, the Tat pathway trans-
ports fully folded cofactor-containing proteins across the membrane, 
here exemplified with the precursor of the Tat cargo TorA. Cofac-
tor insertion and folding may be aided by Redox Enzyme Matura-
tion Proteins (REMPS), such as TorD in the case of TorA. The Tat 
translocase may consist of the three components TatA, TatB and TatC 
(E. coli), or of TatA and TatC components only (B. subtilis). Protein 
transport via Tat is powered by the transmembrane proton-motive 
force
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peptides are also overall less hydrophobic than Sec signal 
peptides, which serves to avoid protein targeting to the Sec 
pathway [18]. Additionally, the C-domain of Tat signal pep-
tides may include basic residues N-terminally of the A-x-A 
motif, which contribute to Sec avoidance (Fig. 2) [19, 20].

3 � The Twin‑Arginine Translocation Pathway

In the early 1990’s, an alternative translocase was discovered 
in the thylakoid membrane of chloroplasts, which worked in 
parallel to the Sec pathway [21]. Initially this pathway was 
named the ΔpH-dependent pathway due to its unusual sole 
requirement of a transmembrane proton gradient for translo-
cation [22]. Three membrane proteins were soon identified 
in thylakoids as essential for translocation of fully folded 
proteins via the ΔpH-dependent pathway [23], namely Tha4 
[24], Hcf106 [25] and cpTatC [26]. Subsequently, homolo-
gous proteins were identified in some bacteria, archaea and 
even mitochondria [27, 28]. In E. coli, the homologues of 
Tha4, Hcf106 and cpTatC were also shown to be required 
for export of proteins with twin-arginine signal peptides 
and, therefore, they were respectively named TatA, TatB 
and TatC [9, 29–31].

Combined studies on the thylakoidal and bacterial Tat 
pathways showed that their function is to transport a sub-
set of complex fully folded proteins that require cofactor 
insertion or immediate oligomerisation [8, 32]. Today, Tat-
translocated proteins have been shown to participate in many 
processes including energy metabolism, cell division, cell 
envelope biogenesis, quorum sensing, motility, symbiosis 
and pathogenesis [33–36]. Tat can even export complex 
heterologous proteins that are Sec-incompatible, like the 
tightly folded dihydrofolate reductase with bound metho-
trexate [37], the green fluorescent protein (GFP) [38], and 

several bio-pharmaceutically relevant human proteins [39]. 
Another intriguing attribute of the Tat pathway is that it 
can detect unfolded or mutated proteins, and reject them for 
export [40, 41].

Based on the number of Tat components involved in pro-
tein translocation, essentially two types of ‘translocases’ can 
be distinguished. The prototype Tat translocase that is active 
in thylakoids and E. coli, consists of the afore-mentioned 
TatABC components. Further, the minimal Tat translocases, 
as typified in Bacillus species consist of TatA and TatC com-
ponents only. The types of translocases will be discussed in 
the following paragraphs.

4 � The E. coli Tat Translocase

The E. coli tatABCD operon encodes the core components 
of this bacterium’s Tat system (Table 1). All four genes 
are constitutively expressed, but the expression level of 
tatA exceeds that of tatB 25-fold that of tatC 50-fold [42]. 
This difference is mirrored in the final component make-up 
of the Tat translocase in the plasma membrane. The tatE 
gene is constitutively expressed from another chromosomal 
locus. The tatB and tatE genes are thought to originate from 
gene duplications of tatA [28, 43]. Although ΔtatABCDE 
strains are viable, the mutants show various defects includ-
ing impaired septation, decreased motility and an increased 
sensitivity to detergent [44].

TatA (9.6 kDa) is the most abundant component of the 
Tat complex, most likely responsible for forming the trans-
locase channel [45]. E. coli has a core TatA protein, but it 
also involves the TatA-like proteins, TatB and TatE [28]. Of 
note, TatE can substitute TatA [43]. TatA, TatB and TatE 
are similar in structure with a short N-terminal domain that 
is exposed to the periplasm [46], a single transmembrane 
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Fig. 2   Sec- and Tat-specific signal peptides. N-terminal signal pep-
tides direct proteins to the Sec and Tat translocases in the membrane. 
They have a conserved tripartite structure, consisting of a positively 
charged N-region (indicated by ‘white residues’ in one-letter code), a 
hydrophobic H-region (red) and a C-region (green) that contains the 
Ala-X-Ala recognition site for signal peptidase. Cleavage by signal 
peptidase, C-terminally from the Ala-X-Ala sequence, liberates the 
mature protein (pink) from the membrane. Twin-arginine signal pep-

tides, as exemplified by the TorA signal peptide, contain the canoni-
cal twin-arginine motif at the interface of the N- and C-regions. Their 
H-region is longer and less hydrophobic than that of Sec-type signal 
peptides, and N-terminally of the C-region there are often positively 
charged residues that serve in Sec-avoidance. Notably, Sec-type sig-
nal peptides, here exemplified by the OmpA signal peptide, are usu-
ally much shorter than twin-arginine signal peptides
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helix, an amphipathic helix in the cytoplasm [47], and an 
unstructured cytoplasmic C-domain [48] (Fig. 3). Surpris-
ingly, not many mutations in TatA block export, but there are 
a few instances. In particular, Gly33 in the “hinge region” 
is critical for TatA function [49], and the transmembrane 

helix and various residues in the amphipathic helix are also 
important [50, 51].

TatE (7 kDa) is a much smaller than TatA [9]. Given the 
smaller size and ~ 100-fold lower abundance than TatA, it 
was initially believed TatE has no real function in the Tat 

Table 1   Comparison of E. coli and B. subtilis Tat proteins and Tat complexes including their estimated molecular masses (kDa)

E. coli B. subtilis

Protein/complex Gene product 
molecular mass 
(kDa)

Complex molecu-
lar mass (kDa)

Ref. Protein/complex Gene product 
molecular mass 
(kDa)

Complex molecular 
mass (kDa)

Ref.

TatA 9.6 100–500 [114] TatAd 7.4 160/270 [77]
TatAy 6 200 [159]

TatE 7 [43] TatAc 6.7 100 [78]
TatB 18.4 < 100 [111]
TatC 28.9 220 [111] TatCd 28 66–100 [78]

TatCy 28.9 66 [78]
TatBC 430 [111] TatAdCd 230/350 [77]
TatABC 580 [104] TatAyCy 200 [159]
TatABC + substrate 600 [104] TatAcCd 230 [78]

TatAcCy 200 [78]

Plasma
membrane

Periplasm

Cytoplasm
C

C

CN

N
N

TatA/E TatB TatC

Fig. 3   Membrane topology and structures of the TatA, TatB and TatC 
proteins. The Tat translocase of E. coli consists of three components, 
namely TatA, TatB and TatC. TatB and TatC form a receptor complex 
for cargo proteins, whereas TatA is the main facilitator for protein 
translocation across the membrane. TatB is missing from the two-
component Tat translocases as encountered in B. subtilis. The upper 
half of the Figure shows a traditional representation of the membrane 

topology of TatA/E, TatB and TatC based on molecular biological 
analyses. The lower half of the Figure shows ribbon presentations 
of the structures of TatA, TatB and TatC as adopted from the RCSB 
Protein Data Bank (http://www.rcsb.org/struc​ture/). These structures 
have the following PDB accession codes: TatA—2LZR (solution 
NMR structure [48]); TatB—2MI2 (solution NMR structure [54]); 
and TatC—4HTS (crystal structure [63])

http://www.rcsb.org/structure/
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translocon [42]. More recently however, it was shown TatE 
could substitute TatA [43], and that it is recruited to the Tat 
translocase [52]. Importantly, TatE was shown to interact 
with the Tat signal peptide and to even partially prevent pre-
mature cleavage of the TorA signal peptide [53].

The role of TatB (18.4 kDa) is to bind the Tat signal pep-
tide and, thereafter, the mature protein. Despite only shar-
ing 20% sequence identity to TatA and being nearly double 
TatA’s size, TatB is predicted to have a very similar structure 
and topology (Fig. 3) [50]. Specifically, TatB has a slightly 
longer amphipathic helix and a longer unstructured C-ter-
minal region [54, 55]. Mutations in TatB’s hinge region and 
amphipathic helix cause translocation defects [56]. Of note, 
particular amino acid substitutions in TatA’s N-terminus 
allow replacement of TatB by TatA [57] [58], supporting 
the notion that TatB originated from TatA and subsequently 
specialized [5, 59].

TatC is the largest (28.9 kDa) and best-conserved protein 
in the Tat complex that aids cargo binding [60, 61]. The 
structure of TatC is very different to other Tat components 
as it has 6 transmembrane helices and an N-in C-in topol-
ogy (Fig. 3) [62]. The crystallisation of TatC from Aquifex 
aeolicus, which shares 40% sequence identity to E. coli Tat 
C, revealed the relative positions of the transmembrane 
domains [63]. Together, they take the shape of a baseball 
glove or cupped hand with very restricted structural flex-
ibility [64]. Notably, a conserved Glu residue (Glu170 in E. 
coli) is positioned close to the signal peptide binding pocket 
in the plane of the membrane and potentially perturbs the 
bilayer structure [12, 64, 65]. Additional residues needed for 
TatC function reside in the cytoplasmic N-region and the 
first cytoplasmic loop [61, 66].

5 � The B. subtilis Tat Translocase

The Tat translocase can minimally function with just TatA 
and TatC [5, 67–69]. Interestingly, the Gram-positive bac-
terium B. subtilis has two minimal Tat translocases encoded 
by the tatAdCd and tatAyCy operons, which work in paral-
lel and with different cargo specificities (Table 1) [5]. Tat-
AdCd has only one known cargo protein, PhoD, which is 
co-expressed with the translocase under phosphate-deprived 
conditions [68, 70]. TatAyCy is constitutively expressed, 
along with its cargo proteins EfeB (YwnN), QcrA and YkuE 
[5, 71–74]. The third TatA gene of B. subtilis, tatAc, is con-
stitutively expressed from another locus, and was shown to 
serve a non-essential function in protein translocation via 
the TatAyCy [5, 75].

B. subtilis TatAd and TatAy are bifunctional, meaning 
that they act at the same time as E. coli TatA and TatB. 
Interestingly, B. subtilis TatAd can replace TatA and TatB 
in E. coli [76], whereas TatAc expressed in E. coli can 

functionally replace TatA and TatE and form active trans-
locases with TatCd and TatCy [77, 78]. This suggests that, 
despite species-specific features, the translocation mecha-
nism employed by Tat is conserved across species [76, 79].

Structural studies on B. subtilis TatAd (7.4 kDa) have con-
firmed its ‘L-shape’ arrangement in the membrane [80–82]. 
By itself, TatAd oligomerizes to complexes of ~ 270 kDa 
and, together with TatCd (28 kDa), TatAd forms complexes 
of ~ 230 kDa in which TatAd is stabilized by TatCd [83–85]. 
Although the structure of TatAd resembles that of E. coli 
TatA, the effects of particular amino acid substitutions dif-
fer for the two proteins [47, 86]. Notably, mutagenesis of 
the TatAd N-terminus blocks protein translocation in E. coli 
tatB mutant cells, indicating that the N-terminal residues of 
TatAd are needed for TatB substitution [83].

Like TatAd, TatAy (6 kDa) has a structure similar to that 
of E. coli TatA [83, 86]. In particular, the conserved Pro2 
residue in the N-terminus of TatAy and its hinge region are 
required for protein export [75, 86]. Complexes of TatAy 
alone and TatAyCy have a molecular mass of ~ 200 kDa [87]. 
Intriguingly, a P2A mutation leads to the formation of large 
fibrils composed of TatAy and TatCy, suggesting that Pro2 
serves a role in the termination of complex assembly [88].

TatCd and TatCy (28/28.9 kDa) resemble E. coli TatC, 
having six transmembrane helices [87, 85]. Further, the 
N-terminus, the first cytoplasmic loop and the C-terminal 
tail of TatCd and TatCy are important for protein export, 
but the relevance of different conserved residues depends 
on the cargo [89, 90].

TatAc (6.7 kDa) of B. subtilis shares significant sequence 
similarity with E. coli TatE, and it can actually form active 
Tat complexes with TatA and TatB, or with TatCd and TatCy 
when expressed in E. coli (Table 1) [75–78, 87]. Neverthe-
less, TatAc cannot replace TatAd or TatAy for protein trans-
location in B. subtilis, where it was shown to assist protein 
translocation by TatAyCy [75].

6 � TatA and TatA/BC Complexes

While the Tat system can handle cargo proteins of up to 
150 kDa [91], the Tat components are much smaller. This 
implies that they need to assemble into larger complexes 
that can facilitate membrane passage of larger cargo pro-
teins [92]. Indeed, two types of Tat complexes were identi-
fied, namely TatA(B)C and TatA. In E. coli and thylakoids, 
membrane-embedded TatBC complexes are believed to bind 
cargo proteins, whereas recruitment of TatA complexes is 
required to facilitate their membrane passage [93–95]. In 
B. subtilis, the cargo receptor function of TatBC complexes 
is fulfilled by TatAdCd or TatAyCy complexes. Notably, 
the TatA complexes by themselves, especially those of B. 
subtilis (Table 1), are too small and homogeneous to allow 
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passage of most cargo proteins [68, 77, 78]. The TatA-TatA/
BC assemblies are thought to disassemble upon completed 
cargo translocation [96].

As shown by cross-linking studies, within TatBC com-
plexes, TatC is first to interact with the N-region of a twin-
arginine signal peptide [94, 97, 98]. Subsequently, deep 
insertion of the signal peptide into TatC will follow, lead-
ing to interaction of the H-domain with the transmembrane 
segment of TatB [54, 94, 99]. In turn, this leads to exposure 
of the signal peptidase cleave site in the C-region to signal 
peptidase on the trans-side of the membrane [63, 100–102]. 
Intriguingly, several lines of evidence, suggest that more 
than one cargo protein can be bound by assemblies of seven 
TatBC copies [60, 103–105]. Within these TatBC assem-
blies, TatC monomers have two TatB contact sites [61, 99, 
102, 106, 107]. Further, the transmembrane segment of 
TatB appears to be positioned close to the site where trans-
locase oligomerization is initiated by TatA, which suggests 
that TatB could serve as a regulatory surrogate of TatA 
[108–110]. The latter would be in line with the fact that TatB 
is absent from minimal TatAC translocases as encountered 
in B. subtilis. Furthermore, cross-linking analyses show that 
cargo docking via the signal peptide leads to conformational 
changes that rearrange TatC’s binding site for TatA and TatB 
[52]. Binding of a signal peptide changes the arrangement 
of TatC from head-to-tail to tail-to-tail [106].

TatBC complexes contain small amounts of TatA that 
may serve as points of TatA nucleation for forming the active 
translocase [111, 112]. Most TatA molecules are, however, 
present in TatA complexes. The TatA complexes of E. coli 
are very heterogeneous, ranging from 100 to 500 kDa with 
intermediate size intervals of ~ 34 kDa [48, 54, 113–115]. 
In contrast, TatAc, TatAd and TatAy complexes in Bacil-
lus are much smaller with molecular masses of ~ 100, ~ 270 
and ~ 200 kDa, respectively [76, 77].

7 � Tat Translocation Mechanism

Despite almost three decades of research, the Tat transloca-
tion mechanism is still incompletely understood. As outlined 
above, cargo translocation is initiated at TatA/BC complexes 
and then facilitated by TatA [113]. This may involve either 
pore formation [116] or membrane weakening [43, 117].

Based on low-resolution EM images, it was proposed 
that TatA complexes have a pore of 8.5–13 nm that might 
accommodate cargo proteins of varying size [116, 118]. This 
pore would be closed by a lid at the cytoplasmic side mem-
brane, resembling a ‘trap door’, which could swing open 
with the help of a conserved Gly residue in the hinge region 
of TatA to allow cargo passage [118, 119]. In this scenario, 
after cargo docking onto TatBC, TatA would be recruited to 
form an oligomeric ring conforming to the size of the cargo 

protein [120, 121]. Although this model appears attractive, 
the trap door concept has not been confirmed in other studies 
[46, 48, 122]. Moreover, complexes of the TatA paralogue 
TatE (50–110 kDa) appear too small for pore formation [43].

More recently, it was proposed that TatA complexes 
might serve to weaken the membrane [48, 106, 117, 123]. 
This would relate to the relatively short transmembrane 
domain of TatA that can locally restrict the membrane 
thickness. This membrane weakening would only occur 
upon cargo binding and interaction of the mature part of the 
cargo protein with the amphipathic helix of TatA [94, 99, 
123–126]. In the absence of cargo, the membrane weaken-
ing would not take place as immersion of the amphipathic 
helix of TatA in the membrane would preserve the mem-
brane integrity, as was shown for the thylakoidal TatA [122].

As mentioned above, protein translocation via Tat is 
exclusively driven by the proton-motive force, which con-
sists of the ΔpH and the electric potential Δψ across the 
membrane [127]. Early studies into the energetics of Tat 
were performed in vitro with the plant thylakoid system. 
In the presence of light and a ΔpH, but in the absence 
of nucleotides, the photosystem II oxygen-evolving Tat 
cargo protein tOE23 was still exported [128]. In addition, 
a phage shock protein PspA, involved in maintaining the 
proton-motive force, was found to increase Tat transloca-
tion in bacteria [129]. However, in vivo studies in the green 
alga Chlamydomonas reinhardtii showed that the system can 
still transport proteins without a thylakoidal ΔpH, which 
can be explained by the fact that the Tat pathway can use 
both the ΔpH and Δψ [130, 131]. As a consequence of this 
equivalency, an antiporter mechanism was suggested where 
a coupling of H+ flow and protein transport has been sug-
gested [132]. Of note, the counterflow of protons neces-
sary for Tat protein export was estimated to amount about 
7.9 × 104 protons per molecule [133]. This is equivalent to 
10,000 ATP molecules, 3% of the energy produced by a 
chloroplast, so it is a considerable cost to the cell.

With regards to individual steps of the translocation mech-
anism, in vitro studies have shown that the proton-motive 
force is not required for protein targeting or protein binding to 
TatBC, but for the more advanced binding stages and oligom-
erisation of TatA [94, 134]. For thylakoids it was proposed 
that the ΔpH could potentially protonate TatA (Tha4) at the 
Glu10 residue, making it energetically feasible to move up 
in the membrane to its docking site in TatC (Gln234) [112]. 
However, in an earlier study this Glu10 residue was replaced 
with Gln, as well as with Ala or Asp, and all of these changes 
severely reduced the ability of TatA to facilitate protein trans-
port [135]. While this shows the importance of the Glu10 
residue and a negative charge at this position for transloca-
tion activity, it is not certain whether this implies a role of 
Glu10 in sensing the thylakoidal luminal pH through pro-
tonation, or whether Glu10 forms a salt bridge with a basic 
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residue somewhere else [135]. It is also still unclear how the 
assembly of TatA in E. coli is facilitated by the proton-motive 
force, as it has been shown through in vitro studies that the 
transport driving force is largely provided by the Δψ [136]. 
In fact, these studies indicate that two distinct Δψ-dependent 
steps drive protein transport: a first step would involve a ∆ψ 
of relatively high magnitude that may be short-lived, and a 
second step of longer duration would require a ∆ψ of rela-
tively low magnitude. When the ∆ψ was increased, so was the 
transport speed [94, 136]. This raises the question, how exactly 
the ∆ψ drives protein transport via Tat in E. coli and why this 
is apparently different in thylakoids, where the ΔpH repre-
sents the driving force for protein transport. A conceivable 
scenario is that movement of certain charged regions within 
the membrane-embedded E. coli Tat proteins could be induced 
by a ∆ψ, whereas this process would be induced by the ΔpH 
in the chloroplast thylakoidal membrane. Altogether, it is pres-
ently still unclear whether a potential across the membrane 
drives charge movements or whether proton transport by Tat 
takes place.

8 � Chaperoning of Tat Cargo Proteins

One of the major hallmarks of the Tat pathway is its ability 
to selectively transport fully folded cofactor-containing pro-
teins. To this end, the system involves different mechanisms. 
Translocation of particular cargo proteins requires the aid of 
dedicated chaperones, known as redox enzyme maturation 
proteins (REMPs) [137, 138]. An example of a Tat cargo 
protein involving a REMP for export is the oxidoreductase 
trimethylamine-N-oxide (TMAO) reductase (TorA; Fig. 1). 
This enzyme is encoded by the torCAD operon, where torA 
encodes the TMAO reductase, torC its haem-binding quinol 
oxidase and torD its REMP. In particular, TorD recognizes 
and binds the h- and c-regions of the TorA signal peptide 
most likely as a dimer [139–141]. Following signal peptide 
binding, TorD guides TorA export via Tat in a GTP-depend-
ent manner. In this scenario, the affinity of TorD for GTP 
increases upon signal peptide binding, and GTP presum-
ably controls cycles of signal peptide binding and release 
of TorD, thereby preventing premature protein degradation, 
coordinating cofactor assembly and foreseeing other matura-
tion steps, such as membrane targeting and interaction [139, 
140]. This coordination occurs until the pre-protein interacts 
with the Tat machinery.

9 � Proofreading of the Folding State of Tat 
Cargo

The proofreading exhibited by the E. coli and B. subtilis Tat 
pathways is highly stringent to ensure misfolded proteins 
are not exported. Thus, the Tat complex rejects and may 

sometimes even degrade cargo proteins within the cytosol, 
although such degradation may also occur independently 
of the Tat system [142–144]. To note, the thylakoidal Tat 
system seems to have a less stringent ‘proofreading’ system 
as unfolded proteins are also imported [37].

To explore mechanisms of Tat proofreading, particular 
attention has been attributed to cofactor insertion. The native 
E. coli Tat cargo proteins NrfC and NapG were mutated 
to prevent their central cofactor FeS binding. Indeed this 
alteration blocked export [143]. The B. subtilis Rieske iron-
sulphur cluster protein QcrA was also mutated to either stop 
cofactor binding or disulphide bond formation [145]. Here, 
a proofreading hierarchy was uncovered: mutant’s defec-
tive in disulphide bonding were quickly degraded, whereas 
those defective in cofactor binding accumulated in the cyto-
plasm and membrane. Two heme-binding proteins have also 
been investigated for proofreading. First, cytochrome C was 
shown to require heme insertion for export [146]. Subse-
quently, proofreading was investigated with the synthetic 
BT6 maquette protein, which binds two hemes and is Tat-
dependently secreted in E. coli when provided with a TorA 
signal peptide [147]. His residues in BT6 were replaced with 
Ala to prevent heme binding. This showed that export was 
completely blocked if heme binding was completely pre-
vented. Binding of one heme by BT6 allowed some export, 
whereas good export was observed when two hemes were 
bound [147]. Altogether, these findings suggest that Tat can 
somehow sense a protein’s conformational stability.

The requirement for conformational stability was fur-
ther studied in vivo and in vitro with non-native Tat cargo 
proteins, such as E. coli PhoA and scFv or Fab antibody 
fragments. Export of these proteins only occurred in oxidiz-
ing conditions allowing disulphide bond formation prior to 
their interaction with the Tat machinery [40]. Nevertheless, 
some proteins provided with a twin-arginine signal peptide, 
like human growth hormone (hGH), scFv’s and interferon 
α2b, were exported to the periplasm without their disulphide 
bonds formed [148]. For hGH it was shown that this protein 
can form a near native state in absence of its two disulphide 
bonds. This is reminiscent of observations on the CueO pro-
tein of E. coli, which can still be exported via Tat without its 
bound copper cofactor. This probably relates to the fact that 
CueO without bound copper is structurally close to identical 
to CueO with bound copper [149].

Several studies in both bacteria and plants have used 
varying lengths of FG repeats from the yeast nuclear pore 
protein Nsp1p to probe the structural constraints for Tat-
dependent export. These repeats intrinsically lack structure 
and are hydrophilic. Fused to a Tat signal peptide, export 
studies demonstrated that with increasing protein length, 
the translocation efficiency decreased: segments of 100–120 
amino acids were tolerated, but a short hydrophobic stretch 
stopped export [150, 151]. Unstructured linkers were also 
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placed between the signal peptide and the N-terminus of 
a mature Tat cargo protein and, surprisingly, an unstruc-
tured linker length of 110 amino acids was exported [152]. 
These findings imply that, despite the generally strict fold-
ing requirement for Tat cargo proteins, short unstructured 
polypeptide regions can be tolerated in particular protein 
contexts.

A recent study used scFv mutants [153], which were 
structurally defined, to identify what the E. coli Tat machin-
ery recognizes as ‘unfolded’ and rejects for export [154]. Tat 
tolerated significant changes in hydrophobicity and charge, 
but did not export the scFv with an unstructured tail or with-
out cytoplasmic disulphide bond formation via the so-called 
CyDisCo system. CyDisCo comprises the yeast mitochon-
drial thiol oxidase Erv1p plus the human protein disulfide 
isomerase PDI that, together, confer the ability to catalyse 
cytoplasmic disulphide bond formation.

Since it is still unclear what exactly the Tat complex 
rejects as misfolded, a key question is how the Tat complex 
rejects certain proteins. Tat proteins, misfolded or not, both 
interact with the Tat translocase. For example the PhoA pro-
tein provided with a twin-arginine signal peptide has been 
co-purified with TatBC [41]. This gave rise to the idea Tat 
does not innately have an inbuilt ‘proofreading’ mechanism, 
but rather an efficient degradation system that clears the 
Tat translocase. Indeed, the B. subtilis protease WprA was 
shown to interact directly with the Tat machinery and to be 
essential for protein secretion via TatAyCy [155, 156].

Lastly, in vitro site-specific photo cross-linking experi-
ments revealed that unfolded TorA-PhoA associated with 
the Tat translocase, and that the interaction with the TatBC 
receptor site was perturbed as if the cargo was not correctly 
inserted into the binding socket [157]. This invoked the 
TatBC complex in proofreading of the cargo protein. This 
view is consistent with the identification of so-called quality 
control suppression (QCS) mutations within E. coli TatABC, 
which gave rise to less stringent proofreading [158]. The 
majority of these QCS mutations were confined to the 
unstructured or loop regions of TatABC, showing that proof-
reading at some level is undertaken by the Tat translocon.

10 � Conclusion

In recent years, the core components of the Tat protein trans-
location systems have been identified, biochemically char-
acterized and structurally defined. Yet, the precise mecha-
nism by which Tat translocates proteins across the bacterial 
cytoplasmic membrane is still elusive due to the fact that 
high-resolution structural data of protein-translocating Tat 
complexes is currently missing. It can be anticipated that 
with the advent of novel high-resolution techniques for 
structural analyses of large protein complexes many of the 

so far unanswered fundamental questions in the Tat field can 
be tackled and answered.
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