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Summary statement 

Fbxo7 is the substrate-recognition subunit of an SCF-type ubiquitin E3 ligase complex. It has 

physiologically important functions in regulating mitophagy, proteasome activity and the cell 

cycle in multiple cell types, like neurons, lymphocytes and erythrocytes. Here we show that 

in addition to the previously-known Parkinsonian and haematopoietic phenotypes, Fbxo7-

deficient male mice are completely sterile. In these males, despite successful meiosis, 

nuclear elongation and eviction of histones from chromatin, the developing spermatids are 

phagocytosed by Sertoli cells during late spermiogenesis, as the cells undergo cytoplasmic 

remodelling. Surprisingly, despite the loss of all germ cells, there was no evidence of the 

symplast formation and cell sloughing that is typically associated with spermatid death in 

other mouse sterility models, suggesting that novel cell death and/or cell disposal 

mechanisms may be engaged in Fbxo7-deficient males. Mutation of the Drosophila Fbxo7 

orthologue, nutcracker (ntc) was previously shown to cause sterility at a similar stage of 

germ cell development, indicating that the requirement for Fbxo7 is conserved. 

The ntc phenotype was attributed to proteasome mis-regulation via an interaction with the 

proteasome regulator, DmPI31. Our data suggest rather that in mice, the requirement for 

Fbxo7 is either independent of its interaction with PI31, or relates specifically to cytoplasmic 

proteasome activity during spermiogenesis.  
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Introduction 

Developing male germ cells progress through a proliferative phase (spermatogonia), 

a meiotic phase (spermatocytes), and a spermiogenic phase (spermatids), following which 

spermatozoa are released through the lumen of the seminiferous tubules into the 

epididymis, where they undergo further maturation and acquire motility. Defects at any of 

these stages lead to various forms of impaired male fertility, including low sperm count 

(oligozoospermia), abnormal sperm shape or size (teratozoospermia), impaired sperm 

motility (asthenozoospermia), abnormal nuclear chromatin compaction and poor 

fertilisation capacity (Hess and Renato, 2008; Hecht, 1995; Jamsai and O'Bryan, 2011; Curi et 

al., 2003; Rathke et al., 2014).  During spermiogenesis, round haploid spermatids undergo 

terminal differentiation to form spermatozoa, developing specialised organelles – the 

acrosome and flagellum – necessary for fertility and motility, respectively. This involves a 

dramatic morphological transformation, including nuclear compaction via the eviction of 

histones and their replacement with protamines, and elimination of the bulk cytoplasmic 

content of the developing cells. Both these changes serve to streamline the spermatozoa 

and improve their hydrodynamic properties to allow rapid progressive motility within the 

female reproductive tract. Until late spermiogenesis, spermatids remain connected by 

intercellular bridges, through which cytoplasmic constituents are shared among haploid 

spermatids (Ventela et al., 2003; Braun et al., 1989). Cytoplasmic shedding also removes 

these bridges and allows the individual sperm cells to separate in a process called 

individuation. 

The disposal of excess cytoplasmic contents, including mitochondria and other 

organelles, is critical to many aspects of late spermatid differentiation (Sakai and 
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Yamashina, 1989).  Key elements of this process are conserved. In mammalian 

spermatogenesis, cytoplasmic processes from the supporting Sertoli cells invade the 

spermatid cytoplasm during late elongation to form the “mixed body.” Concurrently, deep 

invaginations known as “crypts” form within the Sertoli cell cytoplasm. Active transport of 

the spermatids to the base of the crypts enables the development of extensive cell-cell 

contacts between the Sertoli and germ cells. As remodelling progresses, branches of the 

invading processes engulf and phagocytose portions of the spermatid cytoplasm, resulting in 

the loss of around 50% of spermatid cytoplasmic volume prior to spermiation. Finally, at 

spermiation, the spermatids are ejected from the crypts and actively transported back to 

the tubule lumen. There, they shed their remaining cytoplasm as residual bodies, which are 

then also phagocytosed by the Sertoli cells (Sakai and Yamashina, 1989; Kerr and de Kretser, 

1974; Russell et al., 1989). In Drosophila spermatogenesis, an actin-based individualization 

complex slides caudally along a group of 64 interconnected spermatids, promoting their 

separation and the removal of most of their cytoplasm and organelles into a membrane-

bound sack, the cystic bulge, eventually discarded as a waste bag – the equivalent of the 

mammalian residual body (Fabian and Brill, 2012). 

Processing of spermatid cytoplasm in preparation for phagocytosis by the Sertoli 

cells includes caspase activation (Blanco-Rodriguez and Martinez-Garcia, 1999; Arama et al., 

2003; Cagan, 2003) and the degradation of cellular components by specialized variants of 

the proteasome (Zhong and Belote, 2007; Qian et al., 2013; Bose et al., 2014). The 20S 

catalytic core of a proteasome is a barrel-shaped assembly, comprised of α and β subunits. 

Three of the β subunits, β1, β2 and β5, have peptidase activity, while access of substrates 

into the core is controlled by α subunits, which recruit proteasome activators (PAs). The 

constitutively expressed proteasome consists of a regulatory 19S ‘lid’ associated with a 20S 
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core particle (Voges et al., 1999; Bochtler et al., 1999), but in particular cell types or under 

stress conditions, alternate proteasome configurations come into play (Kniepert and 

Groettrup, 2014).  During spermatogenesis, an alternative α4-type proteasome subunit, 

α4s/PSMA8, a testis-specific subunit, replaces its 20S counterpart, which is thought to 

enable the recruitment of an alternate lid, PA200. PA200-capped proteasomes promote the 

degradation of acetylated histones, which enables their removal from DNA and replacement 

with protamines, for enhanced nuclear compaction into the spermatid head (Qian et al., 

2013; Gaucher et al., 2010). A second alternate proteasome, known as the 

immunoproteasome, is also expressed during spermiogenesis. It substitutes β-subunits, β1i, 

β2i and β5i, and has a different regulatory 11S lid (Qian et al., 2013). As sperm 

differentiation requires major cellular remodelling and volume reduction, these alternate 

proteasomes are thought to play crucial roles in fashioning this specialized cell form (Rathke 

et al., 2014; Zhong and Belote, 2007; Kniepert and Groettrup, 2014). 

In Drosophila, Nutcracker (ntc) protein is essential for spermatid individuation, and 

homozygous ntc mutant male flies are sterile. Spermatids deficient for ntc undergo 

apoptosis in late spermiogenesis at the point when individuation would normally occur. The 

spermatid apoptosis is associated with failure to form individuation complexes, failure to 

activate spermiogenesis-related caspases, and reduced proteasome activity in ntc-deficient 

testes. These defects have been ascribed to an interaction between ntc and proteasome 

binding protein PI31 (Bader et al., 2011; Bader et al., 2010; Arama et al., 2007). PI31 was 

discovered as an in vitro inhibitor of proteasome activity (Zaiss et al., 2002; McCutchen-

Maloney et al., 2000), which distinguished it from other proteasome regulators, like PA200, 

PA28, and 19S, which all activate the 20S proteasome.  However, within intact cells, PI31 

effects on proteasome activity remain unclear, with contrasting results being reported for 
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the Drosophila and mammalian PI31 proteins. In Drosophila, DmPI31 activation of the 26S 

proteasome is essential for sperm differentiation, and DmPI31 levels are greatly reduced in 

ntc mutant testes, indicating that DmPI31 requires a stabilizing interaction with ntc to 

achieve sufficiently high expression levels (Bader et al., 2011; Bader et al., 2010; Arama et 

al., 2007). However, while transgenic overexpression of DmPI31 in ntc mutant testes 

promoted caspase activation in germ cells, it failed to rescue the sterility phenotype (Bader 

et al., 2011). It is therefore unclear whether the sterility effects of ntc deficiency are 

mediated by the ntc / DmPI31 interaction. 

A mammalian orthologue of Nutcracker is Fbxo7, although there may be functional 

differences between them given the inability of human Fbxo7 to rescue the sterility of ntc 

flies (Burchell et al., 2013).  However, like DmPI31 and Nutcracker, mammalian PI31 and 

Fbxo7 heterodimerize via their FP domains (Shang et al., 2015; Kirk et al., 2008).  Studies in 

cultured mammalian cells indicate that PI31 has little effect on constitutive proteasome 

activity or assembly but instead acts as a selective inhibitor of the maturation of 

immunoproteasomes (Li et al., 2014; Zaiss et al., 1999). The lack of a pronounced effect on 

proteasome activity may indicate that PI31 functions in specific contexts and/or in spatially 

or temporally-restricted ways. The robust, conserved interactions of Fbxo7 and PI31 with 

each other and also with the proteasome suggest they have roles in regulating proteasome 

function. Fbxo7 is a multifunctional, F-box protein with distinct activities in different cell 

types. In human health Fbxo7 impacts on numerous pathologies, including Parkinson’s 

disease, cancer and anaemia (Ding et al., 2012; Ganesh et al., 2009; van der et al., 2012; 

Soranzo et al., 2009; Lomonosov et al., 2011; Paisan-Ruiz et al., 2010; Di Fonzo et al., 2009; 

Laman, 2006; Lohmann et al., 2015). At a molecular level, Fbxo7 functions as a receptor for 

SCF-type E3 ubiquitin ligases and also non-canonically, as a scaffolding chaperone for other 
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regulatory proteins.  Its effects are observable in NF-κB signalling, via cIAP and TRAF2 

interactions (Kuiken et al., 2012), and in cell cycle regulation via Cdk6 activation and p27 

stabilisation (Patel et al., 2016; Randle et al., 2015; Meziane et al., 2011; Laman, 2006).  

Fbxo7 has also been shown to interact with and ubiquitinate proteasome subunits, like 

PSMA2 (Teixeira et al., 2016; Vingill et al., 2016; Fabre et al., 2015; Bousquet-Dubouch et al., 

2009).   

We report here that, like ntc flies, male mice with a reduced expression of Fbxo7 are 

infertile. In these mice, developing spermatids are phagocytosed en masse by the Sertoli 

cells, beginning at the stage when they would normally start to shed their cytoplasm.  The 

very few sperm that escape phagocytosis and complete maturation have grossly aberrant 

morphology.  Thus, flies and mice both exhibit a catastrophic loss of germ cells at the onset 

of cytoplasmic remodelling. This is a novel form of spermatogenic failure unlike any other 

previously-described infertile mouse model. However, Fbxo7 mutant mice show only a slight 

reduction in PI31 levels and normal levels of constitutive proteasome activity in spermatids, 

indicating that in mouse the fertility effects of Fbxo7 mutation may be independent of its 

effect on PI31 and the proteasome.   
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Results 

Fbxo7
LacZ/LacZ

 mice are sterile due to azoospermia. 

In the course of our investigations into the physiological functions of mammalian 

Fbxo7, we generated mice that are either heterozygous or homozygous for an allele of 

Fbxo7 containing a LacZ insertion between exons 3 and 4 of Fbxo7 (Patel et al., 2016; Randle 

et al., 2015).  This insertion severely disrupts expression of all Fbxo7 isoforms but does not 

completely abolish it (Randle et al., 2015), and thus the phenotype(s) of the hetero- and 

homozygous animals can respectively be ascribed to moderate or severe under-expression 

of Fbxo7. In maintaining the colony of LacZ-transgenic animals, we observed that 

homozygous Fbxo7
LacZ/LacZ

 males never sired any offspring, while heterozygous males and all 

genotypes of female were able to produce litters. In heterozygous crosses, there was a mild 

deficit of homozygous offspring (Figure 1A), suggestive of a small degree of embryonic 

lethality in this genotype. 

Initial characterisation showed a significant reduction in mean testis weight for the 

Fbxo7
LacZ/LacZ

 compared to heterozygous and WT males (92.4 mg vs 108.2 and 107.7 mg; 

Figure 1B), indicative of abnormal testis development. Strikingly, there were virtually no 

mature sperm in the lumen of the epididymis of the Fbxo7
LacZ/LacZ

 males (Figure 1C-F), 

demonstrating that these males are sterile due to azoospermia. A very few residual sperm 

were retrieved from dissected epididymides of Fbxo7
LacZ/LacZ

 males, with a total yield of 

fewer than 1,000 cells per cauda epididymis, compared to a normal count of around 10
8 

sperm cells per cauda. The residual sperm were all grossly misshapen, and a high proportion 

of cells showed abnormal compression of the rear of the sperm head.  Heterozygous 

Fbxo7
LacZ/+ 

males also showed a slight increase in the frequency of abnormally shaped 
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sperm, with the most severely deformed sperm resembling the homozygous phenotype 

(Figure 1G). Using a newly-developed image analysis programme for sperm morphometry

(Skinner et al., 2019), we determined that the remaining sperm from Fbxo7

showed an average 14% reduction in cross

variability (Supplementary Figures 1,

 

Figure 1.  Male mice deficient for Fbxo7 are sterile. 

A: Colony data showing the genotypes of animals (n=481) born from matings

heterozygous parents. All three potential genotypes are observed in the offspring, but the 

proportion of homozygous Fbxo7

goodness-of fit test p= 0.007 vs Mendelian 1:2:1 expectation). 

each genotype (n=6; WT and homozygous; n=4, heterozygous LacZ

= 0.001067)). C: Wild type cauda epididymis showing large numbers of stored sperm. 

Fbxo7
LacZ/LacZ

 cauda epididymis showing very few degeneratin

zoom of sections C/D. Dotted line indicates the border of the tubule lumen in each view.

Montage of DAPI-stained sperm 

present (see also Supplementary Figure 1

DNA content as measured by propidium iodide staining (note that highly condensed 

spermatids and mature sperm were not quantitated).

9 

sperm, with the most severely deformed sperm resembling the homozygous phenotype 

developed image analysis programme for sperm morphometry

determined that the remaining sperm from Fbxo7

reduction in cross-sectional area, with high morphological 

(Supplementary Figures 1, 2). 

Male mice deficient for Fbxo7 are sterile.  

Colony data showing the genotypes of animals (n=481) born from matings

heterozygous parents. All three potential genotypes are observed in the offspring, but the 

proportion of homozygous Fbxo7
LacZ/LacZ

 offspring is lower than expected (*** chi

of fit test p= 0.007 vs Mendelian 1:2:1 expectation). B: Average testis weight for 

each genotype (n=6; WT and homozygous; n=4, heterozygous LacZ; One-

Wild type cauda epididymis showing large numbers of stored sperm. 

cauda epididymis showing very few degenerating sperm. E/F:

Dotted line indicates the border of the tubule lumen in each view.

stained sperm nuclei showing the spectrum of sperm morphologies 

Supplementary Figure 1). H: FACS quantitation of testis cells according to 

DNA content as measured by propidium iodide staining (note that highly condensed 

spermatids and mature sperm were not quantitated). 

 

 

sperm, with the most severely deformed sperm resembling the homozygous phenotype 

developed image analysis programme for sperm morphometry 

determined that the remaining sperm from Fbxo7
LacZ/LacZ

 males 

with high morphological 

 

Colony data showing the genotypes of animals (n=481) born from matings between 

heterozygous parents. All three potential genotypes are observed in the offspring, but the 

offspring is lower than expected (*** chi-squared 

Average testis weight for 

-way ANOVA, *** p 

Wild type cauda epididymis showing large numbers of stored sperm. D: 

E/F: High resolution 

Dotted line indicates the border of the tubule lumen in each view. G: 

showing the spectrum of sperm morphologies 

ntitation of testis cells according to 

DNA content as measured by propidium iodide staining (note that highly condensed 
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Developing Fbxo7
LacZ/LacZ

 spermatids are lost during late spermiogenesis. 

The relatively small magnitude of the change in testis weight suggested that any 

germ cell abnormality was likely to only affect later stages of germ cell development. To 

characterise the stage of germ cell loss in Fbxo7
LacZ/LacZ

 males, we carried out an initial 

assessment by FACS to see if there was any gross defect in meiotic progression (Figure 1H).  

There was no significant alteration in the ratio of cells containing 1C, 2C or 4C DNA content, 

respectively representing haploid round spermatids, spermatogonia and primary 

spermatocytes, indicating no cell loss prior to the onset of spermatid elongation. Elongating 

and condensing spermatids/spermatozoa often appear as lower than 1C DNA content in 

FACS staining, but cannot be reliably quantified due to their high variability in staining 

parameters (Simard et al., 2015).  

Histological examination of adult testes using hematoxylin and eosin staining (H&E) 

showed limited gross changes in testis structure (Figure 2, Supplementary Figure 2). In both 

Fbxo7
LacZ/LacZ

 males and wild type (WT) males, pre-meiotic, meiotic and post-meiotic stages 

of germ cell development were all present in the testis parenchyma (Figure 2 A,B). 

However, in Fbxo7
LacZ/LacZ 

testes, very few tubules showed sperm heads adjacent to the 

lumen (Figure 2 B,C), suggesting that germ cells are lost prior to spermiation. Instead, testes 

from these males contained tubules with no (or virtually no) elongating cells, but where the 

first layer of spermatids were still round. These are tubules in the first half of the 

seminiferous cycle but where the late elongating cells have been lost. In these tubules, 

sperm heads were observed lying deep within the Sertoli cell cytoplasm near to the 

basement membrane, often in quite dramatic “graveyards” containing multiple cells in 

advanced stages of karyolysis (Figure 2D-F). Strikingly, however, we did not observe any 
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formation of multinucleate symplasts

(note also the lack of sloughed cells in the epididiymis in 

 

Figure 2. Massive loss of maturing sperm in Fbxo7 mutant males. 

A-B: Low magnification view of 

* in panel A indicates a tubule at stage VII

awaiting release.  These were never observed in 

tubules with a layer of round spermatids but which lack elongating spermatids. 

magnification view of a Fbxo7

zoom from panel C at the indicated locations. The dotted outlines

containing multiple phagocytosed spermatid heads

Fbxo7
LacZ/LacZ

 tubules for LAMP2 (green) with PNA

11 

tion of multinucleate symplasts or any sloughing of degenerating cells into the lumen 

(note also the lack of sloughed cells in the epididiymis in Figure 1F). 

Massive loss of maturing sperm in Fbxo7 mutant males.  

magnification view of H&E sections from wild type (A) and Fbxo7

indicates a tubule at stage VII-VIII with sperm heads lined up at the lumen 

awaiting release.  These were never observed in Fbxo7
LacZ/LacZ

 testes. ** in panel

tubules with a layer of round spermatids but which lack elongating spermatids. 

Fbxo7
LacZ/LacZ

 tubule lacking elongating spermatids: 

zoom from panel C at the indicated locations. The dotted outlines indicate 

containing multiple phagocytosed spermatid heads. G-I: Immunofluorescent stain

LAMP2 (green) with PNA-lectin (red) to stage the tubules and DAPI 

sloughing of degenerating cells into the lumen 

 

Fbxo7
LacZ/LacZ

 testes (B). 

VIII with sperm heads lined up at the lumen 

in panel B indicates 

tubules with a layer of round spermatids but which lack elongating spermatids. C: High 

lacking elongating spermatids: D-F: Close up 

indicate “graveyards” 

Immunofluorescent stains in 

lectin (red) to stage the tubules and DAPI 
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counterstain (grey).  Phagocytosed cells marked by LAMP2 were visible at tubule stage VI as 

indicated by the extent of the lectin-stained acrosomal cap.  J-L: Immunofluorescent stains 

in Fbxo7
LacZ/LacZ

 tubules for CASP2 (green) with PNA-lectin (red) to stage the tubules and 

DAPI counterstain (grey).  Apoptotic cells marked by CASP2 were visible at tubule stage VI as 

indicated by the extent of the lectin-stained acrosomal cap.  At tubule stage IV (L), 

occasional mis-localised elongating spermatids were seen next to the basement membrane.  

These cells were not marked with CASP2 at this stage. For quantitation of spermatid mis-

localisation, see Figure 3. 

 

 

“Graveyards” of phagocytosed Fbxo7
LacZ/LacZ condensing spermatids at tubule stage VI are 

positive for caspase-2. 

Since the normal fate of arrested germ cells is apoptosis followed by either 

phagocytosis or cell sloughing, we used fluorescent immunohistochemical staining for 

caspase-2 and LAMP2 (Lysosome-associated membrane protein 2) to trace these processes. 

Caspase 2 is an apical caspase implicated in stress-mediated germ cell death (Johnson et al., 

2008; Lysiak et al., 2007; Zheng et al., 2006), while LAMP2 labels late stage phagolysosomes. 

In this experiment, we also used fluorescently labelled peanut agglutinin (PNA) to label the 

acrosomes, allowing for more detailed tubule staging (Figure 2 G-K). This showed that the 

cells in the “graveyards” were most prominent at tubule stage VI, and were positive for both 

LAMP2 and caspase-2. Lower-level caspase-2 staining was sometimes visible at this stage in 

spermatids located further from the basement membrane.  We hypothesize these latter 

cells to be in the process of engulfment. The few remaining condensing spermatids near the 

lumen were still caspase-2 negative. Thus, the spermatids in the “graveyards” are apoptotic 

cells that have been phagocytosed by the Sertoli cells. Immunohistochemical staining for 

caspase-3 gave negative results in both genotypes (data not shown). Activation of apical 

caspases independently of effector caspases is a known alternative cell death pathway in 
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Drosophila germ cells, but has not yet to our knowledge been described in mammalian germ 

cells (Yacobi-Sharon et al., 2013).  

In this experiment, we also noted occasional spermatids at earlier tubule stages (e.g. 

stage IV, Figure 2L) that appeared to be mis-localised, appearing next to the basement 

membrane, outside the peripheral ring of meiotic spermatocytes. Sperm heads are 

generally not seen in this location unless they have been phagocytosed, however these cells 

were generally negative for both caspase-2 and LAMP2, indicating that they were not yet 

apoptotic. Since LAMP2 only labels later stages of phagocytosis, we cannot exclude the 

possibility that these cells were in early stages of phagocytosis, and that phagocytosis in this 

model may precede the induction of apoptosis.  

 

Aberrant localisation of Fbxo7
LacZ/LacZ 

condensing spermatids initiates at the onset of 

cytoplasmic remodelling, from stages I-II onwards. 

We used periodic acid/Schiff/Hematoxylin (PAS-H) staging to quantify the onset of 

aberrant localisation of the condensing spermatids in the Fbxo7
LacZ/LacZ 

testes (Figure 3 A-H). 

Here, the PAS staining labels the acrosome, allowing detection of spermatid location and 

staging. Only very light hematoxylin counterstaining was used to avoid obscuring the PAS 

signal. For maximal sensitivity in detecting the earliest stages of disorganisation of the 

seminiferous epithelium, we scored any tubule with even a single spermatid observed at the 

basement membrane (i.e. appearing to be outside the Sertoli cell tight junctions) as positive.  

We observed that mis-localisation of late stage spermatids in the Fbxo7
LacZ/LacZ 

testes 

initiated as early as spermatid step 13-14 (tubule stage I-II), with the proportion of affected 

tubules apparently peaking at spermatid step 15 (tubule stage IV). From tubule stage VI 

onwards the phagocytosed spermatid heads were barely visible by PAS-H, most likely due to 
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digestion of the epitopes detected by the PAS stain, and thus the apparent drop

stage IV is a technical artefact (note that the dead cells at this stage remain visible via H&E 

and immunostaining: see Figures 1&2).

the mislocalised cells prior to stage VI were LAMP2 and CASP2

phagocytosed cells at stages VI

experiments thus probe differ

apoptosis.  Complete data from the 

Table 2. 

Figure 3. Immunochemical staining of caspase 2 and LAMP2 in 

A-G:  PAS-H staining of Fbxo7

mislocalisation.  PAS marks the developing acrosome in purple, allowing

of the mislocalised elongating spermatids and also

magnification view indicating general testis architecture. (

14 

digestion of the epitopes detected by the PAS stain, and thus the apparent drop

stage IV is a technical artefact (note that the dead cells at this stage remain visible via H&E 

gures 1&2). This contrasts with the immunostaining data where 

the mislocalised cells prior to stage VI were LAMP2 and CASP2-negative, but the 

phagocytosed cells at stages VI-VIII were strongly LAMP2 and CASP2 positive. The two 

experiments thus probe different aspects of the phenotype: mislocalisation followed by 

Complete data from the PAS-H cell counting are supplied as 

Figure 3. Immunochemical staining of caspase 2 and LAMP2 in Fbxo7
LacZ/LacZ

Fbxo7
LacZ/LacZ

 testis sections used to quantitate spermatid 

mislocalisation.  PAS marks the developing acrosome in purple, allowing 

of the mislocalised elongating spermatids and also tubule staging. (

magnification view indicating general testis architecture. (B,D,F) show complete tubules at 

digestion of the epitopes detected by the PAS stain, and thus the apparent drop-off after 

stage IV is a technical artefact (note that the dead cells at this stage remain visible via H&E 

This contrasts with the immunostaining data where 

negative, but the 

VIII were strongly LAMP2 and CASP2 positive. The two 

ent aspects of the phenotype: mislocalisation followed by 

cell counting are supplied as Supplementary 

 

LacZ/LacZ
 testis sections. 

used to quantitate spermatid 

 both identification 

tubule staging. (A) shows a low 

) show complete tubules at 
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stage II, IV and VI respectively, and white arrowheads indicate mislocalised elongating 

spermatids apposed to the basement membrane of the tubules – these are rarely visible at 

stage VI. (C, E, G) show high magnification images at tubule stages II, IV and VI. Dotted 

outlines highlight mislocalised elongating spermatids, while shaded arrowheads indicate the 

developing acrosomes in the round spermatid layer, used to stage the tubules. Mislocalised 

spermatids were readily detected up to stage IV. After stage IV, the mislocalised cells were 

still present but began to lose their PAS staining were thus harder to detect. (G) inset shows 

a rare example of a mislocalised cell remaining visible by PAS staining at stage VI.  (H) 

Proportion of tubules containing at least one mis-localised cell at each tubule stage in wild 

type and Fbxo7LacZ/LacZ testes. Error bars indicate standard deviation across replicates 

(n=3 animals per genotype). 

 

PI31 expression is reduced in Fbxo7
LacZ/LacZ

 testes, but proteasome activity is unaltered  

The basis for sterility in ntc-deficient fruit flies is proposed to be the loss of a 

stabilizing interaction with DmPI31, leading to reduced proteasome activity (Bader et al., 

2011).  To address whether this relationship is conserved in spermatogenesis in mice, we 

tested the expression of Fbxo7 and PI31 in lysates made from testes of mature males 

(Figure 4A-C).  As expected, the presence of the Fbxo7
LacZ 

allele caused dose-dependent 

decreases in Fbxo7 expression, as seen by both Western blot and qRT-PCR.  We note that 

for homozygous Fbxo7
LacZ/LacZ 

mice, expression of both mRNA and protein for Fbxo7 was 

reduced by ~94%.  PI31 protein levels were significantly reduced by 30% in Fbxo7
LacZ/LacZ

 

testes, while a similar reduction in mRNA levels (23%) was not statistically significant.   

To test whether the observed reduction in PI31 levels led to decreases in 

proteasome activity, we conducted proteasome activity assays on whole testes from WT, 

heterozygous and homozygous Fbxo7
LacZ/LacZ 

males.  However, no reduction in proteasome 

activity was detected (Figure 4D). Consistent with these data, we observed no changes in 

the levels of proteasome subunits among the different WT and mutant testes by Western 

blot analysis (Figure 4A). Attempts to conduct similar proteasome activity assays on 

elutriated cell populations were inconclusive due to the poor recovery of later stage 
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spermatids from mutant testes (data not shown).

alterations in the overall levels of proteasome activity in Fbxo7 deficient testes. 

Figure 4. Decreased PI31 levels but normal proteasome activity in

A: Immunoblot analysis for various proteins in whole testes lysates from WT, heterozygous, 

and homozygous LacZ mice, as indicated. NS = non

Quantification of Fbxo7 expression from immunoblots (relative to GADPH loading control

grey bars) and qPCR relative to three housekeeping genes (cyclophilin, GAPDH, and actin

black bars).  Images were analyzed in ImageJ. 

immunoblots (relative to GADPH loading control

to three housekeeping genes (cyclophilin, GAPDH, and actin

analyzed in ImageJ. D: Proteasome activi

genotype.  Treatment with MG132 abolished the signal, confirming the specificity of the 

assay. E: Immunoblot analysis for Fbxo7 and PI31 protein in whole testes lysates from mice 

harvested at the indicated days 

 

 

16 

spermatids from mutant testes (data not shown).  These data indicated there were no major 

alterations in the overall levels of proteasome activity in Fbxo7 deficient testes. 

Decreased PI31 levels but normal proteasome activity in Fbxo7
LacZ/LacZ

Immunoblot analysis for various proteins in whole testes lysates from WT, heterozygous, 

and homozygous LacZ mice, as indicated. NS = non-specific band in Fbxo7 Western blot. 

Quantification of Fbxo7 expression from immunoblots (relative to GADPH loading control

qPCR relative to three housekeeping genes (cyclophilin, GAPDH, and actin

).  Images were analyzed in ImageJ. C: Quantification of PI31 expression from 

immunoblots (relative to GADPH loading control; grey bars) and qPCR of Psmf1

to three housekeeping genes (cyclophilin, GAPDH, and actin; black bars

Proteasome activity measured in whole testis extract for each 

genotype.  Treatment with MG132 abolished the signal, confirming the specificity of the 

: Immunoblot analysis for Fbxo7 and PI31 protein in whole testes lysates from mice 

harvested at the indicated days postpartum (p).  

These data indicated there were no major 

alterations in the overall levels of proteasome activity in Fbxo7 deficient testes.  

 

LacZ/LacZ
 testis.  

Immunoblot analysis for various proteins in whole testes lysates from WT, heterozygous, 

nd in Fbxo7 Western blot. B: 

Quantification of Fbxo7 expression from immunoblots (relative to GADPH loading control; 

qPCR relative to three housekeeping genes (cyclophilin, GAPDH, and actin; 

Quantification of PI31 expression from 

Psmf1/PI31 relative 

; black bars).  Images were 

ty measured in whole testis extract for each 

genotype.  Treatment with MG132 abolished the signal, confirming the specificity of the 

: Immunoblot analysis for Fbxo7 and PI31 protein in whole testes lysates from mice 
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Spermatoproteasome localisation and histone removal from spermatid chromatin are 

unaltered in Fbxo7
LacZ/LacZ

 testes  

Although spermatoproteasome activity cannot be directly assayed independently of 

total proteasome activity, the spermatoproteasome has a key role in histone degradation 

during nuclear elongation (Kniepert and Groettrup, 2014). We therefore considered 

whether the developmental and spatial distribution of Fbxo7 and/or PI31 are consistent 

with a role in this process. In developing wild type testes, both Fbxo7 and PI31 were weakly 

detected at all ages by Western blot, indicating widespread low-level expression in the 

testis. Both, however, also showed strong upregulation between postnatal day 15 and day 

21, concurrent with the first appearance of haploid spermatids in the testis (Figure 4E). PI31 

was further upregulated between d21 and adult testes, consistent with increased 

expression in later stage elongating/condensing spermatids. Unfortunately, the available 

Fbxo7 antibodies do not work for immunohistochemical (IHC) staining in mouse testes. In 

wild type testes, PI31 was present in the cytoplasm of most cell types, becoming 

significantly stronger in the cytoplasm of late condensing spermatids from stage V onwards 

and being retained into the residual bodies shed at stage VIII. In addition to the stage-

specific cytoplasmic signal, PI31 also showed nuclear staining specifically in wild type 

elongating spermatids from stages IX through to XII (Figure 5). Thus, there is the potential 

for Fbxo7 and/or PI31 to regulate the spermatoproteasome during spermatid nuclear 

remodelling.  

We therefore stained WT and mutant testes for LMP7, a component of the 

immunoproteasome and spermatoproteasome which is not present in normal proteasomes, 

to determine whether this was altered by Fbxo7 deficiency (Figure 6 A), and for histone H3 

to determine whether the dynamics of histone removal was perturbed in the knockout 
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males (Figure 6 B). This showed no alteration in spermatoproteasome

mutant, with nuclear LMP signal being specific to stage IX

There was also no delay in histone removal in the mutant, with all histone H3 signal being 

removed from the nucleus by the end of stage 

Taken together with the overall proteasome assay data shown above, we conclude that 

both spermatoproteasome and normal proteasome activity are unaffected by Fbxo7 

deficiency in mouse testes. 

Figure 5. Immunochemical staining of PI31 localisation in wild type testes. 

Roman numerals indicate tubule stage. PI31 signal is cytoplasmic in Spc / M / RB / L but 

nuclear in ES and early CS. Key: 

condensing spermatid, M = mature or late condensing spermatid, 

Leydig cell, S = Sertoli cell, F = flagellum of mature sperm. 
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). This showed no alteration in spermatoproteasome 

mutant, with nuclear LMP signal being specific to stage IX-XII spermatids in both genotypes. 

There was also no delay in histone removal in the mutant, with all histone H3 signal being 

removed from the nucleus by the end of stage XII in both wild type and Fbxo7

Taken together with the overall proteasome assay data shown above, we conclude that 

both spermatoproteasome and normal proteasome activity are unaffected by Fbxo7 

Immunochemical staining of PI31 localisation in wild type testes. 

Roman numerals indicate tubule stage. PI31 signal is cytoplasmic in Spc / M / RB / L but 

nuclear in ES and early CS. Key: SpC = spermatocyte, ES = elongating spe

= mature or late condensing spermatid, RB = residual body, 

= flagellum of mature sperm.  

 localisation in the 

XII spermatids in both genotypes. 

There was also no delay in histone removal in the mutant, with all histone H3 signal being 

both wild type and Fbxo7
LacZ/LacZ

 testes. 

Taken together with the overall proteasome assay data shown above, we conclude that 

both spermatoproteasome and normal proteasome activity are unaffected by Fbxo7 

 

Immunochemical staining of PI31 localisation in wild type testes.  

Roman numerals indicate tubule stage. PI31 signal is cytoplasmic in Spc / M / RB / L but 

= elongating spermatid, CS = early 

= residual body, L = 
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Figure 6. Immunochemical staining of 

A: Immunochemical staining of LMP7 (FITC, green) in wild type and Fbxo7

DAPI (blue) nuclear counterstain.  Roman numerals indicate tubule stage. In both 

genotypes, nuclear LMP7 expression i

begin to elongate. This nuclear expression is highest at stage X, and then is lost during stage 

XI-XII as nuclei complete elongation. 

in wild type and Fbxo7
LacZ/LacZ 

tubule shown is in transition between stages, with early stage XII (DS next to ESp) at upper 

left, mid stage XII (SS next to ESp) at lower left and stage XII/I border (M and RS next to ESp) 

at lower right. Nuclear H3 signal in ESp is still present at early stage XII, is restricted to the 

posterior of the nucleus in mid stage XII, and entirely lost by stage I.  The Fbxo7

19 

Immunochemical staining of LMP7 and histone H3 in Fbxo7
LacZ/LacZ

Immunochemical staining of LMP7 (FITC, green) in wild type and Fbxo7

DAPI (blue) nuclear counterstain.  Roman numerals indicate tubule stage. In both 

genotypes, nuclear LMP7 expression is first seen in early ES at mid-stage

begin to elongate. This nuclear expression is highest at stage X, and then is lost during stage 

XII as nuclei complete elongation. B: Immunochemical staining of histone H3 (FITC, green) 
LacZ/LacZ 

testes with DAPI (blue) nuclear counterstain.  The wild type 

tubule shown is in transition between stages, with early stage XII (DS next to ESp) at upper 

left, mid stage XII (SS next to ESp) at lower left and stage XII/I border (M and RS next to ESp) 

r H3 signal in ESp is still present at early stage XII, is restricted to the 

posterior of the nucleus in mid stage XII, and entirely lost by stage I.  The Fbxo7

 
LacZ/LacZ

 testis sections 

Immunochemical staining of LMP7 (FITC, green) in wild type and Fbxo7
LacZ/LacZ 

testes with 

DAPI (blue) nuclear counterstain.  Roman numerals indicate tubule stage. In both 

stage IX as the nuclei 

begin to elongate. This nuclear expression is highest at stage X, and then is lost during stage 

Immunochemical staining of histone H3 (FITC, green) 

(blue) nuclear counterstain.  The wild type 

tubule shown is in transition between stages, with early stage XII (DS next to ESp) at upper 

left, mid stage XII (SS next to ESp) at lower left and stage XII/I border (M and RS next to ESp) 

r H3 signal in ESp is still present at early stage XII, is restricted to the 

posterior of the nucleus in mid stage XII, and entirely lost by stage I.  The Fbxo7
LacZ/LacZ 

tubule 
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shown is in mid stage XII, and the H3 signal in the ESp is absent or restricted to the posterior 

extremity of the nucleus, confirming the kinetics and spatial pattern of H3 removal are 

indistinguishable between genotypes. Key: DS = diplotene spermatocytes, SS = secondary 

spermatocytes, M = metaphase figures, RSp = round spermatids, ESp = elongating 

spermatids. 
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Discussion 

The mammalian phenotype associated with Fbxo7 deficiency. 

Spermiogenesis is a multi-step process that transforms morphologically simple round 

spermatids into highly-specialised mature sperm. It occurs in four successive phases, 

namely; a) nuclear elongation and replacement of histones by transition proteins in tubule 

stages IX to XII, spermatid step 9-12), b) protamination of sperm chromatin and cytoplasmic 

reduction by ~50% in tubule stages I to VI,  spermatid steps 13-15, c) migration of the 

mature spermatids to the tubule lumen in tubule stage VII,  spermatid early step 16, d) 

spermiation, the release of fully-formed sperm at tubule stage VIII,  spermatid late step 16. 

In Fbxo7
LacZ/LacZ

 males, we observe a peculiar and very specific phenotype consisting of mass 

phagocytosis of condensing spermatids, occurring after nuclear elongation and prior to 

migration of spermatids back to the tubule lumen. This coincides with the cytoplasmic 

remodelling of the spermatids during steps 13-15, equivalent to the individuation stage of 

Drosophila sperm development.  The requirement for Fbxo7 at this stage thus appears to be 

strictly conserved from fruit flies to mammals. 

The nature of the sterility phenotype in Fbxo7
LacZ/LacZ

 males is to our knowledge 

unprecedented in a mammalian system. Various null mutants with defects in cytoplasmic 

remodelling have previously been described, including Sept4, Spem1, Capza3, and Ube2j1 

mutants. These all show either no phagocytosis or only limited phagocytosis of elongating 

spermatids during the first half of the cycle, followed by spermiation failure and spermatid 

retention at the lumen into stage IX and beyond (Kissel et al., 2005; Zheng et al., 2007; 

Geyer et al., 2009; Koenig et al., 2014). Further mutants have been described that shows a 

step 13 block to spermatid development without defects in cytoplasmic remodelling, 
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including the Bclw and Brd7 null mutants. In these mice, the arrested step 13 spermatids 

degenerate while still near the tubule lumen, followed by phagocytosis of large symplasts 

and other cell debris (Russell et al., 2001; Wang et al., 2016). In stark contrast to both of the 

above types of mutant, the Fbxo7
LacZ/LacZ

 males showed complete phagocytosis of all 

developing spermatids with no detectable symplast formation, sloughing of degenerating 

cells into the lumen, or spermiation failure.  

 

How are the germ cells eliminated in Fbxo7
LacZ/LacZ

 testes? 

In Fbxo7
LacZ/LacZ

 testes, mis-localised condensing spermatids are visible by PAS-H 

staining at the basement membrane from tubule stage ~I-II onwards, and by stage IV almost 

100% of tubules have mis-localised cells. At these early stages, however, mis-localised 

spermatids are negative for caspase-2 and LAMP-2, and retain their acrosomes (i.e. they are 

stainable by PAS), suggesting that they are not yet apoptotic and/or that phagocytic 

degradation has not yet initiated. By stage VI, however, the cells have lost their normal 

orientation, become positive for caspase 2 and LAMP-2, and karyolysis has initiated.   

One possible scenario is that the early stages of mis-localisation represent an 

abnormal deepening of the Sertoli cell crypts in mutant testes, and that the condensing 

spermatids have not yet been phagocytosed at this point. The trafficking of spermatids into 

and out of Sertoli cell crypts is governed by dynein-coupled motion of a specialised 

adherens junction complex between germ cell and Sertoli cell, known as the apical 

ectoplasmic specialisation (AES). If the AES is dissolved prematurely, the Sertoli cell may be 

unable to eject the spermatids from the crypts, leading ultimately to their death and 

phagocytosis. 
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 An alternative scenario is that the phagocytosis initiates at stage I-II due to defects 

in germ cell remodelling, but that the engulfed cells remain alive and non-apoptotic for a 

short period after being phagocytosed. That is, the developing spermatids are “eaten alive” 

some time before finally dying. In this case, this would represent death by primary 

phagocytosis or “phagoptosis”, a relatively newly-identified manner of cell elimination 

(Brown and Neher, 2012). Phagoptosis of elongating spermatids in Fbxo7
LacZ/LacZ

 testes 

would explain the absence of symplasts and the lack of sloughing of dead cells into the 

lumen, since in the case of phagoptosis, the eliminated cells would remain alive until they 

have already become trapped inside phagocytic vacuoles.  

A formal test of these hypotheses will require electron microscopic investigation to 

resolve the relevant intracellular machinery and distinguish between deep invagination of 

elongating spermatids into Sertoli cell crypts versus early stages of engulfment during 

phagocytosis.  

 

Are the consequences of Fbxo7 deficiency mediated by PI31 / proteasome regulation? 

The phenotype of ntc mutant testes in Drosophila has been ascribed to an 

interaction with PI31 that regulates proteasome activity in spermatids; however, this is not 

conclusively proven as transgenic restoration of PI31 levels in ntc testes was unable to 

correct the defect in spermatid individualisation (Bader et al., 2011). We and others have 

previously shown that the stabilising interaction between Fbxo7 and PI31 is conserved. 

Consistent with this, we show here that PI31 levels are reduced in Fbxo7
LacZ/LacZ

 testes. In 

wild type testes, we show that PI31 and LMP7 are both present in the nucleus of step 10-12 

spermatids, indicating that spermatoproteasomes most likely play a role in nuclear 

elongation. PI31 then shifts to the cytoplasm of step 13-16 spermatids at tubule stages I-VIII. 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/563718doi: bioRxiv preprint first posted online Feb. 28, 2019; 

http://dx.doi.org/10.1101/563718
http://creativecommons.org/licenses/by/4.0/


24 

 

The loss of germ cells in the knockout is thus coincident with this shift in PI31 localisation 

from the nucleus to the cytoplasm. It is possible therefore that PI31 expression in the 

cytoplasm is necessary during spermatid remodelling, and Fbxo7 is required to stabilise PI31 

in the cytoplasm. Set against this, however, is the fact that cytoplasmic PI31 is highest in 

tubule stages VI-VIII, by which time the Fbxo7
LacZ/LacZ

 spermatids are already dead and 

digested, and very low in stages II-IV when spermatid mis-localisation initiates in 

Fbxo7
LacZ/LacZ

 testes. Moreover, both the mRNA and protein product for PI31 declined to a 

similar degree, suggesting that the decrease in both may be a secondary consequence of the 

loss of late stage condensing spermatids in mutant testes rather than a change in the 

stability of PI31. Overall, therefore, the data on PI31 expression and localisation suggests 

that in mouse, the consequences of Fbox7 deficiency for male fertility are not mediated by a 

secondary deficiency for PI31.  

Although we could not directly measure spermatoproteasome activity, whole-testis 

proteasome activity showed no changes in Fbxo7
LacZ/LacZ

 testes. Other proteasome-related 

knockout males (PA200, PA28γ) have defects in multiple stages of germ cell development, 

both pre- and post-meiotic. The post-meiotic phenotypes of these knockout models include 

delayed histone replacement during nuclear remodelling and delayed spermiation, neither 

of which was seen in Fbxo7
LacZ/LacZ

 testes (Qian et al., 2013; Huang et al., 2016). Moreover, 

unlike Fbxo7
LacZ/LacZ

 males, even the PA200/PA28γ double knockout males were able to 

produce substantial numbers of morphologically normal sperm in their epididymis (Huang et 

al., 2016). A knockout of the spermatoproteasome-specific subunit PSMA8 has recently 

been shown to lead to meiotic abnormalities and early spermatid arrest [Gómez Hernández 

et al, unpublished data, preprint available at 

https://www.biorxiv.org/content/early/2018/08/03/384354], unlike the late stage 
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spermatid loss described in the present study. The Fbxo7
LacZ/LacZ

 male sterility phenotype 

thus differs from all other existing mouse knockouts related to proteasome function at both 

the histological and molecular levels, and this argues against proteasome insufficiency being 

causative for its phenotypes. 

 

Potential non-proteasomal pathways regulated by Fbxo7 that may lead to male sterility. 

Fbxo7 is a multi-functional protein which impacts upon many pathways, such as 

cytoplasmic remodelling, mitophagy and cell cycle regulation, which are key process during 

the production of specialized cell types. Fbxo7 is required for Parkin-mediated mitophagy, a 

process that requires the fragmentation and engulfment of depolarized regions of the 

mitochondrial network (Burchell et al., 2013), and interestingly, both the nutcracker and 

parkin null flies show male sterility, with a specific defect during sperm individuation 

(Greene et al., 2003; Bader et al., 2010). In the parkin null, a specialized mitochondrial 

aggregate present in insect sperm, known as the Nebenkern, failed to form, suggesting the 

rearrangement of mitochondria was part of the underlying mechanism of sterility.  

However, the mouse parkin null mutant is fertile with no known effects on germ cell 

development (Itier et al., 2003), and thus the sterility of Fbxo7 mutant males is unlikely to 

relate directly to its interaction with Parkin. 

One possible explanation is that Fbxo7 is not only involved in mitophagy through the 

PINK1/Parkin pathway, but also more generally with specialized cytoplasmic remodelling.  In 

a similar vein to the sperm maturation defects we report here, Fbxo7 has also been shown 

to be required during the final maturation steps of erythrocytes, and we have previously 

reported the Fbxo7
LacZ/LacZ

 mice are anaemic due to delayed mitophagy and defects in 

exiting cell cycle (Randle and Laman, 2016).  Importantly, during this maturation step, 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/563718doi: bioRxiv preprint first posted online Feb. 28, 2019; 

http://dx.doi.org/10.1101/563718
http://creativecommons.org/licenses/by/4.0/


26 

 

macrophages in erythroblast islands phagocytose the shed organelles from maturing 

reticulocytes (Ovchynnikova et al., 2018; Zhang et al., 2015; Geminard et al., 2002), a 

process requiring the coupling of the autophagy and exocytosis pathways (Mankelow et al., 

2015). Could this coupling be coordinated by Fbxo7? If so, then in a testis context, Fbxo7 

may enable the fragmentation and isolation of portions of the spermatid cytoplasm to allow 

phagocytosis by Sertoli cells. In the absence of Fbxo7, failure to correctly package spermatid 

cytoplasm for elimination could instead lead to wrongful engulfment of complete cells and 

phagoptotic cell death. 

As a third alternative but non-exclusive possibility, we note that the dead cells at 

tubule stage VI were strongly positive for caspase 2. TRAF2, a target of Fbxo7 ubiquitination 

(Kuiken et al., 2012), has recently been shown to bind to active caspase 2 dimers and 

ubiquitinate it to stabilize the activated complex (Robeson et al., 2018). Consequently, 

Fbxo7 deficiency could lead to over-activity of TRAF2 and subsequently signal the activation 

of caspase 2 precipitating germ cell death. Identifying the substrates of Fbxo7 underlying 

the unique phenotypes reported here is an area of future research. 

 

Conclusion 

Fbxo7 deficient mice exhibit a novel sterility phenotype unlike any previously described, in 

that total death and phagocytosis of all condensing spermatids occurs in the absence of 

typical hallmarks of spermatid apoptosis such as symplast formation and cell sloughing. The 

mislocalisation of elongating spermatids initiates substantially before the appearance of 

markers of apoptosis and phagocytosis, indicating that aspects of spermatid trafficking into 

and out of Sertoli cell crypts may also be perturbed in these males. These males thus 
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provide a new model of late spermiogenic failure, and an exciting new avenue to investigate 

cell remodelling, tissue remodelling and apoptosis in germ cell development. 
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Materials and Methods 

Mice: Mice used in this study are Fbxo7
LacZ

 mice (Fbxo7
tm1a(EUCOMM)Hmgu

 on a C57BL/6J 

background) and experiments involving them were performed in accordance with the UK 

Animals (Scientific Procedures) Act 1986 and ARRIVE guidelines. Mice were housed in 

individually ventilated cages with unrestricted access to food and water, and 12-hour day-

night cycle. Animal licences were approved by the Home Office and the University of 

Cambridge’s Animal Welfare & Ethical Review Body Standing Committee. Experiments were 

performed under the Home Office licences PPL 80/2474 and 70/9001 (HL).  

Tissue processing and immunohistochemistry: Testes were fixed in Bouin’s fixative at 4
0
C 

overnight and embedded in paraffin. Sections were subjected to standard methods of 

hematoxylin/eosin or periodic acid/Schiff/hematoxylin staining for histological examination. 

For immunohistochemical studies, sections were de-paraffinised in xylene and rehydrated 

through a graded ethanol series prior to blocking and antibody staining steps.  Details of 

primary and secondary antibody concentrations are given in Supplementary Table 1. 

Antibody-stained sections were counterstained with DAPI and visualised via epifluorescence 

(PI31, Histone H3) or confocal fluorescence microscopy (Caspase 2, Lamp-2, LMP7). In some 

experiments, fluorescently conjugated peanut agglutinin from Arachis hypogaea (PNA-

lectin) was included during the secondary antibody incubation step to visualise acrosomal 

morphology and facilitate staging of seminiferous tubules.  

Sperm morphometric analysis: Sperm were collected from two Fbxo7
LacZ/LacZ

, three 

Fbxo7
LacZ/+

, and two wild type males. The vasa deferentia and caudae epididymides were 

dissected from each animal, and the contents extracted into 1ml PBS. Sperm were 

transferred to a microfuge tube, and tissue clumps were allowed to settle. Then sperm were 
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transferred to a new tube and pelleted at 500g for 5mins. The supernatant was removed, 

and the sperm fixed dropwise with 3:1 methanol-acetic acid. Sperm were again pelleted at 

500g for 5mins, and washed in fixative twice more. Samples were stored at -20°C. Fixed 

sperm nuclei were stained with DAPI and imaged using a 100x objective on a Nikon 

Microphot SA epifluorescence microscope equipped with a cooled CCD camera and 

appropriate filters. Images were captured using SmartCapture 2, exported in 8-bit tiff 

format and analysed using the automated morphometric software Nuclear Morphology 

Analysis v1.13.7 (https://bitbucket.org/bmskinner/nuclear_morphology/wiki/Home) 

(Skinner et al., 2019). Hierarchical clustering was performed on nuclear shapes to group 

them into morphological categories, and the proportion of cells from each genotype in each 

category was calculated. The total numbers of nuclei analysed for each genotype were 453 

for Fbxo7
LacZ/LacZ

, 1225 for Fbxo7
LacZ/+

 and 756 for wild type. 

Flow cytometry: Single-cell suspensions from whole testis tissue were pelleted by 

centrifugation, and resuspended in 1mL of ice cold 80% ethanol/PBS while vortexing to 

disperse clumps. The suspended cells were fixed for at least 1 hour at 4
o
C. After fixation, 

cells were collected by centrifugation and washed once in PBS. The washed cell pellet was 

resuspended in 1mL of a solution of 50μg/mL propidium iodide (PI) staining and 10μg/mL 

DNase-free RNase, and incubated for 10 minutes at 37
o
C, prior to analysis by flow cytometry 

(Beckman-Coulter, Inc.). 

Lysis and immunoblotting: Whole testis tissue were lysed in RIPA buffer (50mM Tris-HCl pH 

7.6, 150mM NaCl, 1% NP-40, 0.1% SDS, 0.1% Na deoxycholate, 1x protease inhibitors, 1mM 

PMSF, 10mM sodium fluoride, 1mM sodium orthovanadate) (all from Sigma), and incubated 

on ice for 30 min with occasional vortexing. Cell debris was pelleted by centrifugation at 

16,000g for 10 min at 4°C, and the supernatant retained. Protein concentration was 
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determined via 96-well BCA assay (Pierce). Sample concentrations were standardised by 

dilution with lysis buffer. For western blot, samples were mixed with equal volumes of 2x 

Laemmli buffer, denatured (95°C, 5mins), separated via SDS polyacrylamide gel 

electrophoresis (SDS-PAGE), and transferred onto polyvinylidenefluoride (PVDF) membrane 

(Millipore) using a semi-dry transfer system (Biorad). Membranes were blocked for one hour 

with 5% non-fat, milk powder/PBS-Tween 20 (0.05%) (PBS-T), and then probed with primary 

antibody overnight at 4°C in 5% non-fat, milk powder/PBS-T. Membranes were washed in 

PBS-T and incubated with the appropriate HRP-conjugated secondary antibody in 5% non-

fat, milk powder/PBS-T followed by further washes, and detection of HRP bound protein 

using enhanced chemiluminescence (ECL, GE Healthcare) and exposure onto X-ray film 

(Konica Minolta). Signal was quantified and normalised using ImageJ software (NIH, 

Maryland). 

mRNA isolation and qRT-PCR: Tissue was homogenised in 350 µl RLT buffer with β-

mercaptoethanol and RNA isolated using RNeasy Plus kit (Qiagen) as per the manufacturer’s 

recommendations. One microgram of mRNA was converted to cDNA using Quantitect 

reverse transcriptase (Qiagen), and then diluted 1:10 for subsequent qRT-PCR analysis using 

SYBR Green JumpStart Taq (Sigma) on a CFX Connect Real-Time PCR machine (Biorad).  The 

following primers for Fbxo7 (5’-CGCAGCCAAAGTGTACAAAG; 3’-

AGGTTCAGTACTTGCCGTGTG) and Psmf1(PI31) (5’-CAATCATGCCACCTCTCTGA; 3’-

CCGTCCTCATACTAGCAGGC) were used. qRT-PCR reactions were as follows: 95°C for 5 min 

then 45 cycles of 95°C for 30 s, 60°C for 30 s, 72°C for 30 s, followed by melt curve analysis 

to confirm a single PCR product was made. Relative gene expression was determined using 

relative standard curve method, data was normalised to three housekeeping genes (Ppai, 

Gapdh, Actb) as previously described [see (Meziane et al., 2011; Birkenfeld et al., 2011) for 
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primer sequences], and expressed relative to WT levels.  

Counting of mis-localised cells at different tubule stages: Tubules were staged using 

periodic acid/Schiff staining to visualise the stages of acrosomal development (Russell et al., 

93 A.D.; OAKBERG, 1956). Every tubule in a complete testis cross-section was staged for 

three replicate males per genotype, by an observer blinded to the sample identity. Tubules 

were scored as positive if there were any mis-located elongating spermatid heads detected 

beyond the Sertoli cell tight junctions, within the outermost layer of nuclei in the tubule, 

and negative if there were no elongating spermatid heads within this layer. Tubules were 

also scored for the presence of “graveyards”, defined as 2 or more mis-localised elongated 

spermatids enveloped by a single Sertoli cell.  These definitions were chosen to maintain 

consistency across the seminiferous cycle, and their sensitivity is discussed in the main text. 

Measurement of proteasome activity: Assays for proteasome activity were performed using 

the Proteasome-Glo™ Chymotrypsin-Like Cell-Based Assay Kit (Promega) according to the 

manufacturer's protocol. Briefly, testes from 10 week old mice were harvested and lysed in 

buffer (20 mM Hepes pH 7.6, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 2 mM EDTA, 1 

mM DTT) using a Dounce homogeniser in 10X the volume/weight of tissue. Protein 

concentration was measured, and lysates were diluted so that 100μg of protein in 100μl 

volume/well was loaded into a 96-well plate, and samples were plated in triplicate. Where 

applicable, samples were pre-incubated with MG-132 for 30 minutes prior to the addition of 

reagents, with protease inhibitors (Na2VO4, NaF, PSMF), or without inhibitors. Samples were 

equilibrated to RT for 15 minutes and then 100μl of assay reagent was added. After a 10 

minute incubation, luminescence was measured in triplicate. 
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Supplementary Dat

Supplementary Figure 1. Sperm shape abnormalities are overrepresented in Fbxo7

compared to wild type and heterozygous animals. Sperm from all genotypes were clustered 

according to shape into three categories of normal, somewhat abnormal and severely deformed. 

Upper panel; representative DAPI

shape of the cluster; lower panel;  percent of each genotype within the cluster. The majority of

Fbxo7
LacZ/LacZ

 sperm have severe abnormalities, compared with less than 10% of wild type or 

heterozygote sperm. 
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Sperm shape abnormalities are overrepresented in Fbxo7

compared to wild type and heterozygous animals. Sperm from all genotypes were clustered 

categories of normal, somewhat abnormal and severely deformed. 

Upper panel; representative DAPI-stained sperm nuclei from each cluster; middle panel; consensus 

shape of the cluster; lower panel;  percent of each genotype within the cluster. The majority of

sperm have severe abnormalities, compared with less than 10% of wild type or 

Sperm shape abnormalities are overrepresented in Fbxo7
LacZ/LacZ

 animals 

compared to wild type and heterozygous animals. Sperm from all genotypes were clustered 

categories of normal, somewhat abnormal and severely deformed. 

stained sperm nuclei from each cluster; middle panel; consensus 

shape of the cluster; lower panel;  percent of each genotype within the cluster. The majority of the 

sperm have severe abnormalities, compared with less than 10% of wild type or 
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Supplementary Figure 2. Sperm from Fbxo7

type and heterozygous animals, with higher variability (measured as the difference between each 

nucleus' shape and the median shape). 
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Sperm from Fbxo7
LacZ/LacZ

 animals are mostly smaller than 

type and heterozygous animals, with higher variability (measured as the difference between each 

nucleus' shape and the median shape).  

animals are mostly smaller than sperm from wild 

type and heterozygous animals, with higher variability (measured as the difference between each 
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Supplementary Table 1: Antibodies used in this study 
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