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Summary

This research investigates how decomposed forward looking measures extracted from equity options

in the U.S. contribute to a more directional understanding of the financial market volatility character-

istics and their connectedness. It shows how different components of implied volatility and skewness,

namely, upside or positive and downside or negative, extracted only from call options and put options,

respectively, might contain a more refined set of information compared to the aggregate measures. The

information enclosed in the decomposed components of risk measures is able to enrich the set of fi-

nancial tools which market participants and investors have at their disposal. The new set of directional

information can be most certainly used to improve financial stability and predict future economic activ-

ity or future levels of uncertainty indicators. Overall, our empirical findings suggest that uncertainties

related to upside or downside measures, proxies for good or bad market events and news, can be used to

achieve better asset pricing and equity market premium predictability as well as a better understanding

of the volatility connectedness in the financial markets.

When decomposed, implied volatility measures contain different information able to provide new

insights of the separate determinants of volatilities among the macroeconomic and financial variables.

The same is found to be true when risk neutral and physical measures are joined together to compute the

volatility risk premia. By decomposing implied volatility measures, this study also shows that by doing

this enables new light to be shed in the financial connectedness area through examining asymmetric

volatility characteristics. Lastly, implied volatility measures extracted from single stocks in the U.S.

financial sector further confirm the asymmetry characteristics in connectedness. This enhances the

understanding of the financial institutions network and how this can be used for future economic activity

and future levels of uncertainty predictability. Lastly, we show that different components of the implied

skewness can be used to improve financial stability, provide a more prudent measure of tail risk, and

contribute to asset pricing and uncertainty predictability.

The first chapter focuses only on the volatility series which is, however, considered both in its im-

plied measure, realized measure and, merging the two, in its risk premium. Thus, both implied and

realized volatility are computed model-free and decomposed into upside and downside components,

thereby allowing us to compute volatility risk premia accordingly. The chapter analyzes the role of

macroeconomic and financial determinants in explaining stock market volatility in the U.S. market. We

distinguish the behaviour of each component of the implied volatility and risk premium in relation to

their different determinants. The downside implied volatility appears to be linked more towards uncer-

tainty and geopolitical risk indexes, whereas upside implied volatility is driven more by consumption

and GDP. The role of put options, underlying downside implied volatility, has emerged more strongly

in the post global financial crisis. A mixed frequency Granger causality approach uncovers causality

relationships between volatilities and risk premia and macro variables and vice versa, a finding which
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is not detected with a conventional low frequency VAR model.

In the second chapter, we disentangle implied skewness related to downward movements from the

implied skewness associated with upward movements of the U.S. equity index. We decompose the

implied skewness measure into its positive and negative components. The positive SKEW index is

extracted from the S&P 500 call options, whereas the negative SKEW index is extracted from the

S&P 500 put options. The information content of our measures is not captured by other risk and

tail risk measures. They provide an additional powerful tool next to the second moment index and

its components which might further improve asset pricing and economic predictability. The positive

SKEW index is more connected with market sentiment indicators, whereas the negative SKEW index

is proposed as a tail risk measure. We show that the decomposed SKEW measures are useful in

predicting the S&P 500 as well as individual stocks future equity risk premium, mainly in the short-

term. The positive SKEW also appears to be a robust predictor when we control for additional financial

risk variables such as the decomposed implied volatility and the decomposed variance risk premia. The

decomposed SKEW indexes are also informative when added to Fama-French asset pricing models.

We show that the negative SKEW can play a significant role in predicting uncertainty indicators up to

a one year horizon.

In the last chapter, single stocks implied volatilities are decomposed for the U.S. financial sector

showing how they might be input, separately, into connectedness indexes with the aim of increasing

their predictability power for macroeconomic and uncertainty indicators. Basically, we study how

shocks to forward looking expectations of investors buying call and put options transmit across the

financial system. We introduce a new contagion measure named asymmetric fear connectedness (AFC)

that captures the information related to “fear” in the two sides of the options market, that can be used

as a forward looking systemic risk monitoring tool. The decomposed connectedness measures provide

timely predictive information for near future macroeconomic conditions and uncertainty indicators and

they contain additional valuable information not enclosed in the aggregate connectedness measure. The

role of upside/downside “fear” transmitter/receiver emerges clearly when we zoom into idiosyncratic

financial institutions events. We identify banks that are predominantly upside/downside receivers of

“fear”, as well as banks positively/negatively transmitting “fear” in the financial system.
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Chapter 1

Introduction

The vastness of topics concerning risk and measures of risk is daunting. Risk touches subjects such

as psychology, mathematics, statistics, economics as well as finance. The concept of risk takes several

shapes according to the different areas and subjects. The literature surrounding the concept of risk is

monumental, continuously changing and always on the news. Understanding risk, measuring it and

evaluating its consequences has always been of interest for many years. This research focuses, in

particular, on measures of risk concerning financial markets, financial economics and macro finance.

More specifically, this research focuses on implied measures of volatility and skewness which may be

used as a forward looking proxy of risk in both academia and financial industry.

The main aim of this research is to develop new tools to better understand and monitor risk ac-

cording to investors beliefs, expectations and perceptions. The novel set of information to improve the

measure of risk in this direction is extracted from the U.S. options market. Furthermore, this research

contributes to the recent literature on implied risk measures by separating the information enclosed

in calls and puts. This methodology not only provides forward looking insights about investors’ per-

spective of future risk, but also more refined and directional measures which are linked to the different

investors’ future beliefs reflected in both calls and puts. As this research will show, the separate con-

tent of calls and puts implied measures generates a synergistic measure of perceived risk in the U.S:

information extracted from calls and puts in a separate way is more informative than the aggregate op-

tions portfolios when it comes to asset pricing, volatility connectedness measures, equity risk premium

predictability and macroeconomic or uncertainty indicators predictability. We confirm this intuition

not only with regards to the implied volatility measures, but also with regards to implied skewness

measures and, lastly, with regards to implied volatility connectedness indexes.

The way in which measures of risk are defined and commonly recognized by the academic commu-

nity and by practitioners have evolved over time. In fact, defining risk is not straightforward, though

many attempts have been made over the years. The book of Bernstein (1996) - Against the Gods - is
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an enlightening masterpiece in this regard. Risk can be defined as the possibility of gaining or losing

something of value or an unfavorable outcome associated with an action. The word risk might have its

origin from the Italian word - risicare - which means - to dare. In financial terms, risk would be, in

this sense, a choice that investors decide to take rather than a supernatural fatal concept. Characterizing

risk has always been a challenge in the literature as well as in practice. Damodaran (2012) defined risk

as the likelihood that in life’s games of chance, we receive an outcome that we will not like. Risk is -

almost entirely - perceived in negative terms. In finance risk is the likelihood that we receive a return

on an investment that is different from the return we expected to make. Thus, risk includes, according

to this definition, not only bad outcomes (returns lower than expected) – downside risk – but also good

outcomes (returns higher than expected) – upside risk. This research shows how is crucial to consider

both when measuring risk.

The interest in risk increased following the seminal paper by Markowitz - Portfolio Selection - in

which he argued that investors and fund managers should, not only, judge the performance of the fund

or portfolio, but also the risk taken. Risk is what makes it possible to make a profit and the return

from an investment relates to its associated risk generating a risk-return trade-off. Markowitz affirmed

that investors consider expected return as a desirable thing and variance of return as undesirable thing.

Markowitz was among the first who attempted to measure this risk. It is not easy to define and measure

risk, thus Markowitz was the first who used measures of volatility (he called it variance) as a proxy for

risk which investors should minimize. Variance measures how much the returns fluctuate from their

average, it is closely linked to standard deviation and - volatility - which is the square root of variance.

Thus, financial risk can be defined as the unpredictable variability or – volatility – of returns; this would

include both potentially higher than expected as well as lower than expected outcomes or returns.

Volatility (or variance) has begun to be used as a proxy for risk in academia as well as in the

entire financial industry (e.g. risk management, value at risk (VaR), derivatives). In risk management,

volatility became a crucial measure. As we will mention later, usually when asset prices decrease

volatility increases, signaling bad news driving to asset declines and collapse. The concept of volatility

became of importance also as an academic idea studied in areas such as economics, statistic, probability,

econometrics and finance. Thus, this research directly links to the use of volatility measures as a proxy

of risk as commonly recognized in the financial literature.

The importance of volatility in the financial literature has been advocated by several seminal stud-

ies (see Shiller, 1981; Poterba and Summers, 1984; Shiller, 1989; Schwert, 1989; Day and Lewis,

1992; Bollerslev et al., 1994; Engle, 1995; Bates, 1996). According to Andersen and Bollerslev (1998)

volatility permeates finance since the variation in economy-wide risk factors is important for the pric-

ing of financial securities, and return volatility is a key input to option pricing and portfolio allocation

problems. Accurate measures and good forecast of volatility are critical for the implementation and
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evaluation of asset (see Bollerslev et al., 1992, 1994). Financial market volatility is an important input

for investment, option pricing, and financial market regulation (see Poon and Granger, 2003). Volatility

is also a more informative measure compared to assets’ returns when it comes to spillovers measure

(see Diebold and Yilmaz, 2009). Thus, within finance, areas such as asset pricing, asset allocation and

derivatives lay on the concept of volatility. By trading any derivatives implies an implicit expectations

on the future levels of volatility.

Options trading started to increase in popularity since 1973 when Black and Scholes (1973) pub-

lished the well known Black Scholes model which calculates the value of options, where a crucial

parameter is volatility itself. Options trading is commonly used for hedging or speculation. In order

to place a bet on market turbulence, an options strategy such as a straddle – buy both call and put –

can be entered. When both are sold it can be seen as a bet on market tranquility. Options and swaps

are among the main derivatives in which volatility plays a fundamental role. These instruments have

been widely used mainly for hedging strategies to reduce or offset the risk in the financial markets as

well as for speculation in which investors are looking to increase the risk exposure with the aim of

achieving higher returns. Investors have always felt the need to hedge themselves against market drops

by entering into short position in equity derivatives. Later on, investors realized that they can actually

trade volatility and it becomes a tradable asset as well as a risk management tool. Entering into a long

position on volatility derivatives would actually compensate the investors for market downturns.

In 1992, Robert Whaley at the Chicago Board Options Exchange proposed an options-based volatil-

ity index which by 1993 became well know as the CBOE Volatility Index – VIX . Despite many

changes in its methodology, in general the VIX index measures the next month expected volatility of

the U.S. stock market as extracted from the stock market index option prices. Volatility contracts and

assets which could be traded started to be proposed and built. The first volatility derivative appears to

have been a variance swap dealt in 1993 at UBS. This tool allowed investors not only to hedge against

volatility, but it becomes also a strategy in order to grasp potential arbitrage between realized volatility

and implied volatility. In other words it is a bet on the difference between how volatile markets are

and how volatile markets will be in the near future. See also Demeterfi et al. (1999) for an exhaustive

guide on variance and volatility swaps. Variance and volatility swaps were widely used by financial

institutions, hedge funds and other institutional investors. However the VIX index was – and still is –

the volatility proxy the whole financial world was following. Thus, in 2004 the CBOE launched VIX

Futures and in 2006 introduced options on VIX . In this way investors could exactly trade the same

benchmark they were following to monitor volatility levels. The volume of these contracts increased

quickly in the next decade, especially in the aftermath of the global financial crisis (see Rhoads, 2011)1.

See Carr and Lee (2009) for an excellent survey about volatility derivatives.

1The increase in popularity of the VIX based products turned into a quick raise of exchange traded product based on VIX .
The first was the Barclays VIX linked ETP by using volatility futures in 2009.
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Once academics and practitioners agreed on the definition of risk as well as of a common measure

of it, namely, volatility (variance), the challenge became the development of strategies and techniques

to manage it. A lot of progress has been made over the last decade, however there is still a long way

to go before even the major banks and other large financial institutions will really know their risks.

Uncertainty has always been a main adversary of risk management. Damodaran (2012) defined risk in

terms of uncertainty about future returns. The greater this uncertainty, the more risky the investment.

Secondly, risk can be decomposed into risk that can be diversified away by investors and risk that

cannot. The most common model in order to link risk and expected returns is the capital asset pricing

model (CAPM).

The urgency of a discipline in finance called risk management was without doubt. Plenty of mod-

els and measures aiming to better evaluate financial risk have started to be developed from financial

institutions. The importance of forecasting what can happen in the future has become crucial. Fun-

damental contributions in areas of risk management have come from subjects such as mathematics,

statistics and probability. Pascal, Fermat, de Moivre, Bernulli, Bayes are only a few among the names

who contributed massively to the understanding of risk. Several ways in which risk could be measured

or assessed include; probabilities of negative events, statistical methods, expected utility, loss function.

How Bernstein affirmed in his book Against the Gods:

The essence of risk management lies in maximizing the areas where we have some control over the

outcome while minimizing the areas where we have absolutely no control over the outcome and the

linkage between effect and cause is hidden from us.

More recently, in 1952, Markowitz not only proposed a statistical measure for risk, but he also

proposed a fundamental strategy for risk management, namely diversification. This contributed to

modern portfolio theory in which risk is studied as a condition in order to have higher returns and some

kind of risks can be diversified away. The importance of diversification and the modern portfolio theory

are based on this idea:

Under certain given conditions, an investor’s portfolio choice can be reduced to balancing two dimen-

sions, i.e., the expected return on the portfolio and its variance. Due to the possibility of reducing risk

through diversification, the risk of the portfolio, measured as its variance, will depend not only on the

individual variances of the return on different assets, but also on the pairwise covariances of all assets.

Thus, risk could be divided into two categories, the first, systematic risk which affects all assets in

the same class being linked to the overall asset class and capital-market system which, therefore, cannot
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be diversified away. This is also called market risk. The second is the non-systematic risk (or specific

risk) is any risk which is not related to the market itself, but only to a specific company or asset related

news and events. Thus, this is the diversifiable risk.

Among the biggest challenges that central bankers, policy makers and investors are facing nowa-

days, there is, without doubts, an increase in financial and economic instability. This is driven by

the situation of uncertainty surrounding global financial markets including, also, the most developed

economies. Central banks are concerned that a sudden collapse in asset prices might happen and drag

the entire financial sector down in a dangerous declining spiral and into another recession. In addition,

whereas we are witnessing a long period of economic growth, low unemployment rates, inflated asset

prices, underestimation of future credit risk on one side of the globe, we can observe the opposite sce-

nario for other countries. While an increase in interest rates should be considered in order to help some

economies to reach their inflation targets, it could be, on the other hand, generating a slowdown in

economic growth. This makes many global central banks more hesitant about their future policies and

decisions. The short-term financial instability might be even further triggered by increasing volatility

and uncertainty due to trade wars, Brexit uncertainty, and political conflicts worldwide.

Risk is a concept commonly intertwined with uncertainty. The latter means that the status or out-

come of any situations or actions is unpredictable and uncontrollable, thus taking risky actions and

decisions implies taking actions and decisions in uncertainty. Knight (2012), in his seminal work Risk,

Uncertainty, and Profit, established the distinction between risk and uncertainty:

Uncertainty must be taken in a sense radically distinct from the familiar notion of risk, from which

it has never been properly separated. The term risk, as loosely used in everyday speech and in eco-

nomic discussion, really covers two things which, functionally at least, in their causal relations to the

phenomena of economic organization, are categorically different. The essential fact is that risk means

in some cases a quantity susceptible of measurement, while at other times it is something distinctly not

of this character.... We, accordingly restrict the term uncertainty to cases of the non-quantitative type.

According to Knight (2012), uncertainty is immeasurable, not possible to calculate, while risk is

measurable. Uncertainty makes what will happen in the future more blurry and cloudy. The greater

the uncertainty, the greater the risk. Nowadays, indicators which aim to track uncertainty have spread

out. Many of them are linked to economic and macroeconomic conditions, some others to geopolitical

conditions, some to political events. Overall, they do not quantify the uncertainty, but they are able to

identify whether we are in a period of low or high uncertainty. In the latter, measuring risk becomes

even harder. Volatility in the U.S. has also been politically-driven since the end of 2016. In this context

of uncertainty, it becomes of interest to study the relationship between volatilities and macroeconomic,

financial and uncertainty indicators. Chapter 3 will cover this topic of interest.
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In parallel, a growing stand of research has started to study how investors appear to be driven

by irrational choices, myopia or inconsistencies when it comes to investing decisions and portfolio

choices. The rise of a new area in finance, namely, behavioral finance appeared to be in need. Often

investors decision cannot be considered following the traditional model of rationality, but they appear to

be driven by market sentiment, irrational decision, greed or other psychological elements. According to

Shiller (1989) in his book - Market Volatility - prices movements may be due to changes in investors’

opinion or psychology thus generating a change in confidence, speculative enthusiasm and shocks.

Consequently, changes in prices and speculative activity guide many economic activities in our society.

This intuition was the ground for Shiller’s research on excess volatility - the variation of prices is too

large to be justified only in terms of efficient markets models and fundamentals. This concept will be

recalled in Chapter 3.

Investors are, also, different in front of their risk tolerance. Risk loving investors would react differ-

ently compared to risk averse investors. In other words there are no investors always rationally trading

off risk and returns. Uncertainty cannot be neglected either when investors have to make their decision.

The set of information they have is limited. Emotions, fear and greed can also impact on investors’

decision. All these elements should be taken into account when measures of risk are developed. If

investors tend to violate the rational model and if investors are driven by irrational behaviors, new mea-

sures of risk should be developed. We will also acknowledge how investors may react in different ways

to uncertain future risks or events. Positive emotions or expectations drive towards a more optimistic

risk assessments. Negative emotions and expectations drive towards a more pessimistic risk assess-

ments. Optimistic or pessimistic risk judgements influence the way investors trade in the financial

market. Investors’ beliefs and emotions are reflected on the options market.

Existing measures of risk and volatility as well as existing and proposed risk management tools do

not always appear to be efficient and valid. News and speeches from the U.S. at the time of writing

this thesis have reinforced and called for the need of better measures of volatility as well as a more

accurate and prudent means of monitoring it. According to the ex Federal Reserve Chair Janet Yellen,

the U.S. economic outlook is subject to considerable uncertainty from multiple sources, and dealing

with these uncertainties is an important feature of policymaking especially for understanding the forces

driving inflation. And, again, at the beginning of 2016, she mentioned that concerns regarding the

global economic prospects might increase financial market volatilities in the U.S.

Thus, motivated by this uncertain financial and geopolitical scenario, this research aims to extract

new information from the financial options market. First of all, greater importance and attention should

be given to the increase of risk perceived by investors and to their future expectations. Rather than

relying on backward looking information, this thesis proposes to expand into a new avenue of research

by looking at forward looking information. Information extracted from the options market will serve
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this purpose. which can better track, first of all, investors’ expectations and beliefs in a forward looking

manner. These options-based measures of volatility track the future month investors perspective, thus

allowing for improved predictability and monitoring. Second, by relying on the options market, allows

us to differentiate by investors beliefs.

Indeed, proposing improved and refined measures of risk has become of interest in the financial

literature. We mainly anchor this research to a specific growing trend in the financial literature which

has begun to decompose risk management measures (see Barndorff-Nielsen et al., 2010; Segal et al.,

2015; Feunou et al., 2017; Kilic and Shaliastovich, 2018). More specifically, volatility measures have

been decomposed into good and bad volatilities or into upside and downside volatilities. Segal et al.

(2015) defined as good volatility (or uncertainty) the one regarding positive news for asset prices,

impacting underlying assets in a positive way, contributing to future growth, investments and increase

in production and consumption. On the other hand, bad volatility (or uncertainty) includes all the news

and events contributing to market tension, decrease in options’ underlying value, decline in market

productivity, unemployment, disinvestments and market depression. In other words, good volatility is

associated with potential profits reflecting what investors like, whereas bad volatility is associated with

potential losses reflecting what investors dislike.

As an example, assuming the similarity between the financial market and the human blood: news

and market information could be seen as lipoproteins; bad lipoproteins carry and dissolve bad choles-

terol in the blood, on the other hand, good lipoproteins carry good cholesterol. Moreover, from this

analogy between cholesterol and market volatility, more can be said. Indeed, in the medical world

bad cholesterol - LDL - tends to deposit itself along the arteries and clog them, make them less flexi-

ble (atherosclerosis) while the good cholesterol -HDL- is supposed to take the bad one away from the

arteries. Translated in financial terms, bad volatility could scare the investors, making them less flexi-

ble and inclined to speculative or long equity strategies and, rather, promoting hedging and insurance

strategies; good volatility, on the other hand, helps the market to attenuate the fear relative to equity

shortfall and market losses.

Disentangling the information associated with the upside and downside measures has been done,

mainly, with regards to realized risk measures. We go a step further, by following the seminal paper

of Bakshi et al. (2003) (henceforth, BKM) as well as CBOE (2009) methodology in order to extract

information from the options market to compute and decompose the U.S. implied volatility. We define

the downside volatility as VIX− , whereas the upside volatility as VIX+ . The first is extracted from

S&P 500 puts only, whereas the latter from S&P 500 calls only. For the first time in the literature, this

implied volatility decomposition is applied not only to the S&P 500 index, but also to single stocks’

options. More specifically, we apply the aforementioned methodology and decomposition to U.S. fi-

nancial sector stocks. For instance, we define GS − V IX as Goldman Sachs implied volatility index
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which is decomposed in upside and downside defined as GS - VIX+ and GS - VIX− . Same defini-

tions are applied for the other main stocks in the U.S. financial sector. Volatility measures extracted

from calls will mostly signal optimistic investors’ expectations, whereas volatility measures extracted

from puts pessimistic investors’ expectations. The aforementioned methodology and seminal papers

we follow, position this research as a cutting-edge topic in the financial literature.

In addition, this research goes a step further from the recent literature proposing new tools in order

to enhance the financial risk measures available to track volatility. By applying Bakshi et al. (2003)

methodology we extend the discussion about additional sources of risk which are not captured by

volatility, namely, tail risk. Tail risk measures have been proposed to help quantifying and predicting

outliers or black swans, thus the two concepts can be associated. A black swan, according to Taleb

(2007) is a highly improbable and unpredictable event. It carries massive impact though. After it

happens we begin to explain and contextualize it making it appear less random in the future as well

as more predictable. Yet, we still fail to acknowledge the frequency of these events since we focus on

things that we already know, underestimating what we do not know. This explains why there has been

a growing interest in tail risk measures.

We feel that the need for a more refined and timely tail risk index is imperative, especially given

the current economic, macroeconomic and political environment. For the first time in the literature a

directional tail risk measure extracted from the U.S. options market is proposed. Following the same

methodology applied for the volatility measures, this research decomposes the U.S. SKEW index into

positive SKEW+ and negative SKEW− . The first is computed from S&P 500 call options and reflects

extreme positive returns in the equity market or, in other words, extreme positive events; the second is

computed from S&P 500 put options and is a measure of extreme negative events. Bearing in mind the

importance of the downside risk, we propose a new tail risk measure which relies on the SKEW− . It

could give us a more prudent view of the market sentiment and expectation about negative risk events.

It allows investors to be more conservative and hedge their portfolios more efficiently, compared with

other tail risk measured in the literature.

Lastly, this is the first time that several areas of research, namely, financial market volatility, options

market and forward looking investors’ beliefs and volatility spillovers, are bridged together so as to

better investigate and monitor the ex-ante volatility spillovers and propagation of risk, which itself

could contribute to monitoring purposes. Indeed, in this global scenario, financial market deregulation

and integration make, especially with respect to the biggest economies, a scenario where they are

even more connected by creating a dangerous net in which unexpected positive and negative shocks,

investors’ fears and enthusiasm might propagate faster than in the past. Thus, investors, central bankers

and regulators, not only need to monitor the local and regional economic and financial condition, but

also, the ones which might be due to the intensification of unexpected negative or positive developments
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and events in other (connected) economies. The need of a timely monitoring tool of financial volatility

contagion appears to be of urgency. In Chapter 5 we propose a new implied volatility connectedness -

or fear - monitoring tool.

We will talk about fear in this thesis as a response to perceived danger. Investors might perceive this

danger in different ways and with different intensities. Risk could be said to be the way we collectively

measure and share this fear. The latter might be due to uncertainty, rational doubt, irrational doubt

or behaviour, risk aversion and a set of biases coming from investors own experience. This field is

interconnected with behavioural finance. The focus on human risk-aversion, asymmetric regret and

asymmetric behaviour varies from investor to investor. We will study how fears can be connected in

the selected financial system and how they can spread among investors increasing the level of fear

connectedness. Fear has long been associated with negative risk perceptions. In this thesis, this specific

negative risk perception will be defined as negative fear. A positive risk perception, thus still a risk,

will be defined as upside fear. When they are interconnected among investors generating a spread in

fear connectedness in the system, we will refer to them as downside fear connectedness and upside

fear connectedness. Different behaviours and beliefs of investors would generate an asymmetry in fear

connectedness. See Chapter 5 about this topic being applied in the U.S. financial sector.

By using a metaphor, our system might be thought as a class of students. Some students are athletic,

doing sport often as well as having a healthy diet. Other students live a more defective life characterized

by parties, use of alcohol and being habitual smokers. Most of the time, the two groups - considered as

upside and downside - are kept separated. The first group can be classified as a positive habits (which in

financial terms would be upside volatility) transmitter to the class. On the other hand, the second group

can be classified as a negative habits (which in financial terms would be downside volatility) transmitter

to the class. Habits transmitters are, overall, the strongest members in a community or system. Habits

receivers are, overall, the weakest members who, using this metaphor, are affected by the others’ habits.

When more class members start to go to the gym and live a more healthy lifestyle, we observe a spread

in good habits (upside volatility). When more students are going to parties, consuming alcohol and

smoking, we observe a spread in negative habits (downside volatility). The difference between these

two creates an asymmetry in habits in the classroom (system).

In general, each of the following chapters, rotates around the idea of either decomposing implied

volatility or implied skewness measures. All of them are anchored to the importance of forward looking

information extracted from options when it comes to proposed new risk measures as well as predicting

other indicators or variables. All of them are about the importance of information enclosed in calls and

puts and how this is helpful when taken separately in asset pricing and in equity, macroeconomic or

uncertainty predictability. The three main chapters of this thesis all confirm the main intuition which has
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driven this research, namely, that by considering information enclosed in decomposed implied volatility

and implied skewness, enriches the set of information practitioners as well as academics can access.

The two separated information sets are more informative than the aggregate in many applications. The

three main chapters of this thesis present three different applications based on this idea.

Parallel research, at the time of writing of this thesis, decomposing volatility measures both realized

and implied volatility measures has subsequently been published (see Kilic and Shaliastovich, 2018).

We have, not only, found our results to be in line with these studies, but we also go a step further by

looking at the determinants of decomposed volatility measures as well as their information content in

predicting, in turn, macroeconomic and financial variables. Imagining the financial market volatility

as an electronic battery that can be positively or negatively charged, what this research aims to better

understand in the next Chapter is which variables are contributing to the positive or negative battery

charge.

We further extend the existing literature by conducting a directional study of implied skewness

in the U.S. contributing to the higher risk neutral moments, tail risk and equity market premium pre-

dictability areas. There has been no literature so far decomposing the implied third risk neutral moment.

We find that this intuition opens up to a more refined classification of implied skewness according to the

portfolio of options we consider. We find that by decomposing the implied skewness measure makes

possible a strong linkage with market sentiment, tail risk measures as well as enhancing equity risk

premium predictability.

Lastly, we study, for the first time in the literature, how implied volatility connectedness in the U.S.

financial sector spreads and behaves when information is extracted from individual stocks’ options and

separated into upside and downside implied volatilities. By applying this innovative methodology to

the U.S financial sector we are able to propose a more timely ex-ante systemic risk monitoring tool

which systemic risk literature has been pointing to in the recent years.

Overall, we contribute to the existing financial literature by answering the following main questions

which were still open at the time being of this thesis:

• Which are the main determinants of the decomposed implied volatility measures in the U.S.?

• Can we extract additional information from the options markets by computing and decomposing

the implied skewness measure?

• Are the decomposed implied skewness indexes useful for asset pricing, equity market premium

predictability and macroeconomic and uncertainty predictability?

• Can we better track systemic risk spread, increase in uncertainty and decrease in macroeconomic

conditions by computing an asymmetric implied volatility connectedness index extracted from the

individual stocks’ options prices in the U.S. financial sector?
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Other sub-questions, of minor importance, but still necessary in order to understand the overall

research picture will be discussed in each corresponding chapter.

An extensive overview of the literature to which this research is anchored and which helps to answer

these research questions is provided in Chapter 2. More specifically, Section 2.1 spans volatility mea-

sures such as realized volatility, conditional volatility inferred from ARCH/GARCH models, implied

volatility and volatility indexes (e.g. VIX ) extracted from options as well as volatility risk premium.

Section 2.5 describes the financial literature about tail risk measures which have been proposed. Sec-

tion 2.4 spans the literature about higher risk neutral moments (e.g. skewness). Section 2.6 illustrates

the literature on market sentiment. Section 2.2 contains the literature review one of the core parts of this

thesis on volatility measure decomposition and the different information enclosed in good volatility and

bad volatility measures. Section 2.3 discusses the topic of stock markets and volatility determinants.

Section 2.7 illustrates the state of the art on volatility spillovers spanning different assets, countries and

methodologies as well as intertwining it with the new trend of decomposing volatility measures. Every

section will be extended and enriched with empirical results and confirmations in the corresponding

Chapters. We mention the research gaps in the literature review sections that we aim to fill within the

next three Chapters of this thesis. More specifically, the main research questions will be answered in

Chapters 3 to 5.

We rely on the seminal Bakshi and Madan (2000) and Bakshi et al. (2003) model-free methodology

in order to extract information from the U.S. stock options market. Econometric and statistical models

are applied for the empirical exercises in this thesis; OLS regressions, vector autoregressive (VAR)

models, Granger causality tests, mixed-frequency Granger causality tests (see Ghysels et al., 2016;

Ghysels, 2016) (see Chapter 3). Predicting models in the spirit of Bakshi et al. (2011), Allen et al.

(2012), Rapach and Zhou (2013), Neely et al. (2014) and Bollerslev et al. (2015) are performed in

order to study the risk measures’ predictability ability both in-sample and out-of-sample. Asset pricing

models are run as well (see Fama and French, 1993, 2017) (See Chapter 4). Forecast error variance

decomposition in order to compute spillovers indexes (see Diebold and Yilmaz, 2009, 2012; Diebold

and Yılmaz, 2014) are applied in Chapter 5.

The research questions addressed in this thesis as well as a summary of the main findings for each

Chapter is illustrated in the next paragraphs. In Chapter 3 we answer the first main question: Which are

the main determinants of the decomposed implied volatility measures in the U.S.? and some related sub-

questions – Are upside and downside implied volatility and volatility risk premium components related

to macro and financial variables in different ways? Are these relationship time-varying and financial

crisis driven? and, lastly, – Can we detect, not only unilateral feedback from volatilities to the selected

variables, but also vice versa or bilateral feedback, especially when a more refined mixed-frequency
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Granger causality test is applied?

The main findings in this Chapter show that different determinants are related to the implied volatil-

ities and volatility risk premia according to the volatility components which are considered. For in-

stance, macroeconomic variables are found to impact more on the upside implied volatility component,

VIX+ , especially in the case of GDP and inflation. Conversely, the financial conditions variables such

as credit, liquidity, economic policy uncertainty (EPU) index and geopolitical risk (GPR) index impact

more on the downside implied volatility component, VIX− . A similar pattern is shown for volatility

risk premia and realized volatilities. There is a shift caused by the global financial crisis in the im-

portance of variables influencing volatility measures. From a more relevant role of macroeconomic

variables, after the financial crisis, a prevalent role of the financial conditions variables is detected.

By applying a mixed-frequency Granger causality test, relationships from macro variables to volatility

and vice versa are detected. These are, otherwise, hidden at lower frequency. We detect and confirm

implied volatility as a good predictor of economic activity, whereas the volatility risk premium a good

predictor of future stock returns. Overall, different components of volatility and risk premium are found

to contain a separate set of information useful for future financial and economic activity predictability.

In Chapter 4 we answer the following two main questions: Can we extract additional information

from the options markets by computing and decomposing the implied skewness measure? Are the

decomposed implied skewness indexes useful for asset pricing, equity market premium predictability

and macroeconomic and uncertainty predictability? Also we are asking whether or not decomposed

implied skewness indexes provide additional information not enclosed in other financial risk measures

such as implied volatilities, variance risk premia and other tail risk measures. In addition, we ask

whether or not the predictability of the decomposed skewness indexes extend also to individual U.S.

stocks and it is useful in a Fama-French asset pricing exercise.

The main findings show how the decomposed SKEW indexes, namely, SKEW+ and SKEW− can

predict future S&P 500 equity premium better than the aggregate SKEW . Their predictive ability is

limited to a short horizon due to the fact they are computed from options. The decomposed SKEW

indexes are useful predictors also for the majority of the 30 largest and 30 smallest stocks in the S&P

500 and they are informative in a Fama-French asset pricing exercise, especially in the post financial

crisis. The predictability of the decomposed SKEW indexes is robust also when other variables such

as principal components extracted from macroeconomic variables, financial market predictors (decom-

posed VIX and decomposed VRP ) are taken into account. Their predictability power does not appear

to diminish. Overall, the predictability ability of the decomposed SKEW indexes is higher than the

aggregate SKEW . Last but not least, we propose SKEW− as a tail risk proxy for the U.S. financial

market and we find that it is a useful measure in order to predict uncertainty indicators and the NBER

recession periods at different horizons of up to one year.
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In Chapter 5, we provide new insights with regards to the implied volatility connectedness in the

U.S. financial sector by answering the following questions: Can we better track systemic risk spread,

increase in uncertainty and decrease in macroeconomic conditions by computing an asymmetric im-

plied volatility connectedness index extracted from the individual stocks’ options prices in the U.S.

financial sector? and – Are the decomposed implied volatility connectedness indexes providing addi-

tional information in predicting uncertainty and macroeconomic indicators compared to the aggregate

connectedness index? and – Are the investors’ expectations on future financial sector trend extracted

from calls and puts separately improving the monitoring of the banks network in response to both macro

events and idiosyncratic events?

The chapter’s findings show a different behavior of the connectedness of single equity VIX in-

dexes when extracted from calls only or puts only. The upside connectedness index extracted from

the ten main financial institutions prevails, most of the time, over the downside one. However, the

downside implied volatility connectedness inflates mainly during turbulent periods, reflecting “fear”

among investors. The newly proposed asymmetric fear connectedness (AFC) measure for the ten main

U.S. financial institutions can serve as an additional monitoring tool next to the existing systemic risk

measures. Given that it is computed from options prices it is forward looking, thus it is proposed as a

potential more timely monitoring tool. When we examine the predictive power of our connectedness

measures with respect to macroeconomic and uncertainty indicators we find that the decomposed fear

connectedness measures perform better than the aggregate measure. They are able to predict well fu-

ture levels of economic activity and decrease in macroeconomic conditions. Moreover, the downside

connectedness measure extracted from puts can predict forthcoming recession perception as well as

increase in VIX levels. A ranking of the top ten financial institutions in the U.S. is provided. They

are classified into net upside or net downside transmitters or receivers. This can provide a more refined

overview in the spread of uncertainty and systemic risk perception in the U.S. financial sector. In addi-

tion, we confirm the different roles played by VIX+ and VIX− on the net fear connectedness indexes,

especially when we focus on idiosyncratic company events.

The practical applicability of this research is threefold. First, it provides a new set of more reliable,

timely and directional risk monitoring tools useful for risk management purposes. These decomposed

implied moment indexes improve the predictability ability with regards to future equity risk premium,

macroeconomic indicators and uncertainty indicators. Second, this research contributes to the devel-

oping of a new tail risk index - SKEW− - extracted from puts and being forward looking. It could be

useful to monitor future investors’ perception of tail risk given it is computed from the options mar-

ket. It is found to be a useful proxy in order to track and predict future macroeconomic and economic

downturn as well as of increasing uncertainty and possible recessions. Lastly, important applications

for improving financial stability can be drawn from this thesis. We show that the forward looking con-
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nectedness of volatility is a highly valuable tool for monitoring uncertainty and systemic risk spread in

the U.S. as well as recessions and downturns. Overall, by developing forward looking and pessimistic-

side related monitoring tools and risk measures could be helpful in preparing the markets and investors

to a sudden increase in volatilities and risk, an increase in tail risk and spread of volatility within the

considered system of study, crucial for policymakers, investors and regulators.

To recap, the remainder of the thesis is organized as follows. Chapter 2 illustrates a detailed litera-

ture review encompassing the main strands of literature in which the thesis and the following Chapters

are anchored. As mentioned, Chapters 3, Chapter 4 and Chapter 5 embrace the main topics and ideas of

the thesis. Each of them presents an introduction, a brief literature review, the corresponding method-

ology applied in order to answer the therein research questions and, lastly, the findings of the empirical

analysis before concluding. Chapter 6 provides final discussions, concluding the thesis and points to-

wards new directions in which this research might go in order to fill the gaps still open in the financial

and volatility literature. The Appendix at the end of the thesis includes further analysis and material we

felt should be separated from the main text.
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Chapter 2

Literature Review

This chapter presents a detailed and extensive literature review on which this thesis is based. Many

areas and strands of literature are encompassed in this chapter, whereas the corresponding literature for

every chapter will be recalled more in brief therein. Specifically, section 2.1 includes general literature

on different volatility measures, most common volatility models used in the literature and the volatility

modelling issue. Subsection 2.1.1 is about realized volatility measures, subsection 2.1.2 discusses some

of the recent developments in the financial volatility literature and the shift to a model-free volatility

measure approach and subsection 2.1.3 illustrates the literature on volatility risk premium. Section 2.2

is the core section in this literature review describing recent avenues in the financial literature exam-

ining the different sides and components of volatility measures. Section 2.3 discusses the studies that

have covered the relationship between volatility measures and macroeconomic and financial determi-

nants. Section 2.4 presents the literature in relation to higher risk neutral moments (e.g. skewness and

kurtosis). Section 2.5 encompasses the literature surrounding the topic of tail risk and some of the well

known tail risk measures in the financial literature. Section 2.6 relates to the description of the role of

market sentiment and its link with the stock market literature and asset pricing. Section 2.7 includes

subsections regarding the volatility connectedness topic with several applications sub-categorized based

on the volatility model applied, the asset of interest (e.g. equity, currencies and credit) and, lastly, a sub-

section with relation to the connectedness literature extension towards decomposed volatility spillovers

measures.

2.1 On the Volatility Measures

The concept of volatility is something that has always generated interest and curiosity among academics

and practitioners due to its importance and the information it contains. Its fundamental role in the finan-

cial market, trading and options strategy, derivatives, asset allocation, risk management and forecasting
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is beyond doubt (see Shiller, 1981; Poterba and Summers, 1984; Shiller, 1989; Schwert, 1989; Day and

Lewis, 1992; Bollerslev et al., 1994; Engle, 1995; Bates, 1996; Bollerslev and Mikkelsen, 1996; An-

dersen et al., 2003; Poon, 2005) to cite a few seminal papers on the aforementioned topics on volatility.

Financial market volatility can be defined as the measure of changes in asset prices or returns over

time. The inter-temporal relation between risk and return has been examined by several seminal studies

(see Fama and Schwert, 1977; French et al., 1987; Harvey, 1989; Campbell and Hentschel, 1992;

Nelson, 1991; Chan et al., 1992) to name a few. There is a general agreement in the literature that

investors require a larger expected return from riskier securities, however there is not such agreement

about the relationship between risk and return across time (see Glosten et al., 1993).

There are several volatility measures computed in theory and practice. The methodology through

which volatility is computed depends on the selected asset, context, purpose, market and available data-

set. This explains the huge number of papers and studies examining financial market volatility which

will be covered in this Section. In general volatility measures can be classified as realized (historical)

volatility and implied volatility. The first is computed through observed assets’ prices in the market

over a specific time period or inferred from volatility models, while the latter is extracted from the

option prices and it is a forward looking measure. The next two subsections describe in more depth

these two different volatility computational approaches.

2.1.1 Realized (Historical) Volatility

Among this category we can find two approaches. One is considered a direct and immediate measure

for computing volatility – the realized volatility – based on historical prices. It is considered a model-

free approach and it consists of computing the volatility from the standard deviation of the actual

assets’ past returns over a specific time period, being this intra-daily, daily, monthly, quarterly and so

on. This is why this measure is defined as realized or historical and it is backward looking. Several

realized volatility measures have been developed and they can be computed at any frequency over a

given sample period. Among them, we find high to low version by Parkinson (1980), the Garman-

Klass formula of Garman and Klass (1980) and its improvement by Yang and Zhang (2000) taking into

account the opening price jumps and zero drifts. Further exhaustive studies and literature reviews on

realized volatility measures include Andersen et al. (2001), Barndorff-Nielsen (2002), Andersen et al.

(2007) and McAleer and Medeiros (2008). More recently. realized volatility measures computed from

assets’ prices at higher-frequencies have been proposed (e.g. Liu et al., 2015)1.

The second method can be defined as a model-based approach and includes ARCH (autoregressive

conditional heteroscedasticity) or GARCH (generalized autoregressive conditional heteroscedasticity)

models. ARCH/GARCH models assume that the returns’ variance or volatility varies in the considered
1Further details on the high-frequency realized volatility measures can be found at https://realized.oxford-man.

ox.ac.uk/
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time period according to a time series model. The volatility extracted from this class of models is called

conditional volatility. Unfortunately, this method is not able to reflect market future expectations and

market sentiment representing a natural limit in term of forecasting ability. Thus, a vast number of

models have been developed and continuously improved from these basic ARCH and GARCH family.

We do not provide extensive details on these models in this thesis since it is beyond the scope of this re-

search. The most common application of the GARCH models is their usage for forecasting (see Franses

and Van Dijk, 1996). Poon and Granger (2003) provide an extensive literature review on volatility mod-

els and their application in forecasting. Bollerslev (2009) provides an extensive description of ARCH

and GARCH models.

It has been assessed from the literature that volatility models may present some limitations. One

may be due to the so called volatility modelling issue (see Beltratti and Morana, 2006; Engle and

Rangel, 2008; Daníelsson et al., 2016; Jokivuolle and Tunaru, 2017). For instance Daníelsson et al.

(2016) defined model risk as the potential risk for different models to provide inconsistent outcomes.

Model risk may increase with market uncertainty. During calm periods market risk is negligible while

disagreement between candidate models increases with market distress. The second limitation of

volatility models is the fact that they rely on historical data and prices. Thus, in this thesis and starting

from the next section, the focus will be on the forward looking implied volatility measures extracted

from the options market in a model-free manner.

It has been suggested that the simple historical volatility model (Figlewski, 1997) and standard

historical volatility model (Andersen and Bollerslev, 1998) generally predict future volatility more

accurately than the more complicated volatility models. The model-free methodology proposed by

Barndorff-Nielsen (2002) is one of the most popular to compute realized measures of volatility:

RV OLt =

√√√√252

n

n∑
i=1

r2t,i (2.1)

where ri = ln( Pt
Pt−1

) represents daily log returns computed from the price difference, with Pi

representing the daily asset levels with i ∈ {1, . . . , n}.

2.1.2 Implied Volatility and Volatility Indexes

In this Section implied volatility measures and indexes are illustrated in detail. Implied volatility mea-

sures provide forward looking information containers reflecting investors future expectations exploiting

current market information enclosed in options prices. The information content of implied volatility

as well as the superiority of the implied volatility measures over the historical volatility models has

been examined in many studies in the financial literature, volatility forecasting literature and spanning

several asset classes (see Day and Lewis, 1992; Christensen and Prabhala, 1998; Fleming, 1998; Blair
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et al., 2001; Giot, 2005; Corrado and Miller, 2005; Giot and Laurent, 2007; Wayne et al., 2010; Taylor

et al., 2010; Bams et al., 2017). Implied volatility is well known for being extracted from the Black

and Scholes (1973) (BS) formula based on option market and prices. The advantage of this measure is

that it is oriented towards the future investor expectations and sentiment (assuming market efficiency)

and is more useful for trading strategies and forecasting (see Giot and Laurent, 2007). However, the

disadvantage is that this measure is not model-free since it is based on the assumptions behind the BS

model including and carrying some biases and limitations (see Black and Scholes, 1973; Hull, 2003).

The general trend in recent decades has been to develop and rely on model-free methodologies to

eliminate these biases. The necessity of increasing the volatility measure efficiency, eliminating biases,

assumptions and modelling risk had led to model-free volatility measure. This allows us to have a

common measure and proxy of volatility, useful and crucial especially in negative and turbulent times.

This measure is still based on the options market and, thus, based on forward looking information and

prices which can be extrapolated from it. Moreover, this measure is also free from every kind of model

constraints and assumptions (see Carr and Wu, 2006; Jiang and Tian, 2005)

Nowadays, the most important financial market volatility indicator is the VIX index. It was intro-

duced by the CBOE in 1993, in response to the 1987’ Black Monday, as a barometer of equity market

risk, well-known also as fear gauge and it is computed in a model-free manner from a bunch of S&P

500 options prices over a broad range of strike prices and by interpolating the two closest maturities

in order to reflect a maturity of 30-days (see Whaley, 2000). It is not only a measure of investor sen-

timent, but its importance for volatility forecasting, risk management, hedging strategies, measuring

uncertainty and financial stability is commonly recognized among academics and practitioners.

In the recent year, using this kind of approach for studying the implied volatility characteristics

and trends has become more common also in the financial literature. VIX is not only a measure of

perceived future volatility in the U.S., but also worldwide. Indeed, even though many other countries

started to follow the CBOE methodology to compute their own country/region volatility index2, the

CBOE VIX it still the most successful. The CBOE VIX is the most studied and used not only for

being the leading proponent of this kind of volatility benchmark, but also for the negotiations’ volume

and amount it represents. The CBOE working paper illustrate the VIX computational methodology in

details (see CBOE, 2009). The following formula is used to calculate the implied variance:

σ2
V IXj =

2

T

n∑
i=1

∆Ki

K2
i

erTQt(Ki)−
1

T

[
Ft
K0
− 1

]2
(2.2)

where i = 1, . . . , n marks the options strike price available on that specific date, T is the expiration

date, j is either (1) or (2), representing the near or far term, respectively, and Ft is the forward price of

2The same methodology, after the success of CBOE VIX index, is used in order to compute other volatility indexes around
the world: NASDAQ 100 volatility index (VXN) and DJIA volatility index (VXD), but also in Europe as, for instance, VSTOXX
for the EUREX Group, FTSE 100 IVI for the UK, among the others.
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S&P 500 calculated from the Put-Call parity as Ft = erT [c(K,T ) − p(K,T )] + K. K0 (Reference

Price) is the first exercise price less or equal to the forward level Ft (K0 ≤ Ft) and Ki is the strike

price of i - OTM option, which would be a call option if Ki > K0, a put option if Ki < K0 and the

average between call and put options if Ki = K0. r is the risk free rate with expiration T , and ∆(Ki)

is the sum divided by two of the two nearest strike prices to the exercise price K0. Equation (3.1) is

based on the variance swap approximation as shown by equation (3.2):

n∑
i=1

∆Ki

K2
i

erTQt(Ki) (2.3)

where Qt(Ki) is the price of a European call or put with a strike price respectively above or below K0,

the first strike price below F0. In the case Ki = K0, Qt(Ki) is equal to the average between an ATM

call and an ATM put, relative to that strike price. To calculate the expected variance, an adjustment

term is added to the expression in (3.2). This adjustment is required to convert in the money (ITM)

calls to out of the money (OTM) puts: 1
T

[
F0

K0
− 1
]2

. The VIX index is calculated by interpolating

the near term variance and the far term variance, σ2
V IX1

(T1) and σ2
V IX2

(T2). These are the closest

expirations to a 30 days average target in which monthly or weekly S&P 500 options are traded. The

aim of the VIX calculation is to better track the 30-days implied volatility in the equity market, an

aim easily achieved with the introduction of Weekly S&P 500 options since 2014. Weekly S&P 500

options selected must have an expiration of≥ 23 days,≤ 37 days. When monthly S&P 500 options are

selected, the first 3-months expirations are considered. VIX is calculated through the interpolation of

the first two months expirations, 1M and 2M. Where the first month is not available or less than 3 days

are left for its expiration, the selected month is rolled onto the next expiration, taking the 3M, since

if shorter the impact of volatility and volume can misdirect the computation. The VIX index always

reflects an interpolation of two points along the S&P 500 volatility term structure. The VIX index is

calculated as follows through equation (3.1):

V IXt = 100

√
365

30

[
T1σ2

V IX1

N2 − 30

N2 −N1
+ T2σ2

V IX2

30−N1

N2 −N1

]
(2.4)

The main motivation for the success of VIX appears to be, especially from the academic point of

view, the way in which it is calculated. Indeed, it is a model-free computation (see Britten-Jones and

Neuberger, 2000) that gives more flexibility and independence from the model approach so beloved to

the financial literature, and it is well-known for being more informative in comparison to other historical

or model-based approaches. Due to its innovation and success, extensive literature surrounding it has

been developed along the years, leading to a combined interest from academia and industry merged

together.

Figure 2.1 shows the CBOE VIX trend during the last 20 years. Noticeable is the sharp spike in
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2008 corresponding to the global financial crisis. Other two spikes occurred in October 1997 and in

October 1998. Evidence of volatility mean-reversion is found from the plot since in the aftermath of

each spike, the VIX index returned to its average and to more normal levels. Two other spikes are

found corresponding to the two stages of the Eurozone sovereign debt crisis in 2010 and 2012. More

recently, the VIX index appeared to react to the Chinese Yuan collapse and to the U.K. Brexit vote in

summer 2015 and summer 2016, respectively.

Figure 2.1: CBOE VIX

Notes: This plot illustrates the CBOE VIX index from 04-01-1996 to 29-12-2017, at daily frequency.

The clear negative relationship between VIX and S&P 500 has documented the literature (e.g.

Whaley, 2009; Vodenska and Chambers, 2013). Even though the closing levels of the VIX index and

S&P 500 index appear, most of the time, to spike in opposite directions, there are also times - being

rare - when they move together. A run-up in stock prices may be accompanied by a run-up in volatility.

This occurred for instance in January 1999 (i.e., investors were becoming more nervous) while the level

of the S&P 500 index was rising. The same pattern appears in June and July of 1997, and December

1999 (see Whaley, 2009). Clearly, investors can become nervous even during market advances. This

pattern will be further discussed in Chapter 3.

The seminal paper of Fleming et al. (1995) asserted that VIX represents a market-consensus es-

timate of future stock market volatility which offers to academics and practitioners an important new

source of information. Another important study about the success of the VIX index is the survey paper

from Gonzalez-Perez (2015). The study surveys all the research about VIX index and model-free up to

that point, their applications, limitations and further extensions. It also summarizes the main motivation
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for the success of the VIX index which appears to be, especially from the academic point of view, the

way in which it is calculated. Indeed, it is a model-free computation that, provided that an exhaustive

range of options prices is needed, gives more flexibility and independence from the model approach

commonly used in the financial literature. The main results that have arisen from this survey are the

three different categories in which the VIX literature can spread out:

• VIX as a market risk measure and benchmark.

• VIX as a financial product for hedging investors against market drops or volatility risk.

• VIX as an additional element and source of information in order to better estimate spot pricing

path, forecasting volatility and volatility risk premium and jumps.

On the first point, several studies have been focused on the reliability of this index starting from

the way in which it is computed. The VIX index, well known as the fear gauge represents the next

30-days future projection of the S&P 500 options prices implying that, when the investors feel market

danger, their options demand and supply request change; usually turbulent and volatile periods mean

enlargement of protective S&P 500 puts trading volume and price, increasing the index level (see

Whaley, 2000). Bollen and Whaley (2004) showed that the demand to buy out-of-the-money and at-

the-money S&P 500 puts is a key driver in the movement in S&P 500 implied volatility measures such

as VIX (see Section 2.2). VIX is also found to be important because it can affect banks and hedge

funds’ value-at-risk (VaR). Low volatility leads to low VaR, and high volatility leads to high VaR.

Brownlees and Gallo (2009) provides a detailed literature on the volatility measures comparison in

order to measure VaR.

Regarding the second category, since its introduction the necessity of VIX trading for both spec-

ulative and hedging purpose has always been urgent and in force. Due to this, the CBOE introduced

VIX Futures and VIX Options in 2004 and 2006, respectively. While before the benefits of using VIX

in equity portfolios were only theoretical (see Daigler and Rossi, 2006), ever since its introduction con-

crete strategies using VIX derivatives can be implemented. The CBOE volatility index becomes, then,

not only a proxy for the volatility level expected in the market but, also a useful asset that can be ex-

ploited in order to hedge equity portfolios against market drops and, furthermore, a source of additional

information regarding stock expected future returns, volatility paths or jumps and market sentiment.

Financial literature has been growing surrounding these new kinds of derivatives, especially focusing

on the hedging benefits they can add in equity portfolios when financial crisis and market drops occur

(see Rhoads, 2011; Szado, 2009; Stanescu and Tunaru, 2013).

Szado (2009) illustrated how having a position on VIX derivatives during the financial crisis could

have helped investors reduce their losses considerably. Best performance during those specific troubled

months would have been attributed to VIX options, due to their higher financial leverage compared
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to VIX Futures. Following the same path, Stanescu and Tunaru (2013) described how the usage of

VIX , but also VSTOXX Futures can be helpful for protecting investors’ equity position against equity

market drops, in a longer time frame extending and updating Szado (2009)’s time-frame, limited only

to the 2008’s crisis. Dawson and Staikouras (2009) studied how the trading of the newly set of volatility

derivatives has impacted the volatility of the underlying S&P 500 index finding a lower cash market

and cash market index volatility as well as a reduced impact of shocks to volatility.

The milestone behind the hedging properties of VIX derivatives is, clearly, due to the strong and

negative relationship between volatility and the equity market (see Whaley, 2009; Vodenska and Cham-

bers, 2013). This, indeed, holds on the well known negative relationship between volatility and current

and past stock returns. In other words, volatility tends to be higher when equity prices drop than when

equity prices increase. The traditional interpretation of this asymmetric relationship is the so-called

leverage effect. According to this explanation, a fall in equity prices would generally imply a rise

in firms’ leverage, and in turn raise the riskiness of a given stock. An alternative explanation relates

the negative correlation to changes in attitudes towards risk: since low volatility is associated with in-

creased willingness to take on risk, a low-volatility environment is likely to be accompanied by rising

asset valuations. While before the VIX derivatives introduction this negative correlation could have

been exploited only with the use of instruments such as volatility swaps (see Demeterfi et al., 1999),

now VIX derivatives give investors and portfolio managers an extra card to play.

A lot of studies have focused on the phenomenon of the negative asymmetric return volatility rela-

tionship, trying to find an explanation and a justification for it. Every innovation and positive change in

the volatility market is followed by a negative change in returns. Black (1976) asserted that the main

theory for explaining this asymmetric relation is due to the leverage effect: negative shocks in the mar-

ket impact on the firms’ leverage ratio, increasing it and, consequently, its risk and its volatility. Since

his seminal work other theories have been developed. For instance, another well-known hypothesis be-

hind the return-volatility relation is the volatility feedback theory (see Campbell and Hentschel, 1992):

the negative return-volatility relation, especially in the short term, is explained by traders’ expectation,

news in the market and dividends. Hibbert et al. (2008) proposed a behavioral explanation for the

asymmetry between return and volatility. They provide a study on the short-term relationship between

market volatility and market returns, considering S&P 500 , Nasdaq and their respective volatility in-

dexes, VIX and VXN. One interesting result that they found is that, by performing quantile analysis

there is strong evidence of an asymmetric relation related to extreme returns and volatility changes.

This stresses the point that tail events and implied volatility skewness are fundamental determinants of

the return-volatility relation.

Another important finding is the one of Dennis et al. (2006): they study the implied volatility and

return relationship considering both systematic and idiosyncratic volatility innovations. The asymmet-
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ric volatility behavior is more driven by the systematic innovations in comparison with the idiosyncratic

ones. The difference between relations in return -volatility at a single firm and index level has already

been developed in the literature (Bakshi et al., 2003); the results they have obtained are the same.

Moreover, they distinguish a strong form of asymmetric volatility when this relationship is driven by

a strong negative correlation, negative or positive return shocks imply increase or decrease in implied

volatility and a weak form where the strong negative correlation occurs only after having controlled for

the absolute return shock and volatility innovation.

On the third point, several studies have used the VIX index as a proxy for implied volatility and,

also, in order to better forecast future volatility (see Day and Lewis, 1992; Taylor et al., 2010; Wayne

et al., 2010).

2.1.3 Volatility Risk Premium

By comparing measures of implied and realized volatility, measures of volatility risk premium (VRP )

can be inferred. This premium can be thought of as the compensation demanded by investors for bearing

risk related to sharp changes in market volatility. In the most recent years, VIX has been commonly

used as a proxy for implied volatility in order to compute the risk premium. Thus, researchers have

often compared implied volatility (e.g. VIX ) with realised volatility over the same horizon. In the

financial literature two definitions of volatility risk premium can be found.

First of all, several studies talk about variance risk premium which is the squared measure of volatil-

ity risk premium computed by comparing implied variance and realized variance. The first common

definition of risk premium is as in Carr and Wu (2008), namely, as the difference between physical

(realized) and the risk neutral expectation of return variation extracted from options (implied):

V RPt = RV OLt − V IXt (2.5)

By applying this, variance risk premium is the difference between realized variance and implied

variance. Volatility risk premium is computed as the difference between realized volatility and implied

volatility. The same definition is applied in the most recent study by Kilic and Shaliastovich (2018).

Other studies have computed risk premia as a short position in a variance swap, namely, as the differ-

ence between risk neutral and physical expectations of returns (e.g. Bollerslev et al., 2009; Bekaert and

Hoerova, 2014; Feunou et al., 2017). According to Bekaert et al. (2013) the difference between implied

and projected realized volatility can be interpreted as a proxy for investors’ attitude towards risk.

When volatility spikes during stress episodes, investors’ attitude towards risk usually follows. In-

deed, investors are less willing to hold positions in risky assets or to provide insurance against asset

price changes. Papers, such as, Bollerslev et al. (2009), Bekaert and Hoerova (2014) and Feunou et al.
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(2017) found a measure of variance or volatility risk premium which is, most of the time, positive.

Implied variance of volatility measures are, overall, higher than the corresponding time-period realized

variance or volatility measures. Opposite results are found in studies by Carr and Wu (2008) or Kilic

and Shaliastovich (2018) in which the risk premium measures are computed as the difference between

physical and risk neutral measures, thus obtaining risk premia, most of the time negative. Some of

the aforementioned studies have also investigated the properties of risk premia to predict future stock

market returns (see Bollerslev et al., 2009; Kelly and Jiang, 2014; Feunou et al., 2017; Kilic and Shalias-

tovich, 2018). According to Bollerslev et al. (2009), the variance risk premium has predictive powers

for short-term stock returns, from three to six months, a finding also confirmed by Bekaert and Hoerova

(2014). More details on volatility risk premia will be provided in Chapter 3 in which the determinants

of risk premium measures will be investigated.

2.2 Volatility Measures Decomposition

This section illustrates a recent strand of literature with relation to the possibility of decomposing

volatility measures in order to improve the information content they carry both in asset pricing terms,

but also in financial stability terms. This represents the main motivation and core area of research to

which this thesis is anchored.

The importance of downside risk in the financial literature has been highlighted by Ang et al. (2006).

A growing area in the financial literature has begun to examine volatility in its different shapes and

components. For instance Beltratti and Morana (2006) decomposed volatility into one part associated

with structural break and one associated with long memory dynamics. Engle et al. (2013) decomposed

volatility into short and secular run components and Bekaert and Hoerova (2014) decomposed VIX into

a proxy for risk aversion and a proxy for uncertainty, suggesting that both components have a different

relationship to macroeconomics. Several studies have continued this line of research considering the

decomposition of volatility measures into upside and downside components.

The seminal paper, in this sense, is Barndorff-Nielsen et al. (2010) who decomposed realized

volatility into good and bad realized volatilities. The decomposition into good and bad components

for the realized volatility is achieved by taking only sums over positive returns or sums over negative

returns, indicated as RVOL+ and RVOL− , respectively:

RV OL+
t =

√√√√252

n

n∑
i=1

r2t,i1(rt,i>0) and RV OL−t =

√√√√252

n

n∑
i=1

r2t,i1(rt,i≤0), (2.6)

where ri = ln( Pt
Pt−1

) represents daily log returns computed from the price difference, with Pi repre-

senting the daily asset levels with i ∈ {1, . . . , n}. The upside semi-realized volatility considers only
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positive returns while the downside semi-realized volatility only negative returns. The good uncertainty

is associated with potential profits, representing what investors like, different from the bad uncertainty

associated with potential losses, representing what investors dislike (see Segal et al., 2015).

After this seminal study, many other papers followed. Segal et al. (2015) affirmed that the bad

volatility comprehends all the news can spread the market tension, decrease in the options’ underlying

value, decline in market productivity, unemployment, disinvestments and market depression. Con-

versely, good volatility regards news impacting underlying assets in a positive way, future growth,

investments and increase in production and consumption.

Several studies have begun to apply this decomposition to implied volatility measures. DeLisle et al.

(2014) introduced the possibility of VIX de-construction through a regression model. The regression

is built testing the percentage of daily VIX change on some different regressors, as the nature of the

options, call or put, the moneyness of the options, the expiration’s date, front month and next month,

and also the interaction between them. The result is that the total amount of VIX changes are driven

more by the downside volatility component in comparison to the upside volatility part. This is due to

the fact that because the S&P 500 puts are more expensive than the S&P 500 calls there is more demand

for puts especially during negative times (see Bondarenko, 2014). The options trading is well known

to be closely linked to investors’ sentiment (e.g. Buraschi and Jiltsov, 2006; Mixon, 2009).

The same evidence is highlighted by Fu et al. (2016): they decomposed the VIX index into two parts

affirming that information from OTM put options are more useful in order to predict future returns;

indeed, they capture information regarding the possibilities of downward movements in the equity

markets with the respective upward movements of volatility. The opposite is true for OTM call options.

In term of hedging strategies this means that investors in order to earn higher premiums should rely on

put options portfolios the most.

We anchor this thesis to this growing strand of research by decomposing the implied volatility index

into its upside and downside components. In implied volatility terms, we recognize that investors are

more willing to buy equity index put options for hedging purposes during negative times and crises

(see Bakshi et al., 2003; Bollen and Whaley, 2004; Bondarenko, 2014). We have applied the same

model-free decomposition separating information coming from S&P 500 puts and S&P 500 calls. We

define the downside volatility component, extracted from S&P 500 puts only, as VIX− , whereas the

upside volatility component, extracted from S&P 500 calls only, as VIX+ .

In order to compute the upside and downside components of the VIX , an adjustment is made to

equation (3.1), applying filters on the Ki term. For VIX+ only S&P 500 call options are considered

when Ki ≥ K0, and for VIX− only put options are considered when Ki ≤ K0. We define the first

options sub-sample with strike prices above the reference price as K+
i and the sub-sample below the

reference price as K−i . Substituting Ki in equation (3.1) with both K+
i and K−i provides the two
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respective near and far term upside and downside variances:

σ2
V IXjt

=
2

T

n∑
i=1

∆Kj
i

(Kj
i )2

erTQt(K
j
i )− 1

T

[
Ft
K0
− 1

]2
with j = + or − . (2.7)

Resultantly, the two implied volatility components VIX+ and VIX− are:

V IX+
t = 100

√
365

30

[
T1σ2

V IX+
1

N2 − 30

N2 −N1
+ T2σ2

V IX+
2

30−N1

N2 −N1

]
(2.8)

V IX−t = 100

√
365

30

[
T1σ2

V IX−1

N2 − 30

N2 −N1
+ T2σ2

V IX−2

30−N1

N2 −N1

]
(2.9)

Extracting volatility only from call options provides us with a proxy for upside implied volatility,

whereas extracting volatility only from put options provides a proxy for the downside implied measure.

While the downside VIX component is the one reflecting the real market fear from investors want

to hedge their portfolios, the upside component is the one can be considered as a volatility premium

which investors have to pay in order to enter in long VIX strategies but, basically, reflecting the part of

volatility is not dangerous for the long equity investors.

By considering model-free calculations, important are the study of Feunou et al. (2017) and Kilic

and Shaliastovich (2018), which in parallel to us, further extend this decomposition as to include volatil-

ity risk premium. By merging the two volatility measures, namely, realized and implied, these studies

decomposed volatility risk premium measures in their upside and downside components.

By following the definition of variance risk premium as in Carr and Wu (2008), namely, as the

difference between physical and risk neutral expectations of return variation, Kilic and Shaliastovich

(2018) found that the downside VRP is the main component of the variance risk premium. It is found

to be significant with a positive relationship with the equity premium, and showing superior ability

in explaining future excess returns compared to the aggregate and upside VRP . We compute the

volatility risk premium following their methodology by taking the difference between the upside and

downside physical measure of volatility (realized) and the corresponding upside and downside risk

neutral expectation of return variation extracted from options (implied):

V RP+
t = RV OL+

t − V IX+
t (2.10)

V RP−t = RV OL−t − V IX−t (2.11)

We find a measure of risk premium which is, most of the time, negative due to the way it is calcu-
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lated. Other papers, such as, Bollerslev et al. (2009), Bekaert and Hoerova (2014) and Feunou et al.

(2017) defined the variance risk premium as the difference between the risk neutral and physical ex-

pectations of return variation, finding a measure which is, most of the time, positive.

This volatility series decomposition methodology will be applied in Chapter 3 for the U.S. stock

market index. The methodology will be illustrated more in details therein. For the first time in the liter-

ature we link the decomposed volatility measures together with macroeconomic and financial variables

with the aim to find their main drivers. An extensive literature review on this topic and research gap is

illustrated in the next Section.

Motivated by the same intuition, this thesis will bring the implied moments decomposition a step

beyond by looking at the behaviour and characteristics of decomposed implied skewness (see Chapter

4), and lastly, for the first time in the literature, this methodology will be applied to U.S. individual

stocks in the financial sector and for implied volatility spillovers (see Chapter 5). Extensive literature

reviews about these topics are provided from Section 2.4 to 2.7 in this Chapter.

2.3 On the Stock Market and Volatility Determinants

This section encompasses the research that has been conducted on stock market returns and, especially,

stock market volatility determinants. Various studies have examined the link between stock market

returns and macroeconomic variables (see Miller et al., 1976; Fama and Schwert, 1977; Firth, 1979;

Chen et al., 1986; Poon and Taylor, 1991; Humpe and Macmillan, 2009) to name but a few. Chen

et al. (1986) recognized that macro variables had not been considered as a possible explanation of stock

returns and, found evidence of the importance of such variables in asset pricing. Chen et al. (1986)

investigated the reaction of stock market returns to economic state variables’ innovation that were

candidate to carry a reward for exposing investors to their risk. According to them, the co-movements

of asset prices suggest the presence of underlying exogenous influences, but we have not yet determined

which economic variables, if any, are responsible.

Poon and Taylor (1991) replicated the study of Chen et al. (1986) to the U.K. stock market. They

affirmed that the results and the relation between macroeconomics and stock market are slightly dif-

ferent from the ones found for U.S. market, especially in terms of risk premium, term structure and

inflation. Several countries and financial markets have been taken into account in this literature. Kumar

(2011) applied a causal relationship between macroeconomic variables and stock prices to the India

NSE Index, Nifty. Humpe and Macmillan (2009) detected a long-term positive relation between in-

dustrial production and stock market returns and a negative one between stock prices and both interest

rate and consumer price index for U.S. Similar results are found for Japan in the same study. Masuduz-

zaman (2012) investigated the long run relation between macroeconomic factors and stock returns for
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Table 2.1: Relationships from the Literature between Stock Market and Macroeconomics

Study Country Selected Macroeconomic Variables

IP INF UR TS
Lintner (1973) U.S. (-)*
Miller et al. (1976) U.S. (-)*
Fama and Schwert (1977) U.S. (-)*
Firth (1979) U.K. (+)*
Chen et al. (1986) U.S. (+)* (-) (-)
Poon and Taylor (1991) U.K. (+)* (-)* (-)*
Humpe and Macmillan (2009) U.S. (+)* (-)* (-)*

Notes: This table sums up, in chronological order, all the relations between stock market returns and selected
macroeconomic variables have been found in previous studies. The first column represents the authors and the
year of the paper, the second column the country of application for the study. The other columns are the macro-
variables selected for comparison. The table shows which was the sign of the relation between that specific macro
variable and the stock market returns. When a variable is market with * is meaning that it was found significant
in that study, the opposite when is not marked.

Germany and U.K.

Many studies have also investigated the movements in stock market volatility and their causes.

Black and Scholes (1973) asserted that changes in volatility are partly explained by the financial lever-

age effect. Shiller (1981) argued that the level of stock market volatility is too high to be explained

only by the variability of dividends. Officer (1973) and Schwert (1987) were among the seminal stud-

ies which started to relate changes in volatility with macroeconomic variables. Most of the time an

end-of-the-month monthly volatility from daily log-returns is considered when studied in relation to

macroeconomic variables (see Schwert, 1989).

Following these two seminal studies, macroeconomic variables began to be looked upon as pos-

sible determinants of volatility in many other empirical studies (see Cutler et al., 1989; Kandel and

Stambaugh, 1990; Whitelaw, 1994; Lettau et al., 2007; Diebold and Yilmaz, 2008; Engle and Rangel,

2008)3. Schwert (1989) examined the relationship between macroeconomics and stock market volatility

and found no significant evidence in the U.S. stock market. Cutler et al. (1989) argued that macroeco-

nomics explains only a fraction of volatility movements. A similar conclusion was reached by Morelli

(2002) for the U.K. financial market. These studies opened up a new strand of subsequent research on

the relationship between macroeconomic and stock market volatility. Focusing on the role of macroe-

conomic variables, Engle and Rangel (2008) found inflation and industrial production impacting on the

stock market volatility, while Diebold and Yilmaz (2008) provided evidence of a relationship between

stock market volatility and gross domestic product (GDP). However, the overall conclusion reached on

the relationship between stock market volatility and macroeconomic activity is by no means clear cut.

Table 2.1 shows a brief and concise survey about the relation between macroeconomics and stock

market returns for some of the most relevant studies. Table 2.2 depicts a brief survey about some of
3Among the others, Tanha et al. (2014) analyzed the relationship between macroeconomics announcements and implied

market volatility for the Australian stock index market. Khandaker and Islam (2015) investigated the impact of several macro
independent variables on the stock market volatility for both developed and emerging countries. Errunza and Hogan (1998) for
many countries in Europe.
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the most relevant studies on the relation between macroeconomics and volatility measures. Having in

mind the negative relationship between stock market returns and volatility can be useful to compare

the results in Table 2.1 and Table 2.2. The negative correlation between stock market returns and stock

market volatility is due to leverage effect (see Daigler and Rossi, 2006; Whaley, 2009; Vodenska and

Chambers, 2013). Lintner (1973), Miller et al. (1976) and Fama and Schwert (1977) found evidence

of a negative relation between stock market returns and inflation due to the positive relation between

stock market and real variables, determinant of the equity prices. According to Fama (1981), the

negative relation between inflation and real activity causes the negative relation between stock returns

and inflation. Inflation has, instead, a positive link with volatility (see Schwert, 1989).

Table 2.2: Relationships from the Literature between Volatility and Macroeconomics

Study Country Model Selected Macroeconomic Variables
GDP IP INF UR TS ER

Schwert (1989) U.S. 12th Autoregression (+) (+)
Liljeblom and Stenius (1997)** Finland 12th Autoregression (-) (+)*

GARCH(p,q) (-) (+)*
Errunza and Hogan (1998) U.S. GARCH(p,q) (+) (+)

Europe** GARCH(p,q) (+) (-)
Morelli (2002) UK GARCH(1,1), ARCH(1) (-) (+) (-)

Engle and Rangel (2008)** 48 Countries Spline-GARCH (+)* (+)* (+)* (-)
Diebold and Yilmaz (2008)** 40 Countries Autoregression (+)* (+)

Engle et al. (2013)** 50 Countries GARCH-MIDAS (-)* (+)*
Khandaker and Islam (2015)** 17 Countries Historical Vol. (-) (-) (+)

Notes: This table sums up, in a chronological order, all the relations between volatility market and some macroeconomic variables found in previous
studies. The first column lists the authors and the year of the paper, the second column the country considered in the study. The other columns are
the macro-variables selected in the studies. Mostly used in this branch of literature are inflation, GDP, term structure, exchange rates, unemployment
rate and industrial production. The table shows the sign of the relation between macro variables and volatility. (*) means that the variable was found
significant in that study. When the study is looking to several different countries or sub-periods (indicated by **) the sign of the variable’s coefficient
reported in here represents the sign of the relation that has been found for the majority of countries or for the total period.

Schwert (1989) found very little and not significant results about the relation between stock mar-

ket volatility and macroeconomics. With regards to other countries outside the U.S.; Liljeblom and

Stenius (1997) for Finland and Morelli (2002) for U.K. concluded that macroeconomic volatility, for

the variables they selected, failed to clearly explain the stock market volatility. While macroeconomics

has emerged to play a quite established role in influencing stock market returns and business cycle, the

same cannot be recorded, instead, for volatility market4. This trend is confirmed in Table 2.2.

Common finding in the literature, on the other hand, is the high dependence of stock market volatil-

ity to the business cycle or economic stage (see Koren and Tenreyro, 2007; Diebold and Yilmaz, 2008;

Bloom, 2014). Close and positive relation has also been found between volatility and developing or

emerging countries (see Engle and Rangel, 2008). Most of the time emerging countries exhibit higher

financial market volatility compared to the developed ones. Stock market volatility and risk aversion

increase with recession (see Officer, 1973; Schwert, 1989; Bloom, 2014).

The use of volatility measures such as ARCH and GARCH or implied market volatility through

Black-Scholes-Merton formula seems to be the common denominator in these studies. Many of them
4An alternative approach examines the effects of news or announcements on returns. See Cutler et al. (1989), Ederington and

Lee (1996) and Andersen et al. (2007) for some relevant studies.
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have been analyzing the macro-volatility link, most of the time, trying to find the best model to measure

volatility. Engle and Rangel (2008) studied the macro-volatility link using a Spline-GARCH model that

is able to smooth the high data frequency of volatility to be better compared and linked with the low

frequency macroeconomic data. In Spline-GARCH model (see Engle and Rangel, 2008) relaxed the

assumption of low frequency volatility mean reversion. The advantage is that the non-parametric ap-

proach allows the data to provide the functional determinants of low frequency volatility. For a compar-

ison between different volatility models having as inputs economics fundamentals, Engle et al. (2013)

provided an exhaustive survey. They are using a mixed data sample approach (GARCH-MIDAS) for

studying the same macro-volatility link.

Thus, linking this Section with Section 2.1.1, we briefly discuss a common problem in the literature

when it comes to understanding the main drivers of volatility. The issue is the so called volatility

modelling and it is well recognized in the model risk literature (see Engle and Rangel, 2008; Daníelsson

et al., 2016; Jokivuolle and Tunaru, 2017). When we are interested in analyzing the main determinants

of volatility and the latter is computed by financial models, the relationship appears to be, most of the

time, unclear and not unique. The identification of the determinants of volatility is highly sensitive to

the method used to measure volatility, often referred to as the volatility modelling problem.

The number of models that have been developed to predict volatility based on time series information is

astronomical, but the models that incorporate economic variables are hard to find. (Engle and Rangel,

2008).

The econometric model choice, variables and market period selection increases the uncertainty

and subjectivity of volatility determinant analysis (see Beltratti and Morana, 2006). In many of the

studies highlighted in Table 2.2, macro-variables show no or low significance in explaining equity

volatility. We could advocate two possible explanations. Firstly, model construction and choices behind

the conditional variance computation might lead to approximations and errors, thereby making the

overall relationship uncertain, and secondly, it may be that macroeconomics is not the correct place to

look when attempting to explain the key determinants of volatility (Cutler et al., 1989). Beltratti and

Morana (2006) affirmed that the picture around the stock return volatility’ causes is cloudy. Financial

market periods shifting between tranquil and turbulent periods and presence of structural breaks make

the relation between volatility and macroeconomic variables even trickier.

In this thesis and especially in Chapter 3 we try to overcome this volatility modelling problem by

working only with model-free volatility measures extracted by asset prices as well as from options.

This thesis aims to shed new light on the identification of the potential determinants of asymmetric

volatility and risk premium, and to contribute to different strands of literature by taking into account a

new set of variables, which include both macroeconomic and financial variables (see Chapter 3).
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2.4 Higher Risk Neutral Moments

In addition to volatility measures, we extend in this section the discussion about other implied moments,

namely, skewness and kurtosis. In the last decades, an extensive amount of literature has been studying

the importance of higher risk neutral moments, especially skewness, in order to better understand and

predict future stock returns, options pricing, portfolio selections and hedging strategies implementation.

The seminal paper, of pivotal importance in this thesis and common to the majority of the stud-

ies on higher moments is Bakshi et al. (2003). They show how to link and extract information about

volatility, skewness and kurtosis from the options market in a model-free manner. Like the physi-

cal density, the risk-neutral density has first, second, third, and fourth moments, respectively, mean,

variance, skewness, and kurtosis. All densities can be extracted from options for a given horizon. To

estimate the higher moments of the (risk-neutral) density function they rely on the results of Bakshi and

Madan (2000) showing that any payoff to a security can be constructed and priced using a set of option

prices with different strike prices on that security. More details on the Bakshi et al. (2003) (BKM)

methodology will be provided in Chapter 4.

By using the same model-free methodology, Mitton and Vorkink (2007) linked the higher risk

neutral moments literature to the asset prices and portfolio management areas. Hansis et al. (2010)

stressed the fact that higher risk neutral moments of stocks return are important for investors, especially

when calculated from options. In fact, options carry forward looking information, the most recent

information about return distributions that are available in the market. Bali et al. (2019) showed that

ex-ante measures of volatility, skewness, and kurtosis implied from stock option prices are positively

related to the cross section of ex-ante expected stock returns.

Conrad et al. (2013) investigated the relations between risk-neutral higher moments and subsequent

returns by focusing on the role of co-moments with the market portfolio. They measured co-moments

using the approaches of Bakshi et al. (2003) and Harvey and Siddique (2000) and they subsequently

decomposed total moments into co-moments, such as co-skewness, and idiosyncratic moments. For

instance, Harvey and Siddique (2000) proposed an asset pricing model where skewness is priced. They

included skewness measures in the asset pricing framework: if a systematic skew risk affects the asset

returns, it should be incorporated as a compensation of accepting this risk in the CAPM. Basically,

everything being equal, investors prefer portfolios that are more right skewed; assets more left skewed

are less desirable and more risky; they, indeed, command higher expected return. On the other hand,

assets making portfolio’s return more right skewed command lower expected return. In order to find

a measure of the relationship among the assets in the portfolio with each other and with the portfolio

itself they introduced a measure of co-skewness. It measures how much two assets change together in

response to extreme events. Co-skewness is related to skewness as covariance is related to variance.

They define co-skewness as the component of an asset’s skewness related to the market portfolio’s
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skewness. Adding an asset with negative co-skewness to a portfolio makes the resultant portfolio more

negatively skewed.

A vast strand of literature started to consider implied model-free higher risk neutral moments since

they can increase the accuracy of their estimation compared to the historical higher moments in reflect-

ing future asset prices (see Han, 2008; Hansis et al., 2010; Rehman and Vilkov, 2012). The study of

Liu (2016) is an exhaustive survey paper in this instance since it clearly explained two different ways

in which skewness is calculated:

• Raw Approach: Applied by Dennis and Mayhew (2002), Conrad et al. (2013) and Bali and

Murray (2013). They basically used the data as they are, without filtering or modification. The

aim of the first work was to better understand the relationship between skew and other various

factors in the stock prices, such as leverage, β, size, trading volume and put-call volume ratio.

They found that skew is more negative in periods of high market volatility. Size and trading

volume are significant factors in explaining skew changes, the opposite is true for leverage and

put-call ratio. They also confirmed that skew for index options tends to be more negative than

skew for individual stock options.

• Smooth Approach: On the other hand two different kinds of smooth approaches are highlighted:

data interpolation, where an interpolation between OTM puts with lowest strike and OTM calls

with highest strike is applied. This method is followed, among others, by Hansis et al. (2010).

They used interpolation because they underlined the limit in Bakshi et al. (2003) about the con-

tinuum of available strike prices, limit range of option prices. The other technique is the data

extrapolation between the highest and lowest strike prices.

Other methodology that could be applied in order to calculate the skew, different from BKM, is

the non-parametric approach used for instance by Xing et al. (2010) and Mixon (2011). Xing et al.

(2010) affirmed that option implied volatility smirk has a predictive power for future equity returns. In

this thesis, we apply the first approach, following Dennis and Mayhew (2002). Once that the higher

risk neutral moments are computed, precious information can be extracted from them in term of asset

pricing, portfolio theory and predictability.

Interesting is also the relation between skewness and diversification. Related to the relationship be-

tween individual firm skewness and aggregate level skewness, Albuquerque (2012) provided an unified

theory on the firm level positive skewness due to firm announcement events. He defined the skewness

of a portfolio returns as the sum of firm level returns skewness and co-skewness terms5. Co-skewness

can be, additionally, seen as the correspondent concept of portfolio covariance: how much the port-

folio assets’ returns are changing in relation of other tail events for the other assets in the portfolio

5Portfolio skewness is defined as: PortfolioSkewness =
∑n
i=1 wiSkewi +

∑n
i=1

∑n
j=1 wiwjCo− Skewnessi,j .
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(see Harvey and Siddique, 2000). Co-skewness terms, according to Albuquerque (2012) captured the

co-movements in one asset conditional to the other assets’ reaction to extreme events. Co-skewness

will be negative when, on average, a low return of one stock will coincide with high return volatility

in the portfolio of remaining stocks. According to Mitton and Vorkink (2007), portfolio returns of

under-diversified investors are more positively skewed than those of diversified investors. They affirm

how diversification is a two-edged sword for investors: it eliminates undesired variance in return dis-

tribution, but also eliminates desired skewness. There is then a clear trade-off between skewness and

diversification. Christoffersen et al. (2013) not only surveyed the available methods in order to extract

forward looking information from option markets, but explain also how the extracted information can

be used for forecasting purposes.

Table 2.3 reports a summary of the main skewness and skew measures proposed in the literature in

a chronological order. Some of them will be described more in depth in Chapter 4.

Table 2.3: Skewness Measures Proposed in the Literature

Study Measure Model/Approach Journal

Kraus and Litzenberger (1976) Probability Distribution Model-Based JF
Harvey and Siddique (2000) Conditional Skewness Model-Based JF
Dennis and Mayhew (2002) Risk-Neutral Skewness Model-free and Raw Approach JFQA
Bakshi et al. (2003) (BKM) Risk-Neutral Skewness Model-free measure extracted from stock options RFS

Jiang and Tian (2005) Risk-Neutral Skewness Smooth Approach, Cubic Spline Interpolation JD
Mitton and Vorkink (2007) Idiosyncratic Skew Model-Based RFS

Han (2008) Risk-Neutral Skewness Model-free and Raw Approach RFS
Hansis et al. (2010) Risk-Neutral Skewness Smooth Approach, Cubic Spline Interpolation WP
Xing et al. (2010) Risk-Neutral Skewness Non-Parametric Approach JFQA

CBOE (2011) The SKEW Index Model-free Approach based on BKM CBOE WP
Mixon (2011) Risk-Neutral Skewness Non-Parametric Approach JD

Neuberger (2012) Realized Skewness Model-free from high-frequency returns RFS
Rehman and Vilkov (2012) Risk-Neutral Skewness Model-free and BKM Smooth Approach WP

Conrad et al. (2013) Risk-Neutral Skewness Model-free and BKM Raw Approach JF
Bali and Murray (2013) Risk-Neutral Skewness Model-free and Raw Approach JFQA

Chang et al. (2013) Risk-Neutral Skewness Model-Free from Options JFE
Amaya et al. (2015) Ex-Post Realized Skewness Model-free from intra-daily stock returns JFE

Notes: This table summarizes the main skewness measures proposed in the literature so far in a chronological order. We specify the authors, a brief
description of the measure, the model or approach used, and the journals as follows: JF = Journal of Finance, RFS = Review of Financial Studies, JFE
= Journal of Financial Economics, JFQA = Journal of Financial and Quantitative Analysis, JD = Journal of Derivatives, CBOE WP = CBOE Working
Paper, WP = Working Paper.

Several papers also studied the options implied kurtosis next to the implied second and third mo-

ments; Bakshi et al. (2003); Xing et al. (2010); Conrad et al. (2013); Bali et al. (2019). Conrad et al.

(2013) found that individual securities’ risk-neutral volatility, skewness and kurtosis are related to fu-

ture returns. Kurtosis is, most of the time, found to be positively related with future stock returns.

However, when controlling for both volatility and skewness, the kurtosis effect does not appear to be

stable. Bakshi et al. (2003) also found that the risk-neutral kurtosis is empirically not significant.

In this thesis we will focus only on the first two implied moments (volatility and skewness), since

the role of kurtosis in asset pricing and portfolio allocation has been found to be less robust compared to

the risk neutral skewness and it is beyond the scope of this research6. We mainly focus in this thesis on

6Preliminary exercises have tested the role of implied kurtosis into, first a Granger causality analysis and, second, into asset
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the role of the implied skewness, well known in the financial literature to be a proxy for measuring tail

risk. The tail risk literature and the higher risk neutral measure literature are getting closer, intertwining

each other so as to better support the source of information contained in the implied volatility indexes,

completing and better explaining the overall risk in the financial market. Further discussion and findings

on the higher risk neutral moments will be provided in Chapter 4.

2.5 Tail Risk Measures

In light of the recent years’ events and turbulent financial events a strand of the literature has begun

to look for additional risk measures that can support the VIX index during these times. For instance,

Du and Kapadia (2014) pointed out that the volatility indexes under-estimate the real stock market

volatility when the period is bearish and jumpy and when outliers occur. After Black Monday, 1987,

the fear of other crashes led to a higher weighting for events in the left side of equity return distributions.

Furthermore, the 2008’ financial crisis has accentuated even more the interest in tail events and outliers.

Private and institutional investors’ consideration about tail events has increased7.

The general trend seems that the possibility of these outliers occurring is still under-estimated, (see

Taleb, 2007). In addition, Barberis (2013) advocated that people over-estimate extreme events when

they have a suitable set of information or the memory of some similar event is fresher in their mind.

Recent financial crisis seem to be carved in the investors’ memory. However, not all the crises are the

same nor may they happen for the same reasons. When the information set is limited or when similar

tail events have never taken place before, investors underestimate their likelihood. The same behaviour

seems to be reflected in financial markets and in the volatility indexes supposed to capture the general

market fear (see Whaley, 2000).

Thus, if the volatility indexes are not able to capture this additional sources of risk, a new benchmark

ought to be developed. In brief, many new measures have been proposed that can be useful in order to

extract some additional information about this potential missing risk extracted, mainly, from the equity

market. Several other studies have proposed tail risk measures for capturing financial market risk, in

addition to the source of information included in the VIX index. Noteworthy the studies of (Bollerslev

and Todorov, 2011; Du and Kapadia, 2014; Kelly and Jiang, 2014; Zhen and Zhang, 2014; Bollerslev

et al., 2015; Almeida et al., 2017).

Bollerslev and Todorov (2011) estimated the Investor Fears Index (FI). By using high-frequency

pricing framework. We confirmed the non-significance of the implied kurtosis, calculated following Bakshi et al. (2003) in
predicting other implied moments as well as in predicting future stock market returns. This results are in line with Bakshi et al.
(2003) and CBOE (2011).

7According to a SSgA survey together with EIU (Economist Intelligence Unit) a survey reveals that 71% of Institutional
Investors believe that a significant tail risk event will occur in the next year. This survey shows how tail risk possibility is
always underestimated, but, due to the growing occurrence of these kind of events recently, institutional investors are becom-
ing more sensitive to this phenomenon. For further details: http://newsroom.statestreet.com/press-release/state-street-global-
advisors/ssga-report-highlights-continued-concerns-about-tail-risk.
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intra-day data, they estimate expected jump tails in the market and relate them to the corresponding

variance jump risk premium. It is the premium the investors want to receive for bearing jump tail risk.

Also, investors will require a time-varying compensation for bearing disaster risk and fear. They, ad-

ditionally, decompose this variance jump risk premium into its positive and negative components. The

magnitude of the latter is, as expected, bigger. From this decomposition they interpret the difference

between the downside VRP and the upside VRP as a measure of investor fear (FI). Their findings are

that large variance jump risk premium is translated in a compensation for jump tail risk, where the

investor (FI) plays a crucial role in explaining the magnitude of the variance jump tail risk. Research

surrounding risk neutral higher moments and tail risk is more than alive.

The study of the risk neutral third moment can enrich the set of information traders and investors

can have in order to implement their investment decisions and strategies. Among the papers have been

tried to propose a tail risk measure, Du and Kapadia (2014) provided the construction of a Jump and Tail

Index (JTIX) based on the previous assumption of VIX inadequacy to model and capture information

from the tails. This new index of extreme fear is capable of measuring time variations in jump intensity

and it derives from high moments as skewness and kurtosis of returns and jumps distribution. This

index can be replicated by a short position in an options portfolio of risk reversal – an option position

of short OTM puts and long OTM calls. Bollerslev et al. (2015) separated components of the variance

risk premium, namely price fluctuations and jump tail risk with the latter found to improve the return

predictability.

Taking a different approach by working with returns at the firm level Kelly and Jiang (2014) de-

veloped a measure of tail risk called TAIL Index. The measure they proposed is based on returns for

individual stocks where the tail distribution is modelled with a time varying power law. Basically, each

month they compute common time varying λt applying Hill’s power law in order to set the daily data

for all the considered stocks monthly. Higher the λt, fatter the tail of the distributions and higher the

probabilities of extreme events. They base their dynamic index on the assumption that even if different

firms are subjected to different risk, they can be aggregated in a single process, assuming similarity in

risk dynamics. The relation between tail risk and individual stock returns is positive. This is coherent

with the fact that the grater the tail risk the greater will be the investors’ required returns. Investors are

in this sense tail risk averse. The TAIL Index is found to also have a strong predictive power for future

market returns. A similar approach in Almeida et al. (2017) considered a tail risk measure based on

cross-sectional portfolio returns’ expected shortfall (ES). Recently, Andersen et al. (2019) studied the

pricing of tail risk in index options in international equity markets finding that the risk premium asso-

ciated with negative tail events is unrelated to volatility, and that tail risk premium is a strong predictor

of future returns.

In addition to these studies, the same CBOE introduced a SKEW index as a benchmark providing
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additional market risk information (see CBOE, 2011). It is computed from S&P 500 options following

the methodology outlined by Bakshi et al. (2003) (BKM). As discussed in 2.4, tail risk literature and

higher risk neutral moments literature are getting closer. The importance of higher moments, especially

skewness, has started to be drawn close to market tail risk measures. The SKEW index can be an

additional source of information where the VIX cannot access. The SKEW index measures the slope

of S&P 500 implied volatility options prices, that since 1987, seems to show this clear skew curve, as

apposed to smiling as in the past8. The steeper this curve, the higher will be the SKEW index.

The skewness level has increased in recent years, after the financial crisis: options traders expect

an higher tail risk. Remarkable the fact that, even if calculated from the same S&P 500 options, the

two indexes have low, even if positive, correlation and often they carry different information and they

perceive different market sentiments. When VIX spikes, SKEW remains on its average and vice-versa.

They show an interesting relationship especially during outliers when they carry even more distinct

information. Scatter plots between VIX and SKEW during a 20-years time period and during shorter

turbulent times are shown in Figure 2.2 and 2.3, respectively. Thus, the SKEW index encapsulates

different information than the corresponding VIX index. While the VIX is the market fear gauge,

closer to the likely, it is the SKEW measure that is the extreme market fear gauge, closer to the unlikely.

Figure 2.2: VIX vs. SKEW Scatter Plot

Notes: This scatter plot illustrates the relationship between VIX and SKEW . It shows that the information provided by the
volatility and skew indexes are different, especially during outliers. The selected period goes from 04-01-1996 to 30-09-2016, at
daily frequency.

8The implied volatility of OTM S&P 500 puts options is considerably higher than the implied volatility of the OTM S&P 500
calls options resulting in this skew.
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Figure 2.3: VIX VERSUS SKEW Scatter Plot in Turbulent Times

Notes: This scatter plot illustrates the relationship between VIX and SKEW during the financial crisis (left figure) and dot-com
bubble (right figure). It shows that the information provided by the volatility and skew indexes are different, especially during
outliers and the relations between the two indexes weaker. The selected period goes from 02-07-2007 to 31-03-2009 for the
financial crisis and from 01-07-1998 to 31-12-2001 for the dot-com bubble, at daily frequency.

Another measure from the CBOE that has been proposed close to the tail risk concept is the VVIX

Index. It is the CBOE index of volatility of volatility, calculated applying the same VIX methodology

to a wide range of OTM VIX options9. In fact, according to Park (2015), the volatility of the stochastic

volatility could be a different way in order to measure the tail risk. The author affirms that this index

is more reliable than VIX in order to explain and measure market extreme events risk because it is a

mixture of volatility of volatility risk and also volatility jump risk.

More recently, Kaeck (2017) has studied the variance-of-variance risk premium (VVP) as the differ-

ence between the ex-ante risk-neutral variance extracted from options and the ex post realized variance

of the VIX index. He provided evidence on the risk premia that investors require in relation to the

changes in the VIX index over time. In other words the investors are exposed to the vol-of-vol (VVIX)

risk, thus demanding a premium.

Among all the literature about tail risk and extreme events measures, another important study is

Wang and Daigler (2012). In their work both the CBOE SKEW and also CBOE VVIX were considered

and linked together. According to them the BKM measure of SKEW represents an estimation of Black

Swan or tail risk in the market and VVIX represents a measure of volatility of volatility, or better fear

of fear in the market. More details on these tail risk measures as well as additional commentary will be

discussed in Chapter 4.

9For further information: http://www.cboe.com/micro/vvix/

37



2.6 Market Sentiment

We provide here, some background on the market sentiment literature with relation to higher risk neutral

moments, volatility, skewness and market risk measures.

Shiller (1989) posed the following question: Can we trace the source of movements back in a logical

manner to fundamental shocks affecting the economy, the shocks to technology, to consumer prefer-

ences, to demographics, to natural resources, to monetary policy or other instruments of government

control? Or are price movements due to changes in opinion or psychology, that is, changes in con-

fidence, speculative enthusiasm or other aspects of the world-view of investors, shocks that are best

thought of as coming ultimately from people’s mind? The answer is – still – not well established.

In his book Shiller (2000) argued that "the market is not well anchored by fundamentals". Most

of the time, the exuberance that moves the traders’ choices is seen as speculative activity. Baker and

Wurgler (2000) asserted how the presence of investor sentiment is actually impacting on stock prices

and suggested that market sentiment is close as a definition to the propensity of market speculation.

It is not easy to define what speculation is (see Szado, 2011), although there is a lot of literature

explaining anomalies, greed and overconfidence in the market. Han (2008) confirmed that there is a link

between higher risk neutral moments and market sentiment. Exploring the relationship between market

sentiment and S&P 500 options prices, his findings are the following: when the investor sentiment is

bearish the index option volatility smile is steeper and the risk neutral skewness is more negative. On

the other hand, when the investor sentiment is bullish the volatility smile will be flatter and the risk

neutral skewness less negative. Thus, the market sentiment affects the price of the equity index options

changing the price of market volatility and market skewness. This thesis aims to contribute to this area

of research (see Chapter 4).

Starting from this assumption, the SKEW index proxy in the literature for tail risk might actually

reflect different investors classes and expectations given the fact that it is computed from equity index

calls and puts. This represents the main motivation behind Chapter 4 which we try to investigate further.

The same relationship between skew and market sentiment is tested by Dennis and Mayhew (2002).

The assumption they tested is that there should be a significant relationship between skew and put-call

ratio due to the fact that, assuming it is a sentiment proxy, more puts volume indicates pessimism.

Especially in pessimistic market times, skew should be more negative. Demand for OTM puts is higher

and increases the price of low strike options, or deep OTM puts. According to Pan (2002), investors

tend to choose OTM equity puts to express their concern about possible negative market trends. Thus,

OTM puts become more expensive inflating the negative part of volatility and skewness indexes which

may be influenced by pessimistic traders driving up prices for bad states. Dennis and Strickland (2002)
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stated that when markets are volatile it is institutions not individuals who are selling when prices move

lower and buying when prices move higher.

Seo and Kim (2015) stressed the importance of market sentiment in playing a role for a better

forecasting activity regarding option market, stock market, their distributions and moments. In fact,

they affirmed that market sentiment can help to better predict implied market volatility and skew. More

specifically, risk neutral skewness has better predictive power during high sentiment market periods.

A large number of traders participate in the stock market impacting on the options and stock prices.

Along this path, Andreou et al. (2016) explored the dynamic and cause of dispersion in options traders’

expectations about future stock returns. In a nutshell, they link the dispersion measure to the different

options volume in all the options range, across moneyness levels. A low dispersion index implies

similar traders views on the future stocks return; conversely, high level of dispersion indicates different

opinions and stock returns expectations. Their assumption is that the traders expectations about future

stock returns are basically mirrored and reflected in the moneyness level at which they trade. According

to them, an optimistic market view can be illustrated from long OTM Call and short ITM put trading.

On the other hand, a pessimistic market view is given by long OTM puts and short ITM calls. A

part from this assumption, then, in practice, the dispersion level is separated from the risk neutral

distribution extracted from options prices as in our case. In their final section, as a robustness check,

they compare the dispersion level with option implied measures, such as, slope from Xing et al. (2010),

hedging pressure (HP) in the index options market, Put-Call Ratio and risk neutral moments (VIX ,

skewness and kurtosis). The evidence shows that these measures are quite different from the dispersion

level is that they do not have significant impact on it, especially after a short period of time.

Lemmon and Ni (2008) found that investors’ sentiment has a greater impact on the speculative de-

mand in comparison to the hedging demand, that is, most of the time, invariant to market sentiment.

According to them, market sentiment can be seen as the totality of investors’ beliefs, unrelated to fun-

damentals. Indeed, they separated the Positive Exposure Demand, (PD) for S&P 500 puts, considering

it a proxy for hedging market demand, and the PD for S&P 500 Calls and also single stocks Calls and

puts as a proxy for speculative demand. The same intuition has been found in Andreou et al. (2016):

optimistic traders’ expectation can be revealed in OTM calls trading; vice-versa negative views about

assets’ future returns would be either revealed from OTM long puts or OTM short calls. The side con-

cerning OTM calls seems to be the one related to market sentiment. It has little impact on equity index

options price because it is carried only by the calls side. Less volume, trading activity and marginal

contribution for the call side is found for equity index, the opposite is true when individual stocks are

considered. Results from Chapter 4 and Chapter 5 will confirm these assumptions.
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2.7 Volatility Spillovers Literature

In this section, we focus on the literature about volatility contagion in the financial markets. Diebold

and Yılmaz (2014) coined the term connectedness which is nowadays commonly used in the literature

to refer to how variables in a system are connected. They introduced the term connectedness in replace-

ment of volatility spillovers or contagion. In this thesis we use the three concepts without difference in

meaning and all will refer to measures of interdependence among variables in the system.

The methodological framework for measuring connectedness both in returns and also in volatility

is anchored in the financial connectedness literature spanned by the seminal papers by Diebold and Yil-

maz (2009, 2012); Diebold and Yılmaz (2014). Diebold and Yilmaz (2009) firstly provided a measure

of interdependence of both asset returns and volatilities for 19 global equity markets. They found that

while the returns spillovers plot is uneventful displaying gentle increases, the volatility spillovers plot

ranges widely and it responds to economic events worldwide. Diebold and Yilmaz (2012) followed up

on this topic focusing only on assets volatility spillovers. By using a forecast error variance decomposi-

tion framework invariant to variable ordering they were able to measure both total and also directional

volatility spillovers of U.S. stocks, bonds, foreign exchange and commodities markets. Main findings

showed how the volatility spillovers increased after the global financial crisis with spillovers going

from the stock market to the other markets. Diebold and Yılmaz (2014) focused on the U.S. financial

sector stocks volatilities. They provided measures of connectedness which they argued can be closely

related to measures of systemic risk as well as network theory. We will expand these concepts more in

details in Chapter 5.

The literature studying assets return contagion is vast (see Bae et al., 2003; Syriopoulos, 2004;

Voronkova, 2004; Diebold and Yilmaz, 2009; Bekaert et al., 2014; Diebold and Yilmaz, 2015). How-

ever, according to Diebold and Yilmaz (2015), it is better to look at volatility spillovers, first, because

they tracks investor fear which connectedness provides an idea about the fear connectedness by mar-

ket participants and, second, because volatility connectedness is of interest when studying economic,

financial and political events which might potentially increase the level of countries’ uncertainty. Thus,

in this thesis we focus mainly on volatility spillovers. See also Gagnon and Karolyi (2006) for an

excellent survey of both return and volatility contagion.

2.7.1 Volatility Spillovers Methodology: GARCH Models vs. Diebold and Yil-

maz (2009)

The methodology commonly used to assess the presence of volatility spillovers is based on multivariate

GARCH models (see Pericoli and Sbracia, 2003). More specifically, among them the most common are

the BEKK-GARCH by Engle (1995), the DCC-GARCH by Engle (2002) and the ADCC by Cappiello
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et al. (2006) which looks at asymmetric effect in conditional correlation. However, these models do

not provide the same set of dynamic and directional connectedness information and their specifications

might suffer from the curse of dimensionality. Due to the reduced flexibility of these models limit-

ing their scope for some specific application, many more recent studies opt for the application of the

Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012) methodology. The choice is dictated by

the fact that a more appropriate and flexible modelling framework is needed when the research aim is

to study asymmetric behaviours of volatility spillovers, directional volatility spillovers net receivers or

transmitters and pairwise spillovers. This methodology is even more in need when different measures

of volatility want to be tested in contagion framework (e.g. realized volatilities, implied volatilities).

These are some of the main reasons why a forecast error variance decomposition (FEVD) framework

by Diebold and Yilmaz (2012) will be considered also in this thesis instead of more structured volatility

models (see Chapter 5).

Firstly, studies on volatility spillovers focused on the importance of the U.S. in influencing other

markets (see Bae and Karolyi, 1994; Karolyi and Stulz, 1996). Subsequently, other studies have started

to look at volatility spillovers not only from the U.S., but also regional markets and worldwide shocks.

Liu and Pan (1997) studied the mean return and volatility spillovers from the U.S. and Japan to four

Asian stock markets, namely, Hong Kong, Singapore, Taiwan, and Thailand finding that the U.S. market

is more influential than the Japanese market in transmitting returns and volatilities to the four Asian

markets. In a similar way, Ng (2000) examined the volatility spillovers from Japan and the U.S. to six

Pacific–Basin equity markets finding significant spillovers from the region to many of the Pacific–Basin

countries. Baele (2005) investigated volatility spillovers between the U.S. and Western Europe region,

instead. By using a regime-switching model the main findings showed that both the EU and U.S. shock

spillovers increased over the 1980s and 1990s. Trade integration, equity market development, and low

inflation played an important role. Evidence for contagion from the U.S. market to local European

equity markets was found. Engle et al. (2012) modelled the interdependence of equity market volatility

in eight East Asian countries before, during, and after the Asian currency crisis.

With regards to the European countries selection, for instance, Savva and Aslanidis (2010) found

that the integration between Eastern European countries and Eurozone has increased following the

accession to the EU with stronger evidence for Czech and Polish markets which are more correlated

to the Eurozone than to the U.S. Syllignakis and Kouretas (2011) found an increase in the conditional

correlation coefficients among countries such as Germany, U.S. and Russia together with CEE countries

due to and after the financial crisis. A reason why the study of these developing CEE countries next to

the developed European countries deserves further analysis, especially when a more recent market time

period is taken into account. By using conditional volatility measures, how the asymmetric behaviour

of volatility is transmitted in its spillovers effect has been also studied under its volatility leverage
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effect (see Gjika and Horvath, 2013; Clements et al., 2015). Gjika and Horvath (2013) applying an

asymmetric DCC model, found that conditional variances and correlations increases during volatile

periods and crisis in the central European stock market, decreasing diversification opportunities. This

is also confirmed by Reboredo et al. (2015) examining more specifically the co-integration among the

CEE stock markets themselves using dynamic copulas. Overall, an increase in dynamic correlations is

commonly found during crisis period (see Bekaert et al., 2014; Horváth et al., 2017).

Another general trend in the volatility spillovers literature is that, most of the time, an unilateral

volatility spillovers effect from mature financial markets to the emerging markets is found, while small

markets do not affect bigger markets significantly. Scheicher (2001) found that the emerging CEE

stock markets are influenced by Central European and developed financial markets, but there is also

a regional and local integration among the CEE countries. Bhar and Nikolova (2009) found, using a

bivariate EGARCH model, that India has the highest level of integration within the BRIC countries

with a negative relation with Asia-Pacific region countries opening up to portfolio diversification op-

portunities. Beirne and Fratzscher (2013) measured volatility spillovers from mature to emerging stock

markets by applying a tri-variate GARCH-BEKK model which takes into account conditional correla-

tions between mature and emerging market returns. Most of the time, mature market volatility affects

conditional variances in many emerging markets with conditional correlations between local and mature

markets increasing during turbulent episodes. Using a two stages GARCH-M models, Moon and Yu

(2010) detected volatility spillovers from the U.S. S&P 500 to the Chinese Shanghai Stock Exchange

index. On the same line, Le et al. (2010) found volatility spillovers effects from the U.S. and China to

emerging markets as Indonesia and Malaysia. Using VARGARCH(1,1)-in-mean model, Caporale and

Spagnolo (2011) found that volatility spillovers from Russia and UK impact on CEE countries stock

market volatilities, but there is no linkage in the opposite way. The same leading role of the U.S. is

found by Elyasiani et al. (2015) who applied a VAR-BEKK model in order to study the volatility (and

return) connectedness among U.S., U.K., EU and Japanese banks and insures during the pre-crisis and

crisis period. They found that the spillovers effect strengthened during the crisis.

Rather than multivariate GARCH models, recently, the main methodology in order to study volatil-

ity spillovers or connectedness relies on Diebold and Yilmaz (2009, 2012). They proposed a spillovers

index based on forecast error variance decomposition. The second version of the index manages to

capture also the volatility spillovers directions since the variables are ordering invariant. By applying

this methodology, for instance, Zhou et al. (2012) measured the directional volatility spillovers between

the Chinese and world equity markets, finding that the U.S. market shows a prevalent volatility impact

on other markets during the sub-prime crisis, while the Chinese stock market volatility had an impact

on other Asian markets since 2005. Tsai (2014) investigated volatility spillovers in five developed stock

markets, namely, the U.S., the U.K., Germany, Japan, and France finding that Germany and the U.S. are
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the main stock markets transmitting information to other international markets. More recently, Gamba-

Santamaria et al. (2017) improved the Diebold and Yilmaz (2012) spillovers index in the volatility

factor measured through a DCC-GARCH model in order to allow for a time-varying asset pricing cor-

relations and volatility clustering. By applying this methodology to the Latin American stock market

they found Brazil as a net volatility transmitter, while Chile, Colombia and Mexico as net receivers.

2.7.2 Currencies Volatility Spillovers

Many studies on volatility spillovers have focused only on the equity market without considering other

important financial markets such as the foreign exchange (e.g. Soriano and Climent, 2006). The liter-

ature on currency market volatility integration has started from the seminal paper by Ito et al. (1992)

finding how news from adjacent regions (meteor shower) is to be preferred to local influences from the

previous day (heatwave) as an explanation of the transmission of volatility in the forex market.

Kočenda and Valachy (2006) studied the exchange rate volatility in the Visegrad countries (Poland,

Hungary, Slovakia and Czech Republic) accounting for path dependency and asymmetric shocks. They

found that the monetary framework of these countries played an important role for volatility spillovers.

According to Kočenda and Valachy (2006), foreign exchange risk has been pronounced for the new

EU members, thus impacting on currency volatility spillovers, the latter intensified even more by the

increasing integration between developing and developed countries in the Eurozone. The volatility

and its contagion among developed and developing countries in the EU represent a key factor for

international investors and opens up to possible portfolio diversification strategies (e.g. De Zwart et al.,

2009; Jotikasthira et al., 2012).

More recent studies such as Pérez-Rodríguez (2006) adopting a DCC-GARCH model found a

strong presence of volatility spillovers between Euro and Pound against U.S. dollar after the Euro

introduction. Using a GARCH-BEKK model, Fedorova and Saleem (2010) focused on the volatility

interdependence between emerging CEE countries and Russian stock market and currencies finding

the presence of unilateral volatility spillovers from the latter to the stock market for Poland, Hungary

and Russia. Kitamura (2010), applying a varying-coefficient MGARCH model, examined the intra-

day volatility spillovers among the euro, the British pound and the Swiss franc, finding that there is

a volatility spillover transmitted from the euro to the other two currencies. McMillan and Speight

(2010), using a realized variance method, found that the dollar rate dominates the Japanese Yen and

the British pound in terms of volatility spillovers. Bubák et al. (2011) found presence of volatility

spillovers among central European exchange rates increasing with market uncertainty in the central Eu-

ropean currency market using model-free volatility measures. Antonakakis (2012) found that the U.S.

dollar’s appreciation plays a crucial role for volatility spillovers.

43



2.7.3 Credit Volatility Spillovers

In the recent years and, especially, in response to the sovereign debt crisis in Europe, the studies sur-

rounding volatility propagation among countries have rapidly moved towards the study of credit volatil-

ity spillovers. Hunter and Simon (2005) affirmed how the correlations between bond market returns

are driven by macroeconomic and financial market events and Ehrmann et al. (2011) showed how the

European Monetary Union has led to substantial convergence in the Eurozone sovereign bond markets.

These studies use, mainly, CDS spread market in order to tackle this analysis. According to Calani et al.

(2012), using CDS spread allows us to direct interpret it as a default probability measure or premia im-

pacting on the fixed income credit spread in relation to a sovereign risk-free asset mirroring the selected

country counter-party risk. The advantage of using CDS spread data over bond spread is assessed also

by Caporin et al. (2013). It is directly observable in the market while computing the bond spread might

be subjective to the researcher. CDS capture the sovereign risk and therefore enable a more straightfor-

ward analysis while bond spreads might be conditioned to other factors as monetary policy and central

bank and policymakers decisions. For instance, Caporin et al. (2013) measured the sovereign risk con-

tagion through CDS and bond spreads of selected countries in Europe. CDS contagion has been quite

constant for the 2008-2011 period while bond spreads contagion increase in intensity from the pre and

post crisis periods.

More recently, many studies have looked at volatility contagion by relying on the Diebold and Yil-

maz (2009, 2012) spillovers index methodology. More specifically, Calani et al. (2012) investigated the

relation between credit spread in sovereign debt and CDS spread concluding that there is no evidence

of contagion during the first and second quarter of 2012 with a clear separation between two groups

of countries: the first in which CDS spreads affect bond yield in a positive way, and the second in

which the bond yields are independent to variation in CDS spreads (safe-havens). Evidence of a CDS

volatility contagion from troubled countries on CDS on sovereign debt to not-troubled countries is also

found. Alter and Beyer (2014) by extending the Diebold and Yilmaz (2012) methodology, measured

spillovers between sovereign credit markets during the sovereign debt crisis between October 2009 and

July 2012 in the euro area, finding systemic effect among sovereigns and banks due to an unexpected

shock to the creditworthiness of one of the two. Claeys and Vašíček (2014) found significant spillovers

between EMU countries during the financial crisis by using a factor-augmented version of the Diebold

and Yilmaz (2009) VAR model (FAVAR). Antonakakis (2012) related the sovereign bond yield spread

spillovers with the presence of news announcement and policy changes, finding strong spillovers ef-

fect from the periphery to the core of the Euro area especially during turbulent periods. Louzis (2012)

studied the volatility spillovers among the money, stock, foreign exchange and bond markets in Euro-

area between 2000 and 2012 finding that, on average, more than 50% of the forecast-error variance is

explained by spillover effects with the stock market being the main volatility spillovers transmitter.
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2.7.4 Volatility Asymmetry and Response to Good or Bad News

Recently, a recent stand of literature has seen some other extensions of the Diebold and Yilmaz (2009,

2012) spillovers index which have been proposed in the literature in order to take into account the

volatility asymmetry. Until that moment the presence of asymmetric volatility in volatility spillovers

has not received the same attention as in financial markets in which is well recognized (e.g. Black and

Scholes, 1973; French et al., 1987; Campbell and Hentschel, 1992). The original rationale of volatility

asymmetry in financial markets relies on the fact that past returns are negatively related with present

volatility (e.g. Bekaert and Wu, 2000; ?). Since volatility propagates across markets it can be assumed

that also volatility spillovers may present asymmetries.

According to Clements et al. (2015), asymmetric transmission of volatility can be either established

as a leverage effect, when there is an asymmetric impact on assets’ volatility due to positive or negative

shocks or news of identical size, or that can be established as asymmetric volatility spillovers caused

by good or bad news separately (e.g. Segal et al., 2015).

There are two predominant theories on the first asymmetric volatility effect. The first one is the

leverage effect by Black (1976) stating that after a decrease in an asset value, the leverage ratio of

a firm holding that asset increases and so its volatility. Thus, negative news and shocks may have

larger impacts on volatility compared to positive shocks of the same absolute value. An alternative

theory, called volatility feedback (see Campbell and Hentschel, 1992), asserts that news that volatility

will be higher in the future will induce risk-adverse investors to sell positions today until they are

compensated for that increase. Financial markets decrease in advance in order to already discount future

volatility increases. However, after a negative return shock and an increase in volatility the increase in

expected return will generate even more volatility (feedback). This volatility feature might be studied

and incorporated in spillovers measures by computing GARCH models’ conditional volatilities.

The second volatility asymmetry is instead given from the fact that volatility responds in a different

way to different events, thus, it can be classified, separately, as good or bad (e.g. Barndorff-Nielsen

et al., 2010; Segal et al., 2015). For instance, according to Baruník et al. (2016), there are events

which impact more on the upside volatility, while some others impact more on the downside side. The

same asymmetry effect can be consequently transmitted on volatility spillovers measures. According

to Diebold and Yilmaz (2015) the volatility spillovers coming from the good volatility should not be

neglected since they can be a source of returns. This effect can be captured by inputting the decomposed

realized volatilities into the spillovers indexes as in Baruník et al. (2015, 2016, 2017). The volatility

asymmetric effect in spillovers has also been studied for the currency market (see Wang and Yang,

2009; Clements et al., 2015; Baruník et al., 2017).

For instance, Baruník et al. (2015, 2016, 2017) proposed an asymmetric version of the spillovers in-

dex computing the volatility series trough the decomposed realized measure relying on the new measure
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of decomposed volatility proposed by Barndorff-Nielsen et al. (2010). Baruník et al. (2015) detected

asymmetries in volatility spillovers for the petroleum commodities. Baruník et al. (2016) studied the

volatility spillovers asymmetry for the U.S. financial market detecting ample asymmetric effect at sec-

toral level with negative asymmetries in spillovers more frequent than the positive. Baruník et al. (2017)

found asymmetry in volatility spillovers for the most actively traded currencies by using high-frequency

data. They detected monetary policy and real-economy events as main drivers of positive spillovers,

whereas fiscal factors are found as the main drivers of negative spillovers.

Thus, we anchor our research to this new volatility spillovers branch of literature which takes into

account the asymmetric volatility characteristics and the separate role of upside and downside volatili-

ties. Other studies have started to look at the transmission of volatility spillovers among different assets

and countries when news and macroeconomic announcements (e.g. Belgacem et al., 2015) or financial,

economic and political events occur (e.g. Belke et al., 2016). In Chapter 5 more details on the connect-

edness methodology and on the asymmetric volatility connectedness literature and measures will be

provided with an application to implied volatility from options as well as more insights on the linkage

with the systemic risk literature.
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Chapter 3

The Determinants of the Model-Free

Upside and Downside Volatilities

3.1 Introduction

In recent years there has been much interest in the asymmetric behaviour of volatility and the different

roles associated with its upside and downside components within different areas of finance (e.g. Ang

et al., 2006; Barndorff-Nielsen et al., 2010; Segal et al., 2015; Baruník et al., 2016, 2017; Feunou et al.,

2017; Kilic and Shaliastovich, 2018).

As already discussed in Chapter 2, the information content of the two realized volatility components

reflect opposite economic state or different investors’ expectations. According to Segal et al. (2015) and

Feunou et al. (2017), good uncertainty is associated with potential profits, representing what investors

like, different from the bad uncertainty associated with potential losses, representing what investors

dislike. In addition, Segal et al. (2015) affirmed that the bad realized volatility comprehends all the

news can spread the market tension, decrease in assets’ value, decline in market productivity, unem-

ployment, disinvestments and market depression. Conversely, good realized volatility regards news

impacting underlying assets in a positive way, future growth, investments and increase in production

and consumption.

In terms of implied volatility, by decomposing the VIX index into two components, separate infor-

mation enclosed in OTM puts and OTM calls can also be accessed (see Kilic and Shaliastovich, 2018).

Implied volatility extracted from OTM put options captures information regarding the possibilities of

downward movements in the equity markets. Implied volatility extracted from OTM call options is

linked to upward movements of volatility. While the decomposed realized volatilities depict different

economic and financial states according to realized events, decomposing implied volatility allows us
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to access separate investors’ expectations on future financial markets trend and economic states. The

upside implied volatility reflects the positive and optimistic investors’ beliefs enclosed in calls, whereas

the downside implied volatility captures the negative investors’ perspective and pessimistic views con-

cerning downwards markets. In terms of decomposed implied volatilities, investors’ expectations and

sentiment is closely linked to the call-put options trading (see Bollen and Whaley, 2004; Buraschi and

Jiltsov, 2006; Mixon, 2009).

By decomposing each of the volatility measures (realized and implied) we are, not only, able to

access different type of information, but also to study the main drivers of each of the decomposed

volatility measure. Furthermore, having separate measures of upside and downside volatility we are

able to compute separate measures of volatility risk premia. We analyze which may be the main drivers

of the upside and of the downside components of volatility, expecting these to be different due to the

different events and beliefs the two components reflect.

Hence, the question arises as to what are the determinants of volatility and, more specifically, its

upside and downside components. This study aims to contribute to the financial volatility literature

and to the better understanding of its relationship with macroeconomics and financial conditions vari-

ables by answering the following questions - Are the decomposed upside and downside components of

volatility driven by the same variables? Are they, in turn, carrying similar information useful to predict

the financial or macroeconomic activity? This chapter applies a model-free approach to compute both

implied and realized stock market volatility measures in the U.S. and to combine them into volatility

risk premium measures, considering them in a comparative framework in which the determinants of

their upside and downside components are investigated.

This chapter aims to shed new light on the identification of the potential determinants of asymmetric

volatility and risk premium, and to contribute to different strands of literature by taking into account a

new set of variables, which include both macroeconomic and financial conditions variables. Macroeco-

nomic variables have often been looked upon as possible determinants of volatility in many empirical

studies (see Schwert, 1989; Cutler et al., 1989; Kandel and Stambaugh, 1990; Whitelaw, 1994; Lettau

et al., 2007; Diebold and Yilmaz, 2008; Engle and Rangel, 2008). These studies opened up a new

strand of subsequent research on the relationship between macroeconomic and stock market volatility

(see Chapter 2). However, as already mentioned, the overall conclusion reached on the relationship

between stock market volatility and macroeconomic activity is by no means clear cut.

The opacity of this relationship between stock market volatility and macroeconomic activity might

be due to at least two reasons. Firstly, it may simply be that macroeconomics is not central in explain-

ing the key determinants of volatility (Cutler et al., 1989). Our chapter also considers other financial

variables that appear to better detect and track the volatility trends and behaviour alongside the macro-

variables in line with Paye (2012) and Christiansen et al. (2012). We expand our set of variables by
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including market sentiment, credit and liquidity proxies, the political and economic uncertainty index

by Baker et al. (2016) and the geopolitical risk index by Caldara and Iacoviello (2018), to test the role,

if any, such variables play in driving volatility. Macroeconomic factors are able to capture the state

of the economy, but less able to capture investors’ expectations, whereas these financial conditions

proxies may be better able to reflect such beliefs and also contribute to volatility over a shorter time

frame. Shiller (1981) showed that the level of stock market volatility can be too high to be justified

solely by dividends and fundamentals. In addition, market sentiment cannot be ignored for understand-

ing investors’ future beliefs and expectations. For model-free implied volatility, in particular, the main

determinants are more likely to be placed mostly among the contemporaneous time variables related to

investors’ sentiment, such as exuberance and fear driving options trading.

Secondly, many different models have been applied in an attempt to best measure volatility when

this is related to macro variables. Engle and Rangel (2008) employed a Spline-GARCH model which

smooths out the high data frequency of volatility so as to allow a better comparison and linkage with low

frequency macroeconomic data. The identification of the determinants of volatility is highly sensitive

to the method used to measure volatility, often referred to as the volatility modelling problem. This is

a problem that is well recognized in the model risk literature (see Engle and Rangel, 2008; Daníelsson

et al., 2016; Jokivuolle and Tunaru, 2017). The model choice and market period selection increases the

uncertainty and subjectivity of volatility determinant analysis (Beltratti and Morana, 2006). A simple

exercise in Appendix A.1 highlights differences in terms of conditional volatility of dependent and

independent variables, when they are inferred from different GARCH models. Model choices behind

the conditional variance computation might lead to approximations and errors, thereby making the

overall relationship uncertain.

In order to circumvent this volatility modelling problem, we consider in this chapter model-free

volatility measures, namely, the implied volatility index, VIX , extracted from a bunch of S&P 500

options by following the CBOE methodology, and the realized volatility computed from stock market

returns. Our chapter is also motivated by recent studies which have begun to examine volatility in its

different shapes and components. For instance, Beltratti and Morana (2006) decomposed volatility into

one part associated with structural break and one associated with long memory dynamics, Engle et al.

(2013) decomposed volatility into short and secular run components and Bekaert and Hoerova (2014)

decomposed VIX into a a proxy for risk aversion and a proxy for uncertainty, suggesting that both

components have a different relationship to macroeconomics.

We continue this line of research through the decomposition of the volatility indexes into their

upside and downside components, with upside volatility computed only from call options, referred to

in this chapter as VIX+ and downside volatility computed only from put options, referred to as VIX− .

In implied volatility terms, we recognize that investors are more willing to buy equity index put options
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for hedging purposes during negative times and crises (see Bakshi et al., 2003; Bollen and Whaley,

2004; Bondarenko, 2014). Following Barndorff-Nielsen et al. (2010), we decompose realized volatility

into good and bad realized volatility, RVOL+ and RVOL− . We disentangle the good uncertainty

associated with potential profits, representing what investors like, from the bad uncertainty associated

with potential losses, representing what investors dislike (see Segal et al., 2015; Feunou et al., 2017).

In addition, by considering model-free calculations we further extend our analysis to include volatil-

ity risk premium, VRP , and its components by following the definition as in Carr and Wu (2008),

namely, as the difference between physical and risk neutral expectations of return variation. The same

definition is applied in Kilic and Shaliastovich (2018), whereas other studies computed risk premia

as a short position in a variance swap, namely, as the difference between risk neutral and physical

expectations of returns (e.g. Bollerslev et al., 2009; Bekaert and Hoerova, 2014; Feunou et al., 2017).

This recent strand of literature has begun to investigate the explanatory ability of the risk premia

and its components with relation to the stock market. For instance, according to Bollerslev et al.

(2009), the variance risk premium has predictive power for short-term stock returns (from three to six

months), a finding also confirmed by Bekaert and Hoerova (2014). However, according to Feunou et al.

(2017), considering only the aggregate VRP measure is restrictive given that this imposes the same

coefficient on both the asymmetric views of investors in relation to the two components of VRP related

to good uncertainty (VRP+ ) and bad uncertainty (VRP− ). Indeed, they found that the downside

VRP (which would correspond to our VRP+ ) is the main component of the variance risk premium,

finding it to be significant with a positive relationship with the equity premium, and showing superior

ability in explaining future variations in excess returns compared to the aggregate and upside VRP

(which would correspond to our VRP− ). Amengual and Xiu (2017) linked upward and downward

volatility jumps together with policy measures, finding that resolutions to policy uncertainty leads to

a downward volatility movement. More recently, Kilic and Shaliastovich (2018) measured good and

bad variance risk premia which help predict assets returns in the long term horizon. The good variance

premium predicts future assets returns with a positive sign, whereas the bad variance risk premium with

a negative sign, thus, both components of the variance premium should be considered in order to obtain

a higher return predictability.

However, the literature on the determinants of implied volatility is quite sparse: Corradi et al.

(2013) found that VIX and the business cycle are related to industrial production growth and Bekaert

et al. (2013) assessed that VIX is also linked to monetary policy highlighting that lax monetary policy

decreases risk aversion. Furthermore previous literature is silent on the potential information content of

volatility risk premium and its components with relation to macro and financial variables. Thus, we aim

in this chapter, not only to further investigate the linkage between decomposed volatilities and equity,

but also to expand this linkage to other selected macro and financial variables in order to determine
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which are the main variables driving their two components separately.

As far as we are aware, this is the first research looking at the impact of macro and financial factors

on implied volatility within a framework separating information contained in call options from that

contained in corresponding put options. In addition, we focus on risk premium, since it uses final mar-

ket information which naturally cleanses option implied volatility from the effect of physical volatility

(realized), resulting in a measure correlated with risk aversion (see Bekaert and Hoerova, 2014). Also,

the predictability power of the variance risk premia is mainly driven by the implied volatility, which

contributes more than realized volatility; reason why we believe that understanding the main determi-

nants of the decomposed implied volatility and risk premium is paramount compared to the realized

volatility measures.

Firstly we conduct an empirical analysis based upon a temporal aggregation in which all the macroe-

conomic and financial conditions variables are considered at their lowest common frequency, namely

monthly, and are tested in an OLS stepwise framework and in a single LF-VAR model. Subsequently,

the variables are divided according to their frequency, namely, low and high frequency, modelling the

low frequency variables in a mixed frequency VAR model with respect to the daily volatility series,

and the high frequency variables in a high frequency daily VAR model. This is undertaken with the

objective of testing for Granger causality relationships at the most accurate frequency for our selected

variables following the mixed frequency Granger causality methodology as in Ghysels et al. (2016) and

Ghysels (2016). Diebold and Yilmaz (2008) advocated that one-way causality from macro-variable

volatility and stock market volatility deserves further research, especially in the case of implied volatil-

ity. A lead-lag relationship is examined through different VAR models at different variable frequencies

to capture, not only unilateral feedback from the variables to volatility, but also vice versa, with the aim

of identifying any potential bilateral feedback (e.g. Jermann and Quadrini, 2006; Bansal et al., 2014)1.

While some literature has investigated the role of macroeconomic and financial variables in driving

the realized volatility measures (see Christiansen et al., 2012; Paye, 2012), this research further build up

on this relationship mainly studying implied volatility and volatility risk premium measures. Although

the literature about volatility drivers is vast, it has never explored the implied volatility drivers and

especially the drivers of decomposed implied volatilities. We report in this chapter the analysis about

decomposed VIX and volatility risk premia which deserve more attention in the financial literature. We

report more details about the realized volatility measures in Appendix A.2.

We find evidence of different determinants dependent upon the volatility components considered,

for both implied volatility and risk premium. There is evidence that the macro variables impact more

on the upside implied volatility component, VIX+ , especially in the case of GDP and inflation, which

are variables more attached to the investors’ consumption sphere. On the other hand, the financial

1A recent study by Amengual and Xiu (2017) found that volatility is responsive to news not only upward in relation to bad
news, but also downward in relation to good news.
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conditions variables such as credit, liquidity, EPU and GPR indexes impact more on the downside im-

plied volatility component, VIX− . The global financial crisis has generated a shift in importance from

macroeconomic to financial conditions variables, both for implied volatilities and also for risk premia.

We uncover Granger causality relationships by applying a mixed frequency VAR model, especially

from macro variables to volatility and vice versa. We detect and confirm implied volatility as a good

predictor of economic activity, whereas the volatility risk premium a good predictor of future stock

returns. We find that different components contain different information useful for future financial and

economic activity predictability.

The remainder of this chapter is organized as follows. Section 3.2 summarizes the model-free

approach to compute and decompose our volatility measures. Section 3.3 describes both the volatility

series and also the selected macroeconomic and financial variables. Section 3.4 discusses the empirical

methodology of the chapter, namely, stepwise backward regression, high frequency, low frequency and

mixed frequency VAR models and Granger causality tests. Sections 3.5 and 3.6 report the empirical

results for both the implied volatility and volatility risk premia with regards to the stepwise regression

and Granger analysis, respectively. Section 3.7 discusses the linkage between volatility measures and

economic, political and geopolitical indexes. Section 3.8 concludes the chapter. Robustness exercises

and additional material can be found in Appendix A.

3.2 Computation and Decomposition of Volatility Measures

In this section, we describe the measures and the decomposition of implied volatility, realized volatility

and volatility risk premia briefly relating it to previous literature. We rely entirely on a model-free

approach to compute the implied and realized volatility measures and their upside and downside com-

ponents in order to be able to compute the upside and downside volatility risk premia accordingly.

Aiming to understand how macroeconomic and financial variables impact on the aggregate implied

volatility along with its components, and likewise on the volatility risk premium and its components,

the following hypothesis is considered: Hypothesis 1: Implied volatility and risk premium components

- upside and downside - are related to macroeconomic and financial variables in a different way. We

thus investigate whether or not macroeconomic and financial variables impact in the same way on both

the downside and upside components of volatility and on the respective aggregate measures.

3.2.1 Decomposition of Implied Volatility

The implied volatility measure, VIX , is computed model-free from a set of out of the money (OTM)

S&P 500 options, being an interpolation between the near term and far term option maturities for each

day in which it is calculated. It is, therefore, a forward-looking volatility measure based on the changes
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over the next 30 days in the S&P 500 options price (both calls and puts) (see CBOE, 2009). The

following formula is used to calculate the implied variance:

σ2
V IXj =

2
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∆Ki
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1
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[
Ft
K0
− 1

]2
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where i = 1, . . . , n marks the options strike price available on that specific date, T is the expiration

date, j is either (1) or (2), representing the near or far term, respectively, and Ft is the forward price

of S&P 500 calculated from the Put-Call parity as Ft = erT [c(K,T )− p(K,T )] +K. Moreover, K0

(Reference Price) is the first exercise price less or equal to the forward level Ft (K0 ≤ Ft) and Ki is

the strike price of i - OTM option, which would be a call option if Ki > K0, a put option if Ki < K0

and the average between call and put options if Ki = K0. r is the risk free rate with expiration T , and

∆(Ki) is the sum divided by two of the two nearest strike prices to the exercise price K0.

As volatility rises and falls the strike price range of options tends to expand and contract. As a

result, the number of options used in the calculation may vary from month to month, but even from day

to day. The moneyness = S/Kof the selected options ranges between 135% to 75%, varying according

to the market period. The number of S&P 500 options available every day provides adequate supply

of observation as to obtain a good VIX estimate. The number of observation is sufficient from both

sides of the options distributions (calls and puts), this varying according to the market period (bullish

or bearish). Before the global financial crisis the number of S&P 500 options for every day ranges

between 60 and 100, whereas after the financial crisis and, mostly, in the recent years, the number of

options available on S&P 500 every day is way above 100. The number of observation is also reduced

every day as to account for simple options literature filter and rules (see Dennis and Mayhew, 2002;

CBOE, 2009). Despite that, the number of options available is still sufficient for an adequate VIX

computation.

Equation (3.1) is based on the variance swap approximation as shown by equation (3.2):

n∑
i=1

∆Ki

K2
i

erTQt(Ki) (3.2)

where Qt(Ki) is the price of a European call or put with a strike price respectively above or below K0,

the first strike price below F0. In the case Ki = K0, Qt(Ki) is equal to the average between an ATM

call and an ATM put, relative to that strike price. To calculate the expected variance, an adjustment

term is added to the expression in (3.2). This adjustment is required to convert in the money (ITM)

calls to out of the money (OTM) puts: 1
T

[
F0

K0
− 1
]2

. The VIX index is calculated by interpolating

the near term variance and the far term variance, σ2
V IX1

(T1) and σ2
V IX2

(T2). These are the closest

expirations to a 30 days average target in which monthly or weekly S&P 500 options are traded. The

aim of the VIX calculation is to better track the 30-days implied volatility in the equity market, an
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aim easily achieved with the introduction of Weekly S&P 500 options since 2014. Weekly S&P 500

options selected must have an expiration of≥ 23 days,≤ 37 days. When monthly S&P 500 options are

selected, the first 3-months expirations are considered. VIX is calculated through the interpolation of

the first two months expirations, 1M and 2M. Where the first month is not available or less than 3 days

are left for its expiration, the selected month is rolled onto the next expiration, taking the 3M, since

if shorter the impact of volatility and volume can misdirect the computation. The VIX index always

reflects an interpolation of two points along the S&P 500 volatility term structure. The VIX index is

calculated as follows through equation (3.1):

V IXt = 100

√
365

30

[
T1σ2

V IX1

N2 − 30

N2 −N1
+ T2σ2

V IX2

30−N1

N2 −N1

]
(3.3)

In order to compute the upside and downside components of the VIX , an adjustment is made to

equation (3.1), applying filters on the Ki term. For VIX+ only S&P 500 call options are considered

when Ki ≥ K0, and for VIX− only put options are considered when Ki ≤ K0. We define the first

options sub-sample with strike prices above the reference price as K+
i and the sub-sample below the

reference price as K−i . Substituting Ki in equation (3.1) with both K+
i and K−i provides the two

respective near and far term upside and downside variances:

σ2
V IXjt

=
2

T

n∑
i=1

∆Kj
i

(Kj
i )2

erTQt(K
j
i )− 1

T

[
Ft
K0
− 1

]2
with j = + or − . (3.4)

Resultantly, the two implied volatility components VIX+ and VIX− are:

V IX+
t = 100

√
365

30

[
T1σ2

V IX+
1

N2 − 30

N2 −N1
+ T2σ2

V IX+
2

30−N1

N2 −N1

]
(3.5)

V IX−t = 100

√
365

30

[
T1σ2

V IX−1

N2 − 30

N2 −N1
+ T2σ2

V IX−2

30−N1

N2 −N1

]
(3.6)

Extracting volatility only from call options provides us with a proxy for upside implied volatility,

whereas extracting volatility only from put options provides a proxy for the downside implied measure.

3.2.2 Decomposition of Realized Volatility

The importance of identifying the downside risk in the volatility, as shown in Ang et al. (2006), brings

a decomposition of the realized variance measures in an attempt to better understand the two different

risk components separately (see Barndorff-Nielsen et al., 2010; Patton and Sheppard, 2015; Segal et al.,

2015). In this chapter, the realized volatility (RVOL ) is calculated starting from the historical S&P 500

index returns, thus, using close to close price realized volatility measures consistent with the model-
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free approach2. We have decided to use monthly low frequency close to close price realized volatility

measures consistent with the model-free approach in order to compare the realized volatility measures

directly with the decomposed implied volatility series. This is an end-of-the-month monthly volatil-

ity, computed from daily log-returns (see Schwert, 1989). The formula used in this chapter for the

annualized realized volatility is RV OLt =
√

252
n

∑n
i=1 r

2
i , where ri = ln( Pt

Pt−1
) representing daily

log returns computed from the price difference, with Pi representing the S&P 500 daily index levels

with i ∈ {1, . . . , n}. The decomposition into the upside and downside components for the realized

volatility is achieved by taking only sums over positive returns or sums over negative returns, indicated

as RVOL+ and RVOL− , respectively. We further follow the methodology in Barndorff-Nielsen et al.

(2010) to get:

RV OL+
t =

√√√√252

n

n∑
i=1

r2t,i1(rt,i>0) and RV OL−t =

√√√√252

n

n∑
i=1

r2t,i1(rt,i≤0), (3.7)

where ri = ln( Pt
Pt−1

) represents daily log returns computed from the price difference, with Pi rep-

resenting the S&P 500 daily index levels with i ∈ {1, . . . , n}. The upside semi-realized volatility

considers only positive returns while the downside semi-realized volatility only negative returns.

3.2.3 Decomposition of Volatility Risk Premium

We are, now, able to combine these different volatility measures and their components according to

their respective upside and downside binaries in order to obtain the volatility risk premium series. The

importance of the risk premium for explaining stock market expected returns has been well documented

in the literature (see Bollerslev et al., 2009; Kelly and Jiang, 2014; Feunou et al., 2017; Kilic and

Shaliastovich, 2018). In this section, following the definition in Carr and Wu (2008), we compute the

volatility risk premium by taking the difference between the physical measure of volatility (realized)

and the risk neutral expectation of return variation extracted from options (implied). It represents the

return of buying volatility in a volatility swap contract (see Carr and Wu, 2008), where the VIX replaces

the conditional return volatility using a risk neutral probability measure and the realized volatility is

given by the actual physical probability measure (see Bekaert and Hoerova, 2014; Feunou et al., 2017).

Thus, by following Kilic and Shaliastovich (2018), we decompose the volatility risk premium into its

upside and downside components, the first as the difference between RVOL+ and VIX+ and the latter

as the difference between RVOL− and VIX− as follows:
2We are aware of the different volatility measures that have been developed, and that they can be computed at any frequency

over a given sample period. For instance, high to low version by Parkinson (1980), the Garman-Klass formula of Garman and
Klass (1980) and its improvement by Yang and Zhang (2000) taking into account the opening price jumps and zero drifts. It has
been suggested that the simple historical volatility model (Figlewski, 1997) and standard historical volatility model (Andersen and
Bollerslev, 1998) generally predict future volatility more accurately than the more complicated volatility models (e.g., ARCH and
GARCH). Further exhaustive studies on realized volatility measures include Andersen et al. (2007) and McAleer and Medeiros
(2008).
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V RP qt = RV OLqt − V IX
q
t where q = Tot,+,−. (3.8)

Other papers, such as, Bollerslev et al. (2009), Bekaert and Hoerova (2014) and Feunou et al. (2017)

defined the variance risk premium as the difference between the risk neutral and physical expectations

of return variation, finding a measure which is, most of the time, positive. In our chapter, we find a mea-

sure of risk premium which is, most of the time, negative due to the way it is calculated. Feunou et al.

(2017), because of the same reason, also obtained opposite signs compared to us when decomposing

risk premium in its upside and downside components.

3.3 Data: Volatility Series and Selected Variables

In this section, we illustrate the options data and stock market index (S&P 500 ) prices used to compute

our volatility and risk premia series, and provide a discussion of our findings presenting plots and

correlation analysis in relation to the volatility measures in subsection 3.3.1. Subsection 3.3.2 describes

the macroeconomic and financial conditions variables which are used for the empirical analysis in order

to test the hypotheses in this chapter.

3.3.1 Volatility Series and Descriptive Statistics

Daily S&P 500 options and index prices are collected from OptionMetrics and Bloomberg over a to-

tal time period ranging from 04-01-1996 to 29-09-2016. Daily observations total 5222, while when

monthly observations are taken, end-of-the-month, they total 250 for each volatility and risk premium

series in the study. The following Figure 3.1 illustrates the relationship between the decomposed model-

free implied and realized volatilities as well as risk premia, at monthly frequency, during the total pe-

riod. Events such as the Asian financial crisis, the dot-com bubble, the 9/11 terrorist attack, the Iraq

invasion, the 2008 financial crisis and the Lehman Brother crash, the European sovereign debt crisis,

the tension between Russia and Ukraine, the Chinese Yuan collapse and the Brexit vote, are only some

of the various political, economic and financial events in the U.S. and worldwide which are included

within our time period spanning from 1996 to 2016.

The upper panel in Figure 3.1 compares the VIX together with its upside and downside components.

The spikes in the indexes correspond to all the main financial events during our time period. For

instance, we notice a peak corresponding to the Asian financial crisis at the end of 1997, to the Russian

Financial Crisis and to Long-Term Capital Management (LTCM) collapse in 1998, to the dot-com

bubble period and the 2001-2002 NBER recession period (highlighted in gray). In response to the

Russian financial crisis in August 1998, the VIX index reached its all time high before the global

financial crisis. It then spiked massively during the 2008 financial crisis, especially in response to the
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Figure 3.1: Decomposed Volatility Series

Notes: This figure shows a comparison between the VIX , VIX− and VIX+ indexes (upper panel), RVOL , RVOL− and RVOL+ (mid
panel) and VRP , VRP− and VRP+ (bottom panel) during the period from 04-01-1996 to 29-09-2016, at monthly frequency. The NBER
recession periods are highlighted in gray.

Lehman Brother collapse in September 2008. Subsequently, the implied volatility indexes reacted to

the two stages of the European sovereign debt crisis, to Grexit and the Chinese Yuan crisis in mid 2015

and, finally, to Brexit in June 2016. The downside and upside implied volatilities closely track the

aggregate measure VIX , especially during turbulent times and VIX− is, most of the time, higher than

VIX+ (see DeLisle et al., 2014; Fu et al., 2016; Kilic and Shaliastovich, 2018). There are times, be

it rare, when VIX+ is higher than VIX− , but only during calm and optimistic periods characterized

by positive investors’ expectations and a more active call options trading such as around the dot-com

bubble. Post global financial crisis, VIX− is always found to be higher than VIX+ emphasizing the puts

hedging role and investors’ concerns regarding the possibility of another similar event occurring. We

recognize that there exists an asymmetry in the volatility indexes possibly due to the fact that investors

are more willing to buy put options for hedging purposes, especially during negative times, which, in

turn, inflates the downside volatility component (Bollen and Whaley, 2004; Bondarenko, 2014).

The mid panel of Figure 3.1 depicts almost the same pattern for the realized volatilities which

reacted and spiked to the same events. All the realized series move closely to each other. RVOL−

and RVOL+ are more intertwined without a clear predominance of one over the other showing how

both are equally important for the aggregate measure, RVOL . In turbulent market times and periods of
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increased volatility, RVOL− is found to be above RVOL+ , having one of the highest spread around the

9/11 terrorist attack due to the stock exchanges closing, whereas during calmer periods and especially

in bullish periods such as the dot-com bubble, RVOL+ is found to be higher than RVOL− (see Kilic

and Shaliastovich, 2018).

The last panel of Figure 3.1 shows the trend for the volatility risk premia. We observe that the

aggregate VRP oscillates between positive and negative values, being, on average, negative due to the

fact that for most of the time VIX is higher than RVOL . VRP− is also negative, whereas VRP+

is positive for most of the time period. According to Feunou et al. (2017), VRP is the premium

that a market participant is willing to pay to hedge against variation in future realized volatilities.

This is expected to be positive, in their case, since they measure it as difference between implied and

realized volatility which is, most of the time, positive. In their terms, the positive premium for VRP−

represents the amount financial agents should pay for protection against market downside risk entering

into hedging strategies. However, VRP+ is negative most of the time, indicating the amount agents

would be willing to pay for investing in the volatility market specifically selling volatility. In this

case the negative premium shows that, by contrast, the upside volatility could even increase the equity

portfolios performance.

Table 3.1 reports the descriptive statistics for the volatility series. The maximum values for all the

volatility series and premia are attained during the Lehman Brother collapse in September 2008. For

realized volatility the minimum value is captured by the downside component, while for the implied by

the upside component. The standard deviation of the downside implied and realized volatility, VIX−

and RVOL− , is higher than the corresponding upside components, VIX+ and RVOL+ , while the

opposite holds for premia. Skewness is found to be positive for all the volatility series and premia

which are also leptokurtic. VRP+ appears to be more right-skewed and leptokurtic compared with

VRP and VRP− .

Table 3.1: Volatility Series Descriptive Statistics

Mean Median Max Min Std. Dev. Skewness Kurtosis

VIX 20.76 19.28 58.70 10.28 7.75 1.68 7.29
VIX− 16.64 15.27 49.68 8.12 6.34 1.82 8.08
VIX+ 12.36 11.64 32.36 5.43 4.62 1.40 5.78

RVOL 17.73 15.23 84.75 5.73 10.04 2.82 15.56
RVOL− 12.20 10.45 59.85 1.39 7.82 2.37 11.66
RVOL+ 12.86 10.79 62.79 4.51 7.28 3.04 18.02

VRP -3.02 -3.51 26.04 -23.57 5.18 1.32 9.47
VRP− -4.43 -4.62 13.85 -19.11 4.19 0.50 5.72
VRP+ 0.85 0.29 31.53 -13.30 4.77 2.01 13.23

Notes: This table reports the main descriptive statistics and correlation analysis for the implied volatilities,
realized volatility and volatility risk premia series during the period from 04-01-1996 to 29-09-2016, at
monthly frequency.

The correlation analysis in Table 3.2 shows that upside and downside implied volatility are highly

58



correlated in levels, while less correlated in first differences. The same is also found for the realized

volatility measures. These results are in line with many studies which have decomposed variance mea-

sures (see Barndorff-Nielsen et al., 2010; Fu et al., 2016; Feunou et al., 2017; Kilic and Shaliastovich,

2018). There is a high positive correlation between the implied and realized series decreasing from the

aggregate to the upside. Positive, but smaller is the correlation between VRP− and VRP+ . Corre-

lations among our volatility series decrease when first differences are taken and we observe that the

correlations between upside and downside VRP are smaller than those for upside or downside volatil-

ities (see Kilic and Shaliastovich, 2018). For this reason, in this chapter, we aim to show, first of all,

how different options portfolios, namely, calls and puts, might contain different information compared

to the VIX alone and, then, how the smaller correlation found between risk premia might suggest that

these measures contain separate information and may be driven by different variables3.

Table 3.2: Volatility Series Correlation Analysis

Volatility Series: Levels

VIX VIX− VIX+ RVOL RVOL− RVOL+ VRP VRP− VRP+

VIX 1.00
VIX− 0.98 1.00
VIX+ 0.96 0.92 1.00
RVOL 0.86 0.85 0.82 1.00
RVOL− 0.84 0.84 0.80 0.95 1.00
RVOL+ 0.79 0.79 0.76 0.95 0.82 1.00
VRP 0.17 0.18 0.14 0.64 0.59 0.65 1.00
VRP− 0.08 0.06 0.10 0.49 0.58 0.34 0.82 1.00
VRP+ 0.27 0.31 0.20 0.65 0.48 0.78 0.85 0.42 1.00

Volatility Series: First Differences

VIX VIX− VIX+ RVOL RVOL− RVOL+ VRP VRP− VRP+

VIX 1.00
VIX− 0.92 1.00
VIX+ 0.89 0.79 1.00
RVOL 0.40 0.42 0.32 1.00
RVOL− 0.48 0.49 0.40 0.81 1.00
RVOL+ 0.08 0.12 0.02 0.77 0.32 1.00
VRP -0.20 -0.15 -0.26 0.71 0.44 0.73 1.00
VRP− -0.04 -0.05 -0.03 0.67 0.70 0.35 0.78 1.00
VRP+ -0.23 -0.14 -0.34 0.51 0.11 0.82 0.83 0.32 1.00

Notes: This table reports the correlation analysis for the implied volatility, realized volatility and volatility risk premium series
during the period from 04-01-1996 to 29-09-2016, at monthly frequency.

However highly correlated implied and realized volatilities show different behaviours as it is shown

in the existing literature with relation to many areas (see Segal et al., 2015; Patton and Sheppard, 2015;

Baruník et al., 2016; Fu et al., 2016; Kilic and Shaliastovich, 2018). Despite similarity in correlation and

in descriptive statistics, we check how these quantities will differ when added in dynamics and taken

in first difference. Especially when considered at their first difference they show different behaviour

and lower correlation. The first difference of these measures are the variables we use in the rest of the
3For a better insight into the correlation analysis, we have also computed correlations leaving out the months during

the great financial crisis period. The correlations are:Corr(V IX;V IX−) = 0.97, and Corr(V IX;V IX+) = 0.95,
Corr(V IX−;V IX+) = 0.89 Corr(RV ;RV −) = 0.93, Corr(RV ;RV +) = 0.91, Corr(RV +;RV −) = 0.73 in
levels, and they are equal to Corr(V IX;V IX−) = 0.90, Corr(V IX;V IX+) = 0.88, Corr(V IX−;V IX+) = 0.77,
Corr(RV ;RV −) = 0.80, Corr(RV ;RV +) = 0.76, Corr(RV +;RV −) = 0.30 at first difference.
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chapter, in the OLS regression analysis as well as in the VAR model.

Our analysis is undertaken considering, not only the total time period spanning from January 1996

to September 2016, but also the pre-crisis and post-crisis periods. This is done with the aim of checking

for potential differences in our dependent variables and covariates’ behaviour. Upon applying a Bai and

Perron (2003) break-point test on the daily S&P 500 and VIX series, August 2007 is selected as the pre-

crisis ending month, having then a January 1996 - August 2007 pre-crisis sub-period with April 2009

as the month in which the global financial crisis turbulence vanished. Thus the post-crisis sub-period

spans from April 2009 to September 2016.

3.3.2 Macroeconomic and Financial Variables

The variables in this study are divided into two main groups, namely, the macroeconomic variables and

the financial conditions variables. The following macroeconomic variables are collected from FRED

(Federal Reserve Economic Data) for the U.S.: the consumer price index (CPI) as a proxy for inflation,

the industrial production (IP) as a proxy for the real activity, the unemployment rate (UR), the money

supply (M1) and the real gross domestic product (GDP) as a variable accounting for changes in real

economic activity. The quarterly GDP series is interpolated into a monthly series. The term structure

component (TS) is computed as the difference between long term government bond rates (10 years)

and short term government bond rates (2 years). The difference in interest rates should be considered at

differences without logs (see Engle and Rangel, 2008). Among the macroeconomic variables we also

include crude oil price (OIL), gold price (GOLD) and the JPY-USD exchange rate (ER), however these

variables are extremely close to the financial market activity and can be considered a hybrid group. We

adopted the JPY-USD exchange rate because the introduction of the EURO occurred after the beginning

of our time period and we decided to select a exchange rate that was available for the entire time period.

In addition, U.S. and Japan are two of the largest global economies and they are heavily linked through

both imports and exports and are both mixed economies resulting in common news which might drive

both the economies impacting on both stock markets (e.g. Karolyi and Stulz, 1996; Ng, 2000).

Among the financial conditions variables, we select those that better track the markets’ reaction to

financial, economic and political events, investors’ sentiment and future expectations. However, they

are included in the financial conditions category for simplicity. From FRED we collect the S&P 500

(SPX) as the stock market index proxy, the credit spread (CRE) computed as the difference between

Moody’s BAA and AAA corporate bonds yields (see Christiansen et al., 2012), the market sentiment

(SENT) identified by the Consumer Sentiment Index from the University of Michigan which tracks

consumers’ attitudes and market expectations, and the TED spread (TED), computed as the spread

between the 3-Month USD LIBOR and the 3-Month Treasury Bill. The TED spread has commonly

been recognized in the financial literature as a liquidity proxy (Brunnermeier et al., 2008; Christiansen
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et al., 2012). We also select variables that mostly track economic, political and geopolitical uncertainty,

namely the U.S. Economic Policy Uncertainty (EPU) index by Baker et al. (2016) and the Geopolitical

Risk (GPR) index by Caldara and Iacoviello (2018). These two variables are collected from the fol-

lowing web-sites, http://www.policyuncertainty.com/ and https://www2.bc.edu/

matteo-iacoviello/gpr.htm, respectively, at daily frequency and matched with the other daily

variables by excluding weekend data.

The variables are collected at their highest available frequency which is monthly for CPI, IP, UR,

M1, GDP (interpolated) and SENT, while all the other variables used in the main empirical analysis

(TS, OIL, GOLD, ER, SPX, CRE, TED, EPU, GPR) are collected at daily frequency. As in Schwert

(1987), all the variables are expressed in log-differences except those which are already expressed

in percentage rates.4 Following the augmented Dickey Fuller (ADF) unit root test, all the selected

variables are first difference stationary I(1).

3.4 Identifying Determinants of Volatilities

The first part of our empirical section consists of a regression analysis, stepwise backward approach,

in order to detect the main variables driving the aggregate and decomposed implied volatilities and the

risk premia with the aim of testing Hypothesis 1, as mentioned in Section 3.25. This empirical analysis

is conducted over the total time period as well as over the two sub-periods, pre and post global finan-

cial crisis, in order to further test the following - Hypothesis 2: A difference in significance among the

selected variables in explaining the volatility series might be found between the total time period (1996-

2016) and the two pre-crisis and post-crisis sub-periods. Static results together with rolling p-values

for those variables found to be significant in explaining the volatility series are reported in Section

3.5 for both the implied volatility and volatility risk premium. In addition, Granger causality tests are

performed through Vector Autoregressive (VAR) models in order to test whether or not the macro and

financial variables have informative power in explaining the implied volatility and risk premium mea-

sures and vice versa. In other words, we examine the presence of unilateral or bilateral relationships

between the volatility series and their components and the independent variables by testing the follow-

ing hypothesis - Hypothesis 3: There are unilateral (or bilateral) interactions at different frequencies

depending on the two volatility components and characteristics. Results of the Granger analysis are

reported in Section 3.6.

4We also undertake a correlation analysis between all the differences or log-differences of our determinants, finding that
there is no evidence of multi-collinearity between the selected variables. We expected multi-collinearity between EPU and GPR
though we found no evidence and, consequently, we can consider the two together in the same regression model.

5Other potential approaches have been considered for this empirical analysis, however the main drivers are found to be robust
to the regression model chosen. More details are discussed in Section 3.5.
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3.4.1 Relationship between Volatilities and Selected Variables

Because of stationarity issues, the first difference of the volatility series is taken to avoid problems of

spurious regressions. The covariates we consider in the analysis are the macroeconomic and finan-

cial conditions variables discussed in Section 3.3.2. The regression analysis is conducted through the

following equation:

4V OLqt = α+

n∑
j=1

βj(4XMacro,F in)t,j +

n−1∑
j=1

γj(4XMacro,F in)t−1,j + εqt . (3.9)

where V OL is either the VIX variable or the VRP variable with q = Tot,+,− andX being the matrix

containing the macroeconomic and financial variables with j varying from 1 to n = 15.

3.4.2 Low Frequency and High Frequency Granger Causality Test

The Granger causality approach conducted through different frequency VAR models is undertaken so as

to obtain an improved understanding of the lead-lag relationships between the volatility measures and

the financial conditions and macroeconomic determinants. We assess the significance of the impact

of the determinants on the various implied volatility and risk premium measures, and furthermore,

we also investigate whether these volatility measures or their upside or downside components contain

useful information in predicting the economic and financial activity. More so the implied volatilities

which are well recognized in the literature to anticipate the financial and economic conditions through

investors’ expectations and options trading. The information they carry is already projected ahead

since they are 30-days forward looking information containers. Thus, from the Granger causality test

it should emerge whether or not a set of variables contains useful information in predicting another set

of variables, especially when the implied volatility indexes are considered (e.g. Diebold and Yilmaz,

2008). The results for each pair of variables considering differences or log-differences of the series is

tested through the following VAR models for the low frequency (LF) and high frequency (HF) variables.

The LF-VAR is expressed as follows:

4 Y Lj = ωL +

τL−lL∑
i=1

αi 4 Y Li +

τL−lL∑
i=1

βi 4 χLi + εLj (3.10)

where L denotes the low frequency domain, j = 1, ...6 is an indicator for the variables available only at

monthly frequency and included in χL, lL is the lag indicator, in this case monthly with τL the number

of observations in the sample, at monthly frequency. In the case of high frequency, we keep the implied

volatility and risk premium measures as daily and model them in relation to the other variables available
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at daily frequency. The HF-VAR model is expressed as follow:

4 Y Hk = ωH +

τH−lH∑
i=1

ai 4 Y Hi +

τH−lH∑
i=1

bi 4 χHi + εHk (3.11)

where H denotes the high frequency domain, k = 1, ...9 is an indicator for the variables available at

daily frequency, lH is the daily lag indicator, τH is the number of observations of the daily sample.

The regressors are the lagged Y dependent variables and the lagged χH independent variables and

ε is distributed as N(0, σ2). The null hypothesis we test is H0: X does not Granger cause (GC) Y,

abbreviated to H0: X ;LF Y for the low frequency case, and to H0: X ;HF Y for the high

frequency case and vice versa from Y to X .

3.4.3 Mixed Frequency Granger Causality Test

We check, in addition, whether or not temporal aggregation, in our case from high daily frequency to

lower monthly frequency, end-of-the-month, may hide causality links among our covariates. According

to Ghysels et al. (2016), a mixed frequency (MF) approach is able to recover more casual relationships

compared to the standard LF approach which, in turn, might not capture causality even in simple cases.

Given that our dependent variables are available daily and temporal aggregation would result in a loss

of information, we test whether or not in our framework MF approach recovers underlying patterns

better than the traditional LF approach.

We compare the analysis we have undertaken through a LF-VAR model considering the tempo-

ral aggregated volatility series, end-of-the-month, and common frequency with our macroeconomic

variables, with the MF-VAR model which is run taking the volatility series at the highest frequency

at which they are available. We then compare the interaction between our daily dependent variables

(VIX , VIX− , VIX+ and VRP , VRP− and VRP+ ) and the six explanatory variables that are avail-

able only at monthly frequency.6 The following hypothesis is tested - Hypothesis 4: Mixed frequency

(MF) analysis should uncover additional causality relationships among our covariates compared to the

conventional low frequency (LF) approach.

The following simplifying assumptions are applied for estimating the MF model: m is implicitly

fixed equal to 20 and the total time period re-scaled accordingly7 and only two frequencies are selected,

namely, daily and monthly.

We discuss in details, the mixed-frequency VAR model together with the mixed frequency Granger

6The macroeconomic variables include CPI, IP, UR, M1, GDP plus market sentiment, SENT. We consider the interpolated
GDP growth rate at monthly frequency so as not to complicate the analysis even further by having only a single variable at a
different lower frequency.

7More specifically, since not every month contains 20 daily observations, but can vary from 19 to 23, we consider a common
and fixed number of observations equal to 20. When more than 20 observations are observed the days exceeding 20 are averaged
with the 20th observation, while when only less than 20 observations are available the interpolation between end-of-the month
and beginning of the next month is considered. This allows us to still have a large sample totalling 4980 and 259 observations
for HF and LF, respectively.
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causality definition. According to Ghysels et al. (2016), the latter relies on and is an extension of Dufour

and Renault (1998) definition. We follow the notation in Ghysels et al. (2016) and Ghysels (2016). The

high frequency (HF) process includes {{χH(τL, κ)}mk=1}τL and {{χL(τL, κ)}mk=1}τL , where τL ∈

{0, ...., TL} is the LF indicator (monthly), k ∈ {1, ....,m} is the HF indicator (daily) with m denoting

the number of HF periods within the LF time. The HF variables are χH(τL, κ) ∈ RKH×1, KH ≥ 1

observations, whereas χL(τL, κ) ∈ RKL×1, KL ≥ 1 are latent LF variables since they are not

observed at HF (daily). The MF process is given by all the HF variables {{χH(τL, j)}mj=1}τL and only

aggregate LF variables {χL(τL}}τL and the MF-VAR model contains all the observable variables in a

mixed frequency vector:

χ(τL) = [χH(τL, 1)′, ...., χH(τL,m)′, χL(τL)′]′. (3.12)

where the dimension of the MF-vector isK = KL+mKH and the LF block, χL(τL), is conventionally

observed after the HF block of variables, χH(τL,m). X(τL) follows a VAR(p) model for some p ≥ 1

as follows:

χ(τL) =

k=1∑
p

Akχ(τL − k) + ε(τL) (3.13)

where Ak are the K × K matrices for k = 1, ..., p and the error vector ε(τL) is a strictly stationary

martingale difference. The condition for stationarity applies here as in the LF-VAR case, and variables

log-differences and first differences are taken. After having estimated the MF-VAR model illustrated in

Formula 3.13, we test for Granger causality in mixed frequency case defined as in Ghysels et al. (2016)

who relies, in turn, on Dufour and Renault (1998) definition of:

Definition 3.4.1. Granger (Non)-Causality at Different Horizons. y does not cause x at horizon h

given l (we denote it as yNGChx | l) if: P [x(τL + h) | x(−∞, τL] + z(−∞, τL]] = P [x(τL + h) |

l(τL)]∀τL ∈ Z and y does not cause x up to horizon h given l (yNGChx | l if yNGCkx | l for all

k ∈ 1, ...., h.

Considering W(τL) = [x(τL)′, y(τL)′, z(τL)′]′ as a vector of random variables, l(τL) = W(−∞, τL)

is the Hilbert space spanned by the vector W(τ) | τ ≤ τL. In other words l(τL) = x(−∞, τL) +

y(−∞, τL)+z(−∞, τL). P [x(τL+h) | l(τL)] is the best linear prediction of x(τL+h) based on l(τL)

which, according to definition A.1 is unchanged whether the past and present values of y are available

or not. Further details on the notation and specification of the Granger causality at different horizon in

Dufour and Renault (1998).

In our case, the MF-VAR model is constructed by including one dependent HF variable, χH , which

can be, in turn, VIX or VRP (or their sub-components) and six LF explanatory variables χL,1...6 with

m = 20 being the frequencies ratio. Expanding equation (3.12), we obtain, in this case, a 26× 1 vector
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as follow:

χτL = [χH,j(τL, j, 1), χH,j(τL, j, 2), ....., χH,j(τL, j, 20), χL,1(τL), χL,2(τL), ....χL,6(τL)] (3.14)

where the two concatenated mixed frequency sub-vectors are [χH,j(τL, j, 1), χH(τL, j, 2), ....., χH(τL, j, 20)]′

at HF and χL(τL) at LF with j = 1...6 indexed for the two set of model-free volatility measures con-

sidered in the chapter, namely, VIX , VIX− , VIX+ , VRP , VRP− and VRP+ . As an example, for

the first variable, aggregate VIX and the six LF variables, the concatenated vector would be as follow:

χτL = [V IXH(τL, 1), V IXH(τL, 2), ..., V IXH(τL, 20), CPI(τL), GDP (τL), UR(τL), IP (τL),M1(τL), SENT (τL)]

(3.15)

Following Ghysels et al. (2016) and by applying definition 3.4.1, χH does not Granger cause χL at

horizon h given l (χH ; χL | l) if P [χL(τL + h) | xH,2(−∞, τL] + χL(−∞, τL]] = P [χL(τL + h) |

l(τL)]∀τL ∈ Z. The same definition applies for the reverse, χL does not Granger cause χH at horizon

h given l (χL ; χH |l).

To sum up, we test all three possible Granger causality cases according to the frequency of our

variables:

• I Case: LF to LF - Granger causality from the χL,i1 to the χL,i2 low frequency variable at hori-

zon h through model (3.10) considering all the variables at monthly frequency. H1
0 : χL,i1 ;LF

χL,i2 | l.

• II Case: HF to HF - Granger causality from the χH,i1 to the χH,i2 high frequency variable

at horizon h through model (3.11) considering only the variables available at daily frequency.

H2
0 : χH,i1 ;HF χH,i2 | l.

• III Case: Mixed Frequency (MF) - Granger causality from the χL,i1 low frequency to the

χH,i1 high frequency variable at horizon h (and vice versa from the χH,i1 to the χL,i1 ) through

model 3.15 considering our set of variables at the available frequency H3
0 : χL,i1 ;MF χH,i1 |

l(χH,i1 ;MF χL,i1 | l).

Lags are selected in accordance with the minimum value between Akaike Information Criterion

(AIC) and Schwarz Information Criterion (SIC) for the LF-VAR and HF-VAR, while the MF-VAR lag

is chosen equal to one, l = 1. The prediction horizon h is set between one and four, h ∈ {1, . . . , 4}.

As discussed in Ghysels et al. (2016) redundant lags might have an adverse impact on power especially

when h, the prediction horizon, increases. The groups of variables in the MF-VAR are the LF-monthly

variables (CPI, GDP, IP, UR, M1, SENT) and the HF-daily dependent implied volatility and risk pre-

mium series. The frequency ratio is set to m = 20 such that the LF observations in our MF-VAR

model are equal to TL = 249 (TH = 4980 HF observations divided by 20). KH = 1, is the dependent

65



variable, whereas KL = 6, are the low frequency variables having a total number of variables in the

MF-VAR which is K = 26. The analysis is run following Ghysels et al. (2016), considering Newey

(1987) HAC covariance estimator and Newey and West (1994) automatic lag selection.

3.5 Relationship between Volatilities and Selected Variables: Em-

pirical Results

In this section we report the results of the stepwise regression analysis of the aggregate and decomposed

model-free implied volatility indexes, VIX , VIX− and VIX+ , and of the aggregate and decomposed

volatility risk premia, VRP , VRP− and VRP+ , onto the macroeconomic and financial variables

performed by running equation (3.9). Due to the large number of covariates, a stepwise backward

regression approach with stopping threshold equal to 0.1% is undertaken. One period lagged variables

are also included in the analysis to check for any possible interactions of the lagged variables. The

results of the stepwise backward regression are presented in Table 3.3 for the implied volatilities and

risk premia in the first panel and second panel, respectively.

3.5.1 Implied Volatility Stepwise Regression Analysis

We observe, in general, that the stock market proxy, S&P 500 , impacts significantly on the implied

volatility indexes, with a negative sign in the contemporaneous relationship, whereas positive and de-

creasing in the first lag. The S&P 500 index appears to be impacting more on the VIX− during the

post financial crisis, showing investors’ concerns about market downturns and the possibility of another

crisis which is reflected in the puts hedging strategies. The S&P 500 has a sizeable contribution to the

adjusted R2, explaining on its own about half of this goodness-of-fit statistic. This variable plays an

important role in our analysis and controlling for it, allows us to compare our results with previous

studies in this area (see Paye, 2012; Christiansen et al., 2012). Furthermore, retaining the S&P 500

variable also permits us to investigate volatility properties in relation to the equity variable such as

leverage effect as well as to study its asymmetric impact on decomposed volatility series. Considering

the equity levels in the Granger analysis allows us to anchor our chapter to previous literature that has

studied the predictability power of volatility and risk premia towards equity and vice versa (see Feunou

et al., 2017; Kilic and Shaliastovich, 2018).

Some of the pure macroeconomic variables, namely inflation (CPI), industrial production (IP), gross

domestic product (GDP), money supply (M1) and term structure (TS) are weakly significant in explain-

ing the VIX indexes, with significance levels, where significant, never exceeding 5%. No relevance at

all is found for unemployment rate (UR). Macroeconomic variables, such as CPI, IP and GDP appear

to be also more significant in explaining the VIX+ component, the agents consumption willingness or
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a country’s production ability being linked to the good volatility proxy. Inflation shows a weak effect

with regards to volatility in line with previous studies, and the sign of this relationship in contempora-

neous time is found to be negative, the opposite to previous studies looking at realized volatility (e.g.

Schwert, 1989; Paye, 2012; Engle et al., 2013). This interesting negative relationship between changes

in implied volatilities and changes in inflation might be justified by the fact that the time period of this

study has been characterized by a relatively low level of inflation in the U.S., thus, investors react in

a positive way when, starting from a very low level, inflation increases, since this is considered good

news for the stability of the financial system and leads to a decrease in volatility (see Coibion et al.,

2012). An increase in inflation might be seen as an economic stimulus and stabilization implying less

uncertainty on the investors’ consumptions and trades, thus, decrease of VIX+ . On the other hand,

when inflation moves towards disinflation or, eventually, deflation, this is actually bad news for the

economy and the volatility may suddenly increase.

During the total and pre-crisis periods, we find that the impact of the macroeconomic variables is

skewed towards the upside implied volatility, VIX+ , with their role appearing to be placed mostly in

the call options, whereas financial variables appear to impact more on VIX and VIX− , the aggregate

and downside implied volatilities. It is found that an increase in the credit spread drives an increase in

the implied volatility. This is due to the variation in the credit default conditions underlying the bonds

which reflects the credit risk perception and changes in the financial market, thereby being related to

financial volatility in a positive way, and this link appears to pass, mainly, through the puts channel.

The JPY-USD exchange rate is found to be a significant driver of the implied volatility indexes

impacting with a negative sign in contemporaneous time. One must recognize that the exchange rate is

quoted as number of yens per one dollar and the U.S. is a net importer. Hence, when JPY-USD drops,

the dollar depreciates against the yen, resulting in U.S. companies experiencing more expensive imports

which will increase their costs and impact negatively on their revenues and on their stock prices, thus,

resulting in an increase in stock market volatility. The opposite chain applies when JPY-USD rises

and dollar appreciates against the yen. This relationship might also be discussed with a more market

sentiment explanation, such as, when the dollar appreciates against a foreign currency this is seen as

a stabilization and strengthen signal for the U.S. economy, thus, it might reflect in a drop in the U.S.

uncertainty level and so in a drop in the “fear” index, VIX , and vice versa when dollar depreciates.

While the first more market driven explanation might apply with relation to the VIX+ , more related

to investments and consumptions, the second market sentiment explanation might be more related to

the VIX− , more related to investors fear and uncertainty. Overall, both volatility components are

negatively related to the exchange rate, thus, resulting in an overall negative relationship between JPY-

USD and volatility.
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Table 3.3: Stepwise Backward Regression between Implied Volatilities, Risk Premia and Selected Variables

PANEL 1: Stepwise Backward Regression between Implied Volatilities and Selected Variables

Total Period Pre-Crisis Period Post-Crisis Period

VIX VIX− VIX+ VIX VIX− VIX+ VIX VIX− VIX+

t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1

CPI -0.064* -0.080* -0.114** 0.081* -0.863* -0.278**
IP 0.277* 0.295* 0.421** 0.539** 0.593**
GDP 0.112* 0.125* -0.127* 0.168* 0.234** -0.178* 0.274** 0.313**
UR
M1 -0.328** -0.402**
TS 0.101* 0.150** -0.142** 0.176* 0.219**
OIL
ER -0.068** -0.078* -0.062* -0.129* 0.136** 0.147**
GOLD
SPX -0.260*** 0.090*** -0.256*** 0.082*** -0.269*** 0.091*** -0.216*** 0.089*** -0.226*** 0.059*** -0.206*** 0.121*** -0.403*** 0.180*** -0.465*** 0.210*** -0.401*** 0.133***

CRE 0.149* 0.209** 0.314** 0.432*** 0.331**
SENT -0.403* -0.665*** -0.606* -0.627** -0.044*
TED 0.058* 0.100** -0.104* -0.116* -0.103*
EPU 0.127** 0.107** 0.184*** 0.145** 0.196*** 0.132* 0.268*** 0.157* 0.217*
GPR -0.040* -0.055** -0.067**

AdjR2 0.558 0.466 0.550 0.525 0.415 0.517 0.663 0.638 0.660

PANEL 2: Stepwise Backward Regression between Risk Premia and Selected Variables

Total Period Pre-Crisis Period Post-Crisis Period

VRP VRP− VRP+ VRP VRP− VRP+ VRP VRP− VRP+

t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1

CPI 0.277** 0.376*
IP
GDP
UR -0.386* -0.684* -0.803**
M1 0.707* -0.643* 0.739** -0.916*** 1.493** -1.764*** -1.563*** 1.035** -1.125**
TS 0.710*** -0.380* 0.733**
OIL 1.579** 1.396** 0.843* -2.875*** -2.019* -2.422***
ER 0.423*** 0.328** 0.308** 0.676** 0.700**
GOLD 0.249* -0.283** 0.198**

SPX 0.294*** -0.511*** -0.126* 0.529*** -0.646*** 0.278** -0.796*** -0.242** -0.226** 0.549*** -0.953*** 0.828*** -0.505** -0.420* 0.761*** -0.498***
CRE 0.684* -0.890** 1.242*** -1.027*** 1.107* 1.613*** 1.608*** 2.292** -2.192*** -2.392*** 2.068*** -1.060*
SENT -0.176** 0.144* -0.142** -0.150** 0.217* -0.227*
TED 0.727** 0.729** 0.407*
EPU 0.459** 0.252* 0.414* 0.205** 0.827** 1.042** 0.813** 0.778**
GPR -0.125* -0.279** -0.198* -0.225**

AdjR2 0.268 0.234 0.508 0.348 0.180 0.650 0.363 0.309 0.432

Notes: This table presents the output of the stepwise backward regression analysis between our dependent variables, both implied volatilities (VIX , VIX− and VIX+ ) and also the volatility risk premia (VRP ,
VRP− and VRP+ ) and the 15 selected macroeconomic and financial variables, namely, Inflation (CPI), Industrial Production (IP), Gross Domestic Product (GDP), Unemployment Rate (UR), Money Supply (M1),
Term Structure (TS), Oil Price (OIL), JPY-USD Exchange Rate (ER), Gold Price (GOLD), S&P 500 Index (SPX), Credit Spread (CRE), Market Sentiment (SENT), TED Spread (TED), Economic and Policy Uncertainty
(EPU) Index and GeoPolitical Risk (GPR) Index in the first and second panel, respectively. The regressions as shown in equation (3.9), for implied volatility: 4IV qt = α +

∑n
j=1 βj(4XMacro,Fin)t,j +∑n−1

j=1 γj(4XMacro,Fin)t−1,j + εqt and for risk premium,4V RP qt = α+
∑n
j=1 βj(4XMacro,Fin)t,j +

∑n−1
j=1 γj(4XMacro,Fin)t−1,j + εqt are run for contemporaneous variables (t) and one

period lag (t-1) variables. The table reports the regression coefficients only for the variables that passed the stepwise regression test. Selection method is stepwise backwards with stopping threshold p-values higher
than 10%. All the variables are taken with difference or log-difference and re-scaled accordingly. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. The regression is run over the total period, from 04-1996 to
09-2016, over the Pre-Crisis period from 01-1996 to 08-2007 and over the Post-Crisis period from 04-2009 to 09-2016, at monthly frequency.
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The variables EPU and GPR present higher coefficients and stronger significance with respect to

VIX− impacting more on the put options side, whereas they appear to never impact on the VIX+ . This

reflects the investors’ fear regarding economic, political and geopolitical uncertainty, and consequently

the investors’ willingness to hedge themselves against it. The positive relationship between the EPU

index and the implied market volatility is in line with Pastor and Veronesi (2012, 2013).

The geopolitical risk index by Caldara and Iacoviello (2018) is found to show a negative relationship

mainly with VIX− which is justified by the composition of the index which does not appear to respond

to financial events in the same way of VIX and EPU. The relationship between GRP and implied

volatility is found to emerge mainly in the period before the crisis due to the presence of events such as

9/11 and Iraq invasion as confirmed also from Figure 3.2. The relationship between implied volatilities

and EPU and GPR will be analysed more in-depth in Section 3.7.

Interestingly, in the pre-crisis period, we find no role for commodities, exchange rate and credit in

driving the implied volatilities. We find, instead that the implied volatilities are driven by variables, such

as, market sentiment, liquidity, EPU and GPR indexes as well as the stock market, finding that might be

justified by the events which occurred during this time period. This time period includes events such as

the Asian financial crisis, the Russian financial crisis and the LTCM collapse in 1998, the 9/11 terrorist

attack and the recession period between 2001-2002, all events which spread uncertainty for the U.S.

economic stability. We find that the liquidity proxy, TED, is positively related, in contemporaneous

time, to stock markets falls, and, consequently, to an increase in financial market volatility in line with

Christiansen et al. (2012). This is due to the fact that an increase in the TED spread is seen as a

warning sign, namely that liquidity might be withdrawn due to the fact that lenders expect an increase

in counterparty risk which in turn will increase the LIBOR component of the TED spread, a mechanism

which reached its extreme during the global financial crisis (see Cornett et al., 2011).

The post financial crisis bullish period and the exuberance resulting from the dot-com bubble period

might, instead, be identified as possible causes for the fact that market sentiment impacts mainly on the

upside volatility proxy, VIX+ . The sentiment index has a lagged and inverse relationship with implied

volatilities. This relationship is interesting knowing that the sentiment index seems to reduce the level of

the next period implied volatilities, which itself makes sense in that it reduces the investor’s uncertainty

about the future spending behaviour of consumers and general future states of the economy.

In the post-crisis period, we observe a weak and minimal effect of macro determinants on the

implied volatilities. Table 3.3 shows a clear shift from a mixed macro-financial variables effect detected

in the pre-crisis period towards a financial oriented determinants effect in the post-crisis period. Iconic

is the role of industrial production, a variable which illustrates changes in the structure of the economy

and may be an indicator of future inflation thereby possibly impacting on financial markets. While in

the post-crisis period the level of IP was very low thus having no impact on financial market volatility,
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during the pre-crisis period we observe how higher level of IP signals a stronger economy, future

inflation outlook and, thus, it plays a role on the financial market. Basically, during the post-crisis

period, the concerns of another event such as the global financial crisis had moved the attention of

investors trading S&P 500 options underlying VIX towards other variables such as credit, TED spread,

EPU index and market sentiment, more related to investors’ expectations, financial risk and uncertainty.

In general, we can assess that the variables identified as playing a more important role in influenc-

ing both the aggregate VIX and VIX− are more attached to the financial market conditions group of

variables, namely credit spread, market sentiment and the EPU index. These variables are the ones

found to be significant at the 1% level at least once either over the total time period or over the two

sub-periods. On the other hand, macroeconomic variables play a smaller role showing significance at

the 5% level and their effect is placed, most of the time, on the upside volatility component, VIX+ .

We find no relevance at all for commodities in explaining the implied volatility indexes. For instance,

gold which is mainly seen as a hedge against inflation, shows a negligible effect in relation to volatility

due to the overall low period of inflation in the U.S. It is notable that the lag of the credit proxy appears

to increase in importance in the post financial crisis, whereas the EPU effect is found to be, in general,

stronger in a contemporaneous framework, with coefficients decreasing in significance when the first

lag is considered. These two findings are in line with Amengual and Xiu (2017), confirming that policy

news is more relevant in the short term while credit default spread is important in the long run.

3.5.2 Volatility Risk Premia Stepwise Regression Analysis

The second panel in Table 3.3 shows how the aggregate volatility risk premia are largely impacted by

the S&P 500 , credit, market sentiment, and economic and policy uncertainty during the total period.

Among the macroeconomic variables, money supply has the largest and most significant impact on

the all the premium series before the crisis, but it becomes non-significant after the crisis, possibly

due to important changes in monetary policies. In the pre-crisis period, we find that inflation is still

driving the upside component, VRP+ , while over this period the term structure drives VRP− . The

unemployment rate shows its major impact on VRP− . The post-crisis period shows a poor role for the

macroeconomic variables in impacting the VRP series, instead finding that the VRP series are mostly

impacted by commodities, such as, oil and gold, and the exchange rate (except for VRP+ ) and also

the financial conditions variables.

In the total period, the JPY-USD exchange rate is also found to be highly significant in influencing

all the VRP series with its first lag. A similar predominant role is found for S&P 500 and credit,

EPU index and market sentiment, Commodities such as, oil and gold are shown to be significant in

explaining the volatility risk premia, in contrast to the implied volatility indexes where they were found

to have difficulty showing significance. In particular, oil is significant during the two sub-periods, with
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a positive sign on the risk premia coherent with the well established negative relationship between oil

price and stock market confirmed. The pre-crisis period being stressed by turbulence due to the Iraq

war and the post-crisis period by OPEC cutting oil production and the tension in the Middle East.

Regarding the equity market, we detect a stronger impact of S&P 500 on the VRP+ in the total

and pre-crisis periods, whereas a smaller impact on the VRP+ in the post-crisis period compared to

the aggregate. The predominant role of the VRP+ as a volatility risk premium component confirms the

results in Kilic and Shaliastovich (2018) who found that the VRP+ is more related to the aggregate risk

premium, and also in line with Feunou et al. (2017) who found that the VRP+ is the main component

of the aggregate VRP .8 We find a positive and significant (1%) relationship between VRP+ and

the stock market, whereas a negative and barely significant (10%) between the VRP− and the stock

market during the total period. We observe that when S&P 500 increases, VRP+ increases as well,

VRP− decreases, while VRP shares, most of the time, the same sign as for the VRP+ implying it

increases. However, while is evident that the VRP− (VRP+ ) shows a negative (positive) relationship

with the equity market, the relationship sign between the aggregate VRP and equity can sometimes be

masked since it is a mixture of information emanating from the two components, VRP+ (positive sign)

and VRP− (negative sign) as pointed by Kilic and Shaliastovich (2018). In addition, we also notice

that the VRP+ is influenced by more variables compared to VRP and VRP− , resulting in a higher

adjusted R2, in both the total sample and sub-samples.

We find a positive relationship between the EPU index and risk premia, regardless of their nature,

implying that the higher the economic and policy uncertainty the higher the premia that the investors

are willing to pay in order to be hedged against it, in line with Pastor and Veronesi (2012, 2013). The

relationship between EPU and the negative component (VRP− ) is confirmed to be stronger when

compared to the upside component (VRP+ ) risk premia case. We detect no role for EPU in the pre-

crisis period. Interestingly, we find, again, a shift in the role of the variables when moving from the pre-

crisis to the post-crisis period during which we notice that there is no role left for the macroeconomic

variables in explaining the volatility risk premia. On the other hand, financial variables, such as, equity,

credit, liquidity and the EPU index, but also commodities, strengthen in their role in the post-crisis

period, with increased β coefficients as compared to the pre-crisis or total period.

In Table 3.3 it can be seen that the signs of the coefficients for some variables change when lags

are introduced. Thus, we examine the coefficients of the second difference, 4Xt−l −4Xt−l−1 with

l = 0, 1 over the total time period by running the following regression model for both the implied

8In Feunou et al. (2017) however, VRP+ corresponds to the downside VRP since they compute the risk premia as a
difference between implied volatilities and realized volatilities, opposite to us.
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volatility and volatility risk premium:

4V OLqt = α+

n∑
j=1

βj(42XMacro,F in)t,j +

n−1∑
j=1

γj(42XMacro,F in)t−1,j + εqt . (3.16)

where q = Tot,+,−. In relation to the implied volatility, we find that despite the change in sign,

the speed of the rate of change coefficient is found to be positive for inflation, credit, liquidity and

term structure (42CPI , 42CRE, 42TED, 42TS), whereas it is found to be negative for S&P 500

and GDP (42S&P500, 42GDP ) confirming the leverage effect for S&P 500 and the GDP negative

relationship with volatility as suggested in the literature (e.g. Engle and Rangel, 2008). Stock return

volatility behaves counter-cyclically (e.g. Schwert, 1989; Paye, 2012) moving counter-cyclically with

respect to GDP (see Campbell and Diebold, 2009). We also check the speed of the rate of change coef-

ficient with respect to those variables where the sign of the coefficient changes between time periods t

and t− 1 in relation to the volatility risk premia (42M1,42S&P500,42CRE,42SENT ) finding

that the coefficients sign detected at time 0 holds for all the variables.

In short, partial least squares regression is probably the least restrictive of the various multivariate

extensions of the multiple linear regression model. This flexibility allows it to be used in situations

where the use of traditional multivariate methods is severely limited, such as when there are fewer

observations than predictor variables. Furthermore, partial least squares regression can be used as an

exploratory analysis tool to select suitable predictor variables and to identify outliers before classical

linear regression.

To conclude this Section, preliminary results of this chapter were obtained by using alternative

regression analysis and methodologies. The robustness of the results has checked by, first, employing a

stepwise forward regression with threshold 0.1% and, second, by implementing a partial least squares

regression. The latter is also commonly used as an exploratory analysis tool in order to select the main

predictor variables from a wide range before classical linear regression. The sensitivity of the results

is found not to depend on the methodology chosen and the main variables emerged with the stepwise

backward regression still hold when robustness checks are undertaken. We decided to report the results

of the stepwise backward regression for easier comparison between the decomposed VIX and VRP

analysis and in order to further highlight the difference in variables significance and coefficients’ sizes

when the dependent variable is changing (VIX , VIX+ , VIX− and VRP , VRP+ and VRP− ). The

covariates found to be significant in explaining one of the selected dependent variables lead to the

same results and regression explanatory power when re-fitted in OLS regressions. As will be shown in

Section 3.6, similar results and same set of drivers are also detected as main explanatory variables in

the Granger causality analysis, further reinforcing the validity of the results of our stepwise regressions.
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3.5.3 Implied Volatilities and Risk Premia Rolling Regressions

Overall, from Table 3.3, we detect an asymmetric impact of the selected variables according to the

different volatility components studied. In order to further test both Hypothesis 1 and Hypothesis 2

in a dynamic framework, we conduct a rolling regression over the total time period. Figures 3.2 and

3.3 show the selected variables’ rolling p-values for the VIX and VRP series, respectively. The rolling

p-values are reported only for those variables found to be significant for at least one of the VIX series

or VRP series from the stepwise backward regression in Equation 3.9 as reported in Table 3.3 over the

total time period. Rolling window length is selected equal to 30 months and the regression is rolled

every month.

For the implied volatility, interesting differences in behaviour of the selected variables emerge from

the pre-crisis to the post-crisis periods and especially in the midst of the two recession periods. For

instance, before the first 2001-2002 recession period, resulting from the dot-com bubble and optimistic

investors’ expectations, many of the variables (CPI, TS, S&P 500 , SENT) are shown to be impacting

mainly on the VIX+ , a proxy for upside implied volatility, rather than on the negative component.

Market sentiment actually only affects the VIX+ component during the dot-com bubble, reflecting

the investors’ exuberance at that time. Inflation is found to be significant mainly during the pre-crisis

period, while during the post financial crisis inflation is hardly seen as a problem in the U.S. as also

reflected in Table 3.3. Industrial production alternates, showing periods in which it impacts more on

VIX− , while others on VIX+ . GDP is found mainly to be significant in the period surrounding the

financial crisis and the 2008-2009 recession, but also at the end of 2014 and beginning of 2015. After

the dot-com bubble, term structure is found to be significant for VIX+ while relevant for VIX− in

the immediate pre-crisis period. The JPY-USD exchange rate is associated mainly with the VIX+ ,

especially in the post global financial crisis. For instance, in October 2010 the dollar value dropped

below 84 yen for the first time in almost two decades. It was seen as negative news for U.S. companies

facing more expensive imports and reflected on American consumers and, in turn, reflected on VIX+ ,

more associated to investors’ consumption sphere. By the end of 2014, the dollar increased above 110

yens and JPY-USD is found, again, to mainly impact on VIX+ .

The credit measure, as shown also in Table 3.3, emerges as significant for VIX− mainly in the post-

crisis period. Market sentiment appears to drive the two implied volatility components according to the

market period and investors’ beliefs. It impacts on the VIX+ component during the dot-com bubble

and it translates into carrying fear and concerns to the VIX− in the immediate pre and post financial

crisis periods. The EPU index impacts mainly on the VIX− responding to concerns due to events such

as; the Russian financial crisis, the 2001-2002 recession, the 9/11 terrorist attack, the Lehman Brother

failure, the European sovereign debt crisis, the Russia-Ukraine conflict and the Brexit vote. The GPR

index mainly spikes in relation to events which are not related to economic and financial activity as
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Figure 3.2: Rolling P-Values for the Implied Volatility Regression

Notes: This figure shows the rolling p-values for the variables selected by the stepwise backward regression in equation (3.9) to explain at least one
of the implied volatility components over the total time period (see Table 3.3): Inflation (CPI), Industrial Production (IP), Gross Domestic Product
(GDP), Term Structure (TS), JPY-USD Exchange Rate (ER), S&P 500 Index (SPX), Credit Spread (CRE), Market Sentiment (SENT), Economic
and Policy Uncertainty (EPU) Index and GeoPolitical Risk (GPR) Index. The reported rolling p-values are associated to the different volatility
series, namely, VIX (blue line), VIX− (red line) and VIX+ (green line). 10% significance threshold is shown. Selected window size is 30
months and the regression is rolled every month. The NBER recession periods are highlighted in gray. The rolling regression analysis is run over
the total time period from 01-1996 to 09-2016, at monthly frequency.

discussed in subsection 3.5.1 and how it will be further discussed in Section 3.7.

In relation to the volatility risk premia, we observe that money supply is found to explain the VRP

series especially during the global financial crisis and more recent years, whereas it is found to impact,

mainly, VRP− in the post 2000-2001 recession period. A similar pattern appears to be confirmed

for the unemployment rate, whereas term structure is found to affect the VRP series mainly during

the global financial crisis and its aftermath. The JPY-USD exchange rate is found to be significant

mainly during the 2000-2001 recession period, financial crisis and Brexit. We detect a major role for

the S&P 500 in driving the upside volatility risk premium, VRP+ , as also shown in Table 3.3, in line

with Feunou et al. (2017) and Kilic and Shaliastovich (2018), while affecting the VRP− only during

the global financial crisis. Credit is found to impact on VRP+ in the pre-financial crisis and during

the crisis, while it is found to invert its role from 2012 onwards with a clear breakpoint, becoming

significant in explaining VRP− . Market sentiment is mainly detected as significantly driving the

VRP+ during the dot-com bubble and during the post global financial crisis, thereby reflecting periods
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Figure 3.3: Rolling P-Values for the Volatility Risk Premia Regression

Notes: This figure shows the rolling p-values for the variables selected by the stepwise backward regression in equation (3.9) to explain at least one
of the volatility risk premium components over the total time period (see Table 3.3): Inflation (CPI), Money Supply (M1), Unemployment Rate
(UR), Term Structure (TS), JPY-USD Exchange Rate (ER), S&P 500 Index (SPX), Credit Spread (CRE), Market Sentiment (SENT), Economic
and Policy Uncertainty (EPU) Index and GeoPolitical Risk (GPR) Index. The reported rolling p-values are associated to the different volatility
series, namely, VRP (blue line), VRP− (red line) and VRP+ (green line). 10% significance threshold is shown. Selected window size is 30
months and the regression is rolled every month. The NBER recession periods are highlighted in gray. The rolling regression analysis is run over
the total time period from 01-1996 to 09-2016, at monthly frequency.

of investors’ optimism. Only for few years, between 2012 and 2014 does it significantly impact the

VRP− . The opposite trend is shown by the EPU index which is found to to be mainly related to

VRP− . Inflation and geopolitical risk index appear to be rarely significant in impacting on the VRP

series as shown in Table 3.3.

Overall, from both Table 3.3 and Figures 3.2 and 3.3, we can confirm Hypothesis 1 and Hypothesis

2: different selected variables appear to impact on the different implied volatility and volatility risk

premium components, VIX , VIX− , VIX+ and VRP , VRP− , VRP+ and, in addition, variables’

behaviour and effect vary, for the majority of them, according to the selected time period, namely, the

pre and the post global financial crisis.
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3.6 Granger Causality at Different Frequencies: Empirical Re-

sults

In this Section, we report the Granger causality (GC) analysis results from the different frequency VAR

models as shown by equations (3.10), (3.11) and (3.15) with the aim of testing our Hypothesis 3 and

Hypothesis 4. In all the models we test for all the casual patterns from the explanatory variables to

the implied volatility and volatility risk premium series and vice versa. Tables 3.4 and 3.5 report the

summary of these relationships for the implied volatility, while Tables 3.6 and 3.7 for the volatility

risk premium. The low frequency GC columns show the causality relationship at monthly frequency in

which temporal aggregation, end-of-the-month, is applied. The mixed frequency GC columns show the

results obtained by running a MF-VAR with the six low frequency variables used in this chapter. In the

MF case, one lag is selected and we control for the forecasting horizon h, where h ∈ {1, . . . , 4}. The

high frequency GC columns show the results for the HF-VAR run only for those variables available at

daily frequency, which in turn include mostly financial conditions variables.

3.6.1 Granger Causality at Different Frequencies: Implied Volatilities

Regarding the implied volatilities, among the LF variables, market sentiment is found to be caused by

all the VIX indexes, whereas a unilateral Granger causality is detected only from VIX+ to inflation and

only from VIX− to unemployment rate. Among the other variables, we find VIX , VIX− and VIX+

to Granger cause both TED and EPU. Actually, a bidirectional relationship is found between VIX−

and the EPU index confirming the importance of the VIX− as a channel for transmitting the economic

and policy uncertainty into the volatility market. We find that credit market is informative, in turn, in

predicting all the VIX series, whereas the equity market predicts VIX and VIX− . There is no Granger

causality between the S&P 500 index and VIX+ at low frequency which is, instead, uncovered by HF

Granger causality. In general, for the low frequency, we find that some lagged macroeconomic variables

are, most of the time, unable to predict implied volatility indexes, especially when lagged beyond

the first month, but, in turn, also lagged implied volatility indexes are rarely found to be informative

for predicting macroeconomics. While we interpret the first as a mismatch in information containers

between macro variables and implied volatilities, one attached to a slower economic state and the other

to faster and more contemporaneous investors’ beliefs, we believe that for the forward looking implied

volatilities the informative power in predicting financial and macroeconomic variables should emerge

more strongly (e.g. Diebold and Yilmaz, 2008).

We correct this low frequency limitation identified in the literature (see Ghysels et al., 2016; Ghy-

sels, 2016) by performing a mixed frequency Granger causality test with the main aim being to uncover

possible causality relationships which we are unable to detect when using temporal aggregation. The
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MF analysis sheds light on several causality chains among low frequency macro variables and daily

implied volatility indexes that we find hidden in the low frequency state, aligning the results more with

those we detected in the stepwise regression analysis in the previous section. For instance, VIX is now

found to be able to predict inflation, money supply and unemployment rate, relationships robust for

three out of four forecasting horizons, while VIX Granger causes GDP and IP for h = 2 and h = 3.

Beltratti and Morana (2006) observed the existence of a causal linkage running from stock market

volatility to macroeconomics, however with short lived effects, a reason as to why LF Granger is found

not to uncover these relationships. They are also found to be more in line with previous studies, such

as Paye (2012), who found that lagged volatility provides an efficient indicator of the economic state

due to the relationship between volatility and business conditions, Vu (2015) who found that past inno-

vations in stock market volatility contain significant information about future changes in output growth

and Bekaert and Hoerova (2014) who found that implied volatility is able to predict future economic

activity. In the other direction, we detect causality chains going from IP, M1 and SENT to VIX for the

majority of forecasting horizons.

With respect to VIX− , we mainly confirm the unidirectional causality from VIX− to unemploy-

ment rate and market sentiment as for the low frequency, and we uncover robust relationships from

industrial production and market sentiment towards VIX− . With regards to VIX+ , we show a bilat-

eral relationship with market sentiment and unilateral relationships from VIX+ to unemployment rate

and from industrial production to VIX+ . Market sentiment confirms its simultaneous role next to the

volatility indexes (maximum one month lag selected), but a bilateral relationship is found between the

two only with the MF-VAR approach. This might be interpreted as a mismatch in the market sentiment

information frequency which needs a higher frequency in order to be detected.

The high frequency Granger causality also captures linkages which we are not able to capture with

monthly aggregation. Interestingly, for all the VIX series, we find evidence of a bilateral relationship

with the JPY-USD exchange rate which reflects the currency trading activity impacting on the options

trading and vice versa. Relationships from VIX to credit and liquidity proxies and to uncertainty and

geopolitical risk indexes are also detected for VIX and VIX− , while for VIX+ there is no causality

towards the GPR index.

There is evidence of a significant two way feedback between the EPU index and volatilities, how-

ever this causality chain being stronger when going from the VIX series towards the EPU index. This

can be explained from the way the EPU index is computed from newspaper articles which have a min-

imum lag of one day compared to the options market. The relationship between EPU and VIX is

quite contemporaneous (see Amengual and Xiu, 2017), while credit spread requires a little more time,

namely more than ten days, to impact on the volatility indexes, thus the causality relationship which is

detected monthly is lost at a daily frequency. This is in line with the results from Table 3.3 in which the
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Table 3.4: Pairwise Granger Causality Test for Mixed Frequencies: From Implied
Volatilities to Selected Variables (4 VIX ;4 X)

Aggregate Implied Volatility: VIX
Low Frequency GC High Frequency GC Mixed Frequency GC

HP l P-Value l P-Value h = 1 h = 2 h = 3 h = 4
4VIX;4 CPI 2 0.834 0.159 0.057 0.015 0.000
4VIX;4 GDP 3 0.327 0.654 0.047 0.018 0.106
4VIX;4 IP 3 0.830 0.788 0.000 0.005 0.525
4VIX;4 UR 3 0.148 0.106 0.000 0.010 0.000
4VIX;4M1 3 0.265 0.067 0.013 0.162 0.002
4VIX;4 SENT 1 0.002 0.106 0.016 0.118 0.000
4VIX ;4 TS 1 0.348 8 0.358
4VIX ;4 OIL 2 0.309 8 0.099
4VIX;4 ER 1 0.566 8 0.014
4VIX;4 GOLD 1 0.387 11 0.175
4VIX;4 SPX 1 0.665 18 0.167
4VIX;4 CRE 1 0.699 10 0.000
4VIX;4 TED 2 0.000 21 0.038
4VIX;4 EPU 2 0.000 8 0.000
4VIX;4 GPR 3 0.356 14 0.004

Downside Implied Volatility: VIX−

4VIX−;4 CPI 2 0.897 0.127 0.489 0.012 0.000
4VIX−;4 GDP 3 0.486 0.343 0.124 0.000 0.026
4VIX−;4 IP 2 0.414 0.264 0.067 0.000 0.254
4VIX−;4 UR 2 0.080 0.043 0.094 0.003 0.000
4VIX−;4M1 3 0.318 0.001 0.171 0.503 0.153
4VIX−;4 SENT 1 0.001 0.009 0.208 0.012 0.000

4VIX−;4 TS 1 0.313 7 0.456
4VIX−;4 OIL 3 0.319 7 0.174
4VIX−;4 ER 1 0.744 7 0.049
4VIX−;4 GOLD 1 0.574 11 0.043
4VIX−;4 SPX 1 0.493 18 0.887
4VIX−;4 CRE 1 0.691 10 0.006
4VIX−;4 TED 2 0.000 19 0.076
4VIX−;4 EPU 2 0.000 7 0.000
4VIX−;4 GPR 3 0.255 14 0.021

Upside Implied Volatility: VIX+

4VIX+ ;4 CPI 3 0.001 0.751 0.664 0.035 0.016
4VIX+ ;4 GDP 3 0.332 0.877 0.465 0.137 0.510
4VIX+ ;4 IP 2 0.467 0.046 0.347 0.416 0.813
4VIX+ ;4 UR 2 0.123 0.262 0.090 0.003 0.000
4VIX+ ;4M1 1 0.181 0.468 0.251 0.042 0.280
4VIX+ ;4 SENT 1 0.002 0.062 0.055 0.164 0.000

4VIX+ ;4 TS 1 0.594 8 0.411
4VIX+ ;4 OIL 1 0.218 8 0.462
4VIX+ ;4 ER 1 0.481 8 0.070
4VIX+ ;4 GOLD 1 0.272 9 0.327
4VIX+ ;4 SPX 1 0.394 18 0.227
4VIX+ ;4 CRE 1 0.890 10 0.000
4VIX+ ;4 TED 1 0.004 20 0.036
4VIX+ ;4 EPU 3 0.004 8 0.000
4VIX+ ;4 GPR 3 0.515 14 0.231

Notes: This table shows the VAR Granger causality tests performed through equation (3.10), (3.11) and (3.15) for low,
high and mixed frequency variables, respectively. The direction of the causality chains goes from the implied volatility
series, VIX VIX− and VIX+ , towards the macroeconomic and financial variables (4 VIX ;4 X). Lags are selected
according to the minimum value between AIC and SIC tests for LF and HF, while fixed to one for MF. MF-VAR controls for
forecasting horizon h = 1, 2, 3, 4. Null hypotheses: X ;LF Y , X ;HF Y and X ;MF Y . In bold the Granger
Causality relations at 10% level. The total time period is from 04-01-1996 to 29-09-2016. Frequency is according to the
model and variables frequency availability.
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Table 3.5: Pairwise Granger Causality Test for Mixed Frequencies: From Selected
Variables to Implied Volatilities (4 X ;4 VIX)

Aggregate Implied Volatility: VIX
Low Frequency GC High Frequency GC Mixed Frequency GC

HP l P-Value l P-Value h = 1 h = 2 h = 3 h = 4
4 CPI ;4VIX 2 0.329 0.200 0.066 0.926 0.224
4 GDP ;4VIX 3 0.231 0.606 0.820 0.782 0.603
4 IP ;4VIX 3 0.219 0.000 0.098 0.000 0.225
4 UR ;4VIX 3 0.971 0.541 0.008 0.098 0.264
4M1 ;4VIX 3 0.672 0.000 0.035 0.002 0.016
4 SENT ;4VIX 1 0.905 0.000 0.001 0.347 0.000
4 TS ;4VIX 1 0.882 8 0.458
4 OIL ;4VIX 2 0.113 8 0.901
4 ER ;4VIX 1 0.436 8 0.035
4 GOLD ;4VIX 1 0.831 11 0.463
4 SPX ;4VIX 1 0.067 18 0.000
4 CRE ;4VIX 1 0.006 10 0.394
4 TED ;4VIX 2 0.635 21 0.743
4 EPU ;4VIX 2 0.221 8 0.083
4 GPR ;4VIX 2 0.244 14 0.589

Downside Implied Volatility: VIX−

4 CPI ;4VIX− 2 0.195 0.124 0.761 0.691 0.329
4 GDP ;4VIX− 3 0.210 0.853 0.876 0.876 0.360
4 IP ;4VIX− 3 0.536 0.000 0.060 0.000 0.065
4 UR ;4VIX− 2 0.742 0.153 0.006 0.171 0.564
4M1 ;4VIX− 3 0.668 0.000 0.430 0.012 0.213
4 SENT ;4VIX− 1 0.746 0.002 0.010 0.354 0.027

4 TS ;4VIX− 1 0.515 7 0.578
4 OIL ;4VIX− 3 0.162 7 0.315
4 ER ;4VIX− 1 0.506 7 0.017
4 GOLD ;4VIX− 1 0.756 11 0.542
4 SPX ;4VIX− 1 0.054 18 0.000
4 CRE ;4VIX− 1 0.007 10 0.587
4 TED ;4VIX− 2 0.610 19 0.716
4 EPU ;4VIX− 2 0.098 7 0.073
4 GPR ;4VIX− 3 0.238 14 0.810

Upside Implied Volatility: VIX+

4 CPI ;4VIX+ 3 0.659 0.751 0.576 0.562 0.587
4 GDP ;4VIX+ 3 0.087 0.877 0.489 0.137 0.330
4 IP ;4VIX+ 2 0.201 0.046 0.039 0.000 0.000
4 UR ;4VIX+ 2 0.775 0.262 0.925 0.009 0.807
4M1 ;4VIX+ 1 0.846 0.469 0.011 0.890 0.440
4 SENT ;4VIX+ 1 0.552 0.000 0.023 0.605 0.298

4 TS ;4VIX+ 1 0.697 8 0.785
4 OIL ;4VIX+ 1 0.113 8 0.816
4 ER ;4VIX+ 1 0.400 8 0.094
4 GOLD ;4VIX+ 1 0.781 9 0.185
4 SPX ;4VIX+ 1 0.254 18 0.000
4 CRE ;4VIX+ 1 0.001 10 0.410
4 TED ;4VIX+ 1 0.689 20 0.398
4 EPU ;4VIX+ 3 0.463 8 0.019
4 GPR ;4VIX+ 3 0.353 14 0.356

Notes: This table shows the VAR Granger causality tests performed through equation (3.10), (3.11) and (3.15) for low, high
and mixed frequency variables, respectively. The direction of the causality chains goes from the macroeconomic and financial
variables towards the implied volatility series, VIX VIX− and VIX+ (4 X ;4 VIX). Lags are selected according to
the minimum value between AIC and SIC tests for LF and HF, while fixed to one for MF. MF-VAR controls for forecasting
horizon h = 1, 2, 3, 4. Null hypotheses: X ;LF Y , X ;HF Y and X ;MF Y . In bold the Granger Causality
relations at 10% level. The total time period is from 04-01-1996 to 29-09-2016. Frequency is according to the model and
variables frequency availability.
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lagged credit variable emerged significant at its first lag in the post-crisis period. Credit spread is found

to be caused, rather than a cause, by the volatility changes (e.g. Zhang et al., 2009).

Overall, this analysis also highlights how more refined information carried by the options trading

behind the VIX might be able to reflect investors’ expectations regarding daily frequency variables,

such as exchange rate, liquidity and EPU index, which are in turn connected to several tradable assets

echoing the actual market participants beliefs, both exuberance and fear. Lastly, we detect a poor

predictive power of the implied volatility for future stock market returns, S&P 500 , regardless of the

volatility component and the VAR frequency we select, a finding in line with (see Bekaert and Hoerova,

2014). To conclude, for the implied volatility series, we can confirm Hypothesis 3 and Hypothesis 4.

Lag selection for financial variables shows how their impact on volatility, or vice versa, most of the time

cannot be captured at monthly frequency given that it dissolves within a few days or weeks. For the

macroeconomic variables, we show how some of the relationships they have with implied volatilities

can be detected only with MF VAR models, whereas forward looking volatility indexes are scarcely

responsive to lagged macro-variables at low frequency.

Consistent with the previous Section, a sub-sample analysis has been performed also for the Granger

causality test. The results are found to be confirming some of the main findings from Table 3.3. Macroe-

conomic variables such as CPI, M1 and IP are found to Granger cause the VIX indexes also at lower

frequency in the pre-crisis period. Interestingly, market sentiment (SENT) is found to be Granger caus-

ing all the VIX series at any frequency. The dot-com bubble event may provide an interpretation for

this result which is highlighted even more in a sub-sample analysis. In the crisis period9 variables

such CRE, S&P 500 and EPU are detected as the main causes of future levels of VIX , with higher

impact on VIX− . Macroeconomic variables are hardly found significant in the crisis period. Similar

results are detected in the post-crisis sub-sample for macroeconomics variables. On the other hand, if

we look only at the post-crisis period, EPU, TED, CRE, S&P 500 and ER are the main variables able

to impact on future levels of VIX and decomposed VIX− and VIX+ . In the other way, we observe

an increased (decreased) significance for VIX− (VIX+ ) in predicting both macroeconomic and also

financial variables in the post-financial crisis sub-sample.

3.6.2 Granger Causality at Different Frequencies: Volatility Risk Premia

Table 3.7 shows that macroeconomic variables barely cause VRP series in low frequency with the

exception of market sentiment towards the downside and upside risk premia. For instance, the inflation

growth rate is found to have no effect on realized volatility (see Engle and Rangel, 2008) which is

reflected, in our case, in the risk premia given that the risk premia contain a mixture of information

between implied and realized volatilities. All the VRP series are able to Granger cause inflation, VRP

9We select an extended crisis period spanning from 2007 to 2010 is considered for having a reasonable number of observation
in the analysis.
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is found to Granger cause also money supply, while VRP+ Granger causes inflation, GDP, money

supply and market sentiment, being connected to future levels of macro variables.

When MF-VAR is applied the picture changes, and we are now able to detect a more informative

role for the risk premia in predicting the future level of macro variables. Not only can we confirm the

Granger causality relationships already detected at low-frequency, but we also uncover variables which

were hidden at low frequency. For instance, all the VRP series are found to Granger cause inflation

and market sentiment, VRP and VRP+ are found to have a unidirectional relationship towards money

supply, while only VRP− is found to Granger cause unemployment rate and only VRP+ industrial

production. In the other direction, with MF-VAR model, we uncover unilateral relationships from

industrial production and market sentiment towards all the VRP series, while money supply is able to

Granger cause only VRP+ .

Looking at the variables available at daily frequency, we find unilateral Granger causality from

VRP towards term structure, oil price, gold price and liquidity, both when these relationships are

studied at low frequency and also at high frequency. However, the causality linkage expands also to

S&P 500 and the EPU index when high frequency VAR is considered. On the other hand, the financial

variables which are more informative for future VRP levels are S&P 500 , credit and exchange rate at

both low frequency and high frequency and also EPU when high frequency is selected. For the VRP− ,

we detect an unilateral Granger causality towards gold at both high and low frequency, whereas towards

credit and liquidity proxies only at the first frequency and towards term structure, oil and exchange rate

only at the second frequency. Exchange rate, S&P 500 and EPU are also able to Granger cause the

VRP− at both low and high frequencies, while we uncover causality relationships from oil and credit

towards VRP− at high frequency. Lastly, VRP+ is found to Granger cause term structure and TED

spread, while it is Granger caused by S&P 500 index, credit, TED spread and EPU index, at low

frequency. However, with HF Granger causality, VRP+ is found to have a bilateral causality link with

many of the financial conditions variables, such as, exchange rate, S&P 500 , EPU index and GPR

index, while VRP+ is predicted by variables, such as, term structure and credit.

A sub-sample Granger causality analysis has been undertaken also for the VRP . The results

show, also in this case, how macroeconomic variables cause changes in future levels of VRP mainly in

the pre-crisis sub-sample. In the financial crisis period we notice mixture of macroeconomic-financial

variables which Granger cause VRP . Among the main variables impacting on VRP , at any frequency,

we find S&P 500 , CRE, ER, IP and SENT, in line with the results on the total sample analysis. A role

for oil in impacting on future levels of VRP during crisis is detected only at mixed-frequency. In line

with the findings for VIX , in the post-crisis period, we notice an increase role for financial variables

also in impacting on future levels of VRP . On the other hand, VRP+ is found the VRP component

which is able to impact on macroeconomic variables as well as S&P 500 the most, regardless to the
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Table 3.6: Pairwise Granger Causality Test for Mixed Frequencies: From Volatility
Risk Premia to Selected Variables (4 VRP ;4 X)

Aggregate Volatility Risk Premium: VRP
Low Frequency GC High Frequency GC Mixed Frequency GC

HP l P-Value l P-Value h = 1 h = 2 h = 3 h = 4
4VRP;4 CPI 3 0.000 0.084 0.124 0.028 0.015
4VRP;4 GDP 3 0.198 0.128 0.110 0.164 0.098
4VRP;4 IP 3 0.349 0.206 0.102 0.000 0.237
4VRP;4 UR 3 0.982 0.122 0.000 0.201 0.109
4VRP;4M1 4 0.021 0.000 0.038 0.001 0.009
4VRP;4 SENT 3 0.405 0.002 0.030 0.000 0.000
4VRP;4 TS 2 0.090 19 0.001
4VRP ;4 OIL 3 0.084 11 0.063
4VRP;4 ER 3 0.586 11 0.150
4VRP;4 GOLD 2 0.038 18 0.005
4VRP;4 SPX 2 0.622 19 0.002
4VRP;4 CRE 3 0.313 13 0.554
4VRP;4 TED 3 0.005 10 0.091
4VRP;4 EPU 3 0.828 18 0.039
4VRP;4 GPR 2 0.601 18 0.229

Downside Volatility Risk Premium: VRP−

4VRP−;4 CPI 4 0.008 0.053 0.513 0.000 0.035
4VRP−;4 GDP 4 0.577 0.115 0.211 0.305 0.035
4VRP−;4 IP 4 0.166 0.202 0.053 0.200 0.105
4VRP−;4 UR 3 0.870 0.000 0.007 0.000 0.000
4VRP−;4M1 4 0.289 0.120 0.573 0.040 0.136
4VRP−;4 SENT 2 0.571 0.035 0.249 0.000 0.000

4VRP−;4 TS 2 0.488 14 0.037
4VRP−;4 OIL 3 0.169 11 0.005
4VRP−;4 ER 2 0.281 7 0.029
4VRP−;4 GOLD 3 0.064 18 0.026
4VRP−;4 SPX 3 0.649 18 0.202
4VRP−;4 CRE 2 0.003 19 0.770
4VRP−;4 TED 3 0.005 18 0.239
4VRP−;4 EPU 3 0.966 20 0.345
4VRP−;4 GPR 3 0.567 19 0.496

Upside Volatility Risk Premium: VRP+

4VRP+ ;4 CPI 3 0.000 0.762 0.000 0.048 0.002
4VRP+ ;4 GDP 3 0.010 0.320 0.000 0.000 0.012
4VRP+ ;4 IP 4 0.198 0.002 0.244 0.080 0.007
4VRP+ ;4 UR 3 0.907 0.299 0.342 0.000 0.220
4VRP+ ;4M1 4 0.000 0.000 0.000 0.002 0.012
4VRP+ ;4 SENT 2 0.088 0.003 0.000 0.014 0.019

4VRP+ ;4 TS 3 0.009 10 0.222
4VRP+ ;4 OIL 3 0.111 12 0.310
4VRP+ ;4 ER 2 0.301 10 0.002
4VRP+ ;4 GOLD 2 0.319 8 0.274
4VRP+ ;4 SPX 2 0.658 20 0.000
4VRP+ ;4 CRE 2 0.220 14 0.746
4VRP+ ;4 TED 2 0.082 18 0.038
4VRP+ ;4 EPU 3 0.664 15 0.003
4VRP+ ;4 GPR 2 0.743 18 0.062

Notes: This table shows the VAR Granger causality tests performed through equation (3.10), (3.11) and (3.15) for low, high
and mixed frequency variables, respectively. The direction of the causality chains goes from the variance risk premium
series, VRPVRP− and VRP+ , towards the macroeconomic and financial variables (4 VRP ;4 X). Lags are selected
according to the minimum value between AIC and SIC tests for LF and HF, while fixed to one for MF. MF-VAR controls for
forecasting horizon h = 1, 2, 3, 4. Null hypotheses: X ;LF Y , X ;HF Y and X ;MF Y . In bold the Granger
Causality relations at 10% level. The total time period is from 04-01-1996 to 29-09-2016. Frequency is according to the
model and variables frequency availability.

sub-sample period considered. VRP− is detected as the main component driving EPU and CRE during

the financial crisis.

In general, this comparative frequency Granger causality test further confirms Hypothesis 3 and

Hypothesis 4 also for the volatility risk premia. Our findings are in part in line with Bekaert and Ho-

erova (2014) with regards to finding the aggregate VRP unable to Granger cause economic activity

(IP), neither at lower frequency nor in mixed frequency. However, by decomposing the VRP mea-
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Table 3.7: Pairwise Granger Causality Test for Mixed Frequencies: From Selected
Variables to Volatility Risk Premia (4 X ;4 VRP)

Aggregate Volatility Risk Premium: VRP
Low Frequency GC High Frequency GC Mixed Frequency GC

HP l P-Value l P-Value h = 1 h = 2 h = 3 h = 4
4 CPI ;4VRP 3 0.153 0.106 0.485 0.719 0.353
4 GDP ;4VRP 3 0.580 0.382 0.776 0.982 0.850
4 IP ;4VRP 3 0.616 0.000 0.000 0.000 0.112
4 UR ;4VRP 3 0.247 0.132 0.008 0.250 0.280
4M1 ;4VRP 4 0.153 0.000 0.440 0.647 0.043
4 SENT ;4VRP 3 0.191 0.000 0.051 0.113 0.022
4 TS ;4VRP 2 0.447 19 0.214
4 OIL ;4VRP 3 0.256 11 0.301
4 ER ;4VRP 3 0.056 11 0.000
4 GOLD ;4VRP 2 0.694 18 0.118
4 SPX ;4VRP 2 0.000 19 0.000
4 CRE ;4VRP 3 0.001 17 0.000
4 TED ;4VRP 3 0.261 10 0.174
4 EPU ;4VRP 3 0.380 18 0.000
4 GPR ;4VRP 2 0.655 18 0.930

Downside Volatility Risk Premium: VRP−

4 CPI ;4VRP− 4 0.195 0.244 0.107 0.371 0.146
4 GDP ;4VRP− 4 0.309 0.995 0.740 0.977 0.782
4 IP ;4VRP− 4 0.754 0.002 0.000 0.000 0.592
4 UR ;4VRP− 3 0.165 0.414 0.084 0.000 0.801
4M1 ;4VRP− 4 0.387 0.000 0.719 0.202 0.631
4 SENT ;4VRP− 2 0.042 0.002 0.000 0.000 0.005

4 TS ;4VRP− 2 0.660 14 0.208
4 OIL ;4VRP− 3 0.147 11 0.000
4 ER ;4VRP− 2 0.019 7 0.000
4 GOLD ;4VRP− 3 0.158 18 0.138
4 SPX ;4VRP− 3 0.000 18 0.000
4 CRE ;4VRP− 2 0.168 19 0.008
4 TED ;4VRP− 3 0.817 18 0.120
4 EPU ;4VRP− 3 0.007 20 0.002
4 GPR ;4VRP− 3 0.933 19 0.378

Upside Volatility Risk Premium: VRP+

4 CPI ;4VRP+ 3 0.166 0.152 0.375 0.252 0.060
4 GDP ;4VRP+ 3 0.774 0.500 0.004 0.289 0.228
4 IP ;4VRP+ 4 0.341 0.000 0.000 0.000 0.000
4 UR ;4VRP+ 3 0.383 0.219 0.366 0.003 0.008
4M1 ;4VRP+ 4 0.179 0.001 0.055 0.641 0.064
4 SENT ;4VRP+ 2 0.050 0.000 0.000 0.045 0.171

4 TS ;4VRP+ 3 0.796 10 0.041
4 OIL ;4VRP+ 3 0.324 12 0.302
4 ER ;4VRP+ 2 0.477 10 0.000
4 GOLD ;4VRP+ 2 0.729 8 0.238
4 SPX ;4VRP+ 2 0.000 20 0.000
4 CRE ;4VRP+ 2 0.000 14 0.000
4 TED ;4VRP+ 2 0.020 18 0.759
4 EPU ;4VRP+ 3 0.011 15 0.000
4 GPR ;4VRP+ 2 0.425 18 0.079

Notes: This table shows the VAR Granger causality tests performed through equation (3.10), (3.11) and (3.15) for low,
high and mixed frequency variables, respectively. The direction of the causality chains goes from the macroeconomic and
financial variables towards the variance risk premium series, VRPVRP− and VRP+ (4X ;4VRP). Lags are selected
according to the minimum value between AIC and SIC tests for LF and HF, while fixed to one for MF. MF-VAR controls for
forecasting horizon h = 1, 2, 3, 4. Null hypotheses: X ;LF Y , X ;HF Y and X ;MF Y . In bold the Granger
Causality relations at 10% level. The total time period is from 04-01-1996 to 29-09-2016. Frequency is according to the
model and variables frequency availability.

sure, we detect some predictive power for the VRP+ in explaining future economic activity in mixed

frequency.

Overall, our results about the main determinants of the VRP , when a MF-VAR model is employed,

are found to be in line with previous literature looking at the linkage between volatility risk premia and

macroeconomics. For instance, the Granger causality relationship we detect from industrial production

towards all the VRP series is consistent with Corradi et al. (2013) who found a countercyclical variation
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of the risk premium for the risk in fluctuations of industrial production.

In addition, with regard to the relationship between macroeconomics and volatility risk premium,

Bollerslev et al. (2011) stated that macro-finance shock coefficients are important in understanding the

time-variation of the volatility risk premium. Our results with respect to credit and industrial production

are found to be in line with their findings. Such findings emphasize even more the usefulness of the

mixed-frequency Granger causality approach as well as the VRP decomposition. We also confirm

the findings in Bollerslev et al. (2009), Bollerslev et al. (2011) and Bekaert and Hoerova (2014) in

relation to stock market returns by detecting the VRP as a significant predictor of stock market returns

(S&P 500 ), and also the findings in Feunou et al. (2017) who found superior ability of the VRP+ in

explaining future excess market returns when compared to VRP− . On the other hand, we detect a

major role for the S&P 500 in driving the upside volatility risk premium, VRP+ (see Feunou et al.,

2017; Kilic and Shaliastovich, 2018).

3.7 The Link Between Decomposed Volatilities and Economic, Po-

litical and Geopolitical Uncertainty

The role of economic and political uncertainty as one of the main determinants of stock market volatil-

ity is not a new concept in the financial literature. Political factors and episodes have been recognized

as a cause of change in stock market returns, outputs and volatility (Bloom, 2009; Pastor and Veronesi,

2012, 2013). Nowadays political events are more shrouded with uncertainty and unstable consequences

compared to the past. This insecurity arising from governments and future political plans is transmitted

onto the financial markets and into macroeconomic policies. This is the rational as to why this section

focuses on the relationship between volatilities and, not only, the EPU index but also the geopolitical

risk index (GPR) and the Partisan Conflict Index (PCI), as these indexes can potentially capture factors

and events that are able to drive the model-free volatilities in this chapter10. We believe that the link

between the economic, political and geopolitical uncertainty together with the financial market “un-

certainty”, measured through model-free volatilities deserve further commentary. Here, we build up a

more in-depth analysis also based on the results obtained in the previous sections of this chapter.

In order to measure the economic policy uncertainty we adopt the EPU index developed by Baker

et al. (2016), an index computed from news associated with the ten most important American news-

papers, reflecting the concerns and uncertainty in the news surrounding specific economic or political

events.11. The EPU index is significant in explaining the implied market volatility with a positive re-

10Events such as the Asian financial crisis, the dot-com bubble, the 9/11 terrorist attack, the Iraq invasion, the 2008 financial
crisis and the Lehman Brother crash, the European sovereign debt crisis, the tension between Russia and Ukraine, the Chinese
Yuan collapse and the Brexit vote, are only some of the various political, economic and financial events in the U.S. and worldwide
which are included within our time-frame spanning from 1996 to 2016.

11The words that the newspapers’ articles should contain in order to be relevant include, in brief, "uncertainty", "economics",
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lationship shown. This is consistent with Pastor and Veronesi (2012, 2013) who advocated that equity

volatility and returns are affected by changes in government policy, and therefore, when new policies

are introduced uncertainty and risk premia will increase, leading to more volatile stock returns. This

relationship is already partially described in Baker et al. (2016) with respect to the aggregate VIX in

which they related the EPU index finding a correlation of around 58%. During the time frame we adopt

for our study we find EPU index and VIX to be positively correlated at 42%. However, we have also

explored the impact that the EPU index has on the decomposed implied volatilities. The EPU index

shows a correlation of 40% with VIX+ and 45% with VIX− .

The empirical results in Section 3.5 describe that the EPU effect is stronger in relation to the down-

side component of the implied volatility indexes, thereby reflecting investors’ fear regarding political

uncertainty, and consequently investors’ willingness to hedge themselves against it. The EPU index

is significant in explaining implied volatility, especially in a contemporaneous framework with coeffi-

cients decreasing in significance when the first lag is considered (see Table 3.3). The Granger analysis

shows that the relationships between the EPU index and volatility measures are more oriented towards

the downside component, especially in relation to the implied volatility extracted from puts, VIX− .

This highlights how the EPU index can drive investors’ uncertainty concerns and, therefore, their will-

ingness to hedge through equity index Put options. Moreover, there is evidence of a significant two

way feedback between the EPU index and volatilities. In fact, the causal relationship from volatility

to the EPU index suggests that investors transmit the feeling of “fear” and uncertainty, trading equity

put options for the month ahead based on their expectations at time t-1 and revealed in the EPU index

through economic and financial news. Thus, we find a significant two way feedback between the EPU

index and volatilities which is stronger when going from the VIX series towards the EPU index. This

can be explained from the way the EPU index is computed from newspaper articles which have a min-

imum lag of one day compared to the options market. This relationship is quite contemporaneous and

does not last beyond the first lag (see Amengual and Xiu, 2017). The results from Table 3.3 show that

there is a positive relationship also between the EPU index and risk premia, found again to be stronger

in relation to the VRP− . Similar results are found for RVOL measures (see Appendix A.2).

In this chapter, we also examine the link with the geopolitical risk index by Caldara and Iacoviello

(2018). This index is computed in a similar way to Baker et al. (2016) counting the frequency of

articles associated with geopolitical risk and events from the major international newspapers having

global coverage12. Caldara and Iacoviello (2018) found the GPR index to spike in response to events

such as the Gulf War, the 9/11 terrorist attack, the 2003 invasion of Iraq and the Ukraine-Russia conflict.

The only peak the GPR index shares with the VIX index is the recession period in 2000-2001 and after

"congress", "deficit", "Federal Reserve", "legislation" along with other policy related words.
12The selected newspapers adopted to build up this index total eleven, consisting of six U.S., four British and one Canadian.

The macro-categories for the words they have looked for include geopolitical threats, nuclear threats, war threats, terrorist threats,
acts of war and terrorist acts.
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the 9/11 terrorist attack, while it appears quite neutral to financial turbulence, not responding to the

global financial crisis and dot-com bubble, periods in which both the volatility indexes and EPU index

reacted instead. The geopolitical index captures events such as wars, terrorist attacks, financial crisis

and global conflicts13.

GPR index is significant in explaining the implied volatility indexes, and its role is more relevant

towards the VIX− as found for the EPU index. The description of the index together with the findings

shown by Caldara and Iacoviello (2018) justify the negative relationship that we find between the index

and the volatility measures (see Tables 3.3). Indeed, the GPR index misses crucial financial events

during our time period such as the Asian financial crisis, the LTCM, the global financial crisis, the

Lehman Brother failure and the sovereign debt crisis in Europe, to mention but a few. While for the

EPU index a positive sign was expected given that this reacts to most of the economic downturn and

financial crisis, there is no such expectation with respect to the GPR index where an average negative

sign is detected. The GPR index mainly spikes in relation to events which are not related to economic

and financial activity, however it appears to be significant in the regression analysis and informative

in predicting volatility changes given the Granger analysis results. Economic uncertainty derived from

geopolitical risk might turn into depression in economic activity and stock prices, thus, into pessimistic

and negative expectations about future market conditions (see Caldara and Iacoviello, 2018), a reason

why GPR index seems to be mostly related and priced in the put options. It is significant in explaining

Put portfolios especially in the all sample, before crisis period, while not many geopolitical events have

been occurred in the post-crisis reducing the impact of this variable at minimum.

The GPR index appears not to react to political events and presidential elections (Caldara and

Iacoviello, 2018). For this reason we also examine, in this chapter, the role of the Partisan Conflict

index (PCI) by Azzimonti (2017)14. This index reflects the partisan conflicts that have characterized

U.S. politics in recent years and it is considered more as a pure political uncertainty proxy. We test this

index as an alternative to the EPU index since they share common information and spike in response to

similar events. It is computed adopting a methodology similar to Baker et al. (2016), but considers only

newspaper articles regarding political disagreement about presidential elections and government policy.

Thus, we test whether or not pure political uncertainty has any effect on U.S. volatility measures when

incorporated in place of the EPU index into equation 3.9. The three indexes are illustrated in Figure 3.4

for ease and comparison.

We find that the R2 decreases when PCI is included as a variable in place of the EPU index and that

it is not found to be significant in explaining either the VIX or its components either for the total time

period or both sub-periods. For instance, in the total time period, for VIX the R2 reduced to 0.564 and

13The GPR index appears to carry an additional source of risk compared to the EPU index allowing us to test both together in
a common model avoiding problems of multi-collinearity.

14The Partisan Conflict Index is available at https://www.philadelphiafed.org/research-and-data/
real-time-center/partisan-conflict-index.
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Figure 3.4: EPU, GPR and PCI Series

Notes: This figure depicts the Economic and Policy Uncertainty (EPU) (upper panel), the GeoPolitical Risk index (GPR) (middle panel) and the
Partisan Conflict Index (PCI) (bottom panel). The selected period goes from 01-1996 to 12-2017, at monthly frequency.

the adjusted R2 to 0.532, for VIX− to 0.481 and 0.443, respectively, and for VIX+ they remained the

same since the EPU index is also found not to be significant (see Table 3.3). Similar results are found

for the volatility risk premia. Such findings show that implied volatilities and risk premia do not react

much to political events and elections, while a slightly higher impact is found on the RVOL measures,

mainly on RVOL− (see Appendix A.2). These results are in line with Azzimonti (2017) who revealed

that the relationship between PCI and the EPU index has an inverted U-shape. Hence, increases on PCI

injects policy uncertainty only when the level of political discord is moderate.

This section has further explored the link between volatility measures and some common indexes of

economic, political and geopolitical uncertainty. These results obtained further highlight the crucial role

played by the EPU index in explaining and influencing volatility, mainly from its economic uncertainty

component rather than from its policy uncertainty component. Indeed, only when a pure political sphere

is considered do we fail to find such a strong impact on our volatility measures. In other words, pure

political activities and party conflicts do not appear to be that relevant for financial market volatility

if they are not linked to economic or financial policies. On the other hand, geopolitical uncertainty

might drive changes in volatility especially when detected as a potential threat to economic of financial
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instability. These linkages from the uncertainty indexes to the volatilities measures, or vice versa, are

mainly placed in the puts activity, VIX− , or VRP− .

3.8 Conclusion

This chapter considered the relationship between model-free stock market volatilities and a renewed

set of variables that included not only macro-variables, but also variables which are able to track finan-

cial market conditions, market sentiment and economic and geopolitical uncertainty, variables which

have often been overlooked in the literature. Given the progress over the years in the volatility and

risk premium literature we took the opportunity to further develop the research in the field of macro-

finance. We contribute to the existing literature by presenting a new volatility point of view, decompos-

ing volatility associated with positive stock market movements from volatility generated by negative

stock market movements, for both the forward looking volatility (implied) and, by combining them

with the backward looking volatilities (realized), also for the risk premia, all computed model-free.

The empirical analysis has produced different results depending upon the volatility components, upon

the time period and upon the data frequency considered.

Overall, we found that variables that are more closely related with financial conditions, in particular

those with of a more financial market implication, such as, equity, credit, market sentiment, liquidity

and economic policy uncertainty, are found to be robust and stronger determinants of implied volatility

and risk premia. In contrast, more macroeconomic variables are found to be less informative in driving

volatility. We find evidence of a different behaviour with respect to the upside and downside compo-

nents of the volatility series in the U.S. financial market when they are decomposed and related to this

new set of potential driving factors. Upside implied volatility, VIX+ , is affected more by macroeco-

nomic variables, especially those linked with investments and consumption, such as inflation and GDP.

Changes in volatility due to economic and geopolitical uncertainty have been found to be placed mainly

in the puts activity given that VIX− mirrors the fears and concerns perceived from investors related to

negative stock market returns.

A comparative exercise between pre-crisis and post-crisis sub-periods has shown a shift from the

information related to the two implied volatility components. There was a shift from calls to puts

going from pre to post financial crisis explained by the fact that investors were more concerned about

financial market losses, thereby began to actively hedge their equity portfolios by trading put options.

Furthermore, while macroeconomic variables appeared to impact more strongly on the volatility and

risk premium series in the pre-crisis period, we observe a shift in favor of financial conditions variables

emerging more significant in the post financial crisis.

A better structured mixed frequency VAR model allowed us to answer further research questions
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still open in the literature. For instance, by aligning the frequency of the macroeconomic information

to the volatilities and risk premia we were able to uncover precious information contained in the latter

which is actually able to predict macroeconomic variable changes. Vice versa, we uncovered several

variables which are found to be able to predict future level of implied volatility and risk premia. This

picture is even more refined and improved when we looked at upside and downside components of our

volatility series. Forward looking implied volatilities are found to predict future levels of economic

activity, output growth and inflation rate, whereas volatility risk premia is found to be an informative

predictors of future levels of stock returns.

Lastly, this chapter opened up for new potential trading strategies which may be developed starting

from the decomposition of the volatility measures. The CBOE introduced VIX Futures and VIX Op-

tions which make the trade of VIX possible. The VIX index derivatives are well known to be efficient

hedger tools in downturns and crises. However, in light of the findings of this chapter new research

– which is beyond the scope of this thesis – should explore the possibility of trading the decomposed

VIX components and adding them to portfolios. VIX− can be traded by buying/selling a portfolio

containing S&P 500 OTM put options, whereas VIX+ can be traded by buying/selling a portfolio con-

taining OTM call options. Preliminary assumptions of trading strategies which may be designed by

using the decomposed VIX may result in a more directional bet which may drive to higher pay offs.

For instance, in bearish times, having a mixture of OTM S&P 500 puts as a synthetic position in VIX−

could reduce portfolio losses due to a drop in equity market. Trading a portfolio of OTM S&P 500 calls

with different strike prices (VIX+ ) may provide both higher portfolio returns in bullish times and may

also provide hedging. Further potential research linked to the VIX decomposition will be discussed in

the final Chapter.
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Chapter 4

The SKEW Index: Extracting What

Has Been Left

So what are policymakers to do? First and foremost, reduce uncertainty. Do so by removing tail risk

and the perception of tail risk.

- Oliver Blanchard - Chief Economist - IMF. The Economist, Jan 2009.

4.1 Introduction

Is the implied skewness index able to enhance the information set already contained in options data and

revealed from other financial risk and volatility measures? Is there anything left out that can be useful

to investors through disentangling the implied skewness index? Can these newly decomposed implied

skewness indexes contribute to the equity risk premium as well as economic activity predictability?

In this paper, we show that a more refined directional construction of the implied skewness enriches

the information that is extracted from equity index option prices in the U.S. In order to conduct our

analysis, we first construct a model-free measure of implied skewness following the methodology of

Bakshi et al. (2003), and then decompose it into its positive and negative components by employing

only calls and only puts, respectively. We identify different sets of information associated with the two

decomposed implied skewness measures. According to Gao et al. (2018), it would be of interest to

study the contribution to pricing of investors’ time-varying beliefs vs. their time-varying risk aversion

associated with the tail risk. In this chapter, we present an innovative approach to investigating this area
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by studying the implied skewness decomposed into its two components. We find that SKEW+ captures

investors’ beliefs and therefore it can be linked to market sentiment, whereas SKEW− captures features

that are related to tail risk. The former is found to be a strong equity risk premium predictor, while the

latter is shown empirically to predict market downturns well.

After the Black Monday 1987, the fear of other possible crashes led to a higher weighting for events

in the left side of equity return distributions. Furthermore, the 2008 financial crisis has accentuated even

more the interest in tail events and outliers. Barberis (2013) advocated that investors consistently over-

estimate extreme events when they have a suitable set of information or memories of some similar

event still present in their mind. When the information set is limited or when similar tail events have

never taken place before, investors may also underestimate their likelihood. The usefulness of implied

volatility measures extracted model-free from equity indexes options data has been highlighted in the

literature (see Bakshi and Madan, 2000; Jiang and Tian, 2005; Bakshi and Madan, 2006). Du and

Kapadia (2014) pointed out that the volatility indexes underestimate the real stock market volatility

when the period is bearish and jumpy. In order to capture adequately the tail risk implied skewness

measures could enhance the set of information revealed by the implied volatility.

Recently, different measures have been proposed to gauge this missing risk on the equity market

taking into account jumps and variance risk premium (see Bollerslev and Todorov, 2011; Du and Ka-

padia, 2014; Bollerslev et al., 2015; Andersen et al., 2019); and taking a different approach based on

cross-sectional portfolio returns (see Kelly and Jiang, 2014; Almeida et al., 2017). The CBOE pro-

posed a SKEW Index computed from the S&P 500 options following the methodology outlined in

Bakshi et al. (2003), henceforth (BKM). While the VIX is the market measure reflecting the “likely”,

the SKEW measure is more related to the extreme market fear measurement reflecting the “unlikely”.

More about this strand of literature is described in Chapter 2.

Our aim is to extract useful forward looking information about the decomposed implied skewness

measures which can be linked to the tail risk, downside risk and market sentiment areas. We show that

the positive skew index is, most of the time, related to the optimistic market sentiment generated by the

call options. Information coming from market sentiment indicators is rarely influencing the SKEW−

which appears to be more closely related to macro fundamentals and it is proposed as a tail risk proxy.

The tail risk literature and the higher risk-neutral moments literature are getting intertwined1, better

explaining the overall risk in the financial markets. The seminal papers by Bakshi and Madan (2000),

Bakshi et al. (2003) and Bakshi and Madan (2006) opened a new area of research focused on extracting

1The literature on skewness is spanned by two main approaches of calculation as described by Liu (2016). First, there is the
raw approach applied by Dennis and Mayhew (2002), Conrad et al. (2013) and Bali and Murray (2013), using the data without
filtering or modification. The above studies found that the skew is more negative in period of high market volatility and that the
skew for index options tends to be more negative than the skew for individual stock options. The second approach (see Hansis
et al., 2010) works with smoothed data, either by data interpolation between OTM puts with lowest strike and OTM calls with
highest strike or by data extrapolation between the highest and lowest strike prices. Another methodology that has been applied
to calculate the skew is the non-parametric approach applied by Xing et al. (2010) and Mixon (2011).
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valuable information about moments of the risk-neutral distribution from option prices. Harvey and

Siddique (2000) and Mitton and Vorkink (2007) linked the higher risk neutral moments to asset pricing

and portfolio management. Xing et al. (2010) found that the implied volatility smirk has a predictive

power for future equity returns. Other studies such as Han (2008), Rehman and Vilkov (2012) and

Conrad et al. (2013) concluded that higher moments can increase the accuracy of future asset prices’

estimation. Christoffersen et al. (2013) surveyed the available methods for extracting forward looking

information from option markets for forecasting purposes.

Our paper has been inspired by the recent growing strand of financial volatility literature that de-

composes volatility as well as variance risk premium into positive and negative components (Barndorff-

Nielsen et al., 2010; Segal et al., 2015; Feunou et al., 2017; Patton and Sheppard, 2015; Kilic and

Shaliastovich, 2018). Motivated by these studies we separate the implied skewness into a positive im-

plied SKEW index (henceforth SKEW+ ) and a negative implied SKEW index (henceforth SKEW−

), calculated from the relevant class of equity index options, calls and puts, respectively.

We contribute to the literature on equity risk premium predictability by investigating decomposed

implied skewness index predictability in relation to stock market premium (Neely et al., 2014; Rapach

et al., 2016), thus linking this paper to the literature on market return predictability using informa-

tion extracted from options (e.g. ?Driessen et al., 2009; Bakshi et al., 2011; ?). We hypothesize that

SKEW+ and SKEW− may be able to enrich equity risk premium predictability, especially for short

horizons. The literature on equity returns prediction through model-free skewness measures, computed

using the methodology of Bakshi et al. (2003) does not always convey a homogeneous set of conclu-

sions (e.g., Bali and Murray, 2013; Conrad et al., 2013; Stilger et al., 2016). One possible explanation

for this is that the link may be time-varying, carrying a different information set related to the belief

factor and the risk-based factor (e.g., Friesen et al., 2012), but it may also be due to the existence of

two different components (SKEW+ and SKEW− ) that drive the aggregate SKEW .

In our analysis, we find that SKEW+ can predict future S&P 500 equity risk premia well at horizons

between 1 and 3 months. The predictive power of SKEW+ persists even after controlling for principal

components extracted from the 14 Goyal and Welch (2008) macroeconomic variables. Moreover, the

predictive ability of SKEW+ is preserved out-of-sample when the in-sample window embraces the

global financial crisis. We find evidence that disentangling the SKEW index into its positive and

negative components allows us to extract additional information on other risk and tail risk measures

already studied in the literature. The information content of SKEW+ in relation to predicting the

equity risk premium is incremental to that of the decomposed VIX , the decomposed VRP (Kilic and

Shaliastovich, 2018) and the correlation risk premium (Driessen et al., 2009). The predictive ability

of SKEW+ is preserved out-of-sample when the in-sample window embraces the global financial

crisis. An individual stock predictability exercise shows how the decomposed SKEW indexes are
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useful predictors also for the majority of the 30 largest and 30 smallest stocks in the S&P 500 . The

predictability of the decomposed SKEW indexes is improved when compared to the aggregate SKEW

. The decomposed SKEW indexes are found more useful than the aggregate SKEW also in a Fama-

French asset pricing exercise. Furthermore, we show that SKEW− is useful to predict uncertainty

indicators and the NBER recession periods at different horizons up to one year.

The strong predictive power of SKEW+ in relation to stock market premium calls for a market

sentiment hypothesis that is based on the literature on risk-neutral skewness and market sentiment

(Buraschi and Jiltsov, 2006; Han, 2008; Garleanu et al., 2009; Friesen et al., 2012; Lemmon and Ni,

2014; Stilger et al., 2016). We test the relationship between the decomposed SKEW indexes and

market sentiment proxies developed in the financial literature, finding a strong link between market

sentiment indicators and SKEW+ . Therefore, we hypothesize that market sentiment may be one of

the main drivers of SKEW+ , being largely responsible for the incremental stock return predictability

that is associated with the SKEW+ , in line with studies establishing a significant link between market

sentiment and equity returns (e.g., Baker and Wurgler, 2006; ?). Buraschi and Jiltsov (2006) claimed

that optimistic investors demand OTM calls, whereas pessimistic investors demand OTM puts, a con-

tention also made by Xing et al. (2010). A new option pricing model with an underlying equity index

that follows distinct upside and downside semivariance dynamics was recently introduced by Feunou

and Okou (2019).

The aggregate implied skewness is calculated using both SKEW− and SKEW+ , with the positive

part possibly dampening the real level of risk expressed purely by the negative part. Therefore, taking

the SKEW− extracted from OTM puts into account may help investors to better gauge tail risk and

avoid under-estimating it. We advocate using SKEW− as a relevant measure of tail risk, focusing on

the left side of the risk-neutral distribution and removing investors’ beliefs implied from calls that are

more attached to market sentiment.

The remainder of this chapter is organized as follows. Section 4.2 describes the methodology be-

hind our analysis for decomposing the implied skewness, the data set used in the study together with

the evolution of the decomposed implied SKEW indexes. Section 4.3 positions the decomposed im-

plied skewness measures within some of the already existing financial literature on risk, volatility and

tail risk measures. Section 4.4 makes a connection between the implied skewness indexes and various

market sentiment measures. Section 4.5 looks at the in-sample predictive power of the decomposed

SKEW indexes with relation to S&P 500 and international stock market indexes future risk premia. Ro-

bustness exercises when controlling for other predictors as well as out-of-sample predictability are also

reported. Section 4.6 shows the predictability results with relation to the largest and smallest S&P 500

individual stocks. Section 4.7 links the decomposed SKEW indexes with the Fama-French portfolios

in an asset pricing exercise. Section 4.9 discusses the predictive power of the SKEW indexes in rela-
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tion to macroeconomic and uncertainty indicators. The last section concludes the chapter. Additional

material on this Chapter is reported in Appendix B.

4.2 Extracting the Positive and Negative Skewness

Du and Kapadia (2014) argued that the VIX seems not to take into account stock returns jumps, missing

relevant information for investors during these situations. The interest in the tail risk has increased

after the 2008 financial crisis. Investors and academics realized the wrong habit of under-estimating

extreme events. The CBOE introduced a SKEW index as a benchmark providing additional market

risk information (see CBOE, 2011). The level of the index has also increased after the financial crisis

suggesting that options traders expect a higher tail risk.

Our chapter is inspired by a recent line of research in Feunou et al. (2013), Patton and Sheppard

(2015) and Bollerslev et al. (2017) who have explicitly modelled upside and downside volatilities2 and

by Bollerslev et al. (2015) who separated the jump tail risk into a left tail component and a right tail

component. The idea of decomposing important concepts in asset pricing has been carried forward

also by Feunou et al. (2017) who decomposed the variance risk premium into upside and downside

components introducing a measure of skewness risk premium as their difference and by Kilic and

Shaliastovich (2018) who decomposed “good" and “bad" variance risk premia in order to improve

excess market returns predictability. Our research is expanding on these previous ideas and measures

focusing on the implied skewness.

4.2.1 The BKM Methodology

For the calculation of the cubic risk-neutral moment, we employ the following result from Bakshi et al.

(2003). It allows us to connect in a model-free manner the differential pricing of stocks options and

the moments of the risk neutral distribution. It relies on the results in Bakshi and Madan (2000) that

underpins our methodology for extracting skewness from options prices without imposing any structure

on the underlying process:

Theorem 1: Under all martingale pricing measures, the following contract prices can be recovered

from the market prices of OTM European calls and puts: The t-period risk neutral return skewness,

2Bekaert and Wu (2000) advocated that volatility in equity markets is asymmetric in the sense that returns and conditional
volatility are negatively correlated. Downside volatilities have been proposed both for realized volatility as in Barndorff-Nielsen
et al. (2010) and also as in Patton and Sheppard (2015) and Bollerslev et al. (2017) who used high-frequency intra-day data to
decompose asset return realized volatility into good and bad volatility associated with positive and negative price increments,
respectively, but also as a model-free option implied volatility as discussed in Andersen and Bondarenko (2007).
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SKEW(t,T) is given by:

SKEW (t, T ) ≡ Et[(R(t, T )− Et[R(t, T )])3]

[Et(R(t, T )− Et[R(t, T )])2]3/2
=
ertW (t, T )− 3µ(t, T )ertV (t, T ) + 2µ(t, T )3

(ertV (t, T )− µ(t, T )2)3/2

(4.1)

The price of volatility and cubic contracts will be, respectively:

V (t, T ) = 2

∫ ∞
St

1− ln(KSt )

K2
C(t, T ;K)dK + 2

∫ St

0

1 + ln(StK )

K2
P (t, T ;K)dK (4.2)

W (t, T ) =

∫ ∞
St

6(ln(KSt ))− 3(ln(KSt ))
2

K2
C(t, T ;K)dK−

∫ St

0

6(ln(StK )) + 3(ln(StK ))2

K2
P (t, T ;K)dK

(4.3)

They can each be formulated through a portfolio of options indexes by their strikes, K (see Bakshi

et al. (2003) for more details).

4.2.2 SKEW Index and its Decomposition

CBOE has introduced the SKEW Index as complementary to the VIX , computed from the same range

of options (see also Chapter 3 Section 3.2.1). The final formula that is applied is the following:

SKEW = 100− 10S (4.4)

where S is the statistical skew S = E[(R−µσ )3] and R is the 30 days log-return of S&P 500 , µ is its

expected value and σ is its standard deviation. Following Bakshi et al. (2003) and expanding equation

4.1, S is calculated starting from a portfolio of S&P 500 options with a pay off reflecting the skewness

payoff:

Skew = S =
E[R3]− 3E[R]E[R2] + 2E[R]3

(E[R2]− E2[R])3/2
(4.5)

Simplifying the notation S =
P3−3P1P2+2P 3

1

(P2−P 2
1 )

3/2 and the calculation of P1, P2 and P3 from the options

market is as follows (see CBOE (2011)):

P1 = E[Rt] = −erT
∑
i

QKδK
K2
i

+ ε1 (4.6)

P2 = E[R2
t ] = 2erT

∑
i

(1− ln(KiF0
))QKδK

K2
i

+ ε2 (4.7)

P3 = E[R3
t ] = 3erT

∑
i

2 ln
(
Ki
F0

)
− ln2

(
Ki
F0

)
QKδK

K2
i

+ ε3 (4.8)

95



where all the variables are as for the VIX computation – with T being the expiration date, F0 is the

forward of S&P 500 calculated from the put-call parity as F0 = erT [c(K,T )−p(K,T )]+K , where

K is the reference price, the first exercise price less or equal to the forward level Ft(K ≤ Ft) and

Ki is the strike price of i-out of the money options used in the calculation, r is the risk free rate with

expiration T , ∆(Ki) is the sum divided by two of the two nearest prices to the exercise price K, Q(K)

is a generic price of a European call or put with strike price respectively above or below K, the first

strike price below F0 – except εi that represents adjustments for the difference between the reference

price and the forward price given by:

ε1 = −
(

1 + ln(
F0

K0
)− F0

K0

)
. (4.9)

ε2 = 2 ln

(
K0

F0

)(
F0

K0
− 1

)
+

1

2
ln2

(
K0

F0

)
(4.10)

ε3 = 3 ln2

(
K0

F0

)(
1

3
ln

(
K0

F0

)
− 1 +

(
F0

K0

))
(4.11)

These equations are applied both for the near term expiration and also for the far term expiration

date. The target is to interpolate these two expirations around 30-days, as done for the VIX (see Chapter

3 Section 3.2.1 for more details). When less than 2 days are left to the expiration date, the considered

maturity is rolled and the 2nd and the 3rd months options are used instead of the first month. The

option maturity selected changes every month in correspondence to the third Friday of the month3.

The same set of S&P 500 options used for VIX index is also used for SKEW with the same filters’

rules. As in Dennis and Mayhew (2002), we use a trapezoidal approximation, consisting of a discrete

sum of our available options prices instead of the integrals in formulae (4.6), (4.7) and (4.8). Options

are filtered leaving out options with BID price equal to zero, options with prices below or above two

consecutive zero BID prices and options with less than 2 days expiration (CBOE, 2009). In order to

compute the negative and positive SKEW indexes, the aggregate SKEW index is decomposed into two

components: the positive SKEW computed from S&P 500 calls only, called SKEW+ and the negative

SKEW index computed from S&P 500 puts only, called SKEW− . For SKEW+ we keep calls only

whenKi ≥ K0, while for SKEW− we keep puts only whenKi ≤ K0. These filters on the strike prices

and on Q(Ki) are applied to formulae from 4.6 to 4.8. Applying these model-free methodologies we

obtain three daily indexes series: SKEW , SKEW+ and SKEW− extracted from the same set of S&P

500 options.

3After 2014, the U.S. volatility and skewness indexes are calculated as a weighted average of the prices of S&P 500 options
with weekly expirations. Before 2014, monthly S&P 500 options are used, with the closest interpolated maturity to 30 days since
the available S&P 500 Weekly options volume was small and the strike prices available not enough for the VIX and SKEW
methodology. Usually, the weighted average in this case is between 1-month and 2-month expirations.
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4.2.3 Data and Time Series Preliminary Findings

Daily S&P 500 options prices and daily S&P 500 index prices are collected from OptionMetrics for

the time period from January 1996 to December 2017. Daily interest rates for USD are obtained from

FRED. The sample we select includes several turbulent events, two recession periods according to the

NBER’s definition4, one in correspondence to the aftermath of the dot-com bubble burst in early 2000

and the other in correspondence to the 2007-2009 global financial crisis. Our time period includes also

other volatile events worldwide, such as, the Asian financial crisis, the Russian financial crisis, the 9/11

terrorist attack, the Eurozone sovereign debt crisis, the Chinese Yuan crisis and the UK Brexit vote.

Even if they were not explicitly U.S. based, they spread volatility and uncertainty in the U.S. impacting

on its equity and options market returns and, thus, on the SKEW indexes.

The aggregate skewness - Skew - is a difference between an equity calls portfolio and an equity

puts portfolio as shown in formula (4.3). In order to clarify, we refer with Skew, Skew+ and Skew−

to the statistical skewness measures computed with 4.5. Skew is recognized as the risk neutral version

of a coefficient of statistical skewness, but it is also the expectation of market price of a skewness

payoff (see Bakshi et al., 2003). It is a measure of the slope of the S&P 500 implied volatility curve.

When transformed in SKEW indexes through 4.4 we refer to them as SKEW , SKEW+ and SKEW−

, respectively. For the S&P 500 this difference appears to be placed entirely in the left skewed area,

which drags the aggregate skewness to the left, as illustrated in Figure 4.1. Bakshi et al. (2003) affirmed

that for return distributions that are left-shifted, all OTM put options will be priced at a premium relative

to OTM calls. The cost of the short position in the linear combination of OTM puts will then exceed the

one in calls. Mitton and Vorkink (2007) advocates that returns of under-diversified portfolios are more

positively skewed than those of diversified portfolios. According to them, diversification is a two edged

sword: it eliminates undesired volatility but, at the same time, it eliminates also desired skewness. The

latter is the right skewness that is reduced when stocks are added, so when diversification is amplified

the stocks are contributing in a negative way to the portfolio co-skewness. Harvey and Siddique (2000)

points out that decreasing the portfolio skewness will command higher expected returns due to the

higher risk of the portfolio, and vice-versa. The positive Skew+ bell is representative for the long calls

investors and it has a positive range. On the other hand, the negative Skew− bell extracted from puts

extends in a wider range negative area and it is the most dispersed among the skew distributions.

4The NBER does not define a recession in terms of two consecutive quarters of decline in real GDP. Rather, a recession is
a significant decline in economic activity spread across the economy, lasting more than a few months, normally visible in real
GDP, real income, employment, industrial production. Available at: http://www.nber.org/cycles.html.

97

http://www.nber.org/cycles.html


Figure 4.1: Skew, Skew− and Skew+ Relationship

Notes: The three bells plot illustrates the decomposed statistical skew distributions. The aggregate statistical skew is computed

using Formula 4.5: S =
E[R3]−3E[R]E[R2]+2E[R]3

(E[R2]−E2[R])3/2
. The distribution of Skew− is computed from the same Formula by

inputting puts only, while the distribution of Skew+ is computed from calls only. The selected period is from 04-01-1996 to
29-12-2017, at daily frequency.

Figure 4.2 illustrates the historical evolution and the relationship between the aggregate SKEW

index and its positive and negative components at daily frequency. In Figures 4.1 and 4.2 our series

are shown at daily frequency to better highlight their trends and events in the time period. Following

standard practice in the literature, in the rest of the chapter, we rely on monthly frequency, end-of-the

month, for ease when compared with other financial risk measures and macroeconomic and financial

variables as well as for the return predictability regressions. SKEW− plays a main role in determin-

ing the trend for the SKEW series, laying always above the aggregate, while the role of SKEW+ is

usually more marginal becoming important only occasionally. We isolate the negative SKEW− trend

in the bottom panel of Figure 4.2 highlighting some of the main events along our selected time period.

SKEW and SKEW− appear to react in a similar way to events such as the Asian financial crisis, the

LTCM collapse, the Iraq invasion, the U.S. housing market bubble in 2006, Lehman Brother failure in

September 2008, during the two stages of the Eurozone sovereign debt crisis, the Chinese Yuan crisis

and during the more recent UK Brexit vote. On the other hand, SKEW− appears to react to events such

as the Russian crisis in August 1998, the dot-com bubble burst in March 2000, the 9/11 terrorist attack,

in the aftermath of the 2008-2009 recession period, possibly anticipating the Eurozone sovereign debt

crisis inception and during the Syria was and ISIS escalation. Thus, SKEW and SKEW− indexes

show a similar trend, with the latter reacting more in correspondence of unpredictable events, events

which reflected the likelihood of outliers and increased investors’ tail risk perception compared to the

aggregate SKEW . SKEW− reached one of its highest levels in March 2006 underlying a period of
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increasing concern due to U.S. housing market bubble and its possible bursting as a preamble for the

sub-prime crisis. This behaviour is due to the fact that it is a forward looking measure computed from

puts tracking more closely the investors’ fear of future extreme negative outcomes. Interestingly, the

SKEW and SKEW− level was surprisingly low during the 2008-2009 recession while being volatile

before turbulent times and before and after the recession periods. This behaviour during the global

financial crisis might be due to the fact that investors view as unlikely another extreme market events

when they are already in the midst of it.

Figure 4.2: Decomposed SKEW Indexes

Notes: This graph shows the decomposed SKEW indexes, namely, SKEW , SKEW− and SKEW+ , computed through
formula (4.4): SKEW = 100 − 10S in the upper panel and only the SKEW− as a tail risk measure proxy in the bottom
panel. NBER recession periods are highlighted in grey. Some of the main events in which SKEW− has reacted along the
selected period are also highlighted with letters: [A] Asian Financial Crisis [B] Russian Financial Crisis [C] LTCM Collapse
[D] Dot-com Bubble Burst [E] 9/11 Terrorist Attack [F] Iraq Invasion [G] U.S. Housing Market Bubble [I] Lehman Brother
Failure [H] [J] First and Second Stage Eurozone Sovereign Debt Crisis [K] Syria War Escalation [L] Ukraine-Russia Conflict
[M] ISIS Escalation [N] Chinese Yuan Crisis [O] UK Brexit Vote. The selected period is from 04-01-1996 to 29-12-2017, at
daily frequency.

According to Kelly and Jiang (2014), the absence of an increase in tail risk during the recent fi-

nancial crisis, although surprising, is consistent with Brownlees et al. (2011) arguing that the financial

crisis was characterized by soaring volatility which was, however, predictable over short horizons by

standard volatility forecasting models. SKEW and SKEW− get closer in calm periods, while the

distance between them becomes wider during high market sentiment periods. SKEW appears more in-

fluenced by the positive SKEW+ index in the pre financial crisis period and during the dot-com bubble

optimistic time possibly contributing in dragging down the aggregate SKEW index.

Our idea of tail risk measure is, then, to rely only on the SKEW− component, disregarding the

information coming from the calls side representing the optimistic views. This new measure of tail risk
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can be considered a more prudent forward looking measure of extreme market fear, tail risk aversion

and investors hedging willingness. SKEW− can be defined as a perceived measure of tail risk which

increases when market participants increase their probability of a catastrophic market decline.

While there is evidence in the literature about the key role of the equity index OTM puts as shelter

against equity market drop (see Dennis and Mayhew, 2002; Han, 2008; Bondarenko, 2014), the role of

the equity indexes OTM calls is less studied and is more commonly associated with optimistic beliefs

(Buraschi and Jiltsov, 2006). Hence, it is of interest to study the relationship between the SKEW

indexes and other risk and tail risk measures in the literature and between the SKEW indexes and

market sentiment. Section 4.3 and 4.4 present these findings.

4.3 Positioning the SKEW Indexes in Relation to Other Risk Mea-

sures

In this section we position the newly decomposed implied skewness indexes next to some of the already

existing financial risk measures and tail risk measures. We describe more in depth some of the prop-

erties shown by the decomposed SKEW indexes as well as comparing them with other risk measures

more common in the financial literature.

4.3.1 Comparison with Volatility and Risk Premium Measures

In order to perform a cross-sign comparison, we decompose the VIX into its upside and downside

components, applying the Bakshi et al. (2003) – BKM – model-free approach to S&P 500 daily options,

with the same OTM options selection and filter rules as in 4.2.2 (see Appendix for more details).

Plotting the decomposed VIX series in Panel A of Figure 4.3, we notice that VIX− has a prevalent role

in the total VIX , in line with Bollen and Whaley (2004) and ? showing that investors weigh differently

downside losses versus upside gains. Consequently, VIX changes are driven more by the downside

volatility component (S&P 500 puts) in comparison to the upside volatility component (S&P 500 calls).

In general, VIX− is higher than VIX+ , with the opposite true only in rare circumstances such as bullish

and optimistic periods characterized by positive investors’ expectations and calls trading stimulation.

VIX− follows mainly the trend of VIX especially when put options are more in need for hedging

strategies and it can be considered as a proxy of downside risk5. Results are in line with previous studies

decomposing implied volatility indexes (e.g. Fu et al., 2016; Kilic and Shaliastovich, 2018). During

5For instance, the implied volatility series spiked during the Asian financial crisis (end of 1997), during the Russian financial
crisis and Long-Term Capital Management (LTCM) collapse in 1998, during the dot-com bubble, and in the middle of the 2001-
2002 NBER recession period). The implied volatility indexes reached their all time high levels during the 2008 financial crisis
in response to the Lehman Brother collapse in September 2008. Other noteworthy peaks are found in correspondence of the
Eurozone sovereign debt crisis (2011 and 2012), Chinese Yuan crisis in summer 2015 and, finally, the UK Brexit vote in June
2016.
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negative times the S&P 500 puts are more expensive than the S&P 500 calls (Bondarenko, 2014) and

in more demand. The upside out-looking volatility helps the market attenuate the fear relative to equity

shortfall and market losses. A more in-depth analysis between these three indexes, namely, equity,

volatility and skewness is contained in Appendix B.1. Results of a Granger causality analysis among

the series are reported in Section B.1.1 and Section B.1.2 in Appendix B.1.

The decomposed SKEW indexes are also compared with the newly proposed decomposed good and

bad variance risk premia by Kilic and Shaliastovich (2018). The good variance risk premium predicts

future assets returns with a positive sign, whereas the bad variance risk premium with a negative sign.

The three variance risk premium series are shown in Panel B of Figure 4.3. According to Kilic and

Shaliastovich (2018), both components of the variance risk premium should be considered in order

to obtain a higher return predictability in the long-term horizon. They define the total variance risk

premium as total vp, the good variance risk premium component as vp good and the downside variance

risk premium component as vp bad. Their series are available at https://sites.google.com/

view/metekilic/. In our chapter we slightly change the notation for consistency with the other

decomposed measures. We will refer as to the vp total as VRP , to the vp good as VRP+ and to the vp

bad as VRP− .

In addition, we analyze together the implied skewness indexes, the measures of implied and realized

correlation and the correlation risk premium by Driessen et al. (2009) computed from options with a

1-month maturity6. The implied correlation is constructed as the average expected correlation among

the stocks contained within an index. Thus, it is extracted from the price of index options corresponding

to that of individual stock options7. The correlation risk premium at time t is defined as the difference

between the risk-neutral and physical correlation measures: CRPt = ICt−RCt. Figure 4.3 shows the

plots for the implied correlation and the correlation risk premium in Panel C and Panel D, respectively.

Table 4.1 shows the correlation analysis among the three decomposed SKEW indexes, three de-

composed VIX indexes, three decomposed VRP , the implied and realized correlation measures, and

the correlation risk premium. Our correlation analysis confirms the conclusions in Han (2008), Dennis

and Mayhew (2002) and Conrad et al. (2013), highlighting a negative relationship between VIX and

SKEW and also between VIX and SKEW− . When market volatility is high, the negative skewness

for S&P 500 is reduced. Even if they are both calculated from the same S&P 500 options, the two in-

dexes carry different information and they have a low correlation being them complementary measures

of risk. When VIX spikes, SKEW remains around its average and vice-versa. Furthermore, there is a

positive relationship between VIX and SKEW+ . When VIX spikes the positive SKEW component

does the same. We provide some interpretations of these findings in Section 4.4 by taking into account

6We thank Grigory Vilkov for kindly sharing the correlation measures at: http://www.vilkov.net/index.html
7An increase in the price of index options leads to an increase in the implied index variance, in turn, raising the implied

correlation. Conversely, an increase in the prices of individual stock options leads to an increase in the implied stock variances,
leading to a lower implied correlation (see Buss et al., 2018)
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Figure 4.3: Risk Measures Plots

Notes: This graph shows the decomposed volatility indexes series, namely VIX , VIX− and VIX+ , in Panel A, the decomposed
variance risk premium series, namely, VRP total, VRP good and VRP bad as in Kilic and Shaliastovich (2018) in Panel B, the
implied correlation in Panel C and correlation risk premium in Panel D. We do not report the extreme values the indexes reached
during the financial crisis, namely, 409.10, 221.64 and 188.64 for VRP , VRP+ and VRP− , respectively in order to keep a
more compact scale allowing an easier comparison. The correlation measures are computed from 1-month options. The selected
period is from 01:1996 to 12:2017, at monthly frequency. The selected period for risk premia is from 01:1996 to 08:2014. The
NBER recession periods are highlighted in grey.

the market sentiment in relation with the SKEW indexes. The results are also confirmed in Figure B1

in Appendix in which we compare the decomposed SKEW indexes and the decomposed VIX indexes.

SKEW is positively correlated with SKEW− while negatively correlated with SKEW+ . The two

skewness components, SKEW− and SKEW+ have an almost nil correlation. The high correlation co-

efficients among the three decomposed VIX indexes as well as among the three variance risk premia is

in line with the previous literature Kilic and Shaliastovich (2018). Lower, but still positive, correlation

is found between the implied volatilities and risk premia.

Table 4.1: Decomposed SKEW and Other Risk Measures: Correlation Analysis

SKEW SKEW+ SKEW− VIX VIX+ VIX− VRP VRP+ VRP− IC RC CRP

SKEW 1
SKEW+ -0.20*** 1
SKEW− 0.78*** 0.03 1
VIX -0.23*** 0.05 -0.49*** 1
VIX+ -0.37*** 0.14** -0.52*** 0.97*** 1
VIX− -0.14** -0.02 -0.46*** 0.98*** 0.93*** 1
VRP 0.01 -0.07* -0.07* 0.28*** 0.23*** 0.31*** 1
VRP+ 0.02 -0.08* -0.14** 0.45*** 0.39*** 0.48*** 0.96*** 1
VRP− 0.01 -0.05 -0.02 0.08* 0.05 0.09* 0.96*** 0.86*** 1
IC 0.05 -0.09* -0.27*** 0.60*** 0.53*** 0.64*** -0.01 0.15** -0.18*** 1
RC -0.03 -0.03 -0.28*** 0.56*** 0.50*** 0.58*** 0.21*** 0.33*** 0.06 0.73*** 1
CRP 0.11** -0.07* 0.03 -0.01 -0.04 0.01 -0.31*** -0.28*** -0.32*** 0.26*** -0.46*** 1

Notes: This table presents the correlation analysis between the total and decomposed skewness indexes (SKEW , SKEW+ and SKEW− ),
implied volatility indexes (VIX , VIX+ and VIX− ), variance risk premia (VRP , VRP+ and VRP− ) and the correlation measures (IC,
RC, CRP). The comparison is shown for the common time period among the selected measures, namely, between Jan 1996 and Aug 2014, at
monthly frequency. Significance levels: ∗ p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗ p < 0.01.

A positive correlation between the implied volatility indexes and risk premia is also found. The
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correlation between the decomposed VIX series and IC is also positive. These findings are in line with

the correlation analysis in Buss et al. (2018). Low or even negative correlation is instead found be-

tween the decomposed SKEW indexes and the correlation measures. Thus, it appears that the SKEW

indexes contain additional information not enclosed in the other sets of financial risk measures. The

decomposed SKEW indexes appear also to contain different information from each other.

4.3.2 Comparison with Other Tail Risk Measures

In this section, we compare the implied SKEW measures with some of the tail and financial risk

measures have been proposed in the literature, namely, Kelly and Jiang (2014) tail index, Almeida et al.

(2017) nonparametric tail risk, the Allen et al. (2012) aggregate systemic risk measure – CATFIN – and

the CRASH index. Kelly and Jiang (2014) tail index is computed from a cross-section of equity returns

assuming that the lower tail distribution of asset return i at time t follows the probability law:

Pt(Ri,t+1 < r | Ri,t+1 < ut) =

(
r

ut

)−ai
λt

(4.12)

where Pt(·) denotes the conditional probability on the information set Ft at time t, r < ut < 0 and

λt is the time varying tail exponent estimated by the Hill estimator: λHillt = 1
Kt

∑Kt
k=1 ln

Rk,t
ut

, where

Rk,t is the day k-th return below an extreme value threshold ut in month t and Kt measures how many

times such exceedance happens in month t across firms conditioning to the information set Ft. They

assume that even if different firms are subjected to different risk, they can be aggregated into a single

process, assuming similarity in the risk dynamics. The relationship between tail risk and individual

stock returns is positive under their model, coherent with the fact that investors are tail risk averse.

The Almeida et al. (2017) Hellinger nonparametric tail risk is also based on a cross-sectional ap-

proach on assets’ returns. It is based on the risk neutral excess expected shortfall (ES) of portfolios

returns being the aggregate tail risk the average of the single portfolio ES defined for every asset i as:

TRi,t = EQ[Ri,τ − V aRα(Ri,τ )|Ri,τ ≤ V aRα(Ri,τ )], (4.13)

where t is the selected month for the tail risk calculation, τ is the possible state of nature, Q is the

risk neutral density (RND) over the return space R, and α is the VaR threshold. The Hellinger tail risk

is computed with five principal components from the 25 Fama and French Size and Book-To-Market

portfolios, employing a Hellinger risk neutral density given by γ = −0.5.

The macro index of systemic risk – CATFIN – by Allen et al. (2012) is constructed using value-

at-risk (VaR) and expected shortfall (ES) methods estimated using both nonparametric and parametric

approaches. The parametric distributions to estimate the 99% VaR and the 1% ES are the generalized
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Pareto distribution (GPD) and the skewed generalized error distribution (SGED). The nonparametric

methods are measured as a cut off point of the left tail lower one percentile of the monthly excess returns

for the VaR and as an average of the extreme financial firms returns beyond the 1% nonparametric VaR.

This catastrophic risk measure for the financial sector is then constructed as an average of the three VaR

and ES measures. The measure is negative most of the time. We consider this measure as a proxy of

the financial sector systemic risk and we investigate the possible connection with our SKEW indexes.

Lastly, the CRASH index measures the probability of another catastrophic stock market crash in

the U.S. in the next 6 months with regards to institutional investors’ expectations taken with regards to

institutional investors8. Table 4.2 shows the correlation analysis among the selected measures.

Table 4.2: SKEW Indexes and Other Tail Measures: Correlation Analysis

SKEW SKEW+ SKEW− TAIL HELLINGER CATFIN CRASH

SKEW 1
SKEW+ -0.19*** 1
SKEW− 0.75*** 0.04 1
TAIL 0.02 0.01 0.18*** 1
HELLINGER 0.01 -0.03 -0.20*** -0.46*** 1
CATFIN -0.06 -0.02 -0.33*** -0.55*** 0.56*** 1
CRASH 0.01 -0.02 0.22*** 0.13** -0.27*** -0.50*** 1

Notes: This table presents the correlation analysis between the aggregate and decomposed skewness indexes, SKEW ,
SKEW+ and SKEW− and other tail risk and financial risk indexes, at monthly frequency. TAIL is the Kelly and Jiang
(2014) tail index, HELLINGER is the Almeida et al. (2017) Hellinger tail risk, CATFIN is the Allen et al. (2012) catastrophic
financial systemic risk, CRASH index is from the Yale School of Management. We conduct the comparison for the common
period among the selected measures, namely, between 01:1996 and 04:2014, at monthly frequency. Significance levels:
∗ p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗ p < 0.01.

Our results indicate that the SKEW− is the most connected among the SKEW indexes, with a

positive correlation (18%) to the Kelly and Jiang (2014) tail index. Kelly and Jiang (2014) found

a -30% correlation between TAIL and the option-implied skewness suggesting that TAIL is closely

associated with tail risks perceived by option market participants. The negative correlation they found

is in relation to the statistical skewness (as presented in Figure 4.1 in this chapter) which has opposite

sign compared to the SKEW index. We find evidence of lack of correlation between our series, SKEW

and SKEW+ , and the Hellinger tail risk. SKEW− is, negatively correlated (-20%) with Hellinger.

Our SKEW measures are also negatively correlated with Allen et al. (2012) CATFIN with the

SKEW− showing a noticeable negative relationship (-33%). We follow the interpretation in Almeida

et al. (2017) explaining the negative correlation between the Hellinger tail risk and the Kelly and Jiang

(2014) tail risk. This can be explained from the fact that in the latter, they use the whole individual raw

returns below 5% threshold, in Hellinger tail risk 25 portfolios sorted by Size and Book-to-Market are

used. In addition, since the Hellinger tail risk is based on excess expected shortfall, this gives values

which are, most of the time, negative. Our SKEW measures assume only positive values due to the

8The Crash index is available at: https://som.yale.edu/faculty-research/
our-centers-initiatives/international-center-finance/data/stock-market-confidence.
The questions that this index answers is the following: What do you think is the probability of a catastrophic stock market crash
in the U. S., like that of October 28, 1929 or October 19, 1987, in the next six months, including the case that a crash occurred
in the other countries and spreads to the U. S.?
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transformation in equation 4.4, instead. If taken in absolute values, Hellinger tail risk shows the highest

positive correlation with SKEW− , further reinforcing the intuition of the latter proposed as tail risk

measure in this chapter. The high level of correlation between Hellinger tail risk and CATFIN can be

explained on the fact that both measures are based on VaR and ES methodologies. The same negative

implied SKEW index appears the most correlated with the CRASH index (22%), thus sharing some

similar information on catastrophic stock market risk.

Other measures such as the Bollerslev and Todorov (2011) realized aggregate and decomposed

jumps have been compared with the SKEW indexes. According to them, the realized variance measure

consists of two different components: a variation due to the continuous sample price path (continuous

variation, CV) and a variation coming from jumps (jump variation, JV). The latter can be further split

into positive and negative jumps (RJV and LJV). Eventually, they define RVt = CVt +RJVt +LJVt.

The correlation analysis between the jumps and the SKEW indexes spans the all period from 01:1996

to 12:2017, thus not shown in Table 4.2. The correlation between the SKEW indexes and the jump

measures is found to be, overall, small and negative, for all the three considered jumps measures, thus

not changing our conclusion. The CBOE Volatility of Volatility, VVIX, is also compared with our

SKEW indexes. It is calculated by applying the same VIX methodology to a wide range of OTM VIX

options. Sometimes VVIX is associated with the tail risk concept. Park (2015) argued that the volatility

of the stochastic volatility could be a different way to measure the tail risk and that VVIX, as a mixture

of volatility of volatility and also volatility jump risk, is more reliable than VIX in measuring market

extreme events. This index is only available for a more recent time period, after 2007. When compared

with our SKEW indexes for the last decade, we find that SKEW− and SKEW+ indexes are almost

uncorrelated with the VVIX, while the aggregate SKEW shows a positive correlation (17%).

Overall, we find that the SKEW indexes do not appear to be highly correlated with other tail risk

measures implying that the SKEW indexes extracted from options may carry additional information

compared to cross-sectional market returns tail indexes (e.g. Almeida et al., 2017). The results in Table

4.2 confirm that SKEW− is the closest to other existing tail risk measures, hence it is proposed as

a new tail risk measure in this chapter. Due to its forward looking properties, SKEW− may also be

considered a measure of implied – or perceived – tail risk in the financial markets. This might explain

the low correlation with other tail risk measures and its trend highlighted in Figure 4.2.

4.4 SKEW Indexes and Market Sentiment

Drawing upon the findings from the previous sections, we hypothesize a market sentiment interpretation

connected to the robust predictive power of SKEW+ . This hypothesis relies on literature that links

investor sentiment to stock prices (e.g. Baker and Wurgler, 2006; ?) and on literature that links risk-
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neutral skewness to market sentiment (e.g. Buraschi and Jiltsov, 2006; Han, 2008; Garleanu et al.,

2009; Friesen et al., 2012; Lemmon and Ni, 2014; Stilger et al., 2016). Our hypothesis is that market

sentiment affects the price of equity options, thus changing implied skewness.

Baker and Wurgler (2000, 2006, 2007) asserted how investor sentiment is impacting on the stock

prices and Han (2008) confirmed that there is a link between risk neutral skewness and market senti-

ment; when the investor sentiment is bearish the index option volatility smile is steeper and the risk

neutral skewness is more negative, while when the investor sentiment is bullish, the volatility smile is

flatter and the skewness less negative. Thus, the market sentiment affects equity index options’ prices,

changing market implied volatility and skewness. The relationship between the skew and market sen-

timent was also tested by Dennis and Mayhew (2002), in the form of a link between the skew and the

put-call ratio, finding a positive, but not significant relationship between the two.

We ask, firstly, whether or not the SKEW indexes extracted from options are affected by mar-

ket sentiment and, secondly, whether or not SKEW indexes are able to predict changes in investor

sentiment. The sentiment proxies we select are some of the most common market sentiment indi-

cators in the financial literature: the investor sentiment index by Huang et al. (2015) (ZHOU), the

Baker and Wurgler (2006) Sentiment Index (BW), the put/call Ratio from CBOE (PCRatio), the AAII

American Association of Individual Investors’ survey data (AAII), the Confidence Index (CONF) and

the Sentiment Index from University of Michigan Consumer Sentiment (SENT). More specifically,

ZHOU is the investor sentiment index by Huang et al. (2015) available at http://apps.olin.

wustl.edu/faculty/zhou/useful_links, BW is the Baker and Wurgler (2006) sentiment

index available at http://people.stern.nyu.edu/jwurgler/. The latter is one of the ear-

liest sentiment index has been developed applying a principal component analysis to six underlying

sentiment proxies while Huang et al. (2015) improved this measure extracting the most relevant in-

formation for the stock returns from the same six sentiment proxies but discarding their approxima-

tion errors. PCRatio is the put-call ratio from CBOE, commonly used as a sentiment proxy (see

Dennis and Mayhew, 2002); AAII is the sentiment index from the American Association of Indi-

vidual Investors’s survey (http://www.aaii.com/sentimentsurvey). The Confidence In-

dex represents the confidence in the financial market, Dow Jones Industrial, in the following months

up to 10 years9. SENT is the University of Michigan Consumer Sentiment retrieved from FRED:

https://fred.stlouisfed.org/series/UMCSENT.

First, we analyze how implied skewness measures extracted from options are affected by market

sentiment. Investors are trading index options based on their directional information (Ni et al., 2008).

It is common in the literature to distinguish between two groups of investors, influenced by opposite

9It can be downloaded from: https://som.yale.edu/faculty-research/our-centers-initiatives/
international-center-finance/data/stock-market-confidence and the question this index answers is the
following - How much of a change in percentage terms do you expect in the following months/years (fill with +/− before the
number to indicate expected increase or decrease)? - This is taken with regards to institutional investors.

106

http://apps.olin.wustl.edu/faculty/zhou/useful_links
http://apps.olin.wustl.edu/faculty/zhou/useful_links
http://people.stern.nyu.edu/jwurgler/
http://www.aaii.com/sentimentsurvey
https://fred.stlouisfed.org/series/UMCSENT
https://som.yale.edu/faculty-research/our-centers-initiatives/international-center-finance/data/stock-market-confidence
https://som.yale.edu/faculty-research/our-centers-initiatives/international-center-finance/data/stock-market-confidence


market expectations. According to Brown and Cliff (2005), investors are divided into “fundamental-

ist", trading according to the asset fundamentals, and “speculators", more influenced by market sen-

timent. Another investors categorisation by Lemmon and Ni (2014) is between institutional investors

and “noise traders" or individual investors. The latter are referred to be more influenced by sentiment

and behavioural biases compared to the first (see also Dennis and Strickland, 2002). Index OTM puts

are traded as insurance assets against equity market drops (see Bollen and Whaley, 2004; Han, 2008;

Bondarenko, 2014) and their trading is driven mainly by hedging demand from institutional investors

(Lakonishok et al., 2007). In our view, this opens for potential market sentiment impact on the other

side of the equity options market, the calls side. We test the impact of market sentiment on SKEW

indexes in a contemporaneous framework, where the dependent and independent variables are matched

for their available data. We run the following OLS regression:

SKEW i
n = α+ β1MarkSentj + ε with i = Tot,+,−. (4.14)

whereMarkSentj , is one of the market sentiment proxies, ZHOU, BW, PCRatio, AAII, CONF, SENT.

Table 4.3: Regression Analysis Skewness Indexes on Investor Sentiment Indexes

ZHOU BW PCRatio

Predictor Coef t-stat R2(%) Coef t-stat R2(%) Coef t-stat R2(%)

SKEW -0.029** [-1.901] 1.3 -0.019*** [-4.632] 4.5 -0.092* [-1.657] 1.3
SKEW+ 0.005*** [2.524] 2.6 0.006*** [2.875] 2.7 0.032* [1.679] 1.5
SKEW− -0.028** [-2.001] 2.1 -0.015* [-1.503] 1.8 -0.023** [-2.118] 6.2

AAII CONF SENT

Predictor Coef t-stat R2(%) Coef t-stat R2(%) Coef t-stat R2(%)

SKEW -0.013*** [-3.781] 3.7 -0.012 [-0.162] 0.1 -0.051* [-1.462] 0.7
SKEW+ -0.031 [0.085] 0.1 0.020 [1.034] 0.3 0.024*** [2.836] 1.4
SKEW− 0.041* [-1.556] 0.2 -0.084 [-1.107] 0.7 -0.019* [-1.290] 0.1

Notes: This table presents the output of the regression analysis between our dependent variables, SKEW , SKEW− and SKEW+ and some of the most
common market sentiment indicators in the literature as independent variables by running regression 4.14. The sentiment indicators which are selected
with the corresponding available time period are the following: the sentiment index by Huang et al. (2015) (ZHOU) (from 01:1996 to 12:2016), the
sentiment index by Baker and Wurgler (2006) (BW) (from 01:1996 to 09:2015), the put-call ratio (PCRatio) (from 10:2003 to 12:2017) and the American
Association of Individual Investors’ survey index (AAII), the Confidence Index (CONF) and the University of Michigan Consumer Sentiment (SENT) for
the all time period of this study, from 01:1996 to 12:2017. Data frequency is monthly. Regressions intercepts are not reported to save on space. The
regression coefficients, Newey-West t-statistics in square brackets and R2 in percentage are reported. Significance levels: ∗ p < 0.1, ∗ ∗ p < 0.05,
∗ ∗ ∗ p < 0.01.

The results of the estimated contemporaneous OLS regression presented in Table 4.3 indicate that

the impact of market sentiment is negative for SKEW and SKEW− and positive for SKEW+ , with

the only exception for AAII. The difference in coefficients’ signs for AAII is due to the fact that it is

a sentiment proxy from a survey about investors’ market opinions (bullish, bearish, neutral) and it is

measured as the difference between bearish opinion and bullish opinion. It is also considered as a proxy

of institutional investors sentiment due to the panel of interviewed investors. Thus, the market sentiment

proxies have a positive influence on the OTM calls trade, with coefficients significant in four cases out of

six. The aggregate SKEW is impacted negatively by market sentiments in all cases, whereas SKEW−
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in five cases out of six. Overall, we find that SKEW− is impacted less by market sentiment, only in

two cases out of six, one of them being the put-call ratio computed from the same S&P 500 options.

More specifically, Baker and Wurgler (2006) (BW) and Consumer Sentiment (SENT), two of the most

common sentiment proxies in the financial literature, do not show statistically significant relationship

with SKEW− . When found significant, the negative coefficients decrease from SKEW to SKEW−

meaning that there is a stronger marginal relationship with SKEW− . We find evidence that the put-call

ratio, considered as a proxy of market sentiment and trading pressure, is significant in explaining all the

three SKEW indexes. Overall, the regression coefficients indicate how puts and calls portfolios react

in an opposite direction to market sentiment reflecting pessimistic and optimistic views, respectively.

No relationship between the decomposed SKEW indexes and the Confidence index are detected.

Furthermore, we consider whether or not the SKEW indexes have some predicting power with

respect to the selected sentiment indicators similar to Neely et al. (2014). The dependent variable is

selected among one of the sentiment indicators and the decomposed SKEW indexes are treated as

predictors as:

MarkSentt+1,j = α+ β1,iSKEW
i + εt+1,j with i = Tot,+,−. (4.15)

where MarkSentt+1,j is, now, the next month level of one of the selected sentiment indicators,

namely, ZHOU, BW, PCRatio, AAII, CONF, SENT. Table 4.4 shows the results of the predictive OLS

regression.

Table 4.4: Market Sentiment and SKEW Indexes: Predictive Regression

ZHOU BW PCRatio

Predictor Coef t-stat R2(%) Coef t-stat R2(%) Coef t-stat R2(%)

SKEW -0.169* [-1.554] 0.7 -0.023*** [-3.496] 4.4 -0.002*** [-2.620] 2.9
SKEW+ 0.691*** [2.642] 1.9 0.040*** [2.455] 2.6 0.005 [0.204] 0.0
SKEW− -0.039 [-0.403] 0.0 -0.010 [-1.061] 1.3 -0.002*** [-3.654] 6.2

AAII CONF SENT

Predictor Coef t-stat R2(%) Coef t-stat R2(%) Coef t-stat R2(%)

SKEW -0.003*** [-4.427] 5.9 -0.025 [-0.313] 0.1 -0.027 [-0.296] 0.0
SKEW+ -0.006*** [-3.088] 3.3 0.175 [0.982] 0.4 0.582** [2.309] 1.3
SKEW− 0.001** [2.107] 1.3 -0.049 [-0.670] 0.3 -0.910 [0.942] 0.3

Notes: This table presents the output of the OLS predictive regression between the independent variables, SKEW , SKEW− and SKEW+ and the
next month level of the selected market sentiment indicators, this time as dependent variables. The OLS predictive regression is estimated through equation
4.15. The sentiment indicators which are selected with the corresponding available time period are the following: the sentiment index by Huang et al.
(2015) (ZHOU) (from 01:1996 to 12:2016), the sentiment index by Baker and Wurgler (2006) (BW) (from 01:1996 to 09:2015), the put-call ratio (PCRatio)
(from 10:2003 to 12:2017) and the American Association of Individual Investors’ survey index (AAII), the Confidence Index (CONF) and the University of
Michigan Consumer Sentiment (SENT) for the all time period of this study, from 01:1996 to 12:2017. Data frequency is monthly. Regressions intercepts are
not reported to save on space. The regression coefficients, Newey-West t-statistics in square brackets andR2 in percentage are reported. Significance levels:
∗ p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗ p < 0.01.

Our empirical evidence confirms that SKEW+ shows the best next month market sentiment pre-

dictability in four cases out of six, namely ZHOU, BW, AAII and SENT according to the Newey-West

t-statistic. SKEW+ shows a higher R2 compared to SKEW and SKEW− . The coefficients carried
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by the SKEW indexes are similar to the ones found in Table 4.3.

Our regression results reveal how SKEW+ can be seen as that component being influenced by

market sentiment the most and, in turn, it contains useful information in order to predict future levels

of some of the most tracked market sentiment indicators, mainly, ZHOU and SENT. This may be due

to the fact that in high sentiment market, when the information provided by the tail risk index should

be more reliable, OTM index puts are expensive (see Bondarenko, 2014; Han, 2008). For this reason

investors with a bullish expectation in equity market can go long in OTM index calls. Investors who

are “end-users" have a net long position in S&P 500 options, (Garleanu et al., 2009). The correlation

signs in Table 4.1 confirm the positive relationship between SKEW+ , and VIX and VIX+ . The first

is, sometimes, used as a market sentiment proxy, whereas the latter is a proxy of market exuberance

(see Segal et al., 2015; Bollerslev et al., 2015). To conclude, market sentiment can have an undesired

effect on SKEW dragging it towards the “bright" side thus creating an optimistic illusion carried from

investors’ positive expectations.

4.5 Decomposed SKEW Indexes and Equity Risk Premium Pre-

dictability

In this section we study whether the information content of our SKEW , SKEW+ and SKEW−

indexes can help in predicting the equity risk premium. This section is motivated by the vast recent

literature which has been attempting to predict future excess stock returns by considering different sets

of predictors such as financial market variables, macroeconomic variables and technical indicators (see

Pástor and Stambaugh, 2009; Bakshi et al., 2011; Bakshi and Panayotov, 2013; Pettenuzzo et al., 2014;

Neely et al., 2014; Rapach et al., 2016); and Rapach and Zhou (2013) for an exhaustive survey of this

literature.

This section is also well anchored in the financial literature looking at skewness measures as pos-

sible containers of information useful to predict the future equity returns and risk premia (see Chang

et al., 2013; Bali and Murray, 2013; Amaya et al., 2015). Given that our SKEW indexes are extracted

from options, we believe they may improve the equity risk premium predictability (e.g. Bakshi et al.,

2011). By disentangling the information content enclosed in upside and negative measures may also

be found to improve their predictability (see Kilic and Shaliastovich, 2018). We also position our de-

composed implied SKEW measures next to other macroeconomic predictors common in the literature

(e.g. Goyal and Welch, 2008) and next to other financial volatility measures based on options, namely,

VIX and volatility risk premium with the aim of checking whether or not the SKEW indexes are still

informative when other control variables are added to the predictive models.

We describe the dependent variables and the selected predictors in subsection 4.5.1. We show the
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results for the in-sample bivariate and multivariate predictive exercise with regards to the S&P 500

equity risk premium and international markets in subsection 4.5.2 and 4.5.5, respectively. Another set

of predictors including the decomposed VIX and variance risk premia is considered in the subsection

4.5.3. The out-of-sample analysis as a robustness check is reported in subsection 4.5.4. Section 4.6

studies the predictability of the decomposed SKEW indexes with relation to sets of individual stocks.

4.5.1 Selected Predictors and Descriptive Statistics

In order to show the predictive power of the SKEW indexes, we compare the newly proposed de-

composed SKEW indexes to a more consolidated and common set of financial market predictors

as the one by Goyal and Welch (2008). This allows us to relate our results to the vast literature

on equity risk premium predictability. The data set are available from Amit Goyal’s webpage at:

http://www.hec.unil.ch/agoyal/.

In particular, the common set of 14 macroeconomic variables by Goyal and Welch (2008) we use

as predictors of the equity risk premium returns are the following:

• The log dividend price ratio (DP) computed as the log of a 12-month moving sum of dividends

paid on S&P 500 minus the log of the S&P 500 stock prices.

• The log dividend yield (DY) computed as the log of a 12-month moving sum of dividend minus

the log of lagged S&P 500 stock prices.

• The log earnings-price ratio (EP) computed as the log of a 12-month moving sum of earning on

the S&P 500 minus the log of stock prices.

• The log dividend-payout ratio (DE) computed as the log of a 12-month moving sum of dividends

minus the log of a 12-month moving sum of earnings.

• The excess stock return volatility (RVOL) computed as a 12-month moving standard deviation

estimator (see Mele, 2007; Rapach et al., 2016)10.

• The book-to-market ratio (BM) computed as the book-to-market value ratio for the Dow Jones

Industrial Average.

• The net equity expansion (NTIS) computed as the ratio of a 12-month moving sum of net equity

issues by NYSE-listed stocks to the total end-of-year market capitalization of NYSE stocks.

• The treasury bill rate (TBL): interest rate on a three-month T-bill.

• The long-term yield (LTY): long-term government bond yield.
10The RVOL measure is computed as a 12-month moving standard deviation estimator (see Mele, 2007; Rapach et al., 2016)

and it differs from the measure of stock return volatility used in Goyal and Welch (2008) (sum of squared daily excess stock
returns during the month). It has shown to yield better estimation results (see Rapach et al., 2016).
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• The long-term return (LTR): return on long-term government bonds.

• The term spread (TMS) computed as the difference between the long-term yield and the T-bill

rate.

• The default yield spread (DFY) computed as the difference between Moody’s BAA- and AAA-

rated corporate bond yields.

• The default return spread (DFR) computed as the long-term corporate bond return minus the

long-term government bond return.

• The inflation rate (INFL) computed from the CPI for all urban consumers.

The SKEW indexes, namely, SKEW , SKEW+ and SKEW− , computed and decomposed as

illustrated in section 4.2.2 represent our main three predictors. All the variables are considered at

monthly frequency as standard practice in the predictability literature. Further details on the correlation

between the selected variables are described in Appendix B. The dependent variable, the equity risk

premium (log) is computed as the difference between the log stock market returns, rt+1 on S&P 500 ,

and the log return on a risk-free bill, r∗t (see Bakshi et al., 2011; Neely et al., 2014):

ln(1 + rS&P500
t+1 )− ln(1 + r∗t ) (4.16)

The following Table 4.5 shows the selected variables and equity risk premium (log) descriptive

statistics.

Table B4 in Appendix shows the correlation coefficients for the Goyal and Welch (2008) 14 macroe-

conomic variables and for the SKEW indexes. The latter are taken at first difference thus showing

different results than Table 4.1. We find that the selected macroeconomic predictors show strong cor-

relations within each other (e.g. DP and DY, EP and DE, LTY and TBL), whereas the coefficients

decrease considerably with regards to the SKEW indexes. The implied SKEW indexes appear un-

related to the common set of macroeconomic variables. The highest correlation coefficient is found

between SKEW− and DFR (18%). This suggests that the information content of the SKEW indexes

is different from the one of the 14 macroeconomic predictors. We also extract principal components

from the set of Goyal and Welch (2008) 14 macroeconomic predictors in order to group the dispersed

information they contain. The predictors are standardized. Xt = (X1,t, .......XN,t)
′ is the N-vector

(N = 14) of the selected predictors and the vector of the first K principal components extracted from

Xt is denominated as F̂Pt = (FGW1,t , ....., FGWK,t )′ where GW implies that these are extracted from the

Goyal and Welch (2008) 14 predictors. We select only the first four principal components as selected

by Akaike information criterion and reasonable number of components in order to keep the model

parsimonious. Figure B2 in Appendix shows the main four principal components.
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Table 4.5: Equity Risk Premium and Predictors Summary Statistics

Variable Mean Std. Dev Min Max Skewness Kurtosis Sharpe

Equity Risk Premium (log) 0.01 0.04 -0.18 0.10 -0.82 4.66 0.12

SKEW (log) 4.79 0.06 4.66 4.97 0.66 3.30
SKEW+ (log) 4.41 0.03 4.30 4.54 0.58 5.03
SKEW− (log) 4.96 0.05 4.84 5.15 0.50 3.00

DP -4.01 0.20 -4.52 -3.28 -0.04 3.96
DY -4.00 0.20 -4.53 -3.29 -0.16 3.81
EP -3.15 0.38 -4.83 -2.56 -2.04 8.76
DE -0.85 0.43 -1.24 1.37 3.23 14.98
RVOL 0.14 0.05 0.05 0.31 0.53 2.79
BM 0.26 0.07 0.12 0.44 -0.27 2.17
NTIS 0.01 0.01 -0.05 0.03 -0.86 3.32
TBL 0.02 0.02 0.01 0.06 0.41 1.50
LTY 0.04 0.01 0.01 0.07 -0.08 1.98
LTR 0.01 0.03 -0.11 0.14 0.07 5.43
TMS 0.02 0.01 -0.01 0.04 -0.13 2.03
DFY 0.01 0.01 0.01 0.03 2.95 14.35
DFR 0.01 0.01 -0.09 0.07 -0.48 9.33
INFL 0.01 0.01 -0.01 0.01 -0.90 7.58

Notes: The table reports the summary statistics for the log equity risk premium, the log of the decomposed SKEW indexes
predictor variables computed as illustrated in Section 4.2 and the 14 predictor variables from Goyal and Welch (2008):
the log dividend price ratio (DP), the log dividend yield (DY), the log earnings-price ratio (EP), the log dividend-payout
ratio (DE), the excess stock return volatility (RVOL), the book-to-market ratio (BM), the net equity expansion (NTIS),
the treasury bill rate (TBL), the long-term yield (LTY), the long-term return (LTR), the term spread (TMS), the default
yield spread (DFY), the default return spread (DFR) and the inflation rate (INFL). More details on their computations are
illustrated in subsection 4.5.1. TBL, LTY, TMS, DFY and INFL are measured in annual percent. The Sharpe ratio for the
equity risk premium is computed as the mean of the log equity risk premium divided by its standard deviation. The time
period is from 1996:01 to 2017:12.

4.5.2 In-Sample Stock Market Predictive Exercise

In the spirit of Bakshi et al. (2011) and Rapach et al. (2016), in this subsection we test the predictability

power of the selected variables at different horizons, namely, monthly (h = 1), quarterly (h = 3), semi-

annual (h = 6) and annual (h = 12). Several studies have been questioning the assets’ predictability

beyond the first month horizon (see Cutler et al., 1991; Hodrick, 1992; Campbell, 2001; Ang et al.,

2006; Boudoukh et al., 2008). We, first, estimate a bivariate predictive regression models with relation

to the future S&P 500 equity risk premium as follows:

rt:t+h = α+ βiXi,t + εt:t+h for t = 1, ..., T − h (4.17)

where rt+1 is the equity risk premium computed as the continuously compounded return on the S&P

500 from time t to t+ h in excess of the risk-free rate. Xi,t is one of the selected predicting variable at

time t among the Goyal and Welch (2008) predictors and the first difference of SKEW indexes. εt:t+h

is a zero-mean disturbance term (see Rapach and Zhou, 2013; Neely et al., 2014). Secondly, in order

to incorporate the macroeconomic variables information, we estimate a predictive regression based on

principal components (see Ludvigson and Ng, 2007, 2009; Neely et al., 2014; Rapach et al., 2016) as:
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rt:t+h = α+ βSKEWSKEW
k
t +

4∑
j=1

βf,jF̂
GW
j,t + εt:t+h, (4.18)

where F̂GW1,t , F̂GW2,t , F̂GW3,t , F̂GW4,t are the first four principal components extracted from the Goyal

and Welch (2008) set of 14 macroeconomic predictors and where k = Tot,+,− represent one of

the implied skewness indexes, namely, SKEW , SKEW+ and SKEW− . In this way, we are able to

isolate and to better test the predictive power of each of the selected SKEW indexes after controlling

for the four principal components proxy for the information contained in the 14 selected predictors and

allowing to test more parsimonious models. Ultimately, the role of the pairwise SKEW indexes is also

checked by estimating the following predictive regressions:

rt:t+h = α+ βSKEWSKEWt + βSKEW+SKEW+
t + εt:t+h. (4.19)

rt:t+h = α+ βSKEWSKEWt + βSKEW−SKEW
−
t + εt:t+h. (4.20)

rt:t+h = α+ βSKEW+SKEW+
t + βSKEW−SKEW

−
t + εt:t+h. (4.21)

The three SKEW indexes are also tested together as final robustness check. In every predictive

model, the SKEW indexes are taken at first difference for avoiding stationarity issues. Panel A of Ta-

ble 4.6 reports the in-sample S&P 500 risk premium predictive results of the bivariate OLS regression

at horizons (1, 3, 6, 12) estimated through equation 4.17. As common practice to facilitate the compar-

ison across predictors, these are standardized as to have a standard deviation of one and negative values

for NTIS, TBL, LTY and INFL are taken. Panel B reports the multivariate OLS estimation in which we

control for the four principal components (see equation 4.18), whereas in Panel C we report the multi-

variate results estimated through equations from 4.19 to 4.21, when SKEW indexes are considered in

pairs. Table 4.6 reports the predictive regression coefficients, the two-sided heteroskedasticity and au-

tocorrelation robust Newey (1987) t-statistic (tNW ) and Hodrick (1992) t-statistic (tH ) with automatic

selected lag (see Newey and West, 1994). The predictive regression R2 are reported in percentage.

From Panel A of Table 4.6, we observe that the aggregate SKEW index is not able to predict

future levels of equity risk premia at any horizons. On the other hand, SKEW+ and SKEW− show

predictability power with relation to the next month (h = 1) S&P 500 equity premium. Only SKEW+

is found to significantly predict the equity premium with regards to the next three months horizon

(h = 3). Poor predictive performance is shown for all the SKEW indexes after the first quarter with

decreasing R2.
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Table 4.6: In-Sample Predictive Regression Results

Panel A: Bivariate Predictive Regression

h = 1 h = 3 h = 6 h = 12

Predictor Coef. t NW t HH R2(%) Coef. t NW t HH R2(%) Coef. t NW t HH R2(%) Coef. t NW t HH R2(%)

SKEW -0.056 [-1.101] (-1.084) 0.3 -0.023 [-0.856] (-0.969) 0.1 -0.003 [-0.163] (-0.186) 0 -0.005 [-0.289] (-0.397) 0
SKEW+ 0.106 [1.853] (2.044) 1.1 0.034 [1.667] (1.744) 0.4 0.016 [0.843] (2.043) 0.1 0.006 [0.447] (-9.612) 0
SKEW− 0.065 [1.669] (1.743) 0.6 -0.007 [-0.328] (-0.401) 0 0.001 [0.070] (0.084) 0 -0.004 [-0.309] (-0.410) 0

DP 0.026 [1.427] (1.331) 1.7 0.027 [2.148] (1.802) 5.1 0.030 [3.652] (3.032) 10.8 0.031 [6.573] (5.426) 21.2
DY 0.029 [1.772] (1.686) 2.1 0.029 [2.521] (2.133) 5.8 0.031 [4.158] (3.473) 11.6 0.032 [7.311] (6.059) 22.8
EP 0.006 [0.621] (0.556) 0.3 0.003 [0.469] (0.390) 0.3 0.002 [0.390] (0.322) 0.2 0.003 [0.814] (0.669) 0.8
DE 0.001 [0.118] (0.107) 0 0.003 [0.600] (0.504) 0.4 0.005 [1.300] (1.082) 1.4 0.004 [2.026] (1.677) 2.1
RVOL 0.025 [0.576] (0.546) 0.1 0.029 [0.876] (0.738) 0.4 0.027 [1.083] (0.902) 0.6 0.024 [1.244] (1.027) 0.8
BM 0.043 [1.088] (1.140) 0.5 0.061 [2.281] (1.960) 3 0.080 [4.438] (3.729) 9.1 0.081 [6.091] (5.031) 16.7
NTIS(-) 0.219 [1.068] (0.967) 1 0.263 [1.663] (1.387) 3.8 0.267 [2.091] (1.731) 6.9 0.209 [2.299] (1.891) 7.5
TBL(-) 0.096 [0.780] (0.798) 0.2 -0.105 [-1.186] (-1.005) 0.7 -0.127 [-1.936] (-1.610) 1.9 -0.175 [-3.262] (-2.685) 6.5
LTY(-) 0.235 [1.448] (1.511) 0.6 -0.223 [-1.868] (-1.591) 1.5 -0.225 [-2.419] (-2.017) 2.6 -0.206 [-2.513] (-2.068) 3.8
LTR 0.047 [0.530] (0.720) 0.1 -0.025 [-0.413] (-0.410) 0.1 0.022 [0.577] (0.590) 0.1 0.008 [0.307] (0.319) 0
TMS -0.029 [-0.136] (-0.131) 0 0.015 [0.091] (0.077) 0 0.080 [0.625] (0.518) 0.3 0.243 [2.663] (2.196) 4.5
DFY -0.760 [-0.687] (-0.619) 0.6 -0.405 [-0.487] (-0.406) 0.5 0.082 [0.156] (0.129) 0 0.409 [1.500] (1.239) 1.5
DFR 0.184 [0.686] (0.665) 0.6 0.106 [0.748] (0.720) 0.5 0.085 [0.778] (0.743) 0.6 0.067 [1.158] (1.21) 0.7
INFL(-) 1.117 [1.207] (1.124) 0.9 -0.440 [-0.629] (-0.554) 0.4 -0.863 [-1.895] (-1.679) 2.5 -0.627 [-2.360] (-2.119) 2.4

Panel B: Principal Components and SKEW Indexes Regression

h = 1 h = 3 h = 6 h = 12

Predictor Coef. t NW t HH R2(%) Coef. t NW t HH R2(%) Coef. t NW t HH R2(%) Coef. t NW t HH R2(%)

SKEW |PC -0.061 [-1.151] (-1.138) 1.3 -0.032 [-1.137] (-1.263) 5.7 -0.035 [-1.304] (-1.662) 5.8 -0.019 [-0.873] (-1.062) 5.6
SKEW+ |PC 0.107 [2.031] (1.718) 2 -0.009 [-0.433] (-0.481) 13.2 0.016 [0.858] (1.359) 13.3 -0.008 [-0.502] (-0.626) 13.2
SKEW− |PC 0.062 [1.685] (1.727) 1.4 -0.010 [-0.619] (-0.967) 20.2 0.006 [0.479] (1.005) 20.2 -0.012 [-1.102] (-2.158) 20.3

Panel C: Pairwise SKEW Indexes Regression

SKEW -0.050 [-1.014] (-0.996) -0.022 [-0.806] (-0.907) -0.002 [-0.118] (-0.134) -0.001 [-0.076] (-0.087)
SKEW+ 0.103 [1.817] (2.004) 1.3 0.033 [1.669] (1.710) 0.4 0.016 [0.828] (1.901) 0.1 0.017 [0.831] (1.808) 0.1

SKEW -0.223 [-1.503] (-1.456) -0.035 [-0.873] (-1.035) -0.008 [-0.303] (-0.401) -0.007 [-0.260] (-0.341)
SKEW− 0.200 [2.570] (2.553) 0.9 0.013 [0.424] (0.546) 0.2 0.006 [0.266] (0.376) 0 0.005 [0.237] (0.336) 0

SKEW+ 0.092 [1.633] (1.837) 0.038 [1.622] (1.958) 0.017 [0.916] (2.291) 0.018 [0.925] (2.254)
SKEW− 0.046 [1.031] (1.042) 1.3 -0.015 [-0.688] (-0.828) 0.4 -0.002 [-0.147] (-0.168) 0.1 -0.002 [-0.152] (-0.174) 0.1

Notes: The table presents the regression results for the bivariate predictive regression model estimated through equation 4.17 for the SKEW indexes and the 14 macroeconomic variables (Panel A). Panel B reports the estimation for the multivariate
regression model 4.18 in which only the SKEW indexes predictability is shown after controlling for the four principal components extracted from the 14 macroeconomic variables. In Panel C we report the multivariate predictive regression in
which the SKEW indexes are taken in pairs. The results are reported for monthly (h = 1), quarterly (h = 3), semi-annual (h = 6) and annual (h = 12) horizons. The log equity risk premia (in percent) are taken at monthly frequency
from 01-1996 to 12-2017. Regressions intercepts are not reported to save on space. Newey-West [t NW] and Hodrick t-stats (t HH) are reported in square brackets and parentheses, respectively, to account for heteroskedasticity and overlap in the
regressions. R2 (in percent) of every regression are reported in the last column for each horizon.
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Opposite results are found with relation to the other 14 macroeconomic predictors which increase

their predictability with time horizons. DP, DY, BM and LTY present significant predictive power at

the 3 months horizon. The same variables with the addition of NTIS, TBL and INFL show significance

for the semi-annual horizon. The same variables plus DE and TMS are able to predict next year equity

premium. For some of the macroeconomic variables, the increase in predictability power over longer

than monthly horizons is captured by the higher values for theirR2, in line with Boudoukh et al. (2008).

Our results are in line with previous studies showing that the log of dividend yield (DY), the treasury

bill rate (TBL), the long-term yield (LTY) and the term spread (TS) are among the variables performing

better in predicting equity returns (see Rapach and Zhou, 2013; Neely et al., 2014; Rapach et al., 2016).

Neely et al. (2014) found predictive power for macroeconomic variables as interest rates between 1951

and 2010, while almost no role is detected here. Dividend variables are also found strong predictors.

This is confirmed from our results as well as by Kelly and Jiang (2014) using the same set of variables.

However, we find that the dividend-price ratio is the only other predictor with performance comparable

to the decomposed SKEW indexes in the first month horizon (see Kelly and Jiang, 2014).

Overall, theR2 statistics are found to be small, exceptions being DP and DY when the time horizon

increases. This might be due to the fact that monthly stock returns contain unpredictable information

(see Neely et al., 2014), thus a monthly R2 close to 0.5% can actually be considered economically

significant for predicting equity risk premium (see Campbell and Thompson, 2007). Both SKEW+

and SKEW− exceed this benchmark at h = 1, whereas SKEW+ is 0.4% at h = 3.

Panel B of Table 4.6 reports the principal components predictive regression results estimated through

equation 4.18. The selected four principal components are used as a proxy for capturing the common

information enclosed in the 14 macroeconomic variables. We find that decomposed SKEW indexes

still show predictability power at one-month horizon. Thus, they contain additional or complementary

information not entirely captured by the principal components in the short term. The SKEW indexes

predictability ability dissolves after the first month also when we control for the principal components.

Lastly, Panel C shows the results of the predictive regression which includes the SKEW indexes in

pairs. Interestingly, the best combination in this exercise appears to be the ones including SKEW+ ,

thus, SKEW - SKEW+ and SKEW− - SKEW+ for the one-month horizon showing both a R2 equal

to 1.3%. SKEW− is found to be significant when next to the total SKEW implying that it contains

additional information not enclosed in SKEW . When SKEW− and SKEW+ are coupled, only the last

is found significant. In the pairwise regressions, we still find SKEW+ being the only index significant

at the three-months horizon11. We also estimate a predictive regression with the SKEW indexes added

all together finding a significant predictive ability for SKEW+ at h = 1 and the group of SKEW

predictors is able to explain 3.1% of the next month equity risk premium.

11We have performed bivariate as well as multivariate predictive regressions for horizons longer than the annual one, however
the SKEW indexes have shown no predictive power in the long-term.
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With regards to the signs of the coefficients, we find that future levels of risk premium might be

increased by past increase in the SKEW+ . There might be a market sentiment and exuberance behind

this relationship as we have shown in Section 4.4. We find a negative relationship between SKEW and

the future equity premium in line with the findings in Amaya et al. (2015). Mixed and time-varying

results are found for the relationship between equity market and SKEW− . The coefficients’ signs are,

overall, positive when SKEW− is significantly predicting future equity premium. This relationship

builds on the interpretation that higher tail risk should command higher risk premia (see Almeida

et al., 2017). The relationship between SKEW− and future risk premium is negative mainly at longer

horizons. The magnitude of the SKEW+ coefficients is found higher compared to the others.

Overall, the decomposed SKEW indexes predict well the future S&P 500 equity premium at one-

month horizon in the bivariate regression. Their predictability in the short run is found to be better than

most of the individual macroeconomic variables. The options based SKEW indexes are better pre-

dictors at short term horizons with decreasing predictive power when the time horizon increases (see

Bakshi et al., 2011). Our results echo the conclusions of Amaya et al. (2015) that realized skewness

contains important information on predicting future stock returns. In our case, decomposed SKEW in-

dexes being implied measures, predict well the short-term future equity premium, losing their predictive

ability after the first month.

As illustrated in Table 4.6, variables tracking dividend yields and dividend payout, namely, DP

and DY, are among the most important predictors for the equity market premium (see Bollerslev et al.,

2015). Thus, here, we briefly check whether or not the SKEW indexes might still improve the predict-

ing models’ performance when added next to dividend proxies. The results of this robustness exercise

are reported in Table 4.7 only for the first-month horizon.

Table 4.7: SKEW Indexes and Dividend Variables Predictive Regression

Panel A: SKEW Indexes, Dividend price ratio and Dividend yield

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t HH R2(%)

SKEW -0.073 [-1.338] SKEW+ 0.124 [2.082] SKEW− 0.049 [1.010]
DP -0.075 [-0.865] DP -0.083 [-0.954] DP -0.049 [-0.537]
DY 0.104 [1.288] 3 DY 0.111 [1.686] 3.9 DY 0.078 [0.911] 2.8

Panel B: SKEW Indexes and OptionMetrics Dividend yield

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t HH R2(%)

SKEW -0.076 [-1.355] SKEW+ 0.105 [1.743] SKEW− 0.057 [1.232]
DYOP 0.012 [2.086] 2.7 DYOP 0.012 [2.071] 3.2 DYOP 0.012 [2.050] 2.6

Notes: The table presents the regression results for the multivariate predictive regression model in which we keep the decomposed SKEW indexes and only
DP and DY among the 14 macroeconomic variables The results are reported only for the first month (h = 1). The log equity risk premia (in percent) are taken
at monthly frequency from 01-1996 to 12-2017. Regressions intercepts are not reported to save on space. Newey-West (t NW) are reported in square brackets.
R2 (in percent) of every regression are reported in the last column for each horizon.

In Panel A of Table 4.7, we find that SKEW+ is still able to predict future levels of equity risk

premium at h = 1. SKEW and SKEW− are found to have no predictive power in these models.

Interestingly, even thought DY is found significant in Table 4.6 for h = 1, it loses its statistical sig-
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nificance, according to NW t-statistics, when next to SKEW and SKEW− 12. In Panel B, results for

SKEW+ appear robust when we replace DP and DY with the dividend yield variable collected from

OptionMetrics (DYOP).

4.5.3 SKEW Indexes Relation to Other Predictors

In this section, we investigate the robustness of our findings when other predictors, more related to the

options market and financial market risk, namely, implied volatility and variance risk premium. These

are found to be important in the context of Brunnermeier et al. (2008) and Kilic and Shaliastovich

(2018). According to the latter, variance risk premium is considered to disclose useful information for

return predictability when its upside component is taken into account. Thus, in their spirit, we also

study the upside and downside components of these risk measures, thus allowing us to perform a cross-

sign comparison with our decomposed SKEW indexes. The VIX index is decomposed as described in

Section 4.3.1 and in Chapter 3. The decomposed variance risk premia are the Kilic and Shaliastovich

(2018) measures as described in Section 4.3.1. They are considered at their first difference. The aim

is to further check whether or not the implied skewness indexes are still able to provide additional

information not enclosed in the VIX index, risk premium and their components when it comes to

future equity risk premium predictability. The results are reported in Table 4.8 for the implied volatility

indexes and in Table 4.9 for the variance risk premia. Results are reported only with regards to the first

month which we have shown to be the horizon in which the SKEW indexes are more informative.

Table 4.8: Decomposed SKEW and VIX Indexes Predictive Regression

Panel A: Decomposed SKEW and VIX Indexes Predictive Regression

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%)

SKEW -0.055 [-1.065] SKEW+ 0.113 [1.801] SKEW− 0.064 [1.408]
VIX 0.039 [0.284] VIX -0.057 [-0.404] VIX 0.009 [0.073]
VIX+ -0.014 [-0.242] VIX+ 0.019 [0.335] VIX+ -0.001 [-0.023]
VIX− -0.026 [-0.301] 0.3 VIX− 0.037 [0.412] 1.1 VIX− -0.008 [-0.101] 0.6

Panel B: SKEW and VIX Indexes Corresponding Signs Predictive Regression

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%)

SKEW -0.056 [-1.094] SKEW+ 0.107 [1.829] SKEW− 0.065 [1.439]
VIX -0.007 [-0.066] 0.3 VIX+ -0.012 [-0.117] 1.1 VIX− -0.001 [-0.011] 0.6

Notes: The table presents the regression results for the multivariate regression model in which decomposed SKEW indexes, namely, SKEW , SKEW+

and SKEW− and decomposed VIX indexes, namely, VIX , VIX+ and VIX− are compared. Panel A reports the estimation for the multivariate regression
model between each one of the three SKEW indexes controlling for the decomposed VIX indexes. Panel B reports the multivariate predictive regression in
which the SKEW indexes and VIX indexes are taken in pairs according to their signs, namely, total SKEW and total VIX , positive SKEW+ and upside
VIX+ and negative SKEW− and VIX− . The results are reported only for monthly (h = 1) horizon. The log equity risk premia (in percent) are taken at
monthly frequency from 01-1996 to 12-2017. Regressions intercepts are not reported to save on space. Newey-West (t NW) are reported in square brackets.
R2 (in percent) of are reported in the last column for each regression.

Table 4.8 shows that SKEW+ predicts the next month S&P 500 equity risk premium also when

aggregate and decomposed VIX indexes are added in the same predictive regression. Interestingly,

12Hodrick (1992) t-statistics are not reported to save on space, however they lead to the same findings. The predictability power
of SKEW indexes does not last after the first month, whereas dividend variables confirm their increasing predictive power at
longer horizons. The models including SKEW indexes and the dividend-price ratio achieve impressive levels of predictability
in terms of R2 at longer horizons in line with Kelly and Jiang (2014).
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the implied volatility indexes are not found to be significant in predicting future levels of equity risk

premium (see Bekaert and Hoerova, 2014), neither in the bivariate regression nor in the multivariate

with SKEW indexes. We also show the predictability power of the SKEW indexes compared to

the decomposed variance risk premia by Kilic and Shaliastovich (2018) in Table 4.9. We control for

the aggregate VRP and the decomposed VRP+ and VRP− in different regressions due to multi-

collinearity issues. We find that the informative role of VRP in predicting equity returns is in line

with previous studies on the relationship between equity returns and risk premium (e.g. Bekaert and

Hoerova, 2014; Kilic and Shaliastovich, 2018). In Panel C, we also find superior ability of the VRP+

in explaining future excess market returns when compared to VRP− (see Feunou et al., 2017)13. We

still show how decomposed SKEW indexes are still informative in predicting future equity premium

even after we control for variance risk premia. We observe a prevalent role of SKEW− next to the

variance risk premia observing higher R2 when the index is enclosed in the predictive model. Hence,

the negative SKEW index contains tail risk information useful to predict future stock returns which

are not incorporated in the VRP indexes. SKEW+ is still significantly predicting future equity risk

premia, but it loses part of its predictive ability when next to VRP+ meaning the two indexes contain

a similar set of information.

Table 4.9: Decomposed SKEW and VRP Indexes Predictive Regression

Panel A: Decomposed SKEW and VRP Indexes Predictive Regression

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%)

SKEW -0.058 [-1.016] SKEW+ 0.082 [1.710] SKEW− 0.082 [1.646]
VRP+ -0.001 [-0.040] VRP+ -0.001 [-0.048] VRP+ -0.001 [-0.064]
VRP− -0.005 [-1.185] 4.6 VRP− -0.006 [-1.309] 5.1 VRP− -0.006 [-1.262] 5.1

Panel B: Total SKEW and Total VRP Index Predictive Regression

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%)

SKEW -0.058 [-1.005] SKEW+ 0.092 [1.394] SKEW− 0.080 [1.674]
VRP -0.003 [-3.695] 4.3 VRP -0.003 [-3.794] 4.8 VRP -0.004 [-3.677] 4.9

Panel C: SKEW and VRP Indexes Corresponding Signs Predictive Regression

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%)

SKEW -0.058 [-1.005] SKEW+ 0.093 [1.416] SKEW− 0.082 [1.647]
VRP -0.003 [-3.695] 4.3 VRP+ -0.005 [-3.179] 4.1 VRP− -0.006 [-3.966] 5.1

Notes: The table presents the regression results for the multivariate regression model in which decomposed SKEW indexes, namely, SKEW , SKEW+

and SKEW− and decomposed variance risk premium indexes, namely, VRP , VRP+ , VRP− (see Kilic and Shaliastovich, 2018), are compared. Panel
A reports the results of the estimated multivariate regression model between the decomposed SKEW indexes and the decomposed VRP indexes. Panel B
reports the results of the estimated multivariate regression model between the decomposed SKEW indexes and the total VRP . We control for the decomposed
VRP and the total VRP in different multivariate regression due to multi-collinearity issues. Panel C reports the multivariate predictive regression in which the
SKEW indexes and VRP indexes are taken in pairs according to their signs, namely, total SKEW and total VRP , SKEW+ and VRP+ and SKEW−

and VRP− . The results are reported only for monthly (h = 1) horizon. The log equity risk premia (in percent) are taken at monthly frequency from 01-1996
to 08-2014. Regressions intercepts are not reported to save on space. Newey-West (t NW) are reported in square brackets. R2 (in percent) of are reported in
the last column for each regression.

Empirical evidence has also shown the important role of implied correlation and correlation risk

premium in predicting future market returns (see Driessen et al., 2009; Buss and Vilkov, 2012; ?),

with correlation measures predictability significant for horizons up to 1 year. We test for predictability

power of the decomposed SKEW indexes when controlling for correlation measures. The results are

13Indeed, the VRP+ and VRP− in Feunou et al. (2017) correspond to the VRP− and VRP+ , respectively, in Kilic and
Shaliastovich (2018) since they are computed in the opposite way.
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reported in Table 4.10. IC and CRP predict well future market returns, whereas the predictive power of

the realized correlation is weak. However, even after controlling for the correlation measures as well

as for CRP, the decomposed SKEW measures still contain significant predictive information.

Table 4.10: SKEW Indexes and CRP Predictive Regression

Panel A: SKEW Indexes and Correlation Risk Premium

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%)

SKEW -0.051 [-1.026] SKEW+ 0.102 [1.950] SKEW− 0.075 [1.784]
CRP 0.062 [2.090] 2.7 CRP 0.062 [2.069] 3.5 CRP 0.065 [2.175] 3.2

Panel B: SKEW Indexes and Implied Correlation

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%)

SKEW -0.050 [-1.011] SKEW+ 0.108 [1.971] SKEW− 0.078 [1.747]
IC 0.056 [2.324] 2.6 IC 0.050 [2.304] 3.4 IC 0.053 [2.489] 3.2

Panel C: SKEW Indexes and Realized Correlation

Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%) Predictor Coef. t NW R2(%)

SKEW -0.055 [-1.095] SKEW+ 0.106 [2.041] SKEW− 0.066 [1.667]
RC 0.007 [0.301] 0.4 RC 0.007 [0.286] 1.2 RC 0.008 [0.329] 0.8

Notes: The table presents the regression results for the multivariate predictive regression model in which decomposed SKEW indexes, namely, SKEW ,
SKEW+ and SKEW− and the correlation risk premium (CRP) are compared. The results are reported only for the first month (h = 1). The log equity
risk premia (in percent) are taken at monthly frequency from 01-1996 to 12-2017. Regressions intercepts are not reported to save on space. Newey-West (t
NW) are reported in square brackets. R2 (in percent) of every regression are reported in the last column.

As a robustness check we have also studied the predictability of other tail risk measures as illus-

trated in subsection 4.3.2 next to our decomposed SKEW indexes14. The bivariate analysis shows that

SKEW+ and SKEW− are still significant in predicting the next month S&P 500 log equity premium.

Kelly and Jiang (2014) TAIL index and Hellinger tail risk by Almeida et al. (2017) also contain infor-

mation useful to predict the next month equity premium. The bivariate predictive regression estimation

shows that SKEW+ and SKEW− are able to significantly predict the next month log equity premium

with Newey t-statistic of 1.8 and 1.69, respectively and R2 (in percentage) equal to 1.1% and 0.9%,

respectively. Among the other measures which we found significant in predicting future levels of eq-

uity premium, TAIL shows a t-statistic of 2.56 with R2 equal to 3.1% and Hellinger shows t-statistic

of 1.67 and R2 equal to 1.8%. No significant role for CATFIN, JV, RJV, LJV and CRASH index is

found instead. This results are found to be in line with Almeida et al. (2017). When we control for

the other tail risk measures in a multivariate predictive regression, we still find SKEW+ and SKEW−

containing additional information useful to predict future levels of equity risk premium. The multivari-

ate regression carries a total R2 equal to 7.5%. To conclude this section, we observe that the presence

of additional predictors tracking financial market risk and volatility does not appear to diminish the

predictive ability of our decomposed SKEW indexes.

14The time period is the common period available to all the selected tail risk measures, namely, from 01:1996 to 04:2014 at
monthly frequency, due to data availability.

119



4.5.4 Out-of-sample Predictive Analysis

As a further robustness check, we test the out-of-sample predictive power of the SKEW indexes and of

the 14 macroeconomic variables. We compute the equity risk premium predictive regression forecast

as:

r̂t:t+h = α̂t + β̂tχt, (4.22)

where α̂t and β̂t are the OLS estimates of α and β, respectively, from the beginning of the sample until

month t. Different approaches can be used when it comes to the sample split selection (see Goyal and

Welch, 2008; Hansen and Timmermann, 2012). In this chapter, we follow the approach of Rapach et al.

(2010) in which multiple out-of-sample periods are considered. We show the forecasting performance

of our models for each sample selection. The following sample splits are selected for the in-sample

period leaving the rest as out-of-sample evaluation forecast period: 1996-1999, 1996-2007 and 1996-

201315. The natural forecast benchmark is the average excess return from the beginning of the sample

through month t (see Campbell and Thompson, 2007).

r̂HAt+1 =
1

t

t∑
i=1

ri. (4.23)

We evaluate the out-of-sample forecast performance of our predictors based on the Campbell and

Thompson (2007) R2
OS , namely, R2

OS = 1 − (MSFEi/MSFE0) which measures the reduction in

mean squared forecast errors (MSFE) for the OLS predictive regression against the historical mean

benchmark forecast over the forecast evaluation period. We compare the two mean squared forecast

errors where, MSFEi is the forecast error of the predictive regression over the forecast evaluation

period and MSFE0 is the forecast error of the historical average benchmark forecast. Thus, the out-

of-sample R2 measures the reduction in MSFE for the predictive regression forecast compared to the

historical average. When R2
OS > 0 means that the predictive regression forecast is more accurate than

the historical average in terms of forecast errors, meaning MSFEi < MSFE0. In addition, to test

whether or not the predictive regression forecast produces a significant improvement in the MSFE, we

report the Clark and West (2007) MSFE-adjusted statistic. It tests the null hypothesis that the historical

average MSFE is less than or equal to the predictive regression MSFE against the alternative hypothesis

that the historical average MSFE is greater than the predictive regression MSFE which correspond to

H0 : R2
OS ≤ 0 against HA : R2

OS > 0.

Table 4.11 shows the out-of-sample predictive results with relation to different choice of in-sample

and out-of-sample forecasting periods. The selected in-sample periods are reported at the top of each

15Since our total time period is 22-years long, the first sample split results in a in-sample period of only few observation. In
order to expand our in-sample period as well as keeping the out-of-sample estimation period relatively long, we select a second
in-sample forecast window length from January 1996 to December 2007. Lastly, we sacrifice the length of the out-of-sample
period for a more reasonable and precise estimation in-sample by increasing the number of in-sample observation from January
1996 to December 2013 leaving a evaluation out-of-sample period of 4 years.
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multi-column. Panel A reports the out-of-sample bivariate predictive regression forecast, Panel B the

out-of-sample results for the principal components predictive regression forecast as follows:

r̂t:t+h = α̂t + β̂SKEW,t ˆSKEW
j

t +

4∑
k=1

β̂PC,t,kF̂1:t,k,t, (4.24)

where F̂1:t,k,t are the principal components extracted from the 14 macroeconomic variables with k ∈

1, 2, 3, 4 through time t and with β̂PC,t,k being the OLS coefficients estimated regressing the historical

average on the 4 principal components and a constant. ˆSKEW
j

t are the SKEW indexes with j =

Tot,+,− and with β̂SKEW,t estimated through OLS as well. Panel C and Panel D report the out-

of-sample forecast results of the predictive regression with SKEW pairwise indexes and all SKEW

indexes together, respectively.

The results from Table 4.11 show that the out-of-sample forecast performance depends on how our

data set is split (see Hansen and Timmermann, 2012). In Panel A, the bivariate predictive regression

forecast based on individual macroeconomic variables and SKEW indexes perform poorly when only

few years are selected as in-sample period. Only DY shows a positive R2
OS . When the R2

OS is found to

be positive it means that the predictive regression forecast outperforms the historical average in terms

of MSFE, viceversa when negative. SKEW indexes are not able to outperform the historical average

benchmark in the first 1996-1999 in-sample period choice. These results echo Goyal and Welch (2008)

who stated that, most of the time, individual variables fail to outperform the historical average forecast

which can be considered as a rigorous out-of-sample benchmark.

In the first sample selection, all the three SKEW indexes show MSFEs less than the ones of the

historical average, however showing negative R2
OS

16. When 1996 - 2007 in-sample period is selected,

we still find limited out-of-sample predictive ability for the majority of the individual variables, however

SKEW+ shows a positive R2
OS and carries a lower MSFE than the historical average forecast. When

the out-of-sample period is chosen to be a small proportion than the in-sample period, the individual

variables forecasting performance improves. Several are, in this case, the individual variable showing

positiveR2
OS . SKEW+ shows a positiveR2

OS as well as a significant MSFE-adjusted statistic. Among

the macroeconomic variables, significant results are found with relation to DP, DY, EP, BM and DFY.

Difference in results in the forecast evaluation may be dictated by the number of observations in our

time period and by the occurrence of the global financial crisis in the midst of it.

16Similar results are found in Neely et al. (2014) with respect to TBL, LTY and TMS. According to them, these results can be
possible when comparing nested model forecasts (Clark and West, 2007; McCracken, 2007).
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Table 4.11: Out-of-Sample Predictive Regression Results

Panel A: Bivariate Predictive Regression

In-Sample Window: 1996-1999 In-Sample Window: 1996-2007 In-Sample Window: 1996-2013

Predictor MSFE R2
OS(%) MSFE adj. p value MSFE R2

OS(%) MSFE adj. p value MSFE R2
OS(%) MSFE adj. p value

SKEW 18.109 -0.421 0.260 0.397 18.412 -0.098 0.588 0.277 7.905 -3.308 -0.254 0.600
SKEW+ 18.109 -0.310 1.027 0.152 18.287 0.576 0.984 0.162 7.428 2.919 1.324 0.098
SKEW− 18.229 -0.976 0.741 0.229 18.597 -1.107 -0.071 0.528 7.763 -1.452 0.114 0.454

DP 18.134 -0.449 0.773 0.219 19.341 -5.148 -1.027 0.84 7.225 5.584 1.924 0.027
DY 17.974 0.434 1.158 0.123 19.001 -3.236 -0.466 0.679 7.246 5.298 1.832 0.033
EP 18.534 -2.667 0.840 0.200 19.743 -7.337 -0.433 0.667 7.511 1.832 2.136 0.016
DE 19.253 -6.649 -0.022 0.508 19.683 -7.010 0.172 0.431 7.664 -0.159 -1.281 0.899
RVOL 18.196 -0.795 -1.010 0.843 18.483 -0.485 -0.245 0.597 8.046 -5.156 -2.208 0.986
BM 18.521 -2.592 0.145 0.442 18.586 -1.047 -0.830 0.796 7.406 3.207 1.719 0.042
NTIS(-) 18.361 -1.706 0.744 0.228 18.549 -0.842 0.668 0.251 8.222 -7.451 -0.867 0.807
TBL(-) 18.761 -3.924 -0.616 0.731 18.560 -0.903 -0.212 0.584 7.523 1.673 1.270 0.101
LTY(-) 18.303 -1.385 -0.088 0.535 18.493 -0.538 0.197 0.421 7.361 3.762 1.559 0.059
LTR 18.319 -1.472 -1.217 0.888 18.641 -1.342 -1.472 0.929 7.605 0.608 0.735 0.231
TMS 18.470 -2.311 -0.555 0.710 18.502 -0.589 -0.605 0.727 7.665 -0.178 -1.346 0.910
DFY 18.698 -3.573 0.775 0.219 19.218 -4.479 0.775 0.219 7.470 2.373 1.641 0.050
DFR 18.883 -4.601 -1.083 0.860 19.363 -5.268 -0.792 0.786 8.016 -4.792 -1.857 0.968
INFL(-) 18.278 -1.247 -0.049 0.519 18.358 0.195 0.571 0.283 7.694 -0.559 0.297 0.382

Panel B: SKEW Indexes and Principal Components Predictive Regression

SKEW |PC 20.989 -16.266 -0.225 0.589 20.763 -12.881 -0.179 0.571 7.886 -3.065 0.433 0.332
SKEW+ |PC 21.159 -17.204 0.233 0.407 20.710 -12.593 -0.082 0.532 7.385 3.476 1.438 0.075
SKEW− |PC 21.092 -16.831 -0.006 0.502 21.098 -14.700 -0.238 0.594 7.624 0.363 0.889 0.186

Panel C: SKEW Indexes Pairwise Predictive Regression

SKEW - SKEW+ 18.21 -0.914 0.937 0.174 18.30 0.466 1.066 0.143 7.61 0.443 0.756 0.224
SKEW - SKEW− 17.88 0.919 1.979 0.023 18.226 0.910 1.361 0.086 8.21 -1.324 0.017 0.495
SKEW+ - SKEW− 18.29 -1.354 0.993 0.160 18.47 -0.434 0.487 0.312 7.52 1.650 1.270 0.092

Panel D: All SKEW Indexes Predictive Regression

All SKEW 18.11 -0.369 1.718 0.042 18.24 0.796 1.277 0.100 8.14 -6.432 0.047 0.480

Notes: The table presents the S&P 500 risk premium out-of-sample predictive regression results for both the bivariate predictive regression and also multivariate predictive regressions. Panel A presents the
results for the bivariate out-of-sample predictive regression estimated through equation 4.22 for the all 14 macroeconomic variables and the three SKEW indexes. Panel B presents the results for the multivariate
out-of-sample predictive regression estimated through equation 4.24 in which the four principal components are extracted from the 14 macroeconomic variables and added as control variables in the same predictive
model next to one of the three SKEW indexes. Only the SKEW indexes out-of-sample predictability is shown after controlling for the four principal components. Panel C presents the out-of-sample multivariate
predictive regression in which the SKEW indexes are taken in pairs. Panel D presents the results of the out-of-sample multivariate predictive regression with all three the SKEW indexes. The historical average
(HA) forecast is computed through equation 4.23. The out-of-sample results are presented with relation to three in-sample period horizon choice, namely, 1996-1999, 1996-2007 and 1996-2013 for a total number
of observation accounting for 48, 132 and 204, respectively. MSFE is the mean squared forecast error, R2

OS (see Campbell and Thompson, 2007) measures the reduction in MSFE with respect to the historical
average forecast benchmark shown in the first column of every selected in-sample period horizon. The Clark and West (2007) MSFE-adjusted statistic tests the null hypothesis that the historical average (HA)
forecast MSFE is ≤ than the competing forecast MSFE against the one-sided alternative hypothesis that the historical average (HA) forecast MSFE is > greater than the competing forecast MSFE. P-values are
shown in the last column of each forecast in-sample period.
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In Panel B of Table 4.11, the only combination of variables that show positive R2
OS and MSFE

significantly less than the historical average is SKEW+ after controlling for the four principal compo-

nents. This result is found only in correspondence of the last in-sample period choice, namely 1996-

2013. The other results show poor out-of-sample forecast performance. In Panel C, we present the

out-of-sample results when SKEW indexes are taken in pair.

Interestingly, the SKEW -SKEW− combination shows positive R2
OS in the 1996-1999 and 1996-

2007 in-sample selected period with MSFE significantly less than the historical average MSFE ac-

cording to the Clark and West (2007) MSFE-adjusted statistic. Also SKEW -SKEW+ together show

positive R2
OS in the last two in-sample periods. The SKEW+ - SKEW− combination shows positive

R2
OS and MSFE significantly less than the historical average MSFE only in the 1996-2013 in-sample

window. In all cases, the MSFEs for these combinations are found higher than the historical average

MSFE.

Overall, we find that the choice of window length leads to different results. When the sample

split for the out-of-sample forecast evaluation is chosen from 2013 to 2017, with the crisis included

in the in-sample estimation period, we detect better out-of-sample performance of our models. Poor

performance is found when the in-sample period is selected as a small proportion of the out-of-sample

in the bivariate case. In this case, only few variables show a positive R2
OS and the decomposed SKEW

indexes appear to perform as well as the majority of the individual macroeconomic variables. When

the in-sample period increases in proportion to the out-of-sample, SKEW+ show better out-of-sample

forecast result in terms of MSFE-adjusted statistic. The out-of-sample robustness check further shows

that SKEW+ appears to perform as well as, or better, than the individual macroeconomic variables.

As a robustness exercise, in this subsection we compare the out-of-sample predictability power

of the selected models as obtained through Clark and West (2007) MSFE-adjusted statistic with a

second statistical test based on the Diebold and Mariano (2002) (DM) test. In order to compare the

forecast models which are nested, Clark and West (2007) developed the MSFE-adjusted statistic by

modifying the familiar Diebold and Mariano (1995) statistic as to have an approximately standard

normal asymptotic distribution when comparing forecasts from nested models (e.g. Rapach et al., 2010;

Neely et al., 2014). According to Neely et al. (2014), comparing a predictive regression forecast to the

historical average entails comparing nested models, because the predictive regression model reduces to

the constant expected equity risk premium model under the null hypothesis.

In other words, the popular Diebold and Mariano (1995) statistic for comparing predictive accuracy

has a nonstandard distribution when comparing forecasts from nested models (e.g. McCracken, 2007;

Rapach et al., 2010). Clark and West (2007) modify this statistic so that it has an approximately standard

distribution when comparing forecasts from nested models.

Therefore, we compare nested models by using the Clark and West (2007) test, whereas the Diebold

123



and Mariano (1995) test is computed for not nested models in which the three SKEW indexes are

tested17. We apply the test in order to compare the predictive accuracy of the three different SKEW

indexes in different models. The test is not used when the forecasting models are nested.

When the three SKEW indexes are input in the forecast model next to the four principal compo-

nents, we confirm the superiority of the model with SKEW+ . For the Diebold and Mariano (2002)

test, we get values equal to 2.11, 1.83, 1.90 for the models with SKEW , SKEW+ and SKEW− ,

respectively. We confirm, once more, the greater predictive accuracy of the decomposed SKEW in

terms of equity excess returns also when we control for the four principal components.

4.5.5 The SKEW Indexes Predictability of International Markets

Inspired by Bollerslev et al. (2015), Almeida et al. (2017) and Andersen et al. (2019), in this section we

perform a predicting exercise looking at the relationship between the SKEW indexes and international

stock market premium. The aim is to further test the usefulness of the the SKEW indexes in predicting

stock market index premia in a more global framework, for stock indexes which differ from the S&P

500 . The six selected stock market indexes are three U.S. based and three international, namely, Dow

Jones Industrial Average (DJIA), Wilshire 5000 (WI), Nasdaq Composite Index (NAC) for the U.S.

and Nikkei 225 (NIK) for Japan, EUROSTOXX 50 (SXE) for Europe and Hang Seng Index (HSI) for

China. Their prices and corresponding risk free rates are collected from Bloomberg. The equity risk

premium (log) is computed as in Section 4.5.1 as the difference between the log stock market returns

on the index and the log return on a risk-free bill. The U.S. risk-free t-bill rate is used for computing

the Dow Jones, Wilshire 5000 and Nasdaq risk premia, while specific country 1M risk-free rates are

collected from Bloomber for the other three stock market indexes. Specifically, Japanese LIBOR -

ICE LIBOR JPY 1M is used for Nikkei 225, LIBOR for the EUROSTOXX 50 and CHIBOR 1M for

the Hang Seng Index. The results of this predictive exercise are reported only with respect to the first

month, h = 118. The following bivariate regression is estimated for the international stock indexes:

rt,t+1,q = αi,j + βi,jXi,t,j + εt,t+1,q (4.25)

where rt,t+1,q is the stock market excess return with q indexed for DJIA, WI, NAC, NIK, SXE or HSI,

j is one of the predictors including the SKEW indexes. The results are reported in Table 4.12 and 4.13

for the bivariate predictive regressions.
17Diebold and Yilmaz (2015) affirmed that however the fact that MSE(SKEW ) < MSE(SKEW+)in a particular

sample realization does not mean that the model including SKEW is necessarily truly better than the model including SKEW+

in population. Whereas, the forecasting literature is filled with such horse races, with associated declarations of superiority based
on outcomes, however in any particular sample realization t = 1, ..., T or forecast horizon, one or the other models must win, so
the question arises in any particular sample as to whether the first model is truly superior or merely lucky. Diebold and Mariano
(2002) proposed a test for answering that question, allowing one to assess the significance of apparent predictive superiority

18Results for other horizons (h = 3, h = 6, h = 12) show a similar picture as found in subsection 4.5.2 for the S&P 500
index. The SKEW indexes are not able to predict longer term horizons risk premia showing decreasing t-statistics andR2 when
the returns horizon increases.
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We find evidence that SKEW+ is able to predict two of the U.S. stock market indexes risk premia,

namely, Wilshire 5000 and Nasdaq, with R2 close to 1%. SKEW− predicts well the next month

Nasdaq risk premium among the U.S. based stock indexes (R2 equal to 0.7%), while no predictive role

is found for SKEW confirming the results of Table 4.6. For the other stock market indexes, we find

poor predictive ability for SKEW indexes, only exception being SKEW− in significantly predicting

the next month EUROSTOXX50 risk premium with R2 equal to 1.4%. Among the macroeconomic

variables, we detect a poor predictability power in the short term, especially with regards to the U.S.

stock indexes. Term structure related variables predict well the NIKKEI 225 future risk premia.

Panel A of Table 4.14 shows the predictive results of the principal components regression estimated

as in equation 4.18. Panel B of Table 4.14 shows the pairwise predictive regression for the SKEW

indexes as estimated in equation from 4.19 to 4.21.

The excess stock market return, rt,t+1,q , is now indexed with q one among DJIA, WI, NAC, NIK,

SXE or HSI and only at monthly horizon (h = 1). From Panel A, we observe how SKEW+ confirms its

predictive ability with regards to the U.S. based stock market indexes, namely, Dow Jones and Wilshire

5000, also when we control for the four principal components. SKEW− confirms its significant predic-

tive power for the Eurozone stock market index future risk premium. When we estimate the pairwise

regressions, we still find a predominant role for the SKEW+ in predicting Wilshire 5000 and Nas-

daq risk premia. Interestingly, SKEW and SKEW− show significant predictability for the U.S. based

stock market indexes only when coupled together. SKEW− appears to be the only one able to carry

information for forecasting the Nikkei 225 next month equity premium. Noticeable, is the strong role

of SKEW− in relation to the European stock market index, EUROSTOXX 50, with R2 of 1.5% and

3.7% when coupled with SKEW+ and SKEW , respectively. We can conclude that SKEW+ keeps its

predictive ability for the U.S. stock market indexes also when we control for the principal components.

Same conclusion applies for SKEW− in relation to EUROSTOXX 50 future risk premium. Similar

results are found for the out-of-sample analysis, however SKEW− is found carrying a positive R2
OS

and MSFE significantly less than the historical average for all the selected in-sample periods and also

when we control for principal components.
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Table 4.12: In-Sample Predictive Regression Results Other U.S. Stock Indexes

Bivariate Predictive Regression

DOW JONES WILSHIRE 5000 NASDAQ

Predictor Coef. t NW t HH R2(%) Coef. t NW t HH R2(%) Coef. t NW t HH R2(%)

SKEW -0.059 [-1.187] (-1.142) 0.3 -0.067 [-1.268] (-1.248) 0.4 -0.064 [-0.768] (-0.801) 0.2
SKEW+ 0.078 [1.382] (1.481) 0.6 0.102 [1.662] (1.864) 0.9 0.173 [1.674] (1.960) 1.1
SKEW− 0.044 [0.996] (0.974) 0.3 0.060 [1.273] (1.286) 0.4 0.135 [1.685] (1.798) 0.7

DP 0.019 [1.065] (1.004) 0.9 0.025 [1.244] (1.150) 1.3 0.051 [1.591] (1.495) 2.4
DY 0.022 [1.323] (1.271) 1.2 0.029 [1.629] (1.534) 1.9 0.055 [1.777] (1.710) 2.8
EP 0.006 [0.624] (0.564) 0.3 0.006 [0.573] (0.513) 0.3 0.006 [0.512] (0.464) 0.1
DE 0.001 [0.038] (0.034) 0 0.001 [0.103] (0.093) 0 0.006 [0.691] (0.637) 0.2
RVOL 0.016 [0.376] (0.358) 0 0.027 [0.582] (0.549) 0.1 0.041 [0.657] (0.634) 0.1
BM 0.030 [0.773] (0.815) 0.3 0.043 [1.026] (1.051) 0.5 0.095 [1.228] (1.208) 1
NTIS(-) 0.162 [0.840] (0.774) 0.5 0.220 [0.968] (0.869) 0.9 0.251 [0.912] (0.833) 0.5
TBL(-) 0.065 [0.559] (0.587) 0.1 0.119 [0.899] (0.900) 0.3 0.298 [1.221] (1.190) 0.8
LTY(-) 0.227 [1.411] (1.483) 0.6 0.256 [1.504] (1.528) 0.7 0.426 [1.442] (1.407) 0.8
LTR 0.018 [0.191] (0.252) 0 0.037 [0.411] (0.558) 0.1 0.002 [0.023] (0.026) 0
TMS 0.104 [0.518] (0.516) 0.1 0.008 [0.037] (0.035) 0 0.292 [0.714] (0.685) 0.3
DFY 0.915 [0.851] (0.774) 0.8 -0.780 [-0.670] (-0.603) 0.5 -0.297 [-0.240] (-0.218) 0
DFR 0.173 [0.721] (0.700) 0.5 0.242 [0.801] (0.773) 0.9 0.189 [0.541] (0.526) 0.2
INFL(-) 1.209 [1.206] (1.095) 0.01 1.032 [1.046] (0.982) 0.7 0.356 [0.307] (0.306) 0

Notes: The table presents the regression results for the bivariate predictive regression model estimated through equation 4.25 for the SKEW indexes and the 14 macroeconomic
variables with regards to six stock market index worldwide. The one shown in this table are the three U.S. based: Dow Jones Industrial Average (DJIA), Wilshire 5000 (WI) and Nasdaq
Composite Index (NAC). The log equity risk premia (in percent) are taken at monthly frequency from 01-1996 to 12-2017. Regressions intercepts are not reported to save on space.
The results are reported only for monthly (h = 1) horizon. Newey-West [t NW] and Hodrick t-stats (t HH) are reported in square brackets and parentheses, respectively, to account for
heteroskedasticity and autocorrelation in the regressions. R2 (in percent) of every regression are reported in the last column for each regression.
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Table 4.13: In-Sample Predictive Regression Results International Stock Indexes

Bivariate Predictive Regression

NIKKEI 225 EUROSTOXX 50 HSI

Predictor Coef. t NW t HH R2(%) Coef. t NW t HH R2(%) Coef. t NW t HH R2(%)

SKEW 0.082 [1.087] (1.086) 0.4 -0.030 [-0.429] (-0.440) 0.1 -0.042 [-0.562] (-0.559) 0.1
SKEW+ -0.077 [-0.991] (-1.027) 0.3 0.078 [1.098] (1.231) 0.3 0.012 [0.150] (0.171) 0
SKEW− 0.090 [1.355] (1.365) 0.6 0.133 [2.109] (2.106) 1.4 -0.011 [-0.170] (-0.177) 0

DP 0.022 [1.063] (1.002) 0.7 0.011 [0.549] (0.505) 0.2 0.029 [1.140] (1.059) 0.7
DY 0.029 [1.473] (1.393) 1.2 0.019 [0.949] (0.878) 0.5 0.029 [1.169] (1.086) 0.7
EP 0.004 [0.408] (0.357) 0.1 0.006 [0.527] (0.475) 0.2 -0.005 [-0.439] (-0.406) 0.1
DE 0.001 [0.170] (0.149) 0 -0.002 [-0.206] (-0.186) 0 0.011 [0.989] (0.915) 0.5
RVOL -0.049 [-0.812] (-0.756) 0.2 -0.006 [-0.106] (-0.102) 0 -0.021 [-0.260] (-0.245) 0
BM 0.080 [1.596] (1.575) 1 -0.001 [-0.035] (-0.033) 0 0.079 [1.212] (1.228) 0.6
NTIS(-) 0.032 [0.112] (0.103) 0 0.257 [1.056] (0.981) 0.8 0.106 [0.334] (0.310) 0.1
TBL(-) -0.303 [-1.867] (-1.887) 1.2 0.105 [0.665] (0.643) 0.2 -0.093 [-0.402] (-0.398) 0.1
LTY(-) -0.577 [-2.465] (-2.430) 2 -0.067 [-0.300] (-0.294) 0 -0.301 [-0.977] (-0.995) 0.3
LTR -0.180 [-1.724] (-2.080) 0.9 0.056 [0.494] (0.628) 0.1 -0.043 [-0.295] (-0.314) 0
TMS 0.114 [0.424] (0.424) 0.1 -0.377 [-1.368] (-1.293) 0.7 -0.122 [-0.352] (-0.332) 0
DFY -0.149 [-0.126] (-0.114) 0 -1.313 [-1.062] (-0.957) 1 0.860 [0.607] (0.551) 0.3
DFR 0.406 [1.028] (0.995) 1.5 0.125 [0.441] (0.430) 0.2 0.323 [0.794] (0.799) 0.6
INFL(-) 0.723 [0.613] (0.617) 0.2 0.788 [0.693] (0.643) 0.3 -0.596 [-0.503] (-0.507) 0.1

Notes: The table presents the regression results for the bivariate predictive regression model estimated through equation 4.25 for the SKEW indexes and the 14 macroeconomic variables
with regards to six stock market index worldwide. The ones reported in this table are the international stock market indexes: NIKKEI 225 (NIK) for Japan, EUROSTOXX 50 (SXE)
for Europe and Hang Seng Index (HSI) for China. The log equity risk premia (in percent) are taken at monthly frequency from 01-1996 to 12-2017. Regressions intercepts are not
reported to save on space. The results are reported only for monthly (h = 1) horizon. Newey-West [t NW] and Hodrick t-stats (t HH) are reported in square brackets and parentheses,
respectively, to account for heteroskedasticity and autocorrelation in the regressions. R2 (in percent) of every regression are reported in the last column for each regression.
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Table 4.14: In-Sample Multivariate Predictive Regression International Markets

Panel A: Principal Components and SKEW Indexes Regression

DOW JONES WILSHIRE 5000 NASDAQ

Predictor Coef. t NW t HH R2(%) Coef. t NW t HH R2(%) Coef. t NW t HH R2(%)

SKEW |PC -0.043 [-1.507] (-1.618) 4.5 -0.036 [-1.230] (-1.385) 4.2 -0.018 [-0.418] (-0.535) 6.1
SKEW+ |PC 0.037 [1.687] (1.740) 4.3 0.036 [1.667] (1.721) 6.2 0.043 [0.808] (1.437) 6.3
SKEW− |PC -0.027 [-1.197] (-1.403) 4.2 -0.022 [-0.955] (-1.191) 6.2 -0.005 [-0.147] (-0.184) 6.4

NIKKEI 225 EUROSTOXX 50 HSI

Predictor Coef. t NW t HH R2(%) Coef. t NW t HH R2(%) Coef. t NW t HH R2(%)

SKEW |PC -0.021 [-0.571] (-0.666) 9 -0.016 [-0.435] (-0.547) 2.5 -0.067 [-1.393] (-1.514) 2.8
SKEW+ |PC -0.009 [-0.233] (-0.328) 9 0.051 [1.315] (1.899) 2.8 0.007 [0.142] (0.200) 2.4
SKEW− |PC -0.042 [-1.259] (-1.635) 9.3 -0.004 [-2.136] (-2.180) 3.4 -0.053 [-1.187] (-1.277) 2.7

Panel B: SKEW Indexes Pairwise Regression

DOW JONES WILSHIRE 5000 NASDAQ

SKEW -0.056 [-1.122] (-1.079) -0.063 [-1.193] (-1.171) -0.056 [-0.681] (-0.704)
SKEW+ 0.075 [1.334] (1.429) 0.9 0.099 [1.621] (1.819) 1.2 0.170 [1.662] (1.935) 1.2

SKEW -0.195 [-2.257] (-2.192) -0.237 [-2.450] (-2.414) -0.307 [-1.930] (-2.050)
SKEW− 0.162 [2.150] (2.123) 2.1 0.203 [2.423] (2.437) 2.9 0.290 [2.147] (2.234) 2.3

SKEW+ 0.069 [1.260] (1.395) 0.089 [1.484] (1.693) 0.150 [1.496] (1.806)
SKEW− 0.029 [0.689] (0.688) 0.7 0.040 [0.889] (0.910) 1.1 0.073 [1.094] (1.128) 1.3

NIKKEI 225 EUROSTOXX 50 HSI

SKEW 0.078 [1.058] (1.065) -0.026 [-0.375] (-0.382) -0.046 [-0.556] (-0.553)
SKEW+ -0.073 [-0.956] (-0.999) 0.6 0.076 [1.082] (1.206) 0.4 0.009 [0.121] (0.137) 0.1

SKEW 0.012 [0.114] (0.113) -0.285 [-2.709] (-2.702) -0.075 [-0.615] (-0.624)
SKEW− 0.083 [0.860] (0.862) 0.6 0.305 [3.305] (3.246) 3.7 0.033 [0.336] (0.355) 0.1

SKEW+ -0.112 [-1.412] (-1.450) 0.040 [0.572] (0.681) 0.016 [0.205] (0.227)
SKEW− 0.114 [1.684] (1.678) 1.2 0.124 [1.918] (1.971) 1.5 -0.015 [-0.218] (-0.221) 0

Notes: The table presents the regression results for the multivariate predictive regression for U.S. and international stock market indexes. The top three of each panel are U.S. based stock
market indexes: Dow Jones Industrial Average (DJIA), Wilshire 5000 (WI) and Nasdaq Composite Index (NAC). The bottom three of each panel are international stock market indexes:
NIKKEI 225 (NIK) for Japan, EUROSTOXX 50 (SXE) for Europe and Hang Seng Index (HSI) for China. The log equity risk premia (in percent) are taken at monthly frequency from 01-1996
to 12-2017. The results are reported only for monthly (h = 1) horizon. In Panel A are presented the predictive results for the multivariate regression model estimated through equation
4.18 in which only the SKEW indexes predictability is shown after controlling for the four principal components extracted from the 14 macroeconomic variables. In Panel B we report the
multivariate predictive regression in which the SKEW indexes are taken in pairs. Regressions intercepts are not reported to save on space. Newey-West [t NW] and Hodrick t-stats (t HH) are
reported in square brackets and parentheses, respectively, to account for heteroskedasticity and overlap in the regressions. R2 (in percent) of every regression are reported in the last column
for each regression.
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4.6 Individual Stocks Analysis

In this section, we report the results of the in-sample and out-of-sample predictive exercise with regards

to the excess returns of the 30 largest individual stocks in the S&P 500 by market capitalization. This

data set is similar to the one selected in other studies (see Bakshi et al., 2003; Bollerslev et al., 2016)19.

In addition, we select a novel individual stocks data set formed by the 30 smallest stocks in the S&P

500 index by market capitalization. We show the descriptive statistics for the selected individual stocks

in Table B5 in the Appendix. The selected 30 largest and 30 smallest stocks in the S&P 500 by market

capitalization are ranked as at the end of 2017. Only stocks with prices available for our entire time

period, namely from 01:1996 to 12:2017 are included in our data sets20. We study the predictability

of the SKEW indexes for the 30 largest and 30 smallest stocks in the U.S. market, first, in-sample in

subsection 4.6.1 and then out-of-sample in subsection 4.6.2.

4.6.1 Largest and Smallest Stocks In-Sample Predictive Exercise

We compute the individual stock risk premium as the difference between the log return on the 30 largest

(30 smallest) stocks in the S&P 500 index, end-of-the-month, and the log return on the U.S. risk free

rate, T-bill rate as in equation 4.16. rt+1 is, now, replaced by rt+1,iL,iS with i being either one of the 30

largest or one of the 30 smallest selected individual stocks’ returns. The aim of this predictive exercise

is to check whether or not the decomposed SKEW indexes are able to add additional information

to the more common stock returns predictors in the literature (e.g. Goyal and Welch, 2008; Neely

et al., 2014), when individual stock risk premia are taken into account. The results for the in-sample

predictive exercise for the 30 largest individual stocks included in the S&P 500 are reported in Table

4.15. To save space, the results are reported only for the three SKEW indexes as the output of the

predictive regression in which we control for the 4 principal components extracted from the Goyal and

Welch (2008) macroeconomic variables. The results are reported only for the one-month horizon since

we have shown in Section 4.5.2 that the SKEW indexes contain information useful to predict stock

equity risk premia in the short-term.

According to the Newey (1987) t-statistics, Table 4.15 shows that the aggregate SKEW is able to

predict the future month log equity premium only for 5 companies out of 30. These companies are

one in the consumer discretionary sector, Home Depot Inc., and four financial companies, namely,

Bank of America, Citigroup, J.P. Morgan and Wells Fargo & Company. All the financial stocks present

negative relationship with SKEW . All the financial stocks are found to be positively skewed (see

Table B5). This is in line with Conrad et al. (2013) affirming that negatively (positively) skewed stocks

1911 out of 30 of our individual stocks match the ones in Bakshi et al. (2003). Their data set was collected as of May 1998
while ours is as of December 2017. 18 out of 30 individual stocks match Bollerslev et al. (2016) data set.

20This is the reason why, we left out large stocks as, for instance, Berkshire Hathaway, Amazon and Google which IPOs took
place in May 1996, May 1997 and Aug 2004, respectively.
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Table 4.15: 30 Largest S&P 500 Stocks: Multivariate Predictability

SKEW |PC SKEW+ |PC SKEW− |PC

Ticker Coef. t NW R2(%) Coef. t NW R2(%) Coef. t NW R2(%)

AAPL -0.120 [-0.770] 1.8 0.271 [1.697] 2.13 0.166 [0.901] 1.93
ABT 0.062 [0.841] 1.62 -0.018 [-0.189] 1.44 0.031 [0.449] 1.49
ADBE -0.174 [-0.996] 0.63 0.035 [0.195] 0.29 -0.095 [-0.664] 0.42
AMGN 0.089 [0.733] 0.29 0.118 [0.959] 0.45 0.144 [1.752] 0.83
BA 0.102 [0.994] 1.89 -0.030 [-0.223] 1.67 0.174 [1.759] 2.61
BAC -0.226 [-1.687] 9.77 0.209 [1.737] 9.7 0.072 [0.561] 9.4
C -0.238 [-1.714] 10.13 0.138 [0.520] 9.93 0.165 [1.713] 10.03
CMCSA 0.034 [0.316] 0.95 0.158 [1.674] 1.61 0.115 [1.879] 1.42
CSCO 0.017 [0.126] 0.28 0.224 [1.727] 0.98 0.212 [1.828] 1.15
CVX 0.021 [0.291] 0.61 -0.060 [-0.698] 0.78 0.024 [0.353] 0.63
DIS 0.041 [0.432] 1.49 -0.050 [-0.398] 1.52 0.135 [1.670] 2.2
DWDP -0.141 [-1.208] 1.25 -0.052 [-0.332] 0.95 -0.018 [-0.173] 0.91
HD -0.241 [-2.484] 2.51 0.087 [0.730] 0.95 -0.059 [-0.717] 0.86
INTC -0.019 [-0.149] 0.72 0.240 [1.840] 1.43 0.213 [1.660] 1.49
JNJ -0.013 [-0.214] 0.61 0.066 [0.930] 0.89 0.075 [1.389] 1.11
JPM -0.248 [-2.149] 2.79 0.227 [1.670] 2.59 0.096 [0.923] 1.88
KO -0.006 [-0.096] 2.04 0.067 [0.704] 2.25 -0.001 [-0.002] 2.04
MCD 0.046 [0.625] 1.7 0.061 [0.695] 1.77 0.119 [1.706 2.49
MDT -0.057 [-0.675] 0.81 0.106 [1.258] 1.13 0.063 [0.839] 0.9
MO -0.010 [-0.122] 0.9 -0.094 [-0.654] 1.17 -0.011 [-0.120] 0.9
MRK -0.017 [-0.189] 0.22 0.015 [0.135] 0.22 0.007 [0.075] 0.21
MSFT 0.004 [0.036] 1.68 0.302 [2.527] 3.53 0.166 [1.669] 2.46
PFE -0.021 [-0.254] 0.27 0.067 [0.763] 0.45 0.068 [0.949] 0.53
PG 0.042 [0.647] 0.66 0.033 [0.374] 0.63 0.002 [0.046] 0.58
T -0.002 [-0.030] 1.69 0.072 [0.722] 1.88 0.077 [1.074] 1.98
UNH 0.050 [0.458] 1.87 0.078 [0.583] 1.94 0.115 [0.902] 2.19
VZ 0.088 [0.988] 1.81 0.069 [0.697] 1.69 0.056 [0.785] 1.67
WFC -0.163 [-1.816] 6.96 0.074 [1.660] 6.47 0.040 [0.510] 6.39
WMT -0.035 [-0.445] 1.55 0.087 [0.911] 1.84 0.013 [0.176] 1.5
XOM 0.041 [0.635] 1.12 0.014 [0.227] 1.01 0.052 [0.857] 1.27

Notes: The table presents the regression results for the multivariate predictive regression model estimated through equation 4.18 for the 30
largest individual stocks in the S&P 500 . The individual log equity premium is computed as in equation 4.16 for each one of the 30 largest
individual stocks at monthly frequency from 01-1996 to 12-2017. The individual stocks’ tickers are shown in the first column. The multivariate
predictive regression is based on the four principal components extracted from the 14 macroeconomic variables and one of the three SKEW
indexes. Only the SKEW indexes predictability results are shown after controlling for the four principal components. The results are reported
only for monthly (h = 1) horizons. Regressions intercepts are not reported to save on space. Newey-West [t NW] are reported next to the
SKEW indexes coefficients. R2 (in percent) of every regression are reported in the last column.

yield subsequent higher (lower) returns. SKEW+ predicts well 8 of the 30 largest individual stocks

in the S&P 500 mainly included in the financial sector (e.g. Bank of America, J.P. Morgan and Wells

Fargo & Company) and in the IT sector (e.g. Apple Inc., Cisco System Inc., Intel Corp. and Microsoft

Corp.). Finally, SKEW− predicts 9 individual stock across several sectors. Stocks with high predictive

loadings on tail risk will be discounted more steeply and thus have higher expected returns; stocks with

low or negative tail risk loadings serve as effective hedges and will have comparatively higher prices

and lower expected returns (see Kelly and Jiang, 2014). Thus, in the bivariate predictive regression,

SKEW− is found to perform better than SKEW and SKEW+ . The decomposed SKEW indexes,

however, perform better than the majority of the macroeconomic variables. For instance, DY predicts

only 5 individual stocks’ future risk premia as well as LTY. INFL predicts 8 of the individual future risk

premia mainly in the consumer discretionary and staples sectors (e.g. Home Depot and Walmart Inc.)

and in the financial sectors (e.g. Bank of America and Citigroup). Our results show that the SKEW

indexes contain information useful to predict some of the 30 largest stocks’ future month risk premia,
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especially in the financial sector and their predictability power increases when decomposed.

Table 4.16: 30 Smallest S&P 500 Stocks: Multivariate Predictability

SKEW |PC SKEW+ |PC SKEW− |PC

Ticker Coef. t NW R2(%) Coef. t NW R2(%) Coef. t NW R2(%)

AIV -0.126 [-1.043] 0.84 0.227 [1.651] 1.54 0.044 [0.468] 0.57
ALK -0.092 [-0.660] 1.31 0.174 [1.156] 1.65 0.060 [0.480] 1.26
AOS -0.015 [-0.128] 2.63 -0.108 [-0.689] 2.86 -0.032 [-0.290] 2.66
AVY -0.144 [-1.499] 0.77 -0.032 [-0.258] 0.17 0.060 [0.690] 0.29
BF.B -0.013 [-0.169] 0.79 0.123 [1.814] 1.51 0.084 [1.835] 1.26
BWA 0.027 [0.232] 0.72 -0.083 [-0.601] 0.84 -0.001 [-0.001] 0.71
CPB 0.013 [0.143] 2.11 0.085 [0.881] 2.44 0.072 [0.944] 2.43
DISH -0.159 [-0.923] 3.63 0.231 [1.096] 3.91 0.211 [1.732] 4
FL -0.179 [-0.953] 0.58 0.041 [0.209] 0.25 0.051 [0.345] 0.28
FLIR 0.062 [0.382] 0.29 0.419 [1.896] 2.12 0.329 [2.374] 1.84
GPS -0.048 [-0.319] 0.6 0.240 [1.647] 1.33 0.155 [1.189] 1.010
HOG -0.304 [-2.208] 2.62 0.227 [1.867] 1.93 -0.012 [-0.113] 1.09
HP -0.465 [-2.992] 3.37 -0.011 [-0.070] 0.46 -0.192 [-1.912] 1.14
HRB -0.048 [-0.391] 0.49 0.088 [0.794] 0.63 0.030 [0.314] 0.46
JEF -0.232 [-1.904] 2.04 0.117 [1.128] 1.17 0.001 [0.001] 0.87
KIM -0.256 [-2.229] 4.93 0.084 [0.745] 3.57 -0.058 [-0.700] 3.51
LB -0.268 [-1.955] 1.58 0.256 [1.767] 1.46 0.084 [0.765] 0.53
LEG -0.170 [-1.615] 1.76 0.156 [1.669] 1.62 0.053 [0.605] 1.06
MAC -0.287 [-1.841] 1.41 0.271 [1.891] 1.3 -0.011 [-0.109] 0.48
NFX -0.210 [-1.287] 1.39 -0.158 [-0.942] 1.12 -0.219 [-1.670] 1.68
NKTR -0.252 [-0.998] 0.68 -0.099 [-0.345] 0.4 -0.116 [-0.542] 0.44
PBCT -0.169 [-1.885] 1.78 0.032 [0.315] 0.68 -0.020 [-0.254] 0.67
PHM -0.139 [-0.940] 0.38 -0.184 [-1.028] 0.57 0.091 [0.626] 0.27
RHI 0.131 [1.082] 1.3 0.008 [0.065] 0.99 0.063 [0.613] 1.09
ROL -0.208 [-2.470] 3 0.282 [2.705] 4.51 -0.014 [-0.207] 1.16
SCG 0.056 [0.737] 0.37 0.029 [0.351] 0.22 -0.013 [-0.227] 0.19
UNM -0.038 [-0.292] 4.25 0.303 [2.249] 5.6 0.169 [1.753] 4.82
WHR -0.182 [-1.314] 1.57 0.093 [0.653] 1.19 0.076 [0.684] 1.18
XRAY -0.042 [-0.549] 0.33 0.180 [2.154] 1.73 0.127 [1.802] 1.26
XRX 0.094 [0.622] 1.02 -0.196 [-0.869] 1.37 0.003 [0.003] 0.91

Notes: The table presents the regression results for the multivariate predictive regression model estimated through equation 4.18 for the
30 smallest individual stocks in the S&P 500 . The individual log equity premium is computed as in equation 4.16 for each one of the 30
smallest individual stocks at monthly frequency from 01-1996 to 12-2017. The individual stocks tickers are shown in the first column. The
multivariate predictive regression is based on the four principal components extracted from the 14 macroeconomic variables and one of the
three SKEW indexes. Only the SKEW indexes predictability results are shown after controlling for the four principal components. The
results are reported only for monthly (h = 1) horizons. Regressions intercepts are not reported to save on space. Newey-West [t NW] are
reported next to the SKEW indexes coefficients. R2 (in percent) of every regression are reported in the last column.

Table 4.16 shows the predictive regression results with respect to the 30 smallest stocks in the

S&P 500 . The results of the in-sample predictive exercise are estimated in an analogous way as for

the 30 largest stocks. We control for the 4 principal components extracted from the 14 macroeconomic

variables and the single stocks’ return is, now, rt+1,iB , computed for every stock among the 30 smallest

in the S&P 500 . SKEW predicts 8 among the 30 smallest stocks future risk premia with stocks

spanning different sectors, e.g. financial, consumer discretionary and real estate. We find that SKEW+

performs better than SKEW− . The first is able to predict 11, whereas SKEW− predicts 7 among

the 30 smallest stocks operating in all sectors. Despite the change in the internal ranking regarding the

predictability power of the three SKEW indexes, we confirm that they also carry information useful to

predict smaller market capitalization stocks also when controlling for the four principal components.

In the bivariate predictive regression, we find that the aggregate SKEW performs in the same way

as in the principal components regression, whereas SKEW− and SKEW+ under-perform compared
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to the multivariate regression when we control for the 4 principal components. However, they are

still found to predict the individual smallest 30 stocks risk premia better compared to the majority of

the macroeconomic variables. Exception being only TS and INFL which appear to predict as well as

or better some among the individual 30 smallest stocks, 4 and 9, respectively. The individual stocks

predicted well by the inflation rate are mainly in the consumer staples and discretionary.

We have also estimated predictive regressions in which the SKEW indexes are taken in pairs as

in equations from 4.19 to 4.21 for predicting the future levels of the individual stocks risk premia21.

The best model appears to be the one with SKEW and SKEW− paired together. A relevant role for

SKEW− is found in the in-sample predictability of the 30 smallest individual stocks, however this

decreasing when SKEW− is coupled with SKEW+ confirming once more that the prevalent role of

SKEW+ over SKEW and SKEW− . When the three SKEW indexes are tested together in the same

multivariate predicting model, we find that SKEW , SKEW+ and SKEW− forecast future risk premia

in 7, 4 and 9 cases out of 30 for the largest individual stocks, while in 11, 7 and 15 cases out of 30

for the smallest, respectively. These findings show how SKEW− appears to strengthen its predictive

power when added next to other SKEW indexes predictors.

As a final robustness check, we also add the SKEW indexes next to VIX and VRP in predicting

individual stocks. The SKEW indexes performance is still robust when we control for these. VIX

appears to predict as well as or less than the aggregate SKEW . Among the decomposed measures,

SKEW+ is found to be significantly predict the future risk premia better than VIX+ for both the

30 largest or 30 smallest S&P 500 stocks. Interestingly, SKEW− is found to be the best predictor

among the six for the 30 largest stocks, whereas VIX− is found more useful to predict the 30 smallest

stocks. Also when we control for VRP indexes, we still find a predictive role for the decomposed

SKEW indexes. SKEW− appears to predict the 30 largest stocks as well as than VRP− . SKEW+

predicts the 30 smallest stocks better than VRP and VRP− . Among these indexes, superior ability in

explaining individual stock returns is found for VRP+ in line with Feunou et al. (2017) and Kilic and

Shaliastovich (2018) and as found in Section 4.5.3.

21With relation to the 30 largest stocks, SKEW and SKEW+ predict well the future risk premia in only 6 and 3 cases out of
30, respectively, when added in the same predictive model. SKEW and SKEW− appear to strengthen their predictability power
when coupled in the same regression, predicting well in 7 and 11 cases, respectively. SKEW+ and SKEW− are able to predict,
in both cases, only 4 stocks out of 30. With regards to the 30 smallest individual stocks, we find that SKEW+ and SKEW
are able to significantly predict future level of risk premia in 10 and 7 cases out of 30, respectively, when paired. SKEW and
SKEW− are found to be significant in 14 and 16 cases, respectively, out of 30. When SKEW+ and SKEW− are combined
in the same multivariate regression, they are significant predictors in 8 cases and 4 cases out of 30, respectively.
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Table 4.17: 30 Largest S&P 500 Stocks: Out-of-Sample Predicting Regression

SKEW |PC SKEW+ |PC SKEW− |PC

Ticker MSFE R2
OS(%) MSFE adj. p value MSFE R2

OS(%) MSFE adj. p value MSFE R2
OS(%) MSFE adj. p value

AAPL 5.402 -21.043 -0.089 0.535 4.648 -4.155 1.145 0.126 4.727 -5.938 1.006 0.157
ABT 3.202 -0.092 0.541 0.294 3.236 -1.178 0.048 0.480 3.225 -0.809 0.211 0.416
ADBE 3.463 -7.907 -0.384 0.649 3.139 2.178 1.321 0.093 3.175 1.357 1.213 0.155
AMGN 4.432 -1.027 -0.262 0.603 4.366 0.470 0.524 0.299 4.289 2.217 1.252 0.128
BA 3.924 6.133 2.417 0.007 3.939 5.795 2.457 0.006 3.904 6.613 2.305 0.010
BAC 2.833 0.115 0.973 0.165 2.815 1.750 1.273 0.165 2.89 -1.884 0.823 0.205
C 3.878 -4.594 -0.285 0.612 3.922 -5.756 -1.026 0.847 3.954 -6.620 -1.241 0.892
CMCSA 2.280 -15.207 0.023 0.490 1.943 1.819 1.264 0.122 2.032 -2.667 0.235 0.406
CSCO 3.644 1.988 1.350 0.124 3.890 -4.632 0.272 0.392 3.708 0.857 1.235 0.155
CVX 6.670 -11.061 0.649 0.258 6.382 -6.266 0.993 0.160 6.348 -5.696 0.993 0.160
DIS 5.546 -11.716 0.503 0.307 5.437 -9.522 0.537 0.295 5.622 -13.239 0.372 0.354
DWDP 2.493 -0.670 0.293 0.384 2.471 0.215 0.661 0.254 2.461 0.651 0.768 0.221
HD 3.120 0.238 0.355 0.360 3.241 -3.640 -0.051 0.520 3.442 -10.050 -0.394 0.653
INTC 3.025 -6.428 -1.741 0.959 3.006 -5.769 -1.253 0.895 3.007 -5.802 -1.649 0.950
JNJ 1.332 -0.040 0.354 0.361 1.298 2.486 1.670 0.047 1.287 3.325 1.629 0.051
JPM 3.173 3.534 1.314 0.094 3.118 5.208 1.550 0.060 3.157 4.010 1.434 0.075
KO 1.475 -13.542 -0.766 0.778 1.497 -15.252 -0.785 0.783 1.476 -13.608 -0.754 0.774
MCD 1.263 3.099 1.442 0.074 1.257 3.821 1.577 0.057 1.214 6.821 1.772 0.038
MDT 2.421 -3.608 -0.877 0.809 2.374 -1.598 -0.091 0.536 2.370 -1.401 -0.161 0.564
MO 2.437 1.723 1.019 0.153 2.549 -2.792 0.105 0.457 2.446 1.365 1.2712 0.165
MRK 2.304 -0.964 0.030 0.487 2.287 -0.224 0.288 0.386 2.290 -0.351 0.231 0.408
MSFT 3.707 -2.152 0.300 0.381 3.885 -7.058 0.298 0.382 3.702 -2.019 0.669 0.251
PFE 1.864 -3.659 -1.083 0.860 1.791 1.408 1.233 0.332 1.783 1.886 1.350 0.257
PG 1.276 -5.907 -0.878 0.810 1.270 -5.381 -0.726 0.766 1.282 -6.404 -1.115 0.867
T 2.325 -0.458 0.559 0.287 2.345 -1.330 0.462 0.321 2.309 0.258 0.843 0.199
UNH 2.529 -16.948 -1.121 0.868 2.495 -15.375 -1.006 0.843 2.505 -15.855 -0.730 0.767
VZ 2.335 0.580 0.827 0.203 2.342 0.309 0.690 0.244 2.341 0.352 0.685 0.246
WFC 2.607 -12.188 0.371 0.355 2.614 -12.505 0.061 0.475 2.648 -13.953 -0.165 0.565
WMT 2.330 -2.426 -0.016 0.506 2.253 1.979 1.217 0.206 2.264 1.759 1.304 0.240
XOM 1.941 -12.421 -1.602 0.945 1.858 -7.608 -1.174 0.879 1.884 -9.096 -1.190 0.883

Notes: The table presents the S&P 500 30 largest individual stocks risk premium out-of-sample predictive regression. We present only the results for the multivariate out-of-sample predictive
regression estimated through equation 4.24. The four principal components are extracted from the 14 macroeconomic variables and added as control variables in the same predictive model next
to one of the three SKEW indexes. Only the SKEW indexes out-of-sample predictability is shown after controlling for the four principal components. The out-of-sample results are presented
only with relation to the 1996-2013 in-sample period horizon selection. The 30 largest individual stocks tickers are listed in the first column. MSFE is the mean squared forecast error, R2

OS (see
Campbell and Thompson, 2007) measures the reduction in MSFE with respect to the historical average forecast benchmark shown in the first column of every selected in-sample period horizon.
The Clark and West (2007) MSFE-adjusted statistic tests the null hypothesis that the historical average (HA) forecast MSFE is≤ than the competing forecast MSFE against the one-sided alternative
hypothesis that the historical average (HA) forecast MSFE is> greater than the competing forecast MSFE. P-values are shown in the last column of each forecast in-sample period.
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Table 4.18: 30 Smallest S&P 500 Stocks: Out-of-Sample Predicting Regression

SKEW |PC SKEW+ |PC SKEW− |PC

Ticker MSFE R2
OS(%) MSFE adj. p value MSFE R2

OS(%) MSFE adj. p value MSFE R2
OS(%) MSFE adj. p value

AIV 2.945 -24.063 -1.828 0.966 2.323 2.161 1.254 0.170 2.467 -3.931 -0.448 0.673
ALK 7.923 -0.744 0.426 0.334 7.627 3.014 1.378 0.119 7.799 0.834 1.323 0.234
AOS 3.951 -6.782 -0.155 0.561 4.196 -13.403 -1.140 0.872 3.989 -7.807 -0.284 0.612
AVY 2.697 -9.748 -1.015 0.845 2.604 -5.978 -3.095 0.999 2.548 -3.674 -1.254 0.895
BF.B 2.549 -2.443 -0.292 0.615 2.395 3.752 1.778 0.037 2.428 2.397 1.264 0.102
BWA 8.479 -7.354 -1.949 0.974 8.383 -6.134 -1.834 0.966 8.511 -7.760 -1.873 0.969
CPB 3.306 -7.807 -0.607 0.728 3.164 -3.162 0.252 0.400 3.402 -10.941 -0.814 0.792
DISH 4.917 -9.642 0.007 0.496 5.070 -13.056 -0.469 0.680 4.850 -8.154 0.610 0.270
FL 9.563 -2.510 -0.215 0.585 9.466 -1.480 -0.298 0.617 9.503 -1.873 -0.405 0.657
FLIR 3.810 -1.650 -0.242 0.595 3.718 0.798 1.389 0.082 4.462 -19.043 -0.692 0.755
GPS 11.842 -7.947 -2.429 0.992 12.097 -10.273 -1.936 0.973 12.026 -9.623 -2.232 0.987
HOG 4.295 2.965 1.256 0.104 4.409 0.403 0.844 0.199 4.518 -2.066 0.127 0.449
HP 9.076 7.592 2.409 0.007 10.069 -2.512 -1.019 0.846 9.837 -0.157 0.434 0.331
HRB 6.916 -4.490 -2.043 0.979 6.828 -3.158 -1.251 0.894 6.895 -4.174 -1.738 0.958
JEF 4.151 -1.974 0.482 0.314 3.978 2.272 1.465 0.167 4.055 0.381 0.417 0.338
KIM 4.144 -11.854 0.128 0.448 3.694 2.293 1.226 0.152 3.762 -1.563 0.655 0.256
LB 7.350 -0.191 0.400 0.344 7.519 -2.491 -0.340 0.633 7.751 -5.653 -2.113 0.982
LEG 2.988 -9.109 -0.898 0.815 2.898 -5.813 -0.366 0.643 3.055 -11.551 -1.682 0.953
MAC 3.743 -6.733 0.729 0.232 3.435 2.050 1.448 0.073 3.525 -0.506 0.541 0.294
NFX 9.755 -4.582 -0.530 0.702 9.815 -5.221 -1.256 0.895 9.684 -3.818 -0.274 0.608
NKTR 36.560 -2.185 -0.931 0.824 36.574 -2.225 -1.632 0.948 36.615 -2.339 -1.533 0.937
PBCT 2.224 0.765 0.956 0.169 2.274 -1.498 -0.052 0.521 2.281 -1.795 -0.131 0.552
PHM 5.080 -3.311 -0.652 0.743 5.205 -5.841 -1.350 0.911 5.142 -4.567 -1.296 0.902
RHI 5.044 -3.725 -0.342 0.634 5.068 -4.200 -1.034 0.849 5.062 -4.082 -0.937 0.825
ROL 1.991 -9.709 0.502 0.307 1.645 9.338 2.151 0.015 1.764 2.834 1.534 0.062
SCG 3.374 -1.051 -0.403 0.656 3.391 -1.577 -0.761 0.776 3.389 -1.503 -0.523 0.699
UNM 4.264 2.001 1.160 0.122 4.090 5.999 1.704 0.044 4.432 -1.863 0.914 0.180
WHR 7.417 -12.164 -2.477 0.993 7.170 -8.440 -2.508 0.993 7.235 -9.425 -2.367 0.991
XRAY 2.635 -3.832 -1.076 0.859 2.454 3.275 1.547 0.060 2.545 -0.295 0.547 0.291
XRX 4.310 0.936 1.275 0.164 4.304 1.071 1.364 0.193 4.418 -1.558 0.548 0.291

Notes: The table presents the S&P 500 30 smallest individual stocks risk premium out-of-sample predictive regression. We present only the results for the multivariate out-of-sample predictive
regression estimated through equation 4.24. The four principal components are extracted from the 14 macroeconomic variables and added as control variables in the same predictive model next
to one of the three SKEW indexes. Only the SKEW indexes out-of-sample predictability is shown after controlling for the four principal components. The out-of-sample results are presented
only with relation to the 1996-2013 in-sample period horizon selection. The 30 smallest individual stocks tickers are listed in the first column. MSFE is the mean squared forecast error,R2

OS (see
Campbell and Thompson, 2007) measures the reduction in MSFE with respect to the historical average forecast benchmark shown in the first column of every selected in-sample period horizon.
The Clark and West (2007) MSFE-adjusted statistic tests the null hypothesis that the historical average (HA) forecast MSFE is≤ than the competing forecast MSFE against the one-sided alternative
hypothesis that the historical average (HA) forecast MSFE is> greater than the competing forecast MSFE. P-values are shown in the last column of each forecast in-sample period.
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4.6.2 Largest and Smallest Stocks Out-of-Sample Predictive Exercise

Table 4.17 reports the S&P 500 30 largest individual stocks out-of-sample predictive results. The

selected predictors are the SKEW indexes added in the multivariate predictive regressions when con-

trolling for the 4 principal components extracted from the 14 macroeconomic variables. The results

are reported only for the 1996-2013 in-sample period choice which is found to lead to the best out-

of-sample results in Section 4.5.4. This sample choice includes enough observation in the forecasting

model evaluation spanning the last four years of our total time period and includes the global finan-

cial crisis in the in-sample window. For the 30 largest S&P 500 stocks, we find that the SKEW+

and SKEW− are the best predictors. SKEW+ carries additional information in order to predict the

selected individual stocks in 9 cases out of 30 with positive R2
OS , as well as, MSFE significantly less

than the historical average. SKEW− shows positiveR2
OS in correspondence of 13 stocks and the Clark

and West (2007) MSFE-adjusted statistic test shows a significant error less than the historical average

in 10 cases out of 30. The aggregate SKEW out-of-sample predictability power appears weaker, with

R2
OS found to be positive in 8 cases out of 30.

Table 4.18 shows the S&P 500 30 smallest individual stocks out-of-sample predictive results. We

find that SKEW and SKEW− perform poorly showing a positive R2
OS in correspondence of a MSFE

less than the historical average only in 3 cases out of 30. SKEW+ is found to predict better out-of-

sample showing a positiveR2
OS and a MSFE significantly less than the historical average in 11 cases out

of 30 in relation to the 30 smallest individual stocks in S&P 500 . We can conclude that the decomposed

SKEW indexes perform as well as or better than the aggregate SKEW for both the 30 largest and 30

smallest individual stocks in the S&P 500 for the out-of-sample forecasting evaluation. In addition,

the decomposed SKEW indexes appear to include information useful for out-of-sample predictability

which are not captured by the four principal components.

4.7 SKEW Indexes and Asset Pricing

In this section, we investigate the connection between stock portfolios returns, the skewness index and

its positive and negative components. We expand the Fama and French (1993) three-factors and Fama

and French (2017) five-factors models by testing the explanatory power of the third moment’s indexes

when added next to them. According to Fama and French (2017), this model is found to perform better

than the traditional Fama and French (1993) three-factors model where market excess return, return

of value portfolios minus average return on growth portfolios (HML) and return on small portfolios

minus average return on big portfolios (SMB) are considered. The five factors include market excess

return, as a difference between market portfolio return and risk-free rate of 1m T-bills, the average re-

turn on value portfolios minus average return on growth portfolios (HML), the average return on small
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portfolios minus average return on big portfolios (SMB), the average return on the two robust operat-

ing profitability portfolios minus the average return on the two weak operating profitability portfolios

(RMW) and the average return on the two conservative investment portfolios minus the average return

on the two aggressive investment portfolios (CMA).22

This section is based on a series of studies advocating the role of stock returns higher moments in

asset pricing models in the literature. The strand of literature incorporating skewness in asset pricing

models is also vast and it has a long history. This literature has started from the seminal work by Kraus

and Litzenberger (1976) and has been progressively expanded, see Friend and Westerfield (1980); Kraus

and Litzenberger (1983); Harvey and Siddique (2000); Brunnermeier et al. (2007); Mitton and Vorkink

(2007); Boyer et al. (2009); Rehman and Vilkov (2012); Conrad et al. (2013).

Some studies have analyzed this relationship using historic expected skewness measures (e.g. Boyer

et al., 2009) while some others have used ex ante forward looking skewness extracted from options

(e.g. Rehman and Vilkov, 2012; Conrad et al., 2013). In our chapter we follow the second strand of

literature by using implied skewness measures. In particular, Harvey and Siddique (2000) has included

a conditional skewness measure in asset pricing model to better understand the cross-sectional variation

of asset returns. Among the most recent, Conrad et al. (2013) focused on both individual securities’ risk

neutral volatility and skewness and their linkages with future returns, and Rehman and Vilkov (2012)–

using ex ante forward looking skewness extracted from options– found that risk-averse investors dislike

negative skewness and they require compensation with higher returns in order to invest in these left

skewed stocks. More specifically we want to test whether or not the negative and positive skewness

indexes (SKEW− and SKEW+ ) are more informative than the aggregate, SKEW in explaining our

selected portfolios returns.

The portfolios we select are the daily bivariate U.S. 25 stocks portfolios sorted on Size and Book-to-

Market, constructed at the end of each June and representing the intersections of five portfolios formed

on size (Market Equity, ME) and five portfolios formed on the ratio of book equity to market equity

(BE/ME). Moreover, we analyze the informative power of our series in relationship to the bivariate

100 portfolios sorted on Size and Book-to-Market and we verify the results when using 12 industry

portfolios23. All the selected portfolios are taken as average value weighted returns24. The results of

these robustness exercises are reported in Appendix B.2.

Specifically, we conduct an asset pricing exercise with the full sample and sub-samples, performing

a Fama and MacBeth (1973) two steps regression analysis.25 This provides information about the

22For further details on the methodology for computing these five factors see Kenneth R. French Data Library at: http://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html from where the data have been collected.

23The 12 industries comprehend Consumer Non Durable, Consumer Durable, Manufacturing, Energy, Chemicals, Hi-Tech,
Telecommunication, Shops. Health-Care, Utility, Money and Others.

24For more details available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.

25The Fama and MacBeth (1973) allows us to test which factors can better explain stock market returns. Thus, we test whether
our risk factors, the decomposed second and third moments, can provide better results when added to the standard factors by
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premium that compensates investors from their exposure to these factors. Finally, we explore how

fundamental factors together with implied indexes affect average stock returns during turbulent periods

in our study. The first step of the methodology involves the system of equations where there are the n

selected portfolios returns and the factors we test on the left and the right side, respectively, as26.

R1,t − rf,t = α1 + β1,F1
F1,t + β1,F2

F2,t + ...+ β1,FmFm,t + ε1,t

R2,t − rf,t = α2 + β2,F1
F1,t + β2,F2

F2,t + ...+ β2,FmFm,t + ε2,t

...

Rn,t − rf,t = αn + βn,F1
F1,t + βn,F2

F2,t + ...+ βn,FmFm,t + εn,t

(4.26)

where each equation represents a regression for a different return Ri,t of portfolio or asset i (from 1 to

n) at time t and minus the risk free rate (excess market return), Fj,t is the factor j (from 1 to m) at time

t, with βi,Fm are the factor loadings expressing the exposure of each asset or portfolio of assets to that

specific factor, and t goes from 1 to T 27. In the second step we compute T cross-sectional regressions

of the returns on the m estimates of the βs (β̂) calculated from the first step.

Ri,1 − rf,1 = γ1,0 + γ1,1β̂i,F1
+ γ1,2β̂i,F2

+ ...+ γ1,mβ̂i,Fm + εi,t

Ri,2 − rf,2 = γ2,0 + γ2,1β̂i,F1
+ γ2,2β̂i,F2

+ ...+ γ2,mβ̂i,Fm + εi,2

...

Ri,T − rf,T = γT,0 + γn,1β̂i,F1
+ γn,2β̂i,F2

+ ...+ γn,mβ̂i,Fm + εi,T

(4.27)

where the Ri,t− rf,t excess market returns are the same as before and γ are the coefficients measuring

the risk premium expressed by each factor over time T, with i from 1 to n.

We start with the standard Fama and French (1993) three-factor model:

Ri,t − rf,t = β0,i + β1,i(RM,t − rf,t) + β2,iHMLt + β3,iSMBt + εi,t (4.28)

where Ri,t is the daily portfolio return i for day t minus the risk-free rate for day t, rf,t and RM the

equal weighed market portfolio. The following is the more recent Fama and French (2017) five-factor

model, which includes also profitability (RMW) and investment (CMA) factors:

Ri,t−rf,t = β0,i+β1,i(RM,t−rf,t)+β2,iHMLt+β3,iSMBt+β4,iRMWt+β5,iCMAt+εi,t (4.29)

increasing the significance, coefficients size and sign (I step). Then, in the II step, we test what is the risk premium required by
these factors on the asset returns.

26In the first step each portfolio’s return is regressed against one or more factor time series to determine how exposed it is to
each one (the factor exposures). In the second step, the cross-section of portfolio returns is regressed against the factor exposures,
at each time step, to give a time series of risk premia coefficients for each factor. The insight of Fama-MacBeth is to then average
these coefficients, once for each factor, to give the premium expected for a unit exposure to each risk factor over time.

27Each regression uses the same factors F, because the purpose is to determine the exposure of each portfolio’s return to a
given set of factors.
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Skewness measures have also been widely advocated as important variables in explaining the variations

of stock returns. Hence, here, we also employ the models taking into account the positive and negative

implied SKEW indexes:

Ri,t−rf,t = β0,i+β1,i(RM,t−rf,t)+β2,iHMLt+β3,iSMBt+β4,iRMWt+β5,iCMAt+βz,iSKEW
q
t +εi,t

(4.30)

where SKEW q
t is the U.S. SKEW index index with q indexed for Tot,−,+. Finally, all the SKEW

indexes are tested together in the same regression having a eight factors model as follow:

Ri,t − rf,t = {β0,i + β1,i(RM,t − rf,t) + β2,iHMLt + β3,iSMBt + β4,iRMWt+

+β5,iCMAt + β6,iSKEWt + β7,iSKEW
+
t + β8,iSKEW

−
t + εi,t}

(4.31)

Tables 4.19 and 4.20 present the results of the empirical asset pricing analysis from the second

step Fama-MacBeth methodology. The analysis is performed for the 25-Size-Book-To-Market and the

100-Size-Book-To-Market sorted portfolios. A robustness exercise is presented in Appendix B.2 for

other portfolio selection and different time periods. We verify using the regressions’ R2 and adjusted

R2, whether the outcomes improve by adding the implied decomposed third moments indexes to the

five-factor model. In addition, we consider whether the decomposed implied SKEW indexes might

carry more useful information in terms of portfolios’ returns predictability. The traditional three factor

model and the five factors models are reported as well for comparative purposes.

The results in Table 4.19 indicate that incorporating SKEW in the five-factors model does not

improve the adjusted R2. On the other hand, adding the decomposed SKEW+ and SKEW− in the

same model does improve the adjusted R2 compared to the five-factors model.

SKEW+ is found to be significant at 10% in regression (4), while SKEW− is found to be signifi-

cant at 5% from regression (5). Despite this, the model including SKEW+ performs slightly better than

the one including SKEW− in terms of R2 and adjusted-R2. Both models with decomposed SKEW

indexes perform better than regression (3) including the aggregate SKEW which is found not signifi-

cant. The model including SKEW does not appear to perform better than the stand alone five-factors

model. When all the SKEW indexes are added together in the 8-factors models in regression (6), we

observe that the model carries a total R2 and adjusted-R2 equal to 71% and 56%, respectively. Only

SKEW− is found to be significant in regression (6). The directional information encapsulated into the

decomposed indexes improves the regression models performance more than the aggregate indexes.

Table 4.20 presents the results for the 100 Size and Book-to-Market sorted portfolios28. We observe

28Since the portfolios sorted by Book-to-Market have missing data, interpolation is used. When daily missing data (shown
as 99.99 are found), interpolation between the previous and following trading day is used. When there are daily missing data
spanning months, we leave out that missing data. The main part of the monthly missing data is found during the financial crisis.
This is the reason why a robustness check within the financial crisis is performed on the 100 portfolios sorted by Size-Operational
Profitability.
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Table 4.19: Fama-MacBeth Results: 25-Size/Book-to-Market Portfolios

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 1.646∗∗∗ 1.407∗∗∗ 1.376∗∗ 1.157∗∗ 1.213∗∗ 1.174∗∗

(5.657) (3.152) (2.814) (2.834) (2.652) (2.631)
γMkt−rf −0.950∗∗∗ -0.728 -0.699 -0.433 -0.521 -0.430

(-3.240) (-1.625) (-1.434) (-1.059) (-1.157) (0.997)
γHML 0.204∗∗ 0.164∗∗ 0.167∗∗ 0.114 0.166∗∗ 0.111∗

(3.920) (2.386) (2.314) (1.628) (2.593) (2.004)
γSMB 0.160 0.203∗∗ 0.204∗∗∗ 0.180∗∗ 0.202∗∗∗ 0.174∗∗∗

(2.282) (3.417) (3.223) (2.685) (3.134) (3.018)
γRMW 0.389∗ 0.397∗ 0.272 0.415∗ 0.314∗

(1.834) (1.824) (1.415) (1.872) (1.753)
γCMA 0.098 0.077 0.138 -0.007 0.129

(0.503) (0.383) (0.515) (0.974) (0.585)
γSKEW -0.045 -0.073

(-0.497) (-0.610)
γSKEW+ −0.036∗ -0.294

(-1.782) (-1.674)
γSKEW− −0.022∗∗ −0.027∗∗

(-2.700) (-2.673)

R2 0.5290 0.572 0.574 0.656 0.620 0.711
AdjR2 0.461 0.460 0.432 0.542 0.494 0.566

Notes: This table shows the results of the second stage of the Fama-MacBeth regression approach in which the portfolios’
returns, 25 portfolios based on Size and Book-to-Market, are regressed on the β factor loadings computed in the first step and
expressing the exposure of each portfolio of assets to that specific factor as in (4.27). γ coefficients measure the risk premium
associated with each selected factor. The regressions’ outcome we report are for the simple 3-factors model (1) (Equation
(4.28)), for the 5-factors model (2) (Equation (4.29)), for the 6-factors model with skewness indexes (3), (4), and (5) (Equation
(4.30)) and the full model with all the three SKEW indexes (Equation 4.31). Significance levels: * p < 0.1, ** p < 0.05,
*** p < 0.01. The selected period is the full sample from 04-01-1996 to 29-12-2017, at daily frequency.

that the results are similar to Table 4.19. SKEW+ and SKEW− are found improving the regression

performance compared to the five-factors model and compared to regression (3) including SKEW .

SKEW+ and SKEW− are found both significant when added in regressions (4) and (5). SKEW+

is improving slightly the regression R2 and adjusted-R2 compared to the five-factors model; whereas

SKEW− shows a larger improvement in R2 and adjusted-R2. When the SKEW indexes are added all

together, R2 and adjusted R2 are equal to 65% and 62%, respectively.

Other robustness exercises regarding the ability of the decomposed SKEW indexes in asset pricing

context as well as their ability in turbulent times are reported in Appendix B.2. In general, we confirm

the results of Tables 4.19 and 4.20 also when other portfolios and time period are taken into account.

We find that the negative SKEW− emerged as significant and is able to bring extra information and it

considerably increases the regression models’ R2 and adjusted R2.

Overall, the empirical results for the asset pricing exercise show that the six or eight factors models,

constructed from the five common factors plus the decomposed implied moments measures as well as

from the five common factors plus all the SKEW indexes can better explain the variations of stock

returns than the Fama and French (1993) three-factors and than the more recent Fama and French

(2017) five-factors models. We observe evidence of the main role played by the decomposed SKEW

indexes. As far as our knowledge, it is the first time in the literature that this exercise is conducted and

evidence is found in support of directional implied third moments as predictors of stock returns.

This section provides new insights on the investigation of the third higher moment of the market

return as pricing factor of stock returns, topic which seems worthwhile (e.g. Ang et al., 2005; Chang
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Table 4.20: Fama-MacBeth Results: 100-Size/Book-to-Market Portfolios

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 6.734∗∗ 4.143∗∗ 4.278∗∗ 4.165∗∗ 4.105∗∗ 3.805∗∗

(2.393) (2.192) (2.261) (2.162) (2.355) (2.258)
γMkt−rf −6.229∗∗ −3.784∗∗ −3.916∗∗ −3.835∗ −3.761∗∗ −3.421∗∗

(-2.150) (-1.975) (-2.027) (-1.961) (-2.098) (-1.998)
γHML -0.096 -0.533 -0.514 -0.500 -0.398 -0.380

(-0.387) (-1.101) (-1.130) (-1.096) (-1.098) (-1.123)
γSMB 0.646 0.845∗ 0.849∗∗ 0.858∗ 0.796∗∗ 0.720∗

(2.170) (1.857) (1.992) (1.845) (2.085) (1.913)
γRMW 1.195∗ 1.186∗ 1.231∗ 0.973∗ 0.722

(1.742) (1.876) (1.744) (1.741) (1.327)
γCMA 2.187∗∗ 2.108∗∗ 2.152∗∗ 1.909∗∗ 1.869∗∗

(2.097) (2.142) (2.127) (2.266) (2.298)
γSKEW 0.037 0.033

(1.153) (1.139)
γSKEW+ 0.029∗ 0.019

(1.907) (0.074)
γSKEW− 0.089∗∗ 0.096∗∗

(2.221) (2.367)

R2 0.539 0.589 0.600 0.612 0.636 0.650
AdjR2 0.524 0.567 0.574 0.576 0.612 0.619

Notes: This table shows the results of the second stage of the Fama-MacBeth regression approach in which the portfolios’
returns, 100 portfolios based on Size and Book-to-Market, are regressed on the β factor loadings computed in the first step and
expressing the exposure of each portfolio of assets to that specific factor as in (4.27). γ coefficients measure the risk premium
associated with each selected factor. The regressions’ outcome we report are for the simple 3-factors model (1) (Equation
(4.28)), for the 5-factors model (2) (Equation (4.29)), for the 6-factors model with skewness indexes (3), (4), and (5) (Equation
(4.30)) and the full model with all the SKEW indexes (Equation 4.31). Interpolation is used when missing data is found.
Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. The selected period is the full sample from 04-01-1996 to
29-12-2017.

et al., 2012). More specifically, we examine the pricing factor role of the implied skewness indexes

extracted model-free from options. Our results appear to suggest mixed results for the decomposed

implied skewness performance according to the selected portfolios. Economic theory provides little

guidance on the sign of the price of the market skewness risk; usually investors with reasonable utility

functions need to be compensated with higher returns when their portfolios present low skewness,

however the interaction among our six or eight factors does not always convey a similar interpretation.

According to Chang et al. (2013) if we follow the interpretation in Bollen and Whaley (2004) and

Garleanu et al. (2009) suggesting that the skewness curve is caused by imbalance in supply and de-

mand for options with different strike prices, then would be not straightforward to interpret the relation

between option implied skewness and changes in investment opportunities because of the exogenous

imbalance in supply and demand. Therefore, they stated, when skewness is used as a pricing factor,

the literature does not provide guidance on the sign we should expect a priori. Specifying this sign

will be then mainly an empirical exercise. Overall, we find a strong evidence that the decomposed

implied skewness indexes are priced risk factors. We provide robustness checks about such finding in

the Appendix of Chapter 4.

In other words, interpreting skewness as a pricing factor is less obvious than volatility. Using

an argument similar to the one used to explain the inverse relationship between market returns and

volatility, the negative correlation may be due to the negative price of market skewness (see Chabi-Yo,

2012). However, the signs of the SKEW coefficients change may vary when the considered portfolios
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are different (see Chang et al., 2013)29.

New insights for investment strategies can be drawn from this section. We can observe that the

five-factor plus each SKEW index model captures average returns on the variables and we can ob-

serve which variables are positively or negatively correlated to each other. The results also show that

our models including SKEW indexes over-perform the Fama-French five-factor model which has been

found to explain a great part of the cross-section variance of expected returns for the size, value, prof-

itability and investment portfolios. It has been proven to perform better than the three-factor model

(e.g. Fama and French, 1993, 2015). They therefore should not be excluded from the asset pricing

model. The empirical results of the complete eight-factor model show that it is better than the models

with only a subset of fundamental variables in explaining the variations of stock returns. We can detect

an empirical success of the decomposed SKEW indexes in explaining excess returns.

Our eight-factor model is also related to a recent debate in the literature which argues that in

reduced-form factors model studied in the literature the sentiment-investor component has been un-

derstudied. In other words, there should be a clear distinction between factor pricing and behavioural

asset pricing, the second able to capture more distorted beliefs and sentiment driven expectations (see

Kozak et al., 2018). Our model confirms how, when these two factors categories, assuming the decom-

posed SKEW indexes being closely related to market sentiment as deducted by this Chapter, there is

still information which can help to price the stocks portfolios.

When components of sentiment-driven factors are studied they are found to be not aligned with stan-

dard asset pricing factors, thus containing additional information investors might exploit and consider

when pricing their portfolios. This rationale is studied by Kozak et al. (2018) who built a model of a

multiasset market in which fully rational risk averse investors, namely arbitrageurs, trade with investors

whose asset demands are based on distorted beliefs about the true distribution of returns, namely sen-

timent investors. In their model all cross-sectional variation in expected returns is caused by distorted

beliefs the latter being the dominant factors affects prices because it is risky for arbitrageurs to take

the other side. As a result, all deviations of expected returns from the CAPM are caused by sentiment.

Thus, further research combining our intuitions on this topic and the model of Kozak et al. (2018) might

start to investigate how expectations and market sentiment extracted from options in which investors

are classified by being hedgers or speculators might affect the performance of existing asset pricing

29The difference in coefficients’ sign according to the way portfolios are sorted may be due to the presence of value stocks. For
instance, the SKEW indexes signs are found to be negative when values stocks are considered in the sorted portfolios, whereas
positive when the value stocks are excluded (e.g. in the 100 book to market). In relation to the 25 size book-to-market, the
portfolios are constructed at the end of each June and are the intersections of 5 portfolios formed on size (market equity, ME)
and 5 portfolios formed on the ratio of book equity to market equity (BE/ME). With regards to the 100 size book-to-market,
the portfolios are the intersections of 10 portfolios formed on size (market equity, ME) and 10 portfolios formed on the ratio of
book equity to market equity (BE/ME), instead. Portfolios constructed on size ME < 0 are not used and firms with negative
book equity are in only the BE < 0 portfolio. If the ratio is above 1 then the stock is undervalued; if it is less than 1, the stock
is overvalued. A high ratio is means that the stock is a value stock, that is trading cheaply in the market compared to its book
value. More details can be found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html
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models.

4.8 Trading the Implied Skewness: General Considerations

In this section, we discuss general trading strategies involving implied skewness. We divide this section

into two categories of trading strategies with skewness; based on distribution discrepancies (subsection

4.8.1) and based on skew swaps (subsection 4.8.2).

4.8.1 Trading Skew Based on Distributions Discrepancies

From a skewness point of view, deviations of historical state price densities (SPDs) from implied (SPDs)

lead to trading strategies and can be used as market indicators. We provide discussion on options

strategies which could be implemented as well as on what option to buy or to sell when deviations from

the two estimated SPDs are detected. In order to simplify we consider only European calls and puts.

According to Blaskowitz et al. (2004), a skewness trading strategy is supposed to exploit differences in

skewness of two distributions by buying options in the range of strike prices where they are underpriced

and selling options in the range of strike prices where they are overpriced. We recall here the call and

put options pricing equation as in Bakshi et al. (2003). From the option pricing theory we define:

P = exp−rt
∫ ∞
0

max(K1 − ST , 0)q(ST )dST (4.32)

C = exp−rt
∫ ∞
0

max(ST −K2, 0)q(ST )dST (4.33)

where P and C are put and call prices, respectively, r is the risk-free rate, ST is the price of the

underlying at maturity T, and q is a risk-neutral density. We denote two risk neutral distributions

(RNDs) as f∗ and g∗ where f∗ is more negatively skewed than g∗. Then equations 4.32 and 4.33

imply that the price of a European call with strike K2 computed with density f∗ is lower than the price

computed with density g∗. This is due to the fact that f∗ shows less probability mass to prices ST > K2

than g∗. Assuming no arbitrage opportunities, there should be only one risk-neutral density. However,

when the market are not complete or there are different models we rely on, there are in general many

risk-neutral measures. This allows traders to comparing RNDs and models thus entering in positions

and trades based on the model and RND they believe to be the correct one.

A possible trading strategy thus follows: if the call is priced using f∗, but investors believe that

density g∗ is a better approximation of the underlying’s distribution, one would buy the option. On the

other hand, one would sell a put option with strike K1. This will result in a risk-reversal portfolio (e.g.

Blaskowitz et al., 2004).

The portfolio or investment return will be given by the net cash flow from buying and selling calls
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and puts. Usually in a long skew position (buy OTM put and sell OTM call), the implied volatility of the

put purchased has a higher implied volatility than the implied volatility sold through the call. Hence, the

long skew position presents a cost associated with it, sometimes denominated skew theta (see Bennett,

2014). The implied skewness results to be usually overpriced due to hedging and as a result of investors

excessive demand of put options to protect their portfolios against market drops. This intuition further

reinforces our previous results in Section 4.5 and 4.4. OTM puts are found to be associated more

with pessimistic investors and bearish market views, whereas OTM calls with optimistic investors and

bullish market opinions (e.g. Buraschi and Jiltsov, 2006). Another reason for the overpricing of the

implied skew is the fact that investors usually enter short volatility-long skew trades thus entering in

OTM puts positions which protect themselves against sudden market drops. This is consistent with the

discussions in previous sections of this thesis about OTM puts pressure (e.g. Bollen and Whaley, 2004;

Bondarenko, 2014).

4.8.2 Trading Skew Swaps

Kozhan et al. (2013) showed how to construct a trading strategy as a pure bet on the desired return

moment, in our case, the implied skewness. They defined as risk premium or excess return the expected

profit from such a strategy. We follow their notation. Similarly to a variance swap strategy (see Chapter

3), a skew swap strategy can be defined as the difference between the skew physical measure (P) and

the forward pricing measure for a maturity T (Q). Following Bakshi and Madan (2000), if calls and

puts are available for all strikes, one can buy a portfolio at time t that has payoff at time T equal to

g(rt, T ) for an arbitrary function g. Hence, the risk premium associated with this strategy is as follows:

EP
t [g(rt, T )]− EQ

t [g(rt, T )] (4.34)

Since g(rt, T ) changes over time, this strategy involves trading in the options as well as in the

forward market. The fixed leg of the swap can be replicated from calls and puts as shown in Section 4.2

(see also Bakshi et al., 2003). More specifically the fixed leg is the payoff of a position that is long OTM

calls and short OTM puts and its value depends on the options skew in implied volatility. The floating

leg of the skew swap can be considered as a daily realized skewness measure as defined in Neuberger

(2012) which is determined by the covariance between returns and variance shocks. According to

Kozhan et al. (2013), the average realized skew is smaller (in absolute terms) than the average implied

skew, thus resulting in the existence of a skew risk premium. Usually monthly options are used for

trading strategies which run for a month and when one option expires the strategy is rolled to the next

month’s expiration date. This is in line with Aıt-Sahalia et al. (2001) stating that such a strategy is

designed such that we do not change the resulting portfolio until maturity, thus all the options are kept
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until expiration. The realized skewness is rebalanced daily. For more details on a empirical application

of this trading strategy see Kozhan et al. (2013).

The application of the aforementioned trading strategies go beyond the scope of this thesis. How-

ever, further research should start looking at the potential effect of building up skew swap which account

only for half of the asset options distribution (calls and puts) and which consider floating legs based on

half of the asset realized returns and shocks being these either positive or negative. Such strategies may

allow investors to grasp differences among implied and realized skewness according to the state of the

economy and financial market (bullish or bearish). Building up two different skew swaps in the two

different sides of the underlying price distribution will also create an asymmetry which may lead to a

potential additional skew strategy when the positive skew swap and the negative skew swap payoffs are

combined together.

4.9 The Link with Uncertainty and Macroeconomic Indicators

In this last section, we study the predictability power of the SKEW indexes in relation to uncertainty

and macroeconomic indicators. Since the SKEW indexes are computed from options and they are

forward looking measures, we believe they may be useful to monitor and anticipate the uncertainty in

the economy or its downturns. We aim to provide a broader understanding of the economic relevance of

the decomposed forward looking SKEW indexes and their economic predictive power in the spirit of

Bakshi et al. (2011), Allen et al. (2012), Bollerslev et al. (2015) and Almeida et al. (2017). Moreover,

we test whether or not SKEW− better predicts macroeconomic and uncertainty indicators compared

to the aggregate and positive measures. We have shown that SKEW− is more connected with the

tail risk measures in the literature, it reacts more in correspondence to extreme events (see Figure

4.2), thus it is the index proposed in this chapter as a tail risk measure. We specifically focus on

whether or not it contains useful information to predict future macroeconomic downturns or increase

in uncertainty indicators. The role of SKEW and SKEW+ in predicting these indicators is also shown

for comparison.

We select some of the indicators, commonly used in the literature, which track the economic and

macroeconomic activity as well as the macroeconomic, political and geopolitical uncertainty. Data on

the following variables are collected according to their available sample at monthly frequency. Among

the uncertainty indicators we select the Economic Uncertainty Index (EUI) by Bali et al. (2014), the

Economic Policy Uncertainty (EPU) index by Baker et al. (2016), the GeoPolitical Risk (GPR) in-

dex by Caldara and Iacoviello (2018), the CBOE VIX index commonly known as the fear gauge,

the macroeconomic index by Jurado et al. (2015) (MUI) and the CRASH index, already described

in Section 4.3.2 and used here as a proxy for future uncertainty. The Economic Uncertainty Index
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(EUI) by Bali et al. (2014) is a measure of economic uncertainty based on the time varying condi-

tional volatility of macroeconomic and financial variables such as default spread, term spread, short

term interest rate, dividend yield, equity market index, inflation, unemployment rate and GDP available

at http://faculty.msb.edu/tgb27/workingpapers.html. The EPU index by Baker

et al. (2016) is computed from news associated with the ten most important American newspapers,

reflecting the concerns and uncertainty around specific economic or political events. It is collected

from: http://www.policyuncertainty.com/. The GeoPolitical Risk index by Caldara and

Iacoviello (2018) (GPR) is an index computed in a similar way to EPU from newspapers articles asso-

ciated with geopolitical risk and events. The GPR tracks mainly events such as wars, terrorist attacks

or international conflicts. It is available at: https://www2.bc.edu/matteo-iacoviello/

gpr.htm. VIX from CBOE is commonly considered a proxy of market fear. The macroeconomic

index by Jurado et al. (2015) (MUi) is a refined measure of macroeconomic uncertainty from a macro

data set including information in hundreds of macroeconomic and financial indicators available at:

https://www.sydneyludvigson.com/data-and-appendixes/. For more details on the

CRASH Index, see Section 4.3.2. The selected macroeconomic activity indicators are the following: the

Aruoba-Diebold-Scotti macroeconomic conditions index by Aruoba et al. (2009) (ADS), the Chicago

FED National Activity Index, CFNAI and the NBER recession period indicator. The Aruoba-Diebold-

Scotti (ADS) index tracks real business conditions at high frequency and it is based on economic indica-

tors such as initial jobless claims, monthly payroll employment, industrial production, personal income,

etc. It is collected from: https://www.philadelphiafed.org/research-and-data/

real-time-center/business-conditions-index. The Chicago FED National Activity

Index (CFNAI) is a monthly index which tracks the overall economic activity and the inflationary

pressure and it is computed as a weighted average of 85 monthly indicators and it is collected from:

https://www.chicagofed.org/publications/cfnai/index. The NBER recession pe-

riod indicator for the U.S. is a dummy variable taking 1 in recession and 0 in expansion periods accord-

ing to NBER and it available at: https://fred.stlouisfed.org/series/USREC.

We run the following regression in relation to the uncertainty indicators predictability.

IndicatorsUnc,t+i = β0 + βSKEW k
t +

11∑
i=0

γiIndicatorsUnc,t−i + εt, (4.35)

where IndicatorsUnc,t+i is one among the uncertainty indicators, namely, EUI, EPU, GPR, VIX ,

MUi and CRASH. i = 1, ..., 12 is indexed for the forecasting horizon up to one year. We regress the

selected indicators on the SKEW indexes, with k = Tot,+,−, and we control for up to 12 lags of the

endogenous variable. The results are presented in Table 4.21 and Table 4.22. For every horizon up to

one year, we report the predictability of SKEW , SKEW+ and SKEW− , in this order.
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Table 4.21: SKEW Indexes Uncertainty Indicators Prediction (1)

Forecast EUI t-stat R2 EPU t-stat R2 GPR t-stat R2

1 β -0.005 [-2.505] 96.4 -0.247 [-1.457] 72.7 0.590 [1.347] 64.4
β+ 0.004 [0.673] 96.4 -0.284 [-0.760] 72.5 -0.929 [-1.170] 64.1
β− -0.008 [-2.477] 96.4 -0.514 [-3.021] 73.6 0.215 [0.528] 64.1

2 β -0.010 [-3.291] 92.2 -0.296 [-1.297] 60.5 0.598 [0.883] 34.9
β+ 0.013 [1.448] 92 -0.022 [-0.045] 60.2 0.314 [0.312] 34.5
β− -0.017 [-2.999] 92.4 -0.515 [-2.415] 61.4 0.172 [0.284] 34.5

3 β -0.019 [-3.987] 86.9 -0.186 [-0.832] 55.7 0.450 [0.622] 26.2
β+ 0.009 [0.677] 86.6 0.405 [0.745] 55.6 2.035 [1.256] 26.5
β− -0.029 [-3.651] 87.6 -0.385 [-1.873] 56.2 0.279 [0.474] 26.1

4 β -0.028 [-3.896] 82.1 -0.153 [-0.683] 52.8 0.544 [0.763] 23.6
β+ 0.025 [1.545] 81.4 0.416 [0.683] 52.8 3.332 [1.464] 24.9
β− -0.037 [-3.928] 83 -0.406 [-2.065] 53.5 0.722 [1.278] 24

5 β -0.037 [-3.936] 76.6 -0.1562 [-0.664] 49.6 0.540 [0.731] 22.2
β+ 0.028 [1.628] 75.3 -0.421 [-0.762] 49.6 2.184 [1.236] 22.5
β− -0.045 [-4.087] 77.7 -0.477 [-2.328] 50.5 0.724 [1.207] 22.6

6 β -0.043 [-4.066] 71.8 -0.159 [-0.534] 45 0.454 [0.623] 19.7
β+ 0.055 [2.495] 70.4 0.379 [0.573] 44.9 1.892 [1.130] 20
β− -0.048 [-4.046] 72.8 -0.456 [-1.734] 45.8 0.417 [0.666] 19.7

7 β -0.048 [-4.144] 66.3 -0.069 [-0.220] 42.1 0.689 [0.939] 17.2
β+ 0.047 [2.183] 64.4 0.675 [1.133] 42.3 0.891 [0.655] 16.8
β− -0.052 [-4.282] 67.4 -0.383 [-1.383] 42.7 0.389 [0.587] 16.9

8 β -0.054 [-4.138] 61.4 -0.049 [-0.179] 42.6 0.370 [0.499] 17.5
β+ 0.062 [2.712] 59.1 0.435 [0.608] 42.7 -1.190 [-0.763] 17.6
β− -0.057 [-4.417] 62.6 -0.285 [-1.162] 43 0.258 [0.419] 17.4

9 β -0.062 [-3.917] 55.6 -0.010 [-0.037] 42.6 0.426 [0.609] 18.8
β+ 0.075 [3.121] 52.8 0.299 [0.453] 42.6 0.763 [0.426] 18.7
β− -0.065 [-4.171] 57 -0.329 [-1.408] 43 0.707 [1.298] 19.3

10 β -0.071 [-3.880] 49.8 -0.144 [-0.509] 41.1 0.751 [1.172] 18.9
β+ 0.083 [3.338] 46.4 -0.275 [-0.445] 41 0.866 [0.557] 18.4
β− -0.073 [-4.034] 51.7 -0.481 [-2.039] 42 0.927 [1.794] 19.5

11 β -0.073 [-3.966] 43.9 -0.247 [-0.813] 37.1 0.951 [1.595] 19.1
β+ 0.081 [3.156] 40 -0.454 [-0.619] 37 -0.884 [-0.787] 18.3
β− -0.078 [-4.028] 46.2 -0.141 [-0.503] 37 0.904 [1.972] 19.3

12 β -0.082 [-4.144] 39.2 -0.444 [-1.454] 33.8 0.868 [1.559] 19.2
β+ 0.103 [3.858] 34.8 -0.009 [-0.012] 33.2 0.503 [0.305] 18.4
β− -0.086 [-4.067] 42 -0.051 [-0.197] 33.2 0.856 [2.160] 19.4

Notes: This table presents the results of the predictive regressions estimated through equation 4.35 between the total
SKEW and the decomposed SKEW+ and SKEW− , and the selected uncertainty proxies, such as, the Economic
Uncertainty Index (EUI) by Bali et al. (2014), the Economic and Policy Uncertainty (EPU) by Baker et al. (2016) and the
GeoPolitical Risk Index (GPR) by Caldara and Iacoviello (2018). OLS regressions are estimated controlling for 12 lags
of the dependent variable and Newey (1987) t-statistics are reported in square brackets. R2 are shown in percentage. The
selected period for all the variables is from 01-1996 to 12-2017.

SKEW and SKEW− contain useful information to predict future levels of EUI for all the horizons,

while SKEW+ only for 6-12 months horizons. Even if SKEW and SKEW− show similar predictive

ability, higher R2 are associated with the negative SKEW measure. The Economic Uncertainty Index

by Bali et al. (2014) is obtained from the first principal component of eight factors. It is found to be

higher during bad states of economy, low output growth and low economic activity. The negative co-

efficients carried by SKEW− in predicting future levels of EUI might be justified from the negative

correlation the two indexes share (-22%), and from the fact that SKEW− tends to anticipate the per-

ception of decreasing business conditions being extracted from options. Interestingly, SKEW− is the

only index found to be able to forecast future level of EPU index, mainly from 1-month to 6-month

horizons. SKEW− is also the only implied skewness index which is able to predict the GPR index and

the macroeconomic uncertainty index (MUi) mainly at long horizons, from 10 to 12 months and from

9 to 12 months, respectively.
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The fact that information coming from the put options are useful to predict well EPU and GPR

reflects the investors’ fear regarding economic, political and geopolitical uncertainty. Future levels of

VIX are predicted well by all the SKEW indexes. SKEW and SKEW− predict VIX between 2 and

10 months with same negative relationship consistent with Figure B1 and with the findings in Section

4.4. The R2 carried by SKEW− are higher than the ones carried by SKEW . SKEW+ predicts VIX

well at almost all the horizons within one year with positive relationship. This is consistent with the

market sentiment interpretation illustrated in Section 4.4 since VIX is, sometimes, considered a market

sentiment proxy.

The negative correlation between SKEW and SKEW− and VIX is also shown in Table 4.1 with

the one between VIX and SKEW− almost double the one between VIX and SKEW . On this line,

the negative coefficients found, most of the time, between SKEW and SKEW− , and EPU can be

interpreted as a consequence of the negative relationship between SKEW indexes and VIX and the

positive between VIX and EPU (see Baker et al., 2016)30. On the other hand, the overall positive

relationship between SKEW indexes and GPR is consistent with the fact that the geopolitical index

show a negative relationship with VIX (see Caldara and Iacoviello, 2018). This might be interpreted

from the nature of the events to which the SKEW indexes and these uncertainty indexes react31. GPR

as well as SKEW− do not appear to respond to financial events in the same way as VIX and EPU

(see also Figure 4.2)32. Thus, the positive coefficients between SKEW and SKEW− , and GPR may

be due to the events to which the indexes react which are of a similar nature. SKEW− is found also

the only index containing information to forecast the CRASH index between 2 and 7 months. The

coefficients signs between the SKEW indexes and CRASH index confirm the results of Table 4.2. The

positive relationship between CRASH and SKEW− is consistent with the fact that both measures carry

information about investors’ perceptions about catastrophic events.

We also check the predictability power of the SKEW indexes with regards to some macroeconomic

indicators running the following:

IndicatorsMacro,t+i = β0 + βSKEW k
t +

11∑
i=0

γiIndicatorsMacro,t−i + εt, (4.36)

where IndicatorsMacro,t+i is one among the macroeconomic indicators, namely, ADS, CFNAI and

NBER. i = 1, ..., 12 is indexed for the forecasting horizon up to one year. We regress the selected

macroeconomic indicators on the SKEW indexes, with k = Tot,+,−, and we control for up to 12

lags of the endogenous variable. A probit regression is estimated for the dummy NBER variable. The

30Baker et al. (2016) shown VIX to have a correlation of 58% with the EPU index. We find the EPU index and VIX to be
positively correlated at 42%.

31The GPR index captures events such as wars, terrorist attacks and global conflicts and appears to carry an additional source
of risk compared to the EPU index. The GRP index and SKEW− react to events, such as, 9/11, Iraq invasion, Syria War,
Ukraine-Russia conflict and ISIS escalation. See also Figure 4.2.

32EPU index as well as VIX react to most of the economic downturn and financial crisis. On the other hand, GPR is found to
show an almost nil correlation with VIX and low correlation with EPU.
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Table 4.22: SKEW Indexes Uncertainty Indicators Prediction (2)

Forecast VIX t-stat R2 (%) MUi t-stat R2 (%) CRASH t-stat R2 (%)

1 β -0.028 [-0.830] 71.7 -0.001 [-0.199] 96.4 0.002 [0.133] 93.2
β+ 0.157 [1.659] 71.9 0.002 [0.531] 96.4 -0.014 [-0.276] 93.2
β− -0.017 [-0.457] 71.7 -0.001 [-0.440] 96.4 0.024 [1.502] 93.3

2 β -0.093 [-1.840] 51 -0.002 [-0.355] 88.1 0.010 [0.319] 83.1
β+ 0.193 [1.904] 50.8 0.003 [0.421] 88.1 -0.064 [-0.730] 83.2
β− -0.098 [-1.731] 51.1 -0.002 [-0.419] 88 0.052 [1.822] 83.4

3 β -0.114 [-1.834] 40.5 -0.005 [-0.694] 76.1 0.032 [0.735] 70.6
β+ 0.22 [1.935] 40.2 0.005 [0.591] 76 -0.104 [-0.874] 70.7
β− -0.124 [-1.790] 40.8 -0.005 [-1.008] 76.1 0.084 [2.243] 71.2

4 β -0.152 [-2.290] 35.0 -0.001 [-1.085] 64.6 0.045 [0.886] 57.5
β+ 0.223 [1.781] 34.1 0.009 [0.880] 64.4 -0.187 [-1.338] 57.7
β− -0.164 [-2.077] 35.5 -0.009 [-1.447] 64 0.101 [2.315] 58.2

5 β -0.155 [-2.460] 30.4 -0.001 [-1.119] 53.2 0.033 [0.589] 47.6
β+ 0.438 [2.535] 30.9 0.009 [0.749] 52.9 -0.166 [-1.129] 47.8
β− -0.162 [-2.072] 30.8 -0.001 [-1.710] 53.6 0.102 [2.060] 48.5

6 β -0.183 [-2.645] 25.9 -0.001 [-0.863] 44.5 0.031 [0.476] 37.5
β+ 0.516 [1.953] 26.6 0.009 [0.743] 44.3 -0.114 [-0.733] 37.6
β− -0.195 [-2.629] 26.5 -0.001 [-1.493] 45.1 0.109 [1.938] 38.5

7 β -0.161 [-2.262] 22.8 -0.001 [-0.753] 37.4 0.026 [0.391] 34.3
β+ 0.401 [1.546] 22.9 0.009 [0.610] 37.2 -0.104 [-0.632] 34.4
β− -0.188 [-2.531] 23.7 -0.001 [-1.290] 38.1 0.100 [1.684] 35.1

8 β -0.145 [-1.996] 21.3 -0.009 [-0.620] 30.9 0.012 [0.174] 33
β+ 0.373 [1.864] 21.5 0.002 [0.108] 30.7 -0.059 [-0.340] 33.1
β− -0.173 [-2.371] 22.2 -0.002 [-1.535] 32.3 0.099 [1.622] 33.9

9 β -0.174 [-2.615] 20.5 -0.008 [-0.571] 25.4 -0.018 [-0.236] 32.3
β+ 0.441 [1.857] 20.6 0 [-0.018] 25.2 -0.092 [-0.489] 32.3
β− -0.189 [-2.896] 21.2 -0.002 [-1.799] 27.9 0.086 [1.405] 32.9

10 β -0.164 [-2.340] 19.8 -0.001 [-0.693] 20.5 -0.042 [-0.524] 31.7
β+ 0.605 [2.277] 22 0.004 [0.259] 20.3 -0.125 [-0.632] 31.7
β− -0.170 [-2.491] 20.3 -0.003 [-2.021] 24 0.066 [1.048] 32

11 β -0.117 [-1.620] 18.6 -0.001 [-0.738] 15.6 -0.071 [-0.848] 30
β+ 0.568 [2.570] 21.1 0.001 [0.756] 15.5 -0.178 [-0.853] 30
β− -0.119 [-1.821] 18.7 -0.003 [-2.101] 19.5 0.037 [0.589] 29.8

12 β -0.112 [-1.531] 17.0 -0.008 [-0.541] 11.5 -0.103 [-1.196] 29
β+ 0.485 [2.684] 18.7 0.001 [1.127] 11.6 -0.277 [-1.404] 29.1
β− -0.097 [-1.555] 16.9 -0.003 [-2.129] 15.6 0.005 [0.080] 28.4

Notes: This table presents the results of the predictive regressions estimated through equation 4.35 between the total SKEW and the
decomposed SKEW+ and SKEW− , and the selected uncertainty proxies, such as the macroeconomic uncertainty index (MUi)
by Jurado et al. (2015), the VIX index by CBOE and the CRASH index from the Yale School of Management. OLS regressions are
estimated controlling for 12 lags of the dependent variable and Newey (1987) t-statistics are reported in square brackets. R2 are shown
in percentage. The selected period for all the variables is from 01-1996 to 12-2017 except for MUi (01-1996 to 09-2011).

results are presented in Table 4.23.

All the SKEW indexes exhibit significant predictive power for ADS from 4-month to 10-month

horizons, however SKEW− and SKEW+ predict ADS also at longer horizons. SKEW− is found to

predict well future levels of CFNAI at all the horizons up to one year, whereas SKEW+ only starting at

the 4-month horizon and SKEW only between 4-10 months. The probit model estimation shows that

SKEW and SKEW− predicts really well future recessions (NBER recession periods). The predictive

power spans all the year with SKEW− showing higher R2 compared to the aggregate. SKEW+ is

only able to predict recession from 8 to 12 months horizons. The signs of the coefficients reflect the

negative correlation between SKEW and SKEW+ and the positive correlation between SKEW and

SKEW− . Interestingly, positive coefficients are found between SKEW and SKEW− and macroeco-

nomic indicators, such as, ADS and CFNAI. This can be due to trading activity reasons. The better

the business and economic conditions the higher the investors’ trading volume which for S&P 500 is
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Table 4.23: SKEW Indexes Macroeconomic Activity Prediction

Forecast ADS t-stat R2 (%) CFNAI t-stat R2 (%) NBER t-stat R2 (%)

1 β 0.001 [0.758] 87.4 0.004 [1.229] 64.9 -0.168 [-2.279] 83
β+ 0.005 [0.994] 87.4 0.003 [0.306] 64.7 0.06 [0.734] 78
β− 0.002 [1.149] 87.4 0.007 [2.001] 65.2 -0.025 [-2.251] 86.4

2 β 0.004 [1.370] 65.4 0.003 [0.769] 62.3 -0.207 [-3.084] 73
β+ 0.008 [0.090] 65.1 0.002 [0.020] 62.3 0.065 [1.007] 63
β− 0.005 [1.491] 65.4 0.006 [1.693] 62.6 -0.240 [-3.452] 78

3 β 0.006 [1.578] 57 0.007 [1.611] 55.3 -0.149 [-3.196] 59.9
β+ -0.019 [-1.863] 57 -0.011 [-0.912] 55.0 0.063 [1.107] 51.0
β− 0.005 [1.491] 57 0.008 [1.935] 55.5 -0.161 [-3.639] 63.9

4 β 0.008 [1.803] 49.6 0.009 [1.895] 45.8 -0.109 [-3.061] 47.6
β+ -0.027 [-2.578] 49.8 -0.036 [-2.487] 46.3 0.063 [1.2] 40.5
β− 0.006 [1.736] 49.4 0.010 [2.306] 46.1 -0.127 [-3.640] 52.1

5 β 0.011 [2.195] 41.7 0.010 [1.870] 37.3 -0.105 [-3.222] 39.2
β+ -0.019 [-2.113] 41 -0.015 [-1.289] 36.7 0.044 [0.882] 31
β− 0.009 [2.086] 41.7 0.012 [2.308] 37.8 -0.136 [-4.016] 46.1

6 β 0.014 [2.496] 34.3 0.012 [2.004] 31.5 -0.103 [-3.360] 32
β+ -0.017 [-1.669] 32.9 -0.021 [-1.642] 30.9 0.018 [0.389] 22.7
β− 0.011 [2.148] 34 0.013 [2.312] 32 -0.169 [-4.437] 44.1

7 β 0.012 [2.221] 25 0.015 [2.371] 22.9 -0.108 [-3.622] 26.9
β+ -0.019 [-1.709] 24.8 -0.027 [-1.773] 22 0.043 [0.977] 16.5
β− 0.012 [2.209] 26 0.016 [2.519] 23.5 -0.17 [-4.663] 39.5

8 β 0.012 [2.022] 19.3 0.011 [1.723] 19.9 -0.105 [-3.703] 21.7
β+ -0.027 [-2.399] 18.9 -0.027 [-1.940] 19.8 -0.078 [1.890] 12.4
β− 0.014 [2.307] 20.3 0.017 [2.632] 21.6 -0.129 [-4.516] 29.5

9 β 0.016 [2.317] 15.9 0.016 [2.161] 16.7 -0.094 [-3.577] 18.1
β+ -0.039 [-3.070] 15.5 -0.041 [-2.850] 16.5 0.087 [2.105] 10.6
β− 0.016 [2.237] 16.6 0.018 [2.242] 17.6 -0.096 [-4.055] 21.5

10 β 0.014 [2.109] 11.4 0.018 [2.386] 11.8 -0.089 [-3.532] 15.5
β+ -0.039 [-3.004] 11.5 -0.043 [-2.904] 11.3 0.106 [-3.822] 9.8
β− 0.015 [2.062] 12.2 0.021 [2.509] 13.3 -0.085 [2.582] 17.4

11 β 0.010 [1.637] 7.4 0.011 [1.610] 8.2 -0.082 [-3.390] 12.7
β+ -0.036 [-2.922] 8.2 -0.033 [-2.047] 8.3 0.118 [2.848] 8.9
β− 0.013 [1.774] 8.4 0.018 [2.155] 10 -0.076 [-3.627] 14.1

12 β 0.010 [1.550] 5 0.013 [1.623] 6 -0.075 [-3.224] 10.1
β+ -0.043 [-3.285] 6.5 -0.035 [-2.069] 6 0.124 [3.022] 8.1
β− 0.012 [1.711] 5.9 0.019 [2.258] 8.1 -0.076 [-3.448] 11.4

Notes: This table presents the results of the predictive regressions estimated through equation 4.36 between the total SKEW and the
decomposed SKEW+ and SKEW− , and some macroeconomic conditions indicators such as the Aruoba-Diebold-Scotti Business
Conditions Index (ADS), the Chicago FED National Activity Index (CFNAI) and the NBER recession dummy variable (NBER).
OLS regressions are estimated controlling for 12 lags of the dependent variable and Newey (1987) t-statistics are reported in square
brackets. For NBER, a Probit regression is estimated and the z-statistics are reported in square brackets. R2 are shown in percentage
and for NBER the McFaddenR2, in percentage, are reported. All the indexes are taken at monthly frequency for the full sample from
01:1996 to 12:2017, except for ADS (01:1996 to 04:2014).

mainly generated by puts trading. The positive relationship between macroeconomic indicators and

SKEW− might also come from their correlation being 25% between SKEW− and CFNAI and 20%

between SKEW− and ADS. When these two macroeconomic indicators (correlated at 90%) decrease,

we also find our tail risk measure to be lower. In calm periods, which might coincide with periods of

better-than-average business conditions, according to Aruoba et al. (2009) – ADS – index, SKEW− is

found to be higher as well since investors are scared of a possible future tail events. Same intuition may

apply for the positive coefficients found between SKEW− and CFNAI.

There is a negative correlation between SKEW− and SKEW on one side and the NBER recession

indicator, on the other. While NBER dummy variable is activated when the recession has already

started, SKEW− tracks in a forward looking way the tail risk perception associated with the likelihood

of the recession occurrence. The negative sign suggests that investors have limited beliefs regarding
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another recession when they are in the midst of it (see Figure 4.2). Same considerations may be applied

to the negative coefficient sign found between EPU and EUI and SKEW− and it may be associated

with the counter-cyclical relationship between current uncertainty measures and the forward looking

implied skewness.

4.10 Conclusion

This chapter exploits further information enclosed in the implied skewness extracted model-free from

the U.S. equity index options market, by decomposing it into its positive and negative components,

namely, SKEW+ and SKEW− . These indexes reflect investors’ belief characteristics that are uncap-

tured by other tail risk measures proposed in the literature. These newly proposed indexes can be used

to depict an improved financial market risk picture. The information revealed by other risk and tail

risk measures in the literature can be augmented by supporting implied skewness measures, especially

when these are decomposed.

By disentangling the information contained in the two portfolios of S&P 500 options, provide new

insight into the investors’ perceptions and associated sentiment reflected in the two components. By

relating the SKEW indexes extracted from options with market sentiment proxies, we acknowledge

that, most of the time, the aggregate SKEW index may be influenced by the positive information flows

coming from the calls market side, leading to a possible bias in the measurement of the market tail risk.

Hence, we advocate to separate the market view on skewness that conveys information about the left

tail risk from the market view on skewness on the more speculative right tail.

We show how SKEW+ extracted from the call side appears to be more connected to the equity mar-

ket as well. A predictive analysis conducted in this chapter shows that SKEW+ is more informative

for predicting future equity market premia at short horizons, both in-sample and also out-of-sample.

SKEW+ predicts well the U.S. financial markets premia, while SKEW− is found helpful for interna-

tional stock market index predictability. The decomposed SKEW indexes confirm their predictability

power even when added next to the principal components extracted from the Goyal and Welch (2008)

set of macroeconomic variables. The information content of the decomposed implied skewness in-

dexes is found useful for forecasting a good proportion of individual stocks included in the S&P 500

both from the 30 largest and also from the 30 smallest stocks by market capitalization.

An asset pricing exercise further confirms the superior power of the SKEW− and SKEW+ when

compared to the aggregate indexes. We found evidence that when we augment the original Fama and

French (1993) three-factor model and the more recent Fama and French (2017) five-factors models

with the decomposed implied SKEW measures, we obtain improved asset pricing results. Our anal-

ysis highlights the role played by SKEW+ during the pre-crisis bull market period, that then gyrated
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towards SKEW− during the post global financial crisis period.

We find SKEW− to be the index more related to fundamentals, more connected to previous tail

risk measures in he financial literature and it has been identified to react more to extreme tail events

along our time frame. We proposed employing SKEW− as a more reliable and prudent tail risk index,

reflecting the information encapsulated in the puts market, investors’ fear and uncertainty. Indeed, the

forward looking SKEW− index is found to be useful in explaining future movements of uncertainty

indicators as well as a potential recession periods monitoring tool.

There is something left to discover about tail risk even after having absorbed the information en-

closed in other macroeconomic predictors and financial risk measures. Of great importance is the

interaction between implied skewness and implied volatility, risk premia, market sentiment and future

equity premium. Our chapter contribute to the existing literature by showing how the decomposed im-

plied skewness measures contain helpful information for asset pricing purposes. Of interest is, also, the

monitoring of future macroeconomic and economic conditions as well as of increasing uncertainty and

possible recessions for financial stability purposes. Our findings identify this highly valuable informa-

tive part as located in the left side of the risk-neutral distribution of equity market indexes.
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Chapter 5

Asymmetric Connectedness of Fears

in the U.S. Financial Sector

5.1 Introduction

Different expectations about future values of stocks extracted from call and put options influence

system-wide beliefs in the financial market. A shock to forward-looking market views associated with

call options may then propagate through the system with a different strength than a similar shock to put

options information. It is of interest to study how investors in the financial system interact and how they

can create risk. The unequal impact of “fears” spreading into the system may create asymmetric con-

nections within the financial sector. In this chapter, we highlight the connections’ asymmetry on both

sides of the stock options market, and we introduce a new connectedness measure derived from the im-

plied volatility extracted from individual financial institutions’ options. This tool can be beneficial for

monitoring the level of “fear” connectedness in the financial sector by exploiting forward-looking in-

vestors’ expectations. In particular, we would like to answer the following important research question:

“is there any signal relevant to economic downturns embedded in the asymmetric fears connectedness

in the financial sector?” To answer this question, we first produce a new data set of daily implied

volatility-type measures from call options only and put options only, respectively. Then, we assemble

a new asymmetric fear connectedness index used as a forward-looking systemic risk monitoring tool.

Our main focus on the connectedness of the main U.S. financial stocks is motivated by the idea

that financial institutions have always been under the magnifying glass of investors, practitioners and

academics for their pivotal role in systemic risk terms. Excellent discussions along this line can be

found in Billio et al. (2012), Diebold and Yılmaz (2014) and Baruník and Křehlík (2018). De Bandt and

Hartmann (2002) and Allen et al. (2012) pointed out that the financial sector’s systemic risk exposure
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may lead to macroeconomic decline and macroeconomic contagion, so it should be closely monitored.

Systemic risk in the financial sector has been identified to predict future economic downturns (Allen

et al., 2012). In our work, we consider forward-looking information embedded in implied volatility

measures extracted from stock call and put options prices. Comparison of the both sides of the market

yields an important insight about asymmetric views of market participants about future volatility of the

U.S. financial sector that can be used to predict economic downturns as well as periods of exuberance.

The methodological framework for measuring connectedness is anchored in the financial connect-

edness literature, which is spanned by Diebold and Yilmaz (2009, 2012); Diebold and Yılmaz (2014);s

seminal papers. While the literature on volatility spillover and contagion is immense (see Bae et al.,

2003; Engle et al., 2012; Beirne and Fratzscher, 2013; Bekaert et al., 2014; Diebold and Yilmaz, 2015)

or Gagnon and Karolyi (2006) for an excellent survey, quantifying connectedness via variance de-

compositions from a vector autoregression approximation model has attracted a great deal of attention

recently. We provide a more in-depth overview on the literature about returns spillovers, volatility

spillovers and connectedness in Chapter 2.

Previous literature relies on historical volatility measures1. We contribute to the existing volatility

spillovers literature by replacing the standard methodology used in the original Diebold and Yilmaz

(2012) spillovers index to take into account the different reactions of stocks to good or bad news in

a separate call-put framework. This allow us to link this research to a growing strand of literature

studying the asymmetric characteristics of volatility (see Barndorff-Nielsen et al., 2010; Patton and

Sheppard, 2015; Segal et al., 2015; Feunou et al., 2017; Kilic and Shaliastovich, 2018). We believe that

a more informative analysis can be achieved by employing information from the stock option prices of

individual companies, such that forward-looking measures can be calculated for “fear connectedness”.

Call and put options carry different information; hence, we further decompose the individual bank’s

“fear” index VIX into upside and downside components extracted from calls and puts only (henceforth

denoted as VIX+ and VIX− , respectively). We refer to “fear” connectedness when fear is generated by

the aggregated VIX index, well known as the “fear” index in the literature. Thus, in order not to detach

this label from the decomposed implied volatility indexes, we denote upside “fear” connectedness when

fear is generated by VIX+ and downside “fear” connectedness when fear is generated by VIX− .

We derive the asymmetric fear connectedness (AFC) index from stock option prices and study the

interdependence among market expectations about individual institutions to see how they are connected

within the financial system network. The “fear” contagion within the financial system depends on the

structure of the financial network, its integration and diversification (see Elliott et al., 2014). Thus,

we investigate the structural characteristics of the system focusing on directional implied volatility (or

1The volatility in Diebold and Yilmaz (2012) is computed using daily high and low assets’ prices following Parkinson (1980)
methodology: for the asset i on day t the daily variance is: σ̃2

it = 0.361[ln(Pmaxit )− ln(Pminit )]2 where Pmaxit is the high

price on day t and Pminit is the daily low price. The corresponding annualized daily percent volatility is σ̃it = 100
√

365× σ̃2
it.
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“fear” ) connectedness.

The main contribution in this chapter is the construction of a forward-looking monitoring tool ex-

tracted from stock option prices, that is, an asymmetric fear connectedness measure. When constructed

from put options only, the new measure reflects investors’ negative future expectations associated with

“bad” volatility (e.g., Segal et al., 2015), which could be linked to a possible decrease in economic

growth and equity value and an increase in uncertainty (see Baruník et al., 2016; Feunou et al., 2017).

Moreover, in some cases, volatility may reflect a upside direction associated with events that may trig-

ger higher returns. Connectedness can create links between the sources and uses of funds, as savings are

channeled into investments, international trade, regional and global capital market integration, and the

coordination of global financial regulation and accounting standards (see Diebold and Yilmaz, 2015).

Thus, there might be some events related to U.S. financial institutions that could be considered harmful

because they increase “bad” volatility and can transmit across the system, creating the downside con-

nectedness. However, other events that will increase “good” volatility and transmit across the system

can create upside connectedness (see Segal et al., 2015; Baruník et al., 2016; Feunou et al., 2017). For

instance, Kilic and Shaliastovich (2018) found a “synergy” between the good and bad components of

the variance risk premium when they are included in the same model, increasing return predicability

compared to the aggregate measure of the variance premium. In addition, they found that the variance

premium decomposition uncovers long-horizon return predictability, where the aggregate variance pre-

mium fails instead.

Since connectedness measures may be directly related to network theory and to systemic risk mea-

sures (Diebold and Yılmaz, 2014), this study also contributes to the systemic risk literature. Funda-

mental information transmission from one bank to another has also been considered as a source of

banks’ connectedness. Correlated returns among banks can make depositors and investors run from

one bank to another, generating panic (Chen, 1999). Banks might be further linked through deposits or

asset liquidity (see Dasgupta, 2004; Cespa and Foucault, 2014). Systemic risk may also come from the

interaction between asset commonality and funding maturity through an informational channel. This

systemic risk is higher, especially when bad information about banks’ future solvency arrives in the

economy and the asset structures are clustered (see Allen et al., 2012). All these market situations can

be better understood in a more general framework for banks’ information contagion based on volatility,

since good or bad news in relation to the bank influences the banks’ stock volatility.

In contrast to the previous literature measuring systemic risk, we provide an ex ante systemic risk

alarm bell extracted from the individual U.S. financial stock option prices in order to anticipate the

propagation of systemic risk in the financial sector. Other measures of systemic risk that are based

on interconnectedness and network spillovers among banks and financial institutions are discussed in

Billio et al. (2012), Diebold and Yılmaz (2014), Hautsch et al. (2014) Härdle et al. (2016) and Geraci
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and Gnabo (2018). Baruník and Křehlík (2018) argue that changes in investors’ expectations will have

a significant impact on the market. Thus, by considering decomposed implied volatility indexes, we

can shed new light on directional forward-looking connectedness measures.

We focus on the separate behavior of the connectedness of single equity VIX indexes. Our anal-

ysis indicates that the downside implied volatility inflates mainly during turbulent periods, reflecting

“fear” among investors. Employing the asymmetric fear connectedness measure for the ten main U.S.

financial institutions, we identify a clear predominance of “fear” connectedness coming from upside

implied volatility. We examine the predictive power of our connectedness measures with respect to

macroeconomic and uncertainty indicators in the spirit of Allen et al. (2012), and we find that the de-

composed fear connectedness measures perform better than the aggregate measure and they can predict

future economic activity, recession and VIX level. We also provide a ranking of the top ten financial

institutions in the U.S. by classifying them into net upside or net downside transmitters or receivers.

In addition, we confirm the different roles played by VIX+ and VIX− on the net fear connectedness

indexes, especially when we focus on specific company events.

The remainder of this chapter is organized as follows. Section 5.2 describes the data and it illustrates

the calculation of the individual financial stocks’ implied volatility indexes and their decomposition

into upside and downside measures. Section 5.3 introduces the computation of ex ante asymmetric fear

connectedness measure. Section 5.4 reports the results for the static and dynamic analyses in relation

to the aggregate implied volatility measures, while Section 5.5 shows the static and dynamic results

with regards to the upside and downside asymmetric measures. We also investigate the net upside and

net downside connectedness for specific financial institutions. In Section 5.6, a series of results are

reported, highlighting the predictive power of the “fear” connectedness measures for future levels of

economic indicators and uncertainty proxies. Finally, Section 5.8 concludes the chapter. Additional

material for this Chapter is reported in Appendix C.

5.2 Data and Implied Volatility Decomposition

Implied volatility reveals the market’s expectations and is often used as an ex ante measure of investor

sentiment. Since we aim to measure the ex ante connectedness of the U.S. financial sector, we apply

the VIX methodology (see CBOE, 2009) to create a proxy “VIX Index” for the ten main U.S. banks.

5.2.1 Data on U.S. Financial Institutions

The study focuses on the following ten major financial institutions representing the financial sector

of the U.S. economy: J.P. Morgan (JPM), Bank of America (BAC), Wells Fargo (WFC), Citigroup

(C), Goldman Sachs (GS), Morgan Stanley (MS), U.S. Bancorp (USB), American Express (AXP),
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PNC Group (PNC) and Bank of New York Mellon (BK). Daily option prices were collected from

OptionMetrics2 for each of the banks, while financial information and market prices are collected from

Bloomberg. The same set of firms has already been studied in the previous literature (see Diebold and

Yılmaz, 2014; Baruník and Křehlík, 2018) and, therefore, by keeping the same sample, we can compare

our findings to those of previous studies. The dataset ranges from 03-01-2000 to 29-12-2017, covering

the most recent crisis and the remarkable boom that occurred after the crisis. Our sample contains 4528

daily observations for each series.

Table 5.1 describes the characteristics of the U.S. financial companies in our sample. The company

tickers are reported in the second column and their main business area in the third column. Market

capitalization and stock price are considered both as the average values over the 2000-2017 period and

as a 2017-only value.

Table 5.1: U.S. Financial Companies Description

Company Ticker Business MktCap Stock Price

Average 2017 Average 2017

JP Morgan Chase & Co. JPM Com Bank 165.046 371.052 46.91 106.94
Bank of America Corp. BAC Com Bank 155.131 307.912 26.33 29.52
Wells Fargo Co. WFC Com Bank 160.769 298.755 34.07 60.67
Citigroup Inc. C Com Bank 175.757 196.740 233.62 74.41
Goldman Sachs GS Inv Bank 70.304 99.816 141.35 254.76
Morgan Stanley MS Inv Bank 58.660 94.860 38.92 52.47
US Bancorp USB Com Bank 58.212 88.916 31.09 53.58
American Express AXP Credit Card 64.119 86.201 53.06 99.31
PNC Group PNC Com Bank 30.020 68.653 67.33 144.29
Bank of New York Mellon BK Com Bank 35.747 55.154 35.94 53.86

Notes: This table shows the main characteristics of each selected U.S. financial institution, including their tickers, their
business (commercial bank or investment bank), their market capitalization (in billions of U.S. dollars) and their stock
prices. These last two areas of financial information are reported both for the average period between 2000 and 2017 or
only for the end-of-the-year 2017.

5.2.2 Individual Upside and Downside Implied Volatilities of U.S. Financial In-

stitutions

We apply the CBOE VIX index methodology as already described in details in Chapter 3 to a set

of out-of-the-money (OTM) financial stocks options for the ten main U.S. financial institutions. The

calculation is based on the weighted average of 1-month and 2-month expirations. When less than 3

days are left to the expiration date, the considered maturity is rolled and the 2nd and the 3rd months

options are used instead of the first month. The option maturity changes every month in correspondence

to the third Friday of the month. The same OTM options selection and filter rules discussed in Chapter

3 in order to screen out options as for the CBOE VIX methodology are applied here: options are filtered

leaving out options with bid price equal to zero, options with prices below or above two consecutive

2Data on U.S. stocks’ options are specifically collected from IvyDBUS/v3.1/History/IVYOPPRCD and IvyD-
BUS/v3.1.1/History/IVYOPPRCD at ftp.ivydb.com.
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zero bid prices and options with less than 2 days expiration. We compute the individual equity VIX

index for the j = 1, . . . , 10 banks.

VIXj = 100

√
365

30

[
T1σ2

VIXj
(T1)

N2 − 30

N2 −N1
+ T2σ2

VIXj
(T2)

30−N1

N2 −N1

]
. (5.1)

In order to compute the upside and downside components of the single stock VIXj , we consider

call options and put options separately. Using call options (i.e., Ki ≥ K0) in the equation allows us to

define the upside or positive implied volatility index for a given stock VIX+
j . Employing put options

instead (i.e., Ki ≤ K0) allows us to define the downside or negative implied volatility index for a given

stock VIX−j . Finally, the two implied volatility components VIX+
j and VIX−j are determined from the

following formulae

VIX+
j = 100

√
365

30

[
T1σ2

VIX+
j

N2 − 30

N2 −N1
+ T2σ2

VIX+
j

30−N1

N2 −N1

]
, (5.2)

VIX−j = 100

√
365

30

[
T1σ2

VIX−j

N2 − 30

N2 −N1
+ T2σ2

VIX−j

30−N1

N2 −N1

]
. (5.3)

Hence, we obtain three daily implied volatility indexes: VIXj , VIX+
j , and VIX−j for every bank

considered in our sample which are related through the following approximate relationship3: VIX2
j '(

VIX+
j

)2
+
(
VIX−j

)2
. More details on the construction and decomposition of the VIX index are

provided in Chapter 3.

Table 5.2 reports the descriptive statistics for the VIX, VIX+, and VIX− of the ten main financial

institutions. Bank of America carries the highest aggregate VIX and VIX+ average values, followed

by Citigroup, while Morgan Stanley presents the highest VIX− average value. Bank of America also

presents the highest maximum values for VIX and VIX+ , while PNC Group shows the highest max-

imum value for VIX− . The lowest minimum values for all the implied volatility series are found for

American Express. The VIX− indexes are also the most volatile series.

The time dynamic of implied volatility series is illustrated in Figure 5.1. Overall, all the ten financial

institutions’ volatility indexes spike in alignment with the global financial crisis, which is found to be a

common denominator of uncertainty and volatility increases. There are also more idiosyncratic jumps

in volatility indexes. For instance, J.P. Morgan Chase VIX indexes are found to spike in 2000, when

Chase Manhattan Corp. merged with J.P. Morgan & Co., becoming J.P. Morgan Chase, and to increase

the company’s volatility until late 2001, when the deal was finalized. The main volatility peak for Bank

of America is found during the financial crisis due to its acquisition of Merrill Lynch in September

3We decided not to weight downside information extracted from puts more than upside information extracted from calls. For
this reason, this relationship is not always exact, as when VIX index is decomposed, Ki = K0 might result in an ATM options
price that is excluded from calculations of the VIX− or VIX+ measures on one or another side of the distribution, whereas for
the aggregate VIX , it is always taken into account in the total distribution of prices as the average between the ATM call and put
prices relative to the strike price.
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Table 5.2: Aggregate and Decomposed Implied Volatility Indexes - Descriptive Statistics

Mean Median Max Min Std. Dev. Skewness Kurtosis

JPM VIX 41.01 31.38 363.61 13.30 30.30 3.39 19.13
VIX+ 28.37 21.77 358.61 8.15 23.01 5.29 45.30
VIX− 26.98 20.62 268.63 7.55 22.03 3.92 24.34

BAC VIX 46.89 34.01 643.87 14.79 51.73 6.05 52.57
VIX+ 35.22 25.27 618.23 10.87 46.85 7.70 76.86
VIX− 26.55 18.97 319.89 6.60 24.84 3.86 24.98

WFC VIX 38.69 27.36 543.12 12.40 41.53 5.61 42.97
VIX+ 28.18 20.55 532.00 7.72 35.02 7.05 65.05
VIX− 23.36 16.58 325.87 7.57 24.13 5.97 53.63

C VIX 46.53 32.22 465.24 15.41 40.75 3.51 20.74
VIX+ 34.47 22.99 440.82 9.95 34.06 4.36 31.53
VIX− 28.07 20.25 262.44 6.29 22.90 3.31 19.14

GS VIX 36.16 29.81 231.30 15.84 19.75 3.47 21.69
VIX+ 25.03 21.68 111.24 10.04 10.77 1.95 9.11
VIX− 24.59 19.79 214.05 6.46 17.31 4.11 27.91

MS VIX 44.20 36.60 430.83 17.92 27.60 4.24 31.80
VIX+ 30.86 26.89 239.04 10.99 14.98 2.96 22.51
VIX− 29.35 23.22 347.55 7.18 24.20 4.59 33.27

USB VIX 34.62 27.89 177.17 12.56 19.90 2.32 10.59
VIX+ 25.02 20.61 132.94 6.71 14.91 2.09 8.76
VIX− 21.66 17.25 143.38 6.39 13.89 3.00 15.81

AXP VIX 34.36 28.35 189.25 12.05 19.42 3.02 16.02
VIX+ 24.25 19.67 123.65 6.54 12.88 2.42 11.60
VIX− 22.76 19.08 152.17 5.23 14.92 3.34 19.44

PNC VIX 34.48 28.16 451.50 12.69 24.42 6.22 69.37
VIX+ 24.13 20.73 165.13 9.05 13.31 3.81 26.75
VIX− 22.40 17.14 439.61 6.95 21.54 8.24 115.14

BK VIX 34.01 29.73 149.53 12.78 16.29 2.83 13.62
VIX+ 24.66 21.93 96.45 8.17 11.20 2.22 10.38
VIX− 21.70 18.64 116.43 6.68 12.71 3.03 15.27

Notes: The table shows the main descriptive statistics for the daily implied volatility indexes series for the ag-
gregate VIX and for the upside (VIX+ ) and downside (VIX− ) decomposed measures for the selected ten
main U.S. financial institutions (tickers in the table) between 03-01-2000 and 29-12-2017, for a total of 4528
observations for each series.

2008. In October 2000, Wells Fargo bought First Security Corp., becoming one of the largest banks in

the West, leading to an increase in the WFC’s implied volatility index. In mid 2001, Citigroup acquired

European American Bank and Banamex, resulting in an increase in Citi’s volatility indexes, which

spiked again in March 2012, when the Federal Reserve reported that Citigroup was one of the few main

banks that failed the stress tests. U.S. Bancorp began the 2000 era with a high level of volatility caused

by the acquisitions of Peninsula Bank in September 1999, with price renegotiations until January 2000.

We observe how companies’ idiosyncratic news, such as M&A deals, restructuring and negotiations

contribute to their changes in implied volatility. The latter, however, is found to react to macro events as

well, such as the dot-com bubble burst, the Enron scandal, the 9/11 terrorist attack, the global financial

crisis and the European sovereign debt crisis. A mixture of idiosyncratic and systemic events is found

to affect the financial stock implied volatility through the options market.

Having computed an implied volatility index for the individual banks, we also define a financial

sector implied volatility index (WVIX), reflecting the ten main stock volatility indexes. This index is
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Figure 5.1: Upside and Downside Implied Volatilities of the U.S. Financial Sector

Notes: The figure shows the single stock VIX and the decomposed volatility indexes VIX+ and VIX− for the ten main U.S. financial institutions.
The NBER recession periods are highlighted in grey. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.

computed as the sum of their single stock VIX weighted for their average market capitalizations as

WVIX =

10∑
j=1

wjVIXj , (5.4)

where wj are the weights based on the 2000-2017 average market capitalizations, as shown in Table

5.1, and VIXj represents the aggregate implied volatility index. Analogous upside and downside im-

plied volatility measures WVIX+ and WVIX− can be computed from equation (5.4) using VIX+
j and

VIX−j instead of VIXj , respectively. The WVIX indexes, namely, aggregate, upside and downside are

plotted in Figure 5.2. Even though the main component of the aggregate single stock VIX is gener-

ated by the call options, most of the time, we observe that in the case of financial market downturns,

the downside component also increases in size, overpowering the upside component. The figure also

shows that before the financial crisis, the implied upside volatility is found to be above the implied

downside volatility, whereas the two decomposed implied volatility series become more intertwined

in the post-crisis period, highlighting the role of implied downside volatility during crises and reflect-
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ing the investors’ increasing concern for other potentially similar events. This characteristic is also

supported by the graphs illustrated in Figure 5.1.

Figure 5.2: The U.S. Financial Sector VIX Indexes

Notes: The figure shows the aggregate, upside and downside WVIX indexes for the ten major financial institutions, as computed through formula
(5.4) as a market cap weighted average of the selected ten financial companies in the U.S. The NBER recession periods are highlighted in grey.
The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.

5.3 Asymmetric Fear Connectedness

System connectedness can be characterized well through variance decompositions from a vector autore-

gression approximation model (Diebold and Yilmaz, 2009, 2012)4. Variance decompositions provide

useful information about how much of the future variance of variable j is due to shocks in variable

k. Aggregating variance decompositions then yields a simple way to measure how the system is inter-

connected. Diebold and Yılmaz (2014) further argue that variance decompositions are closely linked

to modern network theory5 and recently proposed measures of various types of systemic risk, such as

marginal expected shortfall (Acharya et al., 2017) and delta CoVaR (Adrian and Brunnermeier, 2016).

However, the literature as a whole examines how shocks to volatility measured ex post are transmitted

across the system.

Employing forward-looking implied volatility measures, we aim to derive informatively different

measures of interconnectedness. Option prices reflect market participants’ expectations of future move-

ments of the underlying asset; hence, volatility implied by option prices carry forward-looking informa-

tion superior to ex post volatility (see Christensen and Prabhala, 1998). Individual equity VIX indexes

as derived in the previous section essentially measure the risk-neutral expected volatility. We are nat-

urally interested in knowing how a shock to the expected volatility of a stock j will transmit to future
4According to Diebold and Yılmaz (2014), a financial system characterized through variance decomposition can be seen as a

more sophisticated form of financial network.
5Networks can accelerate and amplify the way shocks propagate through the financial system. The nature and extent of the

interrelationship between actors and markets influence the manner by which the positive feedback loops grip the entire system.
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expectations about the volatility of a stock k. Aggregating this information can provide a system-wide

measure of forward-looking connectedness measuring how strongly the investors’ expectations are in-

terconnected.

To construct the asymmetric fear connectedness measures, we use the implied volatility indexes

computed for the main financial institutions in combination with connectedness measures based on

generalized variance decompositions of a vector autoregressive (VAR) approximation model due to

Diebold and Yilmaz (2012). In particular, we consider a covariance stationary N -variate process

VIX∗t = (VIX∗1,t, . . . ,VIX∗N,t)
′ at t = 1, . . . , T described by the VAR model of order p as

VIX∗t = Φ1VIX∗t−1 + Φ2VIX∗t−2 + . . .+ ΦpVIX∗t−p + εt, (5.5)

with Φ1, . . . ,Φp coefficient matrices, and εt being white noise with a (possibly non-diagonal) covari-

ance matrix Σ. In this model, each variable is regressed on its own p lags, as well as the p lags of all

of the other variables in the system; hence, matrices of the coefficients contain complete information

about the connections between variables. It is useful to work with (N × N) matrix lag-polynomial

Φ(L) = [IN −Φ1L− . . .−ΦpL
p] with IN identity matrix, as the model can be written concisely as

Φ(L)VIX∗t = εt. Assuming that the roots of |Φ(z)| lie outside the unit circle, the VAR process has

the following vector moving average (i.e., MA(∞)) representation: VIX∗t = Ψ(L)εt, where Ψ(L)

matrix of infinite lag polynomials can be calculated recursively from Φ(L) = [Ψ(L)]−1 and is key to

understanding dynamics. Since Ψ(L) contains an infinite number of lags, it must be approximated with

the moving average coefficients Ψh calculated at h = 1, . . . ,H horizons. The connectedness measures

rely on variance decompositions, which are transformations of the Ψh and allow the measurement of

the contribution of shocks to the system.

To construct connectedness measures of aggregate, as well as decomposed implied volatility, we

consider different vectors VIX∗t ∈
{
VIXt,VIX+

t ,VIX−t
}

. Since a shock to a variable in the model

does not necessarily appear alone, i.e., orthogonally to shocks to other variables, an identification

scheme is a crucial step in the calculation of variance decompositions. Standard approaches relying

on Cholesky factorization depend on the ordering of the variables and complicate the measures. The

generalized identification proposed by Pesaran and Shin (1998) produces variance decompositions that

are invariant to ordering. Generalized variance decompositions can be written in the form6

(
θH
)
j,k

=
σ−1kk

∑H
h=0 ((ΨhΣ)j,k)

2∑H
h=0(ΨhΣΨ′h)j,j

, (5.6)

where Ψh is a (N×N) matrix of moving average coefficients at lag h defined above, and σkk = (Σ)k,k.

6 (A)j,k denotes the jth row and kth column of matrix A denoted in bold. (A)j,· denotes the full jth row; this is similar
for the columns. A

∑
A, where A is a matrix that denotes the sum of all elements of the matrix A.
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The
(
θH
)
j,k

denotes the contribution of the kth variable to the variance of forecast error of the element

j, at horizon h. As the rows of the variance decomposition matrix θH do not necessarily sum to one,

each entry is normalized by the row sum as

(
θ̃
H
)
j,k

=
(
θH
)
j,k
/

N∑
k=1

(
θH
)
j,k
.

Now the
∑N
j=1

(
θ̃
H
)
j,k

= 1 for any k and the sum of all elements in θ̃
H

is equal toN , by construction.

Note that
(
θ̃
H
)
j,k

provides a pairwise measure of connectedness from j to k at horizon H . Note that

the variance decomposition can be used to form a network adjacency matrix defining a network. Hence,

all the connectedness measures defined later can be viewed as a network connectedness directly (see

Diebold and Yılmaz, 2014). The connectedness measure is then defined as the share of variance in

the forecasts contributed by errors other than own errors or as the ratio of the sum of the off-diagonal

elements to the sum of the entire matrix (Diebold and Yilmaz, 2012)

CH = 100 · 1∑
θ̃
H
·
∑
j 6=k

(
θ̃
H
)
j,k
, (5.7)

where the denominator signifies the sum of all elements of the θ̃
H

matrix. Hence, the connectedness is

the relative contribution to the forecast variances from the other variables in the system.

Similarly to the overall aggregate connectedness measure that infers the system-wide connected-

ness, we can define measures that will reveal when an individual bank in the system is a volatility

transmitter or receiver. The directional connectedness that measures how much of each bank’s j vari-

ance is due to other banks j 6= k in the system is given by

CHj←• = 100 · 1∑
θ̃
H
·

N∑
k=1,j 6=k

(
θ̃H
)
j,k
, (5.8)

defining the so-called FROM connectedness. Likewise, the contribution of asset j to variances in other

variables is computed as

CHj→• = 100 · 1∑
θ̃
H
·

N∑
k=1,j 6=k

(
θ̃H
)
k,j
, (5.9)

and this is the so-called TO connectedness. These two measures show how other assets contribute to the

risk of asset j, and how asset j contributes to the riskiness of others, respectively. Further, a measure

showing the discrepancy between how much of the variance is received, so-called NET connectedness,

can be calculated as

CHj,NET = CHj→• − CHj←•. (5.10)

The NET connectedness measures whether a bank is inducing more risk than it receives from the other
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banks in the system. Finally, one might be interested in pairwise relations of risk that can further be

described by the PAIRWISE connectedness measure given by

CHj,k = 100 · 1∑
θ̃
H
·
((

θ̃H
)
k,j
−
(
θ̃H
)
j,k

)
. (5.11)

As discussed before, our main aim is to compare the connectedness of investors with fundamentally

different beliefs revealed by VIX+ and VIX− . In the spirit of Baruník et al. (2016), who define

asymmetric spillover measures based on the ex post realized semivariance, we consider the vectors

VIX∗t ∈
{
VIXt,VIX+

t ,VIX−t
}

holding information about aggregate, upside, and downside implied

volatility and use it in the framework described above. The measures of respective connectedness C for

aggregate fear, C+ for upside, and C− downside fear in the system can be readily calculated by using

appropriate VIX∗ measures. When C+ 6= C−, we have asymmetry in connectedness due to different

investors’ expectations, which we define as the measure of asymmetric fear connectedness (AFC)

AFC = C+ − C−. (5.12)

In other words, when AFC > 0, connectedness due to VIX+ is greater than connectedness due to

VIX− , and vice versa. In order to shed new light on the nature and sign of the transmitted or received

volatility for every financial institution in the system, we compute the upside directional NET as the

difference between upside TO and FROM, as

C+j,NET = C+j→• − C
+
j←•, (5.13)

and the downside directional NET as the difference between downside TO and FROM as

C−j,NET = C−j→• − C
−
j←•. (5.14)

Finally, we compute the asymmetric directional NET as the difference between C+j,NET and C−j,NET as

AFCj,NET = C+j,NET − C
−
j,NET. (5.15)

In computations, we follow the previous literature and use the logarithmic of the volatility series, a

forecast horizon of twelve days, and a VAR order equal to four (Diebold and Yilmaz, 2012; Diebold and

Yılmaz, 2014; Baruník et al., 2016). We report the static forecast error variance decomposition matrix

results both for the aggregate measures and for the decomposed upside and downside measures in

Section 5.4 and Section 5.5, respectively. These connectedness measures are also studied dynamically
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over a 200-day rolling window7

5.4 Fear Connectedness in the Financial Sector

We begin the empirical analysis by studying the aggregate level of the transmission of shocks to expec-

tations within the financial sector. The aggregate connectedness investigated in subsection 5.4.1 shows

how individual banks contributed to the distribution of “fear” in the financial system between 2000

and 2017. In addition, we will also identify net fear transmitters and net fear receivers in the system

(e.g. Härdle et al., 2016). Looking at dynamic connectedness, we follow (subsection 5.4.2) on the time

dynamics of connections.

5.4.1 Fear Connectedness: Static Analysis

Table 5.3 reports the static analysis of “fear” connectedness for the ten main U.S. financial institutions.

The diagonal values in the Table 5.3 indicate that the future volatility of a stock is impacted by own

shocks to expectations, which range from 29.91% to 56.06%. Furthermore, the off-diagonal elements

reveal how “fear” spreads from one bank to other banks in the financial sector. The directional FROM

connectedness measure ranges from 43.93% for Bank of America to 70.08% for Bank of New York

Mellon. The directional FROM contribution accounts to 100% minus the companies’ own total fore-

cast error variance in the main diagonal or, in other words, to the sum of the other pairwise directional

connectedness elements in the (N- 1) off-diagonal entries for every company. The directional TO con-

nectedness measure in the bottom row of the table ranges from 19.92% for Bank of America to 108.85%

for Goldman Sachs. The directional TO contribution is not limited to 100% and it can exceed 100%

and it really depends on how many assets are considered in the system.

The FROM directional connectedness, which measures the exposure of a single bank j to shocks

FROM the system, is similar, in systemic risk terms, to the Marginal Expected Shortfall (MES
j|mkt
T+1|T )

(see Acharya et al., 2017), while the TO connectedness, which measures the contribution of the individ-

ual bank TO the volatility spillovers in the system is similar to the delta CoVaR measure (∆CoV aRmkt|iT+1|T )

(see Adrian and Brunnermeier, 2016). The delta CoVar measures the systemic risk contribution con-

ditional on market events to financial firms’ events – exactly in the opposite direction of MES (see

Diebold and Yılmaz, 2014).

The pairwise values in the off-diagonal matrix entries indicate the directional connectedness be-

tween the two companies crossing that entry. The highest pairwise connectedness appears to be from

Goldman Sachs to Morgan Stanley (20.29%). In other words, 20.29% of the future variation of VIX for

Morgan Stanley is expected to be generated by the shocks from Goldman Sachs. The second-highest

7We have also examined the static analysis within a range of different VAR lags and forecast horizons, respectively, such as
p ∈ {2, 3, 4, 5}, and h ∈ {4, 6, 10, 14}, together with different rolling window sizes. The results do not change materially.
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Table 5.3: Static Fear Connectedness in the Financial Sector

VIX Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK FROM

JPM 46.98 2.16 3.58 3.26 10.36 9.46 8.69 6.63 2.06 6.77 53.01
BAC 4.03 56.06 3.04 3.28 8.20 7.05 5.67 4.99 1.65 5.98 43.93
WFC 6.93 1.78 44.41 4.61 11.11 6.37 7.19 5.63 5.66 6.26 55.58
CITI 5.23 2.09 3.44 54.67 8.92 7.20 5.69 5.44 2.33 4.94 45.32
GS 6.34 2.25 4.81 5.54 35.55 18.29 9.35 7.36 2.29 8.19 64.44
MS 6.91 2.58 4.12 5.11 20.29 34.34 8.59 6.40 2.86 8.74 65.65
USB 8.23 2.26 4.97 4.34 13.62 9.67 36.33 7.67 3.48 9.39 63.66
AXP 7.14 2.51 4.21 4.45 12.65 11.47 10.42 35.71 3.02 8.37 64.28
PNC 5.82 1.34 4.93 3.11 8.69 7.53 6.85 4.22 49.89 7.57 50.10
BK 7.19 2.90 4.25 4.21 14.97 14.50 10.38 7.77 3.87 29.91 70.08

TO 57.86 19.92 37.38 37.96 108.85 91.57 72.87 56.14 27.25 66.25 TOTAL
NET 4.84 -24.01 -18.19 -7.35 44.40 25.92 9.21 -8.13 -22.84 -3.82 57.61

Notes: The table contains a decomposition of forecast error variance computed for the aggregate VIX indexes for the ten main U.S.
financial institutions. Elements in the off-diagonal entries are the pairwise directional connectedness, while the diagonal elements (in
grey) are the financial institutions’ own variance. The off-diagonal row and column sum to TO and FROM connectedness, respectively.
The NET row at the bottom is the difference between TO and FROM. The bottom-right element is the total connectedness index in
the considered system. Selected VAR lags = 4 and Forecast Horizon = 12 days. The selected time period spans from 03-01-2000 to
29-12-2017.

number is in the opposite direction, going from Morgan Stanley to Goldman Sachs (18.29%). The bot-

tom row in the table shows the total directional NET computed as difference between directional TO and

directional FROM fear connectedness. A positive difference reveals that the company can be classified

as a “fear” transmitter, while a negative number identifies a “fear” receiver. The main net aggregate

“fear” transmitter is found to be Goldman Sachs (44.4%) followed by Morgan Stanley (25.92%). J.P.

Morgan Chase and U.S. Bancorp are also net aggregate “fear” transmitters. However, we find that

Bank of America, Wells Fargo and PNC Bank are, on average, the main aggregate “fear” receivers in

the system. The total “fear” connectedness index, bottom-right element, is found to be equal to 57.61%,

which means that, on average, more than half of the implied volatility (or “fears”) for these ten main

financial institutions has been generated from fear spillovers in the financial system.

In Figure 5.3 we plot the total “fear” connectedness network in which the ten main financial insti-

tutions are linked to each other. We represent thicker lines for banks which are more connected to each

other. The highlighted bank is the one showing the highest to pairwise connectedness, in the aggregate

VIX case this is Goldman Sachs towards Morgan Stanley.

5.4.2 Fear Connectedness: Time Dynamics

While the static analysis provides an average overview of the “fear” connectedness within the system,

we are further interested in gauging how the aggregate VIX connectedness evolves over time.

Figure 5.4 illustrates how the total “fear” connectedness index spiked twice in the early 2000s due

to several specific news and M&A deals in which some of the banks in our sample were involved and

to the burst of the dot-com bubble in March 2000. These events, in addition to others, such as the

9/11 terrorist attack, the Enron scandal and the MCI WorldCom scandal, are found to have increased
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Figure 5.3: Total Fear Connectedness Network

Notes: This figure shows the total “fear” connectedness for the ten main financial institutions’ aggregate VIX indexes as a network. Highlighted
in blue is the main VIX pairwise transmitter.

Figure 5.4: Total Fear Connectedness Index

Notes: This figure shows the total “fear” connectedness for the ten main financial institutions’ aggregate VIX indexes. Selected VAR lags = 4 and
forecast horizon = 12. The rolling window length is equal to 200 days. The NBER recession periods are highlighted in grey. The selected period
spans from 03-01-2000 to 29-12-2017 at a daily frequency.

the total “fear” connectedness index at the end of 2001 from 45% to 75% in only one year. The index

remained at high levels, close to 80%, for a few years until it decreased in mid-2004. This period

was followed by several smaller cycles corresponding to the U.S. tightening of monetary policy and
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increases in long-term interest rates (see Diebold and Yılmaz, 2014). The total connectedness index

rose again in February 2007 in alignment with the beginning of the sub-prime crisis. After decreasing

for few months, it jumped up in mid-2007, increasing by more than 20% to levels near 80%. In the

middle of the global financial crisis, the index spiked again in accordance with the losses of Merrill

Lynch and the collapse of Lehman Brothers in September 2008. The index level remained high until

2011, given the intensification of the Eurozone sovereign debt crisis, which reached its record high of

85% at that moment. Eventually, after the global financial crisis and the sovereign debt crisis, the “fear”

connectedness average value rose well above the pre-crisis range. This level is found to increase even

further, in line with Grexit and the Chinese Yuan crisis in mid-2015, before decreasing in 2017. Overall,

the dynamics show that shocks to expectations in individual banks play an increasingly important role

in the financial system.

5.4.3 Net Fear Receivers and Transmitters

Time-varying NET directional fear connectedness provides a more detailed analysis of the connections

among banks. We show the dynamic aggregate VIX net directional volatility connectedness for all the

main ten banks in the system. This measure is rolled along our time frame selecting a 200-days window

length. Table 5.4 reports a cumulative ranking for the directional NET measures, describing the main

aggregate “fear” transmitters or receivers within the system.

Figure 5.5 shows the financial institutions which contribute to transmit aggregate implied volatility

(area above 0) or to receive aggregate implied volatility (area below 0). We detect a clear aggregate

volatility transmitter role for J.P. Morgan Chase and Goldman Sachs. These two together with Morgan

Stanley, Citigroup and U.S. Bancorp are found to be aggregate implied volatility transmitters also

during the 2007-2008 global financial crisis, whereas, on the other hand, Wells Fargo and Bank of

America are found to suffer the turbulent crisis time by receiving volatility. Citigroup and Bank of

America are found to take volatility during the sovereign debt crisis. U.S. Bancorp shows a stable

period of volatility transmission from the sub-prime crisis until the end of the European sovereign debt

crisis. Morgan Stanley and American Express alternate their roles many times during the selected

market period, whilst Bank of America, PNC and Bank of New York Mellon can, overall, be classified

as main aggregate volatility receivers within the system.
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Figure 5.5: Net Fear Connectedness

Notes: This figure shows the aggregate net “fear” connectedness for the ten main financial institutions. The NET directional connectedness is
computed as the difference between the TO and the FROM. Selected VAR lags = 4 and forecast horizon = 12. The rolling window length is equal to
200 days. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.
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Table 5.4: Cumulative Net Fear Receivers and Transmitters

Annual Cumulative Net Fear Receivers and Transmitters

Period JPM BAC WFC CITI GS MS USB AXP PNC BK

T R T R T R T R T R T R T R T R T R T R

2000 57.80 -0.26 0 -13.67 2.21 -7.14 11.79 -3.20 0 -19.51 0 -12.96 1.86 -5.41 2.81 -1.42 0 -20.99 8.87 -0.75
2001 29.48 -21.50 60.86 -4.26 1.96 -47.50 7.63 -30.40 33.88 -13.03 10.25 -46.91 9.42 -15.33 81.36 -1.99 21.01 -20.98 4.71 -58.67
2002 0.41 -71.95 40.70 -1.41 41.33 -39.74 65.17 -12.29 56.27 -1.30 31.66 -6.04 0.12 -76.52 12.17 -21.35 21.55 -41.24 20.33 -17.87
2003 23.24 -8.20 57.94 0 28.72 -38.30 17.34 -86.36 129.73 0 15.85 -17.74 13.37 -36.21 10.75 -12.31 25.37 -41.64 1.02 -82.57
2004 63.63 -7.91 19.14 -18.63 0.45 -48.02 12.29 -32.27 39.80 -2.48 6.17 -31.01 15.45 -9.75 33.86 -9.50 1.12 -53.79 50.23 -28.79
2005 12.14 -19.01 54.52 -20.75 21.54 -20.53 94.45 -3.87 19.49 -5.13 0 -85.59 15.65 -13.29 56.75 -20.68 7.17 -40.40 1.87 -54.35
2006 7.01 -27.15 10.15 -60.18 77.82 -5.75 66.88 -0.64 12.66 -6.57 3.04 -27.03 29.14 -39.80 3.01 -20.50 1.96 -45.70 28.55 -6.90
2007 65.34 -4.75 3.39 -47.70 8.53 -35.04 85.51 0 52.68 -3.07 5.26 -48.59 68.88 -4.33 2.25 -24.26 2.50 -107.86 13.98 -32.72
2008 55.38 -5.18 0.58 -65.76 1.41 -56.22 56.47 -0.14 49.41 -1.21 35.86 -33.93 91.68 -0.06 8.06 -35.02 7.89 -31.33 0 -77.88
2009 27.06 -4.06 9.53 -71.84 2.31 -56.59 25.20 -44.95 89.58 0 49.97 -2.68 17.58 -9.47 27.87 -6.81 5.67 -36.50 6.17 -28.04
2010 3.45 -15.55 12.85 -45.87 2.73 -28.11 2.85 -88.99 17.18 -17.09 7.84 -11.67 111.55 0 81.18 -1.30 21.74 -17.98 9.47 -44.28
2011 72.00 -0.04 16.91 -36.84 6.13 -98.45 1.97 -72.49 17.37 -6.80 12.28 -5.83 86.64 0 13.23 -36.78 24.59 -17.80 25.37 -1.47
2012 101.98 0 0 -86.04 83.08 0 0 -96.20 7.40 -24.90 0.29 -37.32 80.27 0 19.05 -56.91 19.99 -11.22 14.43 -13.90
2013 53.14 -11.16 3.75 -40.15 67.84 0 84.52 -7.34 27.06 -4.40 9.88 -70.09 1.10 -38.24 27.18 -38.16 2.76 -23.12 0.22 -44.80
2014 2.45 -47.30 43.50 -26.45 82.97 -0.05 90.60 0 69.85 0 5.30 -75.77 6.85 -34.62 6.11 -22.01 7.73 -21.03 0.70 -88.85
2015 40.45 -25.86 0 -82.90 2.59 -52.80 57.67 -30.53 149.01 0 121.89 -0.09 24.39 -1.04 0 -106.31 73.95 0 0 -170.41
2016 59.76 0 7.55 -18.45 32.44 -4.02 8.95 -33.07 71.84 0 50.10 0 7.48 -13.28 0 -142.96 29.70 -1.44 2.07 -56.68
2017 76.22 0 0 -11.06 1.00 0 2.26 -4.97 2.06 -0.43 0.90 -7.03 0.11 -85.15 0 -42.31 3.09 -42.49 0 -68.76

Two Years Cumulative Net Fear Receivers and Transmitters

2000-2001 87.28 -21.77 60.86 -17.94 4.18 -54.65 19.42 -33.60 33.88 -32.54 10.25 -59.87 11.28 -20.75 84.18 -3.41 21.01 -41.97 13.59 -59.42
2002-2003 23.65 -80.16 98.64 -1.41 70.06 -78.04 82.52 -98.65 186.00 -1.30 47.51 -23.79 13.50 -112.74 22.93 -33.67 46.92 -82.88 21.35 -100.44
2004-2005 75.78 -26.93 73.67 -39.39 21.99 -68.55 106.75 -36.14 59.30 59.30 6.17 -116.60 31.11 -23.05 90.61 -30.18 8.30 -94.19 52.11 -83.15
2006-2007 72.36 -31.91 13.54 -107.89 86.35 -40.79 152.39 -0.64 65.34 -9.64 8.31 -75.63 98.02 -44.14 5.26 -44.76 4.47 -153.56 42.53 -39.63
2008-2009 82.45 -9.24 10.12 -137.61 3.73 -112.81 81.67 -45.09 139.00 -1.21 85.83 -36.62 109.26 -9.53 35.93 -41.84 13.57 -67.84 6.17 -105.93
2010-2011 75.45 -15.60 29.77 -82.72 8.87 -126.56 4.83 -161.49 34.56 -23.90 20.13 -17.51 198.19 0 94.42 -38.09 46.33 -35.79 34.84 -45.75
2012-2013 155.13 -11.16 3.75 -126.19 150.92 0 84.52 -103.54 34.47 -29.31 10.17 -107.42 81.37 -38.24 46.24 -95.07 22.75 -34.34 14.65 -58.71
2014-2015 42.91 -73.17 43.50 -109.35 85.56 -52.85 148.27 -30.53 218.86 0 127.19 -75.86 31.25 -35.67 6.11 -128.32 81.69 -21.03 0.70 -259.26
2016-2017 135.99 0 32.88 -29.83 87.35 -4.16 41.34 -38.31 123.05 -0.43 58.34 -7.03 8.75 -98.44 4.96 -185.84 39.00 -43.94 2.07 -126.05

Pre, During, Post Crisis Cumulative Net Fear Receivers and Transmitters

Pre-Crisis 234.15 -160.78 243.33 -152.60 179.00 -229.27 335.53 -169.05 326.11 -51.08 72.26 -253.24 107.89 -200.68 202.41 -102.95 80.71 -336.80 129.60 -254.53
Crisis 81.74 -8.42 3.98 -132.35 248.60 -89.39 107.23 -12.73 103.14 -1.23 73.34 -56.75 140.51 -7.54 28.06 -44.45 7.89 -88.26 1.78 -112.93
Post-Crisis 435.14 -100.75 119.45 -367.09 334.71 -219.73 278.98 -365.97 464.44 -53.65 228.08 -210.52 334.26 -174.34 160.21 -453.37 195.03 -151.04 56.67 -510.48

Total Period Cumulative Net Fear Receivers and Transmitters

2000-2017 751.04 -269.97 366.77 -652.05 519.04 -538.31 721.75 -547.76 893.70 -105.97 373.69 -520.36 582.67 -382.58 390.68 -600.65 283.64 -575.60 188.06 -877.78

Notes: This table shows the cumulative net aggregate fear connectedness receivers and transmitters for the ten main U.S. financial institutions. The aggregate VIX NET directional measure is computed as the difference between aggregate VIX TO
and aggregate VIX FROM. When this difference is positive, the financial institution can be classified as a net aggregate fear connectedness transmitter (T), while, when negative, it can be classified as a net aggregate fear connectedness receiver (R).
The ranking is reported for every year and every two years, for the pre-crisis, during crisis and post-crisis periods, and for the total period. For every considered period, the main volatility transmitters are highlighted in blue, while the main volatility
receivers are highlighted in red. Selected VAR lags = 4 and Forecast Horizon = 12. The rolling window length is equal to 200 days. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.
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Table 5.4 documents how the financial institutions change their roles as “fear” transmitters or re-

ceivers according to the specific market period. We rank the banks according to their aggregate VIX

cumulative net directional connectedness for different time ranges, namely, every year, every two years,

in the pre-crisis, during crisis and post-crisis periods and, lastly, over the total time period. Goldman

Sachs, J.P. Morgan Chase and Citigroup are classified as the main aggregate net “fear” transmitters,

according to the one-year and two-year cumulative rankings.

Bank of New York Mellon, PNC Bank and Bank of America are found to be the main financial

institutions receiving “fear” from the system in the one-year and two-year period cumulative ranking.

Citigroup and PNC Bank are identified as the main “fear” transmitter and receiver, respectively, in the

pre-crisis period. Wells Fargo and Bank of America are the main transmitter and receiver, respectively,

during the global financial crisis and Goldman Sachs and Bank of New York Mellon the main trans-

mitter and receiver, respectively, post-crisis. Over the whole period, we observe that the main “fear”

transmitters are Goldman Sachs and J.P. Morgan Chase, while the main “fear” receivers are Bank of

New York Mellon and Bank of America. A graphical representation of the banks ranking is reported in

the Appendix of this Chapter.

In the next Section 5.5, we study whether the financial institutions’ roles are confirmed when we

take into account upside and downside implied volatility indexes.

5.5 Asymmetric Fear Connectedness in the Financial Sector

5.5.1 Asymmetric Fear Connectedness: Static Analysis

Table 5.5 illustrates the asymmetry of the connectedness results emerging from the forecast error vari-

ance decompositions of VIX+ and VIX− . The upside “fear” connectedness and the downside “fear”

connectedness are reported in the upper and bottom panels, respectively. The overall connectedness

from VIX+ (33.19%) is smaller than the total connectedness computed using the VIX index. The on-

diagonal entries show that more than half of the fear in the system is generated by banks’ own shocks

to their VIX+ rather than external shocks. The upside directional FROM connectedness (right column)

is also found to be lower than the aggregate, with values between 19.32% for Citigroup to 46.84%

for Morgan Stanley, while the upside directional TO connectedness ranges from 11.81% for Bank of

America to 61.02% for Goldman Sachs.

Although the strength of connection is lower, Goldman Sachs is still found to be the main “fear”

transmitter in the system (19.33%), followed by Citigroup (9.05%). Morgan Stanley is detected as a

upside “fear” receiver (-2.37%). We also find U.S. Bancorp to be a upside “fear” transmitter, while J.P.

Morgan Chase is found to be a “fear” receiver. PNC Bank, Bank of America and Bank of New York

Mellon can be classified, on average, as the main upside “fear” receivers in the system. The highest
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upside pairwise connectedness is from Goldman Sachs to Morgan Stanley (17.76%) and, second, from

Morgan Stanley to Goldman Sachs (12.18%) again.

Table 5.5: Asymmetric Fear Connectedness in the Financial Sector

VIX+ Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK FROM

JPM 73.69 0.79 1.55 1.67 4.11 5.28 5.53 2.79 0.73 3.82 26.30
BAC 0.90 79.51 1.85 3.36 2.28 2.52 0.80 3.63 0.90 4.20 20.48
WFC 3.04 0.88 72.25 3.53 6.20 1.39 3.80 4.13 1.01 3.70 27.74
CITI 0.72 2.05 2.10 80.67 4.04 1.73 1.48 2.79 1.88 2.49 19.32
GS 2.50 1.09 4.78 4.05 58.31 12.18 5.95 5.31 1.15 4.63 41.68
MS 4.05 1.76 2.39 3.56 17.76 53.15 4.03 3.64 1.88 7.72 46.84
USB 4.72 0.39 4.00 2.94 7.15 2.66 63.83 5.59 2.53 6.13 36.16
AXP 2.70 1.70 3.90 2.83 7.81 4.79 5.98 63.34 1.95 4.96 36.65
PNC 2.61 0.92 2.77 3.78 3.92 3.80 4.90 4.05 68.42 4.77 31.57
BK 3.67 2.17 3.46 2.61 7.71 10.08 6.52 5.98 2.90 54.85 45.14

TO 24.96 11.81 26.85 28.37 61.02 44.46 39.02 37.95 14.97 42.45 TOTAL
NET -1.33 -8.66 -0.88 9.05 19.33 -2.37 2.85 1.29 -16.59 -2.68 33.19

VIX− Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK FROM

JPM 73.08 1.50 0.54 3.86 5.04 3.45 6.28 3.97 0.69 1.54 26.91
BAC 0.89 80.11 3.92 2.68 2.57 4.19 2.79 0.45 0.91 1.45 19.88
WFC 1.79 2.75 73.53 4.57 5.42 1.83 2.08 2.69 2.99 2.29 26.46
CITI 2.43 2.33 2.82 80.73 2.42 2.57 1.71 2.10 1.09 1.76 19.26
GS 1.43 0.91 3.40 2.80 71.83 10.39 4.13 3.01 0.58 1.48 28.16
MS 2.85 2.24 2.25 3.71 15.69 65.02 2.90 1.32 0.83 3.15 34.97
USB 6.54 1.89 1.69 3.07 6.43 3.33 71.05 4.05 0.68 1.20 28.94
AXP 3.13 0.24 3.20 4.96 8.58 2.30 6.58 67.32 1.80 1.84 32.67
PNC 2.57 1.48 2.75 1.61 4.77 0.94 1.32 2.49 80.72 1.28 19.27
BK 1.23 2.60 3.79 3.61 4.04 5.79 1.47 1.82 1.27 74.32 25.67

TO 22.92 15.99 24.37 30.92 55.01 34.84 29.29 21.94 10.87 16.03 TOTAL
NET -3.98 -3.89 -2.08 11.65 26.84 -0.12 0.35 -10.72 -8.39 -9.64 26.22

Notes: The table contains forecast error variance decomposition computed for the VIX+ andVIX− indexes for the ten main U.S.
financial institutions. Elements in the off-diagonal entries are the pairwise directional connectedness, while the diagonal elements (in
grey) are the financial institutions’ own variance. The off-diagonal row and column sums to TO and FROM directional connectedness,
respectively. The NET row at the bottom is the difference between TO and FROM. The bottom-right element is the total connectedness
index in the considered system. Selected VAR lags = 4 and Forecast Horizon = 12 days. The selected time period spans from
03-01-2000 to 29-12-2017.

On the bottom panel of Table 5.5, we observe that the downside “fear” connectedness is even lower,

being equal to 26.22%, which implies that only a quarter of all financial institutions’ downside “fear” is

generated by “fear” transmission within the system. The on-diagonal elements point to an even stronger

role of the own shocks. The range of the downside directional FROM values is even narrower than in

the case of the upside volatility analysis, with the lowest value equal to 19.26% for Citigroup and the

highest value equal to 34.97% for Morgan Stanley. The downside directional TO connectedness is also

quite low, except for Goldman Sachs, which transferred to the system most of the downside “fear” ,

making it the main net volatility transmitter. PNC Bank is found to have the lowest downside directional

TO (10.87%), thus being one of the main net downside “fear” receivers, alongside Bank of New York

Mellon and American Express. American Express changed its role from upside “fear” transmitter to

downside “fear” receiver. In addition, the highest pairwise value of downside “fear” connectedness

is found to be the one from Goldman Sachs to Morgan Stanley (15.69%), followed by the pair from

Morgan Stanley to Goldman Sachs (10.39%).
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Figure 5.6: Positive Fear Connectedness Network

Notes: This figure shows the positive “fear” connectedness for the ten main financial institutions’ VIX+ indexes as a network. Highlighted in
green is the main VIX+ pairwise transmitter.

In Figure 5.6 and Figure 5.7 we plot the positive and negative “fear” connectedness network based

on VIX+ and VIX− , respectively. We represent thicker lines for banks which are more connected

to each other. The highlighted banks are the main pairwise connectedness transmitters, being in both

cases, Goldman Sachs.

Overall, these results show how some of the selected financial institutions change their roles from

a net receiver to a net transmitter, or vice versa, when comparing aggregate to upside and downside

implied volatility (or “fear” ) shocks, confirming asymmetries in the transmission mechanism. For

instance, J.P. Morgan Chase is found to be an aggregate “fear” transmitter, whereas separate VIX+ and

VIX− show that it is found to be a upside and downside “fear” receiver. The opposite is found for

Citigroup. Morgan Stanley’s role as a “fear” transmitter is confirmed in the aggregate and downside

case, while it is also found to be a upside “fear” receiver. Goldman Sachs is found to be the main winner

in the financial sector, being an average “fear” transmitter, regardless of the nature of the volatility

measure. PNC Bank, Bank of America and Bank of New York Mellon are, on the other hand, the
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Figure 5.7: Negative Fear Connectedness Network

Notes: This figure shows the negative “fear” connectedness for the ten main financial institutions’ VIX− indexes as a network. Highlighted in red
is the main VIX− pairwise transmitter.

weakest banks, given that they receive volatility from the system, regardless of the volatility measure.

The static picture may hide the different roles that upside and downside implied volatility (or “fear” )

connectedness have in relation to the different market periods. However, the next section 5.5.2 provides

a more in-depth understanding of their separate roles by studying their changes over time.

5.5.2 Asymmetric Fear Connectedness: Time Dynamics

In Figure 5.8, we depict the fear connectedness indexes as computed from equation (5.7) and the

asymmetric fear connectedness as computed from equation (5.12) over time.

Figure 5.8 confirms our preliminary finding that the connectedness due to upside “fear” plays a

stronger role in the financial sector for the entire study period. However, in some specific periods,

such as during the two recessions and during the Eurozone sovereign debt crisis, the downside “fear”

connectedness increases. The peak in downside connectedness during 2006 can be justified by the

extreme uncertainty about a possible U.S. housing bubble burst. The bottom plot in the Figure 5.8 shows

173



Figure 5.8: Fear Connectedness Indexes and AFC

Notes: The figure shows the comparison between the VIX , VIX+ , and VIX− connectedness indexes, namely, C, C+ and C−, in the upper
panel. The bottom panel shows the asymmetric fear connectedness (AFC). Selected VAR lags = 4 and forecast horizon = 12. The rolling window
length is equal to 200 days. The NBER recession periods are highlighted in grey. The selected period spans from 03-01-2000 to 29-12-2017 at a
daily frequency.

that upside and downside “fear” connectedness become more intertwined depending on recessions,

turbulent periods or crises. Overall, it appears that upside “fear” is the main factor to understand how

the volatility of single U.S. financial companies is transmitted.

Further details can be inferred from Figure 5.8 by looking at the evolution of C+ and C− over time.

C+ spikes exactly before the 2000-2001 dot-com bubble, also dragging up the aggregate connectedness

index, C. As soon as the bubble burst, the upside connectedness index dropped. C− is found to be

lower than C+ before the recession, while it increased and remained at the same level in the midst of the

recession. During 2002 and 2003, C+ was almost 50% higher than C−, but at the end of 2004, this trend

inverted, with C− overcoming C+ until mid-2006. Beginning in 2007, we find an increase in both the

upside and downside “fear” connectedness indexes, with the AFC showing a positive-negative break at

the end of 2006 and in September 2008. The two indexes spiked again at the beginning of 2011 with C−

overcoming C+, dragging the AFC below zero, in accordance with the Eurozone sovereign debt crisis.

After that, the C− and C+ average values increased even further. We also notice an increase in the C−

index when a crisis, recession or turbulent period impacted the U.S. financial sector. In systemic risk

terms and monitoring purposes, C− appears more in line with the description of an efficient systemic

risk monitoring tool as explained in Adrian and Brunnermeier (2016). According to them, systemic

risk typically builds up in times of low asset pricing volatility and it materializes during crisis. Thus, a

good systemic risk measure should capture this build up.

In order to verify the different behaviors of the “fear” connectedness indexes, we compute a new
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ratio as C− on C+, which should better capture the relative role of C−. Indeed, put options reflect

investors’ negative expectations and beliefs about future financial and economic downturns since they

are traded as insurance assets (e.g., Bollen and Whaley, 2004; Ang et al., 2006; Bondarenko, 2014).

The C−/C+ ratio is plotted in the following Figure 5.9. Remarkably, this ratio had an abrupt rise and

an equally rapid fall between 2005 and 2006, foreshadowing the subprime crisis.

Figure 5.9: Asymmetric Fear Connectedness Ratio: C−/C+

Notes: The figure shows the ratio between the “fear” connectedness index computed from puts only, C−, and the one computed from calls only,
C+. Selected VAR lags = 4 and forecast horizon = 12. The rolling window length is equal to 200 days. The NBER recession periods are highlighted
in grey. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.

5.5.3 Asymmetric Net Fear Receivers and Transmitters

In this section, we analyze how the financial institutions can be classified as net upside or net downside

“fear” transmitters or receivers.

Figures 5.10 and 5.11 show which are the U.S. financial institutions which contribute more to

the upside and downside implied volatility connectedness, respectively. With regards to the upside

volatility measures, we detect a clear upside volatility transmitter role for J.P. Morgan Chase. Overall,

also Goldman Sachs can be classified as upside implied volatility transmitter, exception only for 2014

and 2015. Bank of America alternates its role, however it is found to be a clear upside volatility receiver

during the Eurozone sovereign debt crisis. Morgan Stanley, Citigroup and Wells Fargo share the same

alternating roles behaviour, but all of them show a noteworthy upside implied volatility transmitter

role. Conversely to the aggregate volatility case, Citigroup transmits upside volatility during the global

financial crisis, while it absorbs volatility during the sovereign debt crisis. PNC Bank and Bank of New

York Mellon can be labelled as the main upside implied volatility receivers within the system.

With regards to the net directional downside implied volatility connectedness, different financial

institutions’ roles are found. For instance, Bank of America is found, this time, as net downside implied

volatility receiver during the global financial crisis. Less clear cut role as volatility transmitter is found

for J.P. Morgan Chase. Goldman Sachs behaves in the opposite way by receiving downside volatility

during the sovereign debt crisis and transmitting downside volatility from the end of 2014. Not a clear

role is found for Citigroup and Wells Fargo, while Morgan Stanley appears to behave as downside
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Figure 5.10: Upside Net Fear Connectedness

Notes: This figure shows the upside net “fear” connectedness for the ten main financial institutions. The NET upside directional connectedness is
computed as difference between the upside TO and the upside FROM. Selected VAR lags = 4 and forecast horizon = 12. The rolling window length
is equal to 200 days. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.

implied volatility transmitter during the global financial crisis. U.S. Bancorp, American Express, PNC

Bank and Bank of New York Mellon are found to suffer the global financial crisis the most being

downside implied volatility receivers.

Tables 5.6 and 5.7 rank the ten main banks according to their cumulative net upside and net down-

side “fear” transmitter or receiver role. We rank the financial institutions according to the results gath-

ered every year, every two years, during the pre-crisis, crisis and post-crisis periods, and over the total

time frame. From Table 5.6, J.P. Morgan Chase confirms its role as a main upside “fear” transmitter

within the system at an annual frequency, being the top ranking transmitter over half of the period.

Citigroup follows as a second main upside “fear” transmitter on an annual basis. On the other hand,

Bank of New York Mellon is found as the main upside “fear” receiver on an annual basis, with PNC

Bank and Morgan Stanley ranking next. Repeating this exercise at the two-year grouping, overall, the

same ranking is obtained, namely, J.P. Morgan Chase is found to be the main upside “fear” transmit-

ter and Bank of New York Mellon the main upside “fear” receiver. A more refined ranking of banks,
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Figure 5.11: Downside Net Fear Connectedness

Notes: This figure shows the downside net “fear” connectedness for the ten main financial institutions. The NET downside directional connectedness
is computed as difference between the downside TO and the downside FROM. Selected VAR lags = 4 and forecast horizon = 12. The rolling window
length is equal to 200 days. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.

in our case according to upside or downside volatility transmitters and receivers, might be useful for

regulators as stated in Acharya et al. (2012).

The cumulative main net upside connectedness transmitter for the pre-crisis period is found to be

J.P. Morgan Chase, with Goldman Sachs contributing almost the same amount. In the pre-crisis period,

the main upside “fear” receiver is Bank of New York Mellon, followed by Morgan Stanley. Interest-

ingly, during the global financial crisis, Wells Fargo is classified as a main upside “fear” transmitter,

while Bank of New York Mellon is found to be a upside “fear” receiver. For the post-financial crisis

period, J.P. Morgan Chase is found to be the main upside “fear” transmitter, followed by Citigroup,

while PNC Bank is found to be the main upside “fear” receiver. The total sample cumulative ranking

shows, overall, that J.P. Morgan Chase is the main upside “fear” transmitter, whereas Bank of New

York Mellon is the main upside “fear” receiver within the U.S. banking system.
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Table 5.6: Cumulative Net Upside Fear Connectedness Receivers and Transmitters

Annual Cumulative Net Upside Fear Connectedness Receivers and Transmitters

Period JPM BAC WFC CITI GS MS USB AXP PNC BK

T R T R T R T R T R T R T R T R T R T R

2000 34.62 0 0 -8.42 3.86 -2.63 1.23 -5.47 3.20 -0.25 0 -9.45 1.28 -3.12 0 -6.64 0 -13.43 5.46 -0.23
2001 52.05 -0.20 7.92 -24.05 0.47 -21.60 4.35 -32.46 49.69 -1.93 36.24 -17.55 11.21 -9.59 17.78 -12.39 6.19 -19.25 0.28 -47.13
2002 28.06 -4.08 15.67 -21.23 12.61 -45.76 87.55 -12.71 29.34 -14.87 41.10 -13.36 1.05 -40.24 3.26 -50.19 14.97 -11.09 15.78 -35.83
2003 117.42 -1.48 5.06 -28.69 25.35 -38.53 36.55 -60.45 105.35 -0.95 0.42 -65.88 7.73 -8.22 5.73 -45.92 11.47 -11.83 10.81 -63.54
2004 22.04 -7.06 16.92 -9.64 0 -33.06 18.00 -11.87 9.41 -5.78 10.50 -15.70 14.94 -7.30 0.42 -30.18 34.97 -11.05 15.34 -10.89
2005 5.44 -11.72 9.93 -26.46 0.23 -33.53 23.53 -14.54 33.06 -8.74 39.81 -13.08 28.88 -4.78 0.12 -21.06 23.30 -26.20 5.76 -9.96
2006 0.66 -28.58 11.75 -25.93 33.37 -3.35 0.13 -33.49 21.49 -6.58 23.61 -39.40 25.78 -7.49 25.10 -6.05 3.13 -26.06 35.41 -3.50
2007 62.48 -0.65 1.96 -43.85 0.98 -46.40 87.80 -1.63 41.49 -0.81 4.75 -34.59 42.55 -1.00 44.78 -18.52 1.14 -60.83 0 -79.64
2008 124.07 0 3.21 -36.33 0.04 -68.10 88.18 -0.39 38.50 -2.12 21.06 -15.74 18.83 -15.64 3.13 -69.30 8.19 -22.74 0 -74.84
2009 62.11 -7.60 47.17 -34.16 3.19 -33.70 4.57 -38.17 60.15 -4.50 23.31 -11.87 10.10 -23.00 41.89 -2.97 10.30 -40.29 1.01 -67.56
2010 101.81 -1.41 27.18 -20.80 8.35 -38.87 0 -61.36 47.23 -7.16 0.51 -35.35 14.49 -22.95 60.93 -3.97 17.04 -32.79 5.33 -58.20
2011 107.92 -0.12 0 -55.48 11.84 -25.94 1.23 -37.42 13.99 -16.57 5.51 -54.13 7.50 -27.54 70.42 -11.66 26.76 -14.81 8.69 -10.19
2012 151.02 0 0 -102.13 63.01 -33.45 8.50 -34.72 51.42 -27.26 23.32 -19.39 37.72 -4.16 1.71 -34.87 0.15 -65.18 12.18 -27.87
2013 70.79 -2.01 0.01 -55.81 1.50 -60.83 269.07 0 71.50 -28.11 10.60 -28.60 0 -60.57 10.12 -29.69 0 -68.96 0 -99.00
2014 52.54 -7.73 24.66 -7.60 132.74 0 195.24 0 6.47 -80.79 36.78 -30.47 1.29 -60.99 0 -86.40 0.40 -82.68 0.20 -93.67
2015 77.85 -0.21 0.27 -56.83 127.94 -9.98 48.79 -34.30 20.52 -49.90 106.17 0 0.07 -61.74 5.62 -43.64 0.08 -81.37 0.21 -49.55
2016 36.89 -0.59 1.69 -51.69 91.98 -9.09 5.76 -14.30 19.67 -13.89 35.01 -5.28 3.59 -15.42 28.87 -25.88 0.95 -60.76 6.18 -33.69
2017 23.72 -0.46 35.34 -8.79 69.53 -1.44 0.01 -57.34 49.77 -3.90 20.13 -31.60 8.19 -47.82 56.52 -17.57 2.31 -37.42 0 -59.20

Two Years Cumulative Net Upside Fear Connectedness Receivers and Transmitters

2000-2001 86.67 -0.20 7.92 -32.48 4.34 -24.24 5.59 -37.93 52.90 -2.19 36.24 -27.01 12.49 -12.72 17.78 -19.04 6.19 -32.69 5.74 -47.36
2002-2003 145.48 -5.57 20.73 -49.93 37.96 -84.30 124.11 -73.16 134.70 -15.83 41.15 -79.25 8.78 -48.47 9.00 -96.12 26.45 -22.93 26.59 -99.38
2004-2005 27.48 -18.79 26.85 -36.10 0.23 -66.59 41.53 -26.42 42.48 42.48 50.32 -28.78 43.83 -12.09 0.54 -51.25 58.28 -37.26 21.10 -20.85
2006-2007 63.14 -29.24 13.72 -69.79 34.35 -49.76 87.93 -35.12 62.99 -7.40 28.36 -74.00 68.34 -8.50 69.89 -24.58 4.28 -86.90 35.41 -83.15
2008-2009 186.18 -7.60 50.38 -70.50 3.24 -101.81 92.75 -38.56 98.66 -6.63 44.37 -27.62 28.94 -38.64 45.03 -72.27 18.50 -63.04 1.01 -142.41
2010-2011 209.74 -1.53 27.18 -76.28 20.20 -64.81 1.23 -98.78 61.22 -23.74 6.02 -89.49 21.99 -50.50 131.36 -15.63 43.80 -47.60 14.02 -68.39
2012-2013 221.82 -2.01 0.01 -157.95 64.51 -94.29 277.57 -34.72 122.92 -55.37 33.93 -47.99 37.72 -64.73 11.84 -64.57 0.15 -134.14 12.18 -126.87
2014-2015 130.40 -7.95 24.94 -64.44 260.68 -9.98 244.03 -34.30 26.99 -130.69 142.96 -30.47 1.36 -122.73 5.62 -130.05 0.48 -164.05 0.41 -143.22
2016-2017 60.62 -1.05 37.04 -60.49 161.51 -10.53 5.78 -71.64 69.45 -17.79 55.15 -36.88 11.79 -63.25 85.40 -43.45 3.26 -98.19 6.18 -92.89

Pre, During, Post Crisis Cumulative Net Upside Fear Connectedness Receivers and Transmitters

Pre-Crisis 296.65 -53.72 67.45 -176.46 76.90 -192.43 200.40 -172.65 286.35 -39.15 151.48 -206.16 117.03 -81.70 93.77 -172.67 95.21 -152.90 88.85 -226.25
Crisis 156.85 -4.38 4.99 -81.24 346.20 -105.24 151.53 -19.39 87.84 -2.94 45.08 -19.38 38.44 -30.44 33.67 -87.63 18.44 -52.26 0.07 -137.30
Post-Crisis 672.65 -15.86 136.46 -344.05 508.77 -209.63 528.76 -259.05 295.44 -234.59 239.37 -219.47 80.93 -308.60 247.85 -259.77 47.56 -482.80 36.70 -460.67

Total Period Cumulative Net Upside Fear Connectedness Receivers and Transmitters

2000-2017 1126.16 -73.97 208.92 -601.76 588.15 -507.16 880.70 -451.10 669.63 -276.68 435.94 -444.87 236.41 -420.75 375.30 -520.08 161.22 -687.78 125.64 -823.92

Notes: This table shows the cumulative net upside fear connectedness receivers and transmitters for the ten main U.S. financial institutions. The upside VIX NET directional measure is computed as the difference between upside VIX TO and
upside VIX FROM. When this difference is positive, the financial institution can be classified as a net upside fear connectedness transmitter (T), while, when negative, it can be classified as a net upside fear connectedness receiver (R). The ranking
is reported for every year and every two years, for the pre-crisis, during crisis and post-crisis periods, and for the total period. For every considered period, the main volatility transmitters are highlighted in blue, while the main volatility receivers
are highlighted in red. Selected VAR lags = 4 and Forecast Horizon = 12. The rolling window length is equal to 200 days. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.
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Table 5.7: Cumulative Net Downside Fear Connectedness Receivers and Transmitters

Annual Cumulative Net Downside Fear Connectedness Receivers and Transmitters

Period JPM BAC WFC CITI GS MS USB AXP PNC BK

T R T R T R T R T R T R T R T R T R T R

2000 1.95 -0.16 0.45 -1.53 0 -8.79 25.44 0 0.02 -4.67 0 -6.08 3.48 -0.60 0.31 -2.36 0 -5.45 0.82 -2.82
2001 19.42 -6.22 28.83 -0.57 0.80 -21.77 30.90 -2.68 39.45 -5.31 0 -50.46 10.77 -7.12 33.13 -0.07 0 -39.00 0 -30.10
2002 12.68 -29.32 43.84 -6.62 0 -52.33 33.48 -5.98 16.49 -3.88 2.67 -21.71 32.24 -2.19 33.36 -5.04 0.87 -33.95 10.57 -25.17
2003 9.99 -27.68 32.94 -3.13 0 -52.42 31.77 -4.96 45.54 -8.64 10.43 -11.47 30.91 -1.76 8.43 -35.24 11.93 -12.70 0.18 -24.13
2004 12.03 -6.76 23.72 -1.25 14.13 -13.77 4.51 -25.11 24.27 -2.76 7.72 -15.40 19.81 -7.25 2.43 -10.71 2.32 -20.28 6.86 -14.50
2005 17.35 -28.12 46.57 -4.40 18.26 -8.40 11.48 -12.31 37.70 -1.90 11.23 -11.63 0.85 -27.46 17.02 -6.07 5.97 -27.90 2.69 -40.91
2006 79.94 -0.05 6.94 -14.20 2.53 -32.44 19.43 -1.99 24.70 -1.35 0 -53.44 4.69 -17.69 12.56 -14.71 6.49 -6.62 1.57 -16.34
2007 10.16 -10.68 55.51 -0.27 17.94 -3.89 13.64 -31.31 51.93 -0.97 13.57 -16.28 4.02 -43.72 0 -53.23 1.89 -39.44 34.35 -3.20
2008 41.83 -18.84 11.01 -27.29 44.22 -20.31 4.24 -73.92 129.45 0 37.06 -7.75 11.24 -34.65 3.89 -25.14 7.33 -28.15 0.88 -55.10
2009 22.21 -13.86 0.18 -69.02 8.19 -51.68 13.91 -18.02 189.41 0 105.63 -1.72 1.75 -53.61 0 -82.85 24.91 -16.10 3.02 -62.35
2010 132.70 0 0 -71.57 14.78 -12.02 10.60 -21.99 65.95 -0.54 10.06 -55.89 27.40 -3.81 36.53 -5.91 7.05 -12.87 0 -120.47
2011 210.89 0 9.12 -13.17 2.20 -69.50 13.88 -17.07 15.61 -31.74 29.90 -6.91 72.93 -12.40 0.08 -68.23 0 -91.17 0.64 -45.05
2012 131.96 0 0 -58.05 141.43 0 23.69 -14.89 0.01 -67.17 4.68 -45.96 27.32 -8.92 3.09 -69.06 9.95 -70.55 16.23 -23.73
2013 29.03 -9.66 45.34 -17.91 108.62 -2.93 70.49 -7.91 3.93 -50.83 0.33 -36.56 2.81 -19.23 0.06 -67.46 1.31 -39.64 6.40 -16.21
2014 2.12 -38.98 40.52 -43.42 99.04 -0.35 135.83 0 36.63 -9.92 5.86 -35.61 0.08 -53.87 2.03 -52.82 6.43 -45.12 0.02 -48.50
2015 98.37 -31.42 0 -116.76 0.26 -49.38 111.12 -1.18 253.76 0 54.77 -11.84 8.24 -30.02 0 -142.70 21.50 -80.67 0 -84.05
2016 194.70 0 1.97 -90.66 50.38 -1.87 12.11 -74.74 228.49 0 5.30 -60.42 1.39 -61.29 0 -169.79 26.77 -49.26 23.59 -36.67
2017 201.89 0 0.07 -81.55 32.31 -5.30 80.31 -1.41 41.72 -1.40 0 -94.73 9.75 -22.89 3.08 -54.29 14.91 -63.09 0.62 -60.00

Two Years Cumulative Net Downside Fear Connectedness Receivers and Transmitters

2000-2001 21.38 -6.38 29.29 -2.11 0.80 -30.57 56.35 -2.68 39.47 -9.98 0 -56.54 14.26 -7.72 33.44 -2.44 0 -44.45 0.82 -32.93
2002-2003 22.68 -57.00 76.79 -9.76 0 -104.75 65.26 -10.94 62.04 -12.52 13.11 -33.19 63.15 -3.95 41.80 -40.29 12.80 -46.66 10.75 -49.31
2004-2005 29.39 -34.89 70.29 -5.66 32.39 -22.17 15.99 -37.43 61.98 -4.67 18.96 -27.04 20.67 -34.72 19.45 -16.79 8.29 -48.19 9.55 -55.42
2006-2007 90.10 -10.74 62.46 -14.47 20.47 -36.34 33.07 -33.31 76.63 -2.33 13.57 -69.73 8.72 -61.42 12.56 -67.94 8.39 -46.06 35.92 -19.55
2008-2009 64.04 -32.71 11.19 -96.32 52.42 -72.00 18.16 -91.94 318.86 0 142.70 -9.48 13.00 -88.26 3.89 -108.00 32.25 -44.26 3.90 -117.45
2010-2011 343.59 0 9.12 -84.74 16.98 -81.53 24.49 -39.07 81.57 -32.29 39.97 -62.81 100.33 -16.22 36.62 -74.15 7.05 -104.04 0.64 -165.53
2012-2013 161.00 -9.66 45.34 -75.96 250.06 -2.93 94.18 -22.81 3.95 -118.01 5.01 -82.52 30.13 -28.16 3.15 -136.53 11.26 -110.19 22.64 -39.95
2014-2015 100.50 -70.41 40.52 -160.18 99.30 -49.73 246.96 -1.18 290.39 -9.92 60.64 -47.46 8.33 -83.89 2.03 -195.52 27.94 -125.79 0.02 -132.56
2016-2017 396.59 0 2.05 -172.22 82.70 -7.17 92.42 -76.16 270.21 -1.40 5.30 -155.15 11.15 -84.19 3.08 -224.08 41.68 -112.36 24.21 -96.68

Pre, During, Post Crisis Cumulative Net Downside Fear Connectedness Receivers and Transmitters

Pre-Crisis 159.58 -102.11 225.35 -31.97 42.06 -193.81 170.68 -57.96 217.92 -29.52 34.37 -186.44 103.04 -98.19 107.27 -106.85 29.49 -171.36 44.25 -155.81
Crisis 46.22 -38.49 24.50 -70.61 381.86 -35.21 18.16 -101.58 248.87 0 99.02 -9.15 15.01 -84.63 3.89 -86.58 22.38 -45.87 15.97 -87.03
Post-Crisis 1024.36 -81.19 94.65 -531.58 448.44 -179.08 461.28 -155.96 738.17 -162.73 169.54 -346.06 151.25 -225.42 44.69 -673.11 97.84 -463.04 49.27 -461.32

Total Period Cumulative Net Downside Fear Connectedness Receivers and Transmitters

2000-2017 1230.17 -221.80 344.50 -634.17 554.53 -408.11 650.13 -315.19 1204.97 -192.25 302.94 -541.66 269.31 -407.92 155.87 -866.30 149.73 -680.09 109.50 -704.17

Notes: This table shows the cumulative net downside fear connectedness receivers and transmitters for the ten main U.S. financial institutions. The downside VIX NET directional measure is computed as the difference between downside VIX TO
and downsideVIX FROM. When this difference is positive, the financial institution can be classified as a net downside fear connectedness transmitter (T), while, when negative, it can be classified as a net downside fear connectedness receiver (R).
The ranking is reported for every year and every two years, for the pre-crisis, during crisis and post-crisis periods, and for the total period. For every considered period, the main volatility transmitters are highlighted in blue, while the main volatility
receivers are highlighted in red. Selected VAR lags = 4 and Forecast Horizon = 12. The rolling window length is equal to 200 days. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.
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Table 5.7 shows the ranking for the net downside “fear” connectedness. The annual ranking high-

lights a main contribution in the downside “fear” transmission from Goldman Sachs, followed by J.P.

Morgan Chase and Wells Fargo. American Express played the main role in terms of annual down-

side “fear” reception, followed by Morgan Stanley. For the two-year ranking, we find, again, Goldman

Sachs, J.P. Morgan Chase and Wells Fargo to be the main downside “fear” transmitters and a clearer role

for American Express and Bank of New York Mellon as downside “fear” receivers. The pre-crisis, cri-

sis and post-crisis periods rankings indicate that Bank of America, Wells Fargo and J.P. Morgan Chase

had the main downside “fear” transmitter roles, respectively. Wells Fargo is found to be the main down-

side “fear” receiver in the pre-crisis period, Citigroup during the financial crisis and American Express

in the post-crisis period. Over the total sample period, the downside cumulative “fear” connectedness

picture points to J.P. Morgan Chase and Goldman Sachs as the main transmitters of downside “fear” to

the system and to American Express as the main institution receiving downside “fear” from the system.

A graphical representation of Tables 5.6 and 5.7 is reported in the Appendix of this Chapter.

5.5.4 Additional Analysis of Individual Financial Firm Net Fear Connectedness

This section contains case studies on financial institutions that are found to be the top net aggregate

“fear” transmitters and receivers in our previous analysis. We investigate this bank more closely, re-

porting the dynamics of the connectedness in response to systematic and specific events. We present

the net directional “fear” connectedness indexes, together with the net AFC of the single financial insti-

tution in order to determine their asymmetric behavior over the studied time period. We denote the net

upside “fear” as C+j,NET and the net downside “fear” as C−j,NET. For instance in the Goldman Sachs case,

we denote the net upside “fear” as C+GS,NET and the net downside “fear” as C−GS,NET. The same notation

will apply for these banks, and major specific company events, along with systematic events, will be

reported for the selected time period.

Figure 5.12 captures the net upside and net downside “fear” connectedness and the net AFC for

Goldman Sachs. In January 2000, Goldman Sachs and Lehman Brothers were the lead managers for the

first internet bond offering for the World Bank, which is found to correspond to one of the highest levels

of C+GS,NET received by Goldman Sachs. When Goldman Sachs purchased Spear, Leeds and Kellogg in

September 2000 for more than $6 billion, significant upside and downside “fear” was transmitted into

the system. In 2003, Goldman Sachs took an almost 50% stake in a joint venture together with JBWere,

which resulted in a spike of C+GS,NET transmitted, together with an increase in absorbed C−GS,NET. We find

C−GS,NET transmission during the financial crisis, especially in 2007, when Goldman Sachs’ traders bet

against the mortgage market, which gave an alarming pessimistic signal to the U.S. financial sector. In

October 2008, Goldman Sachs received a $10-billion preferred stock investment from the U.S. Treasury

as part of the Troubled Asset Relief Program (TARP). This bailout intervention appears to increase the
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Figure 5.12: Net Fear Connectedness and Net AFC - Goldman Sachs

Notes: The figure shows the net upside “fear” connectedness, C+GS,NET , and net downside “fear” connectedness, C−GS,NET for Goldman Sachs,
together with the AFC, computed as difference between the two. The figure also reports the main specific company events during the time
period: [A] First Internet Bond Offering [B] Spear, Leeds and Kellogg Acquisitions [C] Joint Venture with JBWere [D] Short-Selling of Subprime
Mortgage-Backed Securities [E] $10 Billion Preferred Stock from TARP [F] TARP Repayment [G] JBWere Full Control [H] Global Alpha Fund
Shutdown [I] $17 Billion Bond Offering by Apple Inc. Selected VAR lags = 4 and forecast horizon = 12.The rolling window length is equal to 200
days. The NBER recession periods are highlighted in grey. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.

U.S. financial sector instability resulting in an increase in transmitted C−GS,NET. In June 2009, Goldman

Sachs repaid the U.S. TARP investment, resulting in a drop in the transmitted net C−GS,NET, while in

an increase in the received C+GS,NET as a sign of recovery. Later on, in 2011, Goldman Sachs took

over JBWere, which contributed to the reception of both net upside and net downside “fear” . One

of the highest peaks of C+GS,NET received is found in April 2013, when Goldman Sachs, together with

Deutsche Bank, led a $17 billion bond offering by Apple Inc., one of the largest non-bank bond deals

in history. During the same year, Goldman Sachs led Twitter’s IPO. Both IPOs resulted in a stable

C+GS,NET reception and a C−GS,NET transmission for Goldman Sachs from that time onwards. The spike of

downside volatility between 2014 and 2016 might be due to different reasons: Goldman Sachs might

have been detected as a downside volatility transmitter along these two years because of the foreign

investments through banks in Malaysia which have been investigated by the U.S. since these deals

were found to generate commissions above average. Thus criminal charges against Goldman Sachs

were filled. Another potential reason for the downside volatility connectedness increase may be the

political exposure that Goldman Sachs had during the president Trump election in 2016.

Figure 5.13 displays the net “fear” connectedness and the net AFC for J.P. Morgan Chase. In

September 2000, the merger between J.P.Morgan & Co. and Chase Manhattan combined two of the

largest banks in New York City into J.P. Morgan Chase & Co., resulting in a huge spike of transmitted

C+JPM,NET and optimistic reactions among American investors. Another peak in C+JPM,NET transmission
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is found in 2004, when J.P. Morgan Chase $ Co. merged with Bank One, enlarging its presence across

the U.S.

Figure 5.13: Net Fear Connectedness and AFC - J.P. Morgan Chase

Notes: The figure shows the net upside “fear” connectedness, C+JPM,NET , and net downside “fear” connectedness, C−JPM,NET for J.P. Morgan
Chase, together with the AFC, computed as difference between the two. The figure reports also the main specific company events along the
time period: [A] J.P. Morgan & Co. Merges with Chase Manhattan [B] Merge with Bank One [C] Bank of New York Mellon’ Retail Banking
Acquisition. [D] Acquisition of Bear Stearns [E] Washington Mutual Takeover [F] Cazenove Group Acquisition Announcement [G] Settlement
of Investigations over Mortgage-Backed Securities [H] Commodities Division Sale [I] Legal and Fraudulent News. Selected VAR lags = 4 and
forecast horizon = 12. The rolling window length is equal to 200 days. The NBER recession periods are highlighted in grey. The selected period
spans from 03-01-2000 to 29-12-2017 at a daily frequency.

In April 2006, J.P.Morgan Chase acquired Bank of New York Mellon’s retail banking and regional

middle-market businesses, then exited from the retail banking, which resulted in both a transmission of

downside and a reception of upside CJPM,NET. In 2008, due to the deteriorating market conditions and

capitalization of Bear Stearns & Co. Inc., J.P. Morgan Chase acquired the bank for only $ 236 million.

However, related to this event, we find both upside and downside CJPM,NET transmission in the system,

meaning investors had different views on this acquisition. A few months later, in September 2008, J.P.

Morgan Chase took over Washington Mutual, an event that transmitted mainly C+JPM,NET in the finan-

cial sector. The spike C+JPM,NET transmission at the end of 2009 may be due to the announcement by

J.P. Morgan Chase that it would buy the rest of Cazenove Group for 1 billion pounds. In November

2013, J.P. Morgan Chase received downside“fear” from the system when the Justice Department an-

nounced that J.P. Morgan Chase had to pay $ 13 billion to settle investigations over mortgage-backed

securities. One year later, J.P. Morgan sold its commodities division to Mercuria for a quarter of its

initial valuation, which resulted in a C−JPM,NET reception. In 2017, J.P. Morgan Chase was found to

transmit C−JPM,NET in the financial sector due to news in relation to former employee frauds, a former

COO’s resignation and a lawsuit filed by the Nigerian government with regard to money transfers to a

former corrupt minister.
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Figure 5.14 shows the net directional upside and downside “fear” connectedness for Citigroup to-

gether with its AFC and main events in the selected time period. In 2001, Citigroup acquired European

American Bank, in July and Banamex in August. Citigroup spun off its Travelers Property and Casualty

insurance in 2002 because Travelers earnings were more seasonal and dependent on large disasters and

events such as the September 11 attacks. We find this operation resulted in a upside volatility trans-

mission from the parent company to the system. The number of bad mortgages of Citigroup, some of

them resulting of mortgage fraud, started to increase in 2007 exceeding 80% of the volume, thus being

subject to external investigation. Moreover, when the crisis began, Citigroup announced a restructuring

operation with the aim to eliminate 17,000 jobs, or about 5 percent of its workforce in order to cut

costs. When the crisis intensified and worsened, Citigroup announced in January 2008 cutting another

5% to 10% of its 327,000 workforce. In November 2008, Citigroup was insolvent, despite the $25

billion federal TARP funds and announced plans for other new job cuts resulting from four quarters of

consecutive losses and reports that it was unlikely to be in profit again before 2010. The stock price

responded falling from $540 in mid 2007 to about $20 in February 2009, dropping the Citigroup market

capitalization to $6 billion, down from $300 billion of two years before. This resulted in one of the

peak of downside “fear” received from Citigroup in all its history. On June 1, 2009, it was announced

that Citigroup would be removed from the Dow Jones Industrial Average effective June 8, 2009, due to

significant government ownership. Citigroup was replaced by Travelers Co. At the end of November

2008, the U.S. government approved a massive bailout program to rescue Citigroup from bankruptcy

by providing $45 billion in TARP funds, this made to prevent a financial sector panic and chaos spread,

thus, resulting in a increase in upside “fear” received, first from the system and, later in 2009, from

Citigroup which started to recover.

The upside “fear” received was also due to the reorganization of Citigroup in two operating units,

also in 2009. By December 2010, Citigroup repaid the emergency aid in full resulting in a spike in

upside “fear” transmission as a synonym of stability. In March 2012 was reported that Citigroup was

one of the four financial institutions, out of 19 major banks, that failed its stress tests. In March 2014,

the Federal Reserve Board of Governors reported that Citigroup was one of the 5 financial institutions

that failed its stress tests. In March 2015, Citi has passed its first CCAR test resulting in a increase in

received upside “fear” connectedness.

In Figure 5.15, with regard to Bank of America, we observe that the net upside “fear” , C+BAC,NET,

is transmitted to the system when Bank of America agreed to acquire FleetBoston Financial for $47

billion at the end of 2003 and when the merger between Bank of America and the credit card giant,

MBNA, for $35 billion was announced in July 2005 and then finalized in January 2006. Furthermore,

in May 2006, Bank of America and the Brazilian Banco Itaú entered into a merger agreement. In

November 2006, Bank of America announced the purchase of The United States Trust Company from
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Figure 5.14: Net Fear Connectedness and AFC - Citigroup

Notes: This figure shows the net upside and net downside directional fear connectedness for Citigroup together with net AFC computed as difference
between net upside and net downside connectedness. The Figure reports also the main specific company events along the time period: [A]
European American Bank and Banamex Acquisition [B] Travelers Property Casualty Insurance Spin off [C] Restructuring and Workforce Cutting
[D] Insolvency and Financial Crisis [E] Stock Price and Capitalization Fall [F] U.S. Government TARP Bailout [G] Reorganization in two Units
[H] Fund Repayment [I] Stress Test Failure (a) [J] Stress Test Failure (b) [K] CCAR Test. Selected VAR lags = 4 and forecast horizon = 12.
The rolling window length is equal to 200 days. NBER recession periods highlighted in grey. The selected period spans between 03-01-2000 to
30-04-2016 at daily frequency.

the Charles Schwab Corporation for $3.3 billion, which resulted in a C−BAC,NET, transmission together

with a C+BAC,NET reception. The agreement in September 2007 to buy LaSalle Bank Corporation from

ABN AMRO for $21 billion increased the level of C+BAC,NET received from Bank of America, while

different “fear” connectedness is found for two other acquisitions by Bank of America in the midst

of the global financial crisis. For instance, in January 2008, Bank of America agreed to a $4 billion

acquisition of Countrywide Financial, which resulted in a C−BAC,NET reception8. We find an even higher

level of C−BAC,NET received by Bank of America in correspondence to the announcement of the acqui-

sition of Merrill Lynch & Co., Inc. for $50 billion in September 2008. This deal was clearly made

with the aim to save Merrill Lynch from bankruptcy, thus reflecting investors’ negative expectations

and uncertainty about it. Even if this acquisition made Bank of America one of the largest financial

services companies in the world, it was not seen in positively by many. Bank of America is found to

receive C−BAC,NET in January 2009, when its earnings release revealed massive operating loss of $21.5

billion. Due to this, Bank of America received a $20 billion bailout from the U.S. government TARP in

January 2009 in addition to the $25 billion it received at the end of 2008, which generated a reception of

C−BAC,NET together with a transmission of C+BAC,NET to the financial sector9. Another peak of C+BAC,NET

transmission is found at the end of 2009, when Bank of America announced the TARP debt repayment.

8The acquisition was completed in July 2008, despite the fact that in March 2008, Countrywide was investigated for fraud
and the acquisition was thus seen as a maneuver by Bank of America to prevent the target’s potential bankruptcy.

9The additional bailout was made with the U.S. government’s intention to preserve Bank of America’s stability and merger
operation with Merrill Lynch, thus seen as a stabilizing operation within the financial system.
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In 2010, Bank of America was accused of fraud by the U.S. government and, thus, again became a

C−BAC,NET receiver. From 2011 to 2014, Bank of America went through a reduction in personnel, which

contributed to an increase in the received C+BAC,NET. Lastly, in August 2014, Bank of America agreed

with the U.S. Justice Department to pay $17 billion to settle toxic mortgage-linked securities claims,

which triggered a peak in C−BAC,NET transmission.

Figure 5.15: Net Fear Connectedness and AFC - Bank of America

Notes: The figure shows the net upside “fear” connectedness, C+BAC,NET , and net downside “fear” connectedness, C−BAC,NET for Bank of America
together with the AFC, computed as difference between the two. The figure also reports the main specific company events during the time period:
[A] FleetBoston Acquisition Announcement [B] MBNA Acquisition Announcement [C] Banco Itaú Acquisition Agreement [D] United States Trust
Company Acquisition Announcement [E] Acquisition of LaSalle Bank Corporation [F] Acquisition of Countrywide Financial [G] Acquisition of
Merrill Lynch [H] U.S. TARP Bailout [I] TARP Debt Repayment [J] Fraud Accusation [K] Downsizing begins [L] Settlement with U.S. Justice
Department [M] Scaling Back, Branches Closing. Selected VAR lags = 4 and forecast horizon = 12. The rolling window length is equal to 200
days. The NBER recession periods are highlighted in grey. The selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.

Finally, Figure 5.16 shows the net “fear” and net AFC for Bank of New York Mellon. The bank was

formed only in July 2007 from the merger of The Bank of New York and Mellon Financial Corporation.

The first made several acquisitions during the early 2000s, and one of the most important was the

acquisition of Ivy Asset Management, which was reflected in a peak in received C+BK,NET. Both net

downside and net upside “fear” are found to be received at the end of 2001, when profits fell, but

there was a confident outlook by the management for the bank’s future leading position in the financial

sector, which may have stimulated the company’s calls trading. In 2003, the Bank of New York acquired

Credit Suisse First Boston’s Pershing LLC for $2 billion, which is reflected in a clear spike in C+BK,NET

received. In 2005, the bank settled a U.S. federal investigation for money laundering in relation to

Russian privatization, resulting in a C−BK,NET reception. In April 2006, an asset-swap agreement with J.P.

Morgan Chase was announced10. This operation was found to result in a C+BK,NET transmission and in a

10The swap consisted in selling Bank of New York retail and regional middle-market businesses to J.P. Morgan for $ 3.1 billion
in return for J.P. Morgan’s corporate trust business for $2.8 billion, meaning its exit from retail banking.
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C−BK,NET reception, meaning that J.P. Morgan Chase likely profited more from the swap than the Bank of

New York. In December 2006, the Bank of New York and the Mellon Financial Corporation announced

their merger, which was finalized in July 2007, for a value of $16.5 billion, becoming the Bank of New

York Mellon Corp. and resulting in a peak of C+BK,NET received since the merger contributed to the

creation of one of the largest securities servicing and asset management companies. The merger was

found to contribute to C−BK,NET transmission to the system due to the increase in competition in the

financial sector.

Figure 5.16: Net Fear Connectedness and AFC - Bank of New York Mellon

Notes: The figure shows the net upside “fear” connectedness, C+BK,NET , and net downside “fear” connectedness, C−BK,NET for Bank of New York
Mellon together with the AFC, computed as difference between the two. The figure also reports the main specific company events during the time
period: [A] Ivy Asset Management Acquisition [B] CSFB’s Pershing Acquisition [C] U.S. Federal Investigation [D] Asset Swaps with J.P. Morgan
Chase [E] Bank of New York and Mellon Financial Corporation Merger [F] Financial Crisis [G] Stress Test Result [H] PNC’s Global Investment
Servicing Acquisition [I] Foreign Currency Fraud Lawsuits [J] BNY Markets Mellon Creation [K] Foreign Currency Fraud Admission. Selected
VAR lags = 4 and forecast horizon = 12. The rolling window length is equal to 200 days. The NBER recession periods are highlighted in grey. The
selected period spans from 03-01-2000 to 29-12-2017 at a daily frequency.

During the global financial crisis, Bank of New York Mellon fired almost 2,000 employees, ac-

counting for the 4% of its workforce, which generated an increase in C−BK,NET received. However, the

results of the February 2009 stress test by federal regulators indicated that Bank of New York Mellon

was one among only three banks that could have withstood a worsening of the financial situation, and

this announcement triggered an increase in C+BK,NET received. In August 2009, the bank acquired In-

sight Investment from Lloyds Banking Group, while in July 2010, it acquired PNC Financial Services’

Global Investment Servicing Inc.; the latter, however, resulted in a reception of C−BK,NET. C−BK,NET re-

ceived by Bank of New York Mellon is also found at the end of 2011 and the beginning of 2012, when

the Justice Department filed lawsuits against the bank concerning foreign currency fraud. The creation

of the new Markets Group (BNY Markets Mellon) in June 2014, which combined its global markets,

global collateral services and prime services, is found to generate C+BK,NET received. Conversely, a peak
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in C−BK,NET is detected again in March 2015, when Bank of New York Mellon admitted to the allegation

of misrepresentation of foreign exchange pricing and execution.

Whereas in the total “fear” connectedness analysis, the role of put options is found to be a bit

more marginal compared to the role of call options, when we study the behaviour of calls and puts

with regards to single banks the picture varies. The received or transmitted, upside or downside, net

“fear” connectedness depends more on the specific financial institutions’ events and news. Thus, we

find that upside and downside “fear” connectedness play a more evident role when taken in their single

stock specific context, by signalling events which investors consider or expect to be good or bad for

the company. Specifically, we find that events, such as, leading bond offerings and IPOs, TARP re-

payments, M&A deals which investors believe could have a potential benefit and improving power on

the conditions of the bidder company, positive earnings announcements and positive stress tests results

all contribute to a increase of net upside “fear” reception spread in the system through calls trading.

On the other hand, legal issues with the Department of Justice, fraud issues, money laundering, M&A

deals which investors believe could negatively affect the bidder, at least in the short term (e.g. Merrill

Lynch), stress tests negative results as well as company losses, they all contribute to the spread of net

downside “fear” received from the bank through put options. With regards to the net “fear” transmitted,

we find that events, such as, M&A deals which may contribute to an increase in stability in the financial

sector (e.g. J.P. Morgan and Chase Manhattan, J.P. Morgan Chase and Bear Stearns) and also TARP

bailout programs contribute to the transmission of net upside “fear” in the system because events which

may potentially stabilize the financial sector by reducing uncertainty. On the other hand, we find that

events, such as, M&A with uncertain results (e.g. Bear Stearns) and speculative trading activity may

increase the net downside “fear” transmitted in the system because they may contribute to an increase

in the uncertainty in the financial system.

These information and expectations coming from the options trading are balanced out among all the

banks when we look at the total sector connectedness. Different information are detected from calls and

puts only in correspondence of macro and systematic events which incorporate all the financial sector

such as crisis, economic downturns, macroeconomic events and so on, when good or bad news are

simultaneously impacting on all the banks. Thus, while in the total connectedness measures, the “fear”

connectedness index extracted from calls prevailed for most of the time over the one extracted from

puts resulting in having an AFC above 0, in the specific company analysis the two options portfolios

appear to be traded in a more homogeneous way.
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5.6 Predictive Power of Fear Connectedness Indexes

Motivated by the previous results, we test the predictive power of our asymmetric connectedness mea-

sures in forecasting future macroeconomic conditions, as well as the potential increase in uncertainty.

Our hypothesis is that forward-looking connectedness measures may result in an early warning tool

to forecast the declines in the U.S. macroeconomic conditions or increases in financial and economic

uncertainty.

We select the following monthly indicators, which reflect the macroeconomic and economic con-

ditions, such as the Aruoba-Diebold-Scotti (ADS) Business Condition Index (Aruoba et al., 2009), the

Chicago FED National Activity Index, CFNAI, the Kansas City Financial Stress Index (KCFSI) (see

Hakkio et al., 2009), the NBER recession period dummy variable and the U.S. Industrial Production

(IP). They are collected according to their available sample. The Aruoba-Diebold-Scotti (ADS) Busi-

ness Condition Index tracks real business conditions at a high frequency and it is based on economic in-

dicators. It is collected from: https://www.philadelphiafed.org/research-and-data/

real-time-center/business-conditions-index. The Chicago FED National Activity

Index (CFNAI) is a monthly index that tracks the overall economic activity and the inflationary pres-

sure. It is computed as a weighted average of 85 monthly indicators and it is collected from: https:

//www.chicagofed.org/publications/cfnai/index. The Kansas City Financial Stress

Index (KCFSI) is a measure of stress in the U.S. financial system and is based on eleven financial

market variables (see Hakkio et al., 2009). It is collected from https://www.kansascityfed.

org/research/indicatorsdata/kcfsi. The NBER recession period dummy variable for

the U.S. tracks recession(1) and expansion (0) periods according to NBER and is available at https:

//fred.stlouisfed.org/series/USREC. The monthly growth rate of the U.S. Industrial

Production (IP) measures the real output for all the facilities in the U.S. and is collected from https:

//fred.stlouisfed.org/series/INDPRO.

As uncertainty proxies, we select the Economic Policy Uncertainty (EPU) index (see Baker et al.,

2016), the GeoPolitical Risk (GPR) index by Caldara and Iacoviello (2018), the Economic Uncertainty

Index (EUI) by Bali et al. (2014), the CBOE implied volatility index (VIX ) and the average condi-

tional volatility based on GARCH(1,1) of some U.S. macroeconomic variables (AVGVOL). The EPU

index by Baker et al. (2016) is computed from news associated with the ten most important American

newspapers, reflecting the concerns and uncertainty around specific economic or political events. It

is collected from http://www.policyuncertainty.com/. The GeoPolitical Risk index by

Caldara and Iacoviello (2018) (GPR) is computed in a similar way to EPU from newspaper articles

associated with geopolitical events, wars, terrorist attacks or international conflicts. It is available at

https://www2.bc.edu/matteo-iacoviello/gpr.htm. The Economic Uncertainty Index

(EUI) by Bali et al. (2014) is a measure of economic uncertainty based on the time-varying condi-
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tional volatility of macroeconomic and financial variables, such as the default spread, term spread,

short-term interest rate, dividend yield, equity market index, inflation, unemployment rate and GDP

available at http://faculty.msb.edu/tgb27/workingpapers.html. VIX is the CBOE

implied volatility index, while AVGVOL is computed, in a similar way as in Allen et al. (2012), as the

average time-varying GARCH(1,1) conditional volatility of some macroeconomic variables common

in the literature. In this chapter, we select the default spread as difference between the BAA-rated

and AAA-rated corporate bonds (DEF), the term spread as the difference between the 10-year T-bond

and the three-month T-bill yield (TERM), the relative short-term interest rate, which is computed as a

difference between the three-month T-bill rate and its annual moving average (RREL), the industrial

production monthly growth rate (IP) and the inflation rate computed by the U.S. consumer price index

(INF). All these variables are collected from https://fred.stlouisfed.org/.

The first set of equations concerns the macroeconomic indicators (MacroInd), while the second

regards the uncertainty indicators (UncertInd). We control for the 1- to 12-month lags of endogenous

variables.

MacroIndt+h = β0 + βCt +

11∑
k=0

γkMacroIndt−k + εt (5.16)

MacroIndt+h = β0 + β−C−t + β+C+t +

11∑
k=0

γkMacroIndt−k + εt (5.17)

MacroIndt+h = β0 + β
C−t
C+t

+

11∑
k=0

γkMacroIndt−k + εt, (5.18)

UncertIndt+h = β0 + βCt +

11∑
k=0

γkUncertIndt−k + εt, (5.19)

UncertIndt+h = β0 + β−C−t + β+C+t +

11∑
k=0

γkUncertIndt−k + εt, (5.20)

UncertIndt+h = β0 + β
C−t
C+t

+

11∑
k=0

γkUncertIndt−k + εt, (5.21)

where MacroInd ∈ {ADS,CFNAI,KCSFI,NBER, IP} is one of the macroeconomic indicator vari-

ables, and UncertInd ∈ {EPU,GPR,EUI,VIX,AVGVOL} is one of the uncertainty proxies for

h = 1, ..., 12 horizons up to one year. For the NBER recession dichotomous variable, a probit regres-

sion is fitted and the z-statistics are reported in parentheses, while for the other variables, least squares

regressions are estimated and Newey t-statistics are reported in parentheses. Equations 5.16 and 5.19

concern the aggregate Ct index, whereas 5.17 and 5.20 the upside and downside connectedness indexes,
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C+t and C−t . Equations 5.18 and 5.21 concern the ratio between C−t and C+t . Every connectedness in-

dex in this exercise is computed as quarterly, end-of-the-quarter, index from forecast error variance

decomposition, as in formula (5.7), by aggregating three months of implied volatility observations (60

trading days) with regards to the indexes, VIX , VIX− and VIX+ , for every financial institutions The

quarterly connectedness measures are rolled every month in order to produce monthly Ct, C+t and C−t

observations that reflect the previous quarter. The monthly macroeconomic and uncertainty indicators

are taken as the average of the previous quarter, and recession is marked binary as 1 when the average

gives values > 0.5 and 0 when the average gives values < 0.5. This process allows us to match the

information of the fear connectedness indexes with the macro and uncertainty indicators, thus creating

monthly observations that reflect the information in the previous quarter.

5.6.1 Predicting Macroeconomic Conditions and Uncertainty

Tables 5.8 and 5.9 display the results for the predictive power of the fear connectedness indexes for the

future macroeconomic conditions and uncertainty indicators, respectively. Table 5.8 reports the results

of the predicting regressions estimated through equations (5.16) and (5.17). First, β refers to the effect

of the total fear connectedness Ct on the selected macroeconomic indicators. Second, β−, and β+ break

the effect into downside and upside parts, respectively. Significant coefficients are highlighted in bold,

red and blue for β, β−, and β+, respectively. Our main hypothesis is that decomposed connectedness

measures C−t and C+t carry additional predictive information compared to the aggregate Ct.

One of the first observations made from Table 5.8 is that C−t and C+t are able to predict the ADS

Business condition index from 4 to 12 months and from 4 to 10 months in advance, respectively.

Downside and upside information further predicts CFNAI from 3 to 10 months in advance and from 3

to 9 months in advance, respectively. In addition, C−t can signal a recession early, providing an alarm a

few months before the aggregate Ct, emphasizing the importance of investors’ expectations contained

in the put options. C−t is also found to be the only connectedness index that can predict short-mid

future levels of KCSFI. In contrast to the decomposed connectedness, the aggregate connectedness

Ct is unable to predict the ADS Business condition index, the CFNAI, the KCSFI and the industrial

production, while showing only a long horizon predictability power for future recessions.

Table 5.9 shows the results of the predictive regressions estimated through equations (5.19) and

(5.20). Both Ct and C+t contain predictive information for the EPU index, from 4 to 6 months ahead

and from 3 to 5 months ahead, respectively. C−t has predictive information for the EPU index, one

year ahead. Future geopolitical risk is predicted by all the three Ct indexes, but at different horizons. Ct

forecasts well the future level of AVGVOL up to one year, while C−t from 8 to 12 months ahead, respec-

tively. The Ct measure is unable to predict only future economic uncertainty (EUI) and future levels of

the VIX index. The latter is only predicted by a mixture of information from C+t and, especially, C−t .
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C−t is the only measure with predictive power on EUI.

Our results are comparable to findings of Allen et al. (2012), who introduced a Catastrophic Risk

in the Financial Sector (CATFIN) measure and found that it is able to predict future macroeconomic

conditions. The Catastrophic Risk in the Financial Sector (CATFIN) measure by Allen et al. (2012) is

constructed using nonparametric and parametric approaches based on value-at-risk (VaR) and expected

shortfall (ES) methods. The parametric distributions used to estimate the 99% VaR and the 1% ES

are the generalized Pareto distribution (GPD) and the skewed generalized error distribution (SGED).

The nonparametric methods are measured as a cut-off point of the left tail minus one percentile of the

monthly excess returns for the VaR and as an average of the extreme financial firms returns beyond the

1% nonparametric VaR. CATFIN is then constructed as an average of the three VaR and ES measures.

We include a CATFIN measure in all regressions as a control variable. We find that the results are

robust and do not materially change the significance of connectedness measures. This finding leads us

to the conclusion that information contained in connectedness indexes carries additional information to

CATFIN. Different information content can also be seen from the low correlation of the CATFIN and

connectedness indexes.

Overall, we find that in contrast to aggregate connectedness, decomposed indexes carry predictive

information for the macroeconomic indicators. This finding is in line with recent literature on the de-

composed variance risk premium (e.g. Kilic and Shaliastovich, 2018) assessing how the mixture of

information coming from the decomposed premia is more helpful to predict, in their case, future asset

returns. We have conducted several robustness checks on the predictive exercise as well; however, our

results appear to be robust. We have also changed the construction methodology for the connected-

ness indexes. We have performed the same predictive exercise by considering Ct indexes as computed

in sections 5.4.2 and 5.5.2, considering a dynamic framework with a rolling window length equal to

200 days. The results are similar to those presented here, with C−t and C+t still playing a major role

compared to the total Ct. We have replaced the 200-day window length with 100 days finding that the

results still hold; however, they shift a few months. In order to avoid this information mismatch due

to the rolling window length, we decided to compute quarterly static Ct for every quarter and linearly

interpolate them in order to obtain monthly measures that match the selected macro and uncertainty

indicators. The results were still robust with, in some cases, predictability power spanning from the

very short-horizon until month 10. The same major roles for C−t and C+t are found compared with Ct,

remaining robust to all the exercises we have tried. However, we decided to discard this methodology

due to the interpolation approximation and to present results regarding our Ct indexes computed quar-

terly, end-of-the-month, and rolled for every month. We also controlled for CATFIN in all these other

cases, finding that results remain robust and provide additional information.
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Table 5.8: Ct, C−t and C+t Macroeconomic Activity Prediction

Forecast ADS t-stat R2 CFNAI t-stat R2 KCSFI t-stat R2 NBER t-stat R2 IP t-stat R2

1 β -0.007 (-0.376) 0.981 -0.003 (-0.090) 0.948 -0.001 (-0.991) 0.987 -0.073 (-0.986) 0.776 0.001 (0.292) 0.994
β− 0.003 (0.123) 0.981 0.001 (0.342) 0.942 -0.010 (-2.085) 0.988 -0.558 (-0.654) 0.774 0.005 (0.859) 0.995
β+ -0.001 (-0.602) -0.001 (-0.399) 0.004 (1.600) -0.006 (-0.088) -0.003 (-0.772)

2 β -0.007 (-0.133) 0.889 0.001 (0.061) 0.868 -0.001 (-0.402) 0.940 -0.048 (-0.821) 0.616 0.004 (0.324) 0.991
β− 0.005 (0.802) 0.890 0.010 (1.231) 0.869 -0.021 (-1.696) 0.943 -0.050 (-0.783) 0.617 0.019 (1.294) 0.991
β+ -0.005 (-1.163) -0.006 (-1.137) 0.010 (1.456) 0.006 (0.111) -0.013 (-1.361)

3 β 0.000 (0.027) 0.731 0.002 (0.234) 0.723 0.000 (0.080) 0.849 -0.039 (-0.767) 0.487 0.013 (0.561) 0.975
β− 0.017 (1.629) 0.738 0.025 (2.103) 0.732 -0.033 (-1.581) 0.857 -0.016 (-1.694) 0.505 0.041 (1.695) 0.975
β+ -0.011 (-1.648) -0.013 (-1.667) 0.015 (1.381) 0.043 (0.832) -0.026 (-1.675)

4 β 0.000 (0.021) 0.592 -0.002 (-0.244) 0.637 0.001 (0.168) 0.754 -0.002 (-0.722) 0.420 0.013 (0.412) 0.955
β− 0.033 (2.376) 0.613 0.041 (2.562) 0.662 -0.037 (-1.525) 0.763 -0.012 (-2.111) 0.410 0.070 (2.219) 0.958
β+ -0.019 (-2.043) -0.024 (-2.372) 0.017 (1.330) 0.071 (1.460) -0.050 (-2.524)

5 β -0.000 (-0.060) 0.492 -0.001 (-0.088) 0.518 0.001 (0.142) 0.660 -0.004 (-0.954) 0.315 0.011 (0.287) 0.931
β− 0.045 (2.682) 0.531 0.047 (2.502) 0.551 -0.041 (-1.670) 0.671 -0.079 (-1.586) 0.304 0.095 (2.470) 0.935
β+ -0.026 (-2.295) -0.025 (-2.142) 0.017 (1.342) 0.062 (1.410) -0.071 (-2.812)

6 β 0.002 (0.211) 0.392 0.001 (0.012) 0.415 -0.000 (-0.040) 0.561 -0.005 (-0.890) 0.224 0.014 (0.310) 0.898
β− 0.054 (2.712) 0.446 0.054 (2.471) 0.458 -0.042 (-1.727) 0.573 -0.116 (-2.309) 0.244 0.128 (2.621) 0.905
β+ -0.031 (-2.390) -0.031 (-2.306) 0.015 (0.118) 0.066 (1.525) -0.095 (-3.017)

7 β 0.007 (0.621) 0.299 0.003 (0.256) 0.312 -0.002 (-0.138) 0.468 -0.055 (-1.377) 0.151 0.024 (0.436) 0.855
β− 0.057 (2.714) 0.358 0.053 (2.547) 0.353 -0.043 (-1.687) 0.481 -0.130 (-2.630) 0.191 0.160 (2.732) 0.865
β+ -0.033 (-2.321) -0.029 (-2.202) 0.014 (0.919) 0.067 (1.588) -0.109 (-2.902)

8 β 0.011 (0.899) 0.218 0.002 (0.191) 0.247 -0.007 (-0.414) 0.381 -0.072 (-1.847) 0.107 0.038 (0.608) 0.805
β− 0.056 (2.840) 0.273 0.056 (2.764) 0.293 -0.043 (-1.583) 0.393 -0.017 (-2.337) 0.112 0.197 (2.983) 0.820
β+ -0.031 (-2.176) -0.034 (-2.412) 0.012 (0.690) 0.005 (0.829) -0.124 (-2.828)

9 β 0.009 (0.697) 0.154 0.006 (0.047) 0.193 -0.014 (-0.685) 0.314 -0.078 (-2.030) 0.089 0.046 (0.647) 0.747
β− 0.053 (2.976) 0.205 0.049 (2.684) 0.229 -0.039 (-1.507) 0.323 -0.023 (-2.913) 0.109 0.222 (3.051) 0.767
β+ -0.028 (-2.010) -0.029 (-1.999) 0.010 (0.502) 0.005 (0.888) -0.133 (-2.663)

10 β 0.005 (0.375) 0.109 0.001 (0.074) 0.145 -0.017 (-0.756) 0.263 -0.057 (-1.519) 0.058 0.053 (0.686) 0.685
β− 0.048 (2.826) 0.151 0.043 (2.311) 0.175 -0.037 (-1.525) 0.270 -0.134 (-3.005) 0.110 0.241 (3.033) 0.708
β+ -0.027 (-1.737) -0.026 (-1.535) 0.008 (0.423) 0.051 (1.322) -0.145 (-2.534)

11 β 0.001 (0.110) 0.076 -0.001 (-0.068) 0.104 -0.016 (-0.691) 0.226 -0.057 (-1.533) 0.042 0.052 (0.631) 0.620
β− 0.041 (2.322) 0.107 0.033 (1.958) 0.121 -0.035 (-1.506) 0.233 -0.113 (-2.696) 0.079 0.241 (3.033) 0.708
β+ -0.026 (-1.523) -0.022 (-1.238) 0.012 (0.541) 0.038 (0.998) -0.145 (-2.534)

12 β -0.000 (-0.023) 0.054 -0.003 (-0.192) 0.070 -0.018 (-0.747) 0.196 -0.052 (-1.402) 0.030 0.048 (0.549) 0.556
β− 0.034 (1.921) 0.076 0.035 (1.888) 0.091 -0.032 (-1.385) 0.200 -0.094 (-2.287) 0.054 0.266 (3.109) 0.582
β+ -0.025 (-1.372) -0.027 (-1.381) 0.015 (0.612) 0.029 (0.773) -0.164 (-2.351)

Notes: This table presents the results of the predictive regressions estimated through equation 5.16 and 5.17 between the total Ct and the decomposed C−t and C+t , respectively and some macroeconomic
conditions indicators such as the Business Conditions Index (ADS), the Chicago FED National Activity Index (CFNAI), the Kansas City Financial Stress Index (KCFSI), the NBER recession variable
(NBER) and the IP Index (IP). For NBER a Probit regression is estimated and the z-statistics are reported in parentheses, while for the other variables OLS regressions are estimated and Newey (1987)
t-statistics are reported in parentheses. All the connectedness indexes are computed quarterly and rolled every month. The sample goes from 10-2000 to 12-2017, after 200-days rolling window estimation.
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Table 5.9: Ct, C−t and C+t Uncertainty Indexes Prediction

Forecast EPU t-stat R2 GPR t-stat R2 EUI t-stat R2 VIX t-stat R2 AVGVOL t-stat R2

1 β 0.231 (1.281) 0.954 0.436 (0.618) 0.630 -0.007 (-0.222) 0.995 -0.012 (-0.456) 0.960 -0.005 (-0.904) 0.985
β− -0.189 (-1.327) 0.953 -1.491 (-1.311) 0.635 -0.002 (-0.843) 0.995 -0.134 (-2.947) 0.963 -0.005 (-0.654) 0.986
β+ 0.139 (1.032) 1.162 (0.845) -0.000 (-0.402) 0.060 (2.124) -0.003 (-0.443)

2 β 0.553 (1.506) 0.842 1.701 (1.793) 0.308 0.000 (0.010) 0.976 0.006 (0.102) 0.834 -0.002 (-2.055) 0.926
β− -0.237 (-0.716) 0.842 -1.577 (-1.113) 0.312 -0.006 (-1.327) 0.976 -0.279 (-3.714) 0.846 -0.009 (-0.409) 0.926
β+ 0.461 (1.627) 1.796 (1.061) -0.002 (-0.551) 0.132 (1.940) -0.002 (-1.236)

3 β 0.857 (1.603) 0.684 2.506 (1.706) 0.211 -0.004 (-0.414) 0.931 -0.046 (0.441) 0.626 -0.006 (-2.662) 0.802
β− -0.216 (-0.426) 0.686 -0.490 (-0.032) 0.207 -0.018 (-2.057) 0.932 -0.428 (-1.955) 0.652 -0.002 (-0.430) 0.804
β+ 0.875 (2.172) 1.466 (1.052) -0.006 (-0.748) 0.181 (1.528) -0.004 (-1.402)

4 β 1.037 (1.739) 0.618 2.818 (1.368) 0.190 -0.010 (-0.727) 0.882 0.095 (0.729) 0.490 -0.010 (-3.282) 0.684
β− -0.024 (-0.041) 0.625 -0.552 (-0.378) 0.190 -0.036 (-1.939) 0.885 -0.454 (-1.684) 0.519 -0.005 (-0.685) 0.684
β+ 1.134 (2.582) 2.444 (1.937) -0.007 (-0.594) 0.175 (1.225) -0.004 (-1.121)

5 β 1.047 (1.686) 0.581 2.989 (1.453) 0.180 -0.019 (-1.033) 0.827 0.103 (0.726) 0.403 -0.013 (-3.530) 0.589
β− 0.030 (0.046) 0.590 -1.048 (-0.848) 0.175 -0.060 (-1.731) 0.835 -0.521 (-1.863) 0.440 -0.008 (-0.989) 0.587
β+ 1.193 (2.614) 2.135 (1.904) -0.004 (-0.250) 0.186 (1.316) -0.003 (-0.645)

6 β 0.857 (1.310) 0.545 2.423 (1.379) 0.148 -0.020 (-0.951) 0.773 0.100 (0.634) 0.333 -0.016 (-3.682) 0.522
β− -0.143 (-0.181) 0.548 -1.516 (-1.245) 0.144 -0.083 (-1.656) 0.785 -0.540 (-1.941) 0.374 -0.011 (-1.287) 0.513
β+ 0.900 (1.660) 1.458 (1.238) 0.006 (0.283) 0.206 (1.477) -0.002 (-0.369)

7 β 0.490 (0.680) 0.505 1.506 (0.958) 0.139 -0.016 (-0.681) 0.713 0.069 (0.399) 0.270 -0.017 (-3.372) 0.465
β− -0.324 (-0.367) 0.506 -2.461 (-1.795) 0.149 -0.094 (-1.569) 0.731 -0.551 (-1.933) 0.322 -0.011 (-1.485) 0.449
β+ 0.560 (0.813) 0.054 (0.048) 0.018 (0.273) 0.200 (1.363) -0.001 (-0.318)

8 β 0.241 (0.298) 0.485 2.107 (1.610) 0.188 -0.010 (-0.417) 0.661 0.030 (0.176) 0.246 -0.018 (-3.104) 0.411
β− -0.397 (-0.468) 0.486 -3.044 (-1.794) 0.199 -0.103 (-1.602) 0.677 -0.476 (-1.619) 0.280 -0.011 (-1.712) 0.390
β+ 0.281 (0.365) 0.936 (0.820 0.030 (0.983) 0.142 (0.885) -0.001 (-0.341)

9 β 0.206 (0.233) 0.480 2.584 (2.075) 0.218 -0.005 (-0.190) 0.600 -0.054 (-0.320) 0.229 -0.019 (-3.046) 0.361
β− -0.476 (-0.629) 0.483 -2.822 (-1.410) 0.222 -0.103 (-1.577) 0.616 -0.427 (-1.459) 0.258 -0.115 (-1.882) 0.335
β+ 0.483 (0.621) 1.568 (1.203) 0.037 (1.119) 0.050 (0.282) -0.001 (-0.340)

10 β 0.374 (0.408) 0.478 3.130 (2.181) 0.233 -0.005 (-0.155) 0.536 -0.088 (-0.505) 0.215 -0.021 (-3.356) 0.323
β− -0.706 (-1.024) 0.483 -2.867 (-1.569) 0.245 -0.109 (-1.660) 0.554 -0.346 (-1.344) 0.237 -0.012 (-2.042) 0.289
β+ 0.704 (0.986) 3.273 (2.126) 0.040 (1.130) 0.027 (0.014) -0.000 (-0.116)

11 β 0.506 (0.538) 0.467 2.968 (1.912) 0.236 -0.010 (-0.295) 0.468 -0.054 (-0.300) 0.202 -0.022 (-3.730) 0.300
β− -1.070 (-1.542) 0.477 -1.529 (-1.000) 0.226 -0.116 (-1.738) 0.488 -0.345 (-1.565) 0.223 -0.012 (1.981) 0.253
β+ 0.967 (1.386) 1.392 (1.145) 0.046 (1.130) 0.003 (0.020) -0.005 (-0.904)

12 β 0.526 (0.580) 0.442 1.536 (1.030) 0.228 -0.022 (-0.550) 0.403 -0.028 (-0.155) 0.195 -0.023 (-3.911) 0.285
β− -1.143 (-1.722) 0.375 -0.014 (-0.011) 0.224 -0.121 (-1.810) 0.424 -0.346 (-1.789) 0.214 -0.011 (-1.915) 0.230
β+ 1.037 (1.415) 0.401 (1.280) 0.043 (0.970) 0.045 (0.245) -0.001 (-0.201)

Notes: This table presents the results of the predictive regressions estimated through equation 5.19 for the total Ct and 5.20 for the C−t and C+t and some uncertainty proxies such as the Economic
and Policy Uncertainty (EPU), the GeoPolitical Risk Index (GPR), the Economic Uncertainty Index (EUI), the CBOE VIX index and the macroeconomic conditional volatility average (AVGVOL). OLS
regressions are estimated and Newey (1987) t-statistics are reported in parentheses. All the connectedness indexes are computed quarterly and rolled every month matching the monthly variables we want
to predict for the sample from 10-2000 to 12-2017, after 200-days rolling window estimation.

193



Table 5.10: C−t /C+t Ratio, Macroeconomic Activity Prediction and Uncertainty Index Prediction

Panel A
Forecast ADS t-stat R2 CFNAI t-stat R2 KCSFI t-stat R2 NBER t-stat R2 IP t-stat R2

1 0.054 (0.345) 0.981 0.113 (0.413) 0.948 -0.550 (-1.890) 0.976 -1.652 (-0.312) 0.770 0.342 (0.849) 0.993
2 0.415 (1.018) 0.890 0.634 (1.349) 0.869 -1.189 (-1.714) 0.942 -2.229 (-0.537) 0.614 1.286 (1.411) 0.990
3 1.138 (1.783) 0.737 1.497 (2.230) 0.730 -1.844 (-1.517) 0.854 -5.729 (-1.433) 0.498 2.622 (1.859) 0.974
4 2.026 (2.462) 0.609 2.545 (2.782) 0.658 -2.055 (-1.476) 0.760 -7.748 (-2.032) 0.406 4.781 (2.614) 0.951
5 2.773 (2.734) 0.524 2.835 (2.610) 0.544 -2.183 (-1.591) 0.667 -5.992 (-1.752) 0.305 6.606 (2.941) 0.935
6 3.292 (2.733) 0.437 3.278 (2.580) 0.450 -2.129 (-1.540) 0.568 -7.272 (-2.174) 0.239 8.834 (3.117) 0.901
7 3.470 (2.645) 0.348 3.148 (2.586) 0.345 -2.135 (-1.421) 0.475 -7.814 (-2.395) 0.181 10.580 (3.132) 0.865
8 3.342 (2.587) 0.261 3.464 (2.700) 0.287 -2.043 (-1.226) 0.387 -4.925 (-1.734) 0.106 12.533 (3.223) 0.818
9 3.142 (2.528) 0.193 3.064 (2.428) 0.224 -1.808 (-1.075) 0.316 -6.208 (-2.159) 0.095 13.835 (3.150) 0.763
10 2.874 (2.273) 0.143 2.652 (1.949) 0.171 -1.678 (-1.019) 0.256 -7.135 (-2.493) 0.088 14.965 (3.018) 0.705
11 2.602 (1.918) 0.103 2.194 (1.849) 0.119 -1.799 (-1.045) 0.230 -5.918 (-2.160) 0.060 16.158 (2.972) 0.643
12 2.357 (1.674) 0.095 2.530 (1.728) 0.091 -1.850 (-1.014) 0.199 -4.843 (-1.794) 0.039 16.670 (2.932) 0.581

Panel B
Forecast EPU t-stat R2 GPR t-stat R2 EUI t-stat R2 VIX t-stat R2 AVGVOL t-stat R2

1 -13.199 (-1.443) 0.953 -104.147 (-1.061) 0.634 -0.027 (-0.154) 0.993 -7.361 (-2.782) 0.962 -0.005 (-0.086) 0.985
2 -20.923 (-1.519) 0.842 -140.320 (-1.197) 0.388 -0.096 (-0.277) 0.976 -15.458 (-2.151) 0.843 0.071 (0.459) 0.925
3 -50.795 (-1.763) 0.683 -75.554 (-0.716) 0.203 -0.325 (-0.546) 0.931 -22.627 (-1.802) 0.643 0.137 (0.467) 0.798
4 -56.843 (-1.793) 0.616 -135.436 (-1.394) 0.184 -0.929 (-0.891) 0.882 -23.408 (-1.723) 0.508 0.081 (0.186) 0.670
5 -58.481 (-1.644) 0.579 -141.518 (-1.692) 0.173 -1.829 (-0.998) 0.828 -26.184 (-1.687) 0.425 -0.101 (-0.191) 0.566
6 -51.201 (-1.101) 0.544 -124.551 (-1.661) 0.145 -3.062 (-1.147) 0.776 -27.856 (-1.852) 0.359 -0.239 (-0.443) 0.488
7 -41.017 (-0.714) 0.506 -89.873 (-1.247) 0.138 -3.967 (-1.233) 0.722 -28.002 (-1.821) 0.306 -0.265 (-0.547) 0.425
8 -30.035 (-0.495) 0.487 -151.071 (-1.662) 0.191 -4.859 (-1.385) 0.669 -22.751 (-1.398) 0.265 -0.261 (-0.598) 0.366
9 -41.205 (-0.720) 0.483 -171.151 (-1.486) 0.219 -5.225 (-1.446) 0.610 -16.777 (-0.995) 0.238 -0.270 (-0.633) 0.312
10 -57.875 (-1.141) 0.483 -249.011 (-2.002) 0.236 -5.593 (-1.510) 0.547 -10.327 (-0.627) 0.217 -0.353 (-0.817) 0.266
11 -81.023 (-1.637) 0.477 -119.608 (-1.229) 0.226 -6.112 (-1.551) 0.481 -11.443 (-0.743) 0.207 -0.349 (-0.792) 0.232
12 -86.748 (-1.643) 0.453 -19.397 (-0.247) 0.223 -6.173 (-1.508) 0.415 -13.654 (-0.980) 0.202 -0.285 (-0.683) 0.210

Notes: Panel A presents the results of the predictive regressions estimated through equation 5.18 between C−t /C
+
t and some macroeconomic conditions indicators ,such as the Aruoba-Diebold-Scotti

Business Conditions Index (ADS), the Chicago FED National Activity Index (CFNAI), the Kansas City Financial Stress Index (KCFSI), the NBER recession dummy variable (NBER) and the Industrial
Production Index (IP). Panel B presents the results of the predictive regressions estimated through equation 5.21 between C−t /C

+
t and some uncertainty proxies such as the Economic and Policy

Uncertainty (EPU), the GeoPolitical Risk Index (GPR), the Economic Uncertainty Index (EUI), the CBOE VIX index and the macroeconomic conditional volatility average (AVGVOL). For NBER,
a Probit regression is estimated and the z-statistics are reported in parentheses, while for the other variables, OLS regressions are estimated and Newey (1987) t-statistics are reported in parentheses.
Significant relationships are highlighted in bold. All the connectedness indexes are computed quarterly and rolled every month, matching the monthly variables we want to predict for the sample from
10-2000 to 12-2017.
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This finding is also confirmed by the fact that, with regard to the 200-day rolling window, for

instance, we find that CATFIN is positively but weakly correlated with our connectedness measures,

namely, 0.05, 0.24 and 0.23, for Ct, C+t and C−t , respectively.

We perform the same predictive exercise for both the macroeconomic and the uncertainty indicators

by grouping the information contained in C−t and C+t as a ratio between the two to check whether

we can still obtain the same predictability results with a more compact and parsimonious equation.

Results for this exercise are reported in Table 5.10. We can observe that the C−t /C+t ratio can predict

macroeconomic activity for long horizons.

For instance, the C−t and C+t ratio can predict the ADS Index, from 3 to 12 months in advance, the

CFNAI from 3 to 12 months in advance, the NBER recession period from 4 to 12 months in advance

and the IP growth rate from 3 up to 12 months in advance. The ratio is found to have short-term

predictive power in relation to KCSFI, instead carrying predictive information for only one and two

months. From Table 5.10, we infer that the C−t /C+t ratio cannot predict the EUI and AVGVOL, while

it can predict the EPU index and the GPR index 3-4 and from 5 to 10 months ahead, respectively. The

ratio predicts VIX up to 7 months. Results for the C−t and C+t ratio show that, in some cases, such

as for EUI and AVGVOL, the ratio shows no predictive power. Thus, it can be concluded that when

information contained in C−t and C+t are kept separate and added to the same regression equation, they

are better able to predict future levels of economic activity and, particularly, of uncertainty proxies.

5.7 Asymmetric Connectedness of Implied Skewness

In this last section we extend the asymmetric connectedness analysis to the implied third moment

extracted model-free from the selected banks. As already discussed in Chapter 4, during outliers

skewness-based measures may better reflect tail risk (e.g. Du and Kapadia, 2014). Instead of defin-

ing the fear connectedness index based on the implied volatility measures, in this section we investigate

a redefined measure of fear connectedness based on implied skewness decomposition. The method-

ological framework is discussed in subsection 5.7.1 and some preliminary findings are reported in

subsections 5.7.2 and 5.7.3. Further directions of the analysis is drawn in the last paragraph as well as

in the conclusive Chapter of the thesis.

5.7.1 Implied Skewness Connectedness: Methodological Framework

We apply the implied skewness formulae as drawn in Chapter 4, namely equation 4.1 to the main ten

U.S. banks as described in section 5.2.1 of this Chapter. The set of options is the one we applied in

this Chapter, this time, SKEW measures will be at weekly frequency. Moreover, we decompose the

measures as illustrated for S&P 500 , this time, for every bank in our sample. We end up with a data set
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including three implied skewness index measures for every bank. We label the indexes with the bank

ticker followed by the SKEW index or decomposed SKEW indexes. For instance for J.P. Morgan

Chase we define the skewness indexes as JPM-SKEW , JPM-SKEW+ and JPM-SKEW− .

We report the descriptive statistics as well as the plots of the SKEW indexes of the main ten

banks in the U.S. in the Appendix to Chapter 5. Overall, we observe that U.S. Bancorp shows the

highest aggregate SKEW , SKEW− and SKEW+ values. The aggregate and positive SKEW values

(SKEW and SKEW+ ) are found to be quite similar among the selected ten banks in the sample, while

SKEW− values vary more. This finding is reflected by the lower standard deviation of SKEW and

SKEW+ values compared to SKEW− . This echoes the results found with the decomposed implied

volatility series in which VIX− has been found aa the most volatile seris. J.P. Morgan presents the

highest maximum values for SKEW (170.15), Bank of America for SKEW− (271.48) and Citigroup

for SKEW+ (115.8).

The following step in this analysis, as done for the VIX series consists in studying the decomposed

SKEW indexes for the main ten banks in the U.S. within a Diebold and Yilmaz (2012) framework. We

input the decomposed implied SKEW indexes in the methodology as illustrated in section 5.3. We,

first, conduct the analysis for the aggregate SKEW , and, second, we investigate the connectedness

levels of the decomposed SKEW indexes.

5.7.2 Aggregate Skewness Connectedness: Static and Dynamic Analysis

Table 5.11: Static Skewness Connectedness in the Financial Sector

SKEW Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK FROM

JPM 67.44 3.88 4.43 5.48 3.49 2.51 5.67 2.03 2.25 2.78 32.55
BAC 6.77 72.31 2.38 4.46 1.95 6.17 1.43 1.74 2.23 0.52 27.68
WFC 8.14 3.72 59.02 4.54 1.48 3.07 7.61 4.26 2.22 5.84 40.91
CITI 5.60 4.41 2.00 76.62 2.70 0.46 1.53 2.18 2.15 2.30 23.37
GS 2.26 0.14 1.31 3.18 82.05 2.18 1.54 3.55 1.56 2.19 17.94
MS 5.00 3.83 6.67 1.96 4.80 60.47 4.56 8.03 1.39 3.24 39.52
USB 6.70 3.99 4.08 2.94 0.82 4.12 65.36 2.11 2.74 7.09 34.63
AXP 5.02 1.11 4.85 10.22 3.89 2.68 4.41 59.79 2.94 5.04 40.20
PNC 6.04 3.59 2.87 3.40 2.61 1.96 5.98 6.72 58.52 8.25 41.47
BK 4.83 1.95 4.70 6.31 2.04 2.69 11.58 7.93 10.45 47.49 52.50

TO 50.39 26.66 33.33 42.53 23.81 25.87 44.35 38.58 27.96 37.29 TOTAL
NET 17.83 -1.02 -7.57 19.16 5.86 -13.64 9.71 -1.62 -13.50 -15.21 35.08

Notes: The table contains a decomposition of forecast error variance computed for the aggregate SKEW indexes for the ten main U.S.
financial institutions. Elements in the off-diagonal entries are the pairwise directional connectedness, while the diagonal elements (in
grey) are the financial institutions’ own variance. The off-diagonal row and column sum to TO and FROM connectedness, respectively.
The NET row at the bottom is the difference between TO and FROM. The bottom-right element is the total connectedness index in
the considered system. Selected VAR lags = 4 and Forecast Horizon = 12 days. The selected time period spans from 03-01-2000 to
29-12-2017 at weekly frequency.

Table 5.11 reports the static analysis of implied skewness connectedness for the ten main U.S. finan-

cial institutions. The diagonal values indicate that the future implied skewness of a stock is impacted

by own shocks to expectations, which range from 47.49% to 82.05%. The off-diagonal elements reveal
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how the implied skewness spreads from one bank to other banks in the financial sector. The directional

FROM connectedness measure ranges from 17.94% for Goldman Sachs to 52.50% for Bank of New

York Mellon. The directional FROM contribution accounts to 100% minus the companies’ own total

forecast error variance in the main diagonal or, in other words, to the sum of the other pairwise direc-

tional connectedness elements in the (N- 1) off-diagonal entries for every company. The directional TO

connectedness measure in the bottom row of the table ranges from 23.81% for Citigroup to 50.39% for

J.P.Morgan.

The highest pairwise connectedness appears to be from Bank of New York Mellon to U.S. Bancorp

(11.58%). The second-highest number is from Bank of New York Mellon to PNC (10.45%). The

bottom row in the table shows the total directional NET computed as difference between directional

TO and directional FROM fear connectedness. A positive difference reveals that the company can be

classified as an implied skewness transmitter, while a negative number identifies an implied skewness

receiver. The main net aggregate transmitter is found to be Citigroup (19.16%) followed by J.P.Morgan

(17.83%). Goldman Sachs and U.S. Bancorp are also net aggregate transmitters. On the other hand,

we find that Bank of New York Mellon is the main aggregate implied skewness receivers in the system

(15.21%). The total implied skewness connectedness index, bottom-right element, is found to be equal

to 35.08%, which means that, on average, more than one-third of the implied skewness for these ten

main financial institutions has been generated from spillovers in the financial system.

In this subsection we also report the dynamic analysis of the aggregate connectedness indexes

extracted from the U.S. main ten banks SKEW indexes. The first plot shows the trend of the total

connectedness index computed by inputting the aggregate SKEW indexes in the Diebold and Yilmaz

(2012) and rolling at 200 days.

Figure 5.17: Total Implied Skewness Connectedness Index

Notes: This figure shows the total implied skewness connectedness for the ten main financial institutions’ aggregate SKEW indexes. Selected
VAR lags = 4 and forecast horizon = 12. The rolling window length is equal to 200 days. The selected period spans from 03-01-2000 to 29-12-2017.
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Figure 5.17 illustrates how the total SKEW connectedness index spiked in 2004 and 2005 reaching

its maximum point at the beginning of 2005 (60.03%). The index remained at high levels, but decreas-

ing, close to 55%, for a few years. Interestingly it decreased right before the financial crisis in 2007

and 2008. This is in line with the findings in Chapter 4 in which we observed a SKEW decreasing

in times of crises including the global financial crisis. However, the total SKEW connectedness index

rose again in November 2007 anticipating the midst of the global financial crisis, the losses of Merrill

Lynch and the collapse of Lehman Brothers in September 2008. After that the index decreased since

investors were not expecting similar events again in the aftermaths of the financial crisis. The implied

SKEW connectedness index remained at levels between 40% and 50% showing a spike in mid 2012

reflecting the turbulent times of the sovereign debt crisis in the Eurozone. It, then, spiked again in

2016 and 2017 following events such as the Brexit vote or the president Trump election which might

have increased the possibility of outliers in the investors’ minds. Interestingly the level of the SKEW

connectedness are found to be higher in the pre- and post- financial crisis, whereas lower in the midst

of it. This plot gives us an overview of the behaviour of the aggregate SKEW connectedness for the

main ten financial institutions in the U.S. In the next plot we investigate the asymmetric role of the

decomposed SKEW measures in a dynamic framework.

5.7.3 Asymmetric Implied Skewness Connectedness: Static and Dynamic Anal-

ysis

Table 5.12 shows the connectedness static analysis performed with the decomposed implied SKEW

indexes.

Table 5.12 illustrates the asymmetry of the SKEW connectedness results. The positive implied

skewness connectedness and the negative skewness connectedness are reported in the upper and bottom

panels, respectively. The overall connectedness from SKEW+ (17.97%) accounts for almost half of

the connectedness computed using the SKEW− index (32.48%). This confirms the results of Chapter

4 in which we discuss the prevalent role of SKEW− in the stock market compared to SKEW+ .

However, the on-diagonal elements point to an even stronger role of the own shocks. The positive

directional FROM connectedness (right column) is found to span between 9.99% for Bank of America

to 23.20% for Morgan Stanley, while the positive directional TO connectedness ranges from 7.46% for

U.S. Bancorp to 37.26% for Morgan Stanley.

Morgan Stanley is found to be the main positive implied skewness transmitter in the system (14.06%)

followed by Wells Fargo (13.52%). U.S. Bancorp Bank is detected as the main positive SKEW receiver

in the system (-13.42%). We also find J.P. Morgan and Citigroup to be positive implied skewness re-

ceivers. The highest positive skewness pairwise connectedness is found from J.P. Morgan to Wells

Fargo and is equal to 11.16%, and the second from Wells Fargo to Morgan Stanley (7.86%).
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Table 5.12: Asymmetric Implied Skewness Connectedness in the Financial Sector

SKEW+ Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK FROM

JPM 80.37 0.40 11.16 1.53 0.62 3.13 0.36 1.23 0.35 0.79 19.62
BAC 1.04 90.00 1.66 0.23 2.75 2.82 0.10 0.74 0.16 0.46 9.99
WFC 5.93 0.37 78.54 0.38 2.25 7.86 0.58 1.27 0.55 2.23 21.45
CITI 1.77 0.37 0.96 88.68 0.61 0.25 0.77 0.65 4.98 0.92 11.31
GS 0.57 4.18 4.11 0.25 80.88 5.25 1.21 2.54 0.71 0.26 19.11
MS 1.72 1.91 7.53 0.28 3.51 76.79 3.05 1.38 0.30 3.48 23.20
USB 1.02 0.76 2.75 1.47 0.77 7.48 79.11 1.15 0.25 5.19 20.88
AXP 0.73 4.01 2.21 1.28 4.37 1.94 0.38 81.51 1.04 2.48 18.40
PNC 0.93 0.64 0.92 2.94 4.33 1.77 0.25 0.24 86.56 1.37 13.43
BK 1.84 1.56 3.62 0.79 2.49 6.73 0.73 3.61 0.80 77.78 22.21

TO 15.58 14.23 34.97 9.19 21.75 37.26 7.46 12.85 9.17 17.21 TOTAL
NET -4.03 4.24 13.52 -2.12 2.64 14.06 -13.42 -5.62 -4.25 -5.00 17.97

SKEW− Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK FROM

JPM 57.61 6.69 8.25 7.83 1.70 5.85 3.90 5.09 0.84 2.19 42.38
BAC 6.56 65.08 5.41 6.35 0.59 10.08 2.27 1.50 0.26 1.84 34.91
WFC 4.11 2.55 70.14 5.52 0.54 3.57 6.85 3.87 0.67 2.13 29.85
CITI 3.85 6.86 3.36 74.33 2.38 4.53 1.71 1.06 0.78 1.10 25.66
GS 1.04 0.10 1.10 1.67 86.03 0.93 1.07 4.23 1.75 2.02 13.96
MS 3.81 3.59 5.93 3.26 1.49 72.71 3.40 1.85 1.15 2.76 27.28
USB 5.71 5.45 4.56 1.79 0.46 9.59 65.53 2.98 0.85 3.04 34.46
AXP 7.96 0.93 4.37 6.52 2.63 3.67 6.74 57.56 1.98 7.57 42.43
PNC 2.55 1.18 1.12 1.75 1.05 7.43 2.45 7.06 64.90 10.45 35.09
BK 3.09 1.11 1.47 3.81 1.76 5.71 7.81 6.86 7.05 61.30 38.69

TO 38.73 28.51 35.62 38.54 12.63 51.41 36.24 34.53 15.37 33.14 TOTAL
NET -3.64 -6.40 5.77 12.88 -1.32 24.12 1.78 -7.89 -19.72 -5.55 32.48

Notes: The table contains forecast error variance decomposition computed for the SKEW+ andSKEW− indexes for the ten
main U.S. financial institutions. Elements in the off-diagonal entries are the pairwise directional connectedness, while the diagonal
elements (in grey) are the financial institutions’ own variance. The off-diagonal row and column sums to TO and FROM directional
connectedness, respectively. The NET row at the bottom is the difference between TO and FROM. The bottom-right element is the
total connectedness index in the considered system. Selected VAR lags = 4 and Forecast Horizon = 12 days. The selected time period
spans from 03-01-2000 to 29-12-2017 at weekly frequency.

On the bottom panel of Table 5.12, we observe that the negative skewness connectedness is actually

higher (32.48%), similar to the total SKEW connectedness, thus representing the main part of it. We

thus hypothesize that the SKEW connectedness has a negative asymmetry which we test in the dynamic

analysis. The range of the negative skewness directional FROM values ranges between 13.96% of

Goldman Sachs to the 42.43% of American Express. The SKEW− directional TO connectedness is

quite high, only exceptions being Goldman Sachs and PNC Bank. They are both found to be SKEW−

receivers, with the latter found to be the main SKEW− receivers within the system (-19.72%). The

main SKEW− transmitter are found to be Morgan Stanley and Citigroup with 24.12% and 12.88%,

respectively. The highest SKEW− pairwise connectedness is found to be the one from PNC Bank to

Bank of New York Mellon (10.45%), followed by the pair from Bank of America and Morgan Stanley

(10.08%).

The static analysis for the decomposed SKEW indexes shows a predominant role of the SKEW−

when connectedness measures through variance decomposition are computed. In addition, some of the

selected financial institutions change their roles from a net receiver to a net transmitter, or vice versa,

when comparing aggregate to positive and negative implied skewness shocks, further confirming asym-
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metries in the transmission mechanism of the implied third moment. For instance, J.P. Morgan Chase

is found to be an aggregate implied skewness transmitter, whereas a SKEW− and SKEW+ receiver.

The opposite is found for Wells Fargo which is an aggregate SKEW receiver while a SKEW− and

SKEW+ transmitter. PNC Bank, American Express and Bank of New York Mellon are, on the other

hand, the weakest banks in the system and they are found to receive implied skewness regardless of the

skewness measure we consider. The next plot investigate the different roles that positive and negative

skewness connectedness have in relation to the different market periods in a dynamic framework.

In Figure 5.18, we depict the implied skewness connectedness indexes and the asymmetric implied

skewness connectedness as computed from equation (5.12) over time.

Figure 5.18: Implied Skewness Connectedness Indexes and AFC

Notes: The figure shows the comparison between the SKEW , SKEW+ and SKEW− connectedness indexes in the upper panel. The bottom
panel shows the asymmetric skewness connectedness (AFC). Selected VAR lags = 4 and forecast horizon = 12. The rolling window length is equal
to 200 days. The selected period spans from 03-01-2000 to 29-12-2017 at a weekly frequency.

Figure 5.18 confirms our preliminary finding that the connectedness due to negative SKEW (SKEW−

) prevails on the connectedness due to positive SKEW (SKEW+ ), thus playing a stronger role in the

financial sector for the entire study period. Similar results were detected in Chapter 4. The connect-

edness index due to SKEW+ is never overcoming the one due to SKEW− , thus showing a clear

asymmetry towards the negative implied skewness in the U.S. financial sector. Hence, the SKEW−

connectedness is the main index which should be monitored to track the spillovers in skewness in the

U.S. financial sector.
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5.8 Conclusion

Asymmetric implied volatility connectedness measures were constructed in this chapter to study the

transmission of different information on “fears” extracted from the two sides of the stock options mar-

ket in the U.S. financial sector, as represented by the ten main financial institutions in the U.S. The de-

composed connectedness measures computed from these financial institutions’ VIX indexes provided

forward-looking valuable information reflecting future investors’ expectations.

The decomposed C−t and C+t measures are found to play an important and timely role in signal-

ing changes in future macroeconomic activity or uncertainty indicators. Thus, they can be considered

forward-looking warning tools that will complement the already-existing toolbox of systemic risk mea-

sures. Our empirical analysis points out that the information extracted from C−t and C+t serves as a

better and more timely predictive tool than the aggregate Ct, especially for macroeconomic downturns

and activity measured by ADS, CFNAI and industrial production. Moreover, C−t is also found to be a

early signaling tool with regard to recessions, VIX and EUI since changes in these factors are found to

be reflected more strongly in the U.S. put options market.

We highlighted how financial institutions play different roles as upside/downside “fear” transmit-

ters/receivers. From a systemic risk point of view, our new methodology provides a richer and more

detailed picture of bank networks. For instance, we identify banks that are predominantly receivers of

“fear” , as well banks transmitting “fear” in the financial system, and we identify the role played over

time by a top bank like Goldman Sachs. This exercise exacerbates even further the precious role that

separate “fear” connectedness indexes play in offering separate information when employed to predict

future levels of macroeconomic activity or uncertainty indicators.

Having an ex ante monitoring tool for systemic risk might be particularly useful for financial stabil-

ity and market supervision. There is significant predictive information in the implied upside and down-

side connectedness indexes related to future macroeconomic activity or uncertainty. Moreover, being

able to identify the more systemically important financial institutions can be helpful for preventing the

spread of volatility and risk within the system, preparing the financial institutions and policymakers to

implement prudent operations in advance.
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Chapter 6

Conclusion

This thesis has shown that important information can still be extracted from the options market when

portfolios comprising of calls and puts are taken separately. More specifically, this directional infor-

mation has been captured when decomposed implied volatility and implied skewness indexes were

computed. We have shown how decomposed implied moments can actually enrich the set of informa-

tion carried by the aggregate indexes. This was found to be true both for the second and also for the

third implied moments extracted from the U.S. S&P 500 index. The set of information enclosed in the

decomposed implied volatility and implied skewness indexes are not captured by other risk measures

and by the aggregate volatility and skewness measures.

We have shown that many areas of finance can benefit from extracting these directional indexes.

They provide a new set of tools useful for risk management purposes. We have found that decomposed

implied moment indexes improve the predictability ability with regards to future equity risk premium,

macroeconomic indicators and uncertainty indicators. Rarely, the aggregate implied volatility index or

the aggregate implied skewness index were found to perform better than the decomposed ones in terms

of predictability power and asset pricing.

We were the first to study the determinants of decomposed implied volatility indexes placed both

among macroeconomic variables, and also among financial market conditions variables. Understand-

ing the determinants of these decomposed risk measures can be beneficial in financial areas such as

portfolio allocation, hedging strategies, predictability and forecasting as well as policy makers deci-

sions and regulations. We have shown how macroeconomic variables, such as inflation and GDP, were

found to impact mainly on the upside volatility component. On the other hand, variables more linked to

the financial markets activity, such as equity, credit and liquidity, were found to impact mainly on the

downside volatility component. In other words, macroeconomic variables related to consumption were

found to be linked more to the calls activity, whereas financial variables more related to puts activity.

Noteworthy was the strong linkage between puts - downside volatility component - and variables such
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as economic and policy uncertainty and geopolitical risk index. These variables appeared to share the

same set of information enclosed in the puts market, reflecting investors’ fears and concerns driven by

the uncertain environment and related to stock market downturns.

Furthermore, by focusing on the link between changes in volatility and economic and policy un-

certainty, we have attempted to address a field within finance that is currently attracting many macro-

economists and academics intrigued in better disclosing its empirical interpretation. Nowadays political

events are more shrouded with uncertainty and unstable consequences compared to the past. This in-

security arising from governments and future political plans is transmitted onto the financial markets

and into macroeconomic policies. This chain may have a dangerous leverage effect amplified by all the

recent events injecting more instability into the general economic systems of countries with potential

implications on the financial markets in the future.

Another main result of this research was a shift in the role of calls and puts from the pre-crisis

and post-crisis. The information enclosed in the calls market appeared to be stronger in the pre-crisis

period which also encompassed events driven by investors’ exuberance such as the dot com bubble -

well known to be a high-speculative activity era. In the post-crisis, investors started to increase their

demand for hedging portfolios; the trading volume of stock market index increased. Investors were

more concerned about financial market losses, thereby began to actively hedge their equity portfolios

by trading put options. This shift has been detected both for implied volatility indexes and, also, for

implied skewness indexes.

We have also shown how information enclosed in the options market, this being forward looking

might be more informative in predicting future levels of macroeconomic and financial variables. This

result was found to be even stronger when we looked at upside and downside components of our

volatility series. Forward looking implied volatilities are found to predict future levels of future levels

of macro variables, economic activity, output growth and inflation rate, whereas volatility risk premia

were found to be more informative for predicting future levels of stock return.

The usefulness of directional information extracted from the U.S. equity index options market has

also been shown when implied skewness indexes were computed and decomposed. We illustrated how

decomposed SKEW indexes represent measures of risk able to support - and improve - the information

content of implied volatility indexes, risk premia and other measures of risk already proposed in the

financial literature. Indeed, especially when decomposed, SKEW indexes provided, for the first time

in the financial literature, new insights spanning several areas of finance. We have shown how market

sentiment is perceived and linked differently to call and put based measures.

We detected the positive SKEW index as the one more market sentiment driven and, in turn, as

the one more informative in predicting future levels of market sentiment proxies. In general, when

the newly computed and decomposed SKEW indexes were linked to equity market premium and asset
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pricing, we found a strong predictive ability, especially in the short run. SKEW+ was found as the

skewness index able to predict future level of S&P 500 as well as individual stocks enclosed in the S&P

500 risk premium the most.

On the other hand, we found that SKEW− was more related to fundamentals. The aggregate

SKEW index was found to be, potentially, influenced by optimistic information coming from calls

leading to a possible bias in the measurement of the market tail risk. Thus, since extracted from puts,

we proposed SKEW− as a new tail risk index. It was identified to react more to extreme tail events

and black swans along our time frame. We believed it could foresee the spread of investors’ tail risk

perceptions and expectations in the U.S. financial markets since it was proposed as a more prudent

measure more linked to investors’ fear and concern and reflecting the information encapsulated in the

puts market. The information content of SKEW− was found useful in predicting future levels of

uncertainty indicators, downturns and recessions.

Such findings have also been linked with the possibility of new trading strategies which might be

constructed based upon the decomposition of implied volatility and skewness. These strategies might

consider trading portfolios comprised only of calls or puts rather than the entire options distributions

at certain maturity. New asset pricing insights have been also provided by linking the decomposed

implied skewness with the common Fama-French factors in order to better price portfolios based on

size and book-to-market and based on size and performance.

In addition, we aimed to initiate of a new strand of literature which could look at the importance of

forward looking information extracted from options when it comes to volatility connectedness measure-

ment and monitoring. This could provide a new ex-ante tool helpful in preventing the spread of systemic

risk in the financial sector. The decomposed implied connectedness indexes - called Fear Connected-

ness Indexes - were, also, found to be useful predictors of future financial, economics, macroeconomics

downturns as well as uncertainty increases. In this thesis, we applied this new ex-ante connectedness

measure to the financial sector in the U.S. using the ten main financial institutions as a proxy. This

application had importance in the areas of systemic risk and financial stability. Different information

enclosed in single financial stocks’ trading in calls and puts were extracted in order to compute single

stocks implied volatility indexes.

These decomposed forward looking measures was found to carry ex-ante information on the be-

liefs and expectations about the future increase or decrease of financial sector stocks’ prices. The

difference in upside views and negative views generated an asymmetry. This was translated, then, in

terms of connectedness. Decomposed C−t and C+t measures were found to signal in advance changes in

future macroeconomic activity or uncertainty indicators. These measures could be considered forward-

looking warning tools monitoring the spread of systemic risk. The information extracted from C−t and

C+t were detected more informative than the one enclosed in the aggregate Ct. This finding has also
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been found in the other applications in this thesis mentioned earlier.

We contributed to the systemic risk area by pointing out that forward looking connectedness mea-

sures were able to depict a more detailed and directional picture of the bank networks. We were able,

not only, to detect financial institutions which can be classified as net receivers of fears or net trans-

mitters of fears in the U.S. financial sector, but our research went a step further. We were able to

identify how options traders in the U.S. financial sector weight differently systemic and specific (id-

iosyncratic) news or events. By focusing on the specific financial institutions connectedness trend, we

could detect how calls and puts contain separate information about the single financial institution and

the financial sector itself. When separated, implied volatility connectedness - or connectedness of fears

- extracted from calls and puts offered a clearer picture concerning how investors’ decisions and beliefs

were influenced by events. The spread of forward looking connectedness of fears became crucial when

systemic risk needs to be closely monitored for banking regulation or supervision. Lastly, by ranking

the financial institution by their systemic importance represented a useful tool in preventing the spread

of volatility or fears in the financial sector among the other banks. This research aimed to improve

financial stability worldwide avoiding ripple effects or systemic impact and other recessions.

Again, C−t extracted from puts was found to be a early signaling tool with regards to recessions,

VIX and EUI since changes in these factors were found to be reflected more strongly in the U.S. put

options market. Similar results were found with relation to the downside implied volatility index and

with relation to our tail risk proxy - SKEW− . We contributed to the financial stability by suggesting

that the forward looking information enclosed in the puts market were highly valuable in predicting and

monitoring uncertainty, recessions and downturns. Developing these forward looking and pessimistic-

side related monitoring tools and risk measures could be helpful to prepare the markets and investors to

sudden increase in volatilities and risk, increase in tail risk and spread of volatility within the considered

system of study, crucial for policymakers in order to implement prudent operations in advance as well

as for investors to timely hedge their portfolios. A brief additional exercise has also shown how the

connectedness of implied skewness of single stocks might evolve over time in an asymmetric way.

There are several areas in which this research could be developed and extended further. First of all,

further research should point to a better understanding of the determinants, not only of decomposed im-

plied second moments, but also of decomposed implied third moment. We have studied how, especially

the negative implied skewness index, proposed as a proxy of tail risk, could be helpful for predicting

future levels of macroeconomic activity and uncertainty indicators. Of interest would be to research

where the main drivers of the decomposed implied skewness and, mainly, of the tail risk index, are

placed. Is the tail risk index mainly driven by macroeconomic variables, financial variables, economic

or political news or investors’ beliefs and market sentiment? By definition tracking a tail risk index

would be a hard task to do. However, understanding which of these might be the reason for an increase
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of tail risk perception in financial markets could have advantages for financial stability purposes as well

as precautionary policy makers’ decisions.

Different areas in which this thesis might be distilled further is asset pricing and factor modelling.

Following recent debates in the literature the market and investment sentiment component should be

considered as an additional factor when pricing assets and portfolios. As discussed in Chapter 4, previ-

ous studies have found this irrational beliefs factor to over perform the common Fama-French factors

or to be a strong additional factor. Our asset pricing exercise in Chapter 4 has shown how implied

volatility skewness indexes perform well in these models and should be considered as additional fac-

tors. Therefore, further research should investigate the role of ex-ante market sentiment factors when

these are extracted from options so as to study how investors’ expectations coming from puts or calls

might differ in asset pricing models, as well as to shed new light on the role hedgers and speculators

might have on the performance of existing asset pricing models.

Another channel in which this research could be directed, encompasses the volatility connectedness

and spillovers topic. There are many applications that could be undertaken starting from the pioneering

concept we have proposed in this chapter of forward looking volatility connectedness tool. First of all,

of interest would be to study how implied volatility propagates among countries, taking into account

differences in time zones and trading hours. If the implied volatility series would, also in this case, take

into account their separate upside and downside components, these countries can be labelled as upside

or downside implied volatility transmitter or receiver according to the nature and shape of volatility they

spread. In fact, according to different economic, macroeconomic, financial, political and geopolitical

events, the selected economies might spread volatility in a completely different way since positive news

and events for one country might have an opposite meaning, thus, bad news for another country in the

system. It could represent the first potential study pointing towards the study of countries’ stock market

indexes implied volatility spillovers in a separate upside-downside framework. In fact, separating the

implied volatility indexes for each market into its upside and downside volatility indexes anchors this

study to a growing avenue of research which includes different volatilities according to the fact that

there are events which impact more on the upside side of volatility, while some others impact more on

the downside side generating an asymmetric volatility transmission.

Related to this topic, representing a merger between two of the chapters in this thesis, even more

novel would be to investigate which are the macroeconomic and financial variables belonging to the

selected economies in the system which are able to drive the total implied volatility connectedness index

computed for the whole system as well as the specific country contribution in spreading or receiving

volatility. A number of variables might be considered for this exercise; GDP, industrial production,

money supply, unemployment rate, term structure, equity premia, dividend yields, etc. in order to

encompass both macroeconomic indicator as well as financial market indicators. This further research
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may contribute to the areas of financial economics, financial markets, financial stability and macro-

prudential policy representing a further and necessary step for a better understanding and monitoring

of global financial markets and their volatility. This would be crucial not only from a risk management

perspective but also, for policy makers and central bankers. Ultimately, this would have considerable

financial stability implications since it will be serving as a useful tool in order to help central banks

to react in a prompt manner setting interest rate policies, macro-hedging strategies, and overall, policy

interventions and supervision.

In addition, closely related to the aforementioned idea, of interest would be investigating the con-

tagion among other financial assets, taking, firstly, forward looking information and, secondly, decom-

posing their volatilities in upside and downside components as well. The study of credit market (e.g.

CDS, government bonds) volatility connectedness, especially when taken at high-frequency, is in my

agenda. Some preliminary results have shown how events that have happened in the Eurozone might

spread upside and downside volatility in different ways. Countries more affected by specific credit

event might be reacting in different ways. As an example, the sovereign debt crisis has been found

as an event contributing to a positive CDS volatility transmission for Germany, while a negative CDS

volatility transmission for countries such as Italy, a country more involved in the sovereign debt crisis.

In other words, the latter have found to be the one transmitting downside volatility, signs of instabil-

ity and uncertainty toward the selected system. Germany has been found to be the stabilizer country,

transmitting upside volatility. For the first time in the literature, this might be a useful area to research

especially given the turbulent and uncertainty period characterising, mainly, the Euro area. Motivated

by the fact that the Eurozone has been a fertile ground in the last decades for credit events impacting

on credit changes and rating, further research should be conducted on this topic.

Overall, potential implications of the upside or downside linkages in volatility connectedness could

be contributive for the financial literature both under a macroeconomic perspective and also under a

international portfolios selection perspective. Certain types of volatility connectedness may be desir-

able, providing comparative advantages in generating international trade, regional and global capital

market integration, and enhanced coordination of global financial regulation and accounting standards.

I strongly believe that this thesis has been only the first step towards a fast growing financial area look-

ing at improved measures of risk. These risk measures should not only be more timely and forward

looking, but take also into account the different investors’ expectations and beliefs. The more refined

construction of these indexes from the options market should be taken further, extended to different

assets, contexts, countries and markets. To recall the discussion in the introduction of this thesis, mea-

suring and tracking risk is not easy at all. However, having more reliable, timely and directional risk

monitoring tools can be the first step towards new avenues in areas such as risk management, financial

economics, asset pricing, predictability and international finance.
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Baruník, J. and T. Křehlík (2018). Measuring the frequency dynamics of financial connectedness and

systemic risk. Journal of Financial Econometrics 16(2), 271–296.

Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark

options. Review of Financial Studies 9(1), 69–107.

Beirne, J. and M. Fratzscher (2013). The pricing of sovereign risk and contagion during the European

sovereign debt crisis. Journal of International Money and Finance 34, 60–82.

Bekaert, G., M. Ehrmann, M. Fratzscher, and A. Mehl (2014). The global crisis and equity market

contagion. Journal of Finance 69(6), 2597–2649.

Bekaert, G. and M. Hoerova (2014). The VIX, the variance premium and stock market volatility.

Journal of Econometrics 183(2), 181–192.

Bekaert, G., M. Hoerova, and M. L. Duca (2013). Risk, uncertainty and monetary policy. Journal of

Monetary Economics 60(7), 771–788.

Bekaert, G. and G. Wu (2000). Asymmetric volatility and risk in equity markets. Review of Financial

Studies 13, 1–42.

211



Belgacem, A., A. Creti, K. Guesmi, and A. Lahiani (2015). Volatility spillovers and macroeconomic

announcements: Evidence from crude oil markets. Applied Economics 47(28), 2974–2984.

Belke, A. H., I. Dubova, and T. U. Osowski (2016). Policy uncertainty and international financial

markets: The case of Brexit. Available at SSRN 2965985.

Beltratti, A. and C. Morana (2006). Breaks and persistency: macroeconomic causes of stock market

volatility. Journal of Econometrics 131(1), 151–177.

Bennett, C. (2014). Trading Volatility: Trading Volatility, Correlation, Term Structure and Skew. Cre-

ateSpace.

Bernstein, P. L. (1996). Against the gods: The remarkable story of risk. Wiley New York.

Bhar, R. and B. Nikolova (2009). Return, volatility spillovers and dynamic correlation in the BRIC

equity markets: An analysis using a bivariate EGARCH framework. Global Finance Journal 19(3),

203–218.

Billio, M., M. Getmansky, A. W. Lo, and L. Pelizzon (2012). Econometric measures of connectedness

and systemic risk in the finance and insurance sectors. Journal of Financial Economics 104(3),

535–559.

Black, F. (1976). Studies of stock price volatility changes. Proceeding from the American Statistical

Association, Business and Economics Statistics Section, 177–181.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of Political

Economy 81(3), 637–654.

Blair, B. J., S.-H. Poon, and S. J. Taylor (2001). Modelling S&P 100 volatility: The information content

of stock returns. Journal of Banking & Finance 25(9), 1665–1679.

Blaskowitz, O. J., W. K. Härdle, and P. Schmidt (2004). Skewness and kurtosis trades. In Handbook of

Computational and Numerical Methods in Finance, pp. 1–14. Springer.

Bloom, N. (2009). The impact of uncertainty shocks. Econometrica 77(3), 623–685.

Bloom, N. (2014). Fluctuations in uncertainty. The Journal of Economic Perspectives 28(2), 153–175.

Bollen, N. P. and R. E. Whaley (2004). Does net buying pressure affect the shape of implied volatility

functions? Journal of Finance 59(2), 711–753.

Bollerslev, T. (2009). Glossary to arch (garch. Volatility and Time Series Econometrics: Essays in

Honour of Robert F. Engle.

212



Bollerslev, T., R. Y. Chou, and K. F. Kroner (1992). ARCH modeling in finance: A review of the theory

and empirical evidence. Journal of Econometrics 52(1-2), 5–59.

Bollerslev, T., R. F. Engle, and D. B. Nelson (1994). ARCH models. Handbook of Econometrics 4,

2959–3038.

Bollerslev, T., M. Gibson, and H. Zhou (2011). Dynamic estimation of volatility risk premia and

investor risk aversion from option-implied and realized volatilities. Journal of Econometrics 160(1),

235–245.

Bollerslev, T., T. H. Law, and G. Tauchen (2009). Expected stock returns and variance risk premia.

Review of Financial Studies 22(11), 4463–4492.

Bollerslev, T., S. Z. Li, and B. Zhao (2017). Good volatility, bad volatility, and the cross-section of

stock returns. Available at SSRN 2565660.

Bollerslev, T. and H. O. Mikkelsen (1996). Modeling and pricing long memory in stock market volatil-

ity. Journal of Econometrics 73(1), 151–184.

Bollerslev, T., A. J. Patton, and R. Quaedvlieg (2016). Exploiting the errors: A simple approach for

improved volatility forecasting. Journal of Econometrics 192(1), 1–18.

Bollerslev, T. and V. Todorov (2011). Tails, fears, and risk premia. Journal of Finance 66(6), 2165–

2211.

Bollerslev, T., V. Todorov, and L. Xu (2015). Tail risk premia and return predictability. Journal of

Financial Economics 118(1), 113–134.

Bondarenko, O. (2014). Why are put options so expensive? Quarterly Journal of Finance 4(03),

1450015.

Boudoukh, J., M. Richardson, and R. F. Whitelaw (2008). The myth of long-horizon predictability.

Review of Financial Studies 21(4), 1577–1605.

Boyer, B., T. Mitton, and K. Vorkink (2009). Expected idiosyncratic skewness. Review of Financial

Studies 23(1), 169–202.

Britten-Jones, M. and A. Neuberger (2000). Option prices, implied price processes, and stochastic

volatility. Journal of Finance 55(2), 839–866.

Brown, G. W. and M. T. Cliff (2005). Investor sentiment and asset valuation. Journal of Business 78(2),

405–440.

213



Brownlees, C., R. Engle, and B. Kelly (2011). A practical guide to volatility forecasting through calm

and storm. Available at SSRN 1502915.

Brownlees, C. T. and G. M. Gallo (2009). Comparison of volatility measures: a risk management

perspective. Journal of Financial Econometrics 8(1), 29–56.

Brunnermeier, M. K., C. Gollier, and J. A. Parker (2007). Optimal beliefs, asset prices, and the prefer-

ence for skewed returns. American Economic Review 97(2), 159–165.

Brunnermeier, M. K., S. Nagel, and L. H. Pedersen (2008). Carry trades and currency crashes. NBER

Macroeconomics Annual 23(1), 313–348.
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Appendix A

Additional Material for Chapter 3

A.1 Volatility Modelling: GARCH Comparison

The volatility models we selected for conducting this brief comparison are: GARCH(1,1), GARCH(p,q)

where p and q are the best lags choice estimated through maximum likelihood, EGARCH(1,1), GARCH-

GJR(1,1) and GARCH-M. The independent variables selected are the most common in the existing

literature examining stock market and macroeconomic relationship and well known for having ARCH

effects. Applying Engle (1982) test the presence of an ARCH effect at 1% is identified for all vari-

ables except for GDP and unemployment Rate at 5%. The estimation of a volatility model for the

macro-variables and for the stock market exhibits differences in terms of econometric contribution

(see Table A1). The results examining the relationship between stock market volatility and macroeco-

nomic volatility encompasses a degree of subjectivity associated with the analyst’s choice for modeling

volatility.

Table A1: Stock Market and Selected Variables Conditional Variances

Variable GARCH (1,1) EGARCH (1,1) GJR-GARCH (1,1) GARCH (p,q) GARCH-M (1,1)
CPI 0.090 0.135∗∗ 0.188∗∗ 0.058 0.008
IP -0.005 0.026∗∗∗ -0.010 0.004 −0.030∗∗
GDP 0.042∗∗ 0.005 0.057∗∗∗ 0.067∗∗∗ 0.101∗∗∗

UR 0.143∗∗ 0.430∗∗∗ 0.339∗∗∗ 0.201∗∗∗ 0.366∗

OIL 0.267 −0.290∗∗ -0.005 0.345∗ 0.040∗

ER 0.361∗∗∗ 0.098∗∗∗ 0.350∗ 1.991∗∗∗ 0.041

R2 0.691 0.849 0.792 0.694 0.724
F-Stat 37.872 92.823 65.551 38.112 43.823
P-value 0.000 0.000 0.000 0.000 0.000

Notes: This table shows the output of OLS regression between our dependent variable, S&P 500 conditional variance, and the conditional
variance of six selected macro-variables according to different models and lags used to compute them. Changing the model varies the
significance and the sign of the coefficients for some of the macro-variables. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. The
study period is from 01-2008 to 12-2016, at monthly frequency.
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Table A2: Selected Macro and Financial Variables

This table shows and describes all the variables that have been used in this chapter for the empirical analysis collected for the U.S. from a relevant data source.

Variable Notation Description Series Frequency Data Source
Consumer Price Index CPI Measure of the average monthly change in the price for goods and ser-

vices paid by urban consumers between any two different times. It is
commonly used as a proxy for inflation. Significant increases in the
CPI within a short time frame might indicate a period of inflation, and
significant decreases in CPI within a short time frame might indicate a
period of deflation.

Inflationt = log(CPIt)− log(CPIt−1) M FRED

Real Gross Domestic Product GDP Inflation adjusted GDP. Value of goods and services produced by the
nation’s economy less the value of the goods and services used in pro-
duction. Growth rate of real GDP as a variable accounting for changes
in real economic activity. We have interpolated the quarterly GDP series
into a monthly series.

GDP = log(GDPt)− log(GDPt−1) M FRED

Industrial Production Index IP Economic indicator that measures real output and volume growth for all
facilities located in the United States manufacturing, mining and elec-
tric, and gas utilities. The index is compiled on a monthly basis.

IP = log((IPt)− log(IPt−1) M FRED

Unemployment Rate UR Number of unemployed as a percentage of the labor force. UR = (URt)− (URt−1) M FRED
Money Supply M1 Seasonally adjusted M1 is calculated by summing currency, traveler’s

checks, demand deposits, and OCDs, each seasonally adjusted sepa-
rately.

M1 = log(M1t)− log(M1t−1) M FRED

Term Structure TS Difference between a long-run government interest rate proxy 10 years
treasury rate and a shorter, 2-years, term government rate.

TS = 10Y TermBondst − 2Y TermBondt D FRED

Crude Oil Price OIL West Texas Intermediate (WTI) oil with prices expressed in dollars per
barrel.

OIL = log((OILt)− log(OILt−1) D FRED

Gold Price GOLD Gold Fixing Price 10 : 30 A.M. (London time) in London Bullion
Market, based on U.S. Dollars-Sterling.

GOLD = log(GOLDt)− log(GOLDt−1) D FRED

JPY/US Exchange Rate ER Exchange rate prices between the Japanese and U.S. currencies. JPY/US = log(JPY/USt)− log(JPY/USt−1) D FRED
Equity Market SPX S&P 500 is the stock market index in the U.S. considered a proxy for

the U.S. equity market. It includes 500 large cap companies in the U.S.
spanning different sectors.

SPX = log(SPXt)− log(SPXt−1) D FRED

Market Sentiment SENT University of Michigan Consumer Sentiment Index. Surveys of con-
sumers collects data on consumer attitudes and expectations summa-
rized in the index in order to determine changes in consumers’ willing-
ness to buy and to predict their subsequent discretionary expenditures.

SENT = log(SENTt)− log(SENTt−1) M FRED

Credit CRE Computed as the difference between Moody’s seasoned BAA and AAA
corporate bond yields which is commonly used as a proxy of credit and
default risk in the market.

CRE = log(CREt)− log(CREt−1) D FRED

Liquidity TED Calculated as the spread between 3-Month LIBOR based on U.S. dollars
and 3-Month T-Bill. It is an indicator of perceived credit risk in the
general economy. An increase in the TED spread means lenders believe
the risk of default on interbank loans is increasing and they will demand
a higher rate of interest. When the risk of bank defaults is decreasing,
the TED spread decreases.

TED = log(TEDt)− log(TEDt−1) D FRED

Economic Policy Uncertainty EPU Computed by Baker et al. (2016), reflects and measures the concerns
and uncertainty in the news around specific global politic and economic
events for the U.S.

EPU = log(EPUt)− log(EPUt−1) D http://www.policyuncertainty.com/

GeoPolitical Risk GPR Computed by Caldara and Iacoviello (2018), this index measures
geopolitical risk and events worldwide.

GPR = log(GPRt)− log(GPRt−1) D https://www2.bc.edu/matteo-
iacoviello/gpr.htm.

Partisan Conflict Index PCI Computed by Azzimonti (2017), it reflects the pure political partisan
conflicts and political uncertainty in the U.S.

PCI = log(PCIt)− log(PCIt−1) M www.philadelphiafed.org
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A.2 Realized Volatility: Empirical Results

A.2.1 Realized Volatility Stepwise Regression Analysis

In this section we perform a similar empirical analysis for the realized volatility measures. The results

in Table A3 indicate that the S&P 500 index plays a relevant role with respect to realized volatilities,

impacting negatively on the aggregate RVOL and RVOL− and positively on the RVOL+ . Positive

S&P 500 returns will command a higher upside realized volatility. The impact of the S&P 500 on the

RVOL− accounts for almost three times its impact on the aggregate measure highlighting the volatility

leverage effect. Similar to the implied volatility series, inflation and industrial production are significant

for RVOL and RVOL+ , indicating that the RVOL+ is related more to changes in consumption and

production compared with the downside measure. Variables such as ER, EPU and GPR appear, instead,

to be linked more with downside realized volatility, RVOL− . Gold and oil significantly impact on the

realized volatility. Gold impacts only on the aggregate RVOL and it emerges with its first lag and

negative sign consistent with the rationale that gold has often been seen as a safe haven for investors

whenever the market becomes very volatile. Oil impacts on all three realized volatilities, with higher

coefficient on the RVOL− . Higher R2 and adjusted R2 are found with respect to RVOL+ which

appears to be influenced the most by both macro and financial variables.

During the pre-crisis period, we find similarly highly significant results in relation to the S&P 500

. Among the macro variables, we confirm an impact mainly on the upside volatility for inflation, while

on the downside component from unemployment rate. Oil is also found to be significant during this

period, whereas gold and exchange rate fail to show significance. Credit has effect only on the RVOL+

at its first lag. The results fail to show any role for the EPU index, whereas GPR index is found to be

significant for the downside realized volatility component. The R2 and adjusted R2 are found to be

highest when corresponding to the RVOL+ .

During the post-crisis period, we detect a significant role for the S&P 500 , again mainly on the

downside volatility component. Inflation and industrial production emerge significant only with their

first lag. Liquidity which is found not to be significant during the pre-crisis period shows significance

post-crisis. We observe, during this time, a predominant role for the EPU index, especially on the down-

side realized volatility component. The geopolitical risk index also shows a significant role with respect

to RVOL− . The highest R2 and adjusted R2 are now associated with the two volatility components,

RVOL− and RVOL+ , rather than with the aggregate measure, RVOL .
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Table A3: Stepwise Backward Regression between the U.S. Realized Volatilities and Selected Variables

Total Period Pre-Crisis Period Post-Crisis Period
Var RVOL RVOL− RVOL+ RVOL RVOL− RVOL+ RVOL RVOL− RVOL+

t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1 t t-1
CPI -0.149* 0.174** -0.233** 0.225*** -0.220** -0.347*** 0.267** 0.514** 0.797**

(0.082) (0.082) (0.092) (0.084) (0.113) (0.199) (0.121) (0.235) (0.388)
IP 0.694** 0.738** -0.238**

(0.327) (0.367) (0.134)
GDP

UR -0.488*
(0.266)

M1 -0.714*
(0.414)

TS

OIL 0.663** 0.968** 0.686** 0.936*** 0.124** 0.940*** -0.188*** -0.175***
(0.266) (0.430) (0.270) (0.351) (0.049) (0.348) (0.062) (0.058)

ER -0.226* 0.289* -0.563*
(0.122) (0.144) (0.330)

GOLD -0.752** 0.132*
(0.411) (0.074)

SPX -0.186*** -0.130*** -0.538*** 0.161** 0.093* -0.364*** -0.198*** -0.177*** -0.585*** 0.156*** -0.451*** -0.131*** -0.541*** 0.214* -0.338***
(0.051) (0.047) (0.082) (0.080) (0.050) (0.049) (0.058) (0.058) (0.086) (0.057) (0.061) (0.043) (0.120) (0.122) (0.110)

CRE 0.340* 0.385** 0.104*** 0.136*** -0.112** 0.170*** -0.092**
(0.196) (0.190) (0.035) (0.501) (0.489) (0.049) (0.041)

SENT -0.747*
(0.415)

TED 0.365**
(0.179)

EPU 0.263** 0.504*** 0.557*** 0.463** 0.607*** 0.494** 0.735*** 0.728** 0.794*
(0.116) (0.127) (0.192) (0.201) (0.129) (0.214) (0.226) (0.342) (0.400)

GPR -0.102* -0.139* -0.167* 0.351*
(0.052) (0.083) (0.090) (0.184)

R2 0.318 0.334 0.409 0.324 0.366 0.524 0.487 0.527 0.515
AdjR2 0.269 0.279 0.360 0.229 0.299 0.457 0.334 0.377 0.371

Notes: This table presents the output of the stepwise backward regression analysis between our dependent variables, realized volatilities (RVOL , RVOL− and RVOL+ ) and the 15 selected macroeconomic and financial variables (Inflation (CPI), Industrial
Production (IP), Gross Domestic Product (GDP), Unemployment Rate (UR), Money Supply (M1), Term Structure (TS), Oil Price (OIL), JPY-US Exchange Rate (ER), Gold Price (GOLD), S&P 500 Index (SPX), Credit Spread (CRE), Market Sentiment (SENT),
TED Spread (TED), Economic and Policy Uncertainty (EPU) Index and GeoPolitical Risk (GPR) Index). The regression as shown in equation (3.9), for realized volatility, 4RV qt,k = α +

∑n−h
i=1 βj(4XMacro,Fin)j,t−h + εi,j where q =

Tot,+,− is run for contemporaneous variables (t) and one period lag (t-1) variables. The table reports the regression coefficients and their respective standard errors in parentheses, only for the variables that passed the stepwise regression test. Selection
method is stepwise backwards with stopping threshold p-values higher than 10%. All the variables are taken with difference or log-difference and re-scaled accordingly. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. The regression is run over the total
time period, from 04-1996 to 09-2016, over the Pre-Crisis period from 01-1996 to 08-2007 and over the Post-Crisis period from 04-2009 to 09-2016, at monthly frequency, for a total of 247, 139 and 90 observations, respectively, after adjustments.
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We also test the same model in equation (3.9) though adding an additional second lag with respect

to the variables, similar to that undertaken with the implied volatility measures as discussed in Section

3.5.1. However, the results obtained for the realized volatility are very different from the results ob-

tained for the implied volatilities. Some covariates are found to be significantly impacting on RVOL

and its components with respect to their second lag, resulting in an increased R2 and adjusted R2. The

macroeconomic variables second lag increases the performance of the RVOL series in the pre financial

crisis period, but it does not in the post financial crisis. This shows how in the post-crisis period the

financial conditions variables are the ones driving the realized volatilities the most, with relationships

also extending beyond the first lag, showing that these backward looking volatility measures require

more time to react and adapt to changes and innovations in macro and financial variables1.

The same exercise to test the reverse signs of the variables coefficients is conducted for the RVOL

series as well through equation (3.16). We confirm that the same coefficients of the second difference

found for the implied volatility series hold for the realized volatility as well.

Overall, for the U.S. realized volatility, we find an even weaker role for the macroeconomic vari-

ables when only contemporaneous and first lag variables are considered. Some of the macro variables

are found to be significant only when the second lag is taken (e.g. TS and UR). However, GDP is found

not to be significant in any of the time periods nor for any of the realized volatility components. The

effect of commodities is stronger in relationship to the backward looking volatility measures. Some of

the financial conditions variables emerge significant also when lagged. In addition, some show higher

coefficients when increasing the lag. These findings are not evident with respect to the implied volatil-

ity series where increasing the lag decreases the variable effect. This is due to the fact that the realized

volatility measures are backward looking and will respond with delay to the changes in the independent

variables. Higher significance for the model is found in relationship to the upside component, as found

for the implied volatility, over the total period and pre-crisis period. Macroeconomic and financial

variables appear to show greater significance with regards to the upside volatility component.

For the post-crisis period, we find that the downside volatility component appears to be better

explained by the selected variables. This might reflect the fact that after the crisis investors are more

concerned about the possibility of negative stock market returns which manifests itself in an increase

in Put options trading.

1For the total time period, the second lag of S&P 500 and ER is found to be significant in impacting RVOL , increasing the
R2 and the adjusted R2 to 0.354 and 0.307, respectively. The second lag of S&P 500 , ER, UR and IP significantly influences
RVOL− by increasing the R2 and the adjusted R2 to 0.392 and 0.330, respectively. Lastly, for RVOL+ , only the second lags
of S&P 500 and SENT are found to be significant, increasing the R2 and the adjusted R2 to 0.435 and to 0.405, respectively. In
the pre-crisis period, the second lag of S&P 500 , GOLD, ER and EPU impacts on RVOL , the second lag of S&P 500 , EPU
and TS impacts on RVOL− while the second lag of S&P 500 , CPI, GOLD and TS impacts on the upside component. The R2

and the adjusted R2 of these models increase considerably when these variables are added: 0.462 and 0.309 for RVOL , 0.476
and 0.369 for RVOL− and 0.612 and 0.502 for RVOL+ . For the post financial crisis period, the role of the second lags of EPU
and ER is found significant for RVOL , the second lag of EPU, ER, SENT and GOLD for RVOL− and the second lag of ER
for RVOL+ . The R2 and the adjusted R2 increases also in these cases to 0.607 and 0.406 for RVOL , to 0.687 and 0.523 for
RVOL− and to 0.532 and 0.392 for RVOL+ , respectively.
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Figure A1: Rolling P Values for the Realized Volatility Regression

Notes: This figure shows the rolling p-values for the variables selected by the stepwise backward regression in equation (3.9) to explain at least
one of the realized volatility components over the total time period (see Table A3): Inflation (CPI), Industrial Production (IP), Oil Price (OIL),
JPY-US Exchange Rate (ER), Gold Price (GOLD), S&P 500 Index (SPX), Credit Spread (CRE), Market Sentiment (SENT), Economic and Policy
Uncertainty (EPU) Index and GeoPolitical Risk (GPR) Index. Table . The variables selected are the ones found to explain at least one of the realized
volatility components over the total time period. The reported rolling p-values are associated to the different volatility series, namely, RVOL (blue
line), RVOL− (red line) and RVOL+ (green line). 10% significance threshold is shown. Selected window size is 30 months and the regression
is rolled every month. NBER recession periods highlighted with a grey shadow. The rolling regression analysis is run over the total time period
from 01-1996 to 09-2016, at monthly frequency.

Figure A1 shows the rolling p-values for the variables selected from the stepwise regression analysis

for the realized series (RVOL , RVOL− and RVOL+ ) over the total time period. The macroeconomic

variables inflation and industrial production are barely significant, while the effect of commodities, gold

and oil, appears, overall, more stable. Gold is found to be significant in periods such as the post 2001-

2002 recession or during the European sovereign financial crisis in which uncertainty and instability

increased the investors’ desire to buy gold. S&P 500 is mainly significant for the RVOL− , confirming

the major influence of the negative stock market returns on volatility. Only during calmer periods such

as from 2002 to 2004 and from 2015 to 2016 does it impact on RVOL+ . Market sentiment is mainly

related to the RVOL+ , whereas EPU and GPR indexes are closely related to RVOL− especially during

periods of recession, uncertainty and economic instability2.

2When PCI is used in place of EPU, it emerges as significant (at the 5% level) with a positive sign for the aggregate RVOL
and RVOL− in the pre-crisis period slightly increasing the R2 and adjusted R2 to 0.335 and 0.241 for RVOL and to 0.386
and 0.316 for RVOL− , respectively. A possible explanation for this could be the fact that this time period in the U.S. was
characterized by two presidential elections, and there were concerns and tensions among parties especially with regards to the
foreign policy of the new administration. PCI is found to be significant (at the 10% level) also in the post-crisis, but only for the
RVOL− . This shows that realized volatilities have reacted a bit more compared to implied volatilities to political events in our
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There is evidence that credit was significant during the two recessions and their aftermath on the

decomposed RVOL components. It impacts on the RVOL+ between 2001 and 2005 and between 2009

and 2011, when it was mainly a stimulus for the economic recovery, and it influences the RVOL−

in the middle of the financial crisis. Da Fonseca and Gottschalk (2014) found that during a global

crisis there might be a break down between equity volatility measures and credit market (CDS), a

problem which may lead to poor hedging performance when equity options are used to hedge credit

risk under the theoretical framework of structural credit risk models. Whereas we find similar results

both for implied and also for realized aggregate volatility measures, when we examine the two different

volatility components a tight relationship between credit and RVOL− and RVOL+ holds during the

global financial crisis (see Figure A1). A closer relationship between credit and the downside volatility

component, VIX− , is also found (see Figure 3.2). These results further emphasize the different set of

information encompassed within the volatility components as compared to the aggregate.

A.2.2 Realized Volatility Granger Causality at Different Frequencies

Here we discuss the results of the Granger causality test for the realized volatility conducted through

equations (3.10), (3.11) and (3.15) for low frequency, high frequency and mixed frequency, respec-

tively. The results are summarized in Table A4.

For the aggregate RVOL , the results point to a unilateral feedback effect going from the volatility

measure to inflation, industrial production and market sentiment (∆ RVOL ⇒LF ∆ CPI, ∆ RVOL

⇒LF ∆ IP, ∆ RVOL ⇒LF ∆ SENT), whereas, for low frequency, there is no causality relationship

from the macro activity to RV. However, when we perform a MF-VAR we are not only able to confirm

the previous low frequency chains, but the interaction between IP and SENT with RVOL becomes

bidirectional (∆ RVOL⇔MF ∆ IP, ∆ RVOL⇔MF ∆ SENT) and an unilateral causality relationship

from RVOL to the money supply is also detected (∆ RVOL⇒MF ∆ M1).

In relation to the other high frequency variables, when they are temporally aggregated to monthly

frequency we are only able to find an unilateral Granger causality from RVOL to credit, TED and EPU

index (∆ RVOL ⇒LF ∆ CRE, ∆ RVOL ⇒LF ∆ TED, ∆ RVOL ⇒LF ∆ EPU) and in the other

direction, from JPY-USD and S&P 500 towards RVOL (∆ ER ⇒LF ∆ RVOL , ∆ S&P 500 ⇒LF

∆ RVOL ). When daily frequency is considered, bilateral relationships between RVOL and exchange

rate, and also between RVOL and EPU index emerge (∆ RVOL ⇔HF ∆ ER, ∆ RVOL ⇔HF ∆

EPU). Moreover, an unilateral causality link from OIL and TS directed towards the aggregate realized

volatility is found (∆ OIL ⇒HF ∆ RVOL , ∆ TS ⇒HF ∆ RVOL ) while from RVOL to GPR (∆

RVOL⇒HF ∆ GPR).

In addition, RVOL− is informative in predicting future changes in inflation, industrial production

time frame.
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and market sentiment, whereas no relationship from the macroeconomics to the RVOL− is found.

When we perform the MF-VAR model, we confirm a bilateral relationship between RVOL− and IP

and between RVOL− and market sentiment (∆ RVOL−⇔MF ∆ IP, ∆ RVOL−⇔MF ∆ SENT) and

an unilateral relationship from RVOL− to the money supply (∆ RVOL−⇒MF ∆ M1). These findings

show how the macroeconomic variables, when significant, impact on or are impacted by the volatility

market in a similar way, both in the aggregate measure and also in the downside measure.

The same causality relationships are found at low frequency for the other variables, however with a

stronger bilateral relationship between the EPU index and RVOL− both at low frequency (∆ RVOL−

⇔LF ∆ EPU) and also at higher frequency (∆ RVOL− ⇔HF ∆ EPU). The GPR index appears to be

more connected with the downside volatility component in addition to showing a high frequency bilat-

eral causality (∆ RVOL− ⇔MF ∆ GPR). RVOL− appears to require more than nine days and more

than eighteen days to impact on credit and liquidity, respectively, given that we only find a unilateral

causality among these variables at lower frequency. In the other direction, we detect a higher frequency

causality relationship between S&P 500 , exchange rate and oil towards RVOL− (∆ S&P 500⇒HF

∆ RVOL− , ∆ ER⇒HF ∆ RVOL− , ∆ OIL⇒HF ∆ RVOL− ).

For the upside realized volatility, the picture is slightly different. For instance, a bilateral Granger

causality between RVOL+ and inflation is detected at monthly frequency (∆ RVOL+⇒LF ∆ CPI) and

confirmed with MF-VAR model (∆ RVOL+⇒MF ∆ CPI), indicating how the influence of inflation on

volatility is mainly derived from the positive returns component. Unilateral relationship from RVOL+

and money supply is also found at lower frequency in this case (∆ RVOL+ ⇒LF ∆ M1). There

is no evidence of Granger causality from RVOL+ to market sentiment at lower frequency or mixed

frequency, whereas when the chain is reverted we uncover market sentiment as a variable impacting

on the RVOL+ (∆ SENT ⇒LF ∆ RVOL+ ). A bilateral causality relationship at lower frequency

and confirmed at high frequency is found for TED (∆ RVOL+ ⇔LF ∆ TED, ∆ RVOL+ ⇔HF ∆

TED). RVOL+ is unable to Granger cause other variables at monthly frequency, whereas it Granger

causes gold (∆ RVOL+ ⇒HF ∆ GOLD) and it shows a bilateral Granger causality with S&P 500 (∆

RVOL+ ⇔HF ∆ S&P 500 ) at daily frequency. Other market variables such as oil, exchange rate and

credit Granger cause RVOL+ at daily frequency (∆ OIL⇒HF ∆ RVOL+ , ∆ ER⇒HF ∆ RVOL+

, ∆ CRE⇒HF ∆ RVOL+ ). There is not a causality relationship between RVOL+ and geopolitical

risk index and there is only unilateral causality from the EPU index to RVOL+ .
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Table A4: Pairwise Granger Causality Test for Mixed Frequencies: From Realized
Volatilities to Selected Variables (4 RV ;4 X)

Aggregate Realized Volatility: RVOL
Low Frequency GC High Frequency GC Mixed Frequency GC

HP l P-Value l P-Value h = 1 h = 2 h = 3 h = 4
4 RVOL ;4 CPI 2 0.007 0.855 0.022 0.442 0.000
4 RVOL ;4 GDP 4 0.736 0.005 0.120 0.119 0.000
4 RVOL ;4 IP 4 0.035 0.088 0.005 0.563 0.000
4 RVOL ;4 UR 3 0.653 0.166 0.028 0.114 0.000
4 RVOL ;4M1 4 0.330 0.000 0.579 0.005 0.011
4 RVOL ;4 SENT 3 0.091 0.097 0.126 0.041 0.000

4 RVOL ;4 TS 3 0.695 8 0.291
4 RVOL ;4 OIL 3 0.128 9 0.542
4 RVOL ;4 ER 3 0.243 9 0.024
4 RVOL ;4 GOLD 2 0.255 8 0.494
4 RVOL ;4 SPX 2 0.719 16 0.148
4 RVOL ;4 CRE 2 0.001 9 0.181
4 RVOL ;4 TED 2 0.000 11 0.045
4 RVOL ;4 EPU 3 0.055 19 0.006
4 RVOL ;4 GPR 2 0.317 15 0.075

Downside Realized Volatility: RVOL−

4 RVOL−;4 CPI 3 0.017 0.007 0.316 0.058 0.559
4 RVOL−;4 GDP 4 0.984 0.015 0.768 0.428 0.018
4 RVOL−;4 IP 4 0.019 0.072 0.039 0.410 0.208
4 RVOL−;4 UR 3 0.547 0.117 0.348 0.226 0.127
4 RVOL−;4M1 4 0.411 0.039 0.209 0.004 0.004
4 RVOL−;4 SENT 2 0.002 0.518 0.063 0.177 0.000

4 RVOL−;4 TS 2 0.778 6 0.782
4 RVOL−;4 OIL 2 0.896 7 0.656
4 RVOL−;4 ER 1 0.889 7 0.291
4 RVOL−;4 GOLD 2 0.603 9 0.573
4 RVOL−;4 SPX 2 0.906 16 0.187
4 RVOL−;4 CRE 2 0.000 9 0.453
4 RVOL−;4 TED 2 0.038 18 0.696
4 RVOL−;4 EPU 2 0.002 19 0.013
4 RVOL−;4 GPR 2 0.927 14 0.030

Upside Realized Volatility: RVOL+

4 RVOL+ ;4 CPI 3 0.089 0.409 0.001 0.029 0.000
4 RVOL+ ;4 GDP 3 0.179 0.022 0.015 0.079 0.481
4 RVOL+ ;4 IP 3 0.035 0.832 0.123 0.831 0.001
4 RVOL+ ;4 UR 2 0.941 0.367 0.996 0.030 0.277
4 RVOL+ ;4M1 3 0.081 0.038 0.515 0.000 0.278
4 RVOL+ ;4 SENT 2 0.696 0.424 0.286 0.021 0.436

4 RVOL+ ;4 TS 2 0.280 7 0.280
4 RVOL+ ;4 OIL 2 0.216 11 0.927
4 RVOL+ ;4 ER 2 0.227 10 0.373
4 RVOL+ ;4 GOLD 2 0.319 8 0.046
4 RVOL+ ;4 SPX 2 0.871 12 0.001
4 RVOL+ ;4 CRE 3 0.154 9 0.617
4 RVOL+ ;4 TED 2 0.000 12 0.047
4 RVOL+ ;4 EPU 3 0.567 16 0.481
4 RVOL+ ;4 GPR 2 0.790 14 0.258

Notes: This table shows the VAR Granger causality tests performed through equation (3.10), (3.11) and (3.15) for low, high and
mixed frequency variables, respectively. The direction of the causality chains goes from the realized volatility series, RVOL
RVOL− and RVOL+ towards the macroeconomic and financial variables (4 RV ;4 X). Lags are selected according to
the minimum value between AIC and SIC tests for LF and HF, while fixed to one for MF. MF-VAR controls for forecasting
horizon h = 1, 2, 3, 4. Null hypotheses: X ;LF Y , X ;HF Y and X ;MF Y . In bold the Granger Causality
relations at 10% level. The total time period is from 04-01-1996 to 29-09-2016. Frequency is according to the model and
variables frequency availability.
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Table A5: Pairwise Granger Causality Test for Mixed Frequencies: From Selected
Variables to Realized Volatility (4 X ;4 RV)

Aggregate Realized Volatility: RVOL
Low Frequency GC High Frequency GC Mixed Frequency GC

HP l P-Value l P-Value h = 1 h = 2 h = 3 h = 4
4 CPI ;4 RVOL 2 0.235 0.526 0.679 0.816 0.037
4 GDP ;4 RVOL 4 0.167 0.998 0.305 0.993 0.575
4 IP ;4 RVOL 4 0.777 0.001 0.004 0.127 0.000
4 UR ;4 RVOL 3 0.859 0.154 0.972 0.631 0.000
4M1 ;4 RVOL 4 0.394 0.512 0.618 0.352 0.000
4 SENT ;4 RVOL 3 0.488 0.000 0.161 0.074 0.000

4 TS ;4 RVOL 3 0.835 8 0.062
4 OIL ;4 RVOL 3 0.570 9 0.001
4 ER ;4 RVOL 3 0.062 9 0.048
4 GOLD ;4 RVOL 2 0.973 8 0.619
4 SPX ;4 RVOL 2 0.000 16 0.000
4 CRE ;4 RVOL 2 0.548 9 0.058
4 TED ;4 RVOL 2 0.232 11 0.415
4 EPU ;4 RVOL 3 0.356 19 0.000
4 GPR ;4 RVOL 2 0.684 15 0.143

Downside Realized Volatility: RVOL−

4 CPI ;4 RVOL− 3 0.431 0.907 0.807 0.178 0.478
4 GDP ;4 RVOL− 4 0.126 0.963 0.995 0.948 0.556
4 IP ;4 RVOL− 4 0.917 0.002 0.256 0.068 0.003
4 UR ;4 RVOL− 3 0.501 0.831 0.700 0.026 0.417
4M1 ;4 RVOL− 4 0.799 0.683 0.942 0.825 0.007
4 SENT ;4 RVOL− 2 0.354 0.007 0.038 0.009 0.000

4 TS ;4 RVOL− 2 0.724 6 0.871
4 OIL ;4 RVOL− 2 0.897 7 0.009
4 ER ;4 RVOL− 1 0.002 7 0.000
4 GOLD ;4 RVOL− 2 0.586 9 0.939
4 SPX ;4 RVOL− 2 0.017 16 0.000
4 CRE ;4 RVOL− 2 0.950 9 0.101
4 TED ;4 RVOL− 2 0.343 18 0.532
4 EPU ;4 RVOL− 2 0.071 19 0.016
4 GPR ;4 RVOL− 2 0.557 14 0.099

Upside Realized Volatility: RVOL+

4 CPI ;4 RVOL+ 3 0.070 0.778 0.023 0.446 0.002
4 GDP ;4 RVOL+ 3 0.590 0.992 0.791 0.934 0.870
4 IP ;4 RVOL+ 3 0.822 0.376 0.000 0.026 0.081
4 UR ;4 RVOL+ 2 0.803 0.049 0.336 0.051 0.100
4M1 ;4 RVOL+ 3 0.303 0.521 0.891 0.287 0.895
4 SENT ;4 RVOL+ 2 0.044 0.000 0.026 0.796 0.185

4 TS ;4 RVOL+ 2 0.853 7 0.183
4 OIL ;4 RVOL+ 2 0.766 11 0.000
4 ER ;4 RVOL+ 2 0.535 10 0.010
4 GOLD ;4 RVOL+ 2 0.363 8 0.178
4 SPX ;4 RVOL+ 2 0.000 12 0.000
4 CRE ;4 RVOL+ 3 0.081 9 0.022
4 TED ;4 RVOL+ 2 0.026 12 0.082
4 EPU ;4 RVOL+ 3 0.031 16 0.000
4 GPR ;4 RVOL+ 2 0.641 14 0.710

Notes: This table shows the VAR Granger causality tests performed through equation (3.10), (3.11) and (3.15) for low, high and
mixed frequency variables, respectively. The models are run between the macroeconomic and financial conditions variables
and the realized volatility series, RVOLRVOL− and RVOL+ . Lags are selected according to the minimum value between
AIC and SIC tests for LF and HF, while fixed to one for MF. MF-VAR controls for forecasting horizon h = 1, 2, 3, 4. Null
hypotheses: X ;LF Y , X ;HF Y and X ;MF Y . In bold the Granger Causality relations at 10% level. The total
time period is from 04-01-1996 to 29-09-2016. Frequency is according to the model and variables frequency availability.
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Appendix B

Additional Material for Chapter 4

Figure B1: Decomposed SKEW and VIX Scatter Plot

Notes: This graph shows scatter plots between the aggregate and decomposed skewness and volatility indexes, namely between
SKEW and VIX , SKEW+ and VIX+ and SKEW− and VIX− . The selected period is from 04-01-1996 to 29-12-2017, at
daily frequency.

B.1 Equity, Implied Volatility and Implied Skewness Indexes

Here we analyze the interconnections among three main groups: equity (S&P 500 ), volatility (VIX ,

VIX− and VIX+ ) and skewness (SKEW , SKEW− and SKEW+ ). Their descriptive statistics are

reported in Table B1 The maximum values for all the implied volatility series was reached during the

Lehman Brother collapse together with one of the lowest level touched by S&P 500 . The aggregate
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VIX presents higher standard deviation compared to its components while SKEW− is the most volatile

among the skew indexes as also depicted in Figure 4.1. VIX− and SKEW− result to have higher

standard deviation compared to the corresponding upside components, VIX+ and SKEW+ . The

correlation analysis in Table 4.1 in Chapter 4 shows that the S&P 500 index is negatively correlated

with all the indexes except that with SKEW and SKEW− , in line with Harvey and Siddique (2000).

Conversely, an increase in the SKEW+ appears to command lower expected returns. There is a negative

relationship between SKEW and SKEW− on one side and the implied volatility indexes on the other

side, while a positive relationship is found between SKEW+ and the VIX series. VIX is almost

perfectly positive correlated with VIX− while slightly less correlated with VIX+ . SKEW is positively

correlated with SKEW− while negatively correlated with SKEW+ . The two skewness components,

SKEW− and SKEW+ have an almost nil correlation.

Table B1: Series Descriptive Statistics and Correlation Analysis

S&P 500 VIX VIX− VIX+ SKEW SKEW− SKEW+

Mean 1291.47 20.66 16.56 12.17 120.21 143.85 82.76
Median 1246.32 19.13 15.07 11.46 119.51 142.79 82.56
Max 2190.15 80.74 65.92 46.83 151.63 180.25 94.74
Min 598.48 9.80 7.46 4.42 105.09 124.93 70.01
Std. Dev. 364.78 8.22 6.74 4.87 6.66 8.35 2.64
Skewness 0.66 2.06 2.23 1.71 0.80 0.69 0.57
Kurtosis 3.03 10.22 11.24 8.08 3.89 3.41 4.78

Notes: This table presents the main descriptive statistics for the S&P 500 index, decomposed implied volatility indexes and decomposed implied
skewness indexes for the selected period from 04-01-1996 to 30-09-2016, at daily frequency.

We perform a cross-moments and cross-signs comparison within our risk-neutral moments with

the aim of understanding whether or not the implied volatility and the implied skewness provide any

additional information about investors’ behaviors and their risk perception when decomposed. Further-

more, we would like to test if the negative implied skewness, SKEW− is informative and helpful as a

tail risk measure. The unit root analysis indicates the presence of non stationarity in levels, but the first

differences of all the series are stationary. A study of the Granger causality relationship through a VAR

model is performed. In particular, several research hypotheses are tested through Granger causality

analysis.

Hypothesis 1: SKEW− is less Granger causal linked to market sentiment proxies and information

coming from Calls compared to SKEW and SKEW+ .

Hypothesis 2: There is a significant relationship between SKEW and the S&P 500 equity index.

Finally, we expect to find differences in SKEW and VIX indexes behaviours when comparing the full

sample relationships with the sub-samples’.

Hypothesis 3: The Granger causality relationships between S&P 500 , VIX and SKEW series

and their components are different across sub-samples and specific turbulent times.

The pairwise Granger relationships for each series pair is tested through the following vector autore-
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gressive (VAR) model:

4 Yi,t = ci +

n∑
j=1

αi,j 4 Yt−j +

n∑
j=1

θi,j 4Xt−j + εi,t (B.1)

where, i = 1, ...p is the indicator for selecting the p variable to test as dependent variables, j is the lag

indicator, t is the last day in our sample. The regressors are the lag Y dependent variables and the lag

X independent variables and ε is distributed as N(0, σ2).

B.1.1 Granger Causality Results

A pairwise cross-moments and cross-signs Granger causality test between the U.S. equity, volatility and

skewness indexes is conducted with results reported in Table B2. This analysis is conducted compar-

atively for the full sample, namely, from January 1996 to September 2016 and, also, for the pre-crisis

and post-crisis sub-samples.

From Table B2 we notice a strong unilateral relationship from the stock market to the implied

volatility indexes, regardless of the market period, while the opposite directional link holds only in the

aggregate 1996-2016 full sample. We find that the S&P 500 is more informative to predict the negative

and positive implied skewness components in the full sample and in the pre-crisis (∆ S&P 500⇒ ∆

SKEW− ) and SKEW+ in the post-crisis (∆ S&P 500 ⇒ ∆ SKEW+ ), while it does not Granger

causes the aggregate SKEW .

Interestingly, only SKEW− is found informative in predicting the stock market (∆ SKEW−⇒∆

S&P 500 ) even if this is only in the post-crisis period. This might be due to the fact that the increase

in the investors’ post-crisis concern translated in a more active Put options trading. Hypothesis 2 is

rejected and the negative SKEW− component is more related to equity index, in both directions.

The implied volatility and implied skewness indexes appear to share information over long period

of time. For instance, in the full sample period and in the post-crisis we find a bilateral relationship

between the aggregate VIX and SKEW (∆ VIX⇔ ∆ SKEW ) while this relationship is found to be

only unilateral in the pre-crisis. In general, this feedback appears to be stronger and directed mainly

from the implied skewness indexes towards the implied volatility indexes, with a stronger and more

significant role for SKEW+ in the pre-crisis. A strong bilateral linkage is found between VIX+ and

SKEW+ through Call portfolios (∆ VIX+ ⇒ ∆ SKEW+ ). In the post-crisis period, on the other

hand, we observe a reduced role for the implied skewness in predicting the future volatility changes. In

addition, in the post-crisis many of the information the two indexes and sub-indexes share are placed in

the Puts side (e.g. ∆ VIX−⇒ ∆ SKEW , ∆ SKEW− ⇒∆ VIX , ∆ SKEW−⇒ ∆ VIX− ).

We observe that, while before the global financial crisis the indexes and their decomposed com-

ponents did not show a clear difference in their behaviour, the post crisis period is characterised by a
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Table B2: Pairwise Cross-Moments VAR Granger Causality Test

Full Sample: Jan 1996 - Sept 2016
Obs Null Hypothesis P-Value Null Hypothesis P-Value

5206 4 S&P 500 ;4VIX 0.000 4VIX;4 S&P 500 0.023
5201 4 S&P 500 ;4VIX− 0.000 4VIX−;4 S&P 500 0.060
5206 4 S&P 500 ;4VIX+ 0.000 4VIX+ ;4 S&P 500 0.072
5203 4 S&P 500 ;4 SKEW 0.650 4 SKEW ;4 S&P 500 0.542

5203 4 S&P 500 ;4 SKEW− 0.000 4 SKEW−;4 S&P 500 0.397

5202 4 S&P 500 ;4 SKEW+ 0.577 4 SKEW+ ;4 S&P 500 0.778
5203 4VIX;4 SKEW 0.067 4 SKEW ;4VIX 0.026
5204 4VIX;4 SKEW− 0.209 4 SKEW−;4VIX 0.072
5202 4VIX;4 SKEW+ 0.771 4 SKEW+ ;4VIX 0.709

5204 4VIX−;4 SKEW 0.022 4 SKEW ;4VIX− 0.013
5211 4VIX−;4 SKEW− 0.733 4 SKEW−;4VIX− 0.001
5202 4VIX−;4 SKEW+ 0.512 4 SKEW+ ;4VIX− 0.000
5204 4VIX+ ;4 SKEW 0.451 4 SKEW ;4VIX+ 0.044
5204 4VIX+ ;4 SKEW− 0.164 4 SKEW−;4VIX+ 0.000
5202 4VIX+ ;4SKEW+ 0.385 4 SKEW+ ;4VIX+ 0.000

Pre-Crisis Period: Jan 1996 - June 2007
Obs Null Hypothesis P-Value Null Hypothesis P-Value

2872 4 S&P 500 ;4VIX 0.000 4VIX;4 S&P 500 0.162

2877 4 S&P 500 ;4VIX− 0.000 4VIX−;4 S&P 500 0.401

2877 4 S&P 500 ;4VIX+ 0.000 4VIX+ ;4 S&P 500 0.348
2876 4 S&P 500 ;4 SKEW 0.142 4 SKEW ;4 S&P 500 0.602

2877 4 S&P 500 ;4 SKEW− 0.001 4 SKEW−;4 S&P 500 0.439

2873 4 S&P 500 ;4 SKEW+ 0.596 4 SKEW+ ;4 S&P 500 0.590
2874 4VIX;4 SKEW 0.012 4 SKEW ;4VIX 0.743

2872 4VIX;4 SKEW− 0.000 4 SKEW−;4VIX 0.473

2872 4VIX;4 SKEW+ 0.241 4 SKEW+ ;4VIX 0.084
2874 4VIX−;4 SKEW 0.002 4 SKEW ;4VIX− 0.029
2879 4VIX−;4 SKEW− 0.329 4 SKEW−;4VIX− 0.000
2872 4VIX−;4 SKEW+ 0.474 4 SKEW+ ;4VIX− 0.000
2874 4VIX+ ;4 SKEW 0.185 4 SKEW ;4VIX+ 0.523

2879 4VIX+ ;4 SKEW− 0.000 4 SKEW−;4VIX+ 0.000
2873 4VIX+ ;4 SKEW+ 0.023 4 SKEW+ ;4VIX+ 0.000

Post-Crisis Period: Apr 2009 - Sept 2016
Obs Null Hypothesis P-Value Null Hypothesis P-Value

1878 4 S&P 500 ;4VIX 0.001 4VIX;4 S&P 500 0.556

1878 4 S&P 500 ;4VIX− 0.000 4VIX−;4 S&P 500 0.745

1879 4 S&P 500 ;4VIX+ 0.000 4VIX+ ;4 S&P 500 0.232
1881 4 S&P 500 ;4 SKEW 0.164 4 SKEW ;4 S&P 500 0.239

1883 4 S&P 500 ;4 SKEW− 0.617 4 SKEW−;4 S&P 500 0.084
1883 4 S&P 500 ;4 SKEW+ 0.001 4 SKEW+ ;4 S&P 500 0.536
1880 4VIX;4 SKEW 0.084 4 SKEW ;4VIX 0.089
1879 4VIX;4 SKEW− 0.640 4 SKEW−;4VIX 0.069
1874 4VIX;4 SKEW+ 0.009 4 SKEW+ ;4VIX 0.492

1879 4VIX−;4 SKEW 0.025 4 SKEW ;4VIX− 0.202

1879 4VIX−;4 SKEW− 0.447 4 SKEW−;4VIX− 0.066
1874 4VIX−;4 SKEW+ 0.001 4 SKEW+ ;4VIX− 0.395

1879 4VIX+ ;4 SKEW 0.082 4 SKEW ;4VIX+ 0.368

1873 4VIX+ ;4 SKEW− 0.125 4 SKEW−;4VIX+ 0.165

1874 4VIX+ ;4 SKEW+ 0.199 4 SKEW+ ;4VIX+ 0.022

Notes: This table shows the pairwise cross-moments VAR Granger Causality test performed for the equity, implied volatility and implied skewness
indexes in the U.S. First difference of the series is considered: S&P 500 , VIX , VIX− , VIX+ , SKEW , SKEW− and SKEW+ . The
null hypothesis is: 4 X ;4 Y. In bold the Granger Causality relations are found significant at 10% level. The selected period is the full sample
from 04-01-1996 to 30-09-2016 (first panel), the pre-crisis period from 04-01-1996 to 29-06-2007 (mid panel) and the post-crisis period from
01-04-2009 to 30-09-2016 (bottom panel), at daily frequency, for a total of 5221, 2891 and 1888 observations, respectively.

more defined picture. The information contained in the two decomposed SKEW and VIX components

appear, now, more detached. In addition, SKEW− is found to be informative for both the stock market

and volatility market (∆ SKEW− ⇒ ∆ S&P 500 , ∆ SKEW− ⇒ ∆ VIX ), but it is not Granger

caused, in turn, from those. This suggests that nowadays SKEW− is the index component that is more

independent from the implied volatility. For instance, while all the VIX series, VIX , VIX− and VIX+

, as proxies for market sentiment, negative and positive investors’ expectations, respectively, affect the

SKEW index and the SKEW+ index, the same is not found for the SKEW− . 4 S&P 500 and 4

VIX cause movements in 4 SKEW+ reflecting the influence of market sentiment on the Calls side

(See Section 4.4). A possible explanation is that investors would like to take a long equity position

when VIX is low and S&P 500 looks bullish.

In the post financial crisis, SKEW− appears more neutral from information coming from Calls,
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VIX+ and, moreover, there is no evidence of Granger causality between 4 VIX and 4 SKEW− im-

plying that the hedgers’ trading strategies are more related to fundamentals, neglecting the information

carried from the fear index. While VIX is found to Granger cause the aggregate SKEW index both in

the full sample and also in the sub-samples, SKEW− remains more detached and independent by mar-

ket sentiment beliefs carried by VIX . The aggregate SKEW is then found from Table B2 to be more

market sentiment contaminated compared to the negative SKEW− which might be a more prudent

measure of tail risk. We can conclude that while Hypothesis 2 is only in part confirmed, Hypothesis 1

appears to be satisfied at least for the full sample period and, especially, in the post-crisis period.

B.1.2 Zoom in Volatile and Turbulent Times

In this Section B.1.2, we would like to gauge the potential changes in Granger causality relationships

across the indexes triggered by specific turbulent events such as the 2007-2009 global financial crisis,

the dot-com bubble and the recent UK Brexit vote. Table B3 shows that, for shorter periods, the Granger

causality test provides different results. For instance, differences in the relationships among implied

volatility and skewness indexes are found especially between the global financial crisis and the dot-com

bubble. The Brexit vote, instead, depicts a different picture. In the 2007-2009 financial crisis, the stock

market, S&P 500 , presents bidirectional Granger relationships with the VIX and VIX− highlighting

the main role Puts play in this bearish time compared to Calls. There is no evidence that the stock

market is able to predict the SKEW indexes in this situation, whereas, as already found in Table B2,

SKEW− is informative in predicting the future stock market activity (∆ SKEW− ⇒ ∆ S&P 500 ).

The relationship between VIX and SKEW aggregate indexes and their sub-components is found to

be weak. Indeed, there is no Granger causality relationship going from the volatility to the skewness

market, while there are few in the opposite direction.

During the dot-com bubble period, well known to be characterized by investors’ optimism and

exuberance, the results point out to a different story. The stock market shows a strong unilateral rela-

tionship going towards the volatility market while the opposite is not detected. Only during this period

we find that the S&P 500 is Granger caused by the SKEW Calls component. We also find that mea-

sures such as VIX+ and SKEW+ , that were barely significant in other periods, during the dot-com

bubble became highly informative in predicting some of the skew and volatility indexes, respectively.

The dot-com bubble was a period of high volatility and also associated with high speculative activity

reflected in the Calls measures, VIX+ and SKEW+ .

Finally, in the short Brexit period we observe that, the stock market and the volatility market are

more connected through the aggregate and Puts side, VIX and VIX− . The same holds between the

skew indexes and the stock market trough SKEW and SKEW− , while the positive SKEW+ is not

informative in predicting the stock market future changes. On the other hand, VIX− and SKEW−
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Table B3: Pairwise Cross-Moments VAR Granger Causality Test in Turbulent Times

2007-2009 Global Financial Crisis
Obs Null Hypothesis P-Value Null Hypothesis P-Value
428 4 S&P 500 ;4VIX 0.052 4VIX;4 S&P 500 0.018
428 4 S&P 500 ;4VIX− 0.090 4VIX−;4 S&P 500 0.026
432 4 S&P 500 ;4VIX+ 0.624 4VIX+ ;4 S&P 500 0.268
435 4 S&P 500 ;4 SKEW 0.857 4 SKEW ;4 S&P 500 0.134

429 4 S&P 500 ;4 SKEW− 0.787 4 SKEW−;4 S&P 500 0.088
427 4 S&P 500 ;4 SKEW+ 0.348 4 SKEW+ ;4 S&P 500 0.365
428 4VIX;4 SKEW 0.134 4 SKEW ;4VIX 0.007
429 4VIX;4 SKEW− 0.467 4 SKEW−;4VIX 0.005
428 4VIX;4 SKEW+ 0.570 4 SKEW+ ;4VIX 0.464

428 4VIX−;4 SKEW 0.155 4 SKEW ;4VIX− 0.011
428 4VIX−;4 SKEW− 0.305 4 SKEW−;4VIX− 0.003
427 4VIX−;4 SKEW+ 0.437 4 SKEW+ ;4VIX− 0.393

429 4VIX+ ;4 SKEW 0.094 4 SKEW ;4VIX+ 0.007
429 4VIX+ ;4 SKEW− 0.449 4 SKEW−;4VIX+ 0.015
427 4VIX+ ;4 SKEW+ 0.546 4 SKEW+ ;4VIX+ 0.290

Dot-com Bubble
Obs Null Hypothesis P-Value Null Hypothesis P-Value
865 4 S&P 500 ;4VIX 0.036 4VIX;4 S&P 500 0.686

873 4 S&P 500 ;4VIX− 0.000 4VIX−;4 S&P 500 0.156

869 4 S&P 500 ;4VIX+ 0.000 4VIX+ ;4 S&P 500 0.690
871 4 S&P 500 ;4 SKEW 0.196 4 SKEW ;4 S&P 500 0.562

867 4 S&P 500 ;4 SKEW− 0.026 4 SKEW−;4 S&P 500 0.373

874 4 S&P 500 ;4 SKEW+ 0.465 4 SKEW+ ;4 S&P 500 0.069
864 4VIX;4 SKEW 0.000 4 SKEW ;4VIX 0.414

867 4VIX;4 SKEW− 0.001 4 SKEW−;4VIX 0.729

872 4VIX;4 SKEW+ 0.525 4 SKEW+ ;4VIX 0.266

865 4VIX−;4 SKEW 0.000 4 SKEW ;4VIX− 0.057
867 4VIX−;4 SKEW− 0.098 4 SKEW−;4VIX− 0.001
872 4VIX−;4 SKEW+ 0.655 4 SKEW+ ;4VIX− 0.000
865 4VIX+ ;4 SKEW 0.086 4 SKEW ;4VIX+ 0.344

867 4VIX+ ;4 SKEW− 0.000 4 SKEW−;4VIX+ 0.000
868 4VIX+ ;4 SKEW+ 0.307 4 SKEW+ ;4VIX+ 0.000

Brexit Vote
Obs Null Hypothesis P-Value Null Hypothesis P-Value
103 4 S&P 500 ;4VIX 0.005 4VIX;4 S&P 500 0.000
103 4 S&P 500 ;4VIX− 0.049 4VIX−;4 S&P 500 0.000
103 4 S&P 500 ;4VIX+ 0.380 4V IX+ ;4 S&P 500 0.139
99 4 S&P 500 ;4 SKEW 0.015 4 SKEW ;4 S&P 500 0.000
102 4 S&P 500 ;4 SKEW− 0.061 4 SKEW−;4 S&P 500 0.000
102 4 S&P 500 ;4 SKEW+ 0.593 4 SKEW+ ;4 S&P 500 0.849
92 4VIX;4 SKEW 0.031 4 SKEW ;4VIX 0.104

94 4VIX;4 SKEW− 0.001 4 SKEW−;4VIX 0.027
100 4VIX;4 SKEW+ 0.581 4 SKEW+ ;4VIX 0.572

100 4VIX−;4 SKEW 0.000 4 SKEW ;4VIX− 0.178

99 4VIX−;4 SKEW− 0.000 4 SKEW−;4VIX− 0.054
101 4VIX−;4 SKEW+ 0.257 4 SKEW+ ;4VIX 0.358

102 4VIX+ ;4 SKEW 0.061 4 SKEW ;4VIX+ 0.008
101 4VIX+ ;4 SKEW− 0.157 4 SKEW−;4VIX+ 0.038
102 4VIX+ ;4 SKEW+ 0.560 4 SKEW+ ;4VIX+ 0.968

Notes: This table shows the pairwise Cross-Moments (Equity, Volatility, Skewness) VAR Granger Causality Test performed for the U.S. around
the global financial crisis (upper panel), dot-com bubble (mid panel) and Brexit vote (bottom panel). First difference of the following series
is considered: S&P 500 , VIX , VIX− , VIX+ , SKEW , SKEW− and SKEW+ . The null hypothesis is: 4 X ;4 Y. In bold the
Granger Causality relations are found significant at 10% level. The selected period is from 02-07-2007 to 31-03-2009 (441 observations) for
the global financial crisis, from 01-07-1998 to 31-12-2001 (879 observations) for the dot-com bubble and from 02-05-2016 to 30-09-2016 (106
observations) for Brexit, at daily frequency.

display a bilateral Granger causality through the Puts portfolios. There is only a unilateral causality

from VIX to SKEW and an even weaker relationship emerging from Call options, between VIX+ and

SKEW+ . Overall, the results in Table B3 suggest that there is less evidence of Granger causality be-

tween aggregate VIX and SKEW . This may be explained by the fact that the two indexes do not share

the same information during extreme events, as highlighted in Figure 2.31. To conclude, the analysis in

Section B.1.2 confirms Hypothesis 3 and shows that in turbulent times volatility and skewness indexes

are mostly linked through the Put options channel. Thus, SKEW− can be conceptualised as a more

prudent tail risk measure, being forward looking and reflecting better the pessimistic investors view

during these uncertain market times.

1While in the full sample from 1996-2016 or in sub-samples there is more evidence of shared information between the
aggregate VIX and SKEW (e.g. low SKEW and low VIX ), when extreme events are considered we find mainly high levels
of VIX in correspondence of low levels of SKEW . For instance, during the financial crisis in which VIX index reached its
highest levels, the SKEW index did not reach levels above 130. This pattern is also confirmed in the Granger analysis showing
that the two indexes are less Granger causal linked during outliers.
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Table B4: Predictors Correlation Analysis

Variable DP DY EP DE RVOL BM NTIS TBL LTY LTR TMS DFY DFR INFL SKEW SKEW+ SKEW−

DP 1
DY 0.97 1
EP -0.07 -0.01 1
DE 0.48 0.47 -0.87 1
RVOL -0.07 -0.06 -0.65 0.53 1
BM 0.69 0.67 0.41 -0.02 -0.26 1
NTIS -0.49 -0.47 0.08 -0.31 0.16 -0.27 1
TBL -0.58 -0.58 -0.01 -0.26 -0.08 -0.69 0.31 1
LTY -0.54 -0.54 -0.20 -0.07 0.21 -0.71 0.54 0.81 1
LTR 0.01 -0.02 0.04 -0.02 0.02 0.04 0.03 0.01 -0.06 1
TMS 0.37 0.36 -0.20 0.35 0.38 0.34 0.08 -0.75 -0.22 -0.09 1
DFY 0.58 0.55 -0.50 0.72 0.43 0.33 -0.50 -0.40 -0.26 0.02 0.37 1
DFR 0.02 0.11 -0.18 0.17 0.11 -0.03 0.01 -0.08 -0.03 -0.47 0.10 0.10 1
INFL -0.15 -0.14 0.06 -0.13 -0.08 -0.08 0.04 0.13 0.15 -0.10 -0.05 -0.25 -0.05 1
SKEW -0.03 0.03 -0.01 0.01 0.01 -0.01 -0.01 -0.02 -0.02 -0.11 0.03 0.05 0.09 -0.03 1
SKEW+ 0.08 -0.02 0.01 -0.01 0.01 0.05 -0.01 -0.01 -0.01 0.02 -0.01 0.01 -0.02 0.01 -0.05 1
SKEW− -0.01 0.04 -0.03 0.02 0.04 -0.03 -0.02 -0.03 -0.01 -0.12 0.04 0.03 0.18 -0.06 0.71 0.25 1

Notes: The table presents the Pearson correlation coefficients for the first difference of the three SKEW indexes, SKEW , SKEW+ and SKEW− and the 14 predictor variables from Goyal and Welch
(2008): the log dividend price ratio (DP), the log dividend yield (DY), the log earnings-price ratio (EP), the log dividend-payout ratio (DE), the excess stock return volatility (RVOL), the book-to-market
ratio (BM), the net equity expansion (NTIS), the treasury bill rate (TBL), the long-term yield (LTY), the long-term return (LTR), the term spread (TMS), the default yield spread (DFY), the default return
spread (DFR) and the inflation rate (INFL). TBL, LTY, TMS, DFY and INFL are measured in annual percent. The time period is from 1996:01 to 2017:12.
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Figure B2: First Four Principal Components from Goyal and Welch (2008) 14 Predictors

Notes: This graph shows the first four principal components extracted from the Goyal and Welch (2008) 14 macroeconomic
predictors. The last plot shows the scree plot with the eigenvalues from largest to smallest. The selected period is from 01-1996
to 12-2017, at monthly frequency.
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Table B5: U.S. S&P 500 30 Largest and 30 Smallest Stocks: Descriptive Statistics

Panel A: S&P 500 Largest 30 Stocks: Descriptive Statistics

Ticker Stock Weight (%) Mean Std. Dev Min Max Skewness Kurtosis Sharpe

AAPL Apple Inc. 4.37 36.34 45.59 0.46 171.85 1.18 3.30 0.11
ABT Abbott Lab. 0.52 25.94 10.30 9.09 57.07 0.91 3.19 0.04
ADBE Adobe Inc. 0.52 37.96 33.88 3.28 181.47 1.88 6.83 0.06
AMGN Amgen Inc. 0.54 72.31 44.43 12 186.45 0.96 3.09 0.06
BA Boeing Company 0.82 76.78 46.02 25.06 294.91 1.91 7.51 0.04
BAC Bank of America Corp 1.11 26.88 12.92 3.95 53.87 0.29 1.99 -0.01
C Citigroup Inc. 0.71 229.91 185.12 15 557 0.29 1.41 -0.04
CMCSA Comcast Corp. Class A 0.76 14.39 9.29 2.31 41.69 1.22 3.60 0.07
CSCO Cisco Systems Inc. 0.91 22.72 11.26 4.14 77.31 1.83 8.54 0.04
CVX Chevron Corp. 0.93 70.72 30.64 25.93 132.53 0.30 1.66 0.02
DIS Walt Disney Company 0.74 43.47 24.49 14.93 120 1.36 3.41 0.03
DWDP DowDuPont Inc. 0.54 37.43 10.92 7.16 72.31 0.59 3.79 0.01
HD Home Depot Inc. 0.87 52.33 37.82 9.61 189.53 1.53 4.55 0.08
INTC Intel Corp. 0.94 25.97 9.96 6.90 74.87 1.68 8.14 0.02
JNJ Johnson & Johnson 1.63 65.24 26.08 21.40 139.72 0.86 3.39 0.05
JPM JPMorgan Chase & Co. 1.59 45.50 15.43 18.99 106.94 1.36 5.62 0.02
KO Coca-Cola Company 0.79 30.54 7.84 18.56 46.39 0.42 1.86 -0.01
MCD McDonald’s Corp. 0.59 59.11 36.62 13.61 172.12 0.91 3.00 0.05
MDT Medtronic plc 0.52 47.41 17.01 11.84 88.75 0.31 3.04 0.03
MO Altria Group Inc 0.53 23.85 18.30 4.64 75.44 1.30 3.63 0.06
MRK Merck & Co. Inc. 0.85 48.41 13.53 24.20 88.61 0.34 2.48 -0.02
MSFT Microsoft Corp. 3.57 32.03 14.14 5.48 85.54 1.21 5.12 0.06
PFE Pfizer Inc. 1.10 28.03 8.71 10.50 48 -0.03 2.25 0.00
PG Procter & Gamble Company 0.96 57.33 18.20 20.50 92.27 -0.03 2.19 0.08
T AT&T Inc. 0.97 33.74 8.13 20.06 58 0.67 3.01 -0.04
UNH UnitedHealth Group Inc. 1.09 48.67 46.33 4.21 228.17 1.66 5.53 0.09
VZ Verizon Communications Inc. 1.02 39.29 8.81 24.59 60.33 0.21 1.82 -0.03
WFC Wells Fargo & Company 1.00 30.80 12.53 8.25 60.67 0.55 2.62 0.04
WMT Walmart Inc. 0.62 53.12 17.78 10.18 98.75 -0.53 3.45 0.06
XOM Exxon Mobil Corp. 1.47 61.55 23.68 19.87 103.25 -0.09 1.57 0.02

Panel B: S&P 500 Smallest 30 Stocks: Descriptive Statistics

Ticker Stock Weight (%) Mean Std. Dev Min Max Skewness Kurtosis Sharpe

AIV Aimco 0.03 28.35 8.42 5.22 46.53 -0.08 3.14 0.02
ALK Alaska Air Group Inc. 0.03 20.59 24.16 3.83 97.82 1.71 4.52 0.08
AOS A. O. Smith Corp. 0.02 12.56 14.28 2.09 63.42 1.87 5.51 0.10
AVY Avery Dennison Corp. 0.03 51.62 15.89 20.15 114.86 0.64 4.47 0.04
BF.B Brown-Forman Corp. 0.03 16.95 12.01 3.86 54.93 0.97 2.73 0.13
BWA BorgWarner Inc. 0.03 21.50 17.27 3.62 65.36 0.87 2.54 0.08
CPB Campbell Soup Company 0.03 37.72 10.08 20.74 66.53 0.68 2.68 -0.01
DISH DISH Network Corp. 0.03 30.24 18.59 1.46 79.41 0.44 2.59 0.05
FL Foot Locker Inc. 0.02 25.88 17.42 4.93 77.34 1.32 3.84 0.02
FLIR FLIR Systems Inc. 0.02 17.70 13.11 0.44 46.82 0.11 1.59 0.09
GPS Gap Inc. 0.02 23.69 10.00 6.22 50.37 0.72 2.71 0.03
HOG Harley-Davidson Inc. 0.02 42.07 16.83 7.18 73.94 -0.48 2.24 0.04
HP Helmerich & Payne Inc. 0.02 34.84 25.44 5.44 116.11 0.82 3.00 0.06
HRB H&R Block Inc. 0.02 19.72 7.44 6.18 37.26 0.09 2.20 0.02
JEF Jefferies Financial Group Inc. 0.02 19.76 9.79 6.76 52.82 0.86 3.66 0.02
KIM Kimco Realty Corp. 0.02 20.93 9.44 7.62 50.26 1.07 3.60 0.01
LB L Brands Inc. 0.03 31.16 22.54 7.47 96.68 1.29 3.72 0.05
LEG Leggett & Platt Incorp. 0.02 25.92 9.92 11.43 52.57 1.27 3.77 0.04
MAC Macerich Company 0.02 46.15 21.85 5.79 89.24 0.16 1.71 0.02
NFX Newfield Exploration Company 0.01 30.36 15.67 6.68 76.01 0.62 2.85 0.03
NKTR Nektar Therapeutics 0.02 14.17 9.22 3.35 59.72 2.58 11.03 0.03
PBCT People’s United Financial Inc. 0.02 11.48 5.23 2.68 21.42 -0.16 1.64 0.08
PHM PulteGroup Inc. 0.02 15.50 9.90 3.10 46.81 0.92 3.19 0.05
RHI Robert Half International Inc. 0.03 29.28 11.76 6.97 61.96 0.58 2.94 0.06
ROL Rollins Inc. 0.02 10.61 10.35 1.56 46.53 1.59 5.04 0.13
SCG SCANA Corp. 0.02 39.32 12.28 21.68 75.66 1.00 3.51 -0.01
UNM Unum Group 0.03 28.40 11.20 9.80 60.43 0.88 3.11 0.00
WHR Whirlpool Corp. 0.03 88.00 43.65 22.23 211.95 1.15 3.11 0.02
XRAY DENTSPLY SIRONA Inc. 0.03 29.87 16.78 6.60 67.01 0.34 2.17 0.11
XRX Xerox Corp. 0.02 43.51 32.77 11.98 163.34 2.01 6.31 -0.03

Notes: The table shows the main characteristics of the 30 largest and 30 smallest individual stocks in the S&P 500 by market capitalization in Panel A and Panel B,
respectively. The first two columns show the companies’ ticker and full name. The weight the stock has in the S&P 500 index is shown in percentage. Summary
statistics are reported in columns from 5 to 10. The last column shows the Sharpe ratio for each individual stock computed as the mean of the log equity risk
premium divided by its standard deviation. Ranking as end of as end of 2017. Time period between 01:1996 and 12:2017.
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B.2 SKEW Indexes and Asset Pricing: Robustness

The results reported from Table B6 to Table B9 support the results of Section 4.7 in Chapter 4. From

Table B6, with relation to the pre-crisis period, we observe a considerable contribution from SKEW−

to the model improvement. When SKEW− is included to the 5-factors model, its significance improves

by far compared to the aggregate and positive indexes, SKEW and SKEW+ . SKEW− is found to

be highly significant (1%) while SKEW+ at 10% and the aggregate is not significant. Similar pattern

is confirmed in the full 8-factors model in which only SKEW− is found significant. In the post-crisis

period the model including SKEW− is still the one performing better. SKEW− is significant at 10%

and with negative coefficient while SKEW and SKEW+ are not significant in this period. The same

occurs for the 8-factors model with SKEW− being the only significant implied skewness index.

In Table B7 we present the analysis conducted on the 100 Size and Operating Profitability port-

folios. We observe how, in the full sample, the results are similar between SKEW and SKEW− ,

improving the regression performance compared to the five-factors model, both significant and with

negative coefficients. SKEW+ is also improving slightly the regression R2 and adjusted R2 compared

to the five-factors model. It still appears that having the decomposed implied SKEW indexes in the

model is more informative or as well as than the aggregate SKEW . During the pre-crisis period we

find similar results, however with stronger role for SKEW+ . In the post-crisis period, we observe a

more important role for SKEW− being the index with the highest R2 and adjusted R2.

Table B8 presents the results for the 100 Size-Operating Profitability sorted portfolios during the

turbulent times selected in our study, namely, the global financial crisis (top panel), the dot-com bubble

(mid panel) and Brexit (bottom panel).

We observe that the SKEW measures are found not significant in predicting the excess portfolios

returns during the global financial crisis. This further confirm the results in Chapter 4 in which SKEW

indexes appear to be more informative during calmer periods, whereas the SKEW level is found low

during the global financial crisis. During the dot-com bubble, adding SKEW indexes to the 5-factors

model does increase the performance of the model. However, the aggregate SKEW is found to be

significant (1%) and to be the factor increasing the R2 and adjusted-R2 the most. Lastly, during Brexit,

what appears to be more helpful for asset pricing purposes is the set of information coming from

SKEW− reflecting the information enclosed in the tail risk index.

In Table B9 we show the results of the same asset pricing exercise now conducted on 12 Industries

portfolios. Once more, in here, we find that the negative SKEW− emerged as significant and the extra

information it brings on considerably increases the regression models’ R2 and adjusted R2. In the

post-crisis, we confirm, once more, the more relevant role of Put options; SKEW− is found significant

both in the 6-factors and 8-factors models. To conclude, the best model we find in the full sample and

in the post-crisis periods are the full 8-factors model containing information embedded in SKEW− .
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Table B6: Sub-Samples Fama-MacBeth Results: 25-Size/Book-to-Market Portfolios

Pre-Crisis Period: Jan 1996 - Jun 2007

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors
(1) (2) (3) (4) (5) (6)

γ0 0.099∗∗∗ 0.115∗∗∗ 0.113∗∗∗ 0.092∗∗∗ 0.105∗∗∗ 0.115∗∗∗

(0.015) (0.015) (0.020) (0.015) (0.013) (0.019)
γMkt−rf −0.068∗∗∗ −0.082∗∗∗ −0.080∗∗∗ −0.058∗∗∗ −0.072∗∗∗ −0.083∗∗∗

(0.016) (0.014) (0.020) (0.014) (0.012) (0.018)
γHML 0.020∗∗∗ 0.022∗∗∗ 0.022∗∗∗ 0.024∗∗∗ 0.023∗∗∗ 0.022∗∗∗

(0.004) (0.004) (0.005) (0.003) (0.004) (0.003)
γSMB 0.007 0.009∗∗ 0.009∗∗ 0.005∗ 0.007∗∗∗ 0.007∗∗

(0.004) (0.003) (0.003) (0.003) (0.002) (0.002)
γRMW 0.037∗ 0.035 0.022 0.041∗∗ 0.030∗

(0.019) (0.025) (0.014) (0.019) (0.017)
γCMA -0.027 -0.025 -0.025 -0.035 -0.015

(0.024) (0.026) (0.019) (0.023) (0.019)
γSKEW 0.149 0.694

(0.732) (0.643)
γSKEW− 0.310∗∗∗ 0.345∗∗∗

(0.084) (0.080)
γSKEW+ 0.137∗ 0.104

(0.073) (0.084)

R2 0.584 0.678 0.679 0.755 0.718 0.741
Adj R2 0.524 0.594 0.572 0.673 0.624 0.635

Post-Crisis Period: Apr 2009 - Dec 2017

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 0.101∗∗∗ 0.106∗∗∗ 0.110∗∗∗ 0.112∗∗∗ 0.107∗∗∗ 0.102∗∗∗

(0.017) (0.019) (0.018) (0.017) (0.019) (0.025)
γMkt−rf -0.023 -0.031 −0.036∗ −0.038∗ -0.030 -0.028

(0.016) (0.019) (0.018) (0.018) (0.018) (0.021)
γHML 0.007∗ 0.007∗∗ 0.008∗∗ 0.008∗∗ 0.009∗ 0.009

(0.004) (0.003) (0.003) (0.003) (0.005) (0.006)
γSMB 0.005 0.004 0.005∗ 0.005 0.002 0.003

(0.003) (0.003) (0.003) (0.003) (0.004) (0.005)
γRMW 0.008 0.009 0.009 0.007 0.004

(0.016) (0.016) (0.016) (0.013) (0.015)
γCMA -0.022 -0.014 -0.012 -0.027 -0.016

(0.022) (0.025) (0.023) (0.025) (0.039)
γSKEW -0.110 -0.077

(0.069) (0.057)
γSKEW− −0.203∗ −0.179∗

(0.108) (0.086)
γSKEW+ -0.042 -0.041

(0.073) (0.070)

R2 0.288 0.337 0.403 0.428 0.352 0.437
Adj R2 0.187 0.163 0.205 0.238 0.166 0.349

Notes: This table shows the results of the second stage of the Fama-MacBeth regression approach in which the portfolios’
returns, 25 portfolios based on Size and Book-to-Market, are regressed on the β factor loadings computed in the first step
and expressing the exposure of each portfolio of assets to that specific factor as in (4.27). γ coefficients measure the risk
premium associated with each selected factor. The regressions’ outcome we report are for the simple 3-factors model (1)
(Equation (4.28)), for the 5-factors model (Equation (4.29)), for the 6-factors model with SKEW indexes (3), (4), and
(5) and the full model with all the SKEW indexes (Equation 4.31). Significance levels: * p < 0.1, ** p < 0.05, ***
p < 0.01. The selected period are the pre- and post- crisis sub-sample periods from 04-01-1996 to 29-06-2007 (upper
panel) and from 01-04-2009 to 29-12-2017 (bottom panel), respectively. Data are taken at daily frequency.

Overall, in many cases from Tables B6 to B9, the empirical results show that the factors models,

constructed from the five common factors plus the decomposed implied SKEW indexes can better

explain the variations of stock returns confirming the empirical results in Section 4.7.
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Table B7: Fama-MacBeth Results: 100-Size/Profitability Portfolios

Full Sample: Jan 1996 - Dec 2017

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 0.006∗∗∗ 0.045∗∗∗ 0.044∗∗∗ 0.063∗∗∗ 0.062∗∗∗ 0.061∗∗∗

γMkt−rf −0.030∗∗∗ -0.009 -0.010 −0.029∗∗∗ -0.010 −0.027∗∗∗
γHML 0.008 -0.003 -0.008 -0.005 −0.003∗ -0.004
γSMB 0.007∗∗ 0.007∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.008∗∗∗ 0.008∗∗∗

γRMW 0.015∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.015∗∗∗ 0.016∗∗∗

γCMA −0.009∗ -0.002 -0.002 −0.010∗ -0.008
γSKEW −0.271∗∗ −0.270∗∗∗
γSKEW− −0.305∗∗∗ −0.312∗∗∗
γSKEW+ −0.048∗ −0.052∗∗

R2 0.294 0.450 0.515 0.516 0.466 0.567
Adj R2 0.272 0.421 0.484 0.484 0.431 0.539

Pre-Crisis Period: Jan 1996 - Jun 2007

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 0.075∗∗∗ 0.067∗∗∗ 0.068∗∗∗ 0.077∗∗∗ 0.071∗∗∗ 0.080∗∗∗

γMkt−rf −0.042∗∗∗ −0.031∗∗∗ −0.033∗∗∗ −0.042∗∗∗ −0.035∗∗∗ −0.045∗∗∗
γHML 0.015∗∗ 0.002 -0.003 -0.001 -0.003 -0.004
γSMB 0.010∗ ∗ ∗ 0.010∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.011∗∗∗ 0.012∗∗∗

γRMW 0.017∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.016∗∗∗

γCMA -0.011 -0.010 -0.009 -0.014 -0.010
γSKEW −0.194∗∗ −0.198∗∗∗
γSKEW− −0.182∗∗ −0.180∗∗
γSKEW+ −0.069∗∗ −0.062∗∗

R2 0.406 0.478 0.531 0.509 0.502 0.513
Adj R2 0.387 0.450 0.501 0.477 0.470 0.476

Post-Crisis Period: Apr 2009 - Dec 2017

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 0.068∗∗∗ 0.053∗∗∗ 0.055∗∗∗ 0.061∗∗∗ 0.051∗∗∗ 0.054∗∗∗

γMkt−rf 0.002 0.016 0.014 0.008 0.018 0.015
γHML 0.002 -0.008 0.009 -0.001 0.001 -0.001
γSMB 0.006∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.008∗∗∗ 0.007∗∗ 0.007∗∗∗

γRMW 0.004 0.005 0.005∗ 0.004 0.004∗

γCMA 0.001 0.004 0.005 0.003 0.003
γSKEW -0.062 -0.084
γSKEW− −0.128∗ −0.138∗
γSKEW+ -0.021 -0.014

R2 0.067 0.141 0.151 0.165 0.152 0.185
Adj R2 0.038 0.096 0.097 0.117 0.098 0.123

Notes: This table shows the results of the second stage of the Fama-MacBeth regression approach in which the portfolios’
returns, 100 portfolios based on Size and Operating Profitability, are regressed on the β factor loadings computed in the first
step and expressing the exposure of each portfolio of assets to that specific factor as in (4.27). γ coefficients measure the
risk premium associated with each selected factor. The regressions’ outcome we report are for the simple 3-factors model
(1) (Equation (4.28)), for the 5-factors model (2) (Equation (4.29)), for the 6-factors model with SKEW indexes (3), (4),
and (5) (Equation (4.30)) and the full model with all the SKEW indexes (Equation 4.31) (9), (10) and (11) (Equation (??)).
Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01. T-stats are not reported to save space. The selected period
is the full sample from 04-01-1996 to 29-12-2017 (upper panel), the pre-crisis period from 04-01-1996 to 29-06-2007 (mid
panel) and the post-crisis period from 01-04-2009 to 29-12-2017 (bottom panel), at daily frequency.
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Table B8: Fama-MacBeth Results: 100-Size-Profitability Portfolios Turbulent Events

Global Financial Crisis 2007 - 2009

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 −0.066∗∗ −0.058∗∗ -0.044 −0.059∗∗ −0.067∗∗ -0.034
γMkt−rf -0.052 −0.053∗ −0.067∗∗ −0.053∗ -0.044 −0.073∗∗∗
γHML −0.037∗∗∗ -0.004 0.018 0.005 -0.001 0.007
γSMB -0.002 -0.012 −0.013∗ -0.012 −0.013∗ −0.018∗∗
γRMW 0.052∗∗∗ 0.052∗∗∗ 0.051∗∗∗ 0.005∗∗∗ 0.052∗∗∗

γCMA -0.013 -0.013 -0.010 -0.011 -0.018
γSKEW 0.568 0.414
γSKEW− 0.564 0.614
γSKEW+ 0.092 0.173

R2 0.075 0.277 0.292 0.289 0.280 0.337
Adj R2 0.047 0.238 0.246 0.243 0.233 0.283

Dot-com Bubble

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 -0.003 -0.005 -0.006 0.009 0.007 -0.028
γMkt−rf 0.009 0.021 0.024 -0.007 0.014 0.044∗

γHML 0.013 -0.011 -0.017 -0.017 -0.013 -0.002
γSMB 0.021∗∗∗ 0.019∗∗ 0.021∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.017∗∗

γRMW 0.011 0.012 0.012 0.010 0.010
γCMA 0.041∗∗∗ 0.043∗∗∗ 0.041∗∗∗ −0.037∗∗ 0.025
γSKEW −0.182∗∗∗ −0.294∗∗∗
γSKEW− −0.086∗ −0.196∗∗∗
γSKEW+ −0.064∗∗ −0.057∗

R2 0.106 0.209 0.332 0.248 0.249 0.354
Adj R2 0.078 0.167 0.289 0.200 0.205 0.325

Brexit

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 0.072∗∗∗ 0.087∗∗∗ 0.099∗∗∗ 0.093∗∗∗ 0.741∗∗∗ 0.067∗∗∗

γMkt−rf -0.023 −0.036∗∗ −0.051∗∗ −0.046∗∗ -0.022 -0.015
γHML -0.022 -0.018 -0.292 -0.033 -0.019 -0.021
γSMB 0.048∗∗∗ 0.045∗∗∗ 0.049∗∗∗ 0.048∗∗∗ 0.042∗∗∗ 0.042∗∗∗

γRMW −0.015∗ -0.013 -0.011 -0.012 -0.011
γCMA 0.011 0.008 0.008 0.020 0.021
γSKEW −0.137∗ −0.133∗
γSKEW− −0.186∗∗∗ −0.180∗
γSKEW+ 0.037∗∗ 0.038∗∗

R2 0.224 0.258 0.300 0.330 0.318 0.357
Adj R2 0.200 0.219 0.255 0.287 0.274 0.296

Notes: This table shows the results of the second stage of the Fama-MacBeth regression approach in which the portfolios’
returns, 100 portfolios based on Size and Operating Profitability, are regressed on the β factor loadings computed in the
first step and expressing the exposure of each portfolio of assets to that specific factor as in (4.27). γ coefficients measure
the risk premium associated with each selected factor. The regressions’ outcome we report are for the simple 3-factors
model (1) (Equation (4.28)), for the 5-factors model (2) (Equation (4.29)), for the 6-factors model with SKEW indexes
(3), (4), and (5) (Equation (4.30)) and the full model with all the SKEW indexes (Equation 4.31). Significance levels:
* p < 0.1, ** p < 0.05, *** p < 0.01. The selected periods are some selected turbulent events, namely, the
global financial crisis (upper panel) from 02-07-2007 to 31-03-2009, the dot-com bubble (mid panel) from 01-07-1998
to 31-12-2001 and the Brexit vote (bottom panel) from 02-05-2016 to 30-09-2016, at daily frequency.
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Table B9: Fama-MacBeth Results: 12 Industries Portfolios

Full Sample: Jan 1996 - Dec 2017

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)

γ0 0.044∗∗∗ 0.050∗∗ 0.054∗∗ 0.028 0.046∗ 0.051∗∗

γMkt−rf -0.008 0.058 -0.027 0.143 0.061 -0.146
γHML 0.005 0.020 0.013 0.173∗∗∗ 0.140 0.189
γSMB -0.446 -0.082 -0.022 −0.351∗∗ -0.102 −0.219∗∗
γRMW -0.047 0.041 -0.061 −0.036∗ 0.001
γCMA 0.029 0.046 0.047 0.057 0.075
γSKEW -0.283 -0.267
γSKEW− 0.345∗ 0.421∗∗

γSKEW+ 0.091 0.136

R2 0.065 0.134 0.202 0.337 0.210 0.338
Adj R2 0.024 0.091 0.089 0.145 0.093 0.135

Pre-Crisis Period: Jan 1996 - Jun 2007

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)
γ0 0.052∗∗∗ 0.033 0.038 0.006 0.032∗ −0.031∗∗
γMkt−rf 0.033 0.204 0.016 0.288 0.205 0.105
γHML -0.033 0.045 0.032 0.101 0.048 0.004
γSMB -0.035 0.005 0.015 -0.168 0.005 −0.561∗∗∗
γRMW -0.202 -0.184 -0.161 -0.203 0.001
γCMA 0.045 -0.039 0.045 0.043 -0.067
γSKEW -0.299 -0.111
γSKEW− -0.394 -0.283
γSKEW+ 0.223 -0.097

R2 0.040 0.198 0.200 0.193 0.198 0.210
Adj R2 0.012 0.084 0.083 0.091 0.078 0.098

Post-Crisis Period: Apr 2009 - Sept 2016

Coeff 3-Factors 5-Factors 5-Factors & SKEW Full 8-Factors

(1) (2) (3) (4) (5) (6)
γ0 0.005∗∗∗ 0.046∗∗ 0.061∗∗∗ 0.081∗∗ 0.046∗∗ 0.064∗∗

γMkt−rf −0.125∗∗ −0.187∗∗∗ 0.141∗∗ −0.113∗ −0.191∗∗ -0.148
γHML -0.119 -0.180 -0.252 -0.251 -0.029 -0.137
γSMB −0.634∗∗ −0.105∗∗∗ −0.633∗ -0.572 −0.953∗∗∗ -0.644
γRMW 0.426∗∗ 0.347∗ 0.233 0.469∗∗ 0.337
γCMA -0.068 -0.082 -0.137 -0.056 -0.094
γSKEW −0.255∗ −0.272∗
γSKEW− −0.259∗ −0.343∗
γSKEW+ -0.085 -0.047

R2 0.467 0.643 0.815 0.801 0.701 0.853
Adj R2 0.318 0.435 0.707 0.675 0.473 0.626

Notes: This table shows the results of the second stage of the Fama-MacBeth regression approach in which the portfo-
lios’ returns, 12 industries portfolios, are regressed on the β factor loadings computed in the first step and expressing
the exposure of each portfolio of assets to that specific factor as in (4.27). γ coefficients measure the risk premium
associated with each selected factor. The regressions’ outcome we report are for the simple 3-factors model (1) (Equa-
tion (4.28)), for the 5-factors model (2) (Equation (4.29)), for the 6-factors model with SKEW indexes (3), (4),
and (5) (Equation (4.30)) and the full model with all the SKEW indexes (Equation 4.31). Significance levels: *
p < 0.1, ** p < 0.05, *** p < 0.01. The selected period is the full sample from 04-01-1996 to 29-12-2017 (upper
panel), the pre-crisis period from 04-01-1996 to 29-06-2007 (mid panel) and the post-crisis period from 01-04-2009
to 30-09-2016 (bottom panel), at daily frequency.
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Appendix C

Additional Material for Chapter 5

C.1 Main Ten U.S. Financial Institutions Ranking over Time

The following figures are a graphical representation of Tables 5.4, 5.6 and 5.7 in Chapter 5, more

specifically for the 1-year ranking.

Figure C1: Net Aggregate Fear: 1 Year Ranking

Notes: This figure shows

C.2 Post Financial Crisis and the Role of Berkshire Hathaway

In this section, we extend our financial institutions sample adding other main five banks, namely, Berk-

shire Hathaway (BRK), MetLife (MET), CME Group (CME), Charles Schwab Corp (SCHW) and

BlackRock (BLK) in the post crisis period spanning from July 2009 to December 2017. We report the
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Figure C2: Net Positive Fear: 1 Year Ranking

Notes: This figure shows

Figure C3: Net Negative Fear: 1 Year Ranking

Notes: This figure shows

static analysis as well as the dynamic analysis. The selected VAR lags is 4 and the forecast horizon is

equal to 12 days. The rolling window length is kept equal to 200 days. What is interesting to see in

here is how, especially, the introduction of Berkshire Hathaway in the sample change the results due to

the huge capitalization and role this company plays in the U.S. financial sector nowadays.

Table C1 shows the results of the aggregate financial sector fear connectedness in the post crisis

period for the 15 financial institutions. Now the total fear connectedness index is increased to 79.43 for

the aggregate measure while to 66.50 and to 52.71 for the upside and downside measures, respectively.
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For the aggregate net fear connectedness, we find that J.P. Morgan Chase, Goldman Sachs and, as ex-

pected, Berkshire Hathaway are the main net transmitters, whereas CME Group, Charles Schwab Corp

and Bank of New York Mellon the main net receivers. With relation to the upside fear connectedness,

we find that the main net transmitters are Wells Fargo, Berkshire Hathaway and J.P. Morgan Chase and

the main net receivers are PNC, CME Group and Charles Schwab Corp. Lastly, with relation to the

downside fear connectedness, the main net transmitters are, again, J.P. Morgan Chase, Wells Fargo and

Berkshire Hathaway, whereas the main net receivers are Bank of New York Mellon, American Express

and CME Group. From these results, we can observe how some of the roles of the selected financial

institutions change when the number in the sample increases. Berkshire Hathaway has been playing

a crucial role in the post financial crisis period. It may definitely be considered a systemic important

bank also due to its role of main downside implied volatility transmitter.
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Table C1: Aggregate Financial Sector Aggregate Fear Connectedness: Post Crisis

Forecast Error Variance Decomposition: Aggregate Fear Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK BRK MET CME SCHW BLK FROM

JPM 17.53 5.55 7.08 4.10 9.39 7.62 8.53 5.16 8.54 3.85 7.65 5.03 2.55 0.04 7.31 82.46
BAC 8.69 18.59 7.55 4.42 8.50 8.06 7.40 4.66 8.57 3.78 6.52 4.56 1.95 0.08 6.61 81.40
WFC 9.41 5.44 18.51 3.83 8.85 6.14 8.51 5.75 8.71 3.41 7.60 4.77 2.33 0.01 6.64 81.48
CITI 7.83 4.42 6.80 37.85 5.82 5.62 4.87 4.34 4.93 2.16 5.55 3.32 1.76 0.04 4.60 62.14
GS 8.97 5.68 6.96 4.25 16.43 8.38 8.05 4.44 9.49 4.42 8.82 4.60 1.89 0.01 7.54 83.56
MS 9.23 6.27 6.60 4.02 10.67 15.66 7.86 4.70 8.38 4.65 7.61 4.99 1.94 0.03 7.32 84.33
USB 8.76 5.18 7.02 3.57 8.91 7.23 15.56 5.62 9.89 4.49 8.90 5.13 2.52 0.01 7.15 84.43
AXP 8.39 4.37 7.21 3.57 8.72 7.76 8.88 14.35 9.02 5.29 7.14 4.91 2.56 0.07 7.68 85.64
PNC 8.51 5.13 7.37 3.65 9.19 7.18 8.67 4.83 16.98 4.39 7.87 5.08 2.41 0.01 8.65 83.01
BK 8.23 6.07 5.73 3.20 9.05 7.87 8.11 5.81 8.73 13.47 8.09 4.98 2.55 0.01 8.05 86.52
BRK 5.11 4.08 4.81 3.08 7.03 5.76 6.89 5.94 7.33 2.13 31.98 4.16 4.39 0.27 6.97 68.01
MET 7.51 4.95 6.36 3.13 8.78 7.15 8.49 5.26 9.50 5.01 6.61 16.56 3.39 0.01 7.23 83.43
CME 7.22 5.15 5.57 3.48 7.90 6.49 7.61 6.14 7.83 3.77 8.46 4.98 18.76 0.05 6.51 81.23
SCHW 9.59 4.05 5.60 2.09 5.20 3.92 6.44 1.61 4.66 4.47 4.05 3.30 1.26 39.21 4.47 60.78
BLK 8.37 4.55 5.84 3.72 9.24 6.57 7.59 4.37 10.31 5.16 10.06 4.54 2.45 0.04 17.11 82.88

TO 115.87 70.97 90.57 50.17 117.32 95.82 107.97 68.68 115.95 57.02 105.00 64.41 34.02 0.74 96.81 TOTAL
NET 33.41 -10.43 9.09 -11.96 33.75 11.48 23.53 -16.96 32.94 -29.49 36.99 -19.02 -47.21 -60.04 13.92 79.43

Notes: This table contains the N × (N − 1) forecast error variance decomposition computed for the aggregate fear connectedness index for the main 15 U.S. financial institutions. dij elements in
the N × (N − 1) off-diagonal entries are the pairwise directional connectedness, while the diagonal elements (in grey) are the financial institutions’ own variance. The 2 × N off-diagonal row and
column sums, TO and FROM, are the 2×N total directional spillovers, the NET row at the bottom is the difference between TO and FROM. The bottom-right element is the total spillovers index in the
considered system. Selected VAR lags = 4 and Forecast Horizon = 12 days. The selected time period is from 01-07-2009 to 29-12-2017.
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Table C2: Financial Sector Upside and Downside Fear Connectedness: Post Crisis

Forecast Error Variance Decomposition: Upside Fear Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK BRK MET CME SCHW BLK FROM

JPM 28.51 6.08 9.23 4.90 8.24 8.01 4.22 4.81 4.21 4.21 6.60 4.24 2.50 0.20 3.97 71.48
BAC 7.17 32.73 9.92 4.59 6.03 11.63 3.70 3.39 2.53 5.44 4.36 3.82 1.78 0.54 2.28 67.26
WFC 9.92 6.19 28.14 6.42 5.93 5.88 6.57 5.18 5.99 4.87 4.75 4.60 2.16 0.02 3.31 71.85
CITI 5.04 1.66 7.49 58.15 2.59 3.57 3.35 4.42 2.23 3.38 2.68 1.94 2.06 0.07 1.31 41.84
GS 9.48 6.51 8.69 5.22 27.36 9.42 4.03 3.99 3.82 4.24 6.63 4.32 1.62 0.06 4.53 72.63
MS 8.67 9.26 7.47 4.58 10.42 25.45 3.79 4.20 3.76 6.18 5.56 4.72 1.63 0.56 3.68 74.54
USB 6.88 3.92 11.21 5.58 6.04 5.87 26.09 5.10 6.99 5.06 6.70 4.42 1.99 0.07 4.01 73.90
AXP 6.94 3.11 7.45 4.41 5.09 6.49 4.22 32.08 4.62 5.81 5.51 5.34 3.52 0.05 5.29 67.91
PNC 9.96 3.54 11.90 4.97 5.65 5.79 6.32 4.98 25.42 4.87 5.51 4.91 1.86 0.03 4.21 74.57
BK 8.07 6.37 8.16 3.66 7.32 8.98 4.62 7.29 3.35 21.79 5.17 5.76 2.86 0.40 6.14 78.20
BRK 2.85 2.58 3.97 2.43 4.28 3.13 3.03 4.48 1.40 2.57 54.85 2.10 5.39 0.05 6.82 45.14
MET 5.56 4.60 8.26 3.39 6.55 6.63 3.99 6.29 4.52 6.35 3.40 31.17 4.10 0.01 5.09 68.82
CME 6.83 3.67 6.49 3.59 5.55 6.17 3.68 7.32 3.00 3.62 7.78 3.46 34.53 0.05 4.18 65.46
SCHW 4.59 6.65 3.44 2.59 4.36 8.14 3.51 2.21 1.48 6.39 4.28 2.67 0.72 44.23 4.66 55.76
BLK 7.83 3.27 5.70 3.80 7.19 4.51 4.16 5.52 3.00 6.52 10.21 3.72 2.52 0.06 31.93 68.06

TO 99.85 67.47 109.44 60.20 85.30 94.29 59.22 69.27 50.99 69.57 79.22 56.07 34.77 2.23 59.54 TOTAL
NET 28.37 0.21 37.59 18.36 12.66 19.74 -14.68 1.36 -23.58 -8.63 34.07 -12.75 -30.69 -53.52 -8.52 66.50

Forecast Error Variance Decomposition: Downside Fear Connectedness

JPM BAC WFC CITI GS MS USB AXP PNC BK BRK MET CME SCHW BLK FROM

JPM 40.00 2.57 7.10 7.83 4.73 3.92 8.23 2.11 2.18 2.01 8.18 6.16 2.68 0.07 2.17 59.99
BAC 9.96 48.82 6.99 3.60 4.94 4.34 5.99 0.59 3.84 0.92 2.75 3.58 0.45 0.76 2.38 51.17
WFC 11.98 2.50 43.15 4.98 5.72 1.70 6.63 4.68 2.34 1.38 6.86 3.02 1.97 0.01 3.00 56.84
CITI 7.19 2.49 4.69 70.15 0.60 0.93 1.01 2.53 1.41 0.16 3.26 3.18 1.47 0.11 0.74 29.84
GS 8.26 2.72 7.42 3.81 39.54 6.81 5.14 2.60 3.43 2.48 9.22 4.31 0.87 0.09 3.20 60.45
MS 11.16 4.30 6.11 3.14 7.57 39.71 4.32 1.02 1.84 3.33 7.35 6.29 0.92 0.27 2.60 60.28
USB 12.04 3.17 8.16 5.33 4.14 2.84 41.85 3.68 3.23 2.09 6.88 2.88 2.36 0.06 1.21 58.14
AXP 8.41 0.88 11.32 5.15 5.85 3.83 6.10 34.27 3.92 2.38 7.81 3.42 1.87 1.50 3.22 65.72
PNC 8.32 3.15 7.16 2.46 4.88 2.87 5.10 4.39 43.32 1.34 4.86 6.93 1.54 0.24 3.34 56.67
BK 8.42 4.19 3.60 3.02 3.16 5.46 6.12 1.28 1.48 40.56 11.19 4.27 2.34 0.07 4.75 59.43
BRK 4.33 2.06 4.57 3.32 5.50 2.33 4.14 2.94 1.48 1.63 54.97 4.50 4.24 0.57 3.34 45.02
MET 8.13 2.72 4.66 3.91 4.64 5.98 4.14 2.61 3.26 2.72 8.09 42.07 3.68 0.05 3.27 57.92
CME 9.39 2.08 5.37 3.53 2.27 1.60 5.36 2.55 1.72 2.75 8.30 4.28 49.46 0.06 1.20 50.53
SCHW 7.58 1.07 2.43 0.42 0.25 0.80 2.01 0.15 0.13 1.65 2.19 1.15 0.08 79.05 0.99 20.94
BLK 7.88 2.46 4.79 3.53 6.80 3.99 2.62 1.92 3.15 3.97 10.40 4.82 1.08 0.12 42.40 57.59

TO 123.13 36.42 84.42 54.10 61.10 47.47 66.98 33.11 33.47 28.89 97.41 58.87 25.61 4.05 35.47 TOTAL
NET 63.13 -14.74 27.58 24.26 0.65 -12.81 8.84 -32.61 -23.19 -30.53 52.39 0.95 -24.91 -16.88 -22.12 52.71

Notes: This table contains the N × (N − 1) forecast error variance decomposition computed for the upside and downside fear connectedness indexes for the main 15 U.S. financial institutions. dij
elements in theN × (N −1) off-diagonal entries are the pairwise directional connectedness, while the diagonal elements (in grey) are the financial institutions’ own variance. The 2×N off-diagonal
row and column sums, TO and FROM, are the 2 ×N total directional spillovers, the NET row at the bottom is the difference between TO and FROM. The bottom-right element is the total spillovers
index in the considered system. Selected VAR lags = 4 and Forecast Horizon = 12 days. The selected time period is from 01-07-2009 to 29-12-2017.
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In Figure C4 we show the dynamic analysis for the main 15 financial institutions together with

the rolling AFC. We observe how the total connectedness index is found to be more stable in the post

global financial crisis however spanning at higher levels from 70 to 88. The upside and downside

connectedness for the main 15 financial institutions in the post financial crisis are more volatile than

the aggregate and they intertwine more often compared to the all sample for the main ten institutions in

Figure 5.8. Thus, the AFC measure is found to be positive most of the time emphasizing also in here

the prevalent role of call options. However we find times in which the connectedness measure extracted

from puts overcomes the one extracted from calls and the AFC is found to be below zero. It happens,

for instance, in response to the two stages of the European sovereign debt crisis, at the end of 2010

and beginning of 2013 and, again, last quarter of 2015 after Grexit and the Chinese Yuan crisis and,

ultimately, at the beginning of 2017. Thus, also in this case, with 15 financial institutions in the post

crisis era we find evidence of asymmetric implied connectedness among them. Lastly, we focus on the

specific role of calls and puts connectedness with regards to Berkshire Hathaway. We, then, compute

its upside and downside directional implied volatility connectedness and it is shown in Figure C5). We

find that the plot is quite flat with low asymmetry in the volatility connectedness. However, spikes in

both the transmitted C+BRK,NET and also C−BRK,NET are detected, especially during mid 2015 and mid

2016, confirming the important role of Berkshire Hathaway as net transmitter in the financial system.

Figure C4: Total Implied Volatility Spillovers Indexes and AFC: 15 Banks

Notes: This figure shows the comparison between the total fear connectedness indexes for the decomposed upside and downside measures (upper
panel) for the main 15 financial institutions. The aggregate total connectedness measure is reported (dotted line) for comparative purposes as well.
The bottom panel shows the AFC as a difference between the upside connectedness and the downside connectedness indexes. Selected VAR lags
= 4 and forecast horizon = 12. The rolling window length is equal to 200 days. The selected period spans between 01-07-2009 to 29-12-2017 at
daily frequency.
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Figure C5: Net Fear Connectedness and Net BRK - Berkshire Hataway

Notes: The figure shows the net upside “fear” connectedness, C+BRK,NET , and net downside “fear” connectedness, C−BRK,NET for Berkshire
Hataway, together with the AFC, computed as difference between the two. Selected VAR lags = 4 and forecast horizon = 12.The rolling window
length is equal to 200 days. The selected period spans from 03-01-2010 to 29-12-2017 at a daily frequency.

C.3 U.S. Financial Sector Implied Skewness Measures
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Figure C6: Implied Skewness Measures in the U.S. Financial Sector

Notes: The figure shows the aggregate, positive and negative implied skewness indexes for the main ten banks in the U.S. financial sector. The
recession periods are highlighted in gray. The selected period spans from 03-01-2010 to 29-12-2017 at a weekly frequency.
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Table C3: Aggregate and Decomposed Implied Skewness Indexes - Descriptive Statistics

Mean Median Max Min Std. Dev. Skewness Kurtosis

JPM SKEW 116.06 113.52 170.15 91.37 10.83 1.86 7.63
SKEW+ 90.45 89.69 108.42 60.01 8.20 -0.05 2.69
SKEW− 150.69 142.60 263.29 110.72 26.28 1.76 5.87

BAC SKEW 111.79 109.74 148.51 94.18 8.34 1.41 5.45
SKEW+ 93.84 94.57 109.24 67.08 8.16 -0.47 2.65
SKEW− 148.98 141.33 271.48 113.62 25.50 1.75 6.32

WFC SKEW 116.41 114.54 154.15 95.22 8.55 0.98 4.09
SKEW+ 93.86 93.19 110.66 72.18 9.41 0.05 1.83
SKEW− 151.01 144.98 269.79 114.67 22.14 1.69 6.84

C SKEW 115.96 112.27 165.76 85.25 12.05 1.64 6.01
SKEW+ 91.37 91.13 115.80 66.10 9.50 0.04 2.48
SKEW− 157.61 144.51 269.63 102.57 33.13 1.22 3.52

GS SKEW 112.20 110.78 156.75 91.01 6.86 1.94 10.31
SKEW+ 90.29 89.96 103.45 73.03 6.49 0.07 2.19
SKEW− 142.13 139.82 202.23 113.60 12.78 0.91 4.42

MS SKEW 113.24 111.89 152.81 94.92 6.95 1.44 7.47
SKEW+ 92.81 92.16 107.80 75.52 7.45 0.12 1.98
SKEW− 146.69 140.88 256.85 108.38 22.07 2.03 7.93

USB SKEW 118.79 116.71 162.16 91.23 10.51 0.94 4.45
SKEW+ 94.83 94.72 109.01 72.18 7.62 -0.07 2.21
SKEW− 163.18 155.81 269.42 109.96 30.34 1.12 3.80

AXP SKEW 111.63 110.07 142.65 88.17 7.10 0.95 4.98
SKEW+ 90.36 90.19 107.33 69.23 7.65 0.03 2.24
SKEW− 143.77 138.89 250.21 110.61 19.27 1.78 7.46

PNC SKEW 113.64 112.17 150.66 87.83 8.41 0.91 4.86
SKEW+ 94.06 94.68 107.89 72.22 6.75 -0.35 2.73
SKEW− 147.73 144.74 240.25 106.21 19.15 1.20 5.41

BK SKEW 112.75 110.57 148.36 93.82 8.76 1.14 4.50
SKEW+ 92.71 92.77 106.81 68.17 7.37 -0.12 2.46
SKEW− 144.22 139.65 254.76 110.66 19.84 1.90 8.73

Notes: The table shows the main descriptive statistics for the weekly implied volatility indexes series for the aggregate
SKEW and for the positive (SKEW+ ) and negative (SKEW− ) decomposed measures for the selected ten main
U.S. financial institutions (tickers in the table) between 03-01-2000 and 29-12-2017.
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