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Quasi-Mendelian paternal inheritance of
mitochondrial DNA: A notorious artifact, or
anticipated behavior?
Sofia Annisa,1, Zoe Fleischmanna,1, Mark Khrapkoa, Melissa Francoa, Kevin Waskoa, Dori Woodsa,
Wolfram S. Kunzb, Peter Ellisc,2, and Konstantin Khrapkoa,2

A recent report (1) presents the long-awaited confir-
mation of paternal inheritance of mtDNA in humans
(2). Surprisingly, paternal transmission of mtDNA (1)
follows a bimodal pattern: About half of the offspring
show fairly uniform paternal/maternal heteroplasmy
levels, while the rest do not inherit paternal mtDNA
at all. This pattern resembles the inheritance of a dom-
inant nuclear gene. The authors explain this pattern as
permissive inheritance resulting from a faulty “gate-
keeper” gene (1). However, 3 groups (3–5) in-
stead suspect contamination with mtDNA nuclear
pseudogenes (NUMTs), a notorious artifact (6).

Based on our vast NUMT experience, we support
the authors’ response (7), asserting that NUMT artifact
is unlikely (further explanation is given in Supporting
Notes [SN] sections SN1 and SN2, see ref. 8). However,
we also demonstrate that the authors’ dominant gate-
keeper explanation is incorrect, because spermatozoa
are functionally diploid (SN3) and thus are equally af-
fected by the faulty gatekeeper. This leaves the quasi-
Mendelian inheritance unexplained.

We offer an alternative explanation based on our
analysis of the intracellular population dynamics of
paternal mtDNA (Fig. 1). With a defective gatekeeper,
a spermatozoon delivers <100 paternal mtDNA mol-
ecules (SN4) to the oocyte. In the beginning, cleavage
of the embryo proceeds without mtDNA replication,
and mtDNA molecules, including paternal ones, are
randomly distributed among the blastomeres. Because
of the low initial number of paternal molecules, some
blastomeres are not “seeded” with paternal mtDNA
(Fig. 1B) or later lose it due to intracellular “genetic
drift.” Early replication of an mtDNA subpopulation off-
sets genetic drift, and ultimately about half of cells re-
main seeded with paternal mtDNA (SN7.2).

Because paternal inheritance includes reproducible,
∼1,000-times enrichment of paternal mtDNA, pater-
nal mtDNA haplotype must have selective advantage
(SN5). Competition between mtDNA haplotypes is well
documented (9), and, as we show (SN6), is sufficiently
strong to enrich the paternal haplotype to∼100% in the
“seeded” cell lineages. Nonseeded lineages naturally
remain 100% maternal, so a mosaic of cells with mostly
paternal and pure maternal mtDNA is created (Fig. 1E).

In mosaic somatic tissue, the heteroplasmy level
equals the proportion of “paternal mtDNA” cells,
which in turn is equal to the “seeding density,” that
is, the proportion of embryonic cell lineages that re-
ceived (and kept) paternal mtDNA.

Similarly, in male germline, selection for paternal
mtDNA ultimately results in a mosaic of spermatozoa
with paternal and maternal mtDNA (Fig. 1F). This ex-
plains the quasi-Mendelian bimodal inheritance, with
a transmission rate equal to the “seeding density” of
germline lineages. Female germline (no selection) fol-
lows a different path (Fig. 1G and SN7.3.2)

Intuitively, seeding density should depend on the
initial number of paternal mtDNA, the timing of mtDNA
replication initiation, and the dynamics of the intracel-
lular population of mtDNA molecules. To investigate
the combined effect of these factors quantitatively,
we performed numerical simulations of mtDNA behav-
ior (SN7.2). Simulations predict intermediate seeding
densities and heteroplasmy levels in somatic and germ
cells (SN7.3), in agreementwith the observations (SN7.1).

In conclusion, despite apparent inconsistencies and
some missing quality control (SN10), Luo et al. (1) have
likely described genuine cases of paternal inheritance,
and their seemingly impossible inheritance patterns are
compatible with known mtDNA biology.
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Fig. 1. As paternal mtDNA (A) is distributed among blastomeres not all of them receive a copy (B). Later germline is parted from soma (C) and
then the sex of the germline is set (D). After birth (dotted line), somatic and male germline cells exert selection in favor of the paternal mtDNA
haplotype, so that somatic cells and spermatozoa end up as a paternal/maternal mtDNA mosaic. This explains somatic heteroplasmy (E) and
quasi-Mendelian inheritance (F), respectively. In the female germline, there is no selection for the paternal haplotype (9), so oocytes keep low and
variable proportions of paternal mtDNA (G) (SN7.3.2).
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