
Hedging Performance of Multiscale Hedge Ratios 
 

Jahangir Sultan 
Professor of Finance 

Bentley University 
Waltham, Massachusetts, USA 

 
Antonios K. Alexandridis* 
Senior Lecturer in Finance 

Kent Business School, University of Kent 
Canterbury, Kent, UK 

 
Mohammad Hasan 

Senior Lecturer in Finance 
Kent Business School, University of Kent 

Canterbury, Kent, UK 
 

Xuxi Guo 
Doctoral Student in Finance 

Georgia State University 
Atlanta, Ga, USA 

 
 
  
 

 
 
 
 
 

ABSTRACT 
 

In this study, the wavelet multiscale model is applied to selected assets to hedge time-dependent exposure of 
an agent with a preference for a certain hedging horizon.  Based on the in-sample and out-of-sample portfolio 
variances, the wavelet-based GARCH model produces the lowest variances.  From a utility standpoint, wavelet 
networks combined with GARCH have the highest utility.  Finally, the wavelet GARCH model has the lowest 
minimum capital risk requirements (MCRR).  Overall, the wavelet GARCH and wavelet networks offer 
improvements over traditional hedging models. 
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1 INTRODUCTION 

We study the impact of hedging-horizon on the multi-scale and multi-period hedge ratio using wavelet 

decomposed returns from three representative classes of assets: commodities, currency, and stock index.  

Multi-scale and multi-period hedging decisions stem from the hedger’s preference for a certain hedge horizon, 

hedging instruments, and risk tolerance.  A wavelet is a small wave (signal) that grows over time but decays 

within a finite period.  It has both the time and frequency domains that characterize its evolution.  A wavelet-

transform allows researchers to decompose time-series data into orthogonal components with different 

frequencies (scales) to accommodate structural changes, discontinuity, and regime shifts (Conlon and Cotter, 

2012).  The wavelet analysis accommodates multi-period decision-making models for heterogeneous economic 

agents weighing identical assets differently (see Kamara et al. (2016) for more on ‘clientele effects’)1.  Overall, 

for effective risk management, it is important to measure risk at multiple scales of time.   

Surprisingly, there is limited research to assess the hedging performance of the wavelet-based hedge 

ratios from scale-dependent data.  For instance, previous studies have utilized nonparametric wavelets (In and 

Kim, 2006), ordinary least squares (Lien and Shrestha, 2007) and moving window ordinary least squares 

(Conlon and Cotter, 2012) methods to compute multi-scale hedge ratios and evaluate hedging effectiveness.  

None of the previous research accounted for the time-variation of the hedge ratios when return distributions 

are not normal.  As Conlon and Cotter (2012) noted, by smoothing time series data, traditional approaches to 

determine static multiscale hedge ratios underestimate the information content of large dynamic changes.  

Furthermore, an analysis of the behavior of dynamic hedge ratios using alternative variants of econometric 

models, such as nonparametric wavelet, ordinary least squares, and GARCH models and a comparative 

assessment of hedging performances of the optimal hedge ratios across those models is lacking in the 

literature.  Also, it is unclear whether hedgers derive higher utility from multi-period and multiscale hedging 

when portfolio returns have negative skewness and excess kurtosis.  Finally, within a wavelet-based time-

varying hedging framework, the use of VaR and minimum capital risk requirement (MCRR) as indicators of 

hedge effectiveness is limited.   

In this study, we use wavelet-decomposed returns from Brent crude oil, FTSE100 Index, Gold, and the 

U.S. dollar (USD) index for the period January 3, 2005 to December 14, 2018 to evaluate five hedging 

models.  We compare the performance of these five models to evaluate their incremental contributions to 
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portfolio variance reduction, utility maximization, and reduction in the regulatory capital requirement.  The 

in-sample hedging models are wavelet-unhedged (WU), wavelet-full hedge (WFH), wavelet-OLS (WOLS), 

wavelet-GARCH (WG), and wavelet-hedge (WH).  The same models are used for out-of-sample evaluation 

with the exception that the WH strategy is replaced with the wavelet neural networks hedging model (WN) 

that combines wavelet transformations and artificial neural networks.  The WN model is justified (to be 

discussed later) since the wavelet networks can be used for forecasting time-varying out-of-sample hedge 

ratios which the standard wavelets by themselves cannot do.   

Based on the in-sample portfolio variance of the assets considered, the WG model performs best, 

followed by the WOLS strategy.  For out-of-sample hedging, WG again is the best performing model, 

followed by WN.  From a utility standpoint using in-sample wavelet-decomposed returns, WH is the best 

strategy overall, followed by WG and WOLS, respectively.  In terms of out-of-sample performance based on 

wavelet-decomposed returns, WG is the overall winner, followed by WOLS.  Finally, based on the MCRR, the 

WG model outperforms alternative models.  The next best hedging model is WOLS.  Overall, WG offers 

improvements over traditional hedging models.   

A key result in this study is that for all assets across all horizons and hedging strategies, the portfolio 

variance based on the original returns exceeds the wavelet-based portfolio variance.  Furthermore, the standard 

GARCH model performs worse than the wavelet-GARCH model in terms of hedged portfolio variance. 

Overall, wavelet-based multiscale hedging performs far better than conventional and dynamic hedging. 

The study makes several unique contributions to the literature on hedging.  First, it applies the GARCH 

method to combine time-varying hedging, multiscale hedging horizon, and heterogeneous investors in a 

synthetic wavelet-GARCH framework.  Unlike conventional approaches to estimating static multiscale hedge 

ratios, the synthetic wavelet-GARCH framework captures dynamic information content to produce time-

varying multiscale hedge ratios when asset returns are not normal.  Second, this study applies a new class of 

artificial neural networks, namely the Wavelet Networks (WNs) to examine out-of-sample hedging 

effectiveness of multiscale hedge ratios.  A combination of wavelet analysis and neural networks improves 

significantly the forecast accuracy of out-of-sample hedge ratios even for longer horizons.  Third, in addition 

to variance reduction, hedging effectiveness is judged based on mean-variance (MEV) and exponential utility 

functions, certainty equivalent wealth (CE), and risk-adjusted information ratio (AIR).  The utility analysis tests 
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whether or not there is an increase in utility from multi-period and multiscale hedging especially when 

portfolio returns have negative skewness and excess kurtosis.  Finally, the MCRR is calculated to confirm the 

practical usefulness of wavelet-based hedging models for keeping risk capital requirement low.  In other words, 

since the hedge ratios of various portfolios are predictable, to achieve maximum risk reduction, a hedger 

would prefer a portfolio with the lowest MCRR.  

The study proceeds as follows.  Section 2 provides a brief survey of the hedging models considered in 

this paper.  In Section 3, empirical results are reported.  The final section offers a summary of the key findings. 

2 METHODOLOGY 

Several recent studies have suggested that a wavelet based multi-horizon hedging is a preferred strategy 

over conventional methods (see Lien and Shrestha (2007) and Conlon et al. (2017)).  The rationale is that a 

hedger makes decisions in a multi-period setting in the real world, taking into account hedging preference, 

hedging horizon length, and hedge effectiveness.  In short, the hedger’s exposure to the financial market 

depends upon magnitude, variability, and location of the shock.  Consequently, there is a unique hedge ratio 

for each hedging horizon (Geppert, 1995).  Most often, a single period hedging model is preferred due to its 

computational simplicity though it may not adequately minimize risk when the hedger faces time-dependent 

multi-horizon exposure (Lien and Luo (1993).   

Multi-horizon hedging also accommodates selective hedging.  According to Conlon et al. (2016), selective 

hedging is a form of speculation when hedgers and speculators prefer a policy of no-hedge, partial-hedge, and 

horizon-specific hedge, as opposed to complete hedging.2  For example, the three biggest air carriers in China - 

the Air China, the China Eastern Airlines, and the China Southern Airlines - did not hedge fuel purchases for 

some time after the 2008-2009 financial crisis.3  In contrast, it is common among Asian airlines to reduce 

hedging cost by undertaking a partial-hedge or at least hedging for a short horizon.4  Consequently, wavelet 

analysis provides an appropriate framework to approximate the multiscale nature of the hedge ratio in these 

circumstances.  Furthermore, as explained later, the wavelet approach overcomes data reduction problem for 

low-frequency data and captures information associated with all available data.  In other words, the hedger 

picks a model that is robust to different time scales or horizons, without having to run out of data.5    

Surprisingly, the application of wavelet-based multiscale hedging has been rather limited (see, for 

example, In and Kim (2006), Fernandez (2008), Lien and Shrestha (2007), and Conlon et al. (2012)).   For 
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example, Geppert (1995) employed a permanent/transitory decomposition model to investigate the behavior 

of the multi-period hedge ratio for five assets.  Chen et al. (2004) studied the effects of the length of the 

hedging-horizon6 on the optimal hedge ratio and hedge effectiveness.  Their results are similar to those 

reported in Geppert (1995), the only exception is that the authors found that hedging effectiveness increases 

with the length of hedging-horizon.  Conlon and Cotter (2012) applied a moving-window OLS method to 

wavelet-decomposed data for crude oil, currency, and stock indices to estimate minimum variance hedge ratios 

for horizon-hedging.  They evaluated hedging performance using two criteria, i.e., variance reduction and 

scale-dependent value-at-risk (VaR).  Both in-sample and out-of-sample results indicate that the hedge ratio is 

increasing in scale, and long-horizon hedging has lower transaction costs and higher utility.  Furthermore, 

portfolio VaR shows that unhedged tail risk exists in all scales due to excess kurtosis.     

Wavelet-based hedging models are also associated with a higher utility for a hedger.  The papers by In 

and Kim (2006) and Conlon et al. (2016) examined the utility-based hedge effectiveness of wavelet models.  

Their simulation results indicate that scale-dependent hedging effectiveness hinges on the risk aversion of the 

hedger.  Specifically, a hedger with extremely high-risk aversion derives higher benefits from long-term 

hedging; a hedger with extremely low-risk aversion attains most hedging benefits at a short-term scale, and a 

hedger with moderate risk aversion achieves maximum utility at the intermediate scale.  Some of the other 

notable findings in the literature include: a unique hedge ratio corresponds to each hedging horizon length, the 

long-run hedge ratio converges to one, in-sample hedging effectiveness7 converges to one as investment 

horizon increases, and out-of-sample hedging effectiveness tends to decrease as hedging horizon increases.  

2.1 Conventional and Time-Varying Hedging Models 

In this section, we review the conventional hedging models and make necessary modifications to 

introduce the wavelet analysis.  The hedger in our model holds one unit of the spot asset and wishes to hedge 

by shorting x units of futures contracts.  Various theoretical approaches, such as minimum variance, mean-

variance, expected utility, mean-expected Gini coefficient as well as semivariance, have been considered for 

identification and estimation of the optimal hedge ratio.  Chen et al. (2003) contend that these approaches 

generate similar hedge ratios under the Martingale assumption and joint-normality.   

We begin by considering Johnson’s (1960) risk-minimizing hedge ratio h*, defined as: 
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where S and F denote log of spot and futures prices, respectively, and ∆ is the first difference operator.  The 

OLS hedge ratio is computed as the slope coefficient of the following regression: 

 t t tS F         (2) 

where εt is an iid error term8.  In equation (2), a β=1 yields a fully hedged (FH) position.  When asset returns 

are not normally distributed, the variance/covariance terms are changing over time, and the optimal hedge 

ratio changes over time.  So, equation (1) changes to: 
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where conditional moments change when the information set Ωt, is updated. Therefore, the optimal hedge 

ratio 
*

th  changes through time.   

Equation (2) may not be specified correctly if the spot and futures prices are cointegrated. Theory of 

cointegration suggests that when the basis becomes large, arbitrageurs exploit this temporary disequilibrium 

(Brenner and Kroner, 1995) to restore a long-run equilibrium.  In other words, a stationary basis reinforces the 

cost-of-carry assumption though the assumption may not hold in some cases (Chen et al., 2004).  The 

following bivariate GARCH (p, q) model, which has become standard in the literature, incorporates both non-

normal asset returns and an error correction (EC) term to produce time-varying hedge ratios:   
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where ut-1 in the conditional mean equations are the lagged error-correction terms (lagged basis)9.  The terms s 

and f are the residuals from the mean equations (4).  Equation (5) describes their joint density function which 

is time-varying, given the information set Ωt-1.  In equation (6), Ht is a (2x2) conditional covariance matrix, C is 

(3x1) parameter vector of constants (unconditional variance and covariance), Ai and Bj are (3x3) ARCH and 

GARCH parameter matrices, respectively, and vech is the column stacking operator that stacks the lower 

triangular portion of a symmetric matrix.  In equation (6), both lagged squared residuals, as well as past 
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volatility, are assumed to be key determinants of the current volatility.  The GARCH hedge ratios are defined 

as:  

 *

,t ,
ˆ ˆ/t sf ff th H H   (7) 

where 
,

ˆ
sf tH is the estimated conditional covariance between the spot and futures returns, and 

,
ˆ

ff tH   is the 

estimated conditional variance of futures returns.  The GARCH model is estimated by maximizing a likelihood 

function using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm in RATS with unconditional 

variance and covariance used as starting values.   

2.2 Wavelet-Hedge (WH) 

The wavelet decomposition of a time series combines both spatial analysis and Fourier transformation to 

detect the properties of quick variation of values (Alexandridis and Zapranis, (2013 and 2014).  There are 

several distinct benefits from using the wavelet decomposition.  A spatial analysis of a time series reveals the 

value of a function at a particular location but does not offer any information on the magnitude of the 

variability.  A Fourier transformation documents the magnitude of the variability but does not say anything 

about where the variability is located (see Lien and Shrestha, 2007, and Lindsay et al., 1996).  The wavelet-

transform combines both the magnitude and location of the variability.  Using wavelets, a time series can be 

decomposed into various scales to capture maximum information from the data.  The low (high) scale 

represents the high (low) frequency.  The wavelet-transform is localized in both time and frequency and it also 

overcomes the fixed time-frequency partitioning.  This means that the wavelet transform has good frequency 

resolution for low-frequency events and good time resolution for high-frequency events.  Further, the wavelet 

analysis captures the structures of the original time-series such as trends, jumps or periodicities.  Such 

structures are common in daily returns.  

Another principal benefit of the wavelet transform is that it does not suffer from the sample reduction 

problem which has been identified in the literature.  For example, to estimate multi-period hedge ratios using 

the conventional method, a hedger matches the frequency of the data or the differencing interval to the 

hedging horizon.  One needs to use weekly, monthly and annual data to obtain hedge ratios consistent with 

weekly, monthly and annual investment horizons, respectively (see, for example, Chen et al., 2004), Geppert, 

1995), and Lien and Shrestha, 2007).  In short, for a k-period hedging horizon, one needs to use a k-period 
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differenced data, which results in a reduction of the sample, especially when the long-horizon period (e.g., 

annual) is considered (because it would require sampling data at annual intervals for differencing)10.  Overall, 

the wavelet analysis is appropriate for estimating scale-dependent dynamic hedge ratios (see Lien and Shrestha 

(2007)). 

In this study, the Maximal Overlap Discrete Wavelet Transformation (MODWT) is applied.  It has many 

desirable properties compared to the classic DWT (see Percival and Walden (2000)).  First, a father wavelet 

function,  ,j k t , representing the smooth component and a mother wavelet function,  ,j k t , representing 

the deviations are selected.  Next, wavelet coefficients are estimated through the convulsion of the mother 

wavelet function with the time-series  f t : 

    , ,j k j kd f t t dt




    (8) 

    , ,j k j ks f t t dt




    (9) 

 
where 1,...,j J  is the number of scales and k indicates the thk  coefficient.  In this study the LA5 (Least 

Asymmetric of length 5) wavelet transform filter is used.  The analysis is performed at 5 levels of the 

decomposition and the reflection method was used for the boundary conditions.  This follows the previous 

findings in the literature that as much as 90% of the return variance in many commodities comes from shorter 

time scales (Lien and Shrestha (2007)). The original time-series can be reconstructed by  

      , , , ,J k J k j k j k

k Z j Z k Z

f t s t d t 
  

   .  (10) 

 

By setting 
, , ,( ) ( )J t J k J k

k

S s t t  and
, , ,( ) ( )j t j k j k

k

D d t t , equation (10) can be written as: 

 , , 1, 1,( ) J t J t J t tf t S D D D      (11) 

which is known as the multi-resolution analysis (MRA).  The original time-series is denoted as the 

approximation 0S .  At each level j of the MODWT, the approximation 1jS  is split into two parts, the new 

approximation 
jS and a detail signal

jD that captures short-term deviations in the time-series.  The variance of 
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the original time-series (X) can be decomposed by scale, identifying the contribution of each scale to the 

variance (Percival and Walden (2000).  An unbiased estimator of the wavelet variance is given by: 

  
1

2
2 ( )

, ,

1

1
ˆ

j

n
X

X j j t

t Lj

d
N



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    (12) 

where ,j td  is the MODWT wavelet coefficients at scale j, n is the sample size, Lj is the length of the scale j  

wavelet filter where   2 1 1 1j

jL L    , and jN is the number of the MODWT coefficients unaffected by 

the boundary where 1j jN n L   .  Similarly, the wavelet covariance can be computed by decomposing the 

sample covariance at different time scales.  Given two time-series X and Y, the unbiased estimator of the 

wavelet covariance can be computed by: 
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N
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XY j j t j t
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d d
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
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  .  (13)  

Hence, the wavelet hedge ratios for asset i at scale j can be computed as follows: 

 
2

,

, 2

,

ˆ

ˆ

S F j

i j

F j

h




 


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where 2

,
ˆ

S F j 
is the wavelet covariance of the wavelet-decomposed spot and futures returns at scale j, and  

2

,
ˆ

F j
is the wavelet variance of the wavelet-decomposed futures returns at scale j.  This model is referred to as 

the wavelet-hedge (WH).  Both the spot and futures returns can be decomposed into different time scales (see 

Lien and Shrestha (2007)): 

 , , 1, 1,

S S S S

t J t J t J t tS S D D D         (15) 

 , , 1, 1,

F F F F

t J t J t J t tF S D D D        (16) 

In this study, a scale-dependent version of equation (2) is estimated, i.e., estimates of J regressions using the jth 

scale decomposition.  The model is referred to as the wavelet-OLS (WOLS):   

 . ,0 ,1 , ,

s f

j t j j j t j tD D       (17) 

The OLS hedge ratio associated with the jth scale is denoted by βj,1. When βj,1=1, the wavelet fully hedged 

(WFH) position is obtained.  The GARCH model described earlier (equations 4-6) can also be applied to the 

equation (17) at each level j using wavelet-decomposed returns:  

 
, ,*
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ˆ
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t j
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H
h

H
   (18) 
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where 
*

,t jh  is the optimal time-varying GARCH hedge ratio estimated at scale j.  At scale j, 
, ,

ˆ
sf t jH is the 

estimated conditional covariance between the in-sample wavelet-decomposed spot and the futures returns and 

, ,
ˆ

ff t jH  is the conditional variance of in-sample wavelet-decomposed futures returns.  This is referred to as the 

wavelet GARCH (WG)11 model.    

2.3 Wavelet Networks (WNs) 

Using wavelet analysis, a static WH can be estimated which in turn can be used as a naïve estimate of the 

hedge ratio for the next period12. However, it is important to recognize that wavelets by themselves cannot 

forecast time-varying hedge ratios. A solution is to fit a GARCH model to wavelet-decomposed returns and 

then use the fitted values to make out-of-sample forecasts.  Alternatively, one can forecast the decomposed 

signals 1 5,...,D D  and then compute the hedge ratios.  Based on the preceding, the WNs are chosen that 

combine the classic neural networks architecture with the wavelet analysis. The WNs are different from 

classical neural networks because the activation function in each neuron (or hidden unit) is a wavelet function 

instead of the classic sigmoid one. Figure 1 presents the WN architecture.  It also shows the transformation in 

each layer and the node.  A WN consists of three layers: the input, hidden units, and output. The input 

variables,  1,.., mx xx , are inserted into the model through the input layer.  The hidden layer consists of the 

hidden units,  

 

[1]

( )

[1]
1 ( )

( ) .
m

i ij

j

i ij

x w

w








 
   

 
 

x  (19) 

In the hidden layer, the inputs are transformed into dilated and translated versions of the mother wavelet.  

Finally, in the output layer, the output of each neuron is linearly combined to produce the network’s output. 

The approximation of the target values, ˆ( )y x , is estimated as:  

 
[2] [2] [0]

1

1 1

ˆ( ; ) ( ) ( )  
m

j j i i

j i

g y w w w x


 
 

      x w x x   (20) 

where x is the input vector, m is the number of network inputs λ is the number of hidden units and w stands 

for a network weight.  Finally, Ψj(x) is a multidimensional wavelet, which is the product of m scalar wavelets.     

[Insert Figure 1 About Here] 
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In this study the second derivative of the Gaussian, the so-called “Mexican Hat” wavelet is used. The complete 

vector of the network parameters comprises:  [0] [2] [2] [1] [1]

1 ( ) ( ), , , ,i j ij ijw w w w w w   .  These parameters are adjusted 

during the training phase, which is described next.  

To forecast the out-of-sample hedge ratios, the WNs and ( ; )g x w  need to be trained first.  For each 

asset, a different WN was trained for each detail jD and smoothed component
jS using the model 

identification algorithm presented in Alexandridis and Zapranis (2014).  The algorithm also provides an 

efficient determination of the lag series and the network topology. The backward elimination algorithm was 

used to initialize the WN that has been proven to be more efficient than alternative initialization procedures 

(see Alexandridis and Zapranis (2013)). A rolling window was applied to produce one-step ahead out-of-

sample forecasts. More precisely, in order to train the WNs on a particular detail jD , the vector 

 , , 1 , 1, ,...,j t m j t m j tD D D   x is used as input values and the target values are given by 
,j tDy .  A similar 

approached was followed for the smoothed components. Finally, the hedge ratio at each time-step is estimated 

by applying equation (14) to the forecasted time-series.   

   
3 EMPIRICAL ANALYSIS 

Daily spot and futures prices for Brent crude oil, FTSE100, Gold and the USD are collected from the 

Bloomberg terminal.  Brent crude oil spot price per barrel is the ‘Europe price’.  Brent futures contracts trade 

on the Intercontinental Exchange (ICE).  FTSE100 is the Financial Times Stock Index from the London 

Stock Exchange.  The FTSE futures contracts trade on the ICE.  Gold price (COMEX) is the spot price per 

troy ounce.  Gold futures contracts trade on the Chicago Mercantile Exchange (CME).  The spot U.S. dollar 

Index (USD) is based on geometric averages of the six component currencies: euro, Japanese yen, British 

pound, Canadian dollar, Swedish krona, and Swiss franc. The USD futures contracts trade on the ICE.  All 

futures prices in this study are based on active contracts with rollover 15 days before expiration.  The in-

sample13 period is January 3, 2005 to March 2, 2016, while the out-of-sample period is March 3, 2016 to 

December 14, 2018.  As noted earlier, the study uses two types of data: spot and futures return (log-returns), 

referred to as ‘original returns’ and wavelet-decomposed returns (Scales 1-5).  Days (in parenthesis) 

represented by these horizons are scale 1 (1-2), scale 2 (2-4), scale 3 (4-8), scale 4 (8-16), and scale 5 (16-32).  

The in-sample empirical work proceeds as follows.  First, the conventional hedging models (unhedged (U), full 
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hedge (FH), OLS, and GARCH) are estimated using original returns.  Next, wavelet-based hedging models 

(WU, WFH, WOLS, WG, and WH) are applied to the wavelet decomposed returns (scales 1-5).  The process 

is also repeated for the out-of-sample with the exception that WH is replaced with WN. 

As an example, Figure 2 shows the wavelet decomposition at 5 levels for both spot (top panel) and 

futures (bottom panel) returns of the FTSE 100 Index. The wavelet decomposition splits the original time 

series data into high and low-frequency parts. A closer inspection of the top panel reveals that wavelet analysis 

brings out periods of high and low variability (e.g. during the financial crisis an increase in the volatility is 

evident while the volatility is significantly lower during the period 2012-2015) in the decomposed wavelet spot 

returns. Finally, the wavelet-decomposed FTSE100 futures returns exhibit similar patterns (bottom panel).  

The wavelet decomposition for the Brent, USD, and gold exhibit similar patterns (not reported to save space).  

[Insert Figure 2a About Here] 
[Insert Figure 2b About Here] 

 
In Panels A-D, Table 1, summary statistics for each asset are presented.  The mean return is zero for all 

horizons and all assets. Also, there is negative skewness, lower excess kurtosis, and lower standard deviation at 

a higher scale.  For Brent, the skewness is negative for lower scales and it becomes positive at higher scales.  

Kurtosis (spot and futures) is positive for all scales.  For FTSE100, both excess kurtosis and skewness decline 

at higher scales while at lower scales, the skewness is positive.  Skewness is mostly negative for returns on 

Gold but there is no systematic pattern as one moves from low to high scales.  Excess kurtosis, on the other 

hand, tapers off with higher scales.  Original returns and wavelet-decomposed returns for the U.S. dollar have 

mostly negative skewness for all scales.  Excess kurtosis declines as higher scales are considered.  The Jarque-

Berra statistic confirms non-normality for both original returns and wavelet-decomposed returns of all assets.   

Finally, Table 1 also presents Engle’s TR2 statistic which is the Lagrange Multiplier test to confirm the 

presence of autoregressive conditional heteroscedasticity (ARCH) errors.  Both the original returns and the 

wavelet-decomposed returns have ARCH properties. The estimated chi-square is significantly higher than the 

critical value of 3.841 at 5% with 1 degree of freedom.  The use of the bivariate GARCH model (a more 

generalized version of ARCH) is appropriate given that these returns have ARCH properties.   

In Table 2, hedge ratios across all horizons from both WOLS and wavelet hedge (WH) are shown.  

Consistent with the previous findings in the literature, the hedge ratios tend to increase with higher horizons.   
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3.1 In-Sample Portfolio Variance 

In this section, we examine the performance of the hedging models by evaluating the variance of in-

sample (January 3, 2005, to March 2, 2016) hedged portfolios (
*

t t tS h F   ).  For calculating the wavelet-based 

hedged portfolio variance, tS and tF are replaced with wavelet-decomposed spot and futures returns, 

respectively.  Since the main focus of this study is on the wavelet hedging models, unless otherwise noted, 

discussion of the results will concentrate on wavelet-based portfolio variances estimated from wavelet-

decomposed returns.    

There are two criteria for judging the hedging effectiveness.  First, using the unhedged strategy (WU) as 

the benchmark, one can examine the portfolio variance reduction from an alternative strategy.  For example, 

to compare between the WG and unhedged (WU) portfolios, calculate the percentage reduction in the 

variance as  WU WG WUV V V .  Second, for each hedging horizon, rank the portfolio variances of all models 

using a 1-5 measurement chart.  The strategy that has the least portfolio variance is ranked 1.  Since both of 

these criteria produces similar conclusions, the results using the second method are presented in this study.  To 

facilitate comparison, the aggregate rank is found by simply adding the individual rank for each hedging 

horizon across all assets.  

In-sample portfolio variances of these models are presented in Panel A, Table 3.  For Brent, the WG 

model has the lowest variance (ranked 1) compared to the remaining hedging strategies across all horizons.  

The strategy is ranked 1 across all 5 horizons, producing an aggregate rank of 5.  The remaining strategies have 

the following aggregate ranks (in parenthesis): WOLS (12), WH (13), WFH (20), and WU (25).  The WG 

model also performs the best in the case FTSE100 and the rank of the hedging models is similar as in the case 

of Brent.  Interestingly, WH and WOLS have similar performance as both are ranked 13.  The best performing 

hedging model for Gold is WG (8), followed by WH (11), WOLS (12), WFH (19), and WU (25), respectively.  

Finally, the WG (5) model turns out to be the best performer in the case of the USD.   

Overall, the results confirm the relative superiority of the wavelet-based hedging models. Aggregate 

ranking of hedging models for all assets and all hedging horizons shows WG having a rank14 of 23 while the 

wavelet-unhedged model has an overall rank of 100, which makes it the worst hedging strategy.  The next best 

performer (after WG) is WH with a rank of 47.  These results suggest that the wavelet-GARCH hedging 

model has superior potentials for minimizing risk across all hedging horizons. 
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3.2 Out-of-Sample Portfolio Variance 

Out-of-sample (March 3, 2016 to December 14, 2018) performance of the hedging models is presented 

next.  As discussed earlier, this part of the exercise requires out-of-sample forecasting and training of the WNs 

to obtain time-varying hedge ratios.  Out-of-sample portfolio returns (
*

1 1 1t t tS h F     ) are based on forecasted 

hedge ratios using the WN model15.  Using a recursive updating procedure, the in-sample values of D1 to D5 

and S (the final approximation) are utilized to train the WNs.  Few lags were used to forecast the next values 

of D1 to D5 and S (similar to a nonlinear autoregressive model).  Subsequently, the forecasted return at time 1, 

denoted as 1..5D S  is generated.  Next, another sample observation is added and the next out-of-sample 

observation is forecasted.  The wavelet analysis is applied to this new sample and the new wavelet coefficients 

W and V are derived, from which the wavelet variance/covariance and subsequently the hedge ratio at each 

scale are obtained.  Using a recursive window, this process is repeated for all out-of-sample observations 

across all the five hedging models described earlier.   

In Panel B, Table 3, out-of-sample portfolio variances are reported for all hedging strategies.  Similar to 

Panel A, the models are estimated using both original returns and wavelet-decomposed returns.  Overall, 

across all assets, the WG model turns out to be the best performer, except for Gold, where both WG and WN 

are equally effective in reducing the portfolio variance.  The second best hedging model overall is WN, 

followed by WOLS, WFH, and WU.  A no-hedge policy (WU) has a rank of 4, which makes it the worst 

strategy16.  We also notice, consistent with the evidence reported in the literature, that the hedge ratio and 

hedging effectiveness tend to increase with the length of hedging-horizon.  These results support the notion 

that wavelet multiscale hedging offers significantly better risk minimization capability.  Finally, in Panel C of 

Table 3, in-sample and out-of-sample average ranking of each hedging strategy across all scales and assets is 

shown. WG ranks first both in-sample and out-of-sample, followed by WN.  WOLS ranks third, followed by 

the full hedge (WFH). 

An important finding in this study is that for all assets across all horizons and hedging strategies and for 

both in-sample and out-of-sample exercises, portfolio variance estimated using the original returns exceeds the 

wavelet-based portfolio variance.  In particular, the wavelet-GARCH model using wavelet decomposed returns 

produces a lower variance than the standard GARCH model applied to the original returns for all assets. This 
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further reconfirms the notion that wavelet-based multiscale hedging is far superior to conventional and 

dynamic hedging.   

In Table 4, pairwise F-tests are conducted at each scale and for all assets to confirm whether the portfolio 

variances (reported in Table 3) are statistically different across the hedging models.  In-sample results are 

reported in Panel A while out-of-sample results are reported in Panel B. A closer inspection of Table 4 reveals 

that the results from WG are statistically significant compared to the remaining methods (F-tests rejected 

equality of the variances).  There is no difference between the WH and WOLS (F-tests accepted the 

hypothesis of equality of variances).  The out-of-sample results are similar.  In the majority of the cases, F-tests 

reject the hypothesis that WG portfolio variances are equal to portfolio variances from WOLS and WN 

strategies.  By combining the results of Table 3 and Table 4, we can state that WG generates portfolios with 

lower variances and the variance reduction is statistically different from the other hedging models.  Based on 

the F-tests, WN ranks second overall, followed by WOLS.  

Finally, the effectiveness of the WN model for forecasting the decomposed series is examined by 

comparing the results against two benchmarks (results are not reported to save space). First, the estimated 

wavelet hedge ratios are applied to the next hedging period to obtain a one-step forecast (referred to as 

Wavelet-Bench)17. This method is often used in practice. The second benchmark is a simple random walk 

(referred to as Wavelet-RW) model.  Here, a simple Wavelet-RW is used to forecast Dj and then estimate the 

hedge ratios. At each step t, the Dj,t+1 is forecasted as the average value of Dj up to time t.  As presented in 

Welch and Goyal (2007), the simple RW is very difficult to beat and it is the usual benchmark used in the 

literature (see Rapach et al., 2010)).  The forecasting power of the WN, Wavelet-RW and the Wavelet-Bench is 

compared by performing the Clark and West (2007) test. The WN model delivers statistical significantly better 

results for all assets for both the spot and futures returns. It is ranked first, followed by the Wavelet-Bench and 

Wavelet-RW.  The Wavelet-RW performs worse than the naïve method while the Wavelet-Bench performs 

similar to the WOLS model.18 

3.3 Utility of hedging models  

From a practical standpoint, small size reductions in portfolio risk do not imply that the economic 

viability of the proposed strategy is insignificant (Kroner and Sultan (1993)).  In other words, a multiscale WG 

model should be selected if it also increases the investor’s utility net of transaction costs.  To demonstrate this, 
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the economic significance of the time-varying hedge ratio is analyzed using three criteria: the mean-variance 

utility function (MEV), the certainty equivalent exponential utility function (CE), and the adjusted information 

ratio (AIR) (Alexander and Barbosa, 2008).  The mean-variance utility function is defined as 

    2* * *–  –  ( ) –  t t t t t t t t tEU E F QS F S h S h Fh        (21) 

where Q is the transaction cost.  The expected return to the hedged portfolio is assumed to be zero (Kroner 

and Sultan (1993)), and the coefficient of risk tolerance (  ) is 4.  The average utility from hedging on a given 

trading day is: *2 –4 ) ( t t tQ FS h   .  In this study, a round-trip cost of 0.005% is assumed.19   

Traditionally, the mean-variance rule and conventional hedging models are both designed to select 

portfolios which are expected to generate the lowest risk for a given expected return.  Therefore, the choice of 

the optimal hedge ratio focuses on the first two moments of the return distribution and hedging effectiveness 

is measured by the proportional reduction in the variance of portfolio return.  An alternative measure of 

hedging performance in recent research underscores the role of skewness and kurtosis of portfolio returns 

(Alexander and Barbosa (2008)).  As the authors noted, performance evaluation based on the proportional 

variance reduction does not incorporate the effect of variance reduction on skewness and kurtosis.  In other 

words, a conventionally hedged portfolio may have a very low return volatility but a high kurtosis indicates 

that the hedge can backfire some days.  With a negative skewness, the hedged position would be losing rather 

than making money.  Therefore, the second measure of hedging effectiveness which accounts for both 

skewness and kurtosis is derived from the following exponential utility function:  

  ( ) expU p p     (22) 

where p signifies wealth.  The exponential function has the property,    U p E U p    .  Using Taylor 

expansion of U(p) around the mean and taking the expectation up to the fourth term, the certainty equivalent 

utility function (CE) may be approximated as: 

 
2

2 32 6 24
CE

  


  
     (23) 

where the third and fourth moments  
3

E p   
  

and  
4

E p   
  

 signify skewness and kurtosis, 

respectively.  When 0  , risk aversion increases with increasing variance, negative skewness, and higher 

kurtosis.   
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Finally, hedging performance is also evaluated on the basis of AIR (Alexander and Barbosa, 2008): 

 2 3
ˆ ˆ

6 24
AIR IR IR IR

 
    (24) 

where IR refers to the information ratio defined as the ratio of mean return to the volatility of return, ̂  

denotes the estimated sample skewness and ̂ signifies excess kurtosis. 

First, using in-sample original returns for all four assets, utility functions and the information ratio are 

estimated (to save space, these results are not reported).  Hedging performance of all four hedging strategies 

(U, FH, OLS, and GARCH) is analyzed using their relative ranks for each asset on three utility-based criteria 

(MEV, CE, and AIR).  The ranking is done on a 1-3 measurement chart (1=highest MEV, for example).  For 

Brent, both FH and OLS models produce the highest values in terms of MEV, CE, and AIR.  In the case of 

FTSE100, the OLS is the best model.  Both unhedged and GARCH models are the next best.  There is 

evidence that the OLS is the best model for hedging Gold as it is ranked best in terms of all 3 criteria. Finally, 

for hedging USD, the OLS model is the best performer.  The next best performer is the GARCH model.  

Across all four assets, the OLS is the best strategy.   

In contrast, for the wavelet-decomposed returns, there are four evaluation criteria: MEV, ∆MEV (∆ 

refers to the first difference), CE, and AIR.  Across all horizons and assets, WH is the best hedging model, 

followed closely by WG and WOLS, respectively.  Both WFH and WU models have the worst performance.  

Individually, WG has the best performance for hedging Brent crude oil, followed by WH.  Both of these 

models surpass the competing models.  For hedging the FTSE100, the winning model is WH, followed by 

WG.  The WH model is again the winner for hedging Gold, followed closely by WOLS.  The performance of 

the remaining models (WU, WFH, and WG) is similar.  Finally, for hedging USD, the WH is the best model, 

followed by WG, WOLS, WFH, and WU, respectively. 

A similar analysis is performed using the out-of-sample original and wavelet-decomposed returns.  Recall 

that for out-of-sample utility evaluations, WN replaces WH.  First, for the original returns, the GARCH model 

is the best hedging model across all four assets.  Next, the best wavelet-hedging model is WOLS.  The 

remaining models are ranked in the following order: WG, WFH, WU, and WN.  Individually, for Brent, WG 

and WFH are the best models.  For the FTSE100, WG has the best ranking.  For the remaining assets (Gold 

and USD), WOLS and WFH have better performance than competing models.  WN is the worst hedging 



Page | 18  

 

model.  Overall, utility-based analysis reveals that hedging effectiveness increases as one considers higher 

moments in higher scales20. 

3.4 Hedging Effectiveness: Minimum Capital Risk Requirement (MCRR) 

In this section, hedging effectiveness is evaluated by comparing the MCRR for portfolios from the 

hedging models considered in this study.  Given that the hedge ratios of portfolios obtained from the hedging 

models are predictable, the hedger prefers a portfolio with the lowest MCRR.  The estimation of the MCRR 

takes into account the VaR of the portfolio, which is a statistical measure of the expected maximum loss on 

the portfolio, given some level of confidence. VaR can be derived from the probability distribution of the 

future portfolio as the worst possible realization R* (R denotes the value of the portfolio) such that the 

probability of a value lower than R* is: 

  
*

*( ) 1
R

P R R f R dR c


     (25) 

and (1-c) represents the probability of a lower-tail event.  The MCRR for a 1-day investment horizon is 

calculated by simulating densities of portfolio returns using Efron’s (1982) bootstrapping methodology (which 

is based on a multivariate GARCH (1,1) model).  The Monte Carlo simulation procedure used 10,000 

simulated paths of portfolio returns based on a GARCH (1,1) model to generate an empirical distribution of 

the maximum loss. 

Table 5 presents the estimated in-sample MCRR for each hedging model.  Note that the MCRRs for 

portfolios from conventional hedging models (unhedged, full hedge, OLS, and GARCH) are based upon 

original returns.  The MCRRs are also reported for the following wavelet hedging models: WU, WFH, WOLS, 

WG, and WH.  Panel A presents MCRRs for Brent.  The results show that the WG model outperforms 

competing models uniformly across all scales.  For the original returns, relative to an unhedged position, there 

is a substantial reduction of MCRR for the wavelet-full hedge model.  Panel B presents estimated MCRRs for 

the FTSE100 stock index.  The WG model outperforms competing models mostly at lower and intermediate 

scales (scales 1 and 4).  The WOLS has the lowest MCRR at intermediate scales (scales 2 and 3).  The WFH 

strategy performs the best for scale 5. 

Panel C presents the estimated MCRR for gold.  The WG model dominates competing models at most 

scales, i.e., scales 1, 2, 4 and 5.  The WOLS has the lowest MCRR at an intermediate scale (scale 3).  Panel D 
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presents MCRR for USD.  The result shows that the WG model outperforms competing hedging models at 

scales 1, 2, 3 and 4.  The WFH model performs best at scale 5.  When the results are compared across Panels 

A-D, it is evident that position in Brent requires more capital than for the remaining assets.  The position in 

USD requires the least amount of MCRR compared to the positions in other assets.  These comparative results 

also suggest that positions in currency and stock markets are less risky than positions in the commodities 

markets. 

4 CONCLUSIONS 

In this study, the wavelet decomposition of spot and futures data from three representative assets 

including currency, commodity and a stock index is derived to investigate the relative effectiveness of various 

hedging models by taking into account the hedger’s exposure to time and frequency domain issues.  The 

wavelet model allows heterogeneous hedgers with a preference for multiscale hedging which is not possible in 

a conventional setting.  The hedging models are applied to both original returns and wavelet-decomposed 

returns to estimate the hedge ratios.  Finally, hedging effectiveness at different time-scales is compared based 

on in-sample and out-of-sample portfolio variance, utility functions, minimum capital risk requirement, and 

VaR.  Both in-sample and out-of-sample results show that the wavelet-GARCH (WG) model has the best 

performance overall.  The WG model also dominates other hedging models in most cases when hedging 

performance is judged based on the mean-variance utility function.  When performance is based upon 

exponential utility function, the wavelet-networks (WN) models outperformed other models (with the 

exception that the WG model exhibits superior results in some cases).  Since WG based portfolio returns 

exhibit larger excess kurtosis at most scales, it attenuates the utility level produced by the WG model when the 

CE utility function is considered.  Overall, the wavelet-GARCH model has the lowest MCRR.     

The results of this study also confirm that wavelet-based hedging is more effective in managing risk.  For 

both in-sample and out-of-sample, non-wavelet based hedging models have larger portfolio variances, 

compared to the wavelet-based hedging models.21  Finally, the wavelet-GARCH model produces much lower 

portfolio variance than the standard GARCH model when applied to the original returns for all assets.  

Overall, the wavelet-based hedging strategies offer superior risk reduction in most cases for the assets 

included in the study.  Furthermore, the MCRRs from wavelet-based hedging models confirm the practical 

usefulness of the models by keeping regulatory capital requirements low.  
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Figure 1: A Feedforward wavelet networks 

 

 
 

 
Figure 2. Wavelet decomposition at 5 levels of FTSE100 spot (top panel) and FTSE100 futures (bottom panel) 
log-returns from 3/1/2004 –14/12/2018. 
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Table 1. Descriptive statistics for the spot and futures returns (original and wavelet decomposed returns) 
   

Panel A                       

Brent Spot Mean St.Dev Max Median Min Skewness Kurtosis JB p-value ARCH Test p-value 

Original 0.0110 2.1371 13.4668 0.0259 -12.4020 -0.1365 6.2815 1577.21 0.0000 181.88 0.0000 

D1 0.0000 1.4637 8.8702 -0.0034 -9.0478 -0.1151 7.0007 2335.84 0.0000 1156.81 0.0000 

D2 0.0000 0.8134 4.0978 -0.0063 -4.0640 0.0278 4.7527 447.29 0.0000 228.71 0.0000 

D3 0.0000 0.5745 4.8965 0.0021 -3.6470 0.1697 9.5657 6287.17 0.0000 2118.58 0.0000 

D4 0.0000 0.3985 2.0906 0.0010 -2.0621 0.0682 5.4190 853.89 0.0000 2977.99 0.0000 

D5 0.0000 0.2821 1.2125 0.0069 -1.0350 0.0024 3.9240 124.19 0.0000 3355.55 0.0000 

S 0.0110 0.3901 0.7466 0.0507 -1.7950 -1.3588 6.1279 2497.44 0.0000 3480.12 0.0000 

Brent Futures Mean St.Dev Max Median Min Skewness Kurtosis JB p-value ARCH Test p-value 

Original -0.0150 2.0642 12.8817 0.0549 -11.4110 -0.1758 6.5701 1871.88 0.0000 88.57 0.0000 

D1 0.0000 1.4337 8.9239 -0.0144 -8.7923 -0.0619 6.5405 1825.61 0.0000 1201.83 0.0000 

D2 0.0000 0.7764 3.5406 0.0081 -3.4916 -0.0013 4.8551 500.59 0.0000 241.85 0.0000 

D3 0.0000 0.5486 4.1218 0.0009 -3.5781 0.1715 8.4619 4356.48 0.0000 2083.31 0.0000 

D4 0.0000 0.3772 1.9908 0.0109 -1.9089 0.0577 5.0364 605.17 0.0000 2968.86 0.0000 

D5 0.0000 0.2624 1.0187 -0.0041 -0.9171 0.0129 3.6891 69.17 0.0000 3348.91 0.0000 

S -0.0150 0.3809 0.6110 0.0403 -1.8014 -1.4709 6.4381 2978.13 0.0000 3481.39 0.0000 

Panel B                       

FTSE 100 Spot Mean St.Dev Max Median Min Skewness Kurtosis JB p-value ARCH Test p-value 

Original 0.0101 1.1426 11.1124 0.0254 -9.2656 0.0291 13.0994 14836.86 0.0000 452.14 0.0000 

D1 0.0000 0.7793 10.6474 -0.0160 -7.9935 0.5330 20.2547 43471.76 0.0000 1253.52 0.0000 

D2 0.0000 0.4416 3.5561 -0.0023 -3.1893 0.0888 9.1537 5512.76 0.0000 341.89 0.0000 

D3 0.0000 0.3126 2.0766 0.0030 -2.1027 0.0520 7.4047 2823.66 0.0000 1866.84 0.0000 

D4 0.0000 0.2132 1.2002 -0.0002 -1.1766 -0.0428 6.5310 1814.66 0.0000 3041.06 0.0000 

D5 0.0000 0.1353 0.4796 -0.0029 -0.5128 -0.0910 3.5382 46.94 0.0000 3327.64 0.0000 

S 0.0101 0.1529 0.4589 0.0274 -0.7896 -1.1148 6.8456 2874.28 0.0000 3471.38 0.0000 

FTSE 100 Futures Mean St.Dev Max Median Min Skewness Kurtosis JB p-value ARCH Test p-value 

Original 0.0168 1.1439 10.9818 0.0351 -9.7002 0.0047 13.4851 15991.34 0.0000 438.29 0.0000 

D1 0.0000 0.7822 10.5837 -0.0100 -8.3093 0.4820 20.4771 44565.14 0.0000 1246.11 0.0000 

D2 0.0000 0.4391 3.6919 -0.0020 -3.3991 0.0814 9.6437 6424.29 0.0000 326.83 0.0000 

D3 0.0000 0.3123 2.1328 0.0040 -2.1082 0.0524 7.5402 3000.01 0.0000 1866.38 0.0000 

D4 0.0000 0.2164 1.2657 -0.0008 -1.2147 -0.0295 6.8703 2179.37 0.0000 3049.96 0.0000 

D5 0.0000 0.1355 0.4933 -0.0003 -0.5404 -0.0941 3.6107 59.40 0.0000 3326.66 0.0000 

S 0.0168 0.1557 0.4769 0.0347 -0.8197 -1.1667 7.2904 3469.40 0.0000 3471.92 0.0000 

St.Dev: Standard deviation 

JB: Jarque – Berra statistic 

ARCH Test: Engle’s Lagrange Multiplier (TR2) statistic.  

D1-D5 are the five wavelet scales.  
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Table 1 (contd.) Descriptive statistics for the spot and futures returns (original and wavelet decomposed returns) 

 

Panel C 
                      

Gold Spot Mean St.Dev Max Median Min Skewness Kurtosis JB p-value ARCH Test p-value 

Original 0.0297 1.1556 10.2451 0.0467 -9.5121 -0.3540 9.1061 5496.20 0.0000 37.71 0.0000 

D1 0.0000 0.7686 6.1289 -0.0098 -4.2799 -0.0146 6.6919 1982.79 0.0000 1111.82 0.0000 

D2 0.0000 0.4481 2.3754 0.0025 -2.6212 -0.0872 5.7566 1109.71 0.0000 303.91 0.0000 

D3 0.0000 0.3185 1.7715 0.0002 -1.8733 0.0394 6.1528 1446.81 0.0000 1937.80 0.0000 

D4 0.0000 0.2274 0.9847 0.0026 -1.1787 -0.1307 4.7448 452.78 0.0000 2955.51 0.0000 

D5 0.0000 0.1758 0.7754 -0.0018 -0.8550 -0.1159 4.8850 524.66 0.0000 3370.80 0.0000 

S 0.0297 0.1697 0.5745 0.0244 -0.3839 0.2994 2.9011 53.59 0.0000 3464.86 0.0000 

Gold Futures Mean St.Dev Max Median Min Skewness Kurtosis JB p-value ARCH Test p-value 

Original 0.0220 1.1710 8.6243 0.0308 -9.8204 -0.3570 8.5903 4619.88 0.0000 69.07 0.0000 

D1 0.0000 0.7726 4.5610 -0.0039 -4.9597 -0.0378 6.1692 1461.76 0.0000 980.85 0.0000 

D2 0.0000 0.4573 2.3824 0.0030 -2.4427 -0.0953 5.6969 1063.23 0.0000 293.11 0.0000 

D3 0.0000 0.3267 1.9322 -0.0003 -1.7279 0.0262 5.7359 1089.16 0.0000 1931.92 0.0000 

D4 0.0000 0.2316 1.0403 0.0029 -1.2053 -0.1172 4.6490 403.54 0.0000 2948.13 0.0000 

D5 0.0000 0.1774 0.7745 -0.0025 -0.8504 -0.1096 4.7610 458.06 0.0000 3370.23 0.0000 

S 0.0220 0.1687 0.5523 0.0159 -0.3955 0.2805 2.8968 47.32 0.0000 3464.53 0.0000 

Panel D            

USD Spot Mean St.Dev Max Median Min Skewness Kurtosis JB p-value ARCH Test p-value 

Original 0.0054 0.5023 2.5199 0.0000 -2.7263 -0.0291 5.0550 614.77 0.0000 41.67 0.0000 

D1 0.0000 0.3300 1.5914 -0.0019 -1.9528 -0.0234 4.2337 221.71 0.0000 970.42 0.0000 

D2 0.0000 0.2013 1.0977 0.0018 -1.0325 -0.0215 4.5270 339.45 0.0000 227.75 0.0000 

D3 0.0000 0.1394 0.6068 0.0006 -0.6355 0.0247 3.8141 96.75 0.0000 1724.58 0.0000 

D4 0.0000 0.0973 0.3784 -0.0005 -0.4590 -0.1345 4.0549 172.39 0.0000 2949.05 0.0000 

D5 0.0000 0.0714 0.2421 -0.0003 -0.2815 -0.0779 3.6024 56.32 0.0000 3343.41 0.0000 

S 0.0054 0.0832 0.2880 0.0018 -0.1953 0.3038 3.0206 53.77 0.0000 3469.43 0.0000 

USD Futures Mean St.Dev Max Median Min Skewness Kurtosis JB p-value ARCH Test p-value 

Original 0.0031 0.5124 2.3645 0.0050 -2.7455 -0.0206 4.9608 559.47 0.0000 30.44 0.0000 

D1 0.0000 0.3379 1.6411 0.0008 -2.0166 -0.0276 4.2686 234.52 0.0000 963.34 0.0000 

D2 0.0000 0.2044 1.0952 0.0016 -1.0697 -0.0229 4.5091 331.57 0.0000 220.89 0.0000 

D3 0.0000 0.1423 0.5866 -0.0001 -0.5586 0.0289 3.6825 68.23 0.0000 1711.68 0.0000 

D4 0.0000 0.0995 0.3981 0.0001 -0.4861 -0.1191 4.0859 179.76 0.0000 2949.86 0.0000 

D5 0.0000 0.0728 0.2354 -0.0001 -0.2708 -0.0597 3.5902 52.74 0.0000 3344.95 0.0000 

S 0.0031 0.0829 0.2895 -0.0012 -0.1999 0.2750 3.0115 44.01 0.0000 3468.86 0.0000 

 

St.Dev: Standard deviation 

JB: Jarque – Berra statistic 

ARCH Test: Engle’s Lagrange Multiplier (TR2) statistic.  

D1-D5 are the five wavelet scales.  
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Table 2: In-sample hedge ratios using wavelet and conventional hedging methods 

 

 Brent FTSE 100 Gold USD 

Wavelet hedge ratio 

D1 0.9348 0.9883 0.8227 0.9694 

D2 0.9849 0.9984 0.9106 0.9784 

D3 1.0168 1.0011 0.9605 0.9762 

D4 1.0405 0.9854 0.9783 0.9748 

D5 1.0627 0.9944 0.9914 0.9781 

Wavelet-OLS hedge ratio 

D1 0.9273 0.9873 0.8152 0.9683 

D2 0.9840 0.9982 0.9178 0.9795 

D3 1.0221 1.0011 0.9595 0.9760 

D4 1.0424 0.9836 0.9789 0.9748 

D5 1.0741 0.9990 0.9901 0.9771 
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Table 3: Portfolio variance comparison 

 

Panel A: In-sample portfolio variance 

Brent WU WFH WOLS WG WH 

Original 4.83322319 0.68701807 0.68176754 0.69872385 - 

D1 2.28253603 0.44967171 0.43834714 0.40213483 0.43838746 

D2 0.68705841 0.07935517 0.07919416 0.07099235 0.07918056 

D3 0.35061475 0.01834967 0.0181938 0.01379608 0.01819954 

D4 0.17144397 0.00867430 0.00840447 0.00492461 0.00840354 

D5 0.08022033 0.00449425 0.00413194 0.00150110 0.00413979 

Rank (1=best) Benchmark  4 2 1 3 

FTSE 100 WU WFH WOLS WG WH 

Original 1.49179453 0.03148753 0.03139709 0.03171182 - 

D1 0.70050274 0.02139405 0.02128086 0.01946207 0.02127788 

D2 0.21968523 0.00394713 0.00394641 0.00348674 0.00394572 

D3 0.10986708 0.00059306 0.00059292 0.00044234 0.00059281 

D4 0.05182694 0.00016933 0.00015494 0.00006434 0.00015509 

D5 0.02037019 0.00006689 0.00006687 0.00001835 0.00006727 

Rank (1=best) Benchmark  4 2 1 3 

Gold WU WFH WOLS WG WH 

Original 1.53112856 0.32981063 0.30812137 0.32486496 - 

D1 0.67452187 0.24481083 0.22154316 0.24775794 0.22154171 

D2 0.23102572 0.0311357 0.02951757 0.02799138 0.02952441 

D3 0.11773517 0.00413423 0.00393169 0.00278599 0.00393110 

D4 0.05877433 0.00055319 0.00052604 0.00027318 0.00052596 

D5 0.03523801 0.00007065 0.00006714 0.00002855 0.00006719 

Rank (1=best) Benchmark  4 1 3 2 

USD WU WFH WOLS WG WH 

Original 0.27389183 0.00271043 0.00251763 0.00256404 - 

D1 0.11842648 0.00158603 0.00146099 0.00113947 0.00146087 

D2 0.04400747 0.00036432 0.00034516 0.00029095 0.00034515 

D3 0.02092369 0.00012964 0.00011709 0.0000864 0.00011706 

D4 0.00985246 0.00003571 0.00002915 0.00001022 0.00002915 

D5 0.00584421 0.00002804 0.00002484 0.00000561 0.00002484 

Rank (1=best) Benchmark  4 3 1 2 
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Table 3 (contd.): Out-of-sample portfolio variance comparison 

 

Panel B: Out-of-sample Portfolio Variance 

Brent WU WFH WOLS WG WN 

Original 3.50663900 0.42177641 0.41227107 0.41193496 - 

D1 1.58302460 0.2660753 0.24738338 0.22666979 0.24718824 

D2 0.55863167 0.04917766 0.04974800 0.04365603 0.05013706 

D3 0.25035338 0.01958862 0.01970209 0.01404018 0.01957319 

D4 0.10770567 0.00521918 0.00578596 0.00449586 0.00556955 

D5 0.07412687 0.00125765 0.00185765 0.00040513 0.00155147 

Rank (1=best) Benchmark  4 3 1 2 

FTSE 100 WU WFH WOLS WG WN 

Original 0.56205363 0.02693962 0.02620831 0.02457513 - 

D1 0.23580221 0.01826307 0.01741400 0.01299250 0.01751350 

D2 0.09622728 0.00283116 0.00281487 0.00263592 0.00281354 

D3 0.04838609 0.00070847 0.00070641 0.00051819 0.00071037 

D4 0.01941908 0.00016596 0.00015794 0.00008511 0.00015830 

D5 0.01031176 0.00010486 0.00010414 0.00007557 0.00010275 

Rank (1=best) Benchmark  4 3 1 2 

Gold WU WFH WOLS WG WN 

Original 0.55347337 0.16933982 0.15454291 0.16249467 - 

D1 0.25604907 0.12534196 0.11026239 0.11899600 0.11032717 

D2 0.08043437 0.01633943 0.01484290 0.01424456 0.01475241 

D3 0.03717171 0.00184306 0.00172106 0.00146895 0.00172062 

D4 0.02361882 0.00034556 0.00031301 0.00015771 0.00031453 

D5 0.01303040 0.00003292 0.00003149 0.00004654 0.00003130 

Rank (1=best) Benchmark  4 3 1 2 

USD WU WFH WOLS WG WN 

Original 0.16613931 0.00097859 0.00099156 0.00096843 - 

D1 0.07085864 0.00058671 0.00059914 0.00041252 0.00059542 

D2 0.02655027 0.00013194 0.00013364 0.00010218 0.00013290 

D3 0.01342547 0.00004329 0.00003995 0.00002057 0.00003945 

D4 0.00737932 0.00001269 0.00001352 0.00000551 0.00001251 

D5 0.00253773 0.00000430 0.00000606 0.00002239 0.00000566 

Rank (1=best) Benchmark  4 3 1 2 

 

Panel C: In-sample and out-of-sample average rank of hedging models across all scales and assets 

  WU WFH WOLS WG WH/WN 

Average Rank In Sample 5.00 3.90 2.55 1.15 2.40 

Average Rank Out-of-Sample 5.00 3.15 2.95 1.40 2.50 
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Table 4 F-test of equality of portfolio variance 
 

Panel A: In sample F-Test of equality of variance 

Asset Horizon WFH     WOLS   WG WH WOLS WG WN WG WH 

Brent D1  accept Reject accept  reject accept  reject 

 D2  accept Reject accept  reject accept  reject 

 D3  accept Reject accept  reject accept  reject 

 D4  accept Reject accept  reject accept  reject 

 D5  reject Reject reject  reject accept  reject 

FTSE 100 D1  accept Reject accept  reject accept  reject 

 D2  accept Reject accept  reject accept  reject 

 D3  accept Reject accept  reject accept  reject 

 D4  reject Reject reject  reject accept  reject 

 D5  accept Reject accept  reject accept  reject 

Gold D1  reject 
Accep

t 
reject  reject accept  reject 

 D2  accept Reject accept  accept accept  accept 

 D3  accept Reject accept  reject accept  reject 

 D4  accept Reject accept  reject accept  reject 

 D5  accept Reject accept  reject accept  reject 

USD D1  reject Reject reject  reject accept  reject 

 D2  accept Reject accept  reject accept  reject 

 D3  reject Reject reject  reject accept  reject 

 D4  reject Reject reject  reject accept  reject 

 D5  reject Reject reject  reject accept 
 

reject 

Panel B: Out-of-sample F-Test of equality of variance 

Asset Horizon WFH     WOLS   WG WN WOLS WG WN WG WN 

Brent D1  accept reject accept  accept accept  accept 

 D2  accept accept accept  accept accept  accept 

 D3  accept reject accept  reject accept  reject 

 D4  accept reject accept  reject accept  reject 

 D5  reject reject reject  reject reject  reject 

FTSE 100 D1  accept reject accept  reject accept  reject 

 D2  accept accept accept  accept accept  accept 

 D3  accept reject accept  reject accept  reject 

 D4  accept reject accept  reject accept  reject 

 D5  accept reject accept  reject accept  reject 

Gold D1  accept accept accept  accept accept  accept 

 D2  accept accept accept  accept accept  accept 

 D3  accept reject accept  reject accept  reject 

 D4  accept reject accept  reject accept  reject 

 D5  accept reject accept  reject accept  reject 

USD D1  accept reject accept  reject accept  reject 

 D2  accept reject accept  reject accept  reject 

 D3  accept reject accept  reject accept  reject 

 D4  accept reject accept  reject accept  reject 

 D5  reject reject reject  reject accept  reject 
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Table 5: MCRR estimates 
 

Panel A: Brent      
 

Hedge Horizon WU WFH WOLS WG WH 
 

Original data 6.356960 1.836884 1.881271 2.086830   

D1 1.356155 0.633175 0.623811 0.630667 0.630667  

D2 0.678162 0.390851 0.398539 0.360413 0.392816  

D3 0.288627 0.063544 0.061831 0.050072 0.064361  

D4 0.734238 0.871018 0.854197 0.825759 0.872607  

D5 0.045541 0.161417 0.160866 0.099804 0.160682  

Panel B: FTSE 100      

Original data 2.640111 0.377684 0.368986 0.362332  

D1 0.920615 0.218726 0.201823 0.136983 0.199673 

D2 0.726635 0.134191 0.132165 0.140435 0.133940 

D3 0.311913 0.024092 0.023897 0.026718 0.024394 

D4 0.315177 0.032373 0.025533 0.010510 0.025239 

D5 0.282599 0.000870 0.002743 0.003059 0.002292 

Panel C: Gold      

Original data 2.154113 0.562533 0.726309 0.693793  

D1 1.054171 0.292985 0.329068 0.292718 0.322496 

D2 0.391429 0.406279 0.344628 0.226207 0.332342 

D3 0.125930 0.117914 0.112527 0.118316 0.114712 

D4 0.221394 0.024424 0.019411 0.019404 0.019893 

D5 0.308875 0.014894 0.011627 0.001814 0.012540 

Panel D: USD      

Original data 0.874643 0.040738 0.033507 0.032705  

D1 0.325977 0.021700 0.017967 0.016332 0.018883 

D2 0.275179 0.007110 0.008015 0.006809 0.008246 

D3 0.093960 0.008395 0.006730 0.006564 0.006731 

D4 0.138753 0.004196 0.001331 0.001128 0.001268 

D5 0.227967 0.000403 0.005412 0.001565 0.005399 
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Endnotes   

1Kamara et al. (2016) noted that in a well-segmented market with horizon clienteles, different assets are priced with different 

pricing kernels.  They found that value (liquidity) risk is priced over intermediate (short) horizons; long-horizon investors focus on 
investing in less liquid but high-return assets. For instance, highly leveraged hedge funds may prefer short-run horizons and liquid 
stocks.  In comparison, pension funds, mutual funds, and long-term investors prefer to invest in high-yield but less liquid assets.   

2Haushalter (2000) noted that oil and gas producers on average hedge nearly 30% of one-year production.  Brown et al. (2006) also 
noted that gold producers prefer selective hedging. 

3 www.bloomberg.com/news/articles/2015-08-04/chinese-airlines-benefit-as-oil. 
4 China Eastern Airlines incurred fuel hedging losses totalling $690 million in November, 2008, attributed to a massive price 

reduction of crude oil for February 2009 delivery, from $147.27 to $40.50 per barrel on the NYMEX.  The carrier used most of the 
contracts with maturities of two to three years to stabilize jet fuel costs. Cathay Pacific Airways also suffered losses in 2008 (see 
www.chinadaily.com.cn/bizchina/2009-01/13/content_7390689.htm). 

5 For the same time-period, the number of observations obtained is different for different time-frequencies.  
6Chen et al. (2004) noted that the long-run refers to an investment horizon which is longer than 8 weeks. 
7The hedging effectiveness is typically measured by the percentage reduction in the variance of the spot returns (unhedged 

portfolio) relative to the variance of the hedged portfolio.  In and Kim (2006) defined this degree of hedging effectiveness as equal to 
the square of the correlation between the spot and futures price changes. 

8A β = 0 implies unhedged position; β = 1 signifies a fully hedged position; and β< 1 implies a partial hedge.   
9The inclusion of the EC is consistent with the finding of cointegration for all spot and futures prices for the assets in this study.  

As Brenner and Kroner (1995) noted, if markets are cointegrated, the basis is stationary.  Cointegration test results are available upon 
request.  

10Regarding the consequence of differencing matched with the long-investment horizon, Geppert (1995) noted that the regression-
based method results in two complications: (1) the use of non-overlapping data tends to reduce the sample size; and (2) the use of 
overlapping differences introduces spurious statistical properties into the series.  The wavelet method applied to daily data in this study 
(similar to Lien and Shrestha (2007)) alleviates both problems.  

11The wavelet GARCH model is essentially the same as in equations 4-6 with the exception that the dependent variables are 
wavelet-decomposed returns.  Also, the error correction term (EC) (equations 4-6) is specific to the original returns.  Since the original 
returns are decomposed into horizon-specific returns, the inclusion of the EC in the mean equations for wavelet models is debatable.  
The results from alternative models without the EC term are qualitatively similar.  The inclusion of the EC term is based on the notion 
that a long-run no-arbitrage relationship exists even though the investor may have a preference for a short run hedge horizon.   

12 Thanks to an anonymous referee for pointing this. 
13While the updated sample is arbitrary, it reflects the fact that trading in the DX (USD futures on the Intercontinental Exchange) 

has increased since 2005.   
14The aggregate rank for WG (23) is based on its asset-specific ranks: Brent (5), FTSE200 (5), Gold (8), and USD (5). 
15In particular, in the case of the GARCH and WG, an iterative updating process is followed to forecast the out-of-sample hedge 

ratios. Simply, when the in-sample maximum likelihood optimization converges, it produces the hedge ratio for the next day (t+1).  
Next, one out-of-sample observation is added to estimate the hedge ratio for t+2.  This iterative process is repeated until all out-of-
sample observations are exhausted.  At each step, there is a risk that the model may not converge.   In case of non-convergence, the 
earliest observation of the in-sample is dropped for re-optimizing until the model converges.  When the model converges, the hedge 
ratio is retrieved for calculating the portfolio.  The purpose is to allow the optimization algorithm to bypass a difficult area of the 
likelihood surface.   Once convergence occurs, the algorithm returns to the normal updating of the hedge ratio using only in-sample 
data. Non-convergence issues occurred mostly at higher scales.   

16The rankings of the hedging strategies based on portfolio variance are as follows: WG (28), WN (50), WOLS (59), WFH (63), and 
WU (100). 

17Thanks to an anonymous referee for suggesting this test. 
18Analytical results, including all statistical tests, are available upon request from the authors. 
19Yang and Lai (2009) noted that transaction cost ranges between 0.005% and 0.01% at major exchanges. 
20Papers by Conlon and Cotter (2012), Harris, and Shen (2006) reported that the kurtosis of a hedged portfolio is greater than that 

for an unhedged portfolio across scales.  Further, the authors claimed that when hedging effectiveness is measured using variance 
reduction and the value at risk (VaR), excess kurtosis reduces the effectiveness of a hedged portfolio compared to the VaR 
minimization metric.  This result suggests that researchers should consider higher moments to account for the effects of VaR 
minimization in reducing tail risk at longer time-horizons. 

21 Thanks to an anonymous referee for pointing this out.   

 

                                                 


