Making the Most of Experience Data:
An Augmented Beta-Binomial Approach
Discussant: P.J. Sweeting

Presented at the Living to 100 Symposium
Orlando, Fla.

January 5-7, 2011

Copyright 2011 by the Society of Actuaries.

All rights reserved by the Society of Actuaries. Permission is granted to make brief excerpts for a
published review. Permission is also granted to make limited numbers of copies of items in this monograph
for personal, internal, classroom or other instructional use, on condition that the foregoing copyright notice
is used so as to give reasonable notice of the Society’s copyright. This consent for free limited copying
without prior consent of the Society does not extend to making copies for general distribution, for
advertising or promotional purposes, for inclusion in new collective works or for resale.



Abstract

The popular beta-binomial approach to credibility offers an attractive way of combining the
results of experience and risk rating. However, when applied to a particular age, the information
available from surrounding ages is ignored. In this paper, | propose an augmentation to the beta-
binomial approach that not only allows for the information contained in ages near to the age under
analysis but also for variation in risk types across the different ages.



Introduction

When considering the appropriate mortality rate to use for a group of lives, two sources of
data are available. The first is the mortality experience of that group of lives. Calculating a mortality
rate using this approach is known as experience rating. However, the smaller the number of lives,
the greater the extent to which calculated mortality rates reflect random volatility rather than the
underlying rate of mortality. It is therefore useful to consider the characteristics of the lives under
review. The mortality rate for the subsection of a broader population with the same characteristics
can then also be calculated and used instead. This is known as risk rating.

Risk rating is, though, imperfect. For any group of lives there may well be idiosyncrasies that
have an impact on mortality rates that will not be picked up through risk rating. Consider, for
example, the mortality experience of a group of pension plan members. This mortality might be
influenced by hard-to-measure factors such as a sense of community. Such factors will not be
allowed for in a risk-rating approach using, say, socio-economic group as the key variable.

In practice, therefore, the results of experience and risk rating will be combined using a
measure of credibility. This gives an increasing weight to the result of experience rating the larger
the number of observations is. However, importance of idiosyncratic factors means it is essential to
make as much use of experience data as possible.

Credibility can be expressed as a factor by which the results of experience and risk rating are
combined, as shown in Equation 1:
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Here, the initial mortality rate for age %, 4., is estimated as a weighted average of the rate
derived from mortality experience, g, and the rate derived from the risk factors, gx. The term I is

the credibility factor, which ranges from zero (for no credibility) to one (for full credibility).

It is also possible to combine the results of experience and risk rating through a single
expression, although here it is still possible to calculate the credibility factor implied by the resulting
mortality rate. This can be useful not only for finding the most appropriate set of mortality
assumptions but also for calculating margins for error as discussed by Hardy and Panjer (1998). One
method that is particularly relevant for mortality rating is the beta-binomial approach. This Bayesian
approach is discussed by Mayerson (1964) and others, with more detail being given in many
standard textbooks on credibility, such as that by Herzog (1999). The mortality rate at age x derived
from experience, 4., is calculated as the number of deaths at that age, d.., divided by the initial
number of lives, I,, with I, being adjusted to reflect any entrants to or exits from the population

that might affect the level of exposure. However, it is assumed that underlying mortality rate g, has

a beta distribution with parameters &+ and ;.. The expected underlying mortality rate is
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distribution of the underlying rate are known, & 4 and . can be determined using the method of

moments.

Because the number of deaths occurring at each age has a binomial distribution, the
Bayesian probability of there being dy deaths from a group of I, lives can be found by using

Efg.) m o (8 4+ f2.) in the calculation of the binomial probability formula. The result is that

the posterior distribution of the expected number of deaths also has a beta distribution with
parameters @+ § x and iz + 5 + F15. This means the expected number of deaths is:
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If 4, is substituted for Bg; |, then Bailey (1950) showed this can be rewritten as:
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where the credibility factor Z'm [/ {i; + @ + fz.2).

While this technique gives an intuitively attractive way of combining the results of
experience and risk rating, it has a serious drawback. This is that the information on the underlying
mortality rate at age x that can be gleaned from the mortality experience from ages either side of
age X is ignored. This is important, as even the most robust risk-rating approach can overlook
underlying factors important to a particular group of lives, as discussed above. These factors can
only be detected through experience rating. The solution is to augment the credibility approach such
that information on mortality for ages * +1, & &2 and so on can be used to supplement the
information available on mortality at age x, thus reducing the reliance on risk rating. In this paper, |
therefore propose an approach to make better use of the information available from the full
mortality experience.



Assumptions and Notation

The objective is to arrive at a single initial mortality rate that can be applied to a group of
lives age x that adequately reflects their average level of mortality.

Each individual is assumed to be of some homogeneous mortality group g where
£ = 1,2, ..., as described by Richards (2008). Each group refers to a combination of markers, such
as whether the individual is a smoker or not, or the socio-economic group to which the individual
belongs. The number of deaths at age x for group g is therefore denoted dmﬂ' with the

corresponding number of lives being ., and the initial mortality rate derived from experience

therefore being:
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The above information relates to the estimate derived from experience rating. For the risk-
rating estimate, the mortality rate for individuals of group gy and age x in the more general

population—or as calculated from some other external source—is g% g

As implied above, it is assumed the mortality experience is calculated over a period of one
calendar year to give an annual rate. For a longer period of investigation, rates would need to be
scaled accordingly.



Approach

The philosophy behind the approach proposed here is that the underlying pattern of
mortality rates combined with the rates of mortality at a range of ages can provide information on
the rate of mortality at a particular age.

The simplest approach is to assume that, for older ages, the natural logarithm of mortality
rates is approximately linear so, ignoring all subscripts apart from x:
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where 2 and b are constants. It is not essential that this relationship holds for the full range of ages
considered, only that it is approximately true for the range of a few years around the age being
analyzed. This means, therefore, that to remain valid, this approach can be used only for a range of a
few years either side of the age for which mortality rates are being calculated.

The relationship in Equation (5) can then be used, with some adjustment, to artificially
increase the number of deaths observed in each group, g, as follows. First, choose the number of

years either side of the age for which the mortality rate is being estimated that will be used to give
additional information. Let this bandwidth be F years. Then, fit Equation (5) to the ages x — h to
Xt h

There are a number of ways in which Equation (5) can be fitted. The most straightforward is
to use ordinary least squares regression to find @ and &, so that the estimated mortality rate is given
directly as ¢@*&% However, such an approach ignores important information, in particular the size of
the population at each age. For consistency with the binomial model used in the calculation of
credibility, it is possible to use a binomial maximum likelihood approach to fit Equation (5). This
involves first defining the probability that the number of deaths will be as observed for a particular
age x as:

beg! ‘
e D ) = e (AR (1 = G )00
ﬁﬁ-ﬁ’{m‘?ﬁ.ﬁ - ‘{x.ﬁ}"

(6)

where ﬂ.‘m is the random number of deaths for age x and group g, and Q‘;Eﬁ is the regression
estimate of gf. In the above example, the calculation of &f 4 is trivial. However, it becomes more

interesting if a likelihood function is constructed from probabilities spanning ages from x —h to

x+h andifIn ﬁl{f is a linear function of age. Adding the sub- and superscripts back to Equation (5),

the linear relationship estimated can be defined as:
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This can be rearranged to give ﬁ.‘?ﬁi‘m in terms of the other variables as:
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The parameters @ and b are then chosen to maximize the likelihood function, L:
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A more common alternative is Poisson maximum likelihood estimation based. The standard
approach is described by Brouhns et al. (2002) and others. Under this approach, the probability that
the number of deaths will be as observed for a particular age x is:
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where Az . m £ 1. This means that the likelihood function to be maximized is:
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Whatever approach is used, the result is a series of regression estimates, ﬂ,{q. This means

the number of deaths that would have been observed in group g at age x from lives actually age

X « & had those lives actually been age x can be calculated as:
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At this stage, it is possible simply to aggregate the number of lives and the number of
deaths. However, this gives an equal weight to the experience at each age & * fi. Because a stable
population will have experience data that decreases with age, and because the relevance of
mortality data will decrease the further away the analysis moves from the age of interest, it makes
sense to weight the information somehow. One approach is to use a weighting system based on a
kernel function.

A kernel function is a function that weights observations in relation to their distance from
the point of interest. These functions are typically used to smooth data. The area under a kernel
function is equal to one, but an adjustment is needed when a kernel is applied to discrete data. In
particular, this means that if a bandwidth of f is chosen and the kernel weight is given by Rlml» the

kernel is scaled such that E?l-i'rkl g m L.

However, following this approach would do nothing to increase the effective number of lives
used. Instead, the kernel weights should be scaled such that &g = 1. This means that the deaths—

and lives— at age x for group g are included at their full weight, while the contribution of the
deaths—and lives— for ages ¥ & & are given by &, which can be anything from zero to one
depending on the form of kernel used. The total scaled number of deaths for age x and group 3

given a bandwidth of 7, @34 can be defined as:
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Similarly, the number of lives can be defined as:
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This means that for each group, g, the expected initial mortality rate conditional on the
number of deaths experienced and a bandwidth of ki can be derived from the beta-binomial

credibility formula in Equation (2):
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where FM.{ and Fgﬁﬂ; are the parameters from the beta distribution for group g.

It is worth discussing further the derivation of & ;.4 and Faw.g- These parameters define the
distribution of the underlying mortality rate for each group g at each age x. This mortality rate might
be calculated from, say, the population mortality rate for a particular socio-economic group at each
age. The mean population mortality rate for each group g and age x has already been defined as

:}Eﬁ. If the lives at each age in each group are assumed to be homogeneous, then the variance the
underlying mortality rate can be calculated as #5401 = §%.4)/Lzs where L, 4 is the number of lives

age % from group g in the whole population, adjusted for entrants and exits (probably immigration

and emigration in this case) as appropriate.

If the underlying rate of mortality is assumed to have beta distribution, then mean and
variance of these rates can be used to calculate ﬁnﬂ and ﬁgﬁg at each age and for each group

using the method of moments.

One drawback of the by-group approach is that it requires separate mortality rates to be
calculated for each group g. This means the overall level of credibility is reduced, particularly at

older ages where data is limited. However, a review by Guilley et al. (2010) concludes that for
extreme old ages, where the data is most sparse, the difference in mortality between socio-
economic groups is significantly reduced as genetic factors become more important. This means a
single group can be used.

Another potential issue is the choice of bandwidth. As alluded to above, a large bandwidth
would stretch the assumption that mortality rates are log-linear with respect to age. However, using
this approach with a bandwidth of only three years either side of the age of interest can give result
in almost four times the information on deaths if an Epanechnikov kernel form is used.

The fact that a bandwidth must be chosen is also an issue at the upper age range. However,
this can be dealt with by reducing the bandwidth as the upper age limit is approached, so that at the
highest age only information from that age is used. The practical impact of this approach is that an
increasing weight is given to the risk-rating mortality estimate, which, in the absence of any better
data, seems appropriate.



Conclusion

Credibility is an important way of combining the results of experience and risk rating.
However, it is important that as much information as possible is used in the calculation of the
mortality rates, including information from rates either side of the rate under analysis.

This technique can be particularly helpful at older ages where the number of lives may be
small. Indeed, where the number of lives varies significantly from age to age, as is often the case for
very high ages, this approach can allow experience data to provide a useful contribution at an age
where the actual experience is limited, providing there is greater experience at surrounding ages.

The proposed approach does have limitations. In particular, the division of the mortality
experience into homogeneous groups reduces the degree of credibility, although the absence of
grouping at older ages limits the impact of this problem. The choice of bandwidth must also be made
carefully to ensure that the increase in useful data does not mean that log-linearity ceases to be a
realistic approximation. However, this approach does offer the prospect that experience data might
be able to play a bigger role in the mortality rates assumed.
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