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INCIDENCE BOUNDS ON MULTIJOINTS AND GENERIC

JOINTS

MARINA ILIOPOULOU

Abstract. A point x ∈ Fn is a joint formed by a finite collection L of
lines in Fn if there exist at least n lines in L through x that span Fn. It

is known that there are .n |L|
n

n−1 joints formed by L.
We say that a point x ∈ Fn is a multijoint formed by the finite

collections L1, . . . ,Ln of lines in Fn if there exist at least n lines through
x, one from each collection, spanning Fn. We show that there are .n

(|L1| · · · |Ln|)
1

n−1 such points for any field F and n = 3, as well as for
F = R and any n ≥ 3.

Moreover, we say that a point x ∈ Fn is a generic joint formed by
a finite collection L of lines in Fn if each n lines of L through x form
a joint there. We show that, for F = R and any n ≥ 3, there are

.n
|L|

n

n−1

k
n+1
n−1

+ |L|
k

generic joints formed by L, each lying in ∼ k lines of

L. This result generalises, to all dimensions, a (very small) part of the
main point-line incidence theorem in R3 in [16] by Guth and Katz.

Finally, we generalise our results in Rn to the case of multijoints and
generic joints formed by real algebraic curves.

1. Introduction

A point x ∈ Fn, where F is a field and n ≥ 2, is a joint for a finite collection
L of lines in Fn if there exist at least n lines in L passing through x, whose
directions span Fn. We denote by J(L) the set of joints formed by L. The
joints problem asks for the optimal upper bound on |J(L)|, depending only
on |L|, and first appeared in [5]. After partial progress (see [25], [26], [11],
[10]), it was fully solved by Guth and Katz in R3 (in [15]), and then in Rn

by Quilodrán (in [24]) and independently by Kaplan, Sharir and Shustin
(in [23]), who showed that1

(1) |J(L)| .n |L|
n

n−1 .

All solutions to the joints problem are based on the polynomial method,
which was introduced in the area by Dvir for the solution of the Kakeya
problem in finite fields (see [8]). Note that (1) is known in fact in any field
setting (for example, see [7], [29]); the proof is similar to the one in Euclidean

1In whatever precedes and follows, any expression of the form A . B means that there
exists an explicit non-negative constant M , such that A ≤ M · B, while any expression
of the form A .b1,...,bm B means that there exists a non-negative constant Mb1,...,bm ,
depending only on b1, ..., bm, such that A . Mb1,...,bm · B. In addition, any expression
of the form A & B or A &b1,...,bm B means that B . A or B .b1,...,bm A, respectively.
Finally, any expression of the form A ∼ B means that A . B and A & B, while any
expression of the form A ∼b1,...,bm B means that A .b1,...,bm B and A &b1,...,bm B.

1
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space. Joints are interesting in their own right, playing an important role
in incidence geometry, but also have connections with harmonic analytic
problems (see the last subsection of the Introduction).

We now vary the notion of a joint, to form the notion of a multijoint: a joint
formed by n collections of lines in Fn.

Definition 1.1. Let L1, . . . ,Ln be finite collections of lines in Fn. We say
that a point x ∈ Fn is a multijoint formed by the n collections of lines if,
for each i = 1, . . . , n, there exists a line li ∈ Li passing though x, so that
the directions of l1, . . . , ln span Fn. We denote by J(L1, . . . ,Ln) the set of
multijoints formed by L1, . . . ,Ln.

Naturally, the question arises of whether there exists a multilinear analogue
of (1) in the case of multijoints.

Question 1. (Carbery) Is it true that, for any field F and any n ≥ 3,

|J(L1, . . . ,Ln)| .n (L1 · · ·Ln)
1

n−1 , for all finite collections L1, . . . ,Ln of L1,
. . . , Ln, respectively, lines in Fn?

It is conjectured (Carbery) that the answer to this question is positive. In
fact, estimates suggestive of this have been shown by Carbery and Valdimars-
son in [4], in any field setting and dimension. Moreover, we have answered
Question 1 in the affirmative in the case of R3 in [21]. Our proof in [21],
however, makes use of Guth–Katz polynomial partitioning (which relies on
properties of Euclidean space), and the fact that the number of critical lines
contained in an algebraic hypersurface in R3 is bounded from above, which
does not necessarily hold in higher dimensions. Here, we answer Question
1 in the affirmative in the case of Rn, for all n ≥ 3 (for n = 2 it is obvious
in any field setting), as well as in the case of F3, where F is any field. In
particular, we show the following.

Theorem 1.2. Let L1, L2, L3 be finite collections of L1, L2 and L3, re-
spectively, lines in F3, where F is an arbitrary field. Then,

|J(L1,L2,L3)| ≤ c (L1L2L3)
1/2,

where c is an absolute constant.

Theorem 1.3. Let n ≥ 2. Let L1, . . . ,Ln be finite collections of L1, . . . , Ln,
respectively, lines in Rn. Then,

(2) |J(L1, . . . ,Ln)| ≤ cn(L1 · · ·Ln)
1/(n−1),

where cn is a constant depending only on n.

We also generalise Theorem 1.3 to the case of multijoints formed by real
algebraic curves.

Our techniques are based on the polynomial method. More particularly, we
use a probabilistic polynomial degree reduction argument in the case of F3,
when F is an arbitrary field, and Guth–Katz partitioning in the case of Rn
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(see an informal discussion in the subsection that follows).

Now, let us go back to joints.

Definition 1.4. We say that a point x ∈ Fn is a generic joint formed by a
finite collection L of lines in Fn if, whenever n lines in L pass through x,
they form a joint there. For all k ≥ n, we denote by Jk(L) the set of generic
joints formed by a finite collection L of lines in Fn, each of which lies in at
least k and fewer than 2k lines of L.

We want to know whether one can exploit the property of genericity, to find
better estimates on the size of sets of generic joints than the ones that hold
in the non-generic situation.

Let us make a first attempt to answer this question. A standard probabilistic
argument (see [3]) ensures that, thanks to the genericity hypothesis, (1)
implies that

(3) |Jk(L)| .n
L

n
n−1

k
n

n−1

,

for any finite collection L of L lines in Rn, and any k ≥ n (indeed, by
randomly choosing each line through each point of Jk(L) with probability

1/k, we see that there exists a subcollection L̃ of L, consisting of ∼n L/k
lines, such that each point in a large proportion of Jk(L) lies in at least n
of these lines; now, due to the genericity hypothesis, the points in this large

proportion of Jk(L) are joints formed by L̃, and thus, by (1), they number

.n |L̃|
n

n−1 ∼n
L

n
n−1

k
n

n−1
.)

However, in R2, the Szemerédi–Trotter theorem (see next section) implies
that

|Jk(L)| .
L2

k3
+

L

k
,

which is a better estimate than (3) (note that the Szemerédi–Trotter theorem
fails in finite-field settings). Moreover, an immediate consequence of the
proof of the main point-line incidence theorem in [16] by Guth and Katz is
that, in R3,

|Jk(L)| .
L3/2

k2
+

L

k
,

which, again, is a better estimate than (3). Therefore, the following question
arises.

Question 2. Is it true that |Jk(L)| .n
L

n
n−1

k
n+1
n−1

+ L
k , for all k ≥ n, for

any collection L of L lines in Rn?

(Note that the above-mentioned proof of Guth and Katz makes use of the
fact that an algebraic hypersurface in R3 contains a bounded number of
critical lines, a fact which is not always true in higher dimensions.)

Here, we answer Question 2 in the affirmative:
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Theorem 1.5. Let n ≥ 2. Let L be a finite collection of L lines in Rn.
Then,

|Jk(L)| ≤ cn

(
L

n
n−1

k
n+1
n−1

+
L

k

)

for all k ≥ n, where cn is a constant depending only on n.

We also generalise Theorem 1.5 to the case of generic joints formed by real
algebraic curves. Our techniques are based on Guth–Katz partitioning.

Note that the statement of Theorem 1.5 does not always hold in the non-
generic case in Rn. Indeed, we now construct a counterexample in Rn, where
the joints are points in the lattice square {0, 1, . . . , N}n−1 in the hyperplane
{xn = 0}, each with a bush of rich (i.e. with a lot of these points) lines
in {xn = 0} through it, and a line in Rn through it orthogonal to the
hyperplane:

We say that a point y ∈ Zd is visible from another point x ∈ Zd if the
line segment in Rd connecting x with y does not contain any other point
of Zd. For any N ∈ Z, let Ad(N) be the number of points in the lattice
{0, 1, . . . , N}d that are visible from 0 ∈ Zd. It is known (see [18]) that

limN→∞
Ad(N)
Nd = 1

ζ(d) , where ζ is the Riemann zeta function. This means

that, for N sufficiently large, ∼d Nd points in {0, 1, . . . , N}d (i.e. pretty
much all the points of that square lattice, up to multiplication with con-
stants) are visible from the origin. In particular, for any fixed α ∈ (0, 1) and

N large, there are ∼n Nα(n−1) points in the square lattice {0, 1, . . . , Nα}n−1

that are visible from the origin. This means that, on the hyperplane {xn =

0} in Rn, there exist ∼ Nα(n−1) lines through 0 ∈ Rn, each containing
∼n 1 points of ({0, 1, . . . , Nα}n−1 \ {0})× {0}, and thus ∼n N1−α points of
{0, 1, . . . , N}n−1 ×{0} := Λ. Let L0 be the set of these lines. Now, for each
y ∈ Λ, we translate each line of L0 so that it passes through y; let Ly be the
set of resulting lines. Now, if each line in Ly intersects [0, N ]n−1 × {0} at a
line segment of length ∼n N , we set L′

y := Ly. Otherwise, we set L′
y to be

the set of lines on {xn = 0} that are the reflections of the lines in Ly with
respect to the hyperplane {x1 = y1} in Rn, where y1 is the first coordinate
of y; in this case, each of these reflected lines intersects [0, N ]n−1 ×{0} at a
line segment of length ∼n N . Therefore, each line in L

′
y contains ∼n N1−α

points of Λ. We have therefore constructed a set L
′ of ∼n

Nn−1Nα(n−1)

N1−α

lines in the hyperplane {xn = 0} in Rn, such that each point of Λ lies in
∼n Nα(n−1) of the lines. Now, for each point of Λ, we consider a line in Rn

orthogonal to the hyperplane, passing through the point. Let L be the union

of the set of these lines with L
′. It is clear that |L| ∼n

Nn−1Nα(n−1)

N1−α +Nn−1,

J(L) = Λ, and each point of J(L) lies in ∼n k := Nα(n−1) lines of L. And it

is easy to see that, for α ∈ ( 1
n+1 , 1), it does not hold that |J(L)| .n

L
n

n−1

k
n+1
n−1

+L
k .

Strategy. Our proofs will be carried out with the use of the polynomial
method. Here we give a very rough description of our main idea. It is based
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on the following standard lemma, whose version in Rn was Quilodrán’s basic
argument for the solution of the joints problem in [24]:

Lemma 1.6. Let F be a field, n ≥ 2. Let J be a set of joints formed by
a collection L of lines in Fn. If J lies in the zero set of some non-zero
polynomial p ∈ F[x1, . . . , xn], then there exists a line in L containing at
most deg p points of J .

In particular, Quilodrán deduced (1) in [24], combining Lemma 1.6 for F = R

with the following Lemma, which was used by Dvir in [8] for the solution of
the Kakeya problem in finite fields.

Lemma 1.7. Let F be a field, n ≥ 2. For any finite set P of points in Fn,
there exists a non-zero polynomial p ∈ F[x1, . . . , xn], of degree .n |P|1/n,
vanishing on P.

Quilodrán’s proof of (1) consists in applying Lemma 1.7 for a set of joints in
Rn, taking out of the set of lines the one that contains few joints, together
with the joints it contains, and continuing iteratively until all the joints
are removed; eventually we see that in total the joints cannot be too many,
since in each step only few joints were removed. More precisely, this iterative
process, which has been generalised in any field setting (see [7], [29]), shows
that, for any finite collection L of lines in Fn, |J(L)| is equal to at most
the number of steps in the iterative process times the maximal number of
joints that can be removed in each step, i.e. |J(L)| .n |L||J(L)|1/n, and

thus |J(L)| .n |L|
n

n−1 .

When counting multijoints, we would like to again exploit Lemma 1.6, and
deduce our desired estimates via a similar iterative process. In particu-
lar, if L1, . . . ,Ln are finite collections of L1, . . . , Ln, respectively, lines in
Fn, with L1 ≤ . . . ≤ Ln, then we know by Lemma 1.7 that there ex-
ists a non-zero polynomial p, of degree .n |J(L1, . . . ,Ln)|

1/n, vanishing on
J(L1, . . . ,Ln). However, using such a polynomial and applying an iterative
process as in the case of joints with the help of Lemma 1.6, we get that
|J(L1, . . . ,Ln)| ≤ deg p (L1+ . . .+Ln) .n |J(L1, . . . ,Ln)|

1/n(L1+ . . .+Ln),

and so |J(L1, . . . ,Ln)| .n (L1 + . . . + Ln)
n

n−1 , an upper bound worse than

(L1 · · ·Ln)
1

n−1 . The reason is that the degree of our vanishing polynomial
is too large for us to get our desired bound in this case. So, we need to find
a polynomial of degree considerably lower than |J(L1, . . . ,Ln)|

1/n, whose
zero set vanishes on at least a large proportion of our set of multijoints, and
then hope that the iterative process will give the desired estimate. 2 In the
case of multijoints in F3, this will be achieved via a probabilistic polynomial
degree reduction argument, similar to the ones appearing in [16] and [14]. In
the case of multijoints in Rn, it will be done using Guth–Katz polynomial
partitioning. More precisely, we will show that, if the desired multijoints

2Note that there exists a polynomial in F[x1, . . . , xn], of degree . L
1/(n−1)
1 , vanishing

on all the lines of L1, and thus on J(L1, . . . ,Ln) (see Lemma 2.5). However, this degree
is again too large to imply the estimate we want; we would only get |J(L1, . . . ,Ln)| .n

L
1/(n−1)
1 Ln.
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estimate holds in one dimension lower (which implies an estimate on our
multijoints involving n − 1 of our collections of lines), then a large propor-
tion of our set of multijoints will be lying on the zero set of a polynomial of
low enough degree; the fact that our desired estimate obviously holds in R2

allows us to close the induction.

In the case of generic joints in Fn, we have shown in [3] that, using Lemma 1.6
and Quilodrán’s argument above, but counting each joint as many times as
the lines passing through it, we only get (3) (note that a generic joint formed
by a collection of lines remains a joint after the removal of any line through
it, as long as there remain at least n lines passing through it). Therefore,
we again wish to find a non-zero polynomial of considerably lower degree,
vanishing on at least a large proportion of our set of joints; and then this
Quilodrán-style argument will imply the estimate we want. We will find such
a polynomial in Rn using Guth–Katz partitioning. Similarly to the multi-
joints case, we will show that, if our desired estimate holds in one dimension
lower, then a large proportion of our set of joints will lie on the zero set of
a non-zero polynomial of low enough degree. The fact that our desired es-
timate holds in R2 (by the Szemerédi–Trotter theorem) closes the induction.

Connection with Kakeya conjectures. We would like to conclude this
section by explaining the connection of joints and multijoints with Kakeya
conjectures in harmonic analysis. In particular, the joints and multijoints
problems are discrete analogues of, respectively, the maximal Kakeya opera-
tor conjecture and the endpoint multilinear Kakeya problem (the latter was
solved by Guth in [13]):

Maximal Kakeya operator conjecture. Let Tω, for ω ∈ Ω ⊂ Sn−1,
be a tube in Rn, with direction ω, length 1 and cross-section an (n − 1)-
dimensional ball of radius δ. If the set Ω of directions is a δ-separated
subset of Sn−1, then

(4)

∫

Rn

#{Tω’s through x}
n

n−1 dx .n log

(
1

δ

)
· δn−1#{Tω’s}.

The endpoint multilinear Kakeya problem is a multilinear version of the
maximal Kakeya operator conjecture, and was solved by Guth in [13], who
improved the already existing result by Bennett, Carbery and Tao (see [2]).

Endpoint multilinear Kakeya theorem. (Guth, [13]) Let T1, ..., Tn

be n essentially transversal 3 families of doubly-infinite tubes in Rn, with
cross section an (n− 1)-dimensional unit ball. Then,
∫

x∈Rn

(
#{tubes of T1 through x} · · ·#{tubes of Tn through x}

)1/(n−1)
dx

(5) .n (|T1| · · · |Tn|)
1/(n−1).

3The expression “essentially transversal” means that, for all i = 1, ..., n, the direction
of each tube in the family Ti lies in a fixed c

n
-cap around the vector ei ∈ Rn, where the

vectors e1, ..., en are orthonormal.
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In particular, if E(T1, · · · ,Tn) is the set of points in Rn each lying in at
least one tube of the family Ti for all i = 1, ..., n, (5) implies that

(6) voln(E(T1, ...,Tn)) .n (|T1| · · · |Tn|)
1/(n−1).

It is natural to ask what the analogues of the above would be, if the tubes
were shrunk to lines. To formulate such a discrete analogue of the maximal
Kakeya operator conjecture, one could ask whether it is possible to have
that, for any collection L of L lines in Fn,

(7)
∑

x∈J(L)

#{lines in L through x}
n

n−1 .n L
n

n−1 .

Without the genericity hypothesis, this inequality clearly fails in finite-field
settings, but we believe it may be true when F has characteristic 0. Let us
mention here that (7) has been recently proved for generic joints in any field
setting by Hablicsek (in [17]). Moreover, we have shown (7) in R3 in [20],
without the genericity hypothesis, but with an extra logarithmic factor of
L in its right-hand side, which we believe is not necessary (the logarithmic
factor of 1/δ on the right-hand side of (4) reflects the fact that two tubes
may intersect a lot; two lines, on the other hand, intersect at at most one
point).

However, Theorem 1.5 which we prove in this paper implies that, in Rn, the
genericity hypothesis ensures much better bounds than (7):

Corollary 1.8. Let L be a finite collection of L lines in Rn, n ≥ 2. For
each x ∈ J(L), we denote by l(x) the number of lines of L passing through
x. Then,
(8) ∑

{x∈J(L): x generic and l(x).nL1/2}

l(x)q .n,q L
n

n−1 , for each 0 ≤ q <
n+ 1

n− 1
,

and

(9)
∑

{x∈J(L): x generic and l(x)&nL1/2}

l(x)q .n,q L
q, for each q > 1.

In other words, (8) holds when the exponent q on the left-hand side is
considerably larger than the exponent on the right-hand side 4, while in
(9) the exponents on both sides are equal but considerably lower than n

n−1 .

Note that, as we have explained earlier, Hablicsek has proved (8) in any
field setting, however for 0 ≤ q ≤ n

n−1 , and (9) in any field setting, but for
q = n

n−1 .

4It might be interesting to investigate to what extent inequalities such as (8) in Rn,
where the exponent on the left-hand side is considerably larger than n

n−1
, relate to Wolff’s

heuristic in [31] that joints estimates imply lower bounds on the Minkowski dimension of
Kakeya sets; in the heuristic, an estimate with exponent n

n−1
is being used, which arises

via a probabilistic argument similar to the one giving (3).
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Let us finally mention that it is conjectured by Carbery that, for any field
F and any n ≥ 3, ∑

x∈J(L)

N(x)
1

n−1 .n L
n

n−1 ,

where N(x) denotes the number of linearly independent n-tuples of lines of
L through x. Note that N(x) .n #{lines of L through x}n (with equality up
to multiplication with constants only for generic joints), and thus Theorem
1.5 implies that the statement of the conjecture is true in the generic case
in Rn.

As for our multijoints estimate in Rn, it is clearly a discrete analogue of (6).

Remark. It is also conjectured by Carbery that, for any transversal col-
lections L1, . . . ,Ln of L1, . . . , Ln lines in Fn (transversal in the sense that,
whenever n lines, one from each collection, meet at a point, then they form
a joint there), then
(10)∑

x∈J(L1,...,Ln)

(#{ lines of L1 through x} · · ·#{ lines of Ln through x})
1

n−1 .n

.n (L1 · · ·Ln)
1

n−1 ,

an inequality which is the discrete analogue of Guth’s endpoint multilinear
Kakeya theorem. In [22], we have essentially shown (10) in R3. More pre-
cisely, we have proved that, if L1, L2, L3 are transversal, finite collections of
L1, L2 and L3, respectively, lines in R3, and, for each x ∈ J(L1,L2,L3) and
i = 1, 2, 3, Ni(x) denotes the number of lines of Li passing through x, then

∑

{x∈J(L1,L2,L3): Nm(x)>1012}

(
N1(x)N2(x)N3(x)

)1/2
. (L1L2L3)

1/2,

where m ∈ {1, 2, 3} is such that Lm = min{L1, L2, L3}. We have not yet
managed, however, to show that

∑

x∈J(L1,L2,L3)

(
N1(x)N2(x)N3(x)

)1/2
. (L1L2L3)

1/2,

so we will not focus on this result here; details can be found in [22]. Let us
just mention that the proof of the particular result uses facts from compu-
tational geometry that hold only in R3, which is why we have not managed
to apply it to higher dimensions or different field settings.

�
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2. First steps and preliminaries

As we have already mentioned, the basis for our proofs will be the following
lemma, which is a generalisation, in Fn, of Quilodrán’s main idea in [24] for
the solution of the joints problem in Rn.

Lemma 2.1. Let F be a field, n ≥ 2. Let J be a set of joints formed by
a collection L of lines in Fn. If J lies in the zero set of some non-zero
polynomial in F[x1, . . . , xn], of degree at most d, then there exists a line in
L containing at most d points of J .

The proof of Lemma 2.1 makes use of the notion of the formal (or Hasse)
derivatives of a polynomial. More precisely, the formal (or Hasse) gradi-
ent of a polynomial p ∈ F[x1, . . . , xn] is the element ∇p := (p1, . . . , pn) of
(F[x1, . . . , xn])

n, where, for i = 1, . . . , n, the i-th formal derivative pi of p is
the coefficient of zi in p(x+z) as a polynomial in F[x1, . . . , xn, z1, . . . , ẑi, . . . , zn]
(e.g., see [9]). Note that, when F = R, the formal and the usual partial
derivatives of a polynomial agree. Moreover, in analogy to the situation in C,
it is easy to see that, for any algebraically closed field F, if p ∈ F[x1, . . . , xn]

satisfies ∇p = 0, then p = gchar(F), for some g ∈ F[x1, . . . , xn] (e.g., see [3]
for full details).

Proof of Lemma 2.1. We can assume, without loss of generality, that F

is algebraically closed. Indeed, if F denotes the algebraic closure of F, we
can extend each line in L to a line in F

n
in the obvious way, and thus form a

set of lines L in F
n
; then, each joint formed by L in Fn is a joint formed by

L in F
n
, since a set of n vectors that is linearly independent in Fn is linearly

independent in F
n
.

Now, let p ∈ F[x1, . . . , xn] be a polynomial of minimal degree vanishing on
J . By assumption, deg p ≤ d.

Suppose that each line l ∈ L contains more than d elements of J . Then,
p vanishes on each line in L, and therefore the elements of J , being joints
formed by L, are singular points of the zero set of p. Therefore, ∇p van-
ishes on J , and thus ∇p = 0, otherwise the minimality of the degree of p
would be contradicted. So, p is equal to gchar(F), for some g ∈ F[x1, . . . , xn].
This contradicts the minimality of the degree of p if char(F) 6= 0, while,
if char(F) = 0, it implies that p is a constant polynomial, thus the zero
polynomial (for J 6= ∅), which is a contradiction.

�

Using Lemma 2.1 in Fn in exactly the same way as Quilodrán uses it in
Rn in [24], we deduce the following joints estimate, and the subsequent
immediate multijoints estimate.

Lemma 2.2. Let L be a finite collection of lines in Fn, n ≥ 2, where F is
an arbitrary field. If J is a subset of J(L), such that there exists a non-zero
polynomial in F[x1, . . . , xn], of degree at most d, vanishing on J , then

|J | ≤ |L| · d.
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Proof. By Lemma 2.1, there exists a line l1 ∈ L containing at most d ele-
ments of J . We remove l1 and the elements of l1 ∩ J from our collection of
lines and joints, respectively. The elements of J1 := J \ (l1 ∩ J) are joints
formed by L\{l1}. Now, there exists a non-zero polynomial in F[x1, . . . , xn],
of degree at most d, vanishing on J1 (since the same holds for the set J).
Again by Lemma 2.1, there exists l2 ∈ L \ {l1}, containing at most d ele-
ments of J1. We remove l2 and the elements of l2 ∩ J1 from our collection
of lines and joints, respectively.

We continue as above, until we have removed enough lines of L (and the
corresponding elements of J on each) so that no elements of J are remaining.
This is achieved in at most |L| steps, and J is the union of its subsets that
were removed in each step, each of which has size at most d. Therefore,
|J | ≤ |L| · d.

�

Corollary 2.3. Let L1, . . . ,Ln be finite collections of lines in Fn, n ≥ 2,
where F is an arbitrary field. If J is a subset of J(L1, . . . ,Ln), such that there
exists a non-zero polynomial in F[x1, . . . , xn], of degree at most d, vanishing
on J , then

|J | ≤ |L1 ∪ . . . ∪ Ln| · d.

In order to obtain an estimate on generic joints in Rn, we will use the
following variant of Lemma 2.2, which again follows from Lemma 2.1, and
the idea behind which can be found in the proof of [3, Proposition 4.1].

Lemma 2.4. Let L be a finite collection of lines in Fn, n ≥ 2, where F is
an arbitrary field. If J is a subset of Jk(L), for k ≥ n, such that there exists
a non-zero polynomial in F[x1, . . . , xn], of degree at most d, vanishing on J ,
then

|J |k ≤ n|L|d.

Proof. By Lemma 2.1, there exists a line l1 ∈ L containing at most d el-
ements of J . We remove l1 from our collection of lines. We also remove
from our collection of joints the elements of l1 ∩ J that are not joints for
L1 := L \ {l1} (note that, for k 
 n, no elements of J will be removed at
this step, since the elements of J are generic joints for L, and thus generic
joints for L1). The set J1 of remaining elements of J is a set of joints formed
by the lines in L1 (due to the genericity hypothesis). Again by Lemma 2.1,
there exists l2 ∈ L1, containing at most d elements of J1. We remove l2 from
our collection of lines; we also remove from our collection J1 of joints the
elements of l2 ∩ J1 that are not joints for L2 := L1 \ {l2}. Let J2 be the set
of remaining elements of J1.

We continue as above, until we have removed enough lines of L so that no
elements of J are joints for the remaining set of lines. This is achieved in at
most |L| steps. Moreover, for each x ∈ J , there exist at least k−(n−1) lines
of L passing through x that are removed during the process, as otherwise
after the final step of the process there would exist at least n remaining lines
of L passing through x, and thus, due to the genericity hypothesis, x would
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be a joint for the remaining collection of lines, which is a contradiction.
Therefore, if, for each i, Li is the set of lines in L remaining after the i-th
step of the process, Ji the set of joints in J remaining after the i-th step of
the process (where L0 := L, J0 := J), and li is the element of Li−1 \ Li, it
holds that

|L|d ≥
∑

i

|Ji−1 ∩ li| ≥
∑

x∈J

(k − (n− 1)) = |J |(k − n+ 1).

Therefore, since k − n+ 1 ≥ k/n, it follows that

|J |k ≤ n|L|d.

�

It is clear by Corollary 2.3 and Lemma 2.4 that the existence of polynomials
of low degree, vanishing on a large proportion of our sets of multijoints
or generic joints, would imply multijoints and generic joints estimates. The
problem therefore lies in finding such polynomials of sufficiently low degrees.
As we have already mentioned, in the case of multijoints in F3 this will be
achieved via a probabilistic polynomial degree reduction argument. In the
argument, we will use the following lemma, which appears, for example,
in [16] and [14].

Lemma 2.5. Let L be a finite collection of L lines in Fn, n ≥ 2, where F is
an arbitrary field. Then, there exists a non-zero polynomial in F[x1, . . . , xn],

of degree .n L
1

n−1 , vanishing on each line of L.

In the case of multijoints or generic joints in Rn, we will find polynomials
of low degree vanishing on our sets of multijoints or generic joints using
Guth–Katz partitioning:

Theorem 2.6. (Guth, Katz, [16, Theorem 4.1]) Let G be a finite set
of S points in Rn, and d > 1. Then, there exists a non-zero polynomial
p ∈ R[x1, ..., xn], of degree ≤ d, and .n dn pairwise disjoint open sets (cells)
C1, . . . , Cm, each of which contains .n S/dn points of G, such that Rn =
C1 ⊔ . . . ⊔Cm ⊔ Zp, where Zp is the zero set of p.

More precisely, we will show using Guth–Katz partitioning in Rn that, if
our desired estimates on multijoints (or generic joints) hold in Rn−1, then
there exists a polynomial of sufficiently low degree, vanishing on a large
proportion of our set of multijoints (or generic joints). The induction on
n closes because clearly our desired multijoints estimate holds in R2, while
our generic joints estimate also holds in R2, due to the Szemerédi–Trotter
theorem:

Theorem 2.7. (Szemerédi, Trotter) Let P be a finite set of points in
R2 and L a finite set of lines in R2. Then, if I(P,L) denotes the number of
incidences between P and L, it holds that

I(P,L) . |P|2/3|L|2/3 + |L|+ |P|.
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In particular, for any k ≥ 2, if Pk denotes the set of points in P each lying
in at least k and fewer than 2k lines of L, then

|Pk| .
|L|2

k3
+

|L|

k
.

3. Finding appropriate polynomials

3.1. Multijoints in F3. We wish to prove:

Theorem 1.2 Let L1, L2, L3 be finite collections of L1, L2 and L3, re-
spectively, lines in F3, where F is an arbitrary field. Then,

|J(L1,L2,L3)| ≤ c (L1L2L3)
1/2,

where c is an absolute constant.

Theorem 1.2 will be proved combining Corollary 2.3 with Lemma 3.1.1 that
follows, which ensures the existence of a polynomial of low degree vanishing
on a large proportion of our set of multijoints, under the assumption that
the set of multijoints is large. Lemma 3.1.1 will be proved via a probabilistic
polynomial degree reduction argument.

Lemma 3.1.1. Let L1, L2, L3 be finite collections of L1, L2 and L3, respec-
tively, lines in F3, where L1, L2 ≤ L3 and F is an arbitrary field. Assume
that Theorem 1.2 holds for any collections L

′
1, L

′
2, L

′
3 of lines in F3, such

that either |L′
1| ≤ L1 and |L′

2| � L2, or |L′
1| � L1 and |L′

2| ≤ L2. Then,
there exists a constant C > 1, independent of L1, L2, L3, such that, if
|J(L1,L2,L3)| ≥ C (L1L2L3)

1/2, there exists a subset J of J(L1,L2,L3),
with

|J | & |J(L1,L2,L3)|,

and a non-zero polynomial p ∈ F[x1, x2, x3], with

deg p .
L1L2

|J(L1,L2,L3)|
,

vanishing on J .

Proof. Let us assume that |J(L1,L2,L3)| ≥ C (L1L2L3)
1/2, for some con-

stant C > 1. We will show that, if C is sufficiently large (and independent
of L1, L2, L3), there exists J ⊂ J(L1,L2,L3) with the desired properties.

For each x ∈ J(L1,L2,L3), we fix a line l2(x) ∈ L2 passing through x, with
the property that there exist lines l1 ∈ L1 and l3 ∈ L3 through x, such that
the directions of l1, l2(x) and l3 span R3. We say that x “chooses” l2(x);
note that each x ∈ J(L1,L2,L3) chooses only one line.

Let L′
2 be the set of lines in L2, each of which is chosen as l2(x) by at least

1
100

|J(L1,L2,L3)|
L2

multijoints x ∈ J(L1,L2,L3).

Due to our hypothesis that our set of multijoints is large, we have that
|L′

2| & L2. Indeed, let G be the set of points x ∈ J(L1,L2,L3), each of which
chooses as l2(x) a line in L

′
2. By the definition of L′

2, there exist fewer than
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|J(L1,L2,L3)|
100 L2

|L2 \ L
′
2| ≤

1
100 |J(L1,L2,L3)| points x ∈ J(L1,L2,L3) choosing

a line in L2 \ L
′
2 as l2(x) . Thus, |G| & |J(L1,L2,L3)|. Now, each element

of G is a multijoint for the collections L1, L
′
2 and L3 of lines. Therefore,

if |L′
2| � L2, it follows, by our hypotheses, that Theorem 1.2 holds for

multijoints formed by L1, L
′
2 and L3, and thus

|J(L1,L2,L3)| ≤ c̃ (L1|L
′
2|L3)

1/2,

for some constant c̃ depending only on the constant c appearing in the
statement of Theorem 1.2. This implies that |L′

2| >
L2
4c̃2

, because if it was

true that |L′
2| ≤

L2
4c̃2

, it would follow that

|J(L1,L2,L3)| ≤
1

2
(L1L2L3)

1/2,

which contradicts our hypothesis that our set of multijoints is large. There-
fore, it indeed holds that |L′

2| & L2.

We will now first find, via a probabilistic argument, a small subset L̃1 of L1,
with the property that each line in a large proportion L

′′
2 of L′

2 intersects a

lot of lines of L̃1. Then, we will find a polynomial of low degree, vanishing

on each line of L̃1. Since each line in L
′′
2 intersects a lot of lines of L̃1, it

will contain a lot of points where the polynomial vanishes, and thus the
polynomial will vanish on each line in L

′′
2. Then, using the fact that L

′
2 is

large, it will follow that L′′
2 is large, therefore the polynomial will vanish on

a large proportion of our set of multijoints.

Let us now go into the details. We create a random subset L̃1 of L1, by

choosing each line of L1 with probability d2

L1
, where d = C L1L2

|J(L1,L2,L3)|
. Note

that d > 1 (since C > 1 and clearly |J(L1,L2,L3)| ≤ L1L2). Also, since C

is such that |J(L1,L2,L3)| ≥ C(L1L2L3)
1/2, we have that d2

L1
≤ 1. Now, (i)

and (ii) below hold (because the random variables in question follow explicit
binomial distributions):

(i) With probability & 1, |L̃1| . d2.

(ii) With probability & 1, there exist & |L′
2| lines of L′

2, each containing ≥
C

1012
d points belonging to lines of L̃1. Indeed, each x ∈ J(L1,L2,L3) belongs

to a line of a random set L̃1 as above with probability ≥ d2

L1
, since there exists

a line of L1 through x. Therefore, for each l2 ∈ L
′
2, the expected number of

points of J(L1,L2,L3) on l2 that belong to lines of L̃1 is ≥
d2

L1
· 1
100

|J(L1,L2,L3)|
L2

;

therefore, with probability & 1, at least 1
1010

d2

L1
· 1
100

|J(L1,L2,L3)|
L2

= C
1012 d points

of J(L1,L2,L3) on l2 belong to lines of L̃1. So, with probability & 1, there
exist & |L′

2| lines of L
′
2, each containing ≥ C

1012 d points of J(L1,L2,L3)

belonging to lines of L̃1.

Note that, in (i), the probability that |L̃1| . d2 can be as close to 1 as
we wish (and independent of L1, L2, L3), if the implicit constant in the

inequality |L̃1| . d2 is accordingly large. Therefore, it follows by (i) and

(ii) that there exists a subset L̃1 of L1, with |L̃1| ≤ C ′d2 (for some absolute
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constant C ′), and a subset L′′
2 of L′

2, with |L′′
2| & |L′

2|, such that each line of

L
′′
2 contains ≥ C

1012
d points of J(L1,L2,L3) belonging to lines of L̃1.

By Lemma 2.5, there exists a non-zero polynomial p ∈ F[x1, x2, x3], of degree

≤ K|L̃1|
1/2 ≤ K(C ′d2)1/2 = KC ′1/2d (where K is an absolute constant),

vanishing on each line of L̃1. In particular, if C
1012

d 
 KC ′1/2d (i.e. C 


1012KC ′1/2), each line of L′′
2 contains 
 KC ′1/2d ≥ deg p points of the zero

set of p. So, fixing C to be any absolute constant 
 1012KC ′1/2, we have
that p vanishes on each line of L

′′
2. However, L

′′
2 ⊂ L

′
2; thus, each line

in L
′′
2 is chosen as l2(x) by &

|J(L1,L2,L3)|
L2

points x ∈ J(L1,L2,L3) (each

of which chooses as l2(x) only one line in L
′′
2). Therefore, p vanishes on

&
|J(L1,L2,L3)|

L2
|L′′

2 | ∼
|J(L1,L2,L3)|

L2
|L′

2| points of J(L1,L2,L3). Since |L
′
2| & L2,

the proof of the lemma is complete.

�

Proof of Theorem 1.2. Theorem 1.2 will be proved by induction on the
cardinalities of L1 and L2, combining Lemma 3.1.1 and Corollary 2.3.

More particularly, Theorem 1.2 holds for any collections L1, L2, L3 of lines
in F3 with |L1| = |L2| = 1, for any constant c ≥ 1, as L1, L2 and L3 form at
most one joint in this case.

Let us assume that, for some (M1,M2) ∈ (N∗)2 (where N∗ = N \ {0}),
Theorem 1.2 holds, for some constant c ≥ 1 which will be specified later,
for any collections L1, L2, L3 of lines in F3 with |L1|, |L2| ≤ |L3|, such that
either |L1| ≤ M1 and |L2| � M2, or |L1| � M1 and |L2| ≤ M2.

We will show that Theorem 1.2 then holds for any collections L1, L2, L3 of
lines in F3 with |L1|, |L2| ≤ |L3|, |L1| = M1 and |L2| = M2, for the same
constant c as in the induction hypothesis.

Indeed, let L1, L2, L3 be collections of L1, L2 and L3, respectively, lines
in F3, with L1, L2 ≤ L3, L1 = M1 and L2 = M2. Let us assume that
|J(L1,L2,L3)| ≥ C(L1L2L3)

1/2, where C is the constant appearing in the
statement of Lemma 3.1.1. By Lemma 3.1.1, there exists a subset J of
J(L1,L2,L3), with

|J | & |J(L1,L2,L3)|,

and a non-zero polynomial p ∈ F[x1, x2, x3], with

deg p .
L1L2

|J(L1,L2,L3)|
,

vanishing on J . Therefore, Corollary 2.3 implies that

|J | ≤ |L1 ∪ L2 ∪ L3| · deg p . L3 ·
L1L2

|J(L1,L2,L3)|
,

which gives

|J(L1,L2,L3)| ≤ C ′(L1L2L3)
1/2

after rearranging, for some absolute constant C ′. By fixing the constant c
in the inductive hypothesis to be equal to max{C,C ′}, we have that, for the
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same constant c,

|J(L1,L2,L3)| ≤ c (L1L2L3)
1/2.

�

3.2. Multijoints in Rn. We wish to prove:

Theorem 1.3 Let n ≥ 2. Let L1, . . . ,Ln be finite collections of L1, . . . , Ln,
respectively, lines in Rn. Then,

(11) |J(L1, . . . ,Ln)| ≤ cn(L1 · · ·Ln)
1/(n−1),

where cn is a constant depending only on n.

This will be achieved by combining Corollary 2.3 with Lemma 3.2.1 that
follows, which ensures the existence of a polynomial of low degree vanishing
on a large proportion of our set of multijoints in Rn, for n ≥ 3, under the
assumption that Theorem 1.3 holds in Rn−1. In particular, given that The-
orem 1.3 obviously holds in R2, the proof of Theorem 1.3 will be completed
by induction on n. As we have already mentioned, Lemma 3.2.1 will be
proved using Guth–Katz partitioning.

Lemma 3.2.1. Let n ≥ 3. Assume that Theorem 1.3 holds in Rn−1. Then,
for any L1, . . .Ln finite collections of L1, . . . , Ln, respectively, lines in Rn,
with L1 ≤ L2 ≤ . . . ≤ Ln, there exists a subset J of J(L1, . . . ,Ln), with

|J | & |J(L1, . . . ,Ln)|,

and a non-zero polynomial p ∈ R[x1, . . . , xn], with

deg p .n
L1 · · ·Ln−1

|J(L1, . . . ,Ln)|n−2
,

vanishing on J .

Proof. We observe that, if we project Rn on a generic hyperplane, all the
elements of the projection of J(L1, . . .Ln) are multijoints in the hyperplane
(i.e., in Rn−1), formed by the collections L′

1, . . . ,L
′
n−1 of lines, where L

′
i is the

set of projected lines of Li from Rn to the hyperplane, for all i = 1, . . . , n−1.
Therefore, by our assumption that Theorem 1.3 holds in Rn−1, we have that

|J(L1, . . . ,Ln)| .n (L1 · · ·Ln−1)
1/(n−2),

and thus, for some large constant An which will be fixed later, the quantity

d = An ·
L1 · · ·Ln−1

|J(L1, . . . ,Ln)|n−2

is larger than 1. We can thus apply Guth–Katz partitioning (Theorem 2.6)
in Rn, for the set J(L1, . . . ,Ln) and this d as the upper bound for the de-
gree of the partitioning polynomial. In particular, there exists a non-zero
polynomial p ∈ R[x1, . . . , xn], of degree at most d, whose zero set Z decom-
poses Rn in .n dn cells, each containing .n |J(L1, . . . ,Ln)|/d

n elements of
J(L1, . . . ,Ln).
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We now prove that, for An sufficiently large, there exist & |J(L1, . . . ,Ln)|
elements of J(L1, . . . ,Ln) on the zero set of p.

Indeed, assume for contradiction that there exist & |J(L1, . . . ,Ln)| elements
of J(L1, . . .Ln) in the union of the cells. Then, there exist &n dn cells, each
containing &n |J(L1, . . .Ln)|/d

n elements of J(L1, . . . ,Ln). We call these
cells “full cells”, and we denote the set of full cells by C.

Now, for each i = 1, ..., n, there exist &n |C| full cells, each intersected by
.n Li/d

n−1 lines in Li (where the first implicit multiplicative constant is
smaller than 1, and the second larger than 1). Indeed, suppose that this is
false for some i ∈ {1, . . . , n}. Then, the number of full cells intersected by
.n Li/d

n−1 lines in Li is .n |C|, thus there exist &n |C| ∼n dn cells, each
intersected by &n Li/d

n−1 lines in Li. Choosing appropriately the constants
hiding behind the&n symbols, it follows that there exist
 dn·Li/d

n−1 = Lid
incidences between the zero set Z of p and the lines of Li not in Z, which
is a contradiction, since each line not lying in Z can intersect Z at most d
times. We denote by Ci the set of full cells intersected by .n Li/d

n−1 lines
in Li. We have just shown that |Ci| ≥ ci,n|C|, where ci,n is a constant smaller
than 1, depending only on i and n; note that we can choose it to be as close
to 1 as we wish, of course changing appropriately the rest of the constants
hiding behind the &n symbols in the above analysis.

Now, by choosing the constants c1,n, . . . , cn,n to be appropriately large, it
follows that there exists some full cell that is intersected by .n Li/d

n−1 lines
in Li, for all i = 1, . . . , n. The lines intersecting the cell form the multijoints
in the cell, which are &n |J(L1, . . . ,Ln)|/d

n. Therefore, projecting on a
generic hyperplane and applying there Theorem 1.3 (which we have assumed
holds in Rn−1), we see that

|J(L1, . . . ,Ln)|

dn
.n

(
L1

dn−1
· · ·

Ln−1

dn−1

)1/(n−2)

,

which means that

d .n
L1 · · ·Ln−1

|J(L1, . . . ,Ln)|n−2
,

a contradiction for An sufficiently large. The proof is complete.

�

Proof of Theorem 1.3. Theorem 1.3 holds for n = 2. Indeed, if L1, L2 are
finite collections of L1, L2, respectively, lines in R2, then there exists at least
one line of each collection through each point of J(L1,L2), so |J(L1,L2)| is
equal to at most the number of all the pairs of the form (l1, l2), where l1 ∈ L1,
l2 ∈ L2, i.e.

|J(L1,L2)| ≤ L1L2.

For n ≥ 3, assume that Theorem 1.3 holds in Rn−1.

Let L1, . . . ,Ln be finite collections of L1, . . . , Ln, respectively, lines in Rn,
with L1 ≤ L2 ≤ . . . ≤ Ln. By Lemma 3.2.1, there exists a subset J of
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J(L1, . . . ,Ln), with

|J | & |J(L1, . . . ,Ln)|,

and a non-zero polynomial in p ∈ R[x1, . . . , xn], with

deg p .n
L1 · · ·Ln−1

|J(L1, . . . ,Ln)|n−2
,

vanishing on J . By Corollary 2.3, |J | .n Ln · deg p, so

|J(L1, . . . ,Ln)| .n Ln ·
L1 · · ·Ln−1

|J(L1, . . . ,Ln−1)|n−2
,

and thus |J(L1, . . . ,Ln)| .n (L1 · · ·Ln)
1/(n−1), by rearranging. Therefore,

Theorem 1.3 holds in Rn.
�

3.3. Generic joints. We wish to prove:

Theorem 1.5 Let n ≥ 2. Let L be a finite collection of L lines in Rn.
Then,

|Jk(L)| ≤ cn

(
L

n
n−1

k
n+1
n−1

+
L

k

)

for all k ≥ n, where cn is a constant depending only on n.

In analogy to the multijoints in Rn situation, this will be achieved by combin-
ing Lemma 2.4 with Lemma 3.3.1 that follows, which ensures the existence
of a polynomial of low degree vanishing on a large proportion of our set
of generic joints in Rn, for n ≥ 3, under the assumptions that our set of
joints is large and that Theorem 1.5 holds in Rn−1. In particular, given that
Theorem 1.5 holds in R2 (by the Szemerédi–Trotter theorem), the proof
of Theorem 1.5 will be completed by induction on n. As we have already
mentioned, Lemma 3.3.1 will be proved using Guth–Katz partitioning.

Lemma 3.3.1. Let n ≥ 3. Assume that Theorem 1.5 holds in Rn−1, for
some constant cn−1. Let L be a finite collection of L lines in Rn, and k ≥ n,
such that

|Jk(L)| ≥ Cn

(
L

n
n−1

k
n+1
n−1

+
L

k

)

for some sufficiently large constant Cn, depending only on n. Then, there
exists a subset Jk of Jk(L), with

|Jk| & |Jk(L)|,

and a non-zero polynomial p ∈ R[x1, . . . , xn], with

deg p ≤ An
Ln−1

|Jk(L)|n−2kn
,

vanishing on Jk, where An is a constant depending only on n and cn−1.
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Proof. If we project Rn on a generic hyperplane, all the elements of the
projection of Jk(L) are generic joints in the hyperplane (i.e., in Rn−1) formed
by the collection L

′ of lines, where L
′ is the set of projected lines of L from

Rn to the hyperplane; in particular, there exist at least k and fewer than 2k
lines of L′ through each of these joints. Therefore, by our assumption that
Theorem 1.3 holds in Rn−1, we have that

|Jk(L)| ≤ cn−1

(
L

n−1
n−2

k
n

n−2

+
L

k

)
,

where, for n ≥ 2, cn is the constant appearing in the statement of Theorem
1.5.

On the other hand, for Cn ≥ 2cn−1, |J
k(L)| ≥ 2cn−1

L
k by assumption, so

L
n−1
n−2

k
n

n−2
≥ L

k , and

|Jk(L)| ≤ 2cn−1
L

n−1
n−2

k
n

n−2

.

Thus, assuming from now on that Cn ≥ 2cn−1, we have that, for some
constant An ≥ 2cn−1 (and independent of Cn) which will be fixed later, the
quantity

d = An
Ln−1

|Jk(L)|n−2kn

is larger than 1. We can thus apply Guth–Katz partitioning (Theorem 2.6)
in Rn, for the set Jk(L) and this d as the upper bound for the degree of the
partitioning polynomial. In particular, there exists a non-zero polynomial
p ∈ R[x1, . . . , xn], of degree at most d, whose zero set Z decomposes Rn in
.n dn cells, each containing .n |Jk(L)|/dn elements of Jk(L).

By fixing An to be sufficiently large, there exist & |Jk(L)| elements of Jk(L)
lying in Z. Indeed, let us assume for contradiction that there exist & |Jk(L)|
elements of Jk(L) in the union of the cells. Then, there exist &n dn cells,
each containing &n |Jk(L)|/dn elements of Jk(L). We call these cells “full
cells”, and we denote the set of full cells by C.

Suppose that there exists a full cell containing ≤ k elements of Jk(L). Then,
|Jk(L)|/dn .n k, which implies that

|Jk(L)| ≤ C ′
n

L
n

n−1

k
n+1
n−1

,

for some constant C ′
n depending only on n. Therefore, for Cn 
 C ′

n, we
have a contradiction, and thus there exist ≥ k elements in each full cell. We
continue assuming that Cn 
 C ′

n.

There exist &n dn full cells, each intersected by .n L/dn−1 lines in L (where
the first implicit multiplicative constant is smaller than 1, and the second
larger than 1). Indeed, suppose that this is false, and that in fact the number
of full cells intersected by .n L/dn−1 lines in L is ≤ cn|C|, for some constant
cn < 1. Then, there exist &n |C| ∼n dn cells, each intersected by &n L/dn−1

lines in L. Choosing appropriately the constants hiding behind the &n

symbols, it follows that there exist 
 dn · L/dn−1 = Ld incidences between
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the zero set Z of p and the lines of L not in Z, which is a contradiction,
since each line not lying in Z can intersect Z at most d times.

So, there exists some full cell that is intersected by .n L/dn−1 lines in
L; in other words, if Lcell is the number of lines intersecting the full cell,
Lcell .n L/dn−1. On the other hand, the lines intersecting the cell form
the generic joints in Jk(L) that lie in the cell, which are &n |Jk(L)|/dn.
Therefore, projecting on a generic hyperplane and applying there Theorem
1.5 (which we have assumed holds in Rn−1), we see that

|Jk(L)|

dn
.n

L
n−1
n−2

cell

k
n

n−2

+
Lcell

k
.

However, there exist > k generic joints in the cell, each of which lies in at
least k lines of L; thus, Lcell ≥ k + (k − 1) + . . . + 1 & k2, from which it
follows that

L
n−1
n−2

cell

k
n

n−2

&n
Lcell

k
.

Therefore,

|Jk(L)|

dn
.n

L
n−1
n−2

cell

k
n

n−2

.n

(
L

dn−1

)n−1
n−2

k
n

n−2

,

which in turn implies

d ≤ C ′′
n

Ln−1

|Jk(L)|n−2kn
,

for some constant C ′′
n depending only on n. By fixing An to be larger than C ′′

n

(which is independent of Cn), we are led to a contradiction. This completes
the proof.

�

Proof of Theorem 1.5. Theorem 1.5 holds in R2 (by the Szemerédi–Trotter
theorem). Assume that Theorem 1.5 holds in Rn−1, for some n ≥ 3. We
will show that Theorem 1.5 holds in Rn.

Let L be a finite collection of L lines in Rn and k ≥ n, such that

|Jk(L)| ≥ Cn

(
L

n
n−1

k
n+1
n−1

+
L

k

)
,

where Cn is the constant appearing in the statement of Lemma 3.3.1. It
follows by Lemma 3.3.1 that there exists a subset Jk of Jk(L) with

|Jk| & |Jk(L)|,

and a non-zero polynomial p ∈ R[x1, . . . , xn], with

deg p .n
Ln−1

|Jk(L)|n−2kn
,
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vanishing on Jk. Therefore, by Lemma 2.4,

|Jk|k .n L · deg p .n L
Ln−1

|Jk(L)|n−2kn
,

which implies

|Jk(L)| .n
L

n
n−1

k
n+1
n−1

by rearranging. The proof of the theorem is now complete.

�

4. Transversality of more general curves

In this section, we generalise Theorems 1.3 and 1.5 to multijoints and generic
joints formed by real algebraic curves in Rn.

We consider the family Fn of all subsets γ of Rn with the property that, if
x ∈ γ, then a basic neighbourhood of x in γ is either {x} or the finite union
of parametrised curves, each homeomorphic to a semi-open line segment
with one endpoint the point x. If there exists a local parametrisation f :
[0, 1) → γ of a γ ∈ Γ, such that f(0) = x and f ′(0) 6= 0, then the line in Rn

passing through x with direction f ′(0) is tangent to γ at x. If Γ ⊂ Fn, we
denote by TΓ

x the set of directions of all tangent lines at x to the elements of
Γ passing through x (note that TΓ

x may be empty and that there may exist
many tangent lines to an element of Γ at x).

Definition 4.1. Let Γ be a finite collection of sets in Fn. A point x in Rn

is a joint formed by Γ if there exist v1, . . . , vn ∈ TΓ
x such that {v1, . . . , vn}

spans Rn.

A point x ∈ Rn is a generic joint formed by Γ if any n vectors in TΓ
x span

Rn.

For eack k ≥ n, we denote by Jk(Γ) the set of generic joints x formed by Γ,
such that |TΓ

x | ∈ [k, 2k).

Definition 4.2. Let Γ1, ..., Γn be finite collections of sets in Fn. A point
x in Rn is a multijoint formed by these collections if, for all i = 1, . . . , n,
x belongs to some γi ∈ Γi, with the property that there exists at least one

vector vi in T
{γi}
x , such that {v1, ..., vn} spans Rn.

We denote by J(Γ1, ...,Γn) the set of multijoints formed by Γ1, ..., Γn.

Under certain assumptions on the properties of the sets in Fn, the corre-
sponding statements of Theorems 1.3 and 1.5 still hold:

Theorem 4.3. Let n ≥ 2 and b > 0. Let Γ1, . . . ,Γn be finite collections of
irreducible real algebraic curves in Rn, of degree at most b. Then,

|J(Γ1, . . . ,Γn)| ≤ cn,b (|Γ1| · · · |Γn|)
1/(n−1),

where cn,b is a constant depending only on n and b.
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Theorem 4.4. Let n ≥ 2, b > 0. Let Γ be a finite collection of real algebraic
curves in Rn, of degree at most b. Then, for all k ≥ n,

|Jk(Γ)| ≤ cn,b

(
|Γ|

n
n−1

k
n

n−1
+ 1

n−1
· 1
B−1

+
|Γ|

k

)
,

where B :=
(b+2

2

)
− 1.

(Note that Theorem 4.4 implies Theorem 1.5.)

We clarify here that every real algebraic curve γ in Rn is contained in a
complex algebraic curve in Cn (viewing Rn as a subset of Cn), and the
degree of γ is defined as the degree of the smallest complex algebraic curve
containing γ (e.g., see [20] for full details).

The proofs of Theorems 4.3 and 4.4 are similar to the proofs of Theorems 1.3
and 1.5, respectively, we will thus give a sketch of them, without dwelling
on all details. Crucial for the proofs of both theorems is the following.

Lemma 4.5. Let n ≥ 2 and γ a real algebraic curve in Rn. Then, the
projection of γ on a generic hyperplane is contained in some real algebraic
curve in the hyperplane, of degree at most deg γ.

Proof. Each real algebraic curve in Rn is contained in a complex algebraic
curve in Cn with the same degree. Moreover, the intersection of any complex
algebraic curve in Cn with Rn is a real variety that is either 0-dim or 1-dim
(see [21]). So, since the projection of a real algebraic curve on a generic
hyperplane cannot be contained in a 0-dim variety, it suffices to prove the
Lemma for projections of complex algebraic curves instead.

Let γ be a complex algebraic curve in Cn, of degree b. Let Π be a generic hy-
perplane in Cn. By a change of variables, projecting any x = (x1, . . . , xn) ∈
Cn on Π corresponds to eliminating x1. Thus (see [6]), the smallest complex
variety in Π containing the projection p(γ) of γ on Π is V (I1(γ)), whose
ideal is the elimination ideal I1(γ) = I(γ) ∩ C[x2, . . . , xn]; here I(γ) is the
ideal of γ.

It holds that V (I1(γ)) has dimension 1 and degree at most b. We give a
proof, adding references for the necessary algebraic geometric background.

We consider the lexicographical order ≺ on the set of monomials in n vari-
ables, such that x1 ≻ x2 ≻ . . . ≻ xn. With this order, if G is a Gröbner basis
of I(γ), then G′ := G ∩ C[x2, . . . , xn] is a Gröbner basis of I1(γ) (see [6]).
Note that a Gröbner basis G of an ideal I generates the ideal, while the
≺-leading terms of the elements of G generate the initial ideal in≺(I) of I
(the ideal generated by the ≺-leading terms of the elements in I).

Now, we see that {monomials in in≺(I(γ)) ∩ C[x2, . . . , xn]} ⊂ {monomials
in in≺(I1(γ))}. Indeed, let p be a monomial in in≺(I(γ)) ∩ C[x2, . . . , xn]}.
Since in≺(I(γ)) is a monomial ideal, p is divisible by the ≺-leading term
in(g) of a g ∈ G; so, in(g) is not a multiple of x1, and thus g ∈ G ∩
C[x2, . . . , xn] = G′. Hence, p is divisible by the ≺-leading term of an element
of G′, therefore p ∈ in≺(I1(γ)).
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The dimension of any variety V in Cn is equal to the cardinality of a maximal
subset S of {x1, . . . , xn}, such that no monomial in the variables in S belongs
to the initial (w.r.t. ≺) ideal of the ideal of V (see [27]). Since γ is 1-
dim, for any i, j ∈ {1, . . . , n} with i 6= j there exists a monomial pij in
in≺(I(γ)) in the variables xi, xj . Now, fix any i, j ∈ {2, . . . , n} with i 6= j.
Since pij ∈ in≺(I(γ))∩C[x2, . . . , xn], it follows by the above discussion that
pij ∈ in≺(I1(γ)). So, for any i, j ∈ {2, . . . , n} with i 6= j, there exists a
monomial in in≺(I1(γ)) in the variables xi, xj . Therefore, V (I1(γ)) is at
most 1-dim, and thus a curve, due to the genericity of Π.

It is also known that the degree of a complex algebraic curve γ̃ in Cn is
equal to P (1), where P is the univariate polynomial such that the Hilbert

series Hγ̃,≺(t) =
∑+∞

i=1 dit
i of the curve is equal to P (t)

1−t (where, for all i, di
is the number of monomials in n variables of degree i that are not in the
initial (w.r.t. ≺) ideal of the ideal of γ̃). By the discussion above, for each i,
the monomials in variables x2, . . . , xn of degree i that are not in in≺(I1(γ))
are also not in in≺(I(γ)). Therefore, each coefficient in the Hilbert series
of V (I1(γ)) is smaller than or equal to the corresponding coefficient in the
Hilbert series of γ; so, V (I1(γ)) has degree at most b.

�

Moreover, we will use the following generalisation of Lemma 2.1 (for F = R):

Lemma 4.6. Let n ≥ 2, b > 0. Let J be a set of joints formed by a collection
Γ of irreducible real algebraic curves in Rn, of degree at most b. If J lies in
the zero set of some non-zero polynomial in R[x1, . . . , xn], of degree at most
d, then there exists a curve in Γ containing .b d points of J .

The proof of Lemma 4.6 is completely analogous to the proof of Lemma 2.1;
the only extra element is the use of (the following corollary of) Bézout’s
theorem (e.g., see [12]):

Theorem 4.7. (Bézout) Let γ be an irreducible real algebraic curve in Rn,
of degree at most b. Let p ∈ R[x1, . . . , xn] be a non-zero polynomial such that
γ does not lie in the zero set of p in Rn. Then, γ intersects the zero set of
p .n,b deg p times.

Now, similarly to the situation of joints formed by lines, Lemma 4.6 im-
plies Lemmas 4.8 and 4.9 that follow; Lemma 4.8 will be used to show our
multijoints estimate, while Lemma 4.9 will imply our generic joints estimate.

Lemma 4.8. Let n ≥ 2, b > 0. Let Γ1, . . . ,Γn be finite collections of
irreducible real algebraic curves in Rn, of degree at most b. If J is a subset of
J(Γ1, . . . ,Γn), such that there exists a non-zero polynomial in R[x1, . . . , xn],
of degree at most d, vanishing on J , then

|J | .n,b |Γ1 ∪ . . . ∪ Γn| · d.

Lemma 4.9. Let n ≥ 2, b > 0. Let Γ be a finite collection of irreducible
real algebraic curves in Rn, of degree at most b. If, for k ≥ n, J is a subset
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of Jk(Γ), such that there exists a non-zero polynomial in R[x1, . . . , xn], of
degree at most d, vanishing on J , then

|J |k .n,b |Γ|d.

More precisely, the proof of Theorem 4.3 will be completely analogous to the
proof of Theorem 1.3, which will be adjusted to suit considerations regarding
multijoints formed by real algebraic curves instead of lines with the use of
Lemma 4.5, Bézout’s theorem (Theorem 4.7), Lemma 4.8, as well as the
following, which can be found, for example, in [1]:

Lemma 4.10. For every n ≥ 2 and b > 0, every irreducible real algebraic
curve in Rn, of degree at most b, has .n,b 1 path-connected components.

Lemma 4.10 is a combination of Harnack’s theorem for planar curves (see
[19]) and the fact that, if γ is a real algebraic curve in Rn, of degree at most
b, then its projection on a generic 2-dim linear subspace of Rn is contained
in a real planar algebraic curve, of degree at most b.

Let us now see a sketch of the proof of Theorem 4.3.

Proof of Theorem 4.3. For n ≥ 3, similarly to the case of multijoints formed
by lines, we will show that, if Theorem 4.3 holds in Rn−1, then there exists a
polynomial in R[x1, . . . , xn], of low degree, vanishing on a large proportion of
our set of multijoints. Then, Lemma 4.8 will imply that Theorem 4.3 holds
in Rn. Since Theorem 4.3 obviously holds in R2, its proof will be complete.

In particular, if Theorem 4.3 holds in Rn−1, for n ≥ 3, then, for any finite
collections Γ1, . . . ,Γn of irreducible real algebraic curves in Rn, of degree at
most b, such that |Γ1| ≤ . . . ≤ |Γn|, there exists a subset J of J(Γ1, . . . ,Γn),
with

|J | & |J(Γ1, . . . ,Γn),

and a non-zero polynomial p ∈ R[x1, . . . , xn], with

deg p .n,b
|Γ1| · · · |Γn−1|

|J(Γ1, . . . ,Γn)|n−2
,

vanishing on J . To prove this, we apply Guth–Katz partitioning (Theorem
2.6) to the finite set J(Γ1, . . . ,Γn), with a polynomial p ∈ R[x1, . . . , xn]
whose degree is at most

d := An,b
|Γ1| · · · |Γn−1|

|J(Γ1, . . . ,Γn)|n−2
,

for an appropriately large constant An,b, depending only on n and b. Note
that d > 1, due to our assumption that Theorem 4.3 holds in Rn−1. More
precisely, the projection of our set of multijoints on a generic hyperplane is a
subset of the set of multijoints formed by the collections P (Γ1), . . . , P (Γn−1),
where, for each i = 1, . . . , n − 1, P (Γi) is the collection of the smallest real
algebraic curves, on the hyperplane, containing the projections of the curves
in Γi on the hyperlane (these curves exist and each has degree at most b,
by to Lemma 4.5. Therefore, applying Theorem 4.3 in Rn−1 for the set
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of multijoints formed by P (Γ1), . . . , P (Γn−1), we see that d > 1 for An,b

sufficiently large.

Now, Rn is partitioned in ∼n dn cells, each containing .n |J(Γ1, . . . ,Γn)|/d
n

points of J(Γ1, . . . ,Γn). We complete the proof of Theorem 4.3 by showing
that & |J(Γ1, . . . ,Γn)| points of J(Γ1, . . . ,Γn) lie on the zero set Z of p.

Indeed, let us assume for contradiction that & |J(Γ1, . . . ,Γn)| points of
J(Γ1, . . . ,Γn) lie in the union of the cells. Then, there exist &n dn cells, each
containing &n |J(Γ1, . . . ,Γn)|/d

n points of J(Γ1, . . . ,Γn) (“full” cells). As in
the case of multijoints formed by lines, there exists a full cell C that is inter-
sected by .n,b |Γi|/d

n−1 curves in Γi, for all i = 1, . . . , n (we explain this in
the next paragraph); let Γi,C be the set of these curves for each i = 1, . . . , n.
Then, similarly to the case of multijoints formed by lines, we project the
set of multijoints contained in C on a generic hyperplane. The projected
points are multijoints formed by P (Γ1,C), . . . , P (Γn−1,C), where, for each
i = 1, . . . , n − 1, P (Γi,C) is the set of smallest real algebraic curves on the
hyperplane that contain the projections of the curves of Γi,C on the hyper-

plane. By Lemma 4.5, for each i = 1, . . . , n, |P (Γi,C)| .n,b |Γi,C | .n,b
|Γi|
dn−1

, and each curve in P (Γi,C) has degree at most b. Thus, applying Theorem
4.3 in Rn−1 for the set of multijoints formed by P (Γ1,C), . . . , P (Γn−1,C), we
get a contradiction for An,b large (similarly to the case of multijoints formed
by lines). This completes the proof of Theorem 4.3.

We now conclude by explaining why there exists a full cell that is intersected
by .n,b |Γi|/d

n−1 curves in Γi, for all i = 1, . . . , n. The reason is that, for
each i = 1, . . . , n, there exist &n dn full cells, each of which is intersected by
.n,b |Γi|/d

n−1 curves in Γi (making the implicit constants sufficiently large
completes the proof). Indeed, fix i ∈ {1, . . . , n}. Suppose for contradiction
that there exist .n dn full cells, each intersected by .n,b |Γi|/d

n−1 curves
in Γi. Then, there exist &n dn full cells, each intersected by &n,b |Γi|/d

n−1

curves in Γi. Therefore, by Lemma 4.10, there exist &n,b |Γi|d incidences
between Z and the curves in Γi that do not lie in Z. However, by Bézout’s
theorem (Theorem 4.7), there exist .n,b |Γi|d such incidences. Being careful
with the implicit constants, we have a contradiction.

�

The proof of Theorem 4.4 will be analogous to the proof of Theorem 1.5.
The new ingredients will be Lemma 4.5, Bézout’s theorem (Theorem 4.7),
Lemmas 4.9 and 4.10, as well as ideas from the recent paper [30] by Wang,
Yang and Zhang, including the following Szemerédi–Trotter type theorem
for real planar algebraic curves:

Theorem 4.11. (Wang, Yang, Zhang, [30]) Let b be a positive integer.
Let Γ be a finite collection of real algebraic curves in R2, of degree at most
b, with no repeated components. Let P be a finite set of points in R2. Then,

I(P,Γ) .b |P|
A

2A−1 |Γ|
2A−2
2A−1 + |P| + |Γ|,

where A =
(
b+2
2

)
− 1.
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Corollary 4.12. Let b be a positive integer, n ≥ 2. Let Γ be a finite
collection of real algebraic curves in R2, of degree at most b. Then, for all
k ≥ n,

|Jk(Γ)| .b
|Γ|2

k2+
1

A−1

+
|Γ|

k
,

where A =
(b+2

2

)
− 1.

Proof. Any real algebraic curve in R2, of degree at most b, contains .b 1
irreducible components; we may therefore assume that the curves in Γ are
all irreducible.

We denote by I∗(Jk(Γ),Γ) the set of incidences between Jk(Γ) and Γ includ-
ing multiplicities (i.e., counting each γ ∈ Γ through a point x ∈ Jk(Γ) as
many times as the number of times γ crosses itself at x). By the definition
of Jk(Γ),

(12) I∗(Jk(Γ),Γ) ≥ |Jk(Γ)| k.

On the other hand, each γ ∈ Γ crosses itself .b 1 times, therefore

I∗(Jk(Γ),Γ) .b I(J
k(Γ),Γ) + |Γ|

(13) .b |J
k(Γ)|

A
2A−1 |Γ|

2A−2
2A−1 + |Jk(Γ)|+ |Γ|;

note that the last inequality is due to Theorem 4.11. Now, combining (12)
and (13) completes the proof.

�

We will also use Lemma 4.13 that follows, which is the main idea in [30]:

Lemma 4.13. (Wang, Yang, Zhang, [30]) Let γ be a real algebraic curve

in R2, of degree b. Let A :=
(b+2

2

)
−1. Then, for every set P of b2+1 points

of γ, there exists a subset P ′ of P, consisting of A points, such that, if γ′ is
a real algebraic curve in R2, of degree at most b, passing through each point
of P ′, then γ′ and γ have a common component.

More particularly, it is known by Bézout’s theorem that, if Γ is a set of real
planar algebraic curves of degree at most b, with no common components,
then every set of b2 + 1 points of a curve in Γ fully determines that curve
in Γ. However, it is shown in [30] that each set of b2 + 1 points of a curve

in Γ has some subset of
(b+2

2

)
− 1 points (a strict subset for b ≥ 3) that

also fully determines the curve in Γ. This is proved in [30] using the fact
that the vector space Rb[x, y] of polynomials in R[x, y] of degree ≤ b has

dimension
(
b+2
2

)
, and thus the number of linearly independent conditions

that P imposes on Rb[x, y], is ≤
(b+2

2

)
− 1.

Proof of Theorem 4.4. For n ≥ 3, similarly to the case of generic joints
formed by lines, we will show that, if Theorem 4.4 holds in Rn−1, then,
under the assumption that our set of generic joints is large, there exists a
polynomial in R[x1, . . . , xn], of low degree, vanishing on a large proportion
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of our set of joints. Then, Lemma 4.9 will imply that Theorem 4.4 holds
in Rn. Since Theorem 4.4 holds in R2 (by Corollary 4.12), its proof will be
complete.

In particular, if Theorem 4.4 holds in Rn−1, for n ≥ 3, then, for any k ≥ n
and any finite collection Γ of real algebraic curves in Rn of degree at most
b, such that

|Jk(Γ)| ≥ Cn,b

(
|Γ|

n
n−1

k
n

n−1
+ 1

n−1
· 1
B−1

+
|Γ|

k

)

for some sufficiently large constant Cn,b, depending only on n and b, there

exists a subset Jk of Jk(Γ), with

|Jk| & |Jk(Γ)|,

and a non-zero polynomial p ∈ R[x1, . . . , xn], with

deg p ≤ An,b
|Γ|n−1

|Jk(Γ)|n−2kn−1+ 1
B−1

,

vanishing on Jk, where An,b is a constant depending only on n and b. We
will prove this by applying Guth–Katz partitioning (Theorem 2.6) to the
finite set Jk(Γ), with a polynomial p ∈ R[x1, . . . , xn] whose degree is at
most

d := An,b
|Γ|n−1

|Jk(Γ)|n−2kn−1+ 1
B−1

,

for an appropriately large constant An,b, depending only on n and b.

Note that d > 1 for An,b sufficiently large, due to our assumption that
Theorem 4.4 holds in Rn−1. Let us explain this in detail. For each γ ∈ Γ,
we define Pn−1(γ) to be the smallest real algebraic curve, on a generic
hyperplane of Rn, containing the projection of γ on the hyperplane; such
a curve exists and has degree at most b (by Lemma 4.5). Let Pn−1(Γ) :=
{Pn−1(γ) : γ ∈ Γ}, and let Pn−1(Jk(Γ)) be the projection of Jk(Γ) on the
generic hyperplane. It is clear that Pn−1(Jk(Γ)) ⊂ ∪λ≥k Jλ(Pn−1(Γ)), while

|Pn−1(Γ)| ≤ |Γ|. Thus, applying Theorem 4.4 in Rn−1 for ∪λ≥k Jλ(Pn−1(Γ))

(= Jk(Pn−1(Γ)) ∪ J2k(Pn−1(Γ)) ∪ J22k(Pn−1(Γ)) ∪ . . .) we obtain

|Jk(Γ)| .n,b

+∞∑

µ=0

|J2µk(Pn−1(Γ))|

.n,b

+∞∑

µ=0

(
|Pn−1(Γ)|

n−1
n−2

(2µk)
n−1
n−2

+ 1
n−2

· 1
B−1

+
|Pn−1(Γ)|

2µk

)

.n,b
|Γ|

n−1
n−2

k
n−1
n−2

+ 1
n−2

· 1
B−1

+
|Γ|

k
.

Now, given our assumption that

|Jk(Γ)| ≥ Cn,b
|Γ|

k
,
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we can assume that Cn,b is large enough to have

|Γ|

k
.n,b

|Γ|
n−1
n−2

k
n−1
n−2

+ 1
n−2

· 1
B−1

,

and therefore that

|Jk(Γ)| .n,b
|Γ|

n−1
n−2

k
n−1
n−2

+ 1
n−2

· 1
B−1

,

which indeed means that d > 1 for An,b sufficiently large.

In this way, Rn is partitioned in ∼n dn cells, each containing .n |Jk(Γ)|/dn

points of Jk(Γ). We complete the proof of Theorem 4.4 by showing that
& |Jk(Γ)| points of |Jk(Γ)| lie on the zero set Z of p.

Indeed, let us assume that & |Jk(Γ)| points of Jk(Γ) lie in the union of the
cells. Then, there exist &n dn cells, each containing &n |Jk(Γ)|/dn points
of Jk(Γ) (“full” cells). It follows (similarly to the case of multijoints formed
by real algebraic curves) that there exists a full cell C that is intersected
by .n,b |Γ|/dn−1 elements of Γ (note that here the curves in Γ are not
necessarily real algebraic curves, but they are contained in real algebraic
curves).

In analogy to the situation of generic joints formed by lines, we split in two

cases: the case where C contains .n,b k
1

B−1 points of Jk(Γ), and the case

where it contains &n,b k
1

B−1 points of Jk(Γ).

If C contains ≤ λn,b k
1

B−1 points of Jk(Γ), for some constant λn,b which will
be specified later and depends only on n and b , then

|Jk(Γ)|

dn
.n,b k

1
B−1 ,

and thus

|Jk(Γ)| ≤ C ′
n,b

|Γ|
n

n−1

k
n

n−1
+ 1

n−1
· 1
B−1

,

for some constant C ′
n,b independent of Cn,b; by fixing Cn,b 
 C ′

n,b, we have
a contradiction.

It therefore follows that C contains ≥ λn,b k
1

B−1 points of Jk(Γ). Let ΓC

be the subcollection of Γ that consists of the curves in Γ that intersect C.
Similarly to the case of generic joints formed by lines, we project Jk(Γ)∩C
on a generic hyperplane; let Pn−1(Jk(Γ) ∩ C) be the set of these projected
points. Moreover, let Pn−1(ΓC) := {Pn−1(γ) : γ ∈ ΓC}. By Lemma 4.5,
each curve in Pn−1(ΓC) has degree at most b. It is clear that Pn−1(Jk(Γ)∩
C) ⊂ ∪λ≥k Jλ(Pn−1(ΓC)) and |Pn−1(ΓC)| ≤ |ΓC |. Thus, applying Theorem
4.4 in Rn−1 for ∪λ≥k Jλ(Pn−1(ΓC)) (= Jk(Pn−1(ΓC)) ∪ J2k(Pn−1(ΓC)) ∪

J22k(Pn−1(ΓC)) ∪ . . .) we obtain

|Jk(Γ) ∩ C| ≤
+∞∑

µ=0

|J2µk(Pn−1(ΓC))|
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.n,b

+∞∑

µ=0

(
|Pn−1(ΓC)|

n−1
n−2

(2µk)
n−1
n−2

+ 1
n−2

· 1
B−1

+
|Pn−1(ΓC)|

2µk

)

(14) .n,b
|ΓC |

n−1
n−2

k
n−1
n−2

+ 1
n−2

· 1
B−1

+
|ΓC |

k
.

Note that |Jk(Γ) ∩ C| &n,b
|Jk(Γ)|

dn and |ΓC | .n,b
|Γ|

dn−1 ; therefore, if we show
that

(15)
|ΓC |

k
.n,b

|ΓC |
n−1
n−2

k
n−1
n−2

+ 1
n−2

· 1
B−1

,

then (14) will imply that d .n,b
|Γ|n−1

|Jk(Γ)|n−2k
n−1+ 1

B−1
. By fixing An,b to be

sufficiently large we will have a contradiction, and the proof of Theorem 4.4
will be complete.

We conclude by showing (15), in other words that |ΓC | &n,b k
B

B−1 . Note
that here we will use an approach different to the one applied in the case of
generic joints formed by lines; this approach is essentially the proof of the
‘trivial bound’ in [30]. Let JC be a subset of Jk(Γ) ∩ C, such that

(16) |JC | = λn,b k
1

B−1 .

For each γ ∈ ΓC , we define P 2(γ) to be the smallest real planar algebraic
curve containing the projection of γ on a generic 2-dim linear subspace of
Rn; moreover, for each x ∈ JC , let P 2(x) be the projection of x on the
subspace. Let P 2(ΓC) := {irreducible components of P 2(γ) : γ ∈ ΓC}, and
P 2(JC) := {P 2(x) : x ∈ JC}. Since each point x ∈ JC belongs to Jk(ΓC),
there should exist at least k curves in P 2(ΓC) through P 2(x) counted with
multiplicity (i.e., counting each curve as many times as the number of times
it crosses itself at P 2(x)). Therefore, since any curve in P 2(ΓC) has degree
at most b (by Lemma 4.5) and thus crosses itself .b,n 1 times, we have that

|JC | · k .n,b I(P
2(JC), P

2(ΓC)) + |P 2(ΓC)|

(17) .n,b I(P
2(JC), P

2(ΓC)) + |ΓC |;

note that the last inequality is due to the fact that |P 2(ΓC)| .n,b |ΓC |. Now,
for each γ ∈ P 2(ΓC), we denote by Nγ the set of points of P 2(JC) on γ.
Since the curves in P 2(ΓC) containing ≤ b2 points of P 2(JC) contribute at
most b2 · |P 2(ΓC)| incidences with P 2(JC), it holds that

I(P 2(JC), P
2(ΓC)) ≤ b2 · |P 2(ΓC)|+

∑

{γ∈P 2(ΓC ):|Nγ |≥b2+1}

|Nγ |

(18) .n,b |ΓC |+
∑

{γ∈P 2(ΓC):|Nγ |≥b2+1}

|Nγ |.

Let γ ∈ P 2(ΓC) with |Nγ | ≥ b2+1. Each element of P 2(ΓC) is an irreducible
real planar algebraic curve of degree at most b, thus, by Lemma 4.13, each
set of b2+1 points in Nγ has a subset of cardinality B that fully determines
γ in P 2(Γ). Therefore, since each such B-tuple that fully determines γ can
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be the same for at most
( |Nγ |−B
b2+1−B

)
(b2+1)-tuples of points in Nγ , there exist

at least
( |Nγ |
b2+1

)
/
( |Nγ |−B
b2+1−B

)
&n,b |Nγ |

B &n,b |Nγ | B-tuples of points in Nγ that

fully determine γ. On the other hand, all the B-tuples of points in P 2(JC)
are .n,b |P

2(JC)|
B ∼n,b |JC |

B in total, so

(19)
∑

{γ∈P 2(ΓC):|Nγ |≥b2+1}

|Nγ | .n,b |JC |
B .

It follows by (17), (18) and (19) that

|JC | · k ≤ c′n,b (|ΓC |+ |JC |
B),

for some constant c′n,b, depending only on n and b. Combining this with

(16) we obtain

λn,b k
B

B−1 ≤ c′n,b |ΓC |+ c′n,b λ
B
n,b k

B
B−1 .

Thus, by fixing λn,b to be appropriately small, we get

|ΓC | &n,b k
B

B−1 ,

which completes the proof.

�
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